~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/user_namespace.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 
  3 #include <linux/export.h>
  4 #include <linux/nsproxy.h>
  5 #include <linux/slab.h>
  6 #include <linux/sched/signal.h>
  7 #include <linux/user_namespace.h>
  8 #include <linux/proc_ns.h>
  9 #include <linux/highuid.h>
 10 #include <linux/cred.h>
 11 #include <linux/securebits.h>
 12 #include <linux/security.h>
 13 #include <linux/keyctl.h>
 14 #include <linux/key-type.h>
 15 #include <keys/user-type.h>
 16 #include <linux/seq_file.h>
 17 #include <linux/fs.h>
 18 #include <linux/uaccess.h>
 19 #include <linux/ctype.h>
 20 #include <linux/projid.h>
 21 #include <linux/fs_struct.h>
 22 #include <linux/bsearch.h>
 23 #include <linux/sort.h>
 24 
 25 static struct kmem_cache *user_ns_cachep __ro_after_init;
 26 static DEFINE_MUTEX(userns_state_mutex);
 27 
 28 static bool new_idmap_permitted(const struct file *file,
 29                                 struct user_namespace *ns, int cap_setid,
 30                                 struct uid_gid_map *map);
 31 static void free_user_ns(struct work_struct *work);
 32 
 33 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
 34 {
 35         return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
 36 }
 37 
 38 static void dec_user_namespaces(struct ucounts *ucounts)
 39 {
 40         return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
 41 }
 42 
 43 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
 44 {
 45         /* Start with the same capabilities as init but useless for doing
 46          * anything as the capabilities are bound to the new user namespace.
 47          */
 48         cred->securebits = SECUREBITS_DEFAULT;
 49         cred->cap_inheritable = CAP_EMPTY_SET;
 50         cred->cap_permitted = CAP_FULL_SET;
 51         cred->cap_effective = CAP_FULL_SET;
 52         cred->cap_ambient = CAP_EMPTY_SET;
 53         cred->cap_bset = CAP_FULL_SET;
 54 #ifdef CONFIG_KEYS
 55         key_put(cred->request_key_auth);
 56         cred->request_key_auth = NULL;
 57 #endif
 58         /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
 59         cred->user_ns = user_ns;
 60 }
 61 
 62 static unsigned long enforced_nproc_rlimit(void)
 63 {
 64         unsigned long limit = RLIM_INFINITY;
 65 
 66         /* Is RLIMIT_NPROC currently enforced? */
 67         if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) ||
 68             (current_user_ns() != &init_user_ns))
 69                 limit = rlimit(RLIMIT_NPROC);
 70 
 71         return limit;
 72 }
 73 
 74 /*
 75  * Create a new user namespace, deriving the creator from the user in the
 76  * passed credentials, and replacing that user with the new root user for the
 77  * new namespace.
 78  *
 79  * This is called by copy_creds(), which will finish setting the target task's
 80  * credentials.
 81  */
 82 int create_user_ns(struct cred *new)
 83 {
 84         struct user_namespace *ns, *parent_ns = new->user_ns;
 85         kuid_t owner = new->euid;
 86         kgid_t group = new->egid;
 87         struct ucounts *ucounts;
 88         int ret, i;
 89 
 90         ret = -ENOSPC;
 91         if (parent_ns->level > 32)
 92                 goto fail;
 93 
 94         ucounts = inc_user_namespaces(parent_ns, owner);
 95         if (!ucounts)
 96                 goto fail;
 97 
 98         /*
 99          * Verify that we can not violate the policy of which files
100          * may be accessed that is specified by the root directory,
101          * by verifying that the root directory is at the root of the
102          * mount namespace which allows all files to be accessed.
103          */
104         ret = -EPERM;
105         if (current_chrooted())
106                 goto fail_dec;
107 
108         /* The creator needs a mapping in the parent user namespace
109          * or else we won't be able to reasonably tell userspace who
110          * created a user_namespace.
