~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/time/timer.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  Kernel internal timers
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  *
  7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
  8  *
  9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 12  *              serialize accesses to xtime/lost_ticks).
 13  *                              Copyright (C) 1998  Andrea Arcangeli
 14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 15  *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
 16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 19  */
 20 
 21 #include <linux/kernel_stat.h>
 22 #include <linux/export.h>
 23 #include <linux/interrupt.h>
 24 #include <linux/percpu.h>
 25 #include <linux/init.h>
 26 #include <linux/mm.h>
 27 #include <linux/swap.h>
 28 #include <linux/pid_namespace.h>
 29 #include <linux/notifier.h>
 30 #include <linux/thread_info.h>
 31 #include <linux/time.h>
 32 #include <linux/jiffies.h>
 33 #include <linux/posix-timers.h>
 34 #include <linux/cpu.h>
 35 #include <linux/syscalls.h>
 36 #include <linux/delay.h>
 37 #include <linux/tick.h>
 38 #include <linux/kallsyms.h>
 39 #include <linux/irq_work.h>
 40 #include <linux/sched/signal.h>
 41 #include <linux/sched/sysctl.h>
 42 #include <linux/sched/nohz.h>
 43 #include <linux/sched/debug.h>
 44 #include <linux/slab.h>
 45 #include <linux/compat.h>
 46 #include <linux/random.h>
 47 #include <linux/sysctl.h>
 48 
 49 #include <linux/uaccess.h>
 50 #include <asm/unistd.h>
 51 #include <asm/div64.h>
 52 #include <asm/timex.h>
 53 #include <asm/io.h>
 54 
 55 #include "tick-internal.h"
 56 #include "timer_migration.h"
 57 
 58 #define CREATE_TRACE_POINTS
 59 #include <trace/events/timer.h>
 60 
 61 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
 62 
 63 EXPORT_SYMBOL(jiffies_64);
 64 
 65 /*
 66  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
 67  * LVL_SIZE buckets. Each level is driven by its own clock and therefore each
 68  * level has a different granularity.
 69  *
 70  * The level granularity is:            LVL_CLK_DIV ^ level
 71  * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
 72  *
 73  * The array level of a newly armed timer depends on the relative expiry
 74  * time. The farther the expiry time is away the higher the array level and
 75  * therefore the granularity becomes.
 76  *
 77  * Contrary to the original timer wheel implementation, which aims for 'exact'
 78  * expiry of the timers, this implementation removes the need for recascading
 79  * the timers into the lower array levels. The previous 'classic' timer wheel
 80  * implementation of the kernel already violated the 'exact' expiry by adding
 81  * slack to the expiry time to provide batched expiration. The granularity
 82  * levels provide implicit batching.
 83  *
 84  * This is an optimization of the original timer wheel implementation for the
 85  * majority of the timer wheel use cases: timeouts. The vast majority of
 86  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
 87  * the timeout expires it indicates that normal operation is disturbed, so it
 88  * does not matter much whether the timeout comes with a slight delay.
 89  *
 90  * The only exception to this are networking timers with a small expiry
 91  * time. They rely on the granularity. Those fit into the first wheel level,
 92  * which has HZ granularity.
 93  *
 94  * We don't have cascading anymore. timers with a expiry time above the
 95  * capacity of the last wheel level are force expired at the maximum timeout
 96  * value of the last wheel level. From data sampling we know that the maximum
 97  * value observed is 5 days (network connection tracking), so this should not
 98  * be an issue.
 99  *
100  * The currently chosen array constants values are a good compromise between
101  * array size and granularity.
102  *
103  * This results in the following granularity and range levels:
104  *
105  * HZ 1000 steps
106  * Level Offset  Granularity            Range
107  *  0      0         1 ms                0 ms -         63 ms
108  *  1     64         8 ms               64 ms -        511 ms
109  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
110  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
111  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
112  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
113  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
114  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
115  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
116  *
117  * HZ  300
118  * Level Offset  Granularity            Range
119  *  0      0         3 ms                0 ms -        210 ms
120  *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
121  *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
122  *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
123  *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
124  *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
125  *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
126  *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
127  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
128  *
129  * HZ  250
130  * Level Offset  Granularity            Range
131  *  0      0         4 ms                0 ms -        255 ms
132  *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
133  *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
134  *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
135  *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
136  *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
137  *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
138  *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
139  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
140  *
141  * HZ  100
142  * Level Offset  Granularity            Range
143  *  0      0         10 ms               0 ms -        630 ms
144  *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
145  *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
146  *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
147  *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
148  *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
149  *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
150  *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
151  */
152 
153 /* Clock divisor for the next level */
154 #define LVL_CLK_SHIFT   3
155 #define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
156 #define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
157 #define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
158 #define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
159 
160 /*
161  * The time start value for each level to select the bucket at enqueue
162  * time. We start from the last possible delta of the previous level
163  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
164  */
165 #define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
166 
167 /* Size of each clock level */
168 #define LVL_BITS        6
169 #define LVL_SIZE        (1UL << LVL_BITS)
170 #define LVL_MASK        (LVL_SIZE - 1)
171 #define LVL_OFFS(n)     ((n) * LVL_SIZE)
172 
173 /* Level depth */
174 #if HZ > 100
175 # define LVL_DEPTH      9
176 # else
177 # define LVL_DEPTH      8
178 #endif
179 
180 /* The cutoff (max. capacity of the wheel) */
181 #define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
182 #define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
183 
184 /*
185  * The resulting wheel size. If NOHZ is configured we allocate two
186  * wheels so we have a separate storage for the deferrable timers.
187  */
188 #define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
189 
190 #ifdef CONFIG_NO_HZ_COMMON
191 /*
192  * If multiple bases need to be locked, use the base ordering for lock
193  * nesting, i.e. lowest number first.
194  */
195 # define NR_BASES       3
196 # define BASE_LOCAL     0
197 # define BASE_GLOBAL    1
198 # define BASE_DEF       2
199 #else
200 # define NR_BASES       1
201 # define BASE_LOCAL     0
202 # define BASE_GLOBAL    0
203 # define BASE_DEF       0
204 #endif
205 
206 /**
207  * struct timer_base - Per CPU timer base (number of base depends on config)
208  * @lock:               Lock protecting the timer_base
209  * @running_timer:      When expiring timers, the lock is dropped. To make
210  *                      sure not to race against deleting/modifying a
211  *                      currently running timer, the pointer is set to the
212  *                      timer, which expires at the moment. If no timer is
213  *                      running, the pointer is NULL.
214  * @expiry_lock:        PREEMPT_RT only: Lock is taken in softirq around
215  *                      timer expiry callback execution and when trying to
216  *                      delete a running timer and it wasn't successful in
217  *                      the first glance. It prevents priority inversion
218  *                      when callback was preempted on a remote CPU and a
219  *                      caller tries to delete the running timer. It also
220  *                      prevents a life lock, when the task which tries to
221  *                      delete a timer preempted the softirq thread which
222  *                      is running the timer callback function.
223  * @timer_waiters:      PREEMPT_RT only: Tells, if there is a waiter
224  *                      waiting for the end of the timer callback function
225  *                      execution.
226  * @clk:                clock of the timer base; is updated before enqueue
227  *                      of a timer; during expiry, it is 1 offset ahead of
228  *                      jiffies to avoid endless requeuing to current
229  *                      jiffies
230  * @next_expiry:        expiry value of the first timer; it is updated when
231  *                      finding the next timer and during enqueue; the
232  *                      value is not valid, when next_expiry_recalc is set
233  * @cpu:                Number of CPU the timer base belongs to
234  * @next_expiry_recalc: States, whether a recalculation of next_expiry is
235  *                      required. Value is set true, when a timer was
236  *                      deleted.
237  * @is_idle:            Is set, when timer_base is idle. It is triggered by NOHZ
238  *                      code. This state is only used in standard
239  *                      base. Deferrable timers, which are enqueued remotely
240  *                      never wake up an idle CPU. So no matter of supporting it
241  *                      for this base.
242  * @timers_pending:     Is set, when a timer is pending in the base. It is only
243  *                      reliable when next_expiry_recalc is not set.
244  * @pending_map:        bitmap of the timer wheel; each bit reflects a
245  *                      bucket of the wheel. When a bit is set, at least a
246  *                      single timer is enqueued in the related bucket.
247  * @vectors:            Array of lists; Each array member reflects a bucket
248  *                      of the timer wheel. The list contains all timers
249  *                      which are enqueued into a specific bucket.
250  */
251 struct timer_base {
252         raw_spinlock_t          lock;
253         struct timer_list       *running_timer;
254 #ifdef CONFIG_PREEMPT_RT
255         spinlock_t              expiry_lock;
256         atomic_t                timer_waiters;
257 #endif
258         unsigned long           clk;
259         unsigned long           next_expiry;
260         unsigned int            cpu;
261         bool                    next_expiry_recalc;
262         bool                    is_idle;
263         bool                    timers_pending;
264         DECLARE_BITMAP(pending_map, WHEEL_SIZE);
265         struct hlist_head       vectors[WHEEL_SIZE];
266 } ____cacheline_aligned;
267 
268 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
269 
270 #ifdef CONFIG_NO_HZ_COMMON
271 
272 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
273 static DEFINE_MUTEX(timer_keys_mutex);
274 
275 static void timer_update_keys(struct work_struct *work);
276 static DECLARE_WORK(timer_update_work, timer_update_keys);
277 
278 #ifdef CONFIG_SMP
279 static unsigned int sysctl_timer_migration = 1;
280 
281 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
282 
283 static void timers_update_migration(void)
284 {
285         if (sysctl_timer_migration && tick_nohz_active)
286                 static_branch_enable(&timers_migration_enabled);
287         else
288                 static_branch_disable(&timers_migration_enabled);
289 }
290 
291 #ifdef CONFIG_SYSCTL
292 static int timer_migration_handler(const struct ctl_table *table, int write,
293                             void *buffer, size_t *lenp, loff_t *ppos)
294 {
295         int ret;
296 
297         mutex_lock(&timer_keys_mutex);
298         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
299         if (!ret && write)
300                 timers_update_migration();
301         mutex_unlock(&timer_keys_mutex);
302         return ret;
303 }
304 
305 static struct ctl_table timer_sysctl[] = {
306         {
307                 .procname       = "timer_migration",
308                 .data           = &sysctl_timer_migration,
309                 .maxlen         = sizeof(unsigned int),
310                 .mode           = 0644,
311                 .proc_handler   = timer_migration_handler,
312                 .extra1         = SYSCTL_ZERO,
313                 .extra2         = SYSCTL_ONE,
314         },
315 };
316 
317 static int __init timer_sysctl_init(void)
318 {
319         register_sysctl("kernel", timer_sysctl);
320         return 0;
321 }
322 device_initcall(timer_sysctl_init);
323 #endif /* CONFIG_SYSCTL */
324 #else /* CONFIG_SMP */
325 static inline void timers_update_migration(void) { }
326 #endif /* !CONFIG_SMP */
327 
328 static void timer_update_keys(struct work_struct *work)
329 {
330         mutex_lock(&timer_keys_mutex);
331         timers_update_migration();
332         static_branch_enable(&timers_nohz_active);
333         mutex_unlock(&timer_keys_mutex);
334 }
335 
336 void timers_update_nohz(void)
337 {
338         schedule_work(&timer_update_work);
339 }
340 
341 static inline bool is_timers_nohz_active(void)
342 {
343         return static_branch_unlikely(&timers_nohz_active);
344 }
345 #else
346 static inline bool is_timers_nohz_active(void) { return false; }
347 #endif /* NO_HZ_COMMON */
348 
349 static unsigned long round_jiffies_common(unsigned long j, int cpu,
350                 bool force_up)
351 {
352         int rem;
353         unsigned long original = j;
354 
355         /*
356          * We don't want all cpus firing their timers at once hitting the
357          * same lock or cachelines, so we skew each extra cpu with an extra
358          * 3 jiffies. This 3 jiffies came originally from the mm/ code which
359          * already did this.
