~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/time/time.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  Copyright (C) 1991, 1992  Linus Torvalds
  4  *
  5  *  This file contains the interface functions for the various time related
  6  *  system calls: time, stime, gettimeofday, settimeofday, adjtime
  7  *
  8  * Modification history:
  9  *
 10  * 1993-09-02    Philip Gladstone
 11  *      Created file with time related functions from sched/core.c and adjtimex()
 12  * 1993-10-08    Torsten Duwe
 13  *      adjtime interface update and CMOS clock write code
 14  * 1995-08-13    Torsten Duwe
 15  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 16  * 1999-01-16    Ulrich Windl
 17  *      Introduced error checking for many cases in adjtimex().
 18  *      Updated NTP code according to technical memorandum Jan '96
 19  *      "A Kernel Model for Precision Timekeeping" by Dave Mills
 20  *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 21  *      (Even though the technical memorandum forbids it)
 22  * 2004-07-14    Christoph Lameter
 23  *      Added getnstimeofday to allow the posix timer functions to return
 24  *      with nanosecond accuracy
 25  */
 26 
 27 #include <linux/export.h>
 28 #include <linux/kernel.h>
 29 #include <linux/timex.h>
 30 #include <linux/capability.h>
 31 #include <linux/timekeeper_internal.h>
 32 #include <linux/errno.h>
 33 #include <linux/syscalls.h>
 34 #include <linux/security.h>
 35 #include <linux/fs.h>
 36 #include <linux/math64.h>
 37 #include <linux/ptrace.h>
 38 
 39 #include <linux/uaccess.h>
 40 #include <linux/compat.h>
 41 #include <asm/unistd.h>
 42 
 43 #include <generated/timeconst.h>
 44 #include "timekeeping.h"
 45 
 46 /*
 47  * The timezone where the local system is located.  Used as a default by some
 48  * programs who obtain this value by using gettimeofday.
 49  */
 50 struct timezone sys_tz;
 51 
 52 EXPORT_SYMBOL(sys_tz);
 53 
 54 #ifdef __ARCH_WANT_SYS_TIME
 55 
 56 /*
 57  * sys_time() can be implemented in user-level using
 58  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59  * why not move it into the appropriate arch directory (for those
 60  * architectures that need it).
 61  */
 62 SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
 63 {
 64         __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
 65 
 66         if (tloc) {
 67                 if (put_user(i,tloc))
 68                         return -EFAULT;
 69         }
 70         force_successful_syscall_return();
 71         return i;
 72 }
 73 
 74 /*
 75  * sys_stime() can be implemented in user-level using
 76  * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77  * why not move it into the appropriate arch directory (for those
 78  * architectures that need it).
 79  */
 80 
 81 SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
 82 {
 83         struct timespec64 tv;
 84         int err;
 85 
 86         if (get_user(tv.tv_sec, tptr))
 87                 return -EFAULT;
 88 
 89         tv.tv_nsec = 0;
 90 
 91         err = security_settime64(&tv, NULL);
 92         if (err)
 93                 return err;
 94 
 95         do_settimeofday64(&tv);
 96         return 0;
 97 }
 98 
 99 #endif /* __ARCH_WANT_SYS_TIME */
100 
101 #ifdef CONFIG_COMPAT_32BIT_TIME
102 #ifdef __ARCH_WANT_SYS_TIME32
103 
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106 {
107         old_time32_t i;
108 
109         i = (old_time32_t)ktime_get_real_seconds();
110 
111         if (tloc) {
112                 if (put_user(i,tloc))
113                         return -EFAULT;
114         }
115         force_successful_syscall_return();
116         return i;
117 }
118 
119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120 {
121         struct timespec64 tv;
122         int err;
123 
124         if (get_user(tv.tv_sec, tptr))
125                 return -EFAULT;
126 
127         tv.tv_nsec = 0;
128 
129         err = security_settime64(&tv, NULL);
130         if (err)
131                 return err;
132 
133         do_settimeofday64(&tv);
134         return 0;
135 }
136 
137 #endif /* __ARCH_WANT_SYS_TIME32 */
138 #endif
139 
140 SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141                 struct timezone __user *, tz)
142 {
143         if (likely(tv != NULL)) {
144                 struct timespec64 ts;
145 
146                 ktime_get_real_ts64(&ts);
147                 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148                     put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149                         return -EFAULT;
150         }
151         if (unlikely(tz != NULL)) {
152                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153                         return -EFAULT;
154         }
155         return 0;
156 }
157 
158 /*
159  * In case for some reason the CMOS clock has not already been running
160  * in UTC, but in some local time: The first time we set the timezone,
161  * we will warp the clock so that it is ticking UTC time instead of
162  * local time. Presumably, if someone is setting the timezone then we
163  * are running in an environment where the programs understand about
164  * timezones. This should be done at boot time in the /etc/rc script,
165  * as soon as possible, so that the clock can be set right. Otherwise,
166  * various programs will get confused when the clock gets warped.
