1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 #include <linux/ccsecurity.h> 28 29 #include "tick-internal.h" 30 #include "ntp_internal.h" 31 #include "timekeeping_internal.h" 32 33 #define TK_CLEAR_NTP (1 << 0) 34 #define TK_MIRROR (1 << 1) 35 #define TK_CLOCK_WAS_SET (1 << 2) 36 37 enum timekeeping_adv_mode { 38 /* Update timekeeper when a tick has passed */ 39 TK_ADV_TICK, 40 41 /* Update timekeeper on a direct frequency change */ 42 TK_ADV_FREQ 43 }; 44 45 DEFINE_RAW_SPINLOCK(timekeeper_lock); 46 47 /* 48 * The most important data for readout fits into a single 64 byte 49 * cache line. 50 */ 51 static struct { 52 seqcount_raw_spinlock_t seq; 53 struct timekeeper timekeeper; 54 } tk_core ____cacheline_aligned = { 55 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 56 }; 57 58 static struct timekeeper shadow_timekeeper; 59 60 /* flag for if timekeeping is suspended */ 61 int __read_mostly timekeeping_suspended; 62 63 /** 64 * struct tk_fast - NMI safe timekeeper 65 * @seq: Sequence counter for protecting updates. The lowest bit 66 * is the index for the tk_read_base array 67 * @base: tk_read_base array. Access is indexed by the lowest bit of 68 * @seq. 69 * 70 * See @update_fast_timekeeper() below. 71 */ 72 struct tk_fast { 73 seqcount_latch_t seq; 74 struct tk_read_base base[2]; 75 }; 76 77 /* Suspend-time cycles value for halted fast timekeeper. */ 78 static u64 cycles_at_suspend; 79 80 static u64 dummy_clock_read(struct clocksource *cs) 81 { 82 if (timekeeping_suspended) 83 return cycles_at_suspend; 84 return local_clock(); 85 } 86 87 static struct clocksource dummy_clock = { 88 .read = dummy_clock_read, 89 }; 90 91 /* 92 * Boot time initialization which allows local_clock() to be utilized 93 * during early boot when clocksources are not available. local_clock() 94 * returns nanoseconds already so no conversion is required, hence mult=1 95 * and shift=0. When the first proper clocksource is installed then 96 * the fast time keepers are updated with the correct values. 97 */ 98 #define FAST_TK_INIT \ 99 { \ 100 .clock = &dummy_clock, \ 101 .mask = CLOCKSOURCE_MASK(64), \ 102 .mult = 1, \ 103 .shift = 0, \ 104 } 105 106 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 107 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 108 .base[0] = FAST_TK_INIT, 109 .base[1] = FAST_TK_INIT, 110 }; 111 112 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 113 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 114 .base[0] = FAST_TK_INIT, 115 .base[1] = FAST_TK_INIT, 116 }; 117 118 static inline void tk_normalize_xtime(struct timekeeper *tk) 119 { 120 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 121 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 122 tk->xtime_sec++; 123 } 124 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 125 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 126 tk->raw_sec++; 127 } 128 } 129 130 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 131 { 132 struct timespec64 ts; 133 134 ts.tv_sec = tk->xtime_sec; 135 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 136 return ts; 137 } 138 139 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 140 { 141 tk->xtime_sec = ts->tv_sec; 142 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 143 } 144 145 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 146 { 147 tk->xtime_sec += ts->tv_sec; 148 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 149 tk_normalize_xtime(tk); 150 } 151 152 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 153 { 154 struct timespec64 tmp; 155 156 /* 157 * Verify consistency of: offset_real = -wall_to_monotonic 158 * before modifying anything 159 */ 160 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 161 -tk->wall_to_monotonic.tv_nsec); 162 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 163 tk->wall_to_monotonic = wtm; 164 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 165 tk->offs_real = timespec64_to_ktime(tmp); 166 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 167 } 168 169 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 170 { 171 tk->offs_boot = ktime_add(tk->offs_boot, delta); 172 /* 173 * Timespec representation for VDSO update to avoid 64bit division 174 * on every update. 175 */ 176 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 177 } 178 179 /* 180 * tk_clock_read - atomic clocksource read() helper 181 * 182 * This helper is necessary to use in the read paths because, while the 183 * seqcount ensures we don't return a bad value while structures are updated, 184 * it doesn't protect from potential crashes. There is the possibility that 185 * the tkr's clocksource may change between the read reference, and the 186 * clock reference passed to the read function. This can cause crashes if 187 * the wrong clocksource is passed to the wrong read function. 188 * This isn't necessary to use when holding the timekeeper_lock or doing 189 * a read of the fast-timekeeper tkrs (which is protected by its own locking 190 * and update logic). 191 */ 192 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 193 { 194 struct clocksource *clock = READ_ONCE(tkr->clock); 195 196 return clock->read(clock); 197 } 198 199 #ifdef CONFIG_DEBUG_TIMEKEEPING 200 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 201 202 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 203 { 204 205 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 206 const char *name = tk->tkr_mono.clock->name; 207 208 if (offset > max_cycles) { 209 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 210 offset, name, max_cycles); 211 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 212 } else { 213 if (offset > (max_cycles >> 1)) { 214 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 215 offset, name, max_cycles >> 1); 216 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 217 } 218 } 219 220 if (tk->underflow_seen) { 221 if (jiffies - tk->last_warning > WARNING_FREQ) { 222 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 223 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 224 printk_deferred(" Your kernel is probably still fine.\n"); 225 tk->last_warning = jiffies; 226 } 227 tk->underflow_seen = 0; 228 } 229 230 if (tk->overflow_seen) { 231 if (jiffies - tk->last_warning > WARNING_FREQ) { 232 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 233 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 234 printk_deferred(" Your kernel is probably still fine.\n"); 235 tk->last_warning = jiffies; 236 } 237 tk->overflow_seen = 0; 238 } 239 } 240 241 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 242 243 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 244 { 245 struct timekeeper *tk = &tk_core.timekeeper; 246 u64 now, last, mask, max, delta; 247 unsigned int seq; 248 249 /* 250 * Since we're called holding a seqcount, the data may shift 251 * under us while we're doing the calculation. This can cause 252 * false positives, since we'd note a problem but throw the 253 * results away. So nest another seqcount here to atomically 254 * grab the points we are checking with. 255 */ 256 do { 257 seq = read_seqcount_begin(&tk_core.seq); 258 now = tk_clock_read(tkr); 259 last = tkr->cycle_last; 260 mask = tkr->mask; 261 max = tkr->clock->max_cycles; 262 } while (read_seqcount_retry(&tk_core.seq, seq)); 263 264 delta = clocksource_delta(now, last, mask); 265 266 /* 267 * Try to catch underflows by checking if we are seeing small 268 * mask-relative negative values. 269 */ 270 if (unlikely((~delta & mask) < (mask >> 3))) 271 tk->underflow_seen = 1; 272 273 /* Check for multiplication overflows */ 274 if (unlikely(delta > max)) 275 tk->overflow_seen = 1; 276 277 /* timekeeping_cycles_to_ns() handles both under and overflow */ 278 return timekeeping_cycles_to_ns(tkr, now); 279 } 280 #else 281 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 282 { 283 } 284 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 285 { 286 BUG(); 287 } 288 #endif 289 290 /** 291 * tk_setup_internals - Set up internals to use clocksource clock. 292 * 293 * @tk: The target timekeeper to setup. 294 * @clock: Pointer to clocksource. 295 * 296 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 297 * pair and interval request. 298 * 299 * Unless you're the timekeeping code, you should not be using this! 300 */ 301 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 302 { 303 u64 interval; 304 u64 tmp, ntpinterval; 305 struct clocksource *old_clock; 306 307 ++tk->cs_was_changed_seq; 308 old_clock = tk->tkr_mono.clock; 309 tk->tkr_mono.clock = clock; 310 tk->tkr_mono.mask = clock->mask; 311 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 312 313 tk->tkr_raw.clock = clock; 314 tk->tkr_raw.mask = clock->mask; 315 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 316 317 /* Do the ns -> cycle conversion first, using original mult */ 318 tmp = NTP_INTERVAL_LENGTH; 319 tmp <<= clock->shift; 320 ntpinterval = tmp; 321 tmp += clock->mult/2; 322 do_div(tmp, clock->mult); 323 if (tmp == 0) 324 tmp = 1; 325 326 interval = (u64) tmp; 327 tk->cycle_interval = interval; 328 329 /* Go back from cycles -> shifted ns */ 330 tk->xtime_interval = interval * clock->mult; 331 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 332 tk->raw_interval = interval * clock->mult; 333 334 /* if changing clocks, convert xtime_nsec shift units */ 335 if (old_clock) { 336 int shift_change = clock->shift - old_clock->shift; 337 if (shift_change < 0) { 338 tk->tkr_mono.xtime_nsec >>= -shift_change; 339 tk->tkr_raw.xtime_nsec >>= -shift_change; 340 } else { 341 tk->tkr_mono.xtime_nsec <<= shift_change; 342 tk->tkr_raw.xtime_nsec <<= shift_change; 343 } 344 } 345 346 tk->tkr_mono.shift = clock->shift; 347 tk->tkr_raw.shift = clock->shift; 348 349 tk->ntp_error = 0; 350 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 351 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 352 353 /* 354 * The timekeeper keeps its own mult values for the currently 355 * active clocksource. These value will be adjusted via NTP 356 * to counteract clock drifting. 