360          * The skew is done by adding 3*cpunr, then round, then subtract this
361          * extra offset again.
362          */
363         j += cpu * 3;
364 
365         rem = j % HZ;
366 
367         /*
368          * If the target jiffie is just after a whole second (which can happen
369          * due to delays of the timer irq, long irq off times etc etc) then
370          * we should round down to the whole second, not up. Use 1/4th second
371          * as cutoff for this rounding as an extreme upper bound for this.
372          * But never round down if @force_up is set.
373          */
374         if (rem < HZ/4 && !force_up) /* round down */
375                 j = j - rem;
376         else /* round up */
377                 j = j - rem + HZ;
378 
379         /* now that we have rounded, subtract the extra skew again */
380         j -= cpu * 3;
381 
382         /*
383          * Make sure j is still in the future. Otherwise return the
384          * unmodified value.
385          */
386         return time_is_after_jiffies(j) ? j : original;
387 }
388 
389 /**
390  * __round_jiffies - function to round jiffies to a full second
391  * @j: the time in (absolute) jiffies that should be rounded
392  * @cpu: the processor number on which the timeout will happen
393  *
394  * __round_jiffies() rounds an absolute time in the future (in jiffies)
395  * up or down to (approximately) full seconds. This is useful for timers
396  * for which the exact time they fire does not matter too much, as long as
397  * they fire approximately every X seconds.
398  *
399  * By rounding these timers to whole seconds, all such timers will fire
400  * at the same time, rather than at various times spread out. The goal
401  * of this is to have the CPU wake up less, which saves power.
402  *
403  * The exact rounding is skewed for each processor to avoid all
404  * processors firing at the exact same time, which could lead
405  * to lock contention or spurious cache line bouncing.
406  *
407  * The return value is the rounded version of the @j parameter.
408  */
409 unsigned long __round_jiffies(unsigned long j, int cpu)
410 {
411         return round_jiffies_common(j, cpu, false);
412 }
413 EXPORT_SYMBOL_GPL(__round_jiffies);
414 
415 /**
416  * __round_jiffies_relative - function to round jiffies to a full second
417  * @j: the time in (relative) jiffies that should be rounded
418  * @cpu: the processor number on which the timeout will happen
419  *
420  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
421  * up or down to (approximately) full seconds. This is useful for timers
422  * for which the exact time they fire does not matter too much, as long as
423  * they fire approximately every X seconds.
424  *
425  * By rounding these timers to whole seconds, all such timers will fire
426  * at the same time, rather than at various times spread out. The goal
427  * of this is to have the CPU wake up less, which saves power.
428  *
429  * The exact rounding is skewed for each processor to avoid all
430  * processors firing at the exact same time, which could lead
431  * to lock contention or spurious cache line bouncing.
432  *
433  * The return value is the rounded version of the @j parameter.
434  */
435 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
436 {
437         unsigned long j0 = jiffies;
438 
439         /* Use j0 because jiffies might change while we run */
440         return round_jiffies_common(j + j0, cpu, false) - j0;
441 }
442 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
443 
444 /**
445  * round_jiffies - function to round jiffies to a full second
446  * @j: the time in (absolute) jiffies that should be rounded
447  *
448  * round_jiffies() rounds an absolute time in the future (in jiffies)
449  * up or down to (approximately) full seconds. This is useful for timers
450  * for which the exact time they fire does not matter too much, as long as
451  * they fire approximately every X seconds.
452  *
453  * By rounding these timers to whole seconds, all such timers will fire
454  * at the same time, rather than at various times spread out. The goal
455  * of this is to have the CPU wake up less, which saves power.
456  *
457  * The return value is the rounded version of the @j parameter.
458  */
459 unsigned long round_jiffies(unsigned long j)
460 {
461         return round_jiffies_common(j, raw_smp_processor_id(), false);
462 }
463 EXPORT_SYMBOL_GPL(round_jiffies);
464 
465 /**
466  * round_jiffies_relative - function to round jiffies to a full second
467  * @j: the time in (relative) jiffies that should be rounded
468  *
469  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
470  * up or down to (approximately) full seconds. This is useful for timers
471  * for which the exact time they fire does not matter too much, as long as
472  * they fire approximately every X seconds.
473  *
474  * By rounding these timers to whole seconds, all such timers will fire
475  * at the same time, rather than at various times spread out. The goal
476  * of this is to have the CPU wake up less, which saves power.
477  *
478  * The return value is the rounded version of the @j parameter.
479  */
480 unsigned long round_jiffies_relative(unsigned long j)
481 {
482         return __round_jiffies_relative(j, raw_smp_processor_id());
483 }
484 EXPORT_SYMBOL_GPL(round_jiffies_relative);
485 
486 /**
487  * __round_jiffies_up - function to round jiffies up to a full second
488  * @j: the time in (absolute) jiffies that should be rounded
489  * @cpu: the processor number on which the timeout will happen
490  *
491  * This is the same as __round_jiffies() except that it will never
492  * round down.  This is useful for timeouts for which the exact time
493  * of firing does not matter too much, as long as they don't fire too
494  * early.
495  */
496 unsigned long __round_jiffies_up(unsigned long j, int cpu)
497 {
498         return round_jiffies_common(j, cpu, true);
499 }
500 EXPORT_SYMBOL_GPL(__round_jiffies_up);
501 
502 /**
503  * __round_jiffies_up_relative - function to round jiffies up to a full second
504  * @j: the time in (relative) jiffies that should be rounded
505  * @cpu: the processor number on which the timeout will happen
506  *
507  * This is the same as __round_jiffies_relative() except that it will never
508  * round down.  This is useful for timeouts for which the exact time
509  * of firing does not matter too much, as long as they don't fire too
510  * early.
511  */
512 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
513 {
514         unsigned long j0 = jiffies;
515 
516         /* Use j0 because jiffies might change while we run */
517         return round_jiffies_common(j + j0, cpu, true) - j0;
518 }
519 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
520 
521 /**
522  * round_jiffies_up - function to round jiffies up to a full second
523  * @j: the time in (absolute) jiffies that should be rounded
524  *
525  * This is the same as round_jiffies() except that it will never
526  * round down.  This is useful for timeouts for which the exact time
527  * of firing does not matter too much, as long as they don't fire too
528  * early.
529  */
530 unsigned long round_jiffies_up(unsigned long j)
531 {
532         return round_jiffies_common(j, raw_smp_processor_id(), true);
533 }
534 EXPORT_SYMBOL_GPL(round_jiffies_up);
535 
536 /**
537  * round_jiffies_up_relative - function to round jiffies up to a full second
538  * @j: the time in (relative) jiffies that should be rounded
539  *
540  * This is the same as round_jiffies_relative() except that it will never
541  * round down.  This is useful for timeouts for which the exact time
542  * of firing does not matter too much, as long as they don't fire too
543  * early.
544  */
545 unsigned long round_jiffies_up_relative(unsigned long j)
546 {
547         return __round_jiffies_up_relative(j, raw_smp_processor_id());
548 }
549 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
550 
551 
552 static inline unsigned int timer_get_idx(struct timer_list *timer)
553 {
554         return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
555 }
556 
557 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
558 {
559         timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
560                         idx << TIMER_ARRAYSHIFT;
561 }
562 
563 /*
564  * Helper function to calculate the array index for a given expiry
565  * time.
566  */
567 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
568                                   unsigned long *bucket_expiry)
569 {
570 
571         /*
572          * The timer wheel has to guarantee that a timer does not fire
573          * early. Early expiry can happen due to:
574          * - Timer is armed at the edge of a tick
575          * - Truncation of the expiry time in the outer wheel levels
576          *
577          * Round up with level granularity to prevent this.
578          */
579         expires = (expires >> LVL_SHIFT(lvl)) + 1;
580         *bucket_expiry = expires << LVL_SHIFT(lvl);
581         return LVL_OFFS(lvl) + (expires & LVL_MASK);
582 }
583 
584 static int calc_wheel_index(unsigned long expires, unsigned long clk,
585                             unsigned long *bucket_expiry)
586 {
587         unsigned long delta = expires - clk;
588         unsigned int idx;
589 
590         if (delta < LVL_START(1)) {
591                 idx = calc_index(expires, 0, bucket_expiry);
592         } else if (delta < LVL_START(2)) {
593                 idx = calc_index(expires, 1, bucket_expiry);
594         } else if (delta < LVL_START(3)) {
595                 idx = calc_index(expires, 2, bucket_expiry);
596         } else if (delta < LVL_START(4)) {
597                 idx = calc_index(expires, 3, bucket_expiry);
598         } else if (delta < LVL_START(5)) {
599                 idx = calc_index(expires, 4, bucket_expiry);
600         } else if (delta < LVL_START(6)) {
601                 idx = calc_index(expires, 5, bucket_expiry);
602         } else if (delta < LVL_START(7)) {
603                 idx = calc_index(expires, 6, bucket_expiry);
604         } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
605                 idx = calc_index(expires, 7, bucket_expiry);
606         } else if ((long) delta < 0) {
607                 idx = clk & LVL_MASK;
608                 *bucket_expiry = clk;
609         } else {
610                 /*
611                  * Force expire obscene large timeouts to expire at the
612                  * capacity limit of the wheel.
613                  */
614                 if (delta >= WHEEL_TIMEOUT_CUTOFF)
615                         expires = clk + WHEEL_TIMEOUT_MAX;
616 
617                 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
618         }
619         return idx;
620 }
621 
622 static void
623 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
624 {
625         /*
626          * Deferrable timers do not prevent the CPU from entering dynticks and
627          * are not taken into account on the idle/nohz_full path. An IPI when a
628          * new deferrable timer is enqueued will wake up the remote CPU but
629          * nothing will be done with the deferrable timer base. Therefore skip
630          * the remote IPI for deferrable timers completely.
631          */
632         if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
633                 return;
634 
635         /*
636          * We might have to IPI the remote CPU if the base is idle and the
637          * timer is pinned. If it is a non pinned timer, it is only queued
638          * on the remote CPU, when timer was running during queueing. Then
639          * everything is handled by remote CPU anyway. If the other CPU is
640          * on the way to idle then it can't set base->is_idle as we hold
641          * the base lock:
642          */
643         if (base->is_idle) {
644                 WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
645                                tick_nohz_full_cpu(base->cpu)));
646                 wake_up_nohz_cpu(base->cpu);
647         }
648 }
649 
650 /*
651  * Enqueue the timer into the hash bucket, mark it pending in
652  * the bitmap, store the index in the timer flags then wake up
653  * the target CPU if needed.
654  */
655 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
656                           unsigned int idx, unsigned long bucket_expiry)
657 {
658 
659         hlist_add_head(&timer->entry, base->vectors + idx);
660         __set_bit(idx, base->pending_map);
661         timer_set_idx(timer, idx);
662 
663         trace_timer_start(timer, bucket_expiry);
664 
665         /*
666          * Check whether this is the new first expiring timer. The
667          * effective expiry time of the timer is required here
668          * (bucket_expiry) instead of timer->expires.