111          */
112         ret = -EPERM;
113         if (!kuid_has_mapping(parent_ns, owner) ||
114             !kgid_has_mapping(parent_ns, group))
115                 goto fail_dec;
116 
117         ret = security_create_user_ns(new);
118         if (ret < 0)
119                 goto fail_dec;
120 
121         ret = -ENOMEM;
122         ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
123         if (!ns)
124                 goto fail_dec;
125 
126         ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
127         ret = ns_alloc_inum(&ns->ns);
128         if (ret)
129                 goto fail_free;
130         ns->ns.ops = &userns_operations;
131 
132         refcount_set(&ns->ns.count, 1);
133         /* Leave the new->user_ns reference with the new user namespace. */
134         ns->parent = parent_ns;
135         ns->level = parent_ns->level + 1;
136         ns->owner = owner;
137         ns->group = group;
138         INIT_WORK(&ns->work, free_user_ns);
139         for (i = 0; i < UCOUNT_COUNTS; i++) {
140                 ns->ucount_max[i] = INT_MAX;
141         }
142         set_userns_rlimit_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit());
143         set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE));
144         set_userns_rlimit_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING));
145         set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK));
146         ns->ucounts = ucounts;
147 
148         /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
149         mutex_lock(&userns_state_mutex);
150         ns->flags = parent_ns->flags;
151         mutex_unlock(&userns_state_mutex);
152 
153 #ifdef CONFIG_KEYS
154         INIT_LIST_HEAD(&ns->keyring_name_list);
155         init_rwsem(&ns->keyring_sem);
156 #endif
157         ret = -ENOMEM;
158         if (!setup_userns_sysctls(ns))
159                 goto fail_keyring;
160 
161         set_cred_user_ns(new, ns);
162         return 0;
163 fail_keyring:
164 #ifdef CONFIG_PERSISTENT_KEYRINGS
165         key_put(ns->persistent_keyring_register);
166 #endif
167         ns_free_inum(&ns->ns);
168 fail_free:
169         kmem_cache_free(user_ns_cachep, ns);
170 fail_dec:
171         dec_user_namespaces(ucounts);
172 fail:
173         return ret;
174 }
175 
176 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
177 {
178         struct cred *cred;
179         int err = -ENOMEM;
180 
181         if (!(unshare_flags & CLONE_NEWUSER))
182                 return 0;
183 
184         cred = prepare_creds();
185         if (cred) {
186                 err = create_user_ns(cred);
187                 if (err)
188                         put_cred(cred);
189                 else
190                         *new_cred = cred;
191         }
192 
193         return err;
194 }
195 
196 static void free_user_ns(struct work_struct *work)
197 {
198         struct user_namespace *parent, *ns =
199                 container_of(work, struct user_namespace, work);
200 
201         do {
202                 struct ucounts *ucounts = ns->ucounts;
203                 parent = ns->parent;
204                 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
205                         kfree(ns->gid_map.forward);
206                         kfree(ns->gid_map.reverse);
207                 }
208                 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
209                         kfree(ns->uid_map.forward);
210                         kfree(ns->uid_map.reverse);
211                 }
212                 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
213                         kfree(ns->projid_map.forward);
214                         kfree(ns->projid_map.reverse);
215                 }
216 #if IS_ENABLED(CONFIG_BINFMT_MISC)
217                 kfree(ns->binfmt_misc);
218 #endif
219                 retire_userns_sysctls(ns);
220                 key_free_user_ns(ns);
221                 ns_free_inum(&ns->ns);
222                 kmem_cache_free(user_ns_cachep, ns);
223                 dec_user_namespaces(ucounts);
224                 ns = parent;
225         } while (refcount_dec_and_test(&parent->ns.count));
226 }
227 
228 void __put_user_ns(struct user_namespace *ns)
229 {
230         schedule_work(&ns->work);
231 }
232 EXPORT_SYMBOL(__put_user_ns);
233 
234 /*
235  * struct idmap_key - holds the information necessary to find an idmapping in a
236  * sorted idmap array. It is passed to cmp_map_id() as first argument.
237  */
238 struct idmap_key {
239         bool map_up; /* true  -> id from kid; false -> kid from id */
240         u32 id; /* id to find */
241         u32 count; /* == 0 unless used with map_id_range_down() */
242 };
243 
244 /*
245  * cmp_map_id - Function to be passed to bsearch() to find the requested
246  * idmapping. Expects struct idmap_key to be passed via @k.