357 */ 358 tk->tkr_mono.mult = clock->mult; 359 tk->tkr_raw.mult = clock->mult; 360 tk->ntp_err_mult = 0; 361 tk->skip_second_overflow = 0; 362 } 363 364 /* Timekeeper helper functions. */ 365 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 366 { 367 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 368 } 369 370 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 371 { 372 /* Calculate the delta since the last update_wall_time() */ 373 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 374 375 /* 376 * This detects both negative motion and the case where the delta 377 * overflows the multiplication with tkr->mult. 378 */ 379 if (unlikely(delta > tkr->clock->max_cycles)) { 380 /* 381 * Handle clocksource inconsistency between CPUs to prevent 382 * time from going backwards by checking for the MSB of the 383 * mask being set in the delta. 384 */ 385 if (delta & ~(mask >> 1)) 386 return tkr->xtime_nsec >> tkr->shift; 387 388 return delta_to_ns_safe(tkr, delta); 389 } 390 391 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 392 } 393 394 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 395 { 396 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 397 } 398 399 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 400 { 401 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 402 return timekeeping_debug_get_ns(tkr); 403 404 return __timekeeping_get_ns(tkr); 405 } 406 407 /** 408 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 409 * @tkr: Timekeeping readout base from which we take the update 410 * @tkf: Pointer to NMI safe timekeeper 411 * 412 * We want to use this from any context including NMI and tracing / 413 * instrumenting the timekeeping code itself. 414 * 415 * Employ the latch technique; see @raw_write_seqcount_latch. 416 * 417 * So if a NMI hits the update of base[0] then it will use base[1] 418 * which is still consistent. In the worst case this can result is a 419 * slightly wrong timestamp (a few nanoseconds). See 420 * @ktime_get_mono_fast_ns. 421 */ 422 static void update_fast_timekeeper(const struct tk_read_base *tkr, 423 struct tk_fast *tkf) 424 { 425 struct tk_read_base *base = tkf->base; 426 427 /* Force readers off to base[1] */ 428 raw_write_seqcount_latch(&tkf->seq); 429 430 /* Update base[0] */ 431 memcpy(base, tkr, sizeof(*base)); 432 433 /* Force readers back to base[0] */ 434 raw_write_seqcount_latch(&tkf->seq); 435 436 /* Update base[1] */ 437 memcpy(base + 1, base, sizeof(*base)); 438 } 439 440 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 441 { 442 struct tk_read_base *tkr; 443 unsigned int seq; 444 u64 now; 445 446 do { 447 seq = raw_read_seqcount_latch(&tkf->seq); 448 tkr = tkf->base + (seq & 0x01); 449 now = ktime_to_ns(tkr->base); 450 now += __timekeeping_get_ns(tkr); 451 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 452 453 return now; 454 } 455 456 /** 457 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 458 * 459 * This timestamp is not guaranteed to be monotonic across an update. 460 * The timestamp is calculated by: 461 * 462 * now = base_mono + clock_delta * slope 463 * 464 * So if the update lowers the slope, readers who are forced to the 465 * not yet updated second array are still using the old steeper slope. 466 * 467 * tmono 468 * ^ 469 * | o n 470 * | o n 471 * | u 472 * | o 473 * |o 474 * |12345678---> reader order 475 * 476 * o = old slope 477 * u = update 478 * n = new slope 479 * 480 * So reader 6 will observe time going backwards versus reader 5. 481 * 482 * While other CPUs are likely to be able to observe that, the only way 483 * for a CPU local observation is when an NMI hits in the middle of 484 * the update. Timestamps taken from that NMI context might be ahead 485 * of the following timestamps. Callers need to be aware of that and 486 * deal with it. 487 */ 488 u64 notrace ktime_get_mono_fast_ns(void) 489 { 490 return __ktime_get_fast_ns(&tk_fast_mono); 491 } 492 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 493 494 /** 495 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 496 * 497 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 498 * conversion factor is not affected by NTP/PTP correction. 499 */ 500 u64 notrace ktime_get_raw_fast_ns(void) 501 { 502 return __ktime_get_fast_ns(&tk_fast_raw); 503 } 504 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 505 506 /** 507 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 508 * 509 * To keep it NMI safe since we're accessing from tracing, we're not using a 510 * separate timekeeper with updates to monotonic clock and boot offset 511 * protected with seqcounts. This has the following minor side effects: 512 * 513 * (1) Its possible that a timestamp be taken after the boot offset is updated 514 * but before the timekeeper is updated. If this happens, the new boot offset 515 * is added to the old timekeeping making the clock appear to update slightly 516 * earlier: 517 * CPU 0 CPU 1 518 * timekeeping_inject_sleeptime64() 519 * __timekeeping_inject_sleeptime(tk, delta); 520 * timestamp(); 521 * timekeeping_update(tk, TK_CLEAR_NTP...); 522 * 523 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 524 * partially updated. Since the tk->offs_boot update is a rare event, this 525 * should be a rare occurrence which postprocessing should be able to handle. 526 * 527 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 528 * apply as well. 529 */ 530 u64 notrace ktime_get_boot_fast_ns(void) 531 { 532 struct timekeeper *tk = &tk_core.timekeeper; 533 534 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 535 } 536 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 537 538 /** 539 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 540 * 541 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 542 * mono time and the TAI offset are not read atomically which may yield wrong 543 * readouts. However, an update of the TAI offset is an rare event e.g., caused 544 * by settime or adjtimex with an offset. The user of this function has to deal 545 * with the possibility of wrong timestamps in post processing. 546 */ 547 u64 notrace ktime_get_tai_fast_ns(void) 548 { 549 struct timekeeper *tk = &tk_core.timekeeper; 550 551 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 552 } 553 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 554 555 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 556 { 557 struct tk_read_base *tkr; 558 u64 basem, baser, delta; 559 unsigned int seq; 560 561 do { 562 seq = raw_read_seqcount_latch(&tkf->seq); 563 tkr = tkf->base + (seq & 0x01); 564 basem = ktime_to_ns(tkr->base); 565 baser = ktime_to_ns(tkr->base_real); 566 delta = __timekeeping_get_ns(tkr); 567 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 568 569 if (mono) 570 *mono = basem + delta; 571 return baser + delta; 572 } 573 574 /** 575 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 576 * 577 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 578 */ 579 u64 ktime_get_real_fast_ns(void) 580 { 581 return __ktime_get_real_fast(&tk_fast_mono, NULL); 582 } 583 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 584 585 /** 586 * ktime_get_fast_timestamps: - NMI safe timestamps 587 * @snapshot: Pointer to timestamp storage 588 * 589 * Stores clock monotonic, boottime and realtime timestamps. 590 * 591 * Boot time is a racy access on 32bit systems if the sleep time injection 592 * happens late during resume and not in timekeeping_resume(). That could 593 * be avoided by expanding struct tk_read_base with boot offset for 32bit 594 * and adding more overhead to the update. As this is a hard to observe 595 * once per resume event which can be filtered with reasonable effort using 596 * the accurate mono/real timestamps, it's probably not worth the trouble. 597 * 598 * Aside of that it might be possible on 32 and 64 bit to observe the 599 * following when the sleep time injection happens late: 600 * 601 * CPU 0 CPU 1 602 * timekeeping_resume() 603 * ktime_get_fast_timestamps() 604 * mono, real = __ktime_get_real_fast() 605 * inject_sleep_time() 606 * update boot offset 607 * boot = mono + bootoffset; 608 * 609 * That means that boot time already has the sleep time adjustment, but 610 * real time does not. On the next readout both are in sync again. 611 * 612 * Preventing this for 64bit is not really feasible without destroying the 613 * careful cache layout of the timekeeper because the sequence count and 614 * struct tk_read_base would then need two cache lines instead of one. 615 * 616 * Access to the time keeper clock source is disabled across the innermost 617 * steps of suspend/resume. The accessors still work, but the timestamps 618 * are frozen until time keeping is resumed which happens very early. 619 * 620 * For regular suspend/resume there is no observable difference vs. sched 621 * clock, but it might affect some of the nasty low level debug printks. 622 * 623 * OTOH, access to sched clock is not guaranteed across suspend/resume on 624 * all systems either so it depends on the hardware in use. 625 * 626 * If that turns out to be a real problem then this could be mitigated by 627 * using sched clock in a similar way as during early boot. But it's not as 628 * trivial as on early boot because it needs some careful protection 629 * against the clock monotonic timestamp jumping backwards on resume. 630 */ 631 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 632 { 633 struct timekeeper *tk = &tk_core.timekeeper; 634 635 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 636 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 637 } 638 639 /** 640 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 641 * @tk: Timekeeper to snapshot. 642 * 643 * It generally is unsafe to access the clocksource after timekeeping has been 644 * suspended, so take a snapshot of the readout base of @tk and use it as the 645 * fast timekeeper's readout base while suspended. It will return the same 646 * number of cycles every time until timekeeping is resumed at which time the 647 * proper readout base for the fast timekeeper will be restored automatically. 