669          */
670         if (time_before(bucket_expiry, base->next_expiry)) {
671                 /*
672                  * Set the next expiry time and kick the CPU so it
673                  * can reevaluate the wheel:
674                  */
675                 base->next_expiry = bucket_expiry;
676                 base->timers_pending = true;
677                 base->next_expiry_recalc = false;
678                 trigger_dyntick_cpu(base, timer);
679         }
680 }
681 
682 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
683 {
684         unsigned long bucket_expiry;
685         unsigned int idx;
686 
687         idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
688         enqueue_timer(base, timer, idx, bucket_expiry);
689 }
690 
691 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
692 
693 static const struct debug_obj_descr timer_debug_descr;
694 
695 struct timer_hint {
696         void    (*function)(struct timer_list *t);
697         long    offset;
698 };
699 
700 #define TIMER_HINT(fn, container, timr, hintfn)                 \
701         {                                                       \
702                 .function = fn,                                 \
703                 .offset   = offsetof(container, hintfn) -       \
704                             offsetof(container, timr)           \
705         }
706 
707 static const struct timer_hint timer_hints[] = {
708         TIMER_HINT(delayed_work_timer_fn,
709                    struct delayed_work, timer, work.func),
710         TIMER_HINT(kthread_delayed_work_timer_fn,
711                    struct kthread_delayed_work, timer, work.func),
712 };
713 
714 static void *timer_debug_hint(void *addr)
715 {
716         struct timer_list *timer = addr;
717         int i;
718 
719         for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
720                 if (timer_hints[i].function == timer->function) {
721                         void (**fn)(void) = addr + timer_hints[i].offset;
722 
723                         return *fn;
724                 }
725         }
726 
727         return timer->function;
728 }
729 
730 static bool timer_is_static_object(void *addr)
731 {
732         struct timer_list *timer = addr;
733 
734         return (timer->entry.pprev == NULL &&
735                 timer->entry.next == TIMER_ENTRY_STATIC);
736 }
737 
738 /*
739  * timer_fixup_init is called when:
740  * - an active object is initialized
741  */
742 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
743 {
744         struct timer_list *timer = addr;
745 
746         switch (state) {
747         case ODEBUG_STATE_ACTIVE:
748                 del_timer_sync(timer);
749                 debug_object_init(timer, &timer_debug_descr);
750                 return true;
751         default:
752                 return false;
753         }
754 }
755 
756 /* Stub timer callback for improperly used timers. */
757 static void stub_timer(struct timer_list *unused)
758 {
759         WARN_ON(1);
760 }
761 
762 /*
763  * timer_fixup_activate is called when:
764  * - an active object is activated
765  * - an unknown non-static object is activated
766  */
767 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
768 {
769         struct timer_list *timer = addr;
770 
771         switch (state) {
772         case ODEBUG_STATE_NOTAVAILABLE:
773                 timer_setup(timer, stub_timer, 0);
774                 return true;
775 
776         case ODEBUG_STATE_ACTIVE:
777                 WARN_ON(1);
778                 fallthrough;
779         default:
780                 return false;
781         }
782 }
783 
784 /*
785  * timer_fixup_free is called when:
786  * - an active object is freed
787  */
788 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
789 {
790         struct timer_list *timer = addr;
791 
792         switch (state) {
793         case ODEBUG_STATE_ACTIVE:
794                 del_timer_sync(timer);
795                 debug_object_free(timer, &timer_debug_descr);
796                 return true;
797         default:
798                 return false;
799         }
800 }
801 
802 /*
803  * timer_fixup_assert_init is called when:
804  * - an untracked/uninit-ed object is found
805  */
806 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
807 {
808         struct timer_list *timer = addr;
809 
810         switch (state) {
811         case ODEBUG_STATE_NOTAVAILABLE:
812                 timer_setup(timer, stub_timer, 0);
813                 return true;
814         default:
815                 return false;
816         }
817 }
818 
819 static const struct debug_obj_descr timer_debug_descr = {
820         .name                   = "timer_list",
821         .debug_hint             = timer_debug_hint,
822         .is_static_object       = timer_is_static_object,
823         .fixup_init             = timer_fixup_init,
824         .fixup_activate         = timer_fixup_activate,
825         .fixup_free             = timer_fixup_free,
826         .fixup_assert_init      = timer_fixup_assert_init,
827 };
828 
829 static inline void debug_timer_init(struct timer_list *timer)
830 {
831         debug_object_init(timer, &timer_debug_descr);
832 }
833 
834 static inline void debug_timer_activate(struct timer_list *timer)
835 {
836         debug_object_activate(timer, &timer_debug_descr);
837 }
838 
839 static inline void debug_timer_deactivate(struct timer_list *timer)
840 {
841         debug_object_deactivate(timer, &timer_debug_descr);
842 }
843 
844 static inline void debug_timer_assert_init(struct timer_list *timer)
845 {
846         debug_object_assert_init(timer, &timer_debug_descr);
847 }
848 
849 static void do_init_timer(struct timer_list *timer,
850                           void (*func)(struct timer_list *),
851                           unsigned int flags,
852                           const char *name, struct lock_class_key *key);
853 
854 void init_timer_on_stack_key(struct timer_list *timer,
855                              void (*func)(struct timer_list *),
856                              unsigned int flags,
857                              const char *name, struct lock_class_key *key)
858 {
859         debug_object_init_on_stack(timer, &timer_debug_descr);
860         do_init_timer(timer, func, flags, name, key);
861 }
862 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
863 
864 void destroy_timer_on_stack(struct timer_list *timer)
865 {
866         debug_object_free(timer, &timer_debug_descr);
867 }
868 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
869 
870 #else
871 static inline void debug_timer_init(struct timer_list *timer) { }
872 static inline void debug_timer_activate(struct timer_list *timer) { }
873 static inline void debug_timer_deactivate(struct timer_list *timer) { }
874 static inline void debug_timer_assert_init(struct timer_list *timer) { }
875 #endif
876 
877 static inline void debug_init(struct timer_list *timer)
878 {
879         debug_timer_init(timer);
880         trace_timer_init(timer);
881 }
882 
883 static inline void debug_deactivate(struct timer_list *timer)
884 {
885         debug_timer_deactivate(timer);
886         trace_timer_cancel(timer);
887 }
888 
889 static inline void debug_assert_init(struct timer_list *timer)
890 {
891         debug_timer_assert_init(timer);
892 }
893 
894 static void do_init_timer(struct timer_list *timer,
895                           void (*func)(struct timer_list *),
896                           unsigned int flags,
897                           const char *name, struct lock_class_key *key)
898 {
899         timer->entry.pprev = NULL;
900         timer->function = func;
901         if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
902                 flags &= TIMER_INIT_FLAGS;
903         timer->flags = flags | raw_smp_processor_id();
904         lockdep_init_map(&timer->lockdep_map, name, key, 0);
905 }
906 
907 /**
908  * init_timer_key - initialize a timer
909  * @timer: the timer to be initialized
910  * @func: timer callback function
911  * @flags: timer flags
912  * @name: name of the timer
913  * @key: lockdep class key of the fake lock used for tracking timer
914  *       sync lock dependencies
915  *
916  * init_timer_key() must be done to a timer prior to calling *any* of the
917  * other timer functions.
918  */
919 void init_timer_key(struct timer_list *timer,
920                     void (*func)(struct timer_list *), unsigned int flags,
921                     const char *name, struct lock_class_key *key)
922 {
923         debug_init(timer);
924         do_init_timer(timer, func, flags, name, key);
925 }
926 EXPORT_SYMBOL(init_timer_key);
927 
928 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
929 {
930         struct hlist_node *entry = &timer->entry;
931 
932         debug_deactivate(timer);
933 
934         __hlist_del(entry);
935         if (clear_pending)
936                 entry->pprev = NULL;
937         entry->next = LIST_POISON2;
938 }
939 
940 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
941                              bool clear_pending)
942 {
943         unsigned idx = timer_get_idx(timer);
944 
945         if (!timer_pending(timer))
946                 return 0;
947 
948         if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
949                 __clear_bit(idx, base->pending_map);
950                 base->next_expiry_recalc = true;
951         }
952 
953         detach_timer(timer, clear_pending);
954         return 1;
955 }
956 
957 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
958 {
959         int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
960         struct timer_base *base;
961 
962         base = per_cpu_ptr(&timer_bases[index], cpu);
963 
964         /*
965          * If the timer is deferrable and NO_HZ_COMMON is set then we need
966          * to use the deferrable base.
967          */
968         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
969                 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
970         return base;
971 }
972 
973 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
974 {
975         int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
976         struct timer_base *base;
977 
978         base = this_cpu_ptr(&timer_bases[index]);
979 
980         /*
981          * If the timer is deferrable and NO_HZ_COMMON is set then we need
982          * to use the deferrable base.
983          */
984         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
985                 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
986         return base;
987 }
988 
989 static inline struct timer_base *get_timer_base(u32 tflags)
990 {
991         return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
992 }
993 
994 static inline void __forward_timer_base(struct timer_base *base,
995                                         unsigned long basej)
996 {
997         /*
998          * Check whether we can forward the base. We can only do that when
999          * @basej is past base->clk otherwise we might rewind base->clk.
1000          */
1001         if (time_before_eq(basej, base->clk))
1002                 return;
1003 
1004         /*
1005          * If the next expiry value is > jiffies, then we fast forward to
1006          * jiffies otherwise we forward to the next expiry value.
1007          */
1008         if (time_after(base->next_expiry, basej)) {
1009                 base->clk = basej;
1010         } else {
1011                 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1012                         return;
1013                 base->clk = base->next_expiry;
1014         }
1015 
1016 }
1017 
1018 static inline void forward_timer_base(struct timer_base *base)
1019 {
1020         __forward_timer_base(base, READ_ONCE(jiffies));
1021 }
1022 
1023 /*
1024  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1025  * that all timers which are tied to this base are locked, and the base itself
1026  * is locked too.
1027  *
1028  * So __run_timers/migrate_timers can safely modify all timers which could
1029  * be found in the base->vectors array.
1030  *
1031  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1032  * to wait until the migration is done.
1033  */
1034 static struct timer_base *lock_timer_base(struct timer_list *timer,
1035                                           unsigned long *flags)
1036         __acquires(timer->base->lock)
1037 {
1038         for (;;) {
1039                 struct timer_base *base;
1040                 u32 tf;
1041 
1042                 /*
1043                  * We need to use READ_ONCE() here, otherwise the compiler
1044                  * might re-read @tf between the check for TIMER_MIGRATING
1045                  * and spin_lock().
1046                  */
1047                 tf = READ_ONCE(timer->flags);
1048 
1049                 if (!(tf & TIMER_MIGRATING)) {
1050                         base = get_timer_base(tf);
1051                         raw_spin_lock_irqsave(&base->lock, *flags);
1052                         if (timer->flags == tf)
1053                                 return base;
1054                         raw_spin_unlock_irqrestore(&base->lock, *flags);
1055                 }
1056                 cpu_relax();
1057         }
1058 }
1059 
1060 #define MOD_TIMER_PENDING_ONLY          0x01
1061 #define MOD_TIMER_REDUCE                0x02
1062 #define MOD_TIMER_NOTPENDING            0x04
1063 
1064 static inline int
1065 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1066 {
1067         unsigned long clk = 0, flags, bucket_expiry;
1068         struct timer_base *base, *new_base;
1069         unsigned int idx = UINT_MAX;
1070         int ret = 0;
1071 
1072         debug_assert_init(timer);
1073 
1074         /*
1075          * This is a common optimization triggered by the networking code - if
1076          * the timer is re-modified to have the same timeout or ends up in the
1077          * same array bucket then just return:
1078          */
1079         if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1080                 /*
1081                  * The downside of this optimization is that it can result in
1082                  * larger granularity than you would get from adding a new
1083                  * timer with this expiry.