167  */
168 
169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171         static int firsttime = 1;
172         int error = 0;
173 
174         if (tv && !timespec64_valid_settod(tv))
175                 return -EINVAL;
176 
177         error = security_settime64(tv, tz);
178         if (error)
179                 return error;
180 
181         if (tz) {
182                 /* Verify we're within the +-15 hrs range */
183                 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184                         return -EINVAL;
185 
186                 sys_tz = *tz;
187                 update_vsyscall_tz();
188                 if (firsttime) {
189                         firsttime = 0;
190                         if (!tv)
191                                 timekeeping_warp_clock();
192                 }
193         }
194         if (tv)
195                 return do_settimeofday64(tv);
196         return 0;
197 }
198 
199 SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200                 struct timezone __user *, tz)
201 {
202         struct timespec64 new_ts;
203         struct timezone new_tz;
204 
205         if (tv) {
206                 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207                     get_user(new_ts.tv_nsec, &tv->tv_usec))
208                         return -EFAULT;
209 
210                 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211                         return -EINVAL;
212 
213                 new_ts.tv_nsec *= NSEC_PER_USEC;
214         }
215         if (tz) {
216                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217                         return -EFAULT;
218         }
219 
220         return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221 }
222 
223 #ifdef CONFIG_COMPAT
224 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225                        struct timezone __user *, tz)
226 {
227         if (tv) {
228                 struct timespec64 ts;
229 
230                 ktime_get_real_ts64(&ts);
231                 if (put_user(ts.tv_sec, &tv->tv_sec) ||
232                     put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233                         return -EFAULT;
234         }
235         if (tz) {
236                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237                         return -EFAULT;
238         }
239 
240         return 0;
241 }
242 
243 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244                        struct timezone __user *, tz)
245 {
246         struct timespec64 new_ts;
247         struct timezone new_tz;
248 
249         if (tv) {
250                 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251                     get_user(new_ts.tv_nsec, &tv->tv_usec))
252                         return -EFAULT;
253 
254                 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255                         return -EINVAL;
256 
257                 new_ts.tv_nsec *= NSEC_PER_USEC;
258         }
259         if (tz) {
260                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261                         return -EFAULT;
262         }
263 
264         return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265 }
266 #endif
267 
268 #ifdef CONFIG_64BIT
269 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270 {
271         struct __kernel_timex txc;              /* Local copy of parameter */
272         int ret;
273 
274         /* Copy the user data space into the kernel copy
275          * structure. But bear in mind that the structures
276          * may change
277          */
278         if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279                 return -EFAULT;
280         ret = do_adjtimex(&txc);
281         return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282 }
283 #endif