247  */
248 static int cmp_map_id(const void *k, const void *e)
249 {
250         u32 first, last, id2;
251         const struct idmap_key *key = k;
252         const struct uid_gid_extent *el = e;
253 
254         id2 = key->id + key->count - 1;
255 
256         /* handle map_id_{down,up}() */
257         if (key->map_up)
258                 first = el->lower_first;
259         else
260                 first = el->first;
261 
262         last = first + el->count - 1;
263 
264         if (key->id >= first && key->id <= last &&
265             (id2 >= first && id2 <= last))
266                 return 0;
267 
268         if (key->id < first || id2 < first)
269                 return -1;
270 
271         return 1;
272 }
273 
274 /*
275  * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
276  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
277  */
278 static struct uid_gid_extent *
279 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
280 {
281         struct idmap_key key;
282 
283         key.map_up = false;
284         key.count = count;
285         key.id = id;
286 
287         return bsearch(&key, map->forward, extents,
288                        sizeof(struct uid_gid_extent), cmp_map_id);
289 }
290 
291 /*
292  * map_id_range_down_base - Find idmap via binary search in static extent array.
293  * Can only be called if number of mappings is equal or less than
294  * UID_GID_MAP_MAX_BASE_EXTENTS.
295  */
296 static struct uid_gid_extent *
297 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
298 {
299         unsigned idx;
300         u32 first, last, id2;
301 
302         id2 = id + count - 1;
303 
304         /* Find the matching extent */
305         for (idx = 0; idx < extents; idx++) {
306                 first = map->extent[idx].first;
307                 last = first + map->extent[idx].count - 1;
308                 if (id >= first && id <= last &&
309                     (id2 >= first && id2 <= last))
310                         return &map->extent[idx];
311         }
312         return NULL;
313 }
314 
315 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
316 {
317         struct uid_gid_extent *extent;
318         unsigned extents = map->nr_extents;
319         smp_rmb();
320 
321         if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
322                 extent = map_id_range_down_base(extents, map, id, count);
323         else
324                 extent = map_id_range_down_max(extents, map, id, count);
325 
326         /* Map the id or note failure */
327         if (extent)
328                 id = (id - extent->first) + extent->lower_first;
329         else
330                 id = (u32) -1;
331 
332         return id;
333 }
334 
335 u32 map_id_down(struct uid_gid_map *map, u32 id)
336 {
337         return map_id_range_down(map, id, 1);
338 }
339 
340 /*
341  * map_id_up_base - Find idmap via binary search in static extent array.
342  * Can only be called if number of mappings is equal or less than
343  * UID_GID_MAP_MAX_BASE_EXTENTS.
344  */
345 static struct uid_gid_extent *
346 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id)
347 {
348         unsigned idx;
349         u32 first, last;
350 
351         /* Find the matching extent */
352         for (idx = 0; idx < extents; idx++) {
353                 first = map->extent[idx].lower_first;
354                 last = first + map->extent[idx].count - 1;
355                 if (id >= first && id <= last)
356                         return &map->extent[idx];
357         }
358         return NULL;
359 }
360 
361 /*
362  * map_id_up_max - Find idmap via binary search in ordered idmap array.
363  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
364  */
365 static struct uid_gid_extent *
366 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id)
367 {
368         struct idmap_key key;
369 
370         key.map_up = true;
371         key.count = 1;
372         key.id = id;
373 
374         return bsearch(&key, map->reverse, extents,
375                        sizeof(struct uid_gid_extent), cmp_map_id);
376 }
377 
378 u32 map_id_up(struct uid_gid_map *map, u32 id)
379 {
380         struct uid_gid_extent *extent;
381         unsigned extents = map->nr_extents;
382         smp_rmb();
383 
384         if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
385                 extent = map_id_up_base(extents, map, id);
386         else
387                 extent = map_id_up_max(extents, map, id);
388 
389         /* Map the id or note failure */
390         if (extent)
391                 id = (id - extent->lower_first) + extent->first;
392         else
393                 id = (u32) -1;
394 
395         return id;
396 }
397 
398 /**
399  *      make_kuid - Map a user-namespace uid pair into a kuid.