1084                  */
1085                 long diff = timer->expires - expires;
1086 
1087                 if (!diff)
1088                         return 1;
1089                 if (options & MOD_TIMER_REDUCE && diff <= 0)
1090                         return 1;
1091 
1092                 /*
1093                  * We lock timer base and calculate the bucket index right
1094                  * here. If the timer ends up in the same bucket, then we
1095                  * just update the expiry time and avoid the whole
1096                  * dequeue/enqueue dance.
1097                  */
1098                 base = lock_timer_base(timer, &flags);
1099                 /*
1100                  * Has @timer been shutdown? This needs to be evaluated
1101                  * while holding base lock to prevent a race against the
1102                  * shutdown code.
1103                  */
1104                 if (!timer->function)
1105                         goto out_unlock;
1106 
1107                 forward_timer_base(base);
1108 
1109                 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1110                     time_before_eq(timer->expires, expires)) {
1111                         ret = 1;
1112                         goto out_unlock;
1113                 }
1114 
1115                 clk = base->clk;
1116                 idx = calc_wheel_index(expires, clk, &bucket_expiry);
1117 
1118                 /*
1119                  * Retrieve and compare the array index of the pending
1120                  * timer. If it matches set the expiry to the new value so a
1121                  * subsequent call will exit in the expires check above.
1122                  */
1123                 if (idx == timer_get_idx(timer)) {
1124                         if (!(options & MOD_TIMER_REDUCE))
1125                                 timer->expires = expires;
1126                         else if (time_after(timer->expires, expires))
1127                                 timer->expires = expires;
1128                         ret = 1;
1129                         goto out_unlock;
1130                 }
1131         } else {
1132                 base = lock_timer_base(timer, &flags);
1133                 /*
1134                  * Has @timer been shutdown? This needs to be evaluated
1135                  * while holding base lock to prevent a race against the
1136                  * shutdown code.
1137                  */
1138                 if (!timer->function)
1139                         goto out_unlock;
1140 
1141                 forward_timer_base(base);
1142         }
1143 
1144         ret = detach_if_pending(timer, base, false);
1145         if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1146                 goto out_unlock;
1147 
1148         new_base = get_timer_this_cpu_base(timer->flags);
1149 
1150         if (base != new_base) {
1151                 /*
1152                  * We are trying to schedule the timer on the new base.
1153                  * However we can't change timer's base while it is running,
1154                  * otherwise timer_delete_sync() can't detect that the timer's
1155                  * handler yet has not finished. This also guarantees that the
1156                  * timer is serialized wrt itself.
1157                  */
1158                 if (likely(base->running_timer != timer)) {
1159                         /* See the comment in lock_timer_base() */
1160                         timer->flags |= TIMER_MIGRATING;
1161 
1162                         raw_spin_unlock(&base->lock);
1163                         base = new_base;
1164                         raw_spin_lock(&base->lock);
1165                         WRITE_ONCE(timer->flags,
1166                                    (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1167                         forward_timer_base(base);
1168                 }
1169         }
1170 
1171         debug_timer_activate(timer);
1172 
1173         timer->expires = expires;
1174         /*
1175          * If 'idx' was calculated above and the base time did not advance
1176          * between calculating 'idx' and possibly switching the base, only
1177          * enqueue_timer() is required. Otherwise we need to (re)calculate
1178          * the wheel index via internal_add_timer().
1179          */
1180         if (idx != UINT_MAX && clk == base->clk)
1181                 enqueue_timer(base, timer, idx, bucket_expiry);
1182         else
1183                 internal_add_timer(base, timer);
1184 
1185 out_unlock:
1186         raw_spin_unlock_irqrestore(&base->lock, flags);
1187 
1188         return ret;
1189 }
1190 
1191 /**
1192  * mod_timer_pending - Modify a pending timer's timeout
1193  * @timer:      The pending timer to be modified
1194  * @expires:    New absolute timeout in jiffies
1195  *
1196  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1197  * will not activate inactive timers.
1198  *
1199  * If @timer->function == NULL then the start operation is silently
1200  * discarded.
1201  *
1202  * Return:
1203  * * %0 - The timer was inactive and not modified or was in
1204  *        shutdown state and the operation was discarded
1205  * * %1 - The timer was active and requeued to expire at @expires
1206  */
1207 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1208 {
1209         return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1210 }
1211 EXPORT_SYMBOL(mod_timer_pending);
1212 
1213 /**
1214  * mod_timer - Modify a timer's timeout
1215  * @timer:      The timer to be modified
1216  * @expires:    New absolute timeout in jiffies
1217  *
1218  * mod_timer(timer, expires) is equivalent to:
1219  *
1220  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1221  *
1222  * mod_timer() is more efficient than the above open coded sequence. In
1223  * case that the timer is inactive, the del_timer() part is a NOP. The
1224  * timer is in any case activated with the new expiry time @expires.
1225  *
1226  * Note that if there are multiple unserialized concurrent users of the
1227  * same timer, then mod_timer() is the only safe way to modify the timeout,
1228  * since add_timer() cannot modify an already running timer.
1229  *
1230  * If @timer->function == NULL then the start operation is silently
1231  * discarded. In this case the return value is 0 and meaningless.
1232  *
1233  * Return:
1234  * * %0 - The timer was inactive and started or was in shutdown
1235  *        state and the operation was discarded
1236  * * %1 - The timer was active and requeued to expire at @expires or
1237  *        the timer was active and not modified because @expires did
1238  *        not change the effective expiry time
1239  */
1240 int mod_timer(struct timer_list *timer, unsigned long expires)
1241 {
1242         return __mod_timer(timer, expires, 0);
1243 }
1244 EXPORT_SYMBOL(mod_timer);
1245 
1246 /**
1247  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1248  * @timer:      The timer to be modified
1249  * @expires:    New absolute timeout in jiffies
1250  *
1251  * timer_reduce() is very similar to mod_timer(), except that it will only
1252  * modify an enqueued timer if that would reduce the expiration time. If
1253  * @timer is not enqueued it starts the timer.
1254  *
1255  * If @timer->function == NULL then the start operation is silently
1256  * discarded.
1257  *
1258  * Return:
1259  * * %0 - The timer was inactive and started or was in shutdown
1260  *        state and the operation was discarded
1261  * * %1 - The timer was active and requeued to expire at @expires or
1262  *        the timer was active and not modified because @expires
1263  *        did not change the effective expiry time such that the
1264  *        timer would expire earlier than already scheduled
1265  */
1266 int timer_reduce(struct timer_list *timer, unsigned long expires)
1267 {
1268         return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1269 }
1270 EXPORT_SYMBOL(timer_reduce);
1271 
1272 /**
1273  * add_timer - Start a timer
1274  * @timer:      The timer to be started
1275  *
1276  * Start @timer to expire at @timer->expires in the future. @timer->expires
1277  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1278  * timer->function(timer) will be invoked from soft interrupt context.
1279  *
1280  * The @timer->expires and @timer->function fields must be set prior
1281  * to calling this function.
1282  *
1283  * If @timer->function == NULL then the start operation is silently
1284  * discarded.
1285  *
1286  * If @timer->expires is already in the past @timer will be queued to
1287  * expire at the next timer tick.
1288  *
1289  * This can only operate on an inactive timer. Attempts to invoke this on
1290  * an active timer are rejected with a warning.
1291  */
1292 void add_timer(struct timer_list *timer)
1293 {
1294         if (WARN_ON_ONCE(timer_pending(timer)))
1295                 return;
1296         __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1297 }
1298 EXPORT_SYMBOL(add_timer);
1299 
1300 /**
1301  * add_timer_local() - Start a timer on the local CPU
1302  * @timer:      The timer to be started
1303  *
1304  * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1305  *
1306  * See add_timer() for further details.
1307  */
1308 void add_timer_local(struct timer_list *timer)
1309 {
1310         if (WARN_ON_ONCE(timer_pending(timer)))
1311                 return;
1312         timer->flags |= TIMER_PINNED;
1313         __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1314 }
1315 EXPORT_SYMBOL(add_timer_local);
1316 
1317 /**
1318  * add_timer_global() - Start a timer without TIMER_PINNED flag set
1319  * @timer:      The timer to be started
1320  *
1321  * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1322  *
1323  * See add_timer() for further details.
1324  */
1325 void add_timer_global(struct timer_list *timer)
1326 {
1327         if (WARN_ON_ONCE(timer_pending(timer)))
1328                 return;
1329         timer->flags &= ~TIMER_PINNED;
1330         __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1331 }
1332 EXPORT_SYMBOL(add_timer_global);
1333 
1334 /**
1335  * add_timer_on - Start a timer on a particular CPU
1336  * @timer:      The timer to be started
1337  * @cpu:        The CPU to start it on
1338  *
1339  * Same as add_timer() except that it starts the timer on the given CPU and
1340  * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1341  * the next round, add_timer_global() should be used instead as it unsets
1342  * the TIMER_PINNED flag.
1343  *
1344  * See add_timer() for further details.
1345  */
1346 void add_timer_on(struct timer_list *timer, int cpu)
1347 {
1348         struct timer_base *new_base, *base;
1349         unsigned long flags;
1350 
1351         debug_assert_init(timer);
1352 
1353         if (WARN_ON_ONCE(timer_pending(timer)))
1354                 return;
1355 
1356         /* Make sure timer flags have TIMER_PINNED flag set */
1357         timer->flags |= TIMER_PINNED;
1358 
1359         new_base = get_timer_cpu_base(timer->flags, cpu);
1360 
1361         /*
1362          * If @timer was on a different CPU, it should be migrated with the
1363          * old base locked to prevent other operations proceeding with the
1364          * wrong base locked.  See lock_timer_base().
1365          */
1366         base = lock_timer_base(timer, &flags);
1367         /*
1368          * Has @timer been shutdown? This needs to be evaluated while
1369          * holding base lock to prevent a race against the shutdown code.
1370          */
1371         if (!timer->function)
1372                 goto out_unlock;
1373 
1374         if (base != new_base) {
1375                 timer->flags |= TIMER_MIGRATING;
1376 
1377                 raw_spin_unlock(&base->lock);
1378                 base = new_base;
1379                 raw_spin_lock(&base->lock);
1380                 WRITE_ONCE(timer->flags,
1381                            (timer->flags & ~TIMER_BASEMASK) | cpu);
1382         }
1383         forward_timer_base(base);
1384 
1385         debug_timer_activate(timer);
1386         internal_add_timer(base, timer);
1387 out_unlock:
1388         raw_spin_unlock_irqrestore(&base->lock, flags);
1389 }
1390 EXPORT_SYMBOL_GPL(add_timer_on);
1391 
1392 /**
1393  * __timer_delete - Internal function: Deactivate a timer
1394  * @timer:      The timer to be deactivated
1395  * @shutdown:   If true, this indicates that the timer is about to be
1396  *              shutdown permanently.
1397  *
1398  * If @shutdown is true then @timer->function is set to NULL under the
1399  * timer base lock which prevents further rearming of the time. In that
1400  * case any attempt to rearm @timer after this function returns will be
1401  * silently ignored.
1402  *
1403  * Return:
1404  * * %0 - The timer was not pending
1405  * * %1 - The timer was pending and deactivated
1406  */
1407 static int __timer_delete(struct timer_list *timer, bool shutdown)
1408 {
1409         struct timer_base *base;
1410         unsigned long flags;
1411         int ret = 0;
1412 
1413         debug_assert_init(timer);
1414 
1415         /*
1416          * If @shutdown is set then the lock has to be taken whether the
1417          * timer is pending or not to protect against a concurrent rearm
1418          * which might hit between the lockless pending check and the lock
1419          * acquisition. By taking the lock it is ensured that such a newly
1420          * enqueued timer is dequeued and cannot end up with
1421          * timer->function == NULL in the expiry code.