284 
285 #ifdef CONFIG_COMPAT_32BIT_TIME
286 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287 {
288         struct old_timex32 tx32;
289 
290         memset(txc, 0, sizeof(struct __kernel_timex));
291         if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292                 return -EFAULT;
293 
294         txc->modes = tx32.modes;
295         txc->offset = tx32.offset;
296         txc->freq = tx32.freq;
297         txc->maxerror = tx32.maxerror;
298         txc->esterror = tx32.esterror;
299         txc->status = tx32.status;
300         txc->constant = tx32.constant;
301         txc->precision = tx32.precision;
302         txc->tolerance = tx32.tolerance;
303         txc->time.tv_sec = tx32.time.tv_sec;
304         txc->time.tv_usec = tx32.time.tv_usec;
305         txc->tick = tx32.tick;
306         txc->ppsfreq = tx32.ppsfreq;
307         txc->jitter = tx32.jitter;
308         txc->shift = tx32.shift;
309         txc->stabil = tx32.stabil;
310         txc->jitcnt = tx32.jitcnt;
311         txc->calcnt = tx32.calcnt;
312         txc->errcnt = tx32.errcnt;
313         txc->stbcnt = tx32.stbcnt;
314 
315         return 0;
316 }
317 
318 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319 {
320         struct old_timex32 tx32;
321 
322         memset(&tx32, 0, sizeof(struct old_timex32));
323         tx32.modes = txc->modes;
324         tx32.offset = txc->offset;
325         tx32.freq = txc->freq;
326         tx32.maxerror = txc->maxerror;
327         tx32.esterror = txc->esterror;
328         tx32.status = txc->status;
329         tx32.constant = txc->constant;
330         tx32.precision = txc->precision;
331         tx32.tolerance = txc->tolerance;
332         tx32.time.tv_sec = txc->time.tv_sec;
333         tx32.time.tv_usec = txc->time.tv_usec;
334         tx32.tick = txc->tick;
335         tx32.ppsfreq = txc->ppsfreq;
336         tx32.jitter = txc->jitter;
337         tx32.shift = txc->shift;
338         tx32.stabil = txc->stabil;
339         tx32.jitcnt = txc->jitcnt;
340         tx32.calcnt = txc->calcnt;
341         tx32.errcnt = txc->errcnt;
342         tx32.stbcnt = txc->stbcnt;
343         tx32.tai = txc->tai;
344         if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345                 return -EFAULT;
346         return 0;
347 }
348 
349 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350 {
351         struct __kernel_timex txc;
352         int err, ret;
353 
354         err = get_old_timex32(&txc, utp);
355         if (err)
356                 return err;
357 
358         ret = do_adjtimex(&txc);
359 
360         err = put_old_timex32(utp, &txc);
361         if (err)
362                 return err;
363 
364         return ret;
365 }
366 #endif
367 
368 /**
369  * jiffies_to_msecs - Convert jiffies to milliseconds
370  * @j: jiffies value
371  *
372  * Avoid unnecessary multiplications/divisions in the
373  * two most common HZ cases.
374  *
375  * Return: milliseconds value
376  */
377 unsigned int jiffies_to_msecs(const unsigned long j)
378 {
379 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
380         return (MSEC_PER_SEC / HZ) * j;
381 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
382         return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
383 #else
384 # if BITS_PER_LONG == 32
385         return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
386                HZ_TO_MSEC_SHR32;
387 # else
388         return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
389 # endif
390 #endif
391 }
392 EXPORT_SYMBOL(jiffies_to_msecs);
393 
394 /**
395  * jiffies_to_usecs - Convert jiffies to microseconds
396  * @j: jiffies value
397  *
398  * Return: microseconds value
399  */
400 unsigned int jiffies_to_usecs(const unsigned long j)
401 {
402         /*
403          * Hz usually doesn't go much further MSEC_PER_SEC.