648 */ 649 static void halt_fast_timekeeper(const struct timekeeper *tk) 650 { 651 static struct tk_read_base tkr_dummy; 652 const struct tk_read_base *tkr = &tk->tkr_mono; 653 654 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 655 cycles_at_suspend = tk_clock_read(tkr); 656 tkr_dummy.clock = &dummy_clock; 657 tkr_dummy.base_real = tkr->base + tk->offs_real; 658 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 659 660 tkr = &tk->tkr_raw; 661 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 662 tkr_dummy.clock = &dummy_clock; 663 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 664 } 665 666 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 667 668 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 669 { 670 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 671 } 672 673 /** 674 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 675 * @nb: Pointer to the notifier block to register 676 */ 677 int pvclock_gtod_register_notifier(struct notifier_block *nb) 678 { 679 struct timekeeper *tk = &tk_core.timekeeper; 680 unsigned long flags; 681 int ret; 682 683 raw_spin_lock_irqsave(&timekeeper_lock, flags); 684 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 685 update_pvclock_gtod(tk, true); 686 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 687 688 return ret; 689 } 690 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 691 692 /** 693 * pvclock_gtod_unregister_notifier - unregister a pvclock 694 * timedata update listener 695 * @nb: Pointer to the notifier block to unregister 696 */ 697 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 698 { 699 unsigned long flags; 700 int ret; 701 702 raw_spin_lock_irqsave(&timekeeper_lock, flags); 703 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 704 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 705 706 return ret; 707 } 708 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 709 710 /* 711 * tk_update_leap_state - helper to update the next_leap_ktime 712 */ 713 static inline void tk_update_leap_state(struct timekeeper *tk) 714 { 715 tk->next_leap_ktime = ntp_get_next_leap(); 716 if (tk->next_leap_ktime != KTIME_MAX) 717 /* Convert to monotonic time */ 718 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 719 } 720 721 /* 722 * Update the ktime_t based scalar nsec members of the timekeeper 723 */ 724 static inline void tk_update_ktime_data(struct timekeeper *tk) 725 { 726 u64 seconds; 727 u32 nsec; 728 729 /* 730 * The xtime based monotonic readout is: 731 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 732 * The ktime based monotonic readout is: 733 * nsec = base_mono + now(); 734 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 735 */ 736 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 737 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 738 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 739 740 /* 741 * The sum of the nanoseconds portions of xtime and 742 * wall_to_monotonic can be greater/equal one second. Take 743 * this into account before updating tk->ktime_sec. 744 */ 745 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 746 if (nsec >= NSEC_PER_SEC) 747 seconds++; 748 tk->ktime_sec = seconds; 749 750 /* Update the monotonic raw base */ 751 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 752 } 753 754 /* must hold timekeeper_lock */ 755 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 756 { 757 if (action & TK_CLEAR_NTP) { 758 tk->ntp_error = 0; 759 ntp_clear(); 760 } 761 762 tk_update_leap_state(tk); 763 tk_update_ktime_data(tk); 764 765 update_vsyscall(tk); 766 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 767 768 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 769 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 770 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 771 772 if (action & TK_CLOCK_WAS_SET) 773 tk->clock_was_set_seq++; 774 /* 775 * The mirroring of the data to the shadow-timekeeper needs 776 * to happen last here to ensure we don't over-write the 777 * timekeeper structure on the next update with stale data 778 */ 779 if (action & TK_MIRROR) 780 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 781 sizeof(tk_core.timekeeper)); 782 } 783 784 /** 785 * timekeeping_forward_now - update clock to the current time 786 * @tk: Pointer to the timekeeper to update 787 * 788 * Forward the current clock to update its state since the last call to 789 * update_wall_time(). This is useful before significant clock changes, 790 * as it avoids having to deal with this time offset explicitly. 791 */ 792 static void timekeeping_forward_now(struct timekeeper *tk) 793 { 794 u64 cycle_now, delta; 795 796 cycle_now = tk_clock_read(&tk->tkr_mono); 797 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 798 tk->tkr_mono.cycle_last = cycle_now; 799 tk->tkr_raw.cycle_last = cycle_now; 800 801 while (delta > 0) { 802 u64 max = tk->tkr_mono.clock->max_cycles; 803 u64 incr = delta < max ? delta : max; 804 805 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 806 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 807 tk_normalize_xtime(tk); 808 delta -= incr; 809 } 810 } 811 812 /** 813 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 814 * @ts: pointer to the timespec to be set 815 * 816 * Returns the time of day in a timespec64 (WARN if suspended). 817 */ 818 void ktime_get_real_ts64(struct timespec64 *ts) 819 { 820 struct timekeeper *tk = &tk_core.timekeeper; 821 unsigned int seq; 822 u64 nsecs; 823 824 WARN_ON(timekeeping_suspended); 825 826 do { 827 seq = read_seqcount_begin(&tk_core.seq); 828 829 ts->tv_sec = tk->xtime_sec; 830 nsecs = timekeeping_get_ns(&tk->tkr_mono); 831 832 } while (read_seqcount_retry(&tk_core.seq, seq)); 833 834 ts->tv_nsec = 0; 835 timespec64_add_ns(ts, nsecs); 836 } 837 EXPORT_SYMBOL(ktime_get_real_ts64); 838 839 ktime_t ktime_get(void) 840 { 841 struct timekeeper *tk = &tk_core.timekeeper; 842 unsigned int seq; 843 ktime_t base; 844 u64 nsecs; 845 846 WARN_ON(timekeeping_suspended); 847 848 do { 849 seq = read_seqcount_begin(&tk_core.seq); 850 base = tk->tkr_mono.base; 851 nsecs = timekeeping_get_ns(&tk->tkr_mono); 852 853 } while (read_seqcount_retry(&tk_core.seq, seq)); 854 855 return ktime_add_ns(base, nsecs); 856 } 857 EXPORT_SYMBOL_GPL(ktime_get); 858 859 u32 ktime_get_resolution_ns(void) 860 { 861 struct timekeeper *tk = &tk_core.timekeeper; 862 unsigned int seq; 863 u32 nsecs; 864 865 WARN_ON(timekeeping_suspended); 866 867 do { 868 seq = read_seqcount_begin(&tk_core.seq); 869 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 870 } while (read_seqcount_retry(&tk_core.seq, seq)); 871 872 return nsecs; 873 } 874 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 875 876 static ktime_t *offsets[TK_OFFS_MAX] = { 877 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 878 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 879 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 880 }; 881 882 ktime_t ktime_get_with_offset(enum tk_offsets offs) 883 { 884 struct timekeeper *tk = &tk_core.timekeeper; 885 unsigned int seq; 886 ktime_t base, *offset = offsets[offs]; 887 u64 nsecs; 888 889 WARN_ON(timekeeping_suspended); 890 891 do { 892 seq = read_seqcount_begin(&tk_core.seq); 893 base = ktime_add(tk->tkr_mono.base, *offset); 894 nsecs = timekeeping_get_ns(&tk->tkr_mono); 895 896 } while (read_seqcount_retry(&tk_core.seq, seq)); 897 898 return ktime_add_ns(base, nsecs); 899 900 } 901 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 902 903 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 904 { 905 struct timekeeper *tk = &tk_core.timekeeper; 906 unsigned int seq; 907 ktime_t base, *offset = offsets[offs]; 908 u64 nsecs; 909 910 WARN_ON(timekeeping_suspended); 911 912 do { 913 seq = read_seqcount_begin(&tk_core.seq); 914 base = ktime_add(tk->tkr_mono.base, *offset); 915 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 916 917 } while (read_seqcount_retry(&tk_core.seq, seq)); 918 919 return ktime_add_ns(base, nsecs); 920 } 921 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 922 923 /** 924 * ktime_mono_to_any() - convert monotonic time to any other time 925 * @tmono: time to convert. 926 * @offs: which offset to use 927 */ 928 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 929 { 930 ktime_t *offset = offsets[offs]; 931 unsigned int seq; 932 ktime_t tconv; 933 934 do { 935 seq = read_seqcount_begin(&tk_core.seq); 936 tconv = ktime_add(tmono, *offset); 937 } while (read_seqcount_retry(&tk_core.seq, seq)); 938 939 return tconv; 940 } 941 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 942 943 /** 944 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 945 */ 946 ktime_t ktime_get_raw(void) 947 { 948 struct timekeeper *tk = &tk_core.timekeeper; 949 unsigned int seq; 950 ktime_t base; 951 u64 nsecs; 952 953 do { 954 seq = read_seqcount_begin(&tk_core.seq); 955 base = tk->tkr_raw.base; 956 nsecs = timekeeping_get_ns(&tk->tkr_raw); 957 958 } while (read_seqcount_retry(&tk_core.seq, seq)); 959 960 return ktime_add_ns(base, nsecs); 961 } 962 EXPORT_SYMBOL_GPL(ktime_get_raw); 963 964 /** 965 * ktime_get_ts64 - get the monotonic clock in timespec64 format 966 * @ts: pointer to timespec variable 967 * 968 * The function calculates the monotonic clock from the realtime 969 * clock and the wall_to_monotonic offset and stores the result 970 * in normalized timespec64 format in the variable pointed to by @ts. 971 */ 972 void ktime_get_ts64(struct timespec64 *ts) 973 { 974 struct timekeeper *tk = &tk_core.timekeeper; 975 struct timespec64 tomono; 976 unsigned int seq; 977 u64 nsec; 978 979 WARN_ON(timekeeping_suspended); 980 981 do { 982 seq = read_seqcount_begin(&tk_core.seq); 983 ts->tv_sec = tk->xtime_sec; 984 nsec = timekeeping_get_ns(&tk->tkr_mono); 985 tomono = tk->wall_to_monotonic; 986 987 } while (read_seqcount_retry(&tk_core.seq, seq)); 988 989 ts->tv_sec += tomono.tv_sec; 990 ts->tv_nsec = 0; 991 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 992 } 993 EXPORT_SYMBOL_GPL(ktime_get_ts64); 994 995 /** 996 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 997 * 998 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 999 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 1000 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1001 * covers ~136 years of uptime which should be enough to prevent 1002 * premature wrap arounds. 1003 */ 1004 time64_t ktime_get_seconds(void) 1005 { 1006 struct timekeeper *tk = &tk_core.timekeeper; 1007 1008 WARN_ON(timekeeping_suspended); 1009 return tk->ktime_sec; 1010 } 1011 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1012 1013 /** 1014 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1015 * 1016 * Returns the wall clock seconds since 1970. 