1422          *
1423          * If timer->function is currently executed, then this makes sure
1424          * that the callback cannot requeue the timer.
1425          */
1426         if (timer_pending(timer) || shutdown) {
1427                 base = lock_timer_base(timer, &flags);
1428                 ret = detach_if_pending(timer, base, true);
1429                 if (shutdown)
1430                         timer->function = NULL;
1431                 raw_spin_unlock_irqrestore(&base->lock, flags);
1432         }
1433 
1434         return ret;
1435 }
1436 
1437 /**
1438  * timer_delete - Deactivate a timer
1439  * @timer:      The timer to be deactivated
1440  *
1441  * The function only deactivates a pending timer, but contrary to
1442  * timer_delete_sync() it does not take into account whether the timer's
1443  * callback function is concurrently executed on a different CPU or not.
1444  * It neither prevents rearming of the timer.  If @timer can be rearmed
1445  * concurrently then the return value of this function is meaningless.
1446  *
1447  * Return:
1448  * * %0 - The timer was not pending
1449  * * %1 - The timer was pending and deactivated
1450  */
1451 int timer_delete(struct timer_list *timer)
1452 {
1453         return __timer_delete(timer, false);
1454 }
1455 EXPORT_SYMBOL(timer_delete);
1456 
1457 /**
1458  * timer_shutdown - Deactivate a timer and prevent rearming
1459  * @timer:      The timer to be deactivated
1460  *
1461  * The function does not wait for an eventually running timer callback on a
1462  * different CPU but it prevents rearming of the timer. Any attempt to arm
1463  * @timer after this function returns will be silently ignored.
1464  *
1465  * This function is useful for teardown code and should only be used when
1466  * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1467  *
1468  * Return:
1469  * * %0 - The timer was not pending
1470  * * %1 - The timer was pending
1471  */
1472 int timer_shutdown(struct timer_list *timer)
1473 {
1474         return __timer_delete(timer, true);
1475 }
1476 EXPORT_SYMBOL_GPL(timer_shutdown);
1477 
1478 /**
1479  * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1480  * @timer:      Timer to deactivate
1481  * @shutdown:   If true, this indicates that the timer is about to be
1482  *              shutdown permanently.
1483  *
1484  * If @shutdown is true then @timer->function is set to NULL under the
1485  * timer base lock which prevents further rearming of the timer. Any
1486  * attempt to rearm @timer after this function returns will be silently
1487  * ignored.
1488  *
1489  * This function cannot guarantee that the timer cannot be rearmed
1490  * right after dropping the base lock if @shutdown is false. That
1491  * needs to be prevented by the calling code if necessary.
1492  *
1493  * Return:
1494  * * %0  - The timer was not pending
1495  * * %1  - The timer was pending and deactivated
1496  * * %-1 - The timer callback function is running on a different CPU
1497  */
1498 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1499 {
1500         struct timer_base *base;
1501         unsigned long flags;
1502         int ret = -1;
1503 
1504         debug_assert_init(timer);
1505 
1506         base = lock_timer_base(timer, &flags);
1507 
1508         if (base->running_timer != timer)
1509                 ret = detach_if_pending(timer, base, true);
1510         if (shutdown)
1511                 timer->function = NULL;
1512 
1513         raw_spin_unlock_irqrestore(&base->lock, flags);
1514 
1515         return ret;
1516 }
1517 
1518 /**
1519  * try_to_del_timer_sync - Try to deactivate a timer
1520  * @timer:      Timer to deactivate
1521  *
1522  * This function tries to deactivate a timer. On success the timer is not
1523  * queued and the timer callback function is not running on any CPU.
1524  *
1525  * This function does not guarantee that the timer cannot be rearmed right
1526  * after dropping the base lock. That needs to be prevented by the calling
1527  * code if necessary.
1528  *
1529  * Return:
1530  * * %0  - The timer was not pending
1531  * * %1  - The timer was pending and deactivated
1532  * * %-1 - The timer callback function is running on a different CPU
1533  */
1534 int try_to_del_timer_sync(struct timer_list *timer)
1535 {
1536         return __try_to_del_timer_sync(timer, false);
1537 }
1538 EXPORT_SYMBOL(try_to_del_timer_sync);
1539 
1540 #ifdef CONFIG_PREEMPT_RT
1541 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1542 {
1543         spin_lock_init(&base->expiry_lock);
1544 }
1545 
1546 static inline void timer_base_lock_expiry(struct timer_base *base)
1547 {
1548         spin_lock(&base->expiry_lock);
1549 }
1550 
1551 static inline void timer_base_unlock_expiry(struct timer_base *base)
1552 {
1553         spin_unlock(&base->expiry_lock);
1554 }
1555 
1556 /*
1557  * The counterpart to del_timer_wait_running().
1558  *
1559  * If there is a waiter for base->expiry_lock, then it was waiting for the
1560  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1561  * the waiter to acquire the lock and make progress.
1562  */
1563 static void timer_sync_wait_running(struct timer_base *base)
1564 {
1565         if (atomic_read(&base->timer_waiters)) {
1566                 raw_spin_unlock_irq(&base->lock);
1567                 spin_unlock(&base->expiry_lock);
1568                 spin_lock(&base->expiry_lock);
1569                 raw_spin_lock_irq(&base->lock);
1570         }
1571 }
1572 
1573 /*
1574  * This function is called on PREEMPT_RT kernels when the fast path
1575  * deletion of a timer failed because the timer callback function was
1576  * running.
1577  *
1578  * This prevents priority inversion, if the softirq thread on a remote CPU
1579  * got preempted, and it prevents a life lock when the task which tries to
1580  * delete a timer preempted the softirq thread running the timer callback
1581  * function.
1582  */
1583 static void del_timer_wait_running(struct timer_list *timer)
1584 {
1585         u32 tf;
1586 
1587         tf = READ_ONCE(timer->flags);
1588         if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1589                 struct timer_base *base = get_timer_base(tf);
1590 
1591                 /*
1592                  * Mark the base as contended and grab the expiry lock,
1593                  * which is held by the softirq across the timer
1594                  * callback. Drop the lock immediately so the softirq can
1595                  * expire the next timer. In theory the timer could already
1596                  * be running again, but that's more than unlikely and just
1597                  * causes another wait loop.
1598                  */
1599                 atomic_inc(&base->timer_waiters);
1600                 spin_lock_bh(&base->expiry_lock);
1601                 atomic_dec(&base->timer_waiters);
1602                 spin_unlock_bh(&base->expiry_lock);
1603         }
1604 }
1605 #else
1606 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1607 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1608 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1609 static inline void timer_sync_wait_running(struct timer_base *base) { }
1610 static inline void del_timer_wait_running(struct timer_list *timer) { }
1611 #endif
1612 
1613 /**
1614  * __timer_delete_sync - Internal function: Deactivate a timer and wait
1615  *                       for the handler to finish.
1616  * @timer:      The timer to be deactivated
1617  * @shutdown:   If true, @timer->function will be set to NULL under the
1618  *              timer base lock which prevents rearming of @timer
1619  *
1620  * If @shutdown is not set the timer can be rearmed later. If the timer can
1621  * be rearmed concurrently, i.e. after dropping the base lock then the
1622  * return value is meaningless.
1623  *
1624  * If @shutdown is set then @timer->function is set to NULL under timer
1625  * base lock which prevents rearming of the timer. Any attempt to rearm
1626  * a shutdown timer is silently ignored.
1627  *
1628  * If the timer should be reused after shutdown it has to be initialized
1629  * again.
1630  *
1631  * Return:
1632  * * %0 - The timer was not pending
1633  * * %1 - The timer was pending and deactivated
1634  */
1635 static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1636 {
1637         int ret;
1638 
1639 #ifdef CONFIG_LOCKDEP
1640         unsigned long flags;
1641 
1642         /*
1643          * If lockdep gives a backtrace here, please reference
1644          * the synchronization rules above.
1645          */
1646         local_irq_save(flags);
1647         lock_map_acquire(&timer->lockdep_map);
1648         lock_map_release(&timer->lockdep_map);
1649         local_irq_restore(flags);
1650 #endif
1651         /*
1652          * don't use it in hardirq context, because it
1653          * could lead to deadlock.
1654          */
1655         WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1656 
1657         /*
1658          * Must be able to sleep on PREEMPT_RT because of the slowpath in
1659          * del_timer_wait_running().
1660          */
1661         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1662                 lockdep_assert_preemption_enabled();
1663 
1664         do {
1665                 ret = __try_to_del_timer_sync(timer, shutdown);
1666 
1667                 if (unlikely(ret < 0)) {
1668                         del_timer_wait_running(timer);
1669                         cpu_relax();
1670                 }
1671         } while (ret < 0);
1672 
1673         return ret;
1674 }
1675 
1676 /**
1677  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1678  * @timer:      The timer to be deactivated
1679  *
1680  * Synchronization rules: Callers must prevent restarting of the timer,
1681  * otherwise this function is meaningless. It must not be called from
1682  * interrupt contexts unless the timer is an irqsafe one. The caller must
1683  * not hold locks which would prevent completion of the timer's callback
1684  * function. The timer's handler must not call add_timer_on(). Upon exit
1685  * the timer is not queued and the handler is not running on any CPU.
1686  *
1687  * For !irqsafe timers, the caller must not hold locks that are held in
1688  * interrupt context. Even if the lock has nothing to do with the timer in
1689  * question.  Here's why::
1690  *
1691  *    CPU0                             CPU1
1692  *    ----                             ----
1693  *                                     <SOFTIRQ>
1694  *                                       call_timer_fn();
1695  *                                       base->running_timer = mytimer;
1696  *    spin_lock_irq(somelock);
1697  *                                     <IRQ>
1698  *                                        spin_lock(somelock);
1699  *    timer_delete_sync(mytimer);
1700  *    while (base->running_timer == mytimer);
1701  *
1702  * Now timer_delete_sync() will never return and never release somelock.
1703  * The interrupt on the other CPU is waiting to grab somelock but it has
1704  * interrupted the softirq that CPU0 is waiting to finish.
1705  *
1706  * This function cannot guarantee that the timer is not rearmed again by
1707  * some concurrent or preempting code, right after it dropped the base
1708  * lock. If there is the possibility of a concurrent rearm then the return
1709  * value of the function is meaningless.
1710  *
1711  * If such a guarantee is needed, e.g. for teardown situations then use
1712  * timer_shutdown_sync() instead.
1713  *
1714  * Return:
1715  * * %0 - The timer was not pending
1716  * * %1 - The timer was pending and deactivated
1717  */
1718 int timer_delete_sync(struct timer_list *timer)
1719 {
1720         return __timer_delete_sync(timer, false);
1721 }
1722 EXPORT_SYMBOL(timer_delete_sync);
1723 
1724 /**
1725  * timer_shutdown_sync - Shutdown a timer and prevent rearming
1726  * @timer: The timer to be shutdown
1727  *
1728  * When the function returns it is guaranteed that:
1729  *   - @timer is not queued
1730  *   - The callback function of @timer is not running
1731  *   - @timer cannot be enqueued again. Any attempt to rearm
1732  *     @timer is silently ignored.
1733  *
1734  * See timer_delete_sync() for synchronization rules.
1735  *
1736  * This function is useful for final teardown of an infrastructure where
1737  * the timer is subject to a circular dependency problem.
