1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 #include <linux/random.h> 47 #include <linux/sysctl.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/div64.h> 52 #include <asm/timex.h> 53 #include <asm/io.h> 54 55 #include "tick-internal.h" 56 #include "timer_migration.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/timer.h> 60 61 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 62 63 EXPORT_SYMBOL(jiffies_64); 64 65 /* 66 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 67 * LVL_SIZE buckets. Each level is driven by its own clock and therefore each 68 * level has a different granularity. 69 * 70 * The level granularity is: LVL_CLK_DIV ^ level 71 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 72 * 73 * The array level of a newly armed timer depends on the relative expiry 74 * time. The farther the expiry time is away the higher the array level and 75 * therefore the granularity becomes. 76 * 77 * Contrary to the original timer wheel implementation, which aims for 'exact' 78 * expiry of the timers, this implementation removes the need for recascading 79 * the timers into the lower array levels. The previous 'classic' timer wheel 80 * implementation of the kernel already violated the 'exact' expiry by adding 81 * slack to the expiry time to provide batched expiration. The granularity 82 * levels provide implicit batching. 83 * 84 * This is an optimization of the original timer wheel implementation for the 85 * majority of the timer wheel use cases: timeouts. The vast majority of 86 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 87 * the timeout expires it indicates that normal operation is disturbed, so it 88 * does not matter much whether the timeout comes with a slight delay. 89 * 90 * The only exception to this are networking timers with a small expiry 91 * time. They rely on the granularity. Those fit into the first wheel level, 92 * which has HZ granularity. 93 * 94 * We don't have cascading anymore. timers with a expiry time above the 95 * capacity of the last wheel level are force expired at the maximum timeout 96 * value of the last wheel level. From data sampling we know that the maximum 97 * value observed is 5 days (network connection tracking), so this should not 98 * be an issue. 99 * 100 * The currently chosen array constants values are a good compromise between 101 * array size and granularity. 102 * 103 * This results in the following granularity and range levels: 104 * 105 * HZ 1000 steps 106 * Level Offset Granularity Range 107 * 0 0 1 ms 0 ms - 63 ms 108 * 1 64 8 ms 64 ms - 511 ms 109 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 110 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 111 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 112 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 113 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 114 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 115 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 116 * 117 * HZ 300 118 * Level Offset Granularity Range 119 * 0 0 3 ms 0 ms - 210 ms 120 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 121 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 122 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 123 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 124 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 125 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 126 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 127 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 128 * 129 * HZ 250 130 * Level Offset Granularity Range 131 * 0 0 4 ms 0 ms - 255 ms 132 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 133 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 134 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 135 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 136 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 137 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 138 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 139 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 140 * 141 * HZ 100 142 * Level Offset Granularity Range 143 * 0 0 10 ms 0 ms - 630 ms 144 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 145 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 146 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 147 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 148 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 149 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 150 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 151 */ 152 153 /* Clock divisor for the next level */ 154 #define LVL_CLK_SHIFT 3 155 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 156 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 157 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 158 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 159 160 /* 161 * The time start value for each level to select the bucket at enqueue 162 * time. We start from the last possible delta of the previous level 163 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). 164 */ 165 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 166 167 /* Size of each clock level */ 168 #define LVL_BITS 6 169 #define LVL_SIZE (1UL << LVL_BITS) 170 #define LVL_MASK (LVL_SIZE - 1) 171 #define LVL_OFFS(n) ((n) * LVL_SIZE) 172 173 /* Level depth */ 174 #if HZ > 100 175 # define LVL_DEPTH 9 176 # else 177 # define LVL_DEPTH 8 178 #endif 179 180 /* The cutoff (max. capacity of the wheel) */ 181 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 182 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 183 184 /* 185 * The resulting wheel size. If NOHZ is configured we allocate two 186 * wheels so we have a separate storage for the deferrable timers. 187 */ 188 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 189 190 #ifdef CONFIG_NO_HZ_COMMON 191 /* 192 * If multiple bases need to be locked, use the base ordering for lock 193 * nesting, i.e. lowest number first. 194 */ 195 # define NR_BASES 3 196 # define BASE_LOCAL 0 197 # define BASE_GLOBAL 1 198 # define BASE_DEF 2 199 #else 200 # define NR_BASES 1 201 # define BASE_LOCAL 0 202 # define BASE_GLOBAL 0 203 # define BASE_DEF 0 204 #endif 205 206 /** 207 * struct timer_base - Per CPU timer base (number of base depends on config) 208 * @lock: Lock protecting the timer_base 209 * @running_timer: When expiring timers, the lock is dropped. To make 210 * sure not to race against deleting/modifying a 211 * currently running timer, the pointer is set to the 212 * timer, which expires at the moment. If no timer is 213 * running, the pointer is NULL. 214 * @expiry_lock: PREEMPT_RT only: Lock is taken in softirq around 215 * timer expiry callback execution and when trying to 216 * delete a running timer and it wasn't successful in 217 * the first glance. It prevents priority inversion 218 * when callback was preempted on a remote CPU and a 219 * caller tries to delete the running timer. It also 220 * prevents a life lock, when the task which tries to 221 * delete a timer preempted the softirq thread which 222 * is running the timer callback function. 223 * @timer_waiters: PREEMPT_RT only: Tells, if there is a waiter 224 * waiting for the end of the timer callback function 225 * execution. 226 * @clk: clock of the timer base; is updated before enqueue 227 * of a timer; during expiry, it is 1 offset ahead of 228 * jiffies to avoid endless requeuing to current 229 * jiffies 230 * @next_expiry: expiry value of the first timer; it is updated when 231 * finding the next timer and during enqueue; the 232 * value is not valid, when next_expiry_recalc is set 233 * @cpu: Number of CPU the timer base belongs to 234 * @next_expiry_recalc: States, whether a recalculation of next_expiry is 235 * required. Value is set true, when a timer was 236 * deleted. 237 * @is_idle: Is set, when timer_base is idle. It is triggered by NOHZ 238 * code. This state is only used in standard 239 * base. Deferrable timers, which are enqueued remotely 240 * never wake up an idle CPU. So no matter of supporting it 241 * for this base. 242 * @timers_pending: Is set, when a timer is pending in the base. It is only 243 * reliable when next_expiry_recalc is not set. 244 * @pending_map: bitmap of the timer wheel; each bit reflects a 245 * bucket of the wheel. When a bit is set, at least a 246 * single timer is enqueued in the related bucket. 247 * @vectors: Array of lists; Each array member reflects a bucket 248 * of the timer wheel. The list contains all timers 249 * which are enqueued into a specific bucket. 250 */ 251 struct timer_base { 252 raw_spinlock_t lock; 253 struct timer_list *running_timer; 254 #ifdef CONFIG_PREEMPT_RT 255 spinlock_t expiry_lock; 256 atomic_t timer_waiters; 257 #endif 258 unsigned long clk; 259 unsigned long next_expiry; 260 unsigned int cpu; 261 bool next_expiry_recalc; 262 bool is_idle; 263 bool timers_pending; 264 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 265 struct hlist_head vectors[WHEEL_SIZE]; 266 } ____cacheline_aligned; 267 268 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 269 270 #ifdef CONFIG_NO_HZ_COMMON 271 272 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 273 static DEFINE_MUTEX(timer_keys_mutex); 274 275 static void timer_update_keys(struct work_struct *work); 276 static DECLARE_WORK(timer_update_work, timer_update_keys); 277 278 #ifdef CONFIG_SMP 279 static unsigned int sysctl_timer_migration = 1; 280 281 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 282 283 static void timers_update_migration(void) 284 { 285 if (sysctl_timer_migration && tick_nohz_active) 286 static_branch_enable(&timers_migration_enabled); 287 else 288 static_branch_disable(&timers_migration_enabled); 289 } 290 291 #ifdef CONFIG_SYSCTL 292 static int timer_migration_handler(const struct ctl_table *table, int write, 293 void *buffer, size_t *lenp, loff_t *ppos) 294 { 295 int ret; 296 297 mutex_lock(&timer_keys_mutex); 298 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 299 if (!ret && write) 300 timers_update_migration(); 301 mutex_unlock(&timer_keys_mutex); 302 return ret; 303 } 304 305 static struct ctl_table timer_sysctl[] = { 306 { 307 .procname = "timer_migration", 308 .data = &sysctl_timer_migration, 309 .maxlen = sizeof(unsigned int), 310 .mode = 0644, 311 .proc_handler = timer_migration_handler, 312 .extra1 = SYSCTL_ZERO, 313 .extra2 = SYSCTL_ONE, 314 }, 315 }; 316 317 static int __init timer_sysctl_init(void) 318 { 319 register_sysctl("kernel", timer_sysctl); 320 return 0; 321 } 322 device_initcall(timer_sysctl_init); 323 #endif /* CONFIG_SYSCTL */ 324 #else /* CONFIG_SMP */ 325 static inline void timers_update_migration(void) { } 326 #endif /* !CONFIG_SMP */ 327 328 static void timer_update_keys(struct work_struct *work) 329 { 330 mutex_lock(&timer_keys_mutex); 331 timers_update_migration(); 332 static_branch_enable(&timers_nohz_active); 333 mutex_unlock(&timer_keys_mutex); 334 } 335 336 void timers_update_nohz(void) 337 { 338 schedule_work(&timer_update_work); 339 } 340 341 static inline bool is_timers_nohz_active(void) 342 { 343 return static_branch_unlikely(&timers_nohz_active); 344 } 345 #else 346 static inline bool is_timers_nohz_active(void) { return false; } 347 #endif /* NO_HZ_COMMON */ 348 349 static unsigned long round_jiffies_common(unsigned long j, int cpu, 350 bool force_up) 351 { 352 int rem; 353 unsigned long original = j; 354 355 /* 356 * We don't want all cpus firing their timers at once hitting the 357 * same lock or cachelines, so we skew each extra cpu with an extra 358 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 359 * already did this. 360 * The skew is done by adding 3*cpunr, then round, then subtract this 361 * extra offset again. 