1017 * 1018 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1019 * 32bit systems the access must be protected with the sequence 1020 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1021 * value. 1022 */ 1023 time64_t ktime_get_real_seconds(void) 1024 { 1025 struct timekeeper *tk = &tk_core.timekeeper; 1026 time64_t seconds; 1027 unsigned int seq; 1028 1029 if (IS_ENABLED(CONFIG_64BIT)) 1030 return tk->xtime_sec; 1031 1032 do { 1033 seq = read_seqcount_begin(&tk_core.seq); 1034 seconds = tk->xtime_sec; 1035 1036 } while (read_seqcount_retry(&tk_core.seq, seq)); 1037 1038 return seconds; 1039 } 1040 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1041 1042 /** 1043 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1044 * but without the sequence counter protect. This internal function 1045 * is called just when timekeeping lock is already held. 1046 */ 1047 noinstr time64_t __ktime_get_real_seconds(void) 1048 { 1049 struct timekeeper *tk = &tk_core.timekeeper; 1050 1051 return tk->xtime_sec; 1052 } 1053 1054 /** 1055 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1056 * @systime_snapshot: pointer to struct receiving the system time snapshot 1057 */ 1058 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1059 { 1060 struct timekeeper *tk = &tk_core.timekeeper; 1061 unsigned int seq; 1062 ktime_t base_raw; 1063 ktime_t base_real; 1064 u64 nsec_raw; 1065 u64 nsec_real; 1066 u64 now; 1067 1068 WARN_ON_ONCE(timekeeping_suspended); 1069 1070 do { 1071 seq = read_seqcount_begin(&tk_core.seq); 1072 now = tk_clock_read(&tk->tkr_mono); 1073 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1074 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1075 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1076 base_real = ktime_add(tk->tkr_mono.base, 1077 tk_core.timekeeper.offs_real); 1078 base_raw = tk->tkr_raw.base; 1079 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1080 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1081 } while (read_seqcount_retry(&tk_core.seq, seq)); 1082 1083 systime_snapshot->cycles = now; 1084 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1085 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1086 } 1087 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1088 1089 /* Scale base by mult/div checking for overflow */ 1090 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1091 { 1092 u64 tmp, rem; 1093 1094 tmp = div64_u64_rem(*base, div, &rem); 1095 1096 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1097 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1098 return -EOVERFLOW; 1099 tmp *= mult; 1100 1101 rem = div64_u64(rem * mult, div); 1102 *base = tmp + rem; 1103 return 0; 1104 } 1105 1106 /** 1107 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1108 * @history: Snapshot representing start of history 1109 * @partial_history_cycles: Cycle offset into history (fractional part) 1110 * @total_history_cycles: Total history length in cycles 1111 * @discontinuity: True indicates clock was set on history period 1112 * @ts: Cross timestamp that should be adjusted using 1113 * partial/total ratio 1114 * 1115 * Helper function used by get_device_system_crosststamp() to correct the 1116 * crosstimestamp corresponding to the start of the current interval to the 1117 * system counter value (timestamp point) provided by the driver. The 1118 * total_history_* quantities are the total history starting at the provided 1119 * reference point and ending at the start of the current interval. The cycle 1120 * count between the driver timestamp point and the start of the current 1121 * interval is partial_history_cycles. 1122 */ 1123 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1124 u64 partial_history_cycles, 1125 u64 total_history_cycles, 1126 bool discontinuity, 1127 struct system_device_crosststamp *ts) 1128 { 1129 struct timekeeper *tk = &tk_core.timekeeper; 1130 u64 corr_raw, corr_real; 1131 bool interp_forward; 1132 int ret; 1133 1134 if (total_history_cycles == 0 || partial_history_cycles == 0) 1135 return 0; 1136 1137 /* Interpolate shortest distance from beginning or end of history */ 1138 interp_forward = partial_history_cycles > total_history_cycles / 2; 1139 partial_history_cycles = interp_forward ? 1140 total_history_cycles - partial_history_cycles : 1141 partial_history_cycles; 1142 1143 /* 1144 * Scale the monotonic raw time delta by: 1145 * partial_history_cycles / total_history_cycles 1146 */ 1147 corr_raw = (u64)ktime_to_ns( 1148 ktime_sub(ts->sys_monoraw, history->raw)); 1149 ret = scale64_check_overflow(partial_history_cycles, 1150 total_history_cycles, &corr_raw); 1151 if (ret) 1152 return ret; 1153 1154 /* 1155 * If there is a discontinuity in the history, scale monotonic raw 1156 * correction by: 1157 * mult(real)/mult(raw) yielding the realtime correction 1158 * Otherwise, calculate the realtime correction similar to monotonic 1159 * raw calculation 1160 */ 1161 if (discontinuity) { 1162 corr_real = mul_u64_u32_div 1163 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1164 } else { 1165 corr_real = (u64)ktime_to_ns( 1166 ktime_sub(ts->sys_realtime, history->real)); 1167 ret = scale64_check_overflow(partial_history_cycles, 1168 total_history_cycles, &corr_real); 1169 if (ret) 1170 return ret; 1171 } 1172 1173 /* Fixup monotonic raw and real time time values */ 1174 if (interp_forward) { 1175 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1176 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1177 } else { 1178 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1179 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1180 } 1181 1182 return 0; 1183 } 1184 1185 /* 1186 * timestamp_in_interval - true if ts is chronologically in [start, end] 1187 * 1188 * True if ts occurs chronologically at or after start, and before or at end. 1189 */ 1190 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1191 { 1192 if (ts >= start && ts <= end) 1193 return true; 1194 if (start > end && (ts >= start || ts <= end)) 1195 return true; 1196 return false; 1197 } 1198 1199 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1200 { 1201 u64 rem, res; 1202 1203 if (!numerator || !denominator) 1204 return false; 1205 1206 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1207 *val = res + div_u64(rem * numerator, denominator); 1208 return true; 1209 } 1210 1211 static bool convert_base_to_cs(struct system_counterval_t *scv) 1212 { 1213 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1214 struct clocksource_base *base; 1215 u32 num, den; 1216 1217 /* The timestamp was taken from the time keeper clock source */ 1218 if (cs->id == scv->cs_id) 1219 return true; 1220 1221 /* 1222 * Check whether cs_id matches the base clock. Prevent the compiler from 1223 * re-evaluating @base as the clocksource might change concurrently. 1224 */ 1225 base = READ_ONCE(cs->base); 1226 if (!base || base->id != scv->cs_id) 1227 return false; 1228 1229 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1230 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1231 1232 if (!convert_clock(&scv->cycles, num, den)) 1233 return false; 1234 1235 scv->cycles += base->offset; 1236 return true; 1237 } 1238 1239 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1240 { 1241 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1242 struct clocksource_base *base; 1243 1244 /* 1245 * Check whether base_id matches the base clock. Prevent the compiler from 1246 * re-evaluating @base as the clocksource might change concurrently. 1247 */ 1248 base = READ_ONCE(cs->base); 1249 if (!base || base->id != base_id) 1250 return false; 1251 1252 *cycles -= base->offset; 1253 if (!convert_clock(cycles, base->denominator, base->numerator)) 1254 return false; 1255 return true; 1256 } 1257 1258 static bool convert_ns_to_cs(u64 *delta) 1259 { 1260 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1261 1262 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1263 return false; 1264 1265 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1266 return true; 1267 } 1268 1269 /** 1270 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1271 * @treal: CLOCK_REALTIME timestamp to convert 1272 * @base_id: base clocksource id 1273 * @cycles: pointer to store the converted base clock timestamp 1274 * 1275 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1276 * 1277 * Return: true if the conversion is successful, false otherwise. 1278 */ 1279 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1280 { 1281 struct timekeeper *tk = &tk_core.timekeeper; 1282 unsigned int seq; 1283 u64 delta; 1284 1285 do { 1286 seq = read_seqcount_begin(&tk_core.seq); 1287 if ((u64)treal < tk->tkr_mono.base_real) 1288 return false; 1289 delta = (u64)treal - tk->tkr_mono.base_real; 1290 if (!convert_ns_to_cs(&delta)) 1291 return false; 1292 *cycles = tk->tkr_mono.cycle_last + delta; 1293 if (!convert_cs_to_base(cycles, base_id)) 1294 return false; 1295 } while (read_seqcount_retry(&tk_core.seq, seq)); 1296 1297 return true; 1298 } 1299 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1300 1301 /** 1302 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1303 * @get_time_fn: Callback to get simultaneous device time and 1304 * system counter from the device driver 1305 * @ctx: Context passed to get_time_fn() 1306 * @history_begin: Historical reference point used to interpolate system 1307 * time when counter provided by the driver is before the current interval 1308 * @xtstamp: Receives simultaneously captured system and device time 1309 * 1310 * Reads a timestamp from a device and correlates it to system time 1311 */ 1312 int get_device_system_crosststamp(int (*get_time_fn) 1313 (ktime_t *device_time, 1314 struct system_counterval_t *sys_counterval, 1315 void *ctx), 1316 void *ctx, 1317 struct system_time_snapshot *history_begin, 1318 struct system_device_crosststamp *xtstamp) 1319 { 1320 struct system_counterval_t system_counterval; 1321 struct timekeeper *tk = &tk_core.timekeeper; 1322 u64 cycles, now, interval_start; 1323 unsigned int clock_was_set_seq = 0; 1324 ktime_t base_real, base_raw; 1325 u64 nsec_real, nsec_raw; 1326 u8 cs_was_changed_seq; 1327 unsigned int seq; 1328 bool do_interp; 1329 int ret; 1330 1331 do { 1332 seq = read_seqcount_begin(&tk_core.seq); 1333 /* 1334 * Try to synchronously capture device time and a system 1335 * counter value calling back into the device driver 1336 */ 1337 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1338 if (ret) 1339 return ret; 1340 1341 /* 1342 * Verify that the clocksource ID associated with the captured 1343 * system counter value is the same as for the currently 1344 * installed timekeeper clocksource 1345 */ 1346 if (system_counterval.cs_id == CSID_GENERIC || 1347 !convert_base_to_cs(&system_counterval)) 1348 return -ENODEV; 1349 cycles = system_counterval.cycles; 1350 1351 /* 1352 * Check whether the system counter value provided by the 1353 * device driver is on the current timekeeping interval. 