404          * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
405          */
406         BUILD_BUG_ON(HZ > USEC_PER_SEC);
407 
408 #if !(USEC_PER_SEC % HZ)
409         return (USEC_PER_SEC / HZ) * j;
410 #else
411 # if BITS_PER_LONG == 32
412         return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
413 # else
414         return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
415 # endif
416 #endif
417 }
418 EXPORT_SYMBOL(jiffies_to_usecs);
419 
420 /**
421  * mktime64 - Converts date to seconds.
422  * @year0: year to convert
423  * @mon0: month to convert
424  * @day: day to convert
425  * @hour: hour to convert
426  * @min: minute to convert
427  * @sec: second to convert
428  *
429  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
430  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
431  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
432  *
433  * [For the Julian calendar (which was used in Russia before 1917,
434  * Britain & colonies before 1752, anywhere else before 1582,
435  * and is still in use by some communities) leave out the
436  * -year/100+year/400 terms, and add 10.]
437  *
438  * This algorithm was first published by Gauss (I think).
439  *
440  * A leap second can be indicated by calling this function with sec as
441  * 60 (allowable under ISO 8601).  The leap second is treated the same
442  * as the following second since they don't exist in UNIX time.
443  *
444  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
445  * tomorrow - (allowable under ISO 8601) is supported.
446  *
447  * Return: seconds since the epoch time for the given input date
448  */
449 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
450                 const unsigned int day, const unsigned int hour,
451                 const unsigned int min, const unsigned int sec)
452 {
453         unsigned int mon = mon0, year = year0;
454 
455         /* 1..12 -> 11,12,1..10 */
456         if (0 >= (int) (mon -= 2)) {
457                 mon += 12;      /* Puts Feb last since it has leap day */
458                 year -= 1;
459         }
460 
461         return ((((time64_t)
462                   (year/4 - year/100 + year/400 + 367*mon/12 + day) +
463                   year*365 - 719499
464             )*24 + hour /* now have hours - midnight tomorrow handled here */
465           )*60 + min /* now have minutes */
466         )*60 + sec; /* finally seconds */
467 }
468 EXPORT_SYMBOL(mktime64);
469 
470 struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
471 {
472         struct timespec64 ts = ns_to_timespec64(nsec);
473         struct __kernel_old_timeval tv;
474 
475         tv.tv_sec = ts.tv_sec;
476         tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
477 
478         return tv;
479 }
480 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
481 
482 /**
483  * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
484  *
485  * @ts:         pointer to timespec variable to be set
486  * @sec:        seconds to set
487  * @nsec:       nanoseconds to set
488  *
489  * Set seconds and nanoseconds field of a timespec variable and
490  * normalize to the timespec storage format
491  *
492  * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
493  * For negative values only the tv_sec field is negative !
494  */
495 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
496 {
497         while (nsec >= NSEC_PER_SEC) {
498                 /*
499                  * The following asm() prevents the compiler from
500                  * optimising this loop into a modulo operation. See
501                  * also __iter_div_u64_rem() in include/linux/time.h
502                  */
503                 asm("" : "+rm"(nsec));
504                 nsec -= NSEC_PER_SEC;
505                 ++sec;
506         }
507         while (nsec < 0) {
508                 asm("" : "+rm"(nsec));
509                 nsec += NSEC_PER_SEC;
510                 --sec;
511         }
512         ts->tv_sec = sec;
513         ts->tv_nsec = nsec;
514 }
515 EXPORT_SYMBOL(set_normalized_timespec64);
516 
517 /**
518  * ns_to_timespec64 - Convert nanoseconds to timespec64
519  * @nsec:       the nanoseconds value to be converted
520  *
521  * Return: the timespec64 representation of the nsec parameter.
522  */
523 struct timespec64 ns_to_timespec64(s64 nsec)
524 {
525         struct timespec64 ts = { 0, 0 };
526         s32 rem;
527 
528         if (likely(nsec > 0)) {
529                 ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
530                 ts.tv_nsec = rem;
531         } else if (nsec < 0) {
532                 /*
533                  * With negative times, tv_sec points to the earlier
534                  * second, and tv_nsec counts the nanoseconds since
535                  * then, so tv_nsec is always a positive number.