362 */ 363 j += cpu * 3; 364 365 rem = j % HZ; 366 367 /* 368 * If the target jiffie is just after a whole second (which can happen 369 * due to delays of the timer irq, long irq off times etc etc) then 370 * we should round down to the whole second, not up. Use 1/4th second 371 * as cutoff for this rounding as an extreme upper bound for this. 372 * But never round down if @force_up is set. 373 */ 374 if (rem < HZ/4 && !force_up) /* round down */ 375 j = j - rem; 376 else /* round up */ 377 j = j - rem + HZ; 378 379 /* now that we have rounded, subtract the extra skew again */ 380 j -= cpu * 3; 381 382 /* 383 * Make sure j is still in the future. Otherwise return the 384 * unmodified value. 385 */ 386 return time_is_after_jiffies(j) ? j : original; 387 } 388 389 /** 390 * __round_jiffies - function to round jiffies to a full second 391 * @j: the time in (absolute) jiffies that should be rounded 392 * @cpu: the processor number on which the timeout will happen 393 * 394 * __round_jiffies() rounds an absolute time in the future (in jiffies) 395 * up or down to (approximately) full seconds. This is useful for timers 396 * for which the exact time they fire does not matter too much, as long as 397 * they fire approximately every X seconds. 398 * 399 * By rounding these timers to whole seconds, all such timers will fire 400 * at the same time, rather than at various times spread out. The goal 401 * of this is to have the CPU wake up less, which saves power. 402 * 403 * The exact rounding is skewed for each processor to avoid all 404 * processors firing at the exact same time, which could lead 405 * to lock contention or spurious cache line bouncing. 406 * 407 * The return value is the rounded version of the @j parameter. 408 */ 409 unsigned long __round_jiffies(unsigned long j, int cpu) 410 { 411 return round_jiffies_common(j, cpu, false); 412 } 413 EXPORT_SYMBOL_GPL(__round_jiffies); 414 415 /** 416 * __round_jiffies_relative - function to round jiffies to a full second 417 * @j: the time in (relative) jiffies that should be rounded 418 * @cpu: the processor number on which the timeout will happen 419 * 420 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 421 * up or down to (approximately) full seconds. This is useful for timers 422 * for which the exact time they fire does not matter too much, as long as 423 * they fire approximately every X seconds. 424 * 425 * By rounding these timers to whole seconds, all such timers will fire 426 * at the same time, rather than at various times spread out. The goal 427 * of this is to have the CPU wake up less, which saves power. 428 * 429 * The exact rounding is skewed for each processor to avoid all 430 * processors firing at the exact same time, which could lead 431 * to lock contention or spurious cache line bouncing. 432 * 433 * The return value is the rounded version of the @j parameter. 434 */ 435 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 436 { 437 unsigned long j0 = jiffies; 438 439 /* Use j0 because jiffies might change while we run */ 440 return round_jiffies_common(j + j0, cpu, false) - j0; 441 } 442 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 443 444 /** 445 * round_jiffies - function to round jiffies to a full second 446 * @j: the time in (absolute) jiffies that should be rounded 447 * 448 * round_jiffies() rounds an absolute time in the future (in jiffies) 449 * up or down to (approximately) full seconds. This is useful for timers 450 * for which the exact time they fire does not matter too much, as long as 451 * they fire approximately every X seconds. 452 * 453 * By rounding these timers to whole seconds, all such timers will fire 454 * at the same time, rather than at various times spread out. The goal 455 * of this is to have the CPU wake up less, which saves power. 456 * 457 * The return value is the rounded version of the @j parameter. 458 */ 459 unsigned long round_jiffies(unsigned long j) 460 { 461 return round_jiffies_common(j, raw_smp_processor_id(), false); 462 } 463 EXPORT_SYMBOL_GPL(round_jiffies); 464 465 /** 466 * round_jiffies_relative - function to round jiffies to a full second 467 * @j: the time in (relative) jiffies that should be rounded 468 * 469 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 470 * up or down to (approximately) full seconds. This is useful for timers 471 * for which the exact time they fire does not matter too much, as long as 472 * they fire approximately every X seconds. 473 * 474 * By rounding these timers to whole seconds, all such timers will fire 475 * at the same time, rather than at various times spread out. The goal 476 * of this is to have the CPU wake up less, which saves power. 477 * 478 * The return value is the rounded version of the @j parameter. 479 */ 480 unsigned long round_jiffies_relative(unsigned long j) 481 { 482 return __round_jiffies_relative(j, raw_smp_processor_id()); 483 } 484 EXPORT_SYMBOL_GPL(round_jiffies_relative); 485 486 /** 487 * __round_jiffies_up - function to round jiffies up to a full second 488 * @j: the time in (absolute) jiffies that should be rounded 489 * @cpu: the processor number on which the timeout will happen 490 * 491 * This is the same as __round_jiffies() except that it will never 492 * round down. This is useful for timeouts for which the exact time 493 * of firing does not matter too much, as long as they don't fire too 494 * early. 495 */ 496 unsigned long __round_jiffies_up(unsigned long j, int cpu) 497 { 498 return round_jiffies_common(j, cpu, true); 499 } 500 EXPORT_SYMBOL_GPL(__round_jiffies_up); 501 502 /** 503 * __round_jiffies_up_relative - function to round jiffies up to a full second 504 * @j: the time in (relative) jiffies that should be rounded 505 * @cpu: the processor number on which the timeout will happen 506 * 507 * This is the same as __round_jiffies_relative() except that it will never 508 * round down. This is useful for timeouts for which the exact time 509 * of firing does not matter too much, as long as they don't fire too 510 * early. 511 */ 512 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 513 { 514 unsigned long j0 = jiffies; 515 516 /* Use j0 because jiffies might change while we run */ 517 return round_jiffies_common(j + j0, cpu, true) - j0; 518 } 519 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 520 521 /** 522 * round_jiffies_up - function to round jiffies up to a full second 523 * @j: the time in (absolute) jiffies that should be rounded 524 * 525 * This is the same as round_jiffies() except that it will never 526 * round down. This is useful for timeouts for which the exact time 527 * of firing does not matter too much, as long as they don't fire too 528 * early. 529 */ 530 unsigned long round_jiffies_up(unsigned long j) 531 { 532 return round_jiffies_common(j, raw_smp_processor_id(), true); 533 } 534 EXPORT_SYMBOL_GPL(round_jiffies_up); 535 536 /** 537 * round_jiffies_up_relative - function to round jiffies up to a full second 538 * @j: the time in (relative) jiffies that should be rounded 539 * 540 * This is the same as round_jiffies_relative() except that it will never 541 * round down. This is useful for timeouts for which the exact time 542 * of firing does not matter too much, as long as they don't fire too 543 * early. 544 */ 545 unsigned long round_jiffies_up_relative(unsigned long j) 546 { 547 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 548 } 549 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 550 551 552 static inline unsigned int timer_get_idx(struct timer_list *timer) 553 { 554 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 555 } 556 557 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 558 { 559 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 560 idx << TIMER_ARRAYSHIFT; 561 } 562 563 /* 564 * Helper function to calculate the array index for a given expiry 565 * time. 566 */ 567 static inline unsigned calc_index(unsigned long expires, unsigned lvl, 568 unsigned long *bucket_expiry) 569 { 570 571 /* 572 * The timer wheel has to guarantee that a timer does not fire 573 * early. Early expiry can happen due to: 574 * - Timer is armed at the edge of a tick 575 * - Truncation of the expiry time in the outer wheel levels 576 * 577 * Round up with level granularity to prevent this. 578 */ 579 expires = (expires >> LVL_SHIFT(lvl)) + 1; 580 *bucket_expiry = expires << LVL_SHIFT(lvl); 581 return LVL_OFFS(lvl) + (expires & LVL_MASK); 582 } 583 584 static int calc_wheel_index(unsigned long expires, unsigned long clk, 585 unsigned long *bucket_expiry) 586 { 587 unsigned long delta = expires - clk; 588 unsigned int idx; 589 590 if (delta < LVL_START(1)) { 591 idx = calc_index(expires, 0, bucket_expiry); 592 } else if (delta < LVL_START(2)) { 593 idx = calc_index(expires, 1, bucket_expiry); 594 } else if (delta < LVL_START(3)) { 595 idx = calc_index(expires, 2, bucket_expiry); 596 } else if (delta < LVL_START(4)) { 597 idx = calc_index(expires, 3, bucket_expiry); 598 } else if (delta < LVL_START(5)) { 599 idx = calc_index(expires, 4, bucket_expiry); 600 } else if (delta < LVL_START(6)) { 601 idx = calc_index(expires, 5, bucket_expiry); 602 } else if (delta < LVL_START(7)) { 603 idx = calc_index(expires, 6, bucket_expiry); 604 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 605 idx = calc_index(expires, 7, bucket_expiry); 606 } else if ((long) delta < 0) { 607 idx = clk & LVL_MASK; 608 *bucket_expiry = clk; 609 } else { 610 /* 611 * Force expire obscene large timeouts to expire at the 612 * capacity limit of the wheel. 613 */ 614 if (delta >= WHEEL_TIMEOUT_CUTOFF) 615 expires = clk + WHEEL_TIMEOUT_MAX; 616 617 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); 618 } 619 return idx; 620 } 621 622 static void 623 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 624 { 625 /* 626 * Deferrable timers do not prevent the CPU from entering dynticks and 627 * are not taken into account on the idle/nohz_full path. An IPI when a 628 * new deferrable timer is enqueued will wake up the remote CPU but 629 * nothing will be done with the deferrable timer base. Therefore skip 630 * the remote IPI for deferrable timers completely. 631 */ 632 if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE) 633 return; 634 635 /* 636 * We might have to IPI the remote CPU if the base is idle and the 637 * timer is pinned. If it is a non pinned timer, it is only queued 638 * on the remote CPU, when timer was running during queueing. Then 639 * everything is handled by remote CPU anyway. If the other CPU is 640 * on the way to idle then it can't set base->is_idle as we hold 641 * the base lock: 642 */ 643 if (base->is_idle) { 644 WARN_ON_ONCE(!(timer->flags & TIMER_PINNED || 645 tick_nohz_full_cpu(base->cpu))); 646 wake_up_nohz_cpu(base->cpu); 647 } 648 } 649 650 /* 651 * Enqueue the timer into the hash bucket, mark it pending in 652 * the bitmap, store the index in the timer flags then wake up 653 * the target CPU if needed. 