400  *      @ns:  User namespace that the uid is in
401  *      @uid: User identifier
402  *
403  *      Maps a user-namespace uid pair into a kernel internal kuid,
404  *      and returns that kuid.
405  *
406  *      When there is no mapping defined for the user-namespace uid
407  *      pair INVALID_UID is returned.  Callers are expected to test
408  *      for and handle INVALID_UID being returned.  INVALID_UID
409  *      may be tested for using uid_valid().
410  */
411 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
412 {
413         /* Map the uid to a global kernel uid */
414         return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
415 }
416 EXPORT_SYMBOL(make_kuid);
417 
418 /**
419  *      from_kuid - Create a uid from a kuid user-namespace pair.
420  *      @targ: The user namespace we want a uid in.
421  *      @kuid: The kernel internal uid to start with.
422  *
423  *      Map @kuid into the user-namespace specified by @targ and
424  *      return the resulting uid.
425  *
426  *      There is always a mapping into the initial user_namespace.
427  *
428  *      If @kuid has no mapping in @targ (uid_t)-1 is returned.
429  */
430 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
431 {
432         /* Map the uid from a global kernel uid */
433         return map_id_up(&targ->uid_map, __kuid_val(kuid));
434 }
435 EXPORT_SYMBOL(from_kuid);
436 
437 /**
438  *      from_kuid_munged - Create a uid from a kuid user-namespace pair.
439  *      @targ: The user namespace we want a uid in.
440  *      @kuid: The kernel internal uid to start with.
441  *
442  *      Map @kuid into the user-namespace specified by @targ and
443  *      return the resulting uid.
444  *
445  *      There is always a mapping into the initial user_namespace.
446  *
447  *      Unlike from_kuid from_kuid_munged never fails and always
448  *      returns a valid uid.  This makes from_kuid_munged appropriate
449  *      for use in syscalls like stat and getuid where failing the
450  *      system call and failing to provide a valid uid are not an
451  *      options.
452  *
453  *      If @kuid has no mapping in @targ overflowuid is returned.
454  */
455 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
456 {
457         uid_t uid;
458         uid = from_kuid(targ, kuid);
459 
460         if (uid == (uid_t) -1)
461                 uid = overflowuid;
462         return uid;
463 }
464 EXPORT_SYMBOL(from_kuid_munged);
465 
466 /**
467  *      make_kgid - Map a user-namespace gid pair into a kgid.
468  *      @ns:  User namespace that the gid is in
469  *      @gid: group identifier
470  *
471  *      Maps a user-namespace gid pair into a kernel internal kgid,
472  *      and returns that kgid.
473  *
474  *      When there is no mapping defined for the user-namespace gid
475  *      pair INVALID_GID is returned.  Callers are expected to test
476  *      for and handle INVALID_GID being returned.  INVALID_GID may be
477  *      tested for using gid_valid().
478  */
479 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
480 {
481         /* Map the gid to a global kernel gid */
482         return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
483 }
484 EXPORT_SYMBOL(make_kgid);
485 
486 /**
487  *      from_kgid - Create a gid from a kgid user-namespace pair.
488  *      @targ: The user namespace we want a gid in.
489  *      @kgid: The kernel internal gid to start with.
490  *
491  *      Map @kgid into the user-namespace specified by @targ and
492  *      return the resulting gid.
493  *
494  *      There is always a mapping into the initial user_namespace.
495  *
496  *      If @kgid has no mapping in @targ (gid_t)-1 is returned.
497  */
498 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
499 {
500         /* Map the gid from a global kernel gid */
501         return map_id_up(&targ->gid_map, __kgid_val(kgid));
502 }
503 EXPORT_SYMBOL(from_kgid);
504 
505 /**
506  *      from_kgid_munged - Create a gid from a kgid user-namespace pair.
507  *      @targ: The user namespace we want a gid in.
508  *      @kgid: The kernel internal gid to start with.
509  *
510  *      Map @kgid into the user-namespace specified by @targ and
511  *      return the resulting gid.
512  *
513  *      There is always a mapping into the initial user_namespace.
514  *
515  *      Unlike from_kgid from_kgid_munged never fails and always
516  *      returns a valid gid.  This makes from_kgid_munged appropriate
517  *      for use in syscalls like stat and getgid where failing the
518  *      system call and failing to provide a valid gid are not options.