1354 */ 1355 now = tk_clock_read(&tk->tkr_mono); 1356 interval_start = tk->tkr_mono.cycle_last; 1357 if (!timestamp_in_interval(interval_start, now, cycles)) { 1358 clock_was_set_seq = tk->clock_was_set_seq; 1359 cs_was_changed_seq = tk->cs_was_changed_seq; 1360 cycles = interval_start; 1361 do_interp = true; 1362 } else { 1363 do_interp = false; 1364 } 1365 1366 base_real = ktime_add(tk->tkr_mono.base, 1367 tk_core.timekeeper.offs_real); 1368 base_raw = tk->tkr_raw.base; 1369 1370 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1371 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1372 } while (read_seqcount_retry(&tk_core.seq, seq)); 1373 1374 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1375 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1376 1377 /* 1378 * Interpolate if necessary, adjusting back from the start of the 1379 * current interval 1380 */ 1381 if (do_interp) { 1382 u64 partial_history_cycles, total_history_cycles; 1383 bool discontinuity; 1384 1385 /* 1386 * Check that the counter value is not before the provided 1387 * history reference and that the history doesn't cross a 1388 * clocksource change 1389 */ 1390 if (!history_begin || 1391 !timestamp_in_interval(history_begin->cycles, 1392 cycles, system_counterval.cycles) || 1393 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1394 return -EINVAL; 1395 partial_history_cycles = cycles - system_counterval.cycles; 1396 total_history_cycles = cycles - history_begin->cycles; 1397 discontinuity = 1398 history_begin->clock_was_set_seq != clock_was_set_seq; 1399 1400 ret = adjust_historical_crosststamp(history_begin, 1401 partial_history_cycles, 1402 total_history_cycles, 1403 discontinuity, xtstamp); 1404 if (ret) 1405 return ret; 1406 } 1407 1408 return 0; 1409 } 1410 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1411 1412 /** 1413 * timekeeping_clocksource_has_base - Check whether the current clocksource 1414 * is based on given a base clock 1415 * @id: base clocksource ID 1416 * 1417 * Note: The return value is a snapshot which can become invalid right 1418 * after the function returns. 1419 * 1420 * Return: true if the timekeeper clocksource has a base clock with @id, 1421 * false otherwise 1422 */ 1423 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1424 { 1425 /* 1426 * This is a snapshot, so no point in using the sequence 1427 * count. Just prevent the compiler from re-evaluating @base as the 1428 * clocksource might change concurrently. 1429 */ 1430 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1431 1432 return base ? base->id == id : false; 1433 } 1434 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1435 1436 /** 1437 * do_settimeofday64 - Sets the time of day. 1438 * @ts: pointer to the timespec64 variable containing the new time 1439 * 1440 * Sets the time of day to the new time and update NTP and notify hrtimers 1441 */ 1442 int do_settimeofday64(const struct timespec64 *ts) 1443 { 1444 struct timekeeper *tk = &tk_core.timekeeper; 1445 struct timespec64 ts_delta, xt; 1446 unsigned long flags; 1447 int ret = 0; 1448 1449 if (!timespec64_valid_settod(ts)) 1450 return -EINVAL; 1451 1452 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1453 write_seqcount_begin(&tk_core.seq); 1454 1455 timekeeping_forward_now(tk); 1456 1457 xt = tk_xtime(tk); 1458 ts_delta = timespec64_sub(*ts, xt); 1459 1460 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1461 ret = -EINVAL; 1462 goto out; 1463 } 1464 1465 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1466 1467 tk_set_xtime(tk, ts); 1468 out: 1469 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1470 1471 write_seqcount_end(&tk_core.seq); 1472 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1473 1474 /* Signal hrtimers about time change */ 1475 clock_was_set(CLOCK_SET_WALL); 1476 1477 if (!ret) { 1478 audit_tk_injoffset(ts_delta); 1479 add_device_randomness(ts, sizeof(*ts)); 1480 } 1481 1482 return ret; 1483 } 1484 EXPORT_SYMBOL(do_settimeofday64); 1485 1486 /** 1487 * timekeeping_inject_offset - Adds or subtracts from the current time. 1488 * @ts: Pointer to the timespec variable containing the offset 1489 * 1490 * Adds or subtracts an offset value from the current time. 1491 */ 1492 static int timekeeping_inject_offset(const struct timespec64 *ts) 1493 { 1494 struct timekeeper *tk = &tk_core.timekeeper; 1495 unsigned long flags; 1496 struct timespec64 tmp; 1497 int ret = 0; 1498 1499 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1500 return -EINVAL; 1501 1502 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1503 write_seqcount_begin(&tk_core.seq); 1504 1505 timekeeping_forward_now(tk); 1506 1507 /* Make sure the proposed value is valid */ 1508 tmp = timespec64_add(tk_xtime(tk), *ts); 1509 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1510 !timespec64_valid_settod(&tmp)) { 1511 ret = -EINVAL; 1512 goto error; 1513 } 1514 1515 tk_xtime_add(tk, ts); 1516 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1517 1518 error: /* even if we error out, we forwarded the time, so call update */ 1519 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1520 1521 write_seqcount_end(&tk_core.seq); 1522 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1523 1524 /* Signal hrtimers about time change */ 1525 clock_was_set(CLOCK_SET_WALL); 1526 1527 return ret; 1528 } 1529 1530 /* 1531 * Indicates if there is an offset between the system clock and the hardware 1532 * clock/persistent clock/rtc. 1533 */ 1534 int persistent_clock_is_local; 1535 1536 /* 1537 * Adjust the time obtained from the CMOS to be UTC time instead of 1538 * local time. 1539 * 1540 * This is ugly, but preferable to the alternatives. Otherwise we 1541 * would either need to write a program to do it in /etc/rc (and risk 1542 * confusion if the program gets run more than once; it would also be 1543 * hard to make the program warp the clock precisely n hours) or 1544 * compile in the timezone information into the kernel. Bad, bad.... 1545 * 1546 * - TYT, 1992-01-01 1547 * 1548 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1549 * as real UNIX machines always do it. This avoids all headaches about 1550 * daylight saving times and warping kernel clocks. 1551 */ 1552 void timekeeping_warp_clock(void) 1553 { 1554 if (sys_tz.tz_minuteswest != 0) { 1555 struct timespec64 adjust; 1556 1557 persistent_clock_is_local = 1; 1558 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1559 adjust.tv_nsec = 0; 1560 timekeeping_inject_offset(&adjust); 1561 } 1562 } 1563 1564 /* 1565 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1566 */ 1567 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1568 { 1569 tk->tai_offset = tai_offset; 1570 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1571 } 1572 1573 /* 1574 * change_clocksource - Swaps clocksources if a new one is available 1575 * 1576 * Accumulates current time interval and initializes new clocksource 1577 */ 1578 static int change_clocksource(void *data) 1579 { 1580 struct timekeeper *tk = &tk_core.timekeeper; 1581 struct clocksource *new, *old = NULL; 1582 unsigned long flags; 1583 bool change = false; 1584 1585 new = (struct clocksource *) data; 1586 1587 /* 1588 * If the cs is in module, get a module reference. Succeeds 1589 * for built-in code (owner == NULL) as well. 1590 */ 1591 if (try_module_get(new->owner)) { 1592 if (!new->enable || new->enable(new) == 0) 1593 change = true; 1594 else 1595 module_put(new->owner); 1596 } 1597 1598 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1599 write_seqcount_begin(&tk_core.seq); 1600 1601 timekeeping_forward_now(tk); 1602 1603 if (change) { 1604 old = tk->tkr_mono.clock; 1605 tk_setup_internals(tk, new); 1606 } 1607 1608 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1609 1610 write_seqcount_end(&tk_core.seq); 1611 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1612 1613 if (old) { 1614 if (old->disable) 1615 old->disable(old); 1616 1617 module_put(old->owner); 1618 } 1619 1620 return 0; 1621 } 1622 1623 /** 1624 * timekeeping_notify - Install a new clock source 1625 * @clock: pointer to the clock source 1626 * 1627 * This function is called from clocksource.c after a new, better clock 1628 * source has been registered. The caller holds the clocksource_mutex. 1629 */ 1630 int timekeeping_notify(struct clocksource *clock) 1631 { 1632 struct timekeeper *tk = &tk_core.timekeeper; 1633 1634 if (tk->tkr_mono.clock == clock) 1635 return 0; 1636 stop_machine(change_clocksource, clock, NULL); 1637 tick_clock_notify(); 1638 return tk->tkr_mono.clock == clock ? 0 : -1; 1639 } 1640 1641 /** 1642 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1643 * @ts: pointer to the timespec64 to be set 1644 * 1645 * Returns the raw monotonic time (completely un-modified by ntp) 1646 */ 1647 void ktime_get_raw_ts64(struct timespec64 *ts) 1648 { 1649 struct timekeeper *tk = &tk_core.timekeeper; 1650 unsigned int seq; 1651 u64 nsecs; 1652 1653 do { 1654 seq = read_seqcount_begin(&tk_core.seq); 1655 ts->tv_sec = tk->raw_sec; 1656 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1657 1658 } while (read_seqcount_retry(&tk_core.seq, seq)); 1659 1660 ts->tv_nsec = 0; 1661 timespec64_add_ns(ts, nsecs); 1662 } 1663 EXPORT_SYMBOL(ktime_get_raw_ts64); 1664 1665 1666 /** 1667 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1668 */ 1669 int timekeeping_valid_for_hres(void) 1670 { 1671 struct timekeeper *tk = &tk_core.timekeeper; 1672 unsigned int seq; 1673 int ret; 1674 1675 do { 1676 seq = read_seqcount_begin(&tk_core.seq); 1677 1678 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1679 1680 } while (read_seqcount_retry(&tk_core.seq, seq)); 1681 1682 return ret; 1683 } 1684 1685 /** 1686 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1687 */ 1688 u64 timekeeping_max_deferment(void) 1689 { 1690 struct timekeeper *tk = &tk_core.timekeeper; 1691 unsigned int seq; 1692 u64 ret; 1693 1694 do { 1695 seq = read_seqcount_begin(&tk_core.seq); 1696 1697 ret = tk->tkr_mono.clock->max_idle_ns; 1698 1699 } while (read_seqcount_retry(&tk_core.seq, seq)); 1700 1701 return ret; 1702 } 1703 1704 /** 1705 * read_persistent_clock64 - Return time from the persistent clock. 