654 */ 655 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 656 unsigned int idx, unsigned long bucket_expiry) 657 { 658 659 hlist_add_head(&timer->entry, base->vectors + idx); 660 __set_bit(idx, base->pending_map); 661 timer_set_idx(timer, idx); 662 663 trace_timer_start(timer, bucket_expiry); 664 665 /* 666 * Check whether this is the new first expiring timer. The 667 * effective expiry time of the timer is required here 668 * (bucket_expiry) instead of timer->expires. 669 */ 670 if (time_before(bucket_expiry, base->next_expiry)) { 671 /* 672 * Set the next expiry time and kick the CPU so it 673 * can reevaluate the wheel: 674 */ 675 base->next_expiry = bucket_expiry; 676 base->timers_pending = true; 677 base->next_expiry_recalc = false; 678 trigger_dyntick_cpu(base, timer); 679 } 680 } 681 682 static void internal_add_timer(struct timer_base *base, struct timer_list *timer) 683 { 684 unsigned long bucket_expiry; 685 unsigned int idx; 686 687 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); 688 enqueue_timer(base, timer, idx, bucket_expiry); 689 } 690 691 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 692 693 static const struct debug_obj_descr timer_debug_descr; 694 695 struct timer_hint { 696 void (*function)(struct timer_list *t); 697 long offset; 698 }; 699 700 #define TIMER_HINT(fn, container, timr, hintfn) \ 701 { \ 702 .function = fn, \ 703 .offset = offsetof(container, hintfn) - \ 704 offsetof(container, timr) \ 705 } 706 707 static const struct timer_hint timer_hints[] = { 708 TIMER_HINT(delayed_work_timer_fn, 709 struct delayed_work, timer, work.func), 710 TIMER_HINT(kthread_delayed_work_timer_fn, 711 struct kthread_delayed_work, timer, work.func), 712 }; 713 714 static void *timer_debug_hint(void *addr) 715 { 716 struct timer_list *timer = addr; 717 int i; 718 719 for (i = 0; i < ARRAY_SIZE(timer_hints); i++) { 720 if (timer_hints[i].function == timer->function) { 721 void (**fn)(void) = addr + timer_hints[i].offset; 722 723 return *fn; 724 } 725 } 726 727 return timer->function; 728 } 729 730 static bool timer_is_static_object(void *addr) 731 { 732 struct timer_list *timer = addr; 733 734 return (timer->entry.pprev == NULL && 735 timer->entry.next == TIMER_ENTRY_STATIC); 736 } 737 738 /* 739 * timer_fixup_init is called when: 740 * - an active object is initialized 741 */ 742 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 743 { 744 struct timer_list *timer = addr; 745 746 switch (state) { 747 case ODEBUG_STATE_ACTIVE: 748 del_timer_sync(timer); 749 debug_object_init(timer, &timer_debug_descr); 750 return true; 751 default: 752 return false; 753 } 754 } 755 756 /* Stub timer callback for improperly used timers. */ 757 static void stub_timer(struct timer_list *unused) 758 { 759 WARN_ON(1); 760 } 761 762 /* 763 * timer_fixup_activate is called when: 764 * - an active object is activated 765 * - an unknown non-static object is activated 766 */ 767 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 768 { 769 struct timer_list *timer = addr; 770 771 switch (state) { 772 case ODEBUG_STATE_NOTAVAILABLE: 773 timer_setup(timer, stub_timer, 0); 774 return true; 775 776 case ODEBUG_STATE_ACTIVE: 777 WARN_ON(1); 778 fallthrough; 779 default: 780 return false; 781 } 782 } 783 784 /* 785 * timer_fixup_free is called when: 786 * - an active object is freed 787 */ 788 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 789 { 790 struct timer_list *timer = addr; 791 792 switch (state) { 793 case ODEBUG_STATE_ACTIVE: 794 del_timer_sync(timer); 795 debug_object_free(timer, &timer_debug_descr); 796 return true; 797 default: 798 return false; 799 } 800 } 801 802 /* 803 * timer_fixup_assert_init is called when: 804 * - an untracked/uninit-ed object is found 805 */ 806 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 807 { 808 struct timer_list *timer = addr; 809 810 switch (state) { 811 case ODEBUG_STATE_NOTAVAILABLE: 812 timer_setup(timer, stub_timer, 0); 813 return true; 814 default: 815 return false; 816 } 817 } 818 819 static const struct debug_obj_descr timer_debug_descr = { 820 .name = "timer_list", 821 .debug_hint = timer_debug_hint, 822 .is_static_object = timer_is_static_object, 823 .fixup_init = timer_fixup_init, 824 .fixup_activate = timer_fixup_activate, 825 .fixup_free = timer_fixup_free, 826 .fixup_assert_init = timer_fixup_assert_init, 827 }; 828 829 static inline void debug_timer_init(struct timer_list *timer) 830 { 831 debug_object_init(timer, &timer_debug_descr); 832 } 833 834 static inline void debug_timer_activate(struct timer_list *timer) 835 { 836 debug_object_activate(timer, &timer_debug_descr); 837 } 838 839 static inline void debug_timer_deactivate(struct timer_list *timer) 840 { 841 debug_object_deactivate(timer, &timer_debug_descr); 842 } 843 844 static inline void debug_timer_assert_init(struct timer_list *timer) 845 { 846 debug_object_assert_init(timer, &timer_debug_descr); 847 } 848 849 static void do_init_timer(struct timer_list *timer, 850 void (*func)(struct timer_list *), 851 unsigned int flags, 852 const char *name, struct lock_class_key *key); 853 854 void init_timer_on_stack_key(struct timer_list *timer, 855 void (*func)(struct timer_list *), 856 unsigned int flags, 857 const char *name, struct lock_class_key *key) 858 { 859 debug_object_init_on_stack(timer, &timer_debug_descr); 860 do_init_timer(timer, func, flags, name, key); 861 } 862 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 863 864 void destroy_timer_on_stack(struct timer_list *timer) 865 { 866 debug_object_free(timer, &timer_debug_descr); 867 } 868 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 869 870 #else 871 static inline void debug_timer_init(struct timer_list *timer) { } 872 static inline void debug_timer_activate(struct timer_list *timer) { } 873 static inline void debug_timer_deactivate(struct timer_list *timer) { } 874 static inline void debug_timer_assert_init(struct timer_list *timer) { } 875 #endif 876 877 static inline void debug_init(struct timer_list *timer) 878 { 879 debug_timer_init(timer); 880 trace_timer_init(timer); 881 } 882 883 static inline void debug_deactivate(struct timer_list *timer) 884 { 885 debug_timer_deactivate(timer); 886 trace_timer_cancel(timer); 887 } 888 889 static inline void debug_assert_init(struct timer_list *timer) 890 { 891 debug_timer_assert_init(timer); 892 } 893 894 static void do_init_timer(struct timer_list *timer, 895 void (*func)(struct timer_list *), 896 unsigned int flags, 897 const char *name, struct lock_class_key *key) 898 { 899 timer->entry.pprev = NULL; 900 timer->function = func; 901 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) 902 flags &= TIMER_INIT_FLAGS; 903 timer->flags = flags | raw_smp_processor_id(); 904 lockdep_init_map(&timer->lockdep_map, name, key, 0); 905 } 906 907 /** 908 * init_timer_key - initialize a timer 909 * @timer: the timer to be initialized 910 * @func: timer callback function 911 * @flags: timer flags 912 * @name: name of the timer 913 * @key: lockdep class key of the fake lock used for tracking timer 914 * sync lock dependencies 915 * 916 * init_timer_key() must be done to a timer prior to calling *any* of the 917 * other timer functions. 918 */ 919 void init_timer_key(struct timer_list *timer, 920 void (*func)(struct timer_list *), unsigned int flags, 921 const char *name, struct lock_class_key *key) 922 { 923 debug_init(timer); 924 do_init_timer(timer, func, flags, name, key); 925 } 926 EXPORT_SYMBOL(init_timer_key); 927 928 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 929 { 930 struct hlist_node *entry = &timer->entry; 931 932 debug_deactivate(timer); 933 934 __hlist_del(entry); 935 if (clear_pending) 936 entry->pprev = NULL; 937 entry->next = LIST_POISON2; 938 } 939 940 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 941 bool clear_pending) 942 { 943 unsigned idx = timer_get_idx(timer); 944 945 if (!timer_pending(timer)) 946 return 0; 947 948 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { 949 __clear_bit(idx, base->pending_map); 950 base->next_expiry_recalc = true; 951 } 952 953 detach_timer(timer, clear_pending); 954 return 1; 955 } 956 957 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 958 { 959 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 960 struct timer_base *base; 961 962 base = per_cpu_ptr(&timer_bases[index], cpu); 963 964 /* 965 * If the timer is deferrable and NO_HZ_COMMON is set then we need 966 * to use the deferrable base. 967 */ 968 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 969 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 970 return base; 971 } 972 973 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 974 { 975 int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; 976 struct timer_base *base; 977 978 base = this_cpu_ptr(&timer_bases[index]); 979 980 /* 981 * If the timer is deferrable and NO_HZ_COMMON is set then we need 982 * to use the deferrable base. 983 */ 984 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 985 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 986 return base; 987 } 988 989 static inline struct timer_base *get_timer_base(u32 tflags) 990 { 991 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 992 } 993 994 static inline void __forward_timer_base(struct timer_base *base, 995 unsigned long basej) 996 { 997 /* 998 * Check whether we can forward the base. We can only do that when 999 * @basej is past base->clk otherwise we might rewind base->clk. 1000 */ 1001 if (time_before_eq(basej, base->clk)) 1002 return; 1003 1004 /* 1005 * If the next expiry value is > jiffies, then we fast forward to 1006 * jiffies otherwise we forward to the next expiry value. 1007 */ 1008 if (time_after(base->next_expiry, basej)) { 1009 base->clk = basej; 1010 } else { 1011 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) 1012 return; 1013 base->clk = base->next_expiry; 1014 } 1015 1016 } 1017 1018 static inline void forward_timer_base(struct timer_base *base) 1019 { 1020 __forward_timer_base(base, READ_ONCE(jiffies)); 1021 } 1022 1023 /* 1024 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 1025 * that all timers which are tied to this base are locked, and the base itself 1026 * is locked too. 1027 * 1028 * So __run_timers/migrate_timers can safely modify all timers which could 1029 * be found in the base->vectors array. 1030 * 1031 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 1032 * to wait until the migration is done. 1033 */ 1034 static struct timer_base *lock_timer_base(struct timer_list *timer, 1035 unsigned long *flags) 1036 __acquires(timer->base->lock) 1037 { 1038 for (;;) { 1039 struct timer_base *base; 1040 u32 tf; 1041 1042 /* 1043 * We need to use READ_ONCE() here, otherwise the compiler 1044 * might re-read @tf between the check for TIMER_MIGRATING 1045 * and spin_lock(). 1046 */ 1047 tf = READ_ONCE(timer->flags); 1048 1049 if (!