536                  */
537                 ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
538                 ts.tv_nsec = NSEC_PER_SEC - rem - 1;
539         }
540 
541         return ts;
542 }
543 EXPORT_SYMBOL(ns_to_timespec64);
544 
545 /**
546  * __msecs_to_jiffies: - convert milliseconds to jiffies
547  * @m:  time in milliseconds
548  *
549  * conversion is done as follows:
550  *
551  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
552  *
553  * - 'too large' values [that would result in larger than
554  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
555  *
556  * - all other values are converted to jiffies by either multiplying
557  *   the input value by a factor or dividing it with a factor and
558  *   handling any 32-bit overflows.
559  *   for the details see __msecs_to_jiffies()
560  *
561  * __msecs_to_jiffies() checks for the passed in value being a constant
562  * via __builtin_constant_p() allowing gcc to eliminate most of the
563  * code, __msecs_to_jiffies() is called if the value passed does not
564  * allow constant folding and the actual conversion must be done at
565  * runtime.
566  * The _msecs_to_jiffies helpers are the HZ dependent conversion
567  * routines found in include/linux/jiffies.h
568  *
569  * Return: jiffies value
570  */
571 unsigned long __msecs_to_jiffies(const unsigned int m)
572 {
573         /*
574          * Negative value, means infinite timeout:
575          */
576         if ((int)m < 0)
577                 return MAX_JIFFY_OFFSET;
578         return _msecs_to_jiffies(m);
579 }
580 EXPORT_SYMBOL(__msecs_to_jiffies);
581 
582 /**
583  * __usecs_to_jiffies: - convert microseconds to jiffies
584  * @u:  time in milliseconds
585  *
586  * Return: jiffies value
587  */
588 unsigned long __usecs_to_jiffies(const unsigned int u)
589 {
590         if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
591                 return MAX_JIFFY_OFFSET;
592         return _usecs_to_jiffies(u);
593 }
594 EXPORT_SYMBOL(__usecs_to_jiffies);
595 
596 /**
597  * timespec64_to_jiffies - convert a timespec64 value to jiffies
598  * @value: pointer to &struct timespec64
599  *
600  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
601  * that a remainder subtract here would not do the right thing as the
602  * resolution values don't fall on second boundaries.  I.e. the line:
603  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
604  * Note that due to the small error in the multiplier here, this
605  * rounding is incorrect for sufficiently large values of tv_nsec, but
606  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
607  * OK.
608  *
609  * Rather, we just shift the bits off the right.
610  *
611  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
612  * value to a scaled second value.
613  *
614  * Return: jiffies value
615  */
616 unsigned long
617 timespec64_to_jiffies(const struct timespec64 *value)
618 {
619         u64 sec = value->tv_sec;
620         long nsec = value->tv_nsec + TICK_NSEC - 1;
621 
622         if (sec >= MAX_SEC_IN_JIFFIES){
623                 sec = MAX_SEC_IN_JIFFIES;
624                 nsec = 0;
625         }
626         return ((sec * SEC_CONVERSION) +
627                 (((u64)nsec * NSEC_CONVERSION) >>
628                  (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
629 
630 }
631 EXPORT_SYMBOL(timespec64_to_jiffies);
632 
633 /**
634  * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
635  * @jiffies: jiffies value
636  * @value: pointer to &struct timespec64
637  */
638 void
639 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
640 {
641         /*
642          * Convert jiffies to nanoseconds and separate with
643          * one divide.
644          */
645         u32 rem;
646         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
647                                     NSEC_PER_SEC, &rem);
648         value->tv_nsec = rem;
649 }
650 EXPORT_SYMBOL(jiffies_to_timespec64);
651 
652 /*
653  * Convert jiffies/jiffies_64 to clock_t and back.