1738  *
1739  * A common pattern for this is a timer and a workqueue where the timer can
1740  * schedule work and work can arm the timer. On shutdown the workqueue must
1741  * be destroyed and the timer must be prevented from rearming. Unless the
1742  * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1743  * there is no way to get this correct with timer_delete_sync().
1744  *
1745  * timer_shutdown_sync() is solving the problem. The correct ordering of
1746  * calls in this case is:
1747  *
1748  *      timer_shutdown_sync(&mything->timer);
1749  *      workqueue_destroy(&mything->workqueue);
1750  *
1751  * After this 'mything' can be safely freed.
1752  *
1753  * This obviously implies that the timer is not required to be functional
1754  * for the rest of the shutdown operation.
1755  *
1756  * Return:
1757  * * %0 - The timer was not pending
1758  * * %1 - The timer was pending
1759  */
1760 int timer_shutdown_sync(struct timer_list *timer)
1761 {
1762         return __timer_delete_sync(timer, true);
1763 }
1764 EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1765 
1766 static void call_timer_fn(struct timer_list *timer,
1767                           void (*fn)(struct timer_list *),
1768                           unsigned long baseclk)
1769 {
1770         int count = preempt_count();
1771 
1772 #ifdef CONFIG_LOCKDEP
1773         /*
1774          * It is permissible to free the timer from inside the
1775          * function that is called from it, this we need to take into
1776          * account for lockdep too. To avoid bogus "held lock freed"
1777          * warnings as well as problems when looking into
1778          * timer->lockdep_map, make a copy and use that here.
1779          */
1780         struct lockdep_map lockdep_map;
1781 
1782         lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1783 #endif
1784         /*
1785          * Couple the lock chain with the lock chain at
1786          * timer_delete_sync() by acquiring the lock_map around the fn()
1787          * call here and in timer_delete_sync().
1788          */
1789         lock_map_acquire(&lockdep_map);
1790 
1791         trace_timer_expire_entry(timer, baseclk);
1792         fn(timer);
1793         trace_timer_expire_exit(timer);
1794 
1795         lock_map_release(&lockdep_map);
1796 
1797         if (count != preempt_count()) {
1798                 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1799                           fn, count, preempt_count());
1800                 /*
1801                  * Restore the preempt count. That gives us a decent
1802                  * chance to survive and extract information. If the
1803                  * callback kept a lock held, bad luck, but not worse
1804                  * than the BUG() we had.
1805                  */
1806                 preempt_count_set(count);
1807         }
1808 }
1809 
1810 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1811 {
1812         /*
1813          * This value is required only for tracing. base->clk was
1814          * incremented directly before expire_timers was called. But expiry
1815          * is related to the old base->clk value.
1816          */
1817         unsigned long baseclk = base->clk - 1;
1818 
1819         while (!hlist_empty(head)) {
1820                 struct timer_list *timer;
1821                 void (*fn)(struct timer_list *);
1822 
1823                 timer = hlist_entry(head->first, struct timer_list, entry);
1824 
1825                 base->running_timer = timer;
1826                 detach_timer(timer, true);
1827 
1828                 fn = timer->function;
1829 
1830                 if (WARN_ON_ONCE(!fn)) {
1831                         /* Should never happen. Emphasis on should! */
1832                         base->running_timer = NULL;
1833                         continue;
1834                 }
1835 
1836                 if (timer->flags & TIMER_IRQSAFE) {
1837                         raw_spin_unlock(&base->lock);
1838                         call_timer_fn(timer, fn, baseclk);
1839                         raw_spin_lock(&base->lock);
1840                         base->running_timer = NULL;
1841                 } else {
1842                         raw_spin_unlock_irq(&base->lock);
1843                         call_timer_fn(timer, fn, baseclk);
1844                         raw_spin_lock_irq(&base->lock);
1845                         base->running_timer = NULL;
1846                         timer_sync_wait_running(base);
1847                 }
1848         }
1849 }
1850 
1851 static int collect_expired_timers(struct timer_base *base,
1852                                   struct hlist_head *heads)
1853 {
1854         unsigned long clk = base->clk = base->next_expiry;
1855         struct hlist_head *vec;
1856         int i, levels = 0;
1857         unsigned int idx;
1858 
1859         for (i = 0; i < LVL_DEPTH; i++) {
1860                 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1861 
1862                 if (__test_and_clear_bit(idx, base->pending_map)) {
1863                         vec = base->vectors + idx;
1864                         hlist_move_list(vec, heads++);
1865                         levels++;
1866                 }
1867                 /* Is it time to look at the next level? */
1868                 if (clk & LVL_CLK_MASK)
1869                         break;
1870                 /* Shift clock for the next level granularity */
1871                 clk >>= LVL_CLK_SHIFT;
1872         }
1873         return levels;
1874 }
1875 
1876 /*
1877  * Find the next pending bucket of a level. Search from level start (@offset)
1878  * + @clk upwards and if nothing there, search from start of the level
1879  * (@offset) up to @offset + clk.
1880  */
1881 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1882                                unsigned clk)
1883 {
1884         unsigned pos, start = offset + clk;
1885         unsigned end = offset + LVL_SIZE;
1886 
1887         pos = find_next_bit(base->pending_map, end, start);
1888         if (pos < end)
1889                 return pos - start;
1890 
1891         pos = find_next_bit(base->pending_map, start, offset);
1892         return pos < start ? pos + LVL_SIZE - start : -1;
1893 }
1894 
1895 /*
1896  * Search the first expiring timer in the various clock levels. Caller must
1897  * hold base->lock.
1898  *
1899  * Store next expiry time in base->next_expiry.
1900  */
1901 static void next_expiry_recalc(struct timer_base *base)
1902 {
1903         unsigned long clk, next, adj;
1904         unsigned lvl, offset = 0;
1905 
1906         next = base->clk + NEXT_TIMER_MAX_DELTA;
1907         clk = base->clk;
1908         for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1909                 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1910                 unsigned long lvl_clk = clk & LVL_CLK_MASK;
1911 
1912                 if (pos >= 0) {
1913                         unsigned long tmp = clk + (unsigned long) pos;
1914 
1915                         tmp <<= LVL_SHIFT(lvl);
1916                         if (time_before(tmp, next))
1917                                 next = tmp;
1918 
1919                         /*
1920                          * If the next expiration happens before we reach
1921                          * the next level, no need to check further.
1922                          */
1923                         if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1924                                 break;
1925                 }
1926                 /*
1927                  * Clock for the next level. If the current level clock lower
1928                  * bits are zero, we look at the next level as is. If not we
1929                  * need to advance it by one because that's going to be the
1930                  * next expiring bucket in that level. base->clk is the next
1931                  * expiring jiffie. So in case of:
1932                  *
1933                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1934                  *  0    0    0    0    0    0
1935                  *
1936                  * we have to look at all levels @index 0. With
1937                  *
1938                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1939                  *  0    0    0    0    0    2
1940                  *
1941                  * LVL0 has the next expiring bucket @index 2. The upper
1942                  * levels have the next expiring bucket @index 1.
1943                  *
1944                  * In case that the propagation wraps the next level the same
1945                  * rules apply:
1946                  *
1947                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1948                  *  0    0    0    0    F    2
1949                  *
1950                  * So after looking at LVL0 we get:
1951                  *
1952                  * LVL5 LVL4 LVL3 LVL2 LVL1
1953                  *  0    0    0    1    0
1954                  *
1955                  * So no propagation from LVL1 to LVL2 because that happened
1956                  * with the add already, but then we need to propagate further
1957                  * from LVL2 to LVL3.
1958                  *
1959                  * So the simple check whether the lower bits of the current
1960                  * level are 0 or not is sufficient for all cases.
1961                  */
1962                 adj = lvl_clk ? 1 : 0;
1963                 clk >>= LVL_CLK_SHIFT;
1964                 clk += adj;
1965         }
1966 
1967         base->next_expiry = next;
1968         base->next_expiry_recalc = false;
1969         base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1970 }
1971 
1972 #ifdef CONFIG_NO_HZ_COMMON
1973 /*
1974  * Check, if the next hrtimer event is before the next timer wheel
1975  * event:
1976  */
1977 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1978 {
1979         u64 nextevt = hrtimer_get_next_event();
1980 
1981         /*
1982          * If high resolution timers are enabled
1983          * hrtimer_get_next_event() returns KTIME_MAX.
1984          */
1985         if (expires <= nextevt)
1986                 return expires;
1987 
1988         /*
1989          * If the next timer is already expired, return the tick base
1990          * time so the tick is fired immediately.
1991          */
1992         if (nextevt <= basem)
1993                 return basem;
1994 
1995         /*
1996          * Round up to the next jiffie. High resolution timers are
1997          * off, so the hrtimers are expired in the tick and we need to
1998          * make sure that this tick really expires the timer to avoid
1999          * a ping pong of the nohz stop code.
2000          *
2001          * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
2002          */
2003         return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
2004 }
2005 
2006 static unsigned long next_timer_interrupt(struct timer_base *base,
2007                                           unsigned long basej)
2008 {
2009         if (base->next_expiry_recalc)
2010                 next_expiry_recalc(base);
2011 
2012         /*
2013          * Move next_expiry for the empty base into the future to prevent an
2014          * unnecessary raise of the timer softirq when the next_expiry value
2015          * will be reached even if there is no timer pending.
2016          *
2017          * This update is also required to make timer_base::next_expiry values
2018          * easy comparable to find out which base holds the first pending timer.
2019          */
2020         if (!base->timers_pending)
2021                 base->next_expiry = basej + NEXT_TIMER_MAX_DELTA;
2022 
2023         return base->next_expiry;
2024 }
2025 
2026 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
2027                                                 struct timer_base *base_local,
2028                                                 struct timer_base *base_global,
2029                                                 struct timer_events *tevt)
2030 {
2031         unsigned long nextevt, nextevt_local, nextevt_global;
2032         bool local_first;
2033 
2034         nextevt_local = next_timer_interrupt(base_local, basej);
2035         nextevt_global = next_timer_interrupt(base_global, basej);
2036 
2037         local_first = time_before_eq(nextevt_local, nextevt_global);
2038 
2039         nextevt = local_first ? nextevt_local : nextevt_global;
2040 
2041         /*
2042          * If the @nextevt is at max. one tick away, use @nextevt and store
2043          * it in the local expiry value. The next global event is irrelevant in
2044          * this case and can be left as KTIME_MAX.
2045          */
2046         if (time_before_eq(nextevt, basej + 1)) {
2047                 /* If we missed a tick already, force 0 delta */
2048                 if (time_before(nextevt, basej))
2049                         nextevt = basej;
2050                 tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
2051 
2052                 /*
2053                  * This is required for the remote check only but it doesn't
2054                  * hurt, when it is done for both call sites:
2055                  *
2056                  * * The remote callers will only take care of the global timers
2057                  *   as local timers will be handled by CPU itself. When not
2058                  *   updating tevt->global with the already missed first global
2059                  *   timer, it is possible that it will be missed completely.
2060                  *
2061                  * * The local callers will ignore the tevt->global anyway, when
2062                  *   nextevt is max. one tick away.
2063                  */
2064                 if (!local_first)
2065                         tevt->global = tevt->local;
2066                 return nextevt;
2067         }
2068 
2069         /*
2070          * Update tevt.* values:
2071          *
2072          * If the local queue expires first, then the global event can be
2073          * ignored. If the global queue is empty, nothing to do either.