(tf & TIMER_MIGRATING)) { 1050 base = get_timer_base(tf); 1051 raw_spin_lock_irqsave(&base->lock, *flags); 1052 if (timer->flags == tf) 1053 return base; 1054 raw_spin_unlock_irqrestore(&base->lock, *flags); 1055 } 1056 cpu_relax(); 1057 } 1058 } 1059 1060 #define MOD_TIMER_PENDING_ONLY 0x01 1061 #define MOD_TIMER_REDUCE 0x02 1062 #define MOD_TIMER_NOTPENDING 0x04 1063 1064 static inline int 1065 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 1066 { 1067 unsigned long clk = 0, flags, bucket_expiry; 1068 struct timer_base *base, *new_base; 1069 unsigned int idx = UINT_MAX; 1070 int ret = 0; 1071 1072 debug_assert_init(timer); 1073 1074 /* 1075 * This is a common optimization triggered by the networking code - if 1076 * the timer is re-modified to have the same timeout or ends up in the 1077 * same array bucket then just return: 1078 */ 1079 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { 1080 /* 1081 * The downside of this optimization is that it can result in 1082 * larger granularity than you would get from adding a new 1083 * timer with this expiry. 1084 */ 1085 long diff = timer->expires - expires; 1086 1087 if (!diff) 1088 return 1; 1089 if (options & MOD_TIMER_REDUCE && diff <= 0) 1090 return 1; 1091 1092 /* 1093 * We lock timer base and calculate the bucket index right 1094 * here. If the timer ends up in the same bucket, then we 1095 * just update the expiry time and avoid the whole 1096 * dequeue/enqueue dance. 1097 */ 1098 base = lock_timer_base(timer, &flags); 1099 /* 1100 * Has @timer been shutdown? This needs to be evaluated 1101 * while holding base lock to prevent a race against the 1102 * shutdown code. 1103 */ 1104 if (!timer->function) 1105 goto out_unlock; 1106 1107 forward_timer_base(base); 1108 1109 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 1110 time_before_eq(timer->expires, expires)) { 1111 ret = 1; 1112 goto out_unlock; 1113 } 1114 1115 clk = base->clk; 1116 idx = calc_wheel_index(expires, clk, &bucket_expiry); 1117 1118 /* 1119 * Retrieve and compare the array index of the pending 1120 * timer. If it matches set the expiry to the new value so a 1121 * subsequent call will exit in the expires check above. 1122 */ 1123 if (idx == timer_get_idx(timer)) { 1124 if (!(options & MOD_TIMER_REDUCE)) 1125 timer->expires = expires; 1126 else if (time_after(timer->expires, expires)) 1127 timer->expires = expires; 1128 ret = 1; 1129 goto out_unlock; 1130 } 1131 } else { 1132 base = lock_timer_base(timer, &flags); 1133 /* 1134 * Has @timer been shutdown? This needs to be evaluated 1135 * while holding base lock to prevent a race against the 1136 * shutdown code. 1137 */ 1138 if (!timer->function) 1139 goto out_unlock; 1140 1141 forward_timer_base(base); 1142 } 1143 1144 ret = detach_if_pending(timer, base, false); 1145 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1146 goto out_unlock; 1147 1148 new_base = get_timer_this_cpu_base(timer->flags); 1149 1150 if (base != new_base) { 1151 /* 1152 * We are trying to schedule the timer on the new base. 1153 * However we can't change timer's base while it is running, 1154 * otherwise timer_delete_sync() can't detect that the timer's 1155 * handler yet has not finished. This also guarantees that the 1156 * timer is serialized wrt itself. 1157 */ 1158 if (likely(base->running_timer != timer)) { 1159 /* See the comment in lock_timer_base() */ 1160 timer->flags |= TIMER_MIGRATING; 1161 1162 raw_spin_unlock(&base->lock); 1163 base = new_base; 1164 raw_spin_lock(&base->lock); 1165 WRITE_ONCE(timer->flags, 1166 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1167 forward_timer_base(base); 1168 } 1169 } 1170 1171 debug_timer_activate(timer); 1172 1173 timer->expires = expires; 1174 /* 1175 * If 'idx' was calculated above and the base time did not advance 1176 * between calculating 'idx' and possibly switching the base, only 1177 * enqueue_timer() is required. Otherwise we need to (re)calculate 1178 * the wheel index via internal_add_timer(). 1179 */ 1180 if (idx != UINT_MAX && clk == base->clk) 1181 enqueue_timer(base, timer, idx, bucket_expiry); 1182 else 1183 internal_add_timer(base, timer); 1184 1185 out_unlock: 1186 raw_spin_unlock_irqrestore(&base->lock, flags); 1187 1188 return ret; 1189 } 1190 1191 /** 1192 * mod_timer_pending - Modify a pending timer's timeout 1193 * @timer: The pending timer to be modified 1194 * @expires: New absolute timeout in jiffies 1195 * 1196 * mod_timer_pending() is the same for pending timers as mod_timer(), but 1197 * will not activate inactive timers. 1198 * 1199 * If @timer->function == NULL then the start operation is silently 1200 * discarded. 1201 * 1202 * Return: 1203 * * %0 - The timer was inactive and not modified or was in 1204 * shutdown state and the operation was discarded 1205 * * %1 - The timer was active and requeued to expire at @expires 1206 */ 1207 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1208 { 1209 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1210 } 1211 EXPORT_SYMBOL(mod_timer_pending); 1212 1213 /** 1214 * mod_timer - Modify a timer's timeout 1215 * @timer: The timer to be modified 1216 * @expires: New absolute timeout in jiffies 1217 * 1218 * mod_timer(timer, expires) is equivalent to: 1219 * 1220 * del_timer(timer); timer->expires = expires; add_timer(timer); 1221 * 1222 * mod_timer() is more efficient than the above open coded sequence. In 1223 * case that the timer is inactive, the del_timer() part is a NOP. The 1224 * timer is in any case activated with the new expiry time @expires. 1225 * 1226 * Note that if there are multiple unserialized concurrent users of the 1227 * same timer, then mod_timer() is the only safe way to modify the timeout, 1228 * since add_timer() cannot modify an already running timer. 1229 * 1230 * If @timer->function == NULL then the start operation is silently 1231 * discarded. In this case the return value is 0 and meaningless. 1232 * 1233 * Return: 1234 * * %0 - The timer was inactive and started or was in shutdown 1235 * state and the operation was discarded 1236 * * %1 - The timer was active and requeued to expire at @expires or 1237 * the timer was active and not modified because @expires did 1238 * not change the effective expiry time 1239 */ 1240 int mod_timer(struct timer_list *timer, unsigned long expires) 1241 { 1242 return __mod_timer(timer, expires, 0); 1243 } 1244 EXPORT_SYMBOL(mod_timer); 1245 1246 /** 1247 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1248 * @timer: The timer to be modified 1249 * @expires: New absolute timeout in jiffies 1250 * 1251 * timer_reduce() is very similar to mod_timer(), except that it will only 1252 * modify an enqueued timer if that would reduce the expiration time. If 1253 * @timer is not enqueued it starts the timer. 1254 * 1255 * If @timer->function == NULL then the start operation is silently 1256 * discarded. 1257 * 1258 * Return: 1259 * * %0 - The timer was inactive and started or was in shutdown 1260 * state and the operation was discarded 1261 * * %1 - The timer was active and requeued to expire at @expires or 1262 * the timer was active and not modified because @expires 1263 * did not change the effective expiry time such that the 1264 * timer would expire earlier than already scheduled 1265 */ 1266 int timer_reduce(struct timer_list *timer, unsigned long expires) 1267 { 1268 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1269 } 1270 EXPORT_SYMBOL(timer_reduce); 1271 1272 /** 1273 * add_timer - Start a timer 1274 * @timer: The timer to be started 1275 * 1276 * Start @timer to expire at @timer->expires in the future. @timer->expires 1277 * is the absolute expiry time measured in 'jiffies'. When the timer expires 1278 * timer->function(timer) will be invoked from soft interrupt context. 1279 * 1280 * The @timer->expires and @timer->function fields must be set prior 1281 * to calling this function. 1282 * 1283 * If @timer->function == NULL then the start operation is silently 1284 * discarded. 1285 * 1286 * If @timer->expires is already in the past @timer will be queued to 1287 * expire at the next timer tick. 1288 * 1289 * This can only operate on an inactive timer. Attempts to invoke this on 1290 * an active timer are rejected with a warning. 1291 */ 1292 void add_timer(struct timer_list *timer) 1293 { 1294 if (WARN_ON_ONCE(timer_pending(timer))) 1295 return; 1296 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1297 } 1298 EXPORT_SYMBOL(add_timer); 1299 1300 /** 1301 * add_timer_local() - Start a timer on the local CPU 1302 * @timer: The timer to be started 1303 * 1304 * Same as add_timer() except that the timer flag TIMER_PINNED is set. 1305 * 1306 * See add_timer() for further details. 1307 */ 1308 void add_timer_local(struct timer_list *timer) 1309 { 1310 if (WARN_ON_ONCE(timer_pending(timer))) 1311 return; 1312 timer->flags |= TIMER_PINNED; 1313 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1314 } 1315 EXPORT_SYMBOL(add_timer_local); 1316 1317 /** 1318 * add_timer_global() - Start a timer without TIMER_PINNED flag set 1319 * @timer: The timer to be started 1320 * 1321 * Same as add_timer() except that the timer flag TIMER_PINNED is unset. 1322 * 1323 * See add_timer() for further details. 1324 */ 1325 void add_timer_global(struct timer_list *timer) 1326 { 1327 if (WARN_ON_ONCE(timer_pending(timer))) 1328 return; 1329 timer->flags &= ~TIMER_PINNED; 1330 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1331 } 1332 EXPORT_SYMBOL(add_timer_global); 1333 1334 /** 1335 * add_timer_on - Start a timer on a particular CPU 1336 * @timer: The timer to be started 1337 * @cpu: The CPU to start it on 1338 * 1339 * Same as add_timer() except that it starts the timer on the given CPU and 1340 * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in 1341 * the next round, add_timer_global() should be used instead as it unsets 1342 * the TIMER_PINNED flag. 1343 * 1344 * See add_timer() for further details. 1345 */ 1346 void add_timer_on(struct timer_list *timer, int cpu) 1347 { 1348 struct timer_base *new_base, *base; 1349 unsigned long flags; 1350 1351 debug_assert_init(timer); 1352 1353 if (WARN_ON_ONCE(timer_pending(timer))) 1354 return; 1355 1356 /* Make sure timer flags have TIMER_PINNED flag set */ 1357 timer->flags |= TIMER_PINNED; 1358 1359 new_base = get_timer_cpu_base(timer->flags, cpu); 1360 1361 /* 1362 * If @timer was on a different CPU, it should be migrated with the 1363 * old base locked to prevent other operations proceeding with the 1364 * wrong base locked. See lock_timer_base(). 1365 */ 1366 base = lock_timer_base(timer, &flags); 1367 /* 1368 * Has @timer been shutdown? This needs to be evaluated while 1369 * holding base lock to prevent a race against the shutdown code. 1370 */ 1371 if (!timer->function) 1372 goto out_unlock; 1373 1374 if (base != new_base) { 1375 timer->flags |= TIMER_MIGRATING; 1376 1377 raw_spin_unlock(&base->lock); 1378 base = new_base; 1379 raw_spin_lock(&base->lock); 1380 WRITE_ONCE(timer->flags, 1381 (timer->flags & ~TIMER_BASEMASK) | cpu); 1382 } 1383 forward_timer_base(base); 1384 1385 debug_timer_activate(timer); 1386 internal_add_timer(base, timer); 1387 out_unlock: 1388 raw_spin_unlock_irqrestore(&base->lock, flags); 1389 } 1390 EXPORT_SYMBOL_GPL(add_timer_on); 1391 1392 /** 1393 * __timer_delete - Internal function: Deactivate a timer 1394 * @timer: The timer to be deactivated 1395 * @shutdown: If true, this indicates that the timer is about to be 1396 * shutdown permanently. 