1706 * @ts: Pointer to the storage for the readout value 1707 * 1708 * Weak dummy function for arches that do not yet support it. 1709 * Reads the time from the battery backed persistent clock. 1710 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1711 * 1712 * XXX - Do be sure to remove it once all arches implement it. 1713 */ 1714 void __weak read_persistent_clock64(struct timespec64 *ts) 1715 { 1716 ts->tv_sec = 0; 1717 ts->tv_nsec = 0; 1718 } 1719 1720 /** 1721 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1722 * from the boot. 1723 * @wall_time: current time as returned by persistent clock 1724 * @boot_offset: offset that is defined as wall_time - boot_time 1725 * 1726 * Weak dummy function for arches that do not yet support it. 1727 * 1728 * The default function calculates offset based on the current value of 1729 * local_clock(). This way architectures that support sched_clock() but don't 1730 * support dedicated boot time clock will provide the best estimate of the 1731 * boot time. 1732 */ 1733 void __weak __init 1734 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1735 struct timespec64 *boot_offset) 1736 { 1737 read_persistent_clock64(wall_time); 1738 *boot_offset = ns_to_timespec64(local_clock()); 1739 } 1740 1741 /* 1742 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1743 * 1744 * The flag starts of false and is only set when a suspend reaches 1745 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1746 * timekeeper clocksource is not stopping across suspend and has been 1747 * used to update sleep time. If the timekeeper clocksource has stopped 1748 * then the flag stays true and is used by the RTC resume code to decide 1749 * whether sleeptime must be injected and if so the flag gets false then. 1750 * 1751 * If a suspend fails before reaching timekeeping_resume() then the flag 1752 * stays false and prevents erroneous sleeptime injection. 1753 */ 1754 static bool suspend_timing_needed; 1755 1756 /* Flag for if there is a persistent clock on this platform */ 1757 static bool persistent_clock_exists; 1758 1759 /* 1760 * timekeeping_init - Initializes the clocksource and common timekeeping values 1761 */ 1762 void __init timekeeping_init(void) 1763 { 1764 struct timespec64 wall_time, boot_offset, wall_to_mono; 1765 struct timekeeper *tk = &tk_core.timekeeper; 1766 struct clocksource *clock; 1767 unsigned long flags; 1768 1769 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1770 if (timespec64_valid_settod(&wall_time) && 1771 timespec64_to_ns(&wall_time) > 0) { 1772 persistent_clock_exists = true; 1773 } else if (timespec64_to_ns(&wall_time) != 0) { 1774 pr_warn("Persistent clock returned invalid value"); 1775 wall_time = (struct timespec64){0}; 1776 } 1777 1778 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1779 boot_offset = (struct timespec64){0}; 1780 1781 /* 1782 * We want set wall_to_mono, so the following is true: 1783 * wall time + wall_to_mono = boot time 1784 */ 1785 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1786 1787 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1788 write_seqcount_begin(&tk_core.seq); 1789 ntp_init(); 1790 1791 clock = clocksource_default_clock(); 1792 if (clock->enable) 1793 clock->enable(clock); 1794 tk_setup_internals(tk, clock); 1795 1796 tk_set_xtime(tk, &wall_time); 1797 tk->raw_sec = 0; 1798 1799 tk_set_wall_to_mono(tk, wall_to_mono); 1800 1801 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1802 1803 write_seqcount_end(&tk_core.seq); 1804 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1805 } 1806 1807 /* time in seconds when suspend began for persistent clock */ 1808 static struct timespec64 timekeeping_suspend_time; 1809 1810 /** 1811 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1812 * @tk: Pointer to the timekeeper to be updated 1813 * @delta: Pointer to the delta value in timespec64 format 1814 * 1815 * Takes a timespec offset measuring a suspend interval and properly 1816 * adds the sleep offset to the timekeeping variables. 1817 */ 1818 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1819 const struct timespec64 *delta) 1820 { 1821 if (!timespec64_valid_strict(delta)) { 1822 printk_deferred(KERN_WARNING 1823 "__timekeeping_inject_sleeptime: Invalid " 1824 "sleep delta value!\n"); 1825 return; 1826 } 1827 tk_xtime_add(tk, delta); 1828 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1829 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1830 tk_debug_account_sleep_time(delta); 1831 } 1832 1833 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1834 /* 1835 * We have three kinds of time sources to use for sleep time 1836 * injection, the preference order is: 1837 * 1) non-stop clocksource 1838 * 2) persistent clock (ie: RTC accessible when irqs are off) 1839 * 3) RTC 1840 * 1841 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1842 * If system has neither 1) nor 2), 3) will be used finally. 1843 * 1844 * 1845 * If timekeeping has injected sleeptime via either 1) or 2), 1846 * 3) becomes needless, so in this case we don't need to call 1847 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1848 * means. 1849 */ 1850 bool timekeeping_rtc_skipresume(void) 1851 { 1852 return !suspend_timing_needed; 1853 } 1854 1855 /* 1856 * 1) can be determined whether to use or not only when doing 1857 * timekeeping_resume() which is invoked after rtc_suspend(), 1858 * so we can't skip rtc_suspend() surely if system has 1). 1859 * 1860 * But if system has 2), 2) will definitely be used, so in this 1861 * case we don't need to call rtc_suspend(), and this is what 1862 * timekeeping_rtc_skipsuspend() means. 1863 */ 1864 bool timekeeping_rtc_skipsuspend(void) 1865 { 1866 return persistent_clock_exists; 1867 } 1868 1869 /** 1870 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1871 * @delta: pointer to a timespec64 delta value 1872 * 1873 * This hook is for architectures that cannot support read_persistent_clock64 1874 * because their RTC/persistent clock is only accessible when irqs are enabled. 1875 * and also don't have an effective nonstop clocksource. 1876 * 1877 * This function should only be called by rtc_resume(), and allows 1878 * a suspend offset to be injected into the timekeeping values. 1879 */ 1880 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1881 { 1882 struct timekeeper *tk = &tk_core.timekeeper; 1883 unsigned long flags; 1884 1885 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1886 write_seqcount_begin(&tk_core.seq); 1887 1888 suspend_timing_needed = false; 1889 1890 timekeeping_forward_now(tk); 1891 1892 __timekeeping_inject_sleeptime(tk, delta); 1893 1894 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1895 1896 write_seqcount_end(&tk_core.seq); 1897 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1898 1899 /* Signal hrtimers about time change */ 1900 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1901 } 1902 #endif 1903 1904 /** 1905 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1906 */ 1907 void timekeeping_resume(void) 1908 { 1909 struct timekeeper *tk = &tk_core.timekeeper; 1910 struct clocksource *clock = tk->tkr_mono.clock; 1911 unsigned long flags; 1912 struct timespec64 ts_new, ts_delta; 1913 u64 cycle_now, nsec; 1914 bool inject_sleeptime = false; 1915 1916 read_persistent_clock64(&ts_new); 1917 1918 clockevents_resume(); 1919 clocksource_resume(); 1920 1921 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1922 write_seqcount_begin(&tk_core.seq); 1923 1924 /* 1925 * After system resumes, we need to calculate the suspended time and 1926 * compensate it for the OS time. There are 3 sources that could be 1927 * used: Nonstop clocksource during suspend, persistent clock and rtc 1928 * device. 1929 * 1930 * One specific platform may have 1 or 2 or all of them, and the 1931 * preference will be: 1932 * suspend-nonstop clocksource -> persistent clock -> rtc 1933 * The less preferred source will only be tried if there is no better 1934 * usable source. The rtc part is handled separately in rtc core code. 1935 */ 1936 cycle_now = tk_clock_read(&tk->tkr_mono); 1937 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1938 if (nsec > 0) { 1939 ts_delta = ns_to_timespec64(nsec); 1940 inject_sleeptime = true; 1941 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1942 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1943 inject_sleeptime = true; 1944 } 1945 1946 if (inject_sleeptime) { 1947 suspend_timing_needed = false; 1948 __timekeeping_inject_sleeptime(tk, &ts_delta); 1949 } 1950 1951 /* Re-base the last cycle value */ 1952 tk->tkr_mono.cycle_last = cycle_now; 1953 tk->tkr_raw.cycle_last = cycle_now; 1954 1955 tk->ntp_error = 0; 1956 timekeeping_suspended = 0; 1957 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1958 write_seqcount_end(&tk_core.seq); 1959 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1960 1961 touch_softlockup_watchdog(); 1962 1963 /* Resume the clockevent device(s) and hrtimers */ 1964 tick_resume(); 1965 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1966 timerfd_resume(); 1967 } 1968 1969 int timekeeping_suspend(void) 1970 { 1971 struct timekeeper *tk = &tk_core.timekeeper; 1972 unsigned long flags; 1973 struct timespec64 delta, delta_delta; 1974 static struct timespec64 old_delta; 1975 struct clocksource *curr_clock; 1976 u64 cycle_now; 1977 1978 read_persistent_clock64(&timekeeping_suspend_time); 1979 1980 /* 1981 * On some systems the persistent_clock can not be detected at 1982 * timekeeping_init by its return value, so if we see a valid 1983 * value returned, update the persistent_clock_exists flag. 1984 */ 1985 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1986 persistent_clock_exists = true; 1987 1988 suspend_timing_needed = true; 1989 1990 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1991 write_seqcount_begin(&tk_core.seq); 1992 timekeeping_forward_now(tk); 1993 timekeeping_suspended = 1; 1994 1995 /* 1996 * Since we've called forward_now, cycle_last stores the value 1997 * just read from the current clocksource. Save this to potentially 1998 * use in suspend timing. 