654  */
655 
656 /**
657  * jiffies_to_clock_t - Convert jiffies to clock_t
658  * @x: jiffies value
659  *
660  * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
661  */
662 clock_t jiffies_to_clock_t(unsigned long x)
663 {
664 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
665 # if HZ < USER_HZ
666         return x * (USER_HZ / HZ);
667 # else
668         return x / (HZ / USER_HZ);
669 # endif
670 #else
671         return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
672 #endif
673 }
674 EXPORT_SYMBOL(jiffies_to_clock_t);
675 
676 /**
677  * clock_t_to_jiffies - Convert clock_t to jiffies
678  * @x: clock_t value
679  *
680  * Return: clock_t value converted to jiffies
681  */
682 unsigned long clock_t_to_jiffies(unsigned long x)
683 {
684 #if (HZ % USER_HZ)==0
685         if (x >= ~0UL / (HZ / USER_HZ))
686                 return ~0UL;
687         return x * (HZ / USER_HZ);
688 #else
689         /* Don't worry about loss of precision here .. */
690         if (x >= ~0UL / HZ * USER_HZ)
691                 return ~0UL;
692 
693         /* .. but do try to contain it here */
694         return div_u64((u64)x * HZ, USER_HZ);
695 #endif
696 }
697 EXPORT_SYMBOL(clock_t_to_jiffies);
698 
699 /**
700  * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
701  * @x: jiffies_64 value
702  *
703  * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
704  */
705 u64 jiffies_64_to_clock_t(u64 x)
706 {
707 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708 # if HZ < USER_HZ
709         x = div_u64(x * USER_HZ, HZ);
710 # elif HZ > USER_HZ
711         x = div_u64(x, HZ / USER_HZ);
712 # else
713         /* Nothing to do */
714 # endif
715 #else
716         /*
717          * There are better ways that don't overflow early,
718          * but even this doesn't overflow in hundreds of years
719          * in 64 bits, so..
720          */
721         x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
722 #endif
723         return x;
724 }
725 EXPORT_SYMBOL(jiffies_64_to_clock_t);
726 
727 /**
728  * nsec_to_clock_t - Convert nsec value to clock_t
729  * @x: nsec value
730  *
731  * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
732  */
733 u64 nsec_to_clock_t(u64 x)
734 {
735 #if (NSEC_PER_SEC % USER_HZ) == 0
736         return div_u64(x, NSEC_PER_SEC / USER_HZ);
737 #elif (USER_HZ % 512) == 0
738         return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
739 #else
740         /*
741          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
742          * overflow after 64.99 years.
743          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
744          */
745         return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
746 #endif
747 }
748 
749 /**
750  * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
751  * @j: jiffies64 value
752  *
753  * Return: nanoseconds value
754  */
755 u64 jiffies64_to_nsecs(u64 j)
756 {
757 #if !(NSEC_PER_SEC % HZ)
758         return (NSEC_PER_SEC / HZ) * j;
759 # else
760         return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
761 #endif
762 }
763 EXPORT_SYMBOL(jiffies64_to_nsecs);
764 
765 /**
766  * jiffies64_to_msecs - Convert jiffies64 to milliseconds
767  * @j: jiffies64 value
768  *
769  * Return: milliseconds value
770  */
771 u64 jiffies64_to_msecs(const u64 j)
772 {
773 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
774         return (MSEC_PER_SEC / HZ) * j;
775 #else
776         return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
777 #endif
778 }
779 EXPORT_SYMBOL(jiffies64_to_msecs);
780 
781 /**
782  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
783  *
784  * @n:  nsecs in u64
785  *
786  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
787  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
788  * for scheduler, not for use in device drivers to calculate timeout value.