1397 * 1398 * If @shutdown is true then @timer->function is set to NULL under the 1399 * timer base lock which prevents further rearming of the time. In that 1400 * case any attempt to rearm @timer after this function returns will be 1401 * silently ignored. 1402 * 1403 * Return: 1404 * * %0 - The timer was not pending 1405 * * %1 - The timer was pending and deactivated 1406 */ 1407 static int __timer_delete(struct timer_list *timer, bool shutdown) 1408 { 1409 struct timer_base *base; 1410 unsigned long flags; 1411 int ret = 0; 1412 1413 debug_assert_init(timer); 1414 1415 /* 1416 * If @shutdown is set then the lock has to be taken whether the 1417 * timer is pending or not to protect against a concurrent rearm 1418 * which might hit between the lockless pending check and the lock 1419 * acquisition. By taking the lock it is ensured that such a newly 1420 * enqueued timer is dequeued and cannot end up with 1421 * timer->function == NULL in the expiry code. 1422 * 1423 * If timer->function is currently executed, then this makes sure 1424 * that the callback cannot requeue the timer. 1425 */ 1426 if (timer_pending(timer) || shutdown) { 1427 base = lock_timer_base(timer, &flags); 1428 ret = detach_if_pending(timer, base, true); 1429 if (shutdown) 1430 timer->function = NULL; 1431 raw_spin_unlock_irqrestore(&base->lock, flags); 1432 } 1433 1434 return ret; 1435 } 1436 1437 /** 1438 * timer_delete - Deactivate a timer 1439 * @timer: The timer to be deactivated 1440 * 1441 * The function only deactivates a pending timer, but contrary to 1442 * timer_delete_sync() it does not take into account whether the timer's 1443 * callback function is concurrently executed on a different CPU or not. 1444 * It neither prevents rearming of the timer. If @timer can be rearmed 1445 * concurrently then the return value of this function is meaningless. 1446 * 1447 * Return: 1448 * * %0 - The timer was not pending 1449 * * %1 - The timer was pending and deactivated 1450 */ 1451 int timer_delete(struct timer_list *timer) 1452 { 1453 return __timer_delete(timer, false); 1454 } 1455 EXPORT_SYMBOL(timer_delete); 1456 1457 /** 1458 * timer_shutdown - Deactivate a timer and prevent rearming 1459 * @timer: The timer to be deactivated 1460 * 1461 * The function does not wait for an eventually running timer callback on a 1462 * different CPU but it prevents rearming of the timer. Any attempt to arm 1463 * @timer after this function returns will be silently ignored. 1464 * 1465 * This function is useful for teardown code and should only be used when 1466 * timer_shutdown_sync() cannot be invoked due to locking or context constraints. 1467 * 1468 * Return: 1469 * * %0 - The timer was not pending 1470 * * %1 - The timer was pending 1471 */ 1472 int timer_shutdown(struct timer_list *timer) 1473 { 1474 return __timer_delete(timer, true); 1475 } 1476 EXPORT_SYMBOL_GPL(timer_shutdown); 1477 1478 /** 1479 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer 1480 * @timer: Timer to deactivate 1481 * @shutdown: If true, this indicates that the timer is about to be 1482 * shutdown permanently. 1483 * 1484 * If @shutdown is true then @timer->function is set to NULL under the 1485 * timer base lock which prevents further rearming of the timer. Any 1486 * attempt to rearm @timer after this function returns will be silently 1487 * ignored. 1488 * 1489 * This function cannot guarantee that the timer cannot be rearmed 1490 * right after dropping the base lock if @shutdown is false. That 1491 * needs to be prevented by the calling code if necessary. 1492 * 1493 * Return: 1494 * * %0 - The timer was not pending 1495 * * %1 - The timer was pending and deactivated 1496 * * %-1 - The timer callback function is running on a different CPU 1497 */ 1498 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown) 1499 { 1500 struct timer_base *base; 1501 unsigned long flags; 1502 int ret = -1; 1503 1504 debug_assert_init(timer); 1505 1506 base = lock_timer_base(timer, &flags); 1507 1508 if (base->running_timer != timer) 1509 ret = detach_if_pending(timer, base, true); 1510 if (shutdown) 1511 timer->function = NULL; 1512 1513 raw_spin_unlock_irqrestore(&base->lock, flags); 1514 1515 return ret; 1516 } 1517 1518 /** 1519 * try_to_del_timer_sync - Try to deactivate a timer 1520 * @timer: Timer to deactivate 1521 * 1522 * This function tries to deactivate a timer. On success the timer is not 1523 * queued and the timer callback function is not running on any CPU. 1524 * 1525 * This function does not guarantee that the timer cannot be rearmed right 1526 * after dropping the base lock. That needs to be prevented by the calling 1527 * code if necessary. 1528 * 1529 * Return: 1530 * * %0 - The timer was not pending 1531 * * %1 - The timer was pending and deactivated 1532 * * %-1 - The timer callback function is running on a different CPU 1533 */ 1534 int try_to_del_timer_sync(struct timer_list *timer) 1535 { 1536 return __try_to_del_timer_sync(timer, false); 1537 } 1538 EXPORT_SYMBOL(try_to_del_timer_sync); 1539 1540 #ifdef CONFIG_PREEMPT_RT 1541 static __init void timer_base_init_expiry_lock(struct timer_base *base) 1542 { 1543 spin_lock_init(&base->expiry_lock); 1544 } 1545 1546 static inline void timer_base_lock_expiry(struct timer_base *base) 1547 { 1548 spin_lock(&base->expiry_lock); 1549 } 1550 1551 static inline void timer_base_unlock_expiry(struct timer_base *base) 1552 { 1553 spin_unlock(&base->expiry_lock); 1554 } 1555 1556 /* 1557 * The counterpart to del_timer_wait_running(). 1558 * 1559 * If there is a waiter for base->expiry_lock, then it was waiting for the 1560 * timer callback to finish. Drop expiry_lock and reacquire it. That allows 1561 * the waiter to acquire the lock and make progress. 1562 */ 1563 static void timer_sync_wait_running(struct timer_base *base) 1564 { 1565 if (atomic_read(&base->timer_waiters)) { 1566 raw_spin_unlock_irq(&base->lock); 1567 spin_unlock(&base->expiry_lock); 1568 spin_lock(&base->expiry_lock); 1569 raw_spin_lock_irq(&base->lock); 1570 } 1571 } 1572 1573 /* 1574 * This function is called on PREEMPT_RT kernels when the fast path 1575 * deletion of a timer failed because the timer callback function was 1576 * running. 1577 * 1578 * This prevents priority inversion, if the softirq thread on a remote CPU 1579 * got preempted, and it prevents a life lock when the task which tries to 1580 * delete a timer preempted the softirq thread running the timer callback 1581 * function. 1582 */ 1583 static void del_timer_wait_running(struct timer_list *timer) 1584 { 1585 u32 tf; 1586 1587 tf = READ_ONCE(timer->flags); 1588 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { 1589 struct timer_base *base = get_timer_base(tf); 1590 1591 /* 1592 * Mark the base as contended and grab the expiry lock, 1593 * which is held by the softirq across the timer 1594 * callback. Drop the lock immediately so the softirq can 1595 * expire the next timer. In theory the timer could already 1596 * be running again, but that's more than unlikely and just 1597 * causes another wait loop. 1598 */ 1599 atomic_inc(&base->timer_waiters); 1600 spin_lock_bh(&base->expiry_lock); 1601 atomic_dec(&base->timer_waiters); 1602 spin_unlock_bh(&base->expiry_lock); 1603 } 1604 } 1605 #else 1606 static inline void timer_base_init_expiry_lock(struct timer_base *base) { } 1607 static inline void timer_base_lock_expiry(struct timer_base *base) { } 1608 static inline void timer_base_unlock_expiry(struct timer_base *base) { } 1609 static inline void timer_sync_wait_running(struct timer_base *base) { } 1610 static inline void del_timer_wait_running(struct timer_list *timer) { } 1611 #endif 1612 1613 /** 1614 * __timer_delete_sync - Internal function: Deactivate a timer and wait 1615 * for the handler to finish. 1616 * @timer: The timer to be deactivated 1617 * @shutdown: If true, @timer->function will be set to NULL under the 1618 * timer base lock which prevents rearming of @timer 1619 * 1620 * If @shutdown is not set the timer can be rearmed later. If the timer can 1621 * be rearmed concurrently, i.e. after dropping the base lock then the 1622 * return value is meaningless. 1623 * 1624 * If @shutdown is set then @timer->function is set to NULL under timer 1625 * base lock which prevents rearming of the timer. Any attempt to rearm 1626 * a shutdown timer is silently ignored. 1627 * 1628 * If the timer should be reused after shutdown it has to be initialized 1629 * again. 1630 * 1631 * Return: 1632 * * %0 - The timer was not pending 1633 * * %1 - The timer was pending and deactivated 1634 */ 1635 static int __timer_delete_sync(struct timer_list *timer, bool shutdown) 1636 { 1637 int ret; 1638 1639 #ifdef CONFIG_LOCKDEP 1640 unsigned long flags; 1641 1642 /* 1643 * If lockdep gives a backtrace here, please reference 1644 * the synchronization rules above. 1645 */ 1646 local_irq_save(flags); 1647 lock_map_acquire(&timer->lockdep_map); 1648 lock_map_release(&timer->lockdep_map); 1649 local_irq_restore(flags); 1650 #endif 1651 /* 1652 * don't use it in hardirq context, because it 1653 * could lead to deadlock. 1654 */ 1655 WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE)); 1656 1657 /* 1658 * Must be able to sleep on PREEMPT_RT because of the slowpath in 1659 * del_timer_wait_running(). 1660 */ 1661 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) 1662 lockdep_assert_preemption_enabled(); 1663 1664 do { 1665 ret = __try_to_del_timer_sync(timer, shutdown); 1666 1667 if (unlikely(ret < 0)) { 1668 del_timer_wait_running(timer); 1669 cpu_relax(); 1670 } 1671 } while (ret < 0); 1672 1673 return ret; 1674 } 1675 1676 /** 1677 * timer_delete_sync - Deactivate a timer and wait for the handler to finish. 1678 * @timer: The timer to be deactivated 1679 * 1680 * Synchronization rules: Callers must prevent restarting of the timer, 1681 * otherwise this function is meaningless. It must not be called from 1682 * interrupt contexts unless the timer is an irqsafe one. The caller must 1683 * not hold locks which would prevent completion of the timer's callback 1684 * function. The timer's handler must not call add_timer_on(). Upon exit 1685 * the timer is not queued and the handler is not running on any CPU. 1686 * 1687 * For !irqsafe timers, the caller must not hold locks that are held in 1688 * interrupt context. Even if the lock has nothing to do with the timer in 1689 * question. Here's why:: 1690 * 1691 * CPU0 CPU1 1692 * ---- ---- 1693 * <SOFTIRQ> 1694 * call_timer_fn(); 1695 * base->running_timer = mytimer; 1696 * spin_lock_irq(somelock); 1697 * <IRQ> 1698 * spin_lock(somelock); 1699 * timer_delete_sync(mytimer); 1700 * while (base->running_timer == mytimer); 1701 * 1702 * Now timer_delete_sync() will never return and never release somelock. 1703 * The interrupt on the other CPU is waiting to grab somelock but it has 1704 * interrupted the softirq that CPU0 is waiting to finish. 1705 * 1706 * This function cannot guarantee that the timer is not rearmed again by 1707 * some concurrent or preempting code, right after it dropped the base 1708 * lock. If there is the possibility of a concurrent rearm then the return 1709 * value of the function is meaningless. 1710 * 1711 * If such a guarantee is needed, e.g. for teardown situations then use 1712 * timer_shutdown_sync() instead. 