1999 */ 2000 curr_clock = tk->tkr_mono.clock; 2001 cycle_now = tk->tkr_mono.cycle_last; 2002 clocksource_start_suspend_timing(curr_clock, cycle_now); 2003 2004 if (persistent_clock_exists) { 2005 /* 2006 * To avoid drift caused by repeated suspend/resumes, 2007 * which each can add ~1 second drift error, 2008 * try to compensate so the difference in system time 2009 * and persistent_clock time stays close to constant. 2010 */ 2011 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 2012 delta_delta = timespec64_sub(delta, old_delta); 2013 if (abs(delta_delta.tv_sec) >= 2) { 2014 /* 2015 * if delta_delta is too large, assume time correction 2016 * has occurred and set old_delta to the current delta. 2017 */ 2018 old_delta = delta; 2019 } else { 2020 /* Otherwise try to adjust old_system to compensate */ 2021 timekeeping_suspend_time = 2022 timespec64_add(timekeeping_suspend_time, delta_delta); 2023 } 2024 } 2025 2026 timekeeping_update(tk, TK_MIRROR); 2027 halt_fast_timekeeper(tk); 2028 write_seqcount_end(&tk_core.seq); 2029 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2030 2031 tick_suspend(); 2032 clocksource_suspend(); 2033 clockevents_suspend(); 2034 2035 return 0; 2036 } 2037 2038 /* sysfs resume/suspend bits for timekeeping */ 2039 static struct syscore_ops timekeeping_syscore_ops = { 2040 .resume = timekeeping_resume, 2041 .suspend = timekeeping_suspend, 2042 }; 2043 2044 static int __init timekeeping_init_ops(void) 2045 { 2046 register_syscore_ops(&timekeeping_syscore_ops); 2047 return 0; 2048 } 2049 device_initcall(timekeeping_init_ops); 2050 2051 /* 2052 * Apply a multiplier adjustment to the timekeeper 2053 */ 2054 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2055 s64 offset, 2056 s32 mult_adj) 2057 { 2058 s64 interval = tk->cycle_interval; 2059 2060 if (mult_adj == 0) { 2061 return; 2062 } else if (mult_adj == -1) { 2063 interval = -interval; 2064 offset = -offset; 2065 } else if (mult_adj != 1) { 2066 interval *= mult_adj; 2067 offset *= mult_adj; 2068 } 2069 2070 /* 2071 * So the following can be confusing. 2072 * 2073 * To keep things simple, lets assume mult_adj == 1 for now. 2074 * 2075 * When mult_adj != 1, remember that the interval and offset values 2076 * have been appropriately scaled so the math is the same. 2077 * 2078 * The basic idea here is that we're increasing the multiplier 2079 * by one, this causes the xtime_interval to be incremented by 2080 * one cycle_interval. This is because: 2081 * xtime_interval = cycle_interval * mult 2082 * So if mult is being incremented by one: 2083 * xtime_interval = cycle_interval * (mult + 1) 2084 * Its the same as: 2085 * xtime_interval = (cycle_interval * mult) + cycle_interval 2086 * Which can be shortened to: 2087 * xtime_interval += cycle_interval 2088 * 2089 * So offset stores the non-accumulated cycles. Thus the current 2090 * time (in shifted nanoseconds) is: 2091 * now = (offset * adj) + xtime_nsec 2092 * Now, even though we're adjusting the clock frequency, we have 2093 * to keep time consistent. In other words, we can't jump back 2094 * in time, and we also want to avoid jumping forward in time. 2095 * 2096 * So given the same offset value, we need the time to be the same 2097 * both before and after the freq adjustment. 2098 * now = (offset * adj_1) + xtime_nsec_1 2099 * now = (offset * adj_2) + xtime_nsec_2 2100 * So: 2101 * (offset * adj_1) + xtime_nsec_1 = 2102 * (offset * adj_2) + xtime_nsec_2 2103 * And we know: 2104 * adj_2 = adj_1 + 1 2105 * So: 2106 * (offset * adj_1) + xtime_nsec_1 = 2107 * (offset * (adj_1+1)) + xtime_nsec_2 2108 * (offset * adj_1) + xtime_nsec_1 = 2109 * (offset * adj_1) + offset + xtime_nsec_2 2110 * Canceling the sides: 2111 * xtime_nsec_1 = offset + xtime_nsec_2 2112 * Which gives us: 2113 * xtime_nsec_2 = xtime_nsec_1 - offset 2114 * Which simplifies to: 2115 * xtime_nsec -= offset 2116 */ 2117 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2118 /* NTP adjustment caused clocksource mult overflow */ 2119 WARN_ON_ONCE(1); 2120 return; 2121 } 2122 2123 tk->tkr_mono.mult += mult_adj; 2124 tk->xtime_interval += interval; 2125 tk->tkr_mono.xtime_nsec -= offset; 2126 } 2127 2128 /* 2129 * Adjust the timekeeper's multiplier to the correct frequency 2130 * and also to reduce the accumulated error value. 2131 */ 2132 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2133 { 2134 u32 mult; 2135 2136 /* 2137 * Determine the multiplier from the current NTP tick length. 2138 * Avoid expensive division when the tick length doesn't change. 2139 */ 2140 if (likely(tk->ntp_tick == ntp_tick_length())) { 2141 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2142 } else { 2143 tk->ntp_tick = ntp_tick_length(); 2144 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2145 tk->xtime_remainder, tk->cycle_interval); 2146 } 2147 2148 /* 2149 * If the clock is behind the NTP time, increase the multiplier by 1 2150 * to catch up with it. If it's ahead and there was a remainder in the 2151 * tick division, the clock will slow down. Otherwise it will stay 2152 * ahead until the tick length changes to a non-divisible value. 2153 */ 2154 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2155 mult += tk->ntp_err_mult; 2156 2157 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2158 2159 if (unlikely(tk->tkr_mono.clock->maxadj && 2160 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2161 > tk->tkr_mono.clock->maxadj))) { 2162 printk_once(KERN_WARNING 2163 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2164 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2165 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2166 } 2167 2168 /* 2169 * It may be possible that when we entered this function, xtime_nsec 2170 * was very small. Further, if we're slightly speeding the clocksource 2171 * in the code above, its possible the required corrective factor to 2172 * xtime_nsec could cause it to underflow. 2173 * 2174 * Now, since we have already accumulated the second and the NTP 2175 * subsystem has been notified via second_overflow(), we need to skip 2176 * the next update. 2177 */ 2178 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2179 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2180 tk->tkr_mono.shift; 2181 tk->xtime_sec--; 2182 tk->skip_second_overflow = 1; 2183 } 2184 } 2185 2186 /* 2187 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2188 * 2189 * Helper function that accumulates the nsecs greater than a second 2190 * from the xtime_nsec field to the xtime_secs field. 2191 * It also calls into the NTP code to handle leapsecond processing. 2192 */ 2193 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2194 { 2195 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2196 unsigned int clock_set = 0; 2197 2198 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2199 int leap; 2200 2201 tk->tkr_mono.xtime_nsec -= nsecps; 2202 tk->xtime_sec++; 2203 2204 /* 2205 * Skip NTP update if this second was accumulated before, 2206 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2207 */ 2208 if (unlikely(tk->skip_second_overflow)) { 2209 tk->skip_second_overflow = 0; 2210 continue; 2211 } 2212 2213 /* Figure out if its a leap sec and apply if needed */ 2214 leap = second_overflow(tk->xtime_sec); 2215 if (unlikely(leap)) { 2216 struct timespec64 ts; 2217 2218 tk->xtime_sec += leap; 2219 2220 ts.tv_sec = leap; 2221 ts.tv_nsec = 0; 2222 tk_set_wall_to_mono(tk, 2223 timespec64_sub(tk->wall_to_monotonic, ts)); 2224 2225 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2226 2227 clock_set = TK_CLOCK_WAS_SET; 2228 } 2229 } 2230 return clock_set; 2231 } 2232 2233 /* 2234 * logarithmic_accumulation - shifted accumulation of cycles 2235 * 2236 * This functions accumulates a shifted interval of cycles into 2237 * a shifted interval nanoseconds. Allows for O(log) accumulation 2238 * loop. 2239 * 2240 * Returns the unconsumed cycles. 2241 */ 2242 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2243 u32 shift, unsigned int *clock_set) 2244 { 2245 u64 interval = tk->cycle_interval << shift; 2246 u64 snsec_per_sec; 2247 2248 /* If the offset is smaller than a shifted interval, do nothing */ 2249 if (offset < interval) 2250 return offset; 2251 2252 /* Accumulate one shifted interval */ 2253 offset -= interval; 2254 tk->tkr_mono.cycle_last += interval; 2255 tk->tkr_raw.cycle_last += interval; 2256 2257 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2258 *clock_set |= accumulate_nsecs_to_secs(tk); 2259 2260 /* Accumulate raw time */ 2261 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2262 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2263 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2264 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2265 tk->raw_sec++; 2266 } 2267 2268 /* Accumulate error between NTP and clock interval */ 2269 tk->ntp_error += tk->ntp_tick << shift; 2270 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2271 (tk->ntp_error_shift + shift); 2272 2273 return offset; 2274 } 2275 2276 /* 2277 * timekeeping_advance - Updates the timekeeper to the current time and 2278 * current NTP tick length 2279 */ 2280 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2281 { 2282 struct timekeeper *real_tk = &tk_core.timekeeper; 2283 struct timekeeper *tk = &shadow_timekeeper; 2284 u64 offset; 2285 int shift = 0, maxshift; 2286 unsigned int clock_set = 0; 2287 unsigned long flags; 2288 2289 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2290 2291 /* Make sure we're fully resumed: */ 2292 if (unlikely(timekeeping_suspended)) 2293 goto out; 2294 2295 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2296 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2297 2298 /* Check if there's really nothing to do */ 2299 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2300 goto out; 2301 2302 /* Do some additional sanity checking */ 2303 timekeeping_check_update(tk, offset); 2304 2305 /* 2306 * With NO_HZ we may have to accumulate many cycle_intervals 2307 * (think "ticks") worth of time at once. To do this efficiently, 2308 * we calculate the largest doubling multiple of cycle_intervals 2309 * that is smaller than the offset. We then accumulate that 2310 * chunk in one go, and then try to consume the next smaller 2311 * doubled multiple. 