789  *
790  * note:
791  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
792  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
793  *
794  * Return: nsecs converted to jiffies64 value
795  */
796 u64 nsecs_to_jiffies64(u64 n)
797 {
798 #if (NSEC_PER_SEC % HZ) == 0
799         /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
800         return div_u64(n, NSEC_PER_SEC / HZ);
801 #elif (HZ % 512) == 0
802         /* overflow after 292 years if HZ = 1024 */
803         return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
804 #else
805         /*
806          * Generic case - optimized for cases where HZ is a multiple of 3.
807          * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
808          */
809         return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
810 #endif
811 }
812 EXPORT_SYMBOL(nsecs_to_jiffies64);
813 
814 /**
815  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
816  *
817  * @n:  nsecs in u64
818  *
819  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
820  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
821  * for scheduler, not for use in device drivers to calculate timeout value.
822  *
823  * note:
824  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
825  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
826  *
827  * Return: nsecs converted to jiffies value
828  */
829 unsigned long nsecs_to_jiffies(u64 n)
830 {
831         return (unsigned long)nsecs_to_jiffies64(n);
832 }
833 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
834 
835 /**
836  * timespec64_add_safe - Add two timespec64 values and do a safety check
837  * for overflow.
838  * @lhs: first (left) timespec64 to add
839  * @rhs: second (right) timespec64 to add
840  *
841  * It's assumed that both values are valid (>= 0).
842  * And, each timespec64 is in normalized form.
843  *
844  * Return: sum of @lhs + @rhs
845  */
846 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
847                                 const struct timespec64 rhs)
848 {
849         struct timespec64 res;
850 
851         set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
852                         lhs.tv_nsec + rhs.tv_nsec);
853 
854         if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
855                 res.tv_sec = TIME64_MAX;
856                 res.tv_nsec = 0;
857         }
858 
859         return res;
860 }
861 
862 /**
863  * get_timespec64 - get user's time value into kernel space
864  * @ts: destination &struct timespec64
865  * @uts: user's time value as &struct __kernel_timespec
866  *
867  * Handles compat or 32-bit modes.
868  *
869  * Return: %0 on success or negative errno on error
870  */
871 int get_timespec64(struct timespec64 *ts,
872                    const struct __kernel_timespec __user *uts)
873 {
874         struct __kernel_timespec kts;
875         int ret;
876 
877         ret = copy_from_user(&kts, uts, sizeof(kts));
878         if (ret)
879                 return -EFAULT;
880 
881         ts->tv_sec = kts.tv_sec;
882 
883         /* Zero out the padding in compat mode */
884         if (in_compat_syscall())
885                 kts.tv_nsec &= 0xFFFFFFFFUL;
886 
887         /* In 32-bit mode, this drops the padding */
888         ts->tv_nsec = kts.tv_nsec;
889 
890         return 0;
891 }
892 EXPORT_SYMBOL_GPL(get_timespec64);
893 
894 /**
895  * put_timespec64 - convert timespec64 value to __kernel_timespec format and
896  *                  copy the latter to userspace
897  * @ts: input &struct timespec64
898  * @uts: user's &struct __kernel_timespec
899  *
900  * Return: %0 on success or negative errno on error
901  */
902 int put_timespec64(const struct timespec64 *ts,
903                    struct __kernel_timespec __user *uts)
904 {
905         struct __kernel_timespec kts = {
906                 .tv_sec = ts->tv_sec,
907                 .tv_nsec = ts->tv_nsec
908         };
909 
910         return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
911 }
912 EXPORT_SYMBOL_GPL(put_timespec64);
913 
914 static int __get_old_timespec32(struct timespec64 *ts64,
915                                    const struct old_timespec32 __user *cts)
916 {
917         struct old_timespec32 ts;
918         int ret;
919 
920         ret = copy_from_user(&ts, cts, sizeof(ts));
921         if (ret)
922                 return -EFAULT;
923 
924         ts64->tv_sec = ts.tv_sec;
925         ts64->tv_nsec = ts.tv_nsec;
926 
927         return 0;
928 }
929 
930 static int __put_old_timespec32(const struct timespec64 *ts64,
931                                    struct old_timespec32 __user *cts)
932 {
933         struct old_timespec32 ts = {
934                 .tv_sec = ts64->tv_sec,
935                 .tv_nsec = ts64->tv_nsec
936         };
937         return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
938 }
939 
940 /**
941  * get_old_timespec32 - get user's old-format time value into kernel space
942  * @ts: destination &struct timespec64
943  * @uts: user's old-format time value (&struct old_timespec32)
944  *
945  * Handles X86_X32_ABI compatibility conversion.