1713 * 1714 * Return: 1715 * * %0 - The timer was not pending 1716 * * %1 - The timer was pending and deactivated 1717 */ 1718 int timer_delete_sync(struct timer_list *timer) 1719 { 1720 return __timer_delete_sync(timer, false); 1721 } 1722 EXPORT_SYMBOL(timer_delete_sync); 1723 1724 /** 1725 * timer_shutdown_sync - Shutdown a timer and prevent rearming 1726 * @timer: The timer to be shutdown 1727 * 1728 * When the function returns it is guaranteed that: 1729 * - @timer is not queued 1730 * - The callback function of @timer is not running 1731 * - @timer cannot be enqueued again. Any attempt to rearm 1732 * @timer is silently ignored. 1733 * 1734 * See timer_delete_sync() for synchronization rules. 1735 * 1736 * This function is useful for final teardown of an infrastructure where 1737 * the timer is subject to a circular dependency problem. 1738 * 1739 * A common pattern for this is a timer and a workqueue where the timer can 1740 * schedule work and work can arm the timer. On shutdown the workqueue must 1741 * be destroyed and the timer must be prevented from rearming. Unless the 1742 * code has conditionals like 'if (mything->in_shutdown)' to prevent that 1743 * there is no way to get this correct with timer_delete_sync(). 1744 * 1745 * timer_shutdown_sync() is solving the problem. The correct ordering of 1746 * calls in this case is: 1747 * 1748 * timer_shutdown_sync(&mything->timer); 1749 * workqueue_destroy(&mything->workqueue); 1750 * 1751 * After this 'mything' can be safely freed. 1752 * 1753 * This obviously implies that the timer is not required to be functional 1754 * for the rest of the shutdown operation. 1755 * 1756 * Return: 1757 * * %0 - The timer was not pending 1758 * * %1 - The timer was pending 1759 */ 1760 int timer_shutdown_sync(struct timer_list *timer) 1761 { 1762 return __timer_delete_sync(timer, true); 1763 } 1764 EXPORT_SYMBOL_GPL(timer_shutdown_sync); 1765 1766 static void call_timer_fn(struct timer_list *timer, 1767 void (*fn)(struct timer_list *), 1768 unsigned long baseclk) 1769 { 1770 int count = preempt_count(); 1771 1772 #ifdef CONFIG_LOCKDEP 1773 /* 1774 * It is permissible to free the timer from inside the 1775 * function that is called from it, this we need to take into 1776 * account for lockdep too. To avoid bogus "held lock freed" 1777 * warnings as well as problems when looking into 1778 * timer->lockdep_map, make a copy and use that here. 1779 */ 1780 struct lockdep_map lockdep_map; 1781 1782 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1783 #endif 1784 /* 1785 * Couple the lock chain with the lock chain at 1786 * timer_delete_sync() by acquiring the lock_map around the fn() 1787 * call here and in timer_delete_sync(). 1788 */ 1789 lock_map_acquire(&lockdep_map); 1790 1791 trace_timer_expire_entry(timer, baseclk); 1792 fn(timer); 1793 trace_timer_expire_exit(timer); 1794 1795 lock_map_release(&lockdep_map); 1796 1797 if (count != preempt_count()) { 1798 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1799 fn, count, preempt_count()); 1800 /* 1801 * Restore the preempt count. That gives us a decent 1802 * chance to survive and extract information. If the 1803 * callback kept a lock held, bad luck, but not worse 1804 * than the BUG() we had. 1805 */ 1806 preempt_count_set(count); 1807 } 1808 } 1809 1810 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1811 { 1812 /* 1813 * This value is required only for tracing. base->clk was 1814 * incremented directly before expire_timers was called. But expiry 1815 * is related to the old base->clk value. 1816 */ 1817 unsigned long baseclk = base->clk - 1; 1818 1819 while (!hlist_empty(head)) { 1820 struct timer_list *timer; 1821 void (*fn)(struct timer_list *); 1822 1823 timer = hlist_entry(head->first, struct timer_list, entry); 1824 1825 base->running_timer = timer; 1826 detach_timer(timer, true); 1827 1828 fn = timer->function; 1829 1830 if (WARN_ON_ONCE(!fn)) { 1831 /* Should never happen. Emphasis on should! */ 1832 base->running_timer = NULL; 1833 continue; 1834 } 1835 1836 if (timer->flags & TIMER_IRQSAFE) { 1837 raw_spin_unlock(&base->lock); 1838 call_timer_fn(timer, fn, baseclk); 1839 raw_spin_lock(&base->lock); 1840 base->running_timer = NULL; 1841 } else { 1842 raw_spin_unlock_irq(&base->lock); 1843 call_timer_fn(timer, fn, baseclk); 1844 raw_spin_lock_irq(&base->lock); 1845 base->running_timer = NULL; 1846 timer_sync_wait_running(base); 1847 } 1848 } 1849 } 1850 1851 static int collect_expired_timers(struct timer_base *base, 1852 struct hlist_head *heads) 1853 { 1854 unsigned long clk = base->clk = base->next_expiry; 1855 struct hlist_head *vec; 1856 int i, levels = 0; 1857 unsigned int idx; 1858 1859 for (i = 0; i < LVL_DEPTH; i++) { 1860 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1861 1862 if (__test_and_clear_bit(idx, base->pending_map)) { 1863 vec = base->vectors + idx; 1864 hlist_move_list(vec, heads++); 1865 levels++; 1866 } 1867 /* Is it time to look at the next level? */ 1868 if (clk & LVL_CLK_MASK) 1869 break; 1870 /* Shift clock for the next level granularity */ 1871 clk >>= LVL_CLK_SHIFT; 1872 } 1873 return levels; 1874 } 1875 1876 /* 1877 * Find the next pending bucket of a level. Search from level start (@offset) 1878 * + @clk upwards and if nothing there, search from start of the level 1879 * (@offset) up to @offset + clk. 1880 */ 1881 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1882 unsigned clk) 1883 { 1884 unsigned pos, start = offset + clk; 1885 unsigned end = offset + LVL_SIZE; 1886 1887 pos = find_next_bit(base->pending_map, end, start); 1888 if (pos < end) 1889 return pos - start; 1890 1891 pos = find_next_bit(base->pending_map, start, offset); 1892 return pos < start ? pos + LVL_SIZE - start : -1; 1893 } 1894 1895 /* 1896 * Search the first expiring timer in the various clock levels. Caller must 1897 * hold base->lock. 1898 * 1899 * Store next expiry time in base->next_expiry. 1900 */ 1901 static void next_expiry_recalc(struct timer_base *base) 1902 { 1903 unsigned long clk, next, adj; 1904 unsigned lvl, offset = 0; 1905 1906 next = base->clk + NEXT_TIMER_MAX_DELTA; 1907 clk = base->clk; 1908 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1909 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1910 unsigned long lvl_clk = clk & LVL_CLK_MASK; 1911 1912 if (pos >= 0) { 1913 unsigned long tmp = clk + (unsigned long) pos; 1914 1915 tmp <<= LVL_SHIFT(lvl); 1916 if (time_before(tmp, next)) 1917 next = tmp; 1918 1919 /* 1920 * If the next expiration happens before we reach 1921 * the next level, no need to check further. 1922 */ 1923 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) 1924 break; 1925 } 1926 /* 1927 * Clock for the next level. If the current level clock lower 1928 * bits are zero, we look at the next level as is. If not we 1929 * need to advance it by one because that's going to be the 1930 * next expiring bucket in that level. base->clk is the next 1931 * expiring jiffie. So in case of: 1932 * 1933 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1934 * 0 0 0 0 0 0 1935 * 1936 * we have to look at all levels @index 0. With 1937 * 1938 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1939 * 0 0 0 0 0 2 1940 * 1941 * LVL0 has the next expiring bucket @index 2. The upper 1942 * levels have the next expiring bucket @index 1. 1943 * 1944 * In case that the propagation wraps the next level the same 1945 * rules apply: 1946 * 1947 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1948 * 0 0 0 0 F 2 1949 * 1950 * So after looking at LVL0 we get: 1951 * 1952 * LVL5 LVL4 LVL3 LVL2 LVL1 1953 * 0 0 0 1 0 1954 * 1955 * So no propagation from LVL1 to LVL2 because that happened 1956 * with the add already, but then we need to propagate further 1957 * from LVL2 to LVL3. 1958 * 1959 * So the simple check whether the lower bits of the current 1960 * level are 0 or not is sufficient for all cases. 1961 */ 1962 adj = lvl_clk ? 1 : 0; 1963 clk >>= LVL_CLK_SHIFT; 1964 clk += adj; 1965 } 1966 1967 base->next_expiry = next; 1968 base->next_expiry_recalc = false; 1969 base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA); 1970 } 1971 1972 #ifdef CONFIG_NO_HZ_COMMON 1973 /* 1974 * Check, if the next hrtimer event is before the next timer wheel 1975 * event: 1976 */ 1977 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1978 { 1979 u64 nextevt = hrtimer_get_next_event(); 1980 1981 /* 1982 * If high resolution timers are enabled 1983 * hrtimer_get_next_event() returns KTIME_MAX. 1984 */ 1985 if (expires <= nextevt) 1986 return expires; 1987 1988 /* 1989 * If the next timer is already expired, return the tick base 1990 * time so the tick is fired immediately. 1991 */ 1992 if (nextevt <= basem) 1993 return basem; 1994 1995 /* 1996 * Round up to the next jiffie. High resolution timers are 1997 * off, so the hrtimers are expired in the tick and we need to 1998 * make sure that this tick really expires the timer to avoid 1999 * a ping pong of the nohz stop code. 2000 * 2001 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 2002 */ 2003 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 2004 } 2005 2006 static unsigned long next_timer_interrupt(struct timer_base *base, 2007 unsigned long basej) 2008 { 2009 if (base->next_expiry_recalc) 2010 next_expiry_recalc(base); 2011 2012 /* 2013 * Move next_expiry for the empty base into the future to prevent an 2014 * unnecessary raise of the timer softirq when the next_expiry value 2015 * will be reached even if there is no timer pending. 2016 * 2017 * This update is also required to make timer_base::next_expiry values 2018 * easy comparable to find out which base holds the first pending timer. 2019 */ 2020 if (!base->timers_pending) 2021 base->next_expiry = basej + NEXT_TIMER_MAX_DELTA; 2022 2023 return base->next_expiry; 2024 } 2025 2026 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem, 2027 struct timer_base *base_local, 2028 struct timer_base *base_global, 2029 struct timer_events *tevt) 2030 { 2031 unsigned long nextevt, nextevt_local, nextevt_global; 2032 bool local_first; 2033 2034 nextevt_local = next_timer_interrupt(base_local, basej); 2035 nextevt_global = next_timer_interrupt(base_global, basej); 2036 2037 local_first = time_before_eq(nextevt_local, nextevt_global); 2038 2039 nextevt = local_first ? nextevt_local : nextevt_global; 2040 2041 /* 2042 * If the @nextevt is at max. one tick away, use @nextevt and store 2043 * it in the local expiry value. The next global event is irrelevant in 2044 * this case and can be left as KTIME_MAX. 2045 */ 2046 if (time_before_eq(nextevt, basej + 1)) { 2047 /* If we missed a tick already, force 0 delta */ 2048 if (time_before(nextevt, basej)) 2049 nextevt = basej; 2050 tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC; 2051 2052 /* 2053 * This is required for the remote check only but it doesn't 2054 * hurt, when it is done for both call sites: 2055 * 2056 * * The remote callers will only take care of the global timers 2057 * as local timers will be handled by CPU itself. When not 2058 * updating tevt->global with the already missed first global 2059 * timer, it is possible that it will be missed completely. 2060 * 2061 * * The local callers will ignore the tevt->global anyway, when 2062 * nextevt is max. one tick away. 2063 */ 2064 if (!local_first) 2065 tevt->global = tevt->local; 2066 return nextevt; 2067 } 2068 2069 /* 2070 * Update tevt.