2074          */
2075         if (!local_first && base_global->timers_pending)
2076                 tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2077 
2078         if (base_local->timers_pending)
2079                 tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2080 
2081         return nextevt;
2082 }
2083 
2084 # ifdef CONFIG_SMP
2085 /**
2086  * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2087  * @basej:      base time jiffies
2088  * @basem:      base time clock monotonic
2089  * @tevt:       Pointer to the storage for the expiry values
2090  * @cpu:        Remote CPU
2091  *
2092  * Stores the next pending local and global timer expiry values in the
2093  * struct pointed to by @tevt. If a queue is empty the corresponding
2094  * field is set to KTIME_MAX. If local event expires before global
2095  * event, global event is set to KTIME_MAX as well.
2096  *
2097  * Caller needs to make sure timer base locks are held (use
2098  * timer_lock_remote_bases() for this purpose).
2099  */
2100 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2101                                        struct timer_events *tevt,
2102                                        unsigned int cpu)
2103 {
2104         struct timer_base *base_local, *base_global;
2105 
2106         /* Preset local / global events */
2107         tevt->local = tevt->global = KTIME_MAX;
2108 
2109         base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2110         base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2111 
2112         lockdep_assert_held(&base_local->lock);
2113         lockdep_assert_held(&base_global->lock);
2114 
2115         fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2116 }
2117 
2118 /**
2119  * timer_unlock_remote_bases - unlock timer bases of cpu
2120  * @cpu:        Remote CPU
2121  *
2122  * Unlocks the remote timer bases.
2123  */
2124 void timer_unlock_remote_bases(unsigned int cpu)
2125         __releases(timer_bases[BASE_LOCAL]->lock)
2126         __releases(timer_bases[BASE_GLOBAL]->lock)
2127 {
2128         struct timer_base *base_local, *base_global;
2129 
2130         base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2131         base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2132 
2133         raw_spin_unlock(&base_global->lock);
2134         raw_spin_unlock(&base_local->lock);
2135 }
2136 
2137 /**
2138  * timer_lock_remote_bases - lock timer bases of cpu
2139  * @cpu:        Remote CPU
2140  *
2141  * Locks the remote timer bases.
2142  */
2143 void timer_lock_remote_bases(unsigned int cpu)
2144         __acquires(timer_bases[BASE_LOCAL]->lock)
2145         __acquires(timer_bases[BASE_GLOBAL]->lock)
2146 {
2147         struct timer_base *base_local, *base_global;
2148 
2149         base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2150         base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2151 
2152         lockdep_assert_irqs_disabled();
2153 
2154         raw_spin_lock(&base_local->lock);
2155         raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2156 }
2157 
2158 /**
2159  * timer_base_is_idle() - Return whether timer base is set idle
2160  *
2161  * Returns value of local timer base is_idle value.
2162  */
2163 bool timer_base_is_idle(void)
2164 {
2165         return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
2166 }
2167 
2168 static void __run_timer_base(struct timer_base *base);
2169 
2170 /**
2171  * timer_expire_remote() - expire global timers of cpu
2172  * @cpu:        Remote CPU
2173  *
2174  * Expire timers of global base of remote CPU.
2175  */
2176 void timer_expire_remote(unsigned int cpu)
2177 {
2178         struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2179 
2180         __run_timer_base(base);
2181 }
2182 
2183 static void timer_use_tmigr(unsigned long basej, u64 basem,
2184                             unsigned long *nextevt, bool *tick_stop_path,
2185                             bool timer_base_idle, struct timer_events *tevt)
2186 {
2187         u64 next_tmigr;
2188 
2189         if (timer_base_idle)
2190                 next_tmigr = tmigr_cpu_new_timer(tevt->global);
2191         else if (tick_stop_path)
2192                 next_tmigr = tmigr_cpu_deactivate(tevt->global);
2193         else
2194                 next_tmigr = tmigr_quick_check(tevt->global);
2195 
2196         /*
2197          * If the CPU is the last going idle in timer migration hierarchy, make
2198          * sure the CPU will wake up in time to handle remote timers.
2199          * next_tmigr == KTIME_MAX if other CPUs are still active.
2200          */
2201         if (next_tmigr < tevt->local) {
2202                 u64 tmp;
2203 
2204                 /* If we missed a tick already, force 0 delta */
2205                 if (next_tmigr < basem)
2206                         next_tmigr = basem;
2207 
2208                 tmp = div_u64(next_tmigr - basem, TICK_NSEC);
2209 
2210                 *nextevt = basej + (unsigned long)tmp;
2211                 tevt->local = next_tmigr;
2212         }
2213 }
2214 # else
2215 static void timer_use_tmigr(unsigned long basej, u64 basem,
2216                             unsigned long *nextevt, bool *tick_stop_path,
2217                             bool timer_base_idle, struct timer_events *tevt)
2218 {
2219         /*
2220          * Make sure first event is written into tevt->local to not miss a
2221          * timer on !SMP systems.
2222          */
2223         tevt->local = min_t(u64, tevt->local, tevt->global);
2224 }
2225 # endif /* CONFIG_SMP */
2226 
2227 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2228                                              bool *idle)
2229 {
2230         struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2231         struct timer_base *base_local, *base_global;
2232         unsigned long nextevt;
2233         bool idle_is_possible;
2234 
2235         /*
2236          * When the CPU is offline, the tick is cancelled and nothing is supposed
2237          * to try to stop it.
2238          */
2239         if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
2240                 if (idle)
2241                         *idle = true;
2242                 return tevt.local;
2243         }
2244 
2245         base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2246         base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2247 
2248         raw_spin_lock(&base_local->lock);
2249         raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2250 
2251         nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2252                                              base_global, &tevt);
2253 
2254         /*
2255          * If the next event is only one jiffie ahead there is no need to call
2256          * timer migration hierarchy related functions. The value for the next
2257          * global timer in @tevt struct equals then KTIME_MAX. This is also
2258          * true, when the timer base is idle.
2259          *
2260          * The proper timer migration hierarchy function depends on the callsite
2261          * and whether timer base is idle or not. @nextevt will be updated when
2262          * this CPU needs to handle the first timer migration hierarchy
2263          * event. See timer_use_tmigr() for detailed information.
2264          */
2265         idle_is_possible = time_after(nextevt, basej + 1);
2266         if (idle_is_possible)
2267                 timer_use_tmigr(basej, basem, &nextevt, idle,
2268                                 base_local->is_idle, &tevt);
2269 
2270         /*
2271          * We have a fresh next event. Check whether we can forward the
2272          * base.
2273          */
2274         __forward_timer_base(base_local, basej);
2275         __forward_timer_base(base_global, basej);
2276 
2277         /*
2278          * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2279          */
2280         if (idle) {
2281                 /*
2282                  * Bases are idle if the next event is more than a tick
2283                  * away. Caution: @nextevt could have changed by enqueueing a
2284                  * global timer into timer migration hierarchy. Therefore a new
2285                  * check is required here.
2286                  *
2287                  * If the base is marked idle then any timer add operation must
2288                  * forward the base clk itself to keep granularity small. This
2289                  * idle logic is only maintained for the BASE_LOCAL and
2290                  * BASE_GLOBAL base, deferrable timers may still see large
2291                  * granularity skew (by design).
2292                  */
2293                 if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2294                         base_local->is_idle = true;
2295                         /*
2296                          * Global timers queued locally while running in a task
2297                          * in nohz_full mode need a self-IPI to kick reprogramming
2298                          * in IRQ tail.
2299                          */
2300                         if (tick_nohz_full_cpu(base_local->cpu))
2301                                 base_global->is_idle = true;
2302                         trace_timer_base_idle(true, base_local->cpu);
2303                 }
2304                 *idle = base_local->is_idle;
2305 
2306                 /*
2307                  * When timer base is not set idle, undo the effect of
2308                  * tmigr_cpu_deactivate() to prevent inconsistent states - active
2309                  * timer base but inactive timer migration hierarchy.
2310                  *
2311                  * When timer base was already marked idle, nothing will be
2312                  * changed here.
2313                  */
2314                 if (!base_local->is_idle && idle_is_possible)
2315                         tmigr_cpu_activate();
2316         }
2317 
2318         raw_spin_unlock(&base_global->lock);
2319         raw_spin_unlock(&base_local->lock);
2320 
2321         return cmp_next_hrtimer_event(basem, tevt.local);
2322 }
2323 
2324 /**
2325  * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2326  * @basej:      base time jiffies
2327  * @basem:      base time clock monotonic
2328  *
2329  * Returns the tick aligned clock monotonic time of the next pending timer or
2330  * KTIME_MAX if no timer is pending. If timer of global base was queued into
2331  * timer migration hierarchy, first global timer is not taken into account. If
2332  * it was the last CPU of timer migration hierarchy going idle, first global
2333  * event is taken into account.
2334  */
2335 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2336 {
2337         return __get_next_timer_interrupt(basej, basem, NULL);
2338 }
2339 
2340 /**
2341  * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2342  * @basej:      base time jiffies
2343  * @basem:      base time clock monotonic
2344  * @idle:       pointer to store the value of timer_base->is_idle on return;
2345  *              *idle contains the information whether tick was already stopped
2346  *
2347  * Returns the tick aligned clock monotonic time of the next pending timer or
2348  * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2349  * returned as well.
2350  */
2351 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2352 {
2353         if (*idle)
2354                 return KTIME_MAX;
2355 
2356         return __get_next_timer_interrupt(basej, basem, idle);
2357 }
2358 
2359 /**
2360  * timer_clear_idle - Clear the idle state of the timer base
2361  *
2362  * Called with interrupts disabled
2363  */
2364 void timer_clear_idle(void)
2365 {
2366         /*
2367          * We do this unlocked. The worst outcome is a remote pinned timer
2368          * enqueue sending a pointless IPI, but taking the lock would just
2369          * make the window for sending the IPI a few instructions smaller
2370          * for the cost of taking the lock in the exit from idle
2371          * path. Required for BASE_LOCAL only.
2372          */
2373         __this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2374         if (tick_nohz_full_cpu(smp_processor_id()))
2375                 __this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2376         trace_timer_base_idle(false, smp_processor_id());
2377 
2378         /* Activate without holding the timer_base->lock */
2379         tmigr_cpu_activate();
2380 }
2381 #endif
2382 
2383 /**
2384  * __run_timers - run all expired timers (if any) on this CPU.
2385  * @base: the timer vector to be processed.
2386  */
2387 static inline void __run_timers(struct timer_base *base)
2388 {
2389         struct hlist_head heads[LVL_DEPTH];
2390         int levels;
2391 
2392         lockdep_assert_held(&base->lock);
2393 
2394         if (base->running_timer)
2395                 return;
2396 
2397         while (time_after_eq(jiffies, base->clk) &&
2398                time_after_eq(jiffies, base->next_expiry)) {
2399                 levels = collect_expired_timers(base, heads);
2400                 /*
2401                  * The two possible reasons for not finding any expired
2402                  * timer at this clk are that all matching timers have been
2403                  * dequeued or no timer has been queued since
2404                  * base::next_expiry was set to base::clk +
2405                  * NEXT_TIMER_MAX_DELTA.
2406                  */
2407                 WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2408                              && base->timers_pending);
2409                 /*
2410                  * While executing timers, base->clk is set 1 offset ahead of
2411                  * jiffies to avoid endless requeuing to current jiffies.
2412                  */
2413                 base->clk++;
2414                 next_expiry_recalc(base);
2415 
2416                 while (levels--)
2417                         expire_timers(base, heads + levels);
2418         }
2419 }
2420 
2421 static void __run_timer_base(struct timer_base *base)
2422 {
2423         if (time_before(jiffies, base->next_expiry))
2424                 return;
2425 
2426         timer_base_lock_expiry(base);
2427         raw_spin_lock_irq(&base->lock);
2428         __run_timers(base);
2429         raw_spin_unlock_irq(&base->lock);
2430         timer_base_unlock_expiry(base);
2431 }
2432 
2433 static void run_timer_base(int index)
2434 {
2435         struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2436 
2437         __run_timer_base(base);
2438 }
2439 
2440 /*
2441  * This function runs timers and the timer-tq in bottom half context.