519  *
520  *      If @kgid has no mapping in @targ overflowgid is returned.
521  */
522 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
523 {
524         gid_t gid;
525         gid = from_kgid(targ, kgid);
526 
527         if (gid == (gid_t) -1)
528                 gid = overflowgid;
529         return gid;
530 }
531 EXPORT_SYMBOL(from_kgid_munged);
532 
533 /**
534  *      make_kprojid - Map a user-namespace projid pair into a kprojid.
535  *      @ns:  User namespace that the projid is in
536  *      @projid: Project identifier
537  *
538  *      Maps a user-namespace uid pair into a kernel internal kuid,
539  *      and returns that kuid.
540  *
541  *      When there is no mapping defined for the user-namespace projid
542  *      pair INVALID_PROJID is returned.  Callers are expected to test
543  *      for and handle INVALID_PROJID being returned.  INVALID_PROJID
544  *      may be tested for using projid_valid().
545  */
546 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
547 {
548         /* Map the uid to a global kernel uid */
549         return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
550 }
551 EXPORT_SYMBOL(make_kprojid);
552 
553 /**
554  *      from_kprojid - Create a projid from a kprojid user-namespace pair.
555  *      @targ: The user namespace we want a projid in.
556  *      @kprojid: The kernel internal project identifier to start with.
557  *
558  *      Map @kprojid into the user-namespace specified by @targ and
559  *      return the resulting projid.
560  *
561  *      There is always a mapping into the initial user_namespace.
562  *
563  *      If @kprojid has no mapping in @targ (projid_t)-1 is returned.
564  */
565 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
566 {
567         /* Map the uid from a global kernel uid */
568         return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
569 }
570 EXPORT_SYMBOL(from_kprojid);
571 
572 /**
573  *      from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
574  *      @targ: The user namespace we want a projid in.
575  *      @kprojid: The kernel internal projid to start with.
576  *
577  *      Map @kprojid into the user-namespace specified by @targ and
578  *      return the resulting projid.
579  *
580  *      There is always a mapping into the initial user_namespace.
581  *
582  *      Unlike from_kprojid from_kprojid_munged never fails and always
583  *      returns a valid projid.  This makes from_kprojid_munged
584  *      appropriate for use in syscalls like stat and where
585  *      failing the system call and failing to provide a valid projid are
586  *      not an options.
587  *
588  *      If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
589  */
590 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
591 {
592         projid_t projid;
593         projid = from_kprojid(targ, kprojid);
594 
595         if (projid == (projid_t) -1)
596                 projid = OVERFLOW_PROJID;
597         return projid;
598 }
599 EXPORT_SYMBOL(from_kprojid_munged);
600 
601 
602 static int uid_m_show(struct seq_file *seq, void *v)
603 {
604         struct user_namespace *ns = seq->private;
605         struct uid_gid_extent *extent = v;
606         struct user_namespace *lower_ns;
607         uid_t lower;
608 
609         lower_ns = seq_user_ns(seq);
610         if ((lower_ns == ns) && lower_ns->parent)
611                 lower_ns = lower_ns->parent;
612 
613         lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
614 
615         seq_printf(seq, "%10u %10u %10u\n",
616                 extent->first,
617                 lower,
618                 extent->count);
619 
620         return 0;
621 }
622 
623 static int gid_m_show(struct seq_file *seq, void *v)
624 {
625         struct user_namespace *ns = seq->private;
626         struct uid_gid_extent *extent = v;
627         struct user_namespace *lower_ns;
628         gid_t lower;
629 
630         lower_ns = seq_user_ns(seq);
631         if ((lower_ns == ns) && lower_ns->parent)
632                 lower_ns = lower_ns->parent;
633 
634         lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
635 
636         seq_printf(seq, "%10u %10u %10u\n",
637                 extent->first,
638                 lower,
639                 extent->count);
640 
641         return 0;
642 }
643 
644 static int projid_m_show(struct seq_file *seq, void *v)
645 {
646         struct user_namespace *ns = seq->private;
647         struct uid_gid_extent *extent = v;
648         struct user_namespace *lower_ns;
649         projid_t lower;
650 
651         lower_ns = seq_user_ns(seq);
652         if ((lower_ns == ns) && lower_ns->parent)
653                 lower_ns = lower_ns->parent;
654 
655         lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