* values: 2071 * 2072 * If the local queue expires first, then the global event can be 2073 * ignored. If the global queue is empty, nothing to do either. 2074 */ 2075 if (!local_first && base_global->timers_pending) 2076 tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC; 2077 2078 if (base_local->timers_pending) 2079 tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC; 2080 2081 return nextevt; 2082 } 2083 2084 # ifdef CONFIG_SMP 2085 /** 2086 * fetch_next_timer_interrupt_remote() - Store next timers into @tevt 2087 * @basej: base time jiffies 2088 * @basem: base time clock monotonic 2089 * @tevt: Pointer to the storage for the expiry values 2090 * @cpu: Remote CPU 2091 * 2092 * Stores the next pending local and global timer expiry values in the 2093 * struct pointed to by @tevt. If a queue is empty the corresponding 2094 * field is set to KTIME_MAX. If local event expires before global 2095 * event, global event is set to KTIME_MAX as well. 2096 * 2097 * Caller needs to make sure timer base locks are held (use 2098 * timer_lock_remote_bases() for this purpose). 2099 */ 2100 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem, 2101 struct timer_events *tevt, 2102 unsigned int cpu) 2103 { 2104 struct timer_base *base_local, *base_global; 2105 2106 /* Preset local / global events */ 2107 tevt->local = tevt->global = KTIME_MAX; 2108 2109 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2110 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2111 2112 lockdep_assert_held(&base_local->lock); 2113 lockdep_assert_held(&base_global->lock); 2114 2115 fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt); 2116 } 2117 2118 /** 2119 * timer_unlock_remote_bases - unlock timer bases of cpu 2120 * @cpu: Remote CPU 2121 * 2122 * Unlocks the remote timer bases. 2123 */ 2124 void timer_unlock_remote_bases(unsigned int cpu) 2125 __releases(timer_bases[BASE_LOCAL]->lock) 2126 __releases(timer_bases[BASE_GLOBAL]->lock) 2127 { 2128 struct timer_base *base_local, *base_global; 2129 2130 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2131 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2132 2133 raw_spin_unlock(&base_global->lock); 2134 raw_spin_unlock(&base_local->lock); 2135 } 2136 2137 /** 2138 * timer_lock_remote_bases - lock timer bases of cpu 2139 * @cpu: Remote CPU 2140 * 2141 * Locks the remote timer bases. 2142 */ 2143 void timer_lock_remote_bases(unsigned int cpu) 2144 __acquires(timer_bases[BASE_LOCAL]->lock) 2145 __acquires(timer_bases[BASE_GLOBAL]->lock) 2146 { 2147 struct timer_base *base_local, *base_global; 2148 2149 base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); 2150 base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2151 2152 lockdep_assert_irqs_disabled(); 2153 2154 raw_spin_lock(&base_local->lock); 2155 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2156 } 2157 2158 /** 2159 * timer_base_is_idle() - Return whether timer base is set idle 2160 * 2161 * Returns value of local timer base is_idle value. 2162 */ 2163 bool timer_base_is_idle(void) 2164 { 2165 return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle); 2166 } 2167 2168 static void __run_timer_base(struct timer_base *base); 2169 2170 /** 2171 * timer_expire_remote() - expire global timers of cpu 2172 * @cpu: Remote CPU 2173 * 2174 * Expire timers of global base of remote CPU. 2175 */ 2176 void timer_expire_remote(unsigned int cpu) 2177 { 2178 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); 2179 2180 __run_timer_base(base); 2181 } 2182 2183 static void timer_use_tmigr(unsigned long basej, u64 basem, 2184 unsigned long *nextevt, bool *tick_stop_path, 2185 bool timer_base_idle, struct timer_events *tevt) 2186 { 2187 u64 next_tmigr; 2188 2189 if (timer_base_idle) 2190 next_tmigr = tmigr_cpu_new_timer(tevt->global); 2191 else if (tick_stop_path) 2192 next_tmigr = tmigr_cpu_deactivate(tevt->global); 2193 else 2194 next_tmigr = tmigr_quick_check(tevt->global); 2195 2196 /* 2197 * If the CPU is the last going idle in timer migration hierarchy, make 2198 * sure the CPU will wake up in time to handle remote timers. 2199 * next_tmigr == KTIME_MAX if other CPUs are still active. 2200 */ 2201 if (next_tmigr < tevt->local) { 2202 u64 tmp; 2203 2204 /* If we missed a tick already, force 0 delta */ 2205 if (next_tmigr < basem) 2206 next_tmigr = basem; 2207 2208 tmp = div_u64(next_tmigr - basem, TICK_NSEC); 2209 2210 *nextevt = basej + (unsigned long)tmp; 2211 tevt->local = next_tmigr; 2212 } 2213 } 2214 # else 2215 static void timer_use_tmigr(unsigned long basej, u64 basem, 2216 unsigned long *nextevt, bool *tick_stop_path, 2217 bool timer_base_idle, struct timer_events *tevt) 2218 { 2219 /* 2220 * Make sure first event is written into tevt->local to not miss a 2221 * timer on !SMP systems. 2222 */ 2223 tevt->local = min_t(u64, tevt->local, tevt->global); 2224 } 2225 # endif /* CONFIG_SMP */ 2226 2227 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem, 2228 bool *idle) 2229 { 2230 struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX }; 2231 struct timer_base *base_local, *base_global; 2232 unsigned long nextevt; 2233 bool idle_is_possible; 2234 2235 /* 2236 * When the CPU is offline, the tick is cancelled and nothing is supposed 2237 * to try to stop it. 2238 */ 2239 if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) { 2240 if (idle) 2241 *idle = true; 2242 return tevt.local; 2243 } 2244 2245 base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2246 base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]); 2247 2248 raw_spin_lock(&base_local->lock); 2249 raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); 2250 2251 nextevt = fetch_next_timer_interrupt(basej, basem, base_local, 2252 base_global, &tevt); 2253 2254 /* 2255 * If the next event is only one jiffie ahead there is no need to call 2256 * timer migration hierarchy related functions. The value for the next 2257 * global timer in @tevt struct equals then KTIME_MAX. This is also 2258 * true, when the timer base is idle. 2259 * 2260 * The proper timer migration hierarchy function depends on the callsite 2261 * and whether timer base is idle or not. @nextevt will be updated when 2262 * this CPU needs to handle the first timer migration hierarchy 2263 * event. See timer_use_tmigr() for detailed information. 2264 */ 2265 idle_is_possible = time_after(nextevt, basej + 1); 2266 if (idle_is_possible) 2267 timer_use_tmigr(basej, basem, &nextevt, idle, 2268 base_local->is_idle, &tevt); 2269 2270 /* 2271 * We have a fresh next event. Check whether we can forward the 2272 * base. 2273 */ 2274 __forward_timer_base(base_local, basej); 2275 __forward_timer_base(base_global, basej); 2276 2277 /* 2278 * Set base->is_idle only when caller is timer_base_try_to_set_idle() 2279 */ 2280 if (idle) { 2281 /* 2282 * Bases are idle if the next event is more than a tick 2283 * away. Caution: @nextevt could have changed by enqueueing a 2284 * global timer into timer migration hierarchy. Therefore a new 2285 * check is required here. 2286 * 2287 * If the base is marked idle then any timer add operation must 2288 * forward the base clk itself to keep granularity small. This 2289 * idle logic is only maintained for the BASE_LOCAL and 2290 * BASE_GLOBAL base, deferrable timers may still see large 2291 * granularity skew (by design). 2292 */ 2293 if (!base_local->is_idle && time_after(nextevt, basej + 1)) { 2294 base_local->is_idle = true; 2295 /* 2296 * Global timers queued locally while running in a task 2297 * in nohz_full mode need a self-IPI to kick reprogramming 2298 * in IRQ tail. 2299 */ 2300 if (tick_nohz_full_cpu(base_local->cpu)) 2301 base_global->is_idle = true; 2302 trace_timer_base_idle(true, base_local->cpu); 2303 } 2304 *idle = base_local->is_idle; 2305 2306 /* 2307 * When timer base is not set idle, undo the effect of 2308 * tmigr_cpu_deactivate() to prevent inconsistent states - active 2309 * timer base but inactive timer migration hierarchy. 2310 * 2311 * When timer base was already marked idle, nothing will be 2312 * changed here. 2313 */ 2314 if (!base_local->is_idle && idle_is_possible) 2315 tmigr_cpu_activate(); 2316 } 2317 2318 raw_spin_unlock(&base_global->lock); 2319 raw_spin_unlock(&base_local->lock); 2320 2321 return cmp_next_hrtimer_event(basem, tevt.local); 2322 } 2323 2324 /** 2325 * get_next_timer_interrupt() - return the time (clock mono) of the next timer 2326 * @basej: base time jiffies 2327 * @basem: base time clock monotonic 2328 * 2329 * Returns the tick aligned clock monotonic time of the next pending timer or 2330 * KTIME_MAX if no timer is pending. If timer of global base was queued into 2331 * timer migration hierarchy, first global timer is not taken into account. If 2332 * it was the last CPU of timer migration hierarchy going idle, first global 2333 * event is taken into account. 2334 */ 2335 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 2336 { 2337 return __get_next_timer_interrupt(basej, basem, NULL); 2338 } 2339 2340 /** 2341 * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases 2342 * @basej: base time jiffies 2343 * @basem: base time clock monotonic 2344 * @idle: pointer to store the value of timer_base->is_idle on return; 2345 * *idle contains the information whether tick was already stopped 2346 * 2347 * Returns the tick aligned clock monotonic time of the next pending timer or 2348 * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is 2349 * returned as well. 2350 */ 2351 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle) 2352 { 2353 if (*idle) 2354 return KTIME_MAX; 2355 2356 return __get_next_timer_interrupt(basej, basem, idle); 2357 } 2358 2359 /** 2360 * timer_clear_idle - Clear the idle state of the timer base 2361 * 2362 * Called with interrupts disabled 2363 */ 2364 void timer_clear_idle(void) 2365 { 2366 /* 2367 * We do this unlocked. The worst outcome is a remote pinned timer 2368 * enqueue sending a pointless IPI, but taking the lock would just 2369 * make the window for sending the IPI a few instructions smaller 2370 * for the cost of taking the lock in the exit from idle 2371 * path. Required for BASE_LOCAL only. 2372 */ 2373 __this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false); 2374 if (tick_nohz_full_cpu(smp_processor_id())) 2375 __this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false); 2376 trace_timer_base_idle(false, smp_processor_id()); 2377 2378 /* Activate without holding the timer_base->lock */ 2379 tmigr_cpu_activate(); 2380 } 2381 #endif 2382 2383 /** 2384 * __run_timers - run all expired timers (if any) on this CPU. 2385 * @base: the timer vector to be processed. 2386 */ 2387 static inline void __run_timers(struct timer_base *base) 2388 { 2389 struct hlist_head heads[LVL_DEPTH]; 2390 int levels; 2391 2392 lockdep_assert_held(&base->lock); 2393 2394 if (base->running_timer) 2395 return; 2396 2397 while (time_after_eq(jiffies, base->clk) && 2398 time_after_eq(jiffies, base->next_expiry)) { 2399 levels = collect_expired_timers(base, heads); 2400 /* 2401 * The two possible reasons for not finding any expired 2402 * timer at this clk are that all matching timers have been 2403 * dequeued or no timer has been queued since 2404 * base::next_expiry was set to base::clk + 2405 * NEXT_TIMER_MAX_DELTA. 