2442  */
2443 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2444 {
2445         run_timer_base(BASE_LOCAL);
2446         if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2447                 run_timer_base(BASE_GLOBAL);
2448                 run_timer_base(BASE_DEF);
2449 
2450                 if (is_timers_nohz_active())
2451                         tmigr_handle_remote();
2452         }
2453 }
2454 
2455 /*
2456  * Called by the local, per-CPU timer interrupt on SMP.
2457  */
2458 static void run_local_timers(void)
2459 {
2460         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2461 
2462         hrtimer_run_queues();
2463 
2464         for (int i = 0; i < NR_BASES; i++, base++) {
2465                 /* Raise the softirq only if required. */
2466                 if (time_after_eq(jiffies, base->next_expiry) ||
2467                     (i == BASE_DEF && tmigr_requires_handle_remote())) {
2468                         raise_softirq(TIMER_SOFTIRQ);
2469                         return;
2470                 }
2471         }
2472 }
2473 
2474 /*
2475  * Called from the timer interrupt handler to charge one tick to the current
2476  * process.  user_tick is 1 if the tick is user time, 0 for system.
2477  */
2478 void update_process_times(int user_tick)
2479 {
2480         struct task_struct *p = current;
2481 
2482         /* Note: this timer irq context must be accounted for as well. */
2483         account_process_tick(p, user_tick);
2484         run_local_timers();
2485         rcu_sched_clock_irq(user_tick);
2486 #ifdef CONFIG_IRQ_WORK
2487         if (in_irq())
2488                 irq_work_tick();
2489 #endif
2490         sched_tick();
2491         if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2492                 run_posix_cpu_timers();
2493 }
2494 
2495 /*
2496  * Since schedule_timeout()'s timer is defined on the stack, it must store
2497  * the target task on the stack as well.
2498  */
2499 struct process_timer {
2500         struct timer_list timer;
2501         struct task_struct *task;
2502 };
2503 
2504 static void process_timeout(struct timer_list *t)
2505 {
2506         struct process_timer *timeout = from_timer(timeout, t, timer);
2507 
2508         wake_up_process(timeout->task);
2509 }
2510 
2511 /**
2512  * schedule_timeout - sleep until timeout
2513  * @timeout: timeout value in jiffies
2514  *
2515  * Make the current task sleep until @timeout jiffies have elapsed.
2516  * The function behavior depends on the current task state
2517  * (see also set_current_state() description):
2518  *
2519  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2520  * at all. That happens because sched_submit_work() does nothing for
2521  * tasks in %TASK_RUNNING state.
2522  *
2523  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2524  * pass before the routine returns unless the current task is explicitly
2525  * woken up, (e.g. by wake_up_process()).
2526  *
2527  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2528  * delivered to the current task or the current task is explicitly woken
2529  * up.
2530  *
2531  * The current task state is guaranteed to be %TASK_RUNNING when this
2532  * routine returns.
2533  *
2534  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2535  * the CPU away without a bound on the timeout. In this case the return
2536  * value will be %MAX_SCHEDULE_TIMEOUT.
2537  *
2538  * Returns 0 when the timer has expired otherwise the remaining time in
2539  * jiffies will be returned. In all cases the return value is guaranteed
2540  * to be non-negative.
2541  */
2542 signed long __sched schedule_timeout(signed long timeout)
2543 {
2544         struct process_timer timer;
2545         unsigned long expire;
2546 
2547         switch (timeout)
2548         {
2549         case MAX_SCHEDULE_TIMEOUT:
2550                 /*
2551                  * These two special cases are useful to be comfortable
2552                  * in the caller. Nothing more. We could take
2553                  * MAX_SCHEDULE_TIMEOUT from one of the negative value
2554                  * but I' d like to return a valid offset (>=0) to allow
2555                  * the caller to do everything it want with the retval.
2556                  */
2557                 schedule();
2558                 goto out;
2559         default:
2560                 /*
2561                  * Another bit of PARANOID. Note that the retval will be
2562                  * 0 since no piece of kernel is supposed to do a check
2563                  * for a negative retval of schedule_timeout() (since it
2564                  * should never happens anyway). You just have the printk()
2565                  * that will tell you if something is gone wrong and where.
2566                  */
2567                 if (timeout < 0) {
2568                         printk(KERN_ERR "schedule_timeout: wrong timeout "
2569                                 "value %lx\n", timeout);
2570                         dump_stack();
2571                         __set_current_state(TASK_RUNNING);
2572                         goto out;
2573                 }
2574         }
2575 
2576         expire = timeout + jiffies;
2577 
2578         timer.task = current;
2579         timer_setup_on_stack(&timer.timer, process_timeout, 0);
2580         __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2581         schedule();
2582         del_timer_sync(&timer.timer);
2583 
2584         /* Remove the timer from the object tracker */
2585         destroy_timer_on_stack(&timer.timer);
2586 
2587         timeout = expire - jiffies;
2588 
2589  out:
2590         return timeout < 0 ? 0 : timeout;
2591 }
2592 EXPORT_SYMBOL(schedule_timeout);
2593 
2594 /*
2595  * We can use __set_current_state() here because schedule_timeout() calls
2596  * schedule() unconditionally.
2597  */
2598 signed long __sched schedule_timeout_interruptible(signed long timeout)
2599 {
2600         __set_current_state(TASK_INTERRUPTIBLE);
2601         return schedule_timeout(timeout);
2602 }
2603 EXPORT_SYMBOL(schedule_timeout_interruptible);
2604 
2605 signed long __sched schedule_timeout_killable(signed long timeout)
2606 {
2607         __set_current_state(TASK_KILLABLE);
2608         return schedule_timeout(timeout);
2609 }
2610 EXPORT_SYMBOL(schedule_timeout_killable);
2611 
2612 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2613 {
2614         __set_current_state(TASK_UNINTERRUPTIBLE);
2615         return schedule_timeout(timeout);
2616 }
2617 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2618 
2619 /*
2620  * Like schedule_timeout_uninterruptible(), except this task will not contribute
2621  * to load average.
2622  */
2623 signed long __sched schedule_timeout_idle(signed long timeout)
2624 {
2625         __set_current_state(TASK_IDLE);
2626         return schedule_timeout(timeout);
2627 }
2628 EXPORT_SYMBOL(schedule_timeout_idle);
2629 
2630 #ifdef CONFIG_HOTPLUG_CPU
2631 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2632 {
2633         struct timer_list *timer;
2634         int cpu = new_base->cpu;
2635 
2636         while (!hlist_empty(head)) {
2637                 timer = hlist_entry(head->first, struct timer_list, entry);
2638                 detach_timer(timer, false);
2639                 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2640                 internal_add_timer(new_base, timer);
2641         }
2642 }
2643 
2644 int timers_prepare_cpu(unsigned int cpu)
2645 {
2646         struct timer_base *base;
2647         int b;
2648 
2649         for (b = 0; b < NR_BASES; b++) {
2650                 base = per_cpu_ptr(&timer_bases[b], cpu);
2651                 base->clk = jiffies;
2652                 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2653                 base->next_expiry_recalc = false;
2654                 base->timers_pending = false;
2655                 base->is_idle = false;
2656         }
2657         return 0;
2658 }
2659 
2660 int timers_dead_cpu(unsigned int cpu)
2661 {
2662         struct timer_base *old_base;
2663         struct timer_base *new_base;
2664         int b, i;
2665 
2666         for (b = 0; b < NR_BASES; b++) {
2667                 old_base = per_cpu_ptr(&timer_bases[b], cpu);
2668                 new_base = get_cpu_ptr(&timer_bases[b]);
2669                 /*
2670                  * The caller is globally serialized and nobody else
2671                  * takes two locks at once, deadlock is not possible.
2672                  */
2673                 raw_spin_lock_irq(&new_base->lock);
2674                 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2675 
2676                 /*
2677                  * The current CPUs base clock might be stale. Update it
2678                  * before moving the timers over.
2679                  */
2680                 forward_timer_base(new_base);
2681 
2682                 WARN_ON_ONCE(old_base->running_timer);
2683                 old_base->running_timer = NULL;
2684 
2685                 for (i = 0; i < WHEEL_SIZE; i++)
2686                         migrate_timer_list(new_base, old_base->vectors + i);
2687 
2688                 raw_spin_unlock(&old_base->lock);
2689                 raw_spin_unlock_irq(&new_base->lock);
2690                 put_cpu_ptr(&timer_bases);
2691         }
2692         return 0;
2693 }
2694 
2695 #endif /* CONFIG_HOTPLUG_CPU */
2696 
2697 static void __init init_timer_cpu(int cpu)
2698 {
2699         struct timer_base *base;
2700         int i;
2701 
2702         for (i = 0; i < NR_BASES; i++) {
2703                 base = per_cpu_ptr(&timer_bases[i], cpu);
2704                 base->cpu = cpu;
2705                 raw_spin_lock_init(&base->lock);
2706                 base->clk = jiffies;
2707                 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2708                 timer_base_init_expiry_lock(base);
2709         }
2710 }
2711 
2712 static void __init init_timer_cpus(void)
2713 {
2714         int cpu;
2715 
2716         for_each_possible_cpu(cpu)
2717                 init_timer_cpu(cpu);
2718 }
2719 
2720 void __init init_timers(void)
2721 {
2722         init_timer_cpus();
2723         posix_cputimers_init_work();
2724         open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2725 }
2726 
2727 /**
2728  * msleep - sleep safely even with waitqueue interruptions
2729  * @msecs: Time in milliseconds to sleep for
2730  */
2731 void msleep(unsigned int msecs)
2732 {
2733         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2734 
2735         while (timeout)
2736                 timeout = schedule_timeout_uninterruptible(timeout);
2737 }
2738 
2739 EXPORT_SYMBOL(msleep);
2740 
2741 /**
2742  * msleep_interruptible - sleep waiting for signals
2743  * @msecs: Time in milliseconds to sleep for
2744  */
2745 unsigned long msleep_interruptible(unsigned int msecs)
2746 {
2747         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2748 
2749         while (timeout && !signal_pending(current))
2750                 timeout = schedule_timeout_interruptible(timeout);
2751         return jiffies_to_msecs(timeout);
2752 }
2753 
2754 EXPORT_SYMBOL(msleep_interruptible);
2755 
2756 /**
2757  * usleep_range_state - Sleep for an approximate time in a given state
2758  * @min:        Minimum time in usecs to sleep
2759  * @max:        Maximum time in usecs to sleep
2760  * @state:      State of the current task that will be while sleeping
2761  *
2762  * In non-atomic context where the exact wakeup time is flexible, use
2763  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2764  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2765  * power usage by allowing hrtimers to take advantage of an already-
2766  * scheduled interrupt instead of scheduling a new one just for this sleep.
2767  */
2768 void __sched usleep_range_state(unsigned long min, unsigned long max,
2769                                 unsigned int state)
2770 {
2771         ktime_t exp = ktime_add_us(ktime_get(), min);
2772         u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2773 
2774         for (;;) {
2775                 __set_current_state(state);
2776                 /* Do not return before the requested sleep time has elapsed */
2777                 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2778                         break;
2779         }
2780 }
2781 EXPORT_SYMBOL(usleep_range_state);
2782 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php