946  *
947  * Return: %0 on success or negative errno on error
948  */
949 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
950 {
951         if (COMPAT_USE_64BIT_TIME)
952                 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
953         else
954                 return __get_old_timespec32(ts, uts);
955 }
956 EXPORT_SYMBOL_GPL(get_old_timespec32);
957 
958 /**
959  * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
960  *                      copy the latter to userspace
961  * @ts: input &struct timespec64
962  * @uts: user's &struct old_timespec32
963  *
964  * Handles X86_X32_ABI compatibility conversion.
965  *
966  * Return: %0 on success or negative errno on error
967  */
968 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
969 {
970         if (COMPAT_USE_64BIT_TIME)
971                 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
972         else
973                 return __put_old_timespec32(ts, uts);
974 }
975 EXPORT_SYMBOL_GPL(put_old_timespec32);
976 
977 /**
978  * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
979  * @it: destination &struct itimerspec64
980  * @uit: user's &struct __kernel_itimerspec
981  *
982  * Return: %0 on success or negative errno on error
983  */
984 int get_itimerspec64(struct itimerspec64 *it,
985                         const struct __kernel_itimerspec __user *uit)
986 {
987         int ret;
988 
989         ret = get_timespec64(&it->it_interval, &uit->it_interval);
990         if (ret)
991                 return ret;
992 
993         ret = get_timespec64(&it->it_value, &uit->it_value);
994 
995         return ret;
996 }
997 EXPORT_SYMBOL_GPL(get_itimerspec64);
998 
999 /**
1000  * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001  *                    and copy the latter to userspace
1002  * @it: input &struct itimerspec64
1003  * @uit: user's &struct __kernel_itimerspec
1004  *
1005  * Return: %0 on success or negative errno on error
1006  */
1007 int put_itimerspec64(const struct itimerspec64 *it,
1008                         struct __kernel_itimerspec __user *uit)
1009 {
1010         int ret;
1011 
1012         ret = put_timespec64(&it->it_interval, &uit->it_interval);
1013         if (ret)
1014                 return ret;
1015 
1016         ret = put_timespec64(&it->it_value, &uit->it_value);
1017 
1018         return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(put_itimerspec64);
1021 
1022 /**
1023  * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024  * @its: destination &struct itimerspec64
1025  * @uits: user's &struct old_itimerspec32
1026  *
1027  * Return: %0 on success or negative errno on error
1028  */
1029 int get_old_itimerspec32(struct itimerspec64 *its,
1030                         const struct old_itimerspec32 __user *uits)
1031 {
1032 
1033         if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
1034             __get_old_timespec32(&its->it_value, &uits->it_value))
1035                 return -EFAULT;
1036         return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
1039 
1040 /**
1041  * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042  *                        old_itimerspec32 and copy the latter to userspace
1043  * @its: input &struct itimerspec64
1044  * @uits: user's &struct old_itimerspec32
1045  *
1046  * Return: %0 on success or negative errno on error
1047  */
1048 int put_old_itimerspec32(const struct itimerspec64 *its,
1049                         struct old_itimerspec32 __user *uits)
1050 {
1051         if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
1052             __put_old_timespec32(&its->it_value, &uits->it_value))
1053                 return -EFAULT;
1054         return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
1057 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php