2406 */ 2407 WARN_ON_ONCE(!levels && !base->next_expiry_recalc 2408 && base->timers_pending); 2409 /* 2410 * While executing timers, base->clk is set 1 offset ahead of 2411 * jiffies to avoid endless requeuing to current jiffies. 2412 */ 2413 base->clk++; 2414 next_expiry_recalc(base); 2415 2416 while (levels--) 2417 expire_timers(base, heads + levels); 2418 } 2419 } 2420 2421 static void __run_timer_base(struct timer_base *base) 2422 { 2423 if (time_before(jiffies, base->next_expiry)) 2424 return; 2425 2426 timer_base_lock_expiry(base); 2427 raw_spin_lock_irq(&base->lock); 2428 __run_timers(base); 2429 raw_spin_unlock_irq(&base->lock); 2430 timer_base_unlock_expiry(base); 2431 } 2432 2433 static void run_timer_base(int index) 2434 { 2435 struct timer_base *base = this_cpu_ptr(&timer_bases[index]); 2436 2437 __run_timer_base(base); 2438 } 2439 2440 /* 2441 * This function runs timers and the timer-tq in bottom half context. 2442 */ 2443 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 2444 { 2445 run_timer_base(BASE_LOCAL); 2446 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) { 2447 run_timer_base(BASE_GLOBAL); 2448 run_timer_base(BASE_DEF); 2449 2450 if (is_timers_nohz_active()) 2451 tmigr_handle_remote(); 2452 } 2453 } 2454 2455 /* 2456 * Called by the local, per-CPU timer interrupt on SMP. 2457 */ 2458 static void run_local_timers(void) 2459 { 2460 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]); 2461 2462 hrtimer_run_queues(); 2463 2464 for (int i = 0; i < NR_BASES; i++, base++) { 2465 /* Raise the softirq only if required. */ 2466 if (time_after_eq(jiffies, base->next_expiry) || 2467 (i == BASE_DEF && tmigr_requires_handle_remote())) { 2468 raise_softirq(TIMER_SOFTIRQ); 2469 return; 2470 } 2471 } 2472 } 2473 2474 /* 2475 * Called from the timer interrupt handler to charge one tick to the current 2476 * process. user_tick is 1 if the tick is user time, 0 for system. 2477 */ 2478 void update_process_times(int user_tick) 2479 { 2480 struct task_struct *p = current; 2481 2482 /* Note: this timer irq context must be accounted for as well. */ 2483 account_process_tick(p, user_tick); 2484 run_local_timers(); 2485 rcu_sched_clock_irq(user_tick); 2486 #ifdef CONFIG_IRQ_WORK 2487 if (in_irq()) 2488 irq_work_tick(); 2489 #endif 2490 sched_tick(); 2491 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2492 run_posix_cpu_timers(); 2493 } 2494 2495 /* 2496 * Since schedule_timeout()'s timer is defined on the stack, it must store 2497 * the target task on the stack as well. 2498 */ 2499 struct process_timer { 2500 struct timer_list timer; 2501 struct task_struct *task; 2502 }; 2503 2504 static void process_timeout(struct timer_list *t) 2505 { 2506 struct process_timer *timeout = from_timer(timeout, t, timer); 2507 2508 wake_up_process(timeout->task); 2509 } 2510 2511 /** 2512 * schedule_timeout - sleep until timeout 2513 * @timeout: timeout value in jiffies 2514 * 2515 * Make the current task sleep until @timeout jiffies have elapsed. 2516 * The function behavior depends on the current task state 2517 * (see also set_current_state() description): 2518 * 2519 * %TASK_RUNNING - the scheduler is called, but the task does not sleep 2520 * at all. That happens because sched_submit_work() does nothing for 2521 * tasks in %TASK_RUNNING state. 2522 * 2523 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 2524 * pass before the routine returns unless the current task is explicitly 2525 * woken up, (e.g. by wake_up_process()). 2526 * 2527 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2528 * delivered to the current task or the current task is explicitly woken 2529 * up. 2530 * 2531 * The current task state is guaranteed to be %TASK_RUNNING when this 2532 * routine returns. 2533 * 2534 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 2535 * the CPU away without a bound on the timeout. In this case the return 2536 * value will be %MAX_SCHEDULE_TIMEOUT. 2537 * 2538 * Returns 0 when the timer has expired otherwise the remaining time in 2539 * jiffies will be returned. In all cases the return value is guaranteed 2540 * to be non-negative. 2541 */ 2542 signed long __sched schedule_timeout(signed long timeout) 2543 { 2544 struct process_timer timer; 2545 unsigned long expire; 2546 2547 switch (timeout) 2548 { 2549 case MAX_SCHEDULE_TIMEOUT: 2550 /* 2551 * These two special cases are useful to be comfortable 2552 * in the caller. Nothing more. We could take 2553 * MAX_SCHEDULE_TIMEOUT from one of the negative value 2554 * but I' d like to return a valid offset (>=0) to allow 2555 * the caller to do everything it want with the retval. 2556 */ 2557 schedule(); 2558 goto out; 2559 default: 2560 /* 2561 * Another bit of PARANOID. Note that the retval will be 2562 * 0 since no piece of kernel is supposed to do a check 2563 * for a negative retval of schedule_timeout() (since it 2564 * should never happens anyway). You just have the printk() 2565 * that will tell you if something is gone wrong and where. 2566 */ 2567 if (timeout < 0) { 2568 printk(KERN_ERR "schedule_timeout: wrong timeout " 2569 "value %lx\n", timeout); 2570 dump_stack(); 2571 __set_current_state(TASK_RUNNING); 2572 goto out; 2573 } 2574 } 2575 2576 expire = timeout + jiffies; 2577 2578 timer.task = current; 2579 timer_setup_on_stack(&timer.timer, process_timeout, 0); 2580 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); 2581 schedule(); 2582 del_timer_sync(&timer.timer); 2583 2584 /* Remove the timer from the object tracker */ 2585 destroy_timer_on_stack(&timer.timer); 2586 2587 timeout = expire - jiffies; 2588 2589 out: 2590 return timeout < 0 ? 0 : timeout; 2591 } 2592 EXPORT_SYMBOL(schedule_timeout); 2593 2594 /* 2595 * We can use __set_current_state() here because schedule_timeout() calls 2596 * schedule() unconditionally. 2597 */ 2598 signed long __sched schedule_timeout_interruptible(signed long timeout) 2599 { 2600 __set_current_state(TASK_INTERRUPTIBLE); 2601 return schedule_timeout(timeout); 2602 } 2603 EXPORT_SYMBOL(schedule_timeout_interruptible); 2604 2605 signed long __sched schedule_timeout_killable(signed long timeout) 2606 { 2607 __set_current_state(TASK_KILLABLE); 2608 return schedule_timeout(timeout); 2609 } 2610 EXPORT_SYMBOL(schedule_timeout_killable); 2611 2612 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 2613 { 2614 __set_current_state(TASK_UNINTERRUPTIBLE); 2615 return schedule_timeout(timeout); 2616 } 2617 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 2618 2619 /* 2620 * Like schedule_timeout_uninterruptible(), except this task will not contribute 2621 * to load average. 2622 */ 2623 signed long __sched schedule_timeout_idle(signed long timeout) 2624 { 2625 __set_current_state(TASK_IDLE); 2626 return schedule_timeout(timeout); 2627 } 2628 EXPORT_SYMBOL(schedule_timeout_idle); 2629 2630 #ifdef CONFIG_HOTPLUG_CPU 2631 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 2632 { 2633 struct timer_list *timer; 2634 int cpu = new_base->cpu; 2635 2636 while (!hlist_empty(head)) { 2637 timer = hlist_entry(head->first, struct timer_list, entry); 2638 detach_timer(timer, false); 2639 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 2640 internal_add_timer(new_base, timer); 2641 } 2642 } 2643 2644 int timers_prepare_cpu(unsigned int cpu) 2645 { 2646 struct timer_base *base; 2647 int b; 2648 2649 for (b = 0; b < NR_BASES; b++) { 2650 base = per_cpu_ptr(&timer_bases[b], cpu); 2651 base->clk = jiffies; 2652 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2653 base->next_expiry_recalc = false; 2654 base->timers_pending = false; 2655 base->is_idle = false; 2656 } 2657 return 0; 2658 } 2659 2660 int timers_dead_cpu(unsigned int cpu) 2661 { 2662 struct timer_base *old_base; 2663 struct timer_base *new_base; 2664 int b, i; 2665 2666 for (b = 0; b < NR_BASES; b++) { 2667 old_base = per_cpu_ptr(&timer_bases[b], cpu); 2668 new_base = get_cpu_ptr(&timer_bases[b]); 2669 /* 2670 * The caller is globally serialized and nobody else 2671 * takes two locks at once, deadlock is not possible. 2672 */ 2673 raw_spin_lock_irq(&new_base->lock); 2674 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2675 2676 /* 2677 * The current CPUs base clock might be stale. Update it 2678 * before moving the timers over. 2679 */ 2680 forward_timer_base(new_base); 2681 2682 WARN_ON_ONCE(old_base->running_timer); 2683 old_base->running_timer = NULL; 2684 2685 for (i = 0; i < WHEEL_SIZE; i++) 2686 migrate_timer_list(new_base, old_base->vectors + i); 2687 2688 raw_spin_unlock(&old_base->lock); 2689 raw_spin_unlock_irq(&new_base->lock); 2690 put_cpu_ptr(&timer_bases); 2691 } 2692 return 0; 2693 } 2694 2695 #endif /* CONFIG_HOTPLUG_CPU */ 2696 2697 static void __init init_timer_cpu(int cpu) 2698 { 2699 struct timer_base *base; 2700 int i; 2701 2702 for (i = 0; i < NR_BASES; i++) { 2703 base = per_cpu_ptr(&timer_bases[i], cpu); 2704 base->cpu = cpu; 2705 raw_spin_lock_init(&base->lock); 2706 base->clk = jiffies; 2707 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2708 timer_base_init_expiry_lock(base); 2709 } 2710 } 2711 2712 static void __init init_timer_cpus(void) 2713 { 2714 int cpu; 2715 2716 for_each_possible_cpu(cpu) 2717 init_timer_cpu(cpu); 2718 } 2719 2720 void __init init_timers(void) 2721 { 2722 init_timer_cpus(); 2723 posix_cputimers_init_work(); 2724 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 2725 } 2726 2727 /** 2728 * msleep - sleep safely even with waitqueue interruptions 2729 * @msecs: Time in milliseconds to sleep for 2730 */ 2731 void msleep(unsigned int msecs) 2732 { 2733 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2734 2735 while (timeout) 2736 timeout = schedule_timeout_uninterruptible(timeout); 2737 } 2738 2739 EXPORT_SYMBOL(msleep); 2740 2741 /** 2742 * msleep_interruptible - sleep waiting for signals 2743 * @msecs: Time in milliseconds to sleep for 2744 */ 2745 unsigned long msleep_interruptible(unsigned int msecs) 2746 { 2747 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2748 2749 while (timeout && !signal_pending(current)) 2750 timeout = schedule_timeout_interruptible(timeout); 2751 return jiffies_to_msecs(timeout); 2752 } 2753 2754 EXPORT_SYMBOL(msleep_interruptible); 2755 2756 /** 2757 * usleep_range_state - Sleep for an approximate time in a given state 2758 * @min: Minimum time in usecs to sleep 2759 * @max: Maximum time in usecs to sleep 2760 * @state: State of the current task that will be while sleeping 2761 * 2762 * In non-atomic context where the exact wakeup time is flexible, use 2763 * usleep_range_state() instead of udelay(). The sleep improves responsiveness 2764 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 2765 * power usage by allowing hrtimers to take advantage of an already- 2766 * scheduled interrupt instead of scheduling a new one just for this sleep. 2767 */ 2768 void __sched usleep_range_state(unsigned long min, unsigned long max, 2769 unsigned int state) 2770 { 2771 ktime_t exp = ktime_add_us(ktime_get(), min); 2772 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 2773 2774 for (;;) { 2775 __set_current_state(state); 2776 /* Do not return before the requested sleep time has elapsed */ 2777 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 2778 break; 2779 } 2780 } 2781 EXPORT_SYMBOL(usleep_range_state); 2782
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.