2312 */ 2313 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2314 shift = max(0, shift); 2315 /* Bound shift to one less than what overflows tick_length */ 2316 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2317 shift = min(shift, maxshift); 2318 while (offset >= tk->cycle_interval) { 2319 offset = logarithmic_accumulation(tk, offset, shift, 2320 &clock_set); 2321 if (offset < tk->cycle_interval<<shift) 2322 shift--; 2323 } 2324 2325 /* Adjust the multiplier to correct NTP error */ 2326 timekeeping_adjust(tk, offset); 2327 2328 /* 2329 * Finally, make sure that after the rounding 2330 * xtime_nsec isn't larger than NSEC_PER_SEC 2331 */ 2332 clock_set |= accumulate_nsecs_to_secs(tk); 2333 2334 write_seqcount_begin(&tk_core.seq); 2335 /* 2336 * Update the real timekeeper. 2337 * 2338 * We could avoid this memcpy by switching pointers, but that 2339 * requires changes to all other timekeeper usage sites as 2340 * well, i.e. move the timekeeper pointer getter into the 2341 * spinlocked/seqcount protected sections. And we trade this 2342 * memcpy under the tk_core.seq against one before we start 2343 * updating. 2344 */ 2345 timekeeping_update(tk, clock_set); 2346 memcpy(real_tk, tk, sizeof(*tk)); 2347 /* The memcpy must come last. Do not put anything here! */ 2348 write_seqcount_end(&tk_core.seq); 2349 out: 2350 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2351 2352 return !!clock_set; 2353 } 2354 2355 /** 2356 * update_wall_time - Uses the current clocksource to increment the wall time 2357 * 2358 */ 2359 void update_wall_time(void) 2360 { 2361 if (timekeeping_advance(TK_ADV_TICK)) 2362 clock_was_set_delayed(); 2363 } 2364 2365 /** 2366 * getboottime64 - Return the real time of system boot. 2367 * @ts: pointer to the timespec64 to be set 2368 * 2369 * Returns the wall-time of boot in a timespec64. 2370 * 2371 * This is based on the wall_to_monotonic offset and the total suspend 2372 * time. Calls to settimeofday will affect the value returned (which 2373 * basically means that however wrong your real time clock is at boot time, 2374 * you get the right time here). 2375 */ 2376 void getboottime64(struct timespec64 *ts) 2377 { 2378 struct timekeeper *tk = &tk_core.timekeeper; 2379 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2380 2381 *ts = ktime_to_timespec64(t); 2382 } 2383 EXPORT_SYMBOL_GPL(getboottime64); 2384 2385 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2386 { 2387 struct timekeeper *tk = &tk_core.timekeeper; 2388 unsigned int seq; 2389 2390 do { 2391 seq = read_seqcount_begin(&tk_core.seq); 2392 2393 *ts = tk_xtime(tk); 2394 } while (read_seqcount_retry(&tk_core.seq, seq)); 2395 } 2396 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2397 2398 void ktime_get_coarse_ts64(struct timespec64 *ts) 2399 { 2400 struct timekeeper *tk = &tk_core.timekeeper; 2401 struct timespec64 now, mono; 2402 unsigned int seq; 2403 2404 do { 2405 seq = read_seqcount_begin(&tk_core.seq); 2406 2407 now = tk_xtime(tk); 2408 mono = tk->wall_to_monotonic; 2409 } while (read_seqcount_retry(&tk_core.seq, seq)); 2410 2411 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2412 now.tv_nsec + mono.tv_nsec); 2413 } 2414 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2415 2416 /* 2417 * Must hold jiffies_lock 2418 */ 2419 void do_timer(unsigned long ticks) 2420 { 2421 jiffies_64 += ticks; 2422 calc_global_load(); 2423 } 2424 2425 /** 2426 * ktime_get_update_offsets_now - hrtimer helper 2427 * @cwsseq: pointer to check and store the clock was set sequence number 2428 * @offs_real: pointer to storage for monotonic -> realtime offset 2429 * @offs_boot: pointer to storage for monotonic -> boottime offset 2430 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2431 * 2432 * Returns current monotonic time and updates the offsets if the 2433 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2434 * different. 2435 * 2436 * Called from hrtimer_interrupt() or retrigger_next_event() 2437 */ 2438 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2439 ktime_t *offs_boot, ktime_t *offs_tai) 2440 { 2441 struct timekeeper *tk = &tk_core.timekeeper; 2442 unsigned int seq; 2443 ktime_t base; 2444 u64 nsecs; 2445 2446 do { 2447 seq = read_seqcount_begin(&tk_core.seq); 2448 2449 base = tk->tkr_mono.base; 2450 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2451 base = ktime_add_ns(base, nsecs); 2452 2453 if (*cwsseq != tk->clock_was_set_seq) { 2454 *cwsseq = tk->clock_was_set_seq; 2455 *offs_real = tk->offs_real; 2456 *offs_boot = tk->offs_boot; 2457 *offs_tai = tk->offs_tai; 2458 } 2459 2460 /* Handle leapsecond insertion adjustments */ 2461 if (unlikely(base >= tk->next_leap_ktime)) 2462 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2463 2464 } while (read_seqcount_retry(&tk_core.seq, seq)); 2465 2466 return base; 2467 } 2468 2469 /* 2470 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2471 */ 2472 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2473 { 2474 if (txc->modes & ADJ_ADJTIME) { 2475 /* singleshot must not be used with any other mode bits */ 2476 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2477 return -EINVAL; 2478 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2479 !capable(CAP_SYS_TIME)) 2480 return -EPERM; 2481 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2482 !ccs_capable(CCS_SYS_SETTIME)) 2483 return -EPERM; 2484 } else { 2485 /* In order to modify anything, you gotta be super-user! */ 2486 if (txc->modes && !capable(CAP_SYS_TIME)) 2487 return -EPERM; 2488 if (txc->modes && !ccs_capable(CCS_SYS_SETTIME)) 2489 return -EPERM; 2490 /* 2491 * if the quartz is off by more than 10% then 2492 * something is VERY wrong! 2493 */ 2494 if (txc->modes & ADJ_TICK && 2495 (txc->tick < 900000/USER_HZ || 2496 txc->tick > 1100000/USER_HZ)) 2497 return -EINVAL; 2498 } 2499 2500 if (txc->modes & ADJ_SETOFFSET) { 2501 /* In order to inject time, you gotta be super-user! */ 2502 if (!capable(CAP_SYS_TIME)) 2503 return -EPERM; 2504 if (!ccs_capable(CCS_SYS_SETTIME)) 2505 return -EPERM; 2506 2507 /* 2508 * Validate if a timespec/timeval used to inject a time 2509 * offset is valid. Offsets can be positive or negative, so 2510 * we don't check tv_sec. The value of the timeval/timespec 2511 * is the sum of its fields,but *NOTE*: 2512 * The field tv_usec/tv_nsec must always be non-negative and 2513 * we can't have more nanoseconds/microseconds than a second. 2514 */ 2515 if (txc->time.tv_usec < 0) 2516 return -EINVAL; 2517 2518 if (txc->modes & ADJ_NANO) { 2519 if (txc->time.tv_usec >= NSEC_PER_SEC) 2520 return -EINVAL; 2521 } else { 2522 if (txc->time.tv_usec >= USEC_PER_SEC) 2523 return -EINVAL; 2524 } 2525 } 2526 2527 /* 2528 * Check for potential multiplication overflows that can 2529 * only happen on 64-bit systems: 2530 */ 2531 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2532 if (LLONG_MIN / PPM_SCALE > txc->freq) 2533 return -EINVAL; 2534 if (LLONG_MAX / PPM_SCALE < txc->freq) 2535 return -EINVAL; 2536 } 2537 2538 return 0; 2539 } 2540 2541 /** 2542 * random_get_entropy_fallback - Returns the raw clock source value, 2543 * used by random.c for platforms with no valid random_get_entropy(). 2544 */ 2545 unsigned long random_get_entropy_fallback(void) 2546 { 2547 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2548 struct clocksource *clock = READ_ONCE(tkr->clock); 2549 2550 if (unlikely(timekeeping_suspended || !clock)) 2551 return 0; 2552 return clock->read(clock); 2553 } 2554 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2555 2556 /** 2557 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2558 * @txc: Pointer to kernel_timex structure containing NTP parameters 2559 */ 2560 int do_adjtimex(struct __kernel_timex *txc) 2561 { 2562 struct timekeeper *tk = &tk_core.timekeeper; 2563 struct audit_ntp_data ad; 2564 bool clock_set = false; 2565 struct timespec64 ts; 2566 unsigned long flags; 2567 s32 orig_tai, tai; 2568 int ret; 2569 2570 /* Validate the data before disabling interrupts */ 2571 ret = timekeeping_validate_timex(txc); 2572 if (ret) 2573 return ret; 2574 add_device_randomness(txc, sizeof(*txc)); 2575 2576 if (txc->modes & ADJ_SETOFFSET) { 2577 struct timespec64 delta; 2578 delta.tv_sec = txc->time.tv_sec; 2579 delta.tv_nsec = txc->time.tv_usec; 2580 if (!(txc->modes & ADJ_NANO)) 2581 delta.tv_nsec *= 1000; 2582 ret = timekeeping_inject_offset(&delta); 2583 if (ret) 2584 return ret; 2585 2586 audit_tk_injoffset(delta); 2587 } 2588 2589 audit_ntp_init(&ad); 2590 2591 ktime_get_real_ts64(&ts); 2592 add_device_randomness(&ts, sizeof(ts)); 2593 2594 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2595 write_seqcount_begin(&tk_core.seq); 2596 2597 orig_tai = tai = tk->tai_offset; 2598 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2599 2600 if (tai != orig_tai) { 2601 __timekeeping_set_tai_offset(tk, tai); 2602 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2603 clock_set = true; 2604 } 2605 tk_update_leap_state(tk); 2606 2607 write_seqcount_end(&tk_core.seq); 2608 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2609 2610 audit_ntp_log(&ad); 2611 2612 /* Update the multiplier immediately if frequency was set directly */ 2613 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2614 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2615 2616 if (clock_set) 2617 clock_was_set(CLOCK_SET_WALL); 2618 2619 ntp_notify_cmos_timer(); 2620 2621 return ret; 2622 } 2623 2624 #ifdef CONFIG_NTP_PPS 2625 /** 2626 * hardpps() - Accessor function to NTP __hardpps function 2627 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2628 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2629 */ 2630 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2631 { 2632 unsigned long flags; 2633 2634 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2635 write_seqcount_begin(&tk_core.seq); 2636 2637 __hardpps(phase_ts, raw_ts); 2638 2639 write_seqcount_end(&tk_core.seq); 2640 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2641 } 2642 EXPORT_SYMBOL(hardpps); 2643 #endif /* CONFIG_NTP_PPS */ 2644
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.