656 
657         seq_printf(seq, "%10u %10u %10u\n",
658                 extent->first,
659                 lower,
660                 extent->count);
661 
662         return 0;
663 }
664 
665 static void *m_start(struct seq_file *seq, loff_t *ppos,
666                      struct uid_gid_map *map)
667 {
668         loff_t pos = *ppos;
669         unsigned extents = map->nr_extents;
670         smp_rmb();
671 
672         if (pos >= extents)
673                 return NULL;
674 
675         if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
676                 return &map->extent[pos];
677 
678         return &map->forward[pos];
679 }
680 
681 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
682 {
683         struct user_namespace *ns = seq->private;
684 
685         return m_start(seq, ppos, &ns->uid_map);
686 }
687 
688 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
689 {
690         struct user_namespace *ns = seq->private;
691 
692         return m_start(seq, ppos, &ns->gid_map);
693 }
694 
695 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
696 {
697         struct user_namespace *ns = seq->private;
698 
699         return m_start(seq, ppos, &ns->projid_map);
700 }
701 
702 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
703 {
704         (*pos)++;
705         return seq->op->start(seq, pos);
706 }
707 
708 static void m_stop(struct seq_file *seq, void *v)
709 {
710         return;
711 }
712 
713 const struct seq_operations proc_uid_seq_operations = {
714         .start = uid_m_start,
715         .stop = m_stop,
716         .next = m_next,
717         .show = uid_m_show,
718 };
719 
720 const struct seq_operations proc_gid_seq_operations = {
721         .start = gid_m_start,
722         .stop = m_stop,
723         .next = m_next,
724         .show = gid_m_show,
725 };
726 
727 const struct seq_operations proc_projid_seq_operations = {
728         .start = projid_m_start,
729         .stop = m_stop,
730         .next = m_next,
731         .show = projid_m_show,
732 };
733 
734 static bool mappings_overlap(struct uid_gid_map *new_map,
735                              struct uid_gid_extent *extent)
736 {
737         u32 upper_first, lower_first, upper_last, lower_last;
738         unsigned idx;
739 
740         upper_first = extent->first;
741         lower_first = extent->lower_first;
742         upper_last = upper_first + extent->count - 1;
743         lower_last = lower_first + extent->count - 1;
744 
745         for (idx = 0; idx < new_map->nr_extents; idx++) {
746                 u32 prev_upper_first, prev_lower_first;
747                 u32 prev_upper_last, prev_lower_last;
748                 struct uid_gid_extent *prev;
749 
750                 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
751                         prev = &new_map->extent[idx];
752                 else
753                         prev = &new_map->forward[idx];
754 
755                 prev_upper_first = prev->first;
756                 prev_lower_first = prev->lower_first;
757                 prev_upper_last = prev_upper_first + prev->count - 1;
758                 prev_lower_last = prev_lower_first + prev->count - 1;
759 
760                 /* Does the upper range intersect a previous extent? */
761                 if ((prev_upper_first <= upper_last) &&
762                     (prev_upper_last >= upper_first))
763                         return true;
764 
765                 /* Does the lower range intersect a previous extent? */
766                 if ((prev_lower_first <= lower_last) &&
767                     (prev_lower_last >= lower_first))
768                         return true;
769         }
770         return false;
771 }
772 
773 /*
774  * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
775  * Takes care to allocate a 4K block of memory if the number of mappings exceeds
776  * UID_GID_MAP_MAX_BASE_EXTENTS.
777  */
778 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
779 {
780         struct uid_gid_extent *dest;
781 
782         if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
783                 struct uid_gid_extent *forward;
784 
785                 /* Allocate memory for 340 mappings. */
786                 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
787                                         sizeof(struct uid_gid_extent),
788                                         GFP_KERNEL);
789                 if (!forward)
790                         return -ENOMEM;
791 
792                 /* Copy over memory. Only set up memory for the forward pointer.
793                  * Defer the memory setup for the reverse pointer.
794                  */
795                 memcpy(forward, map->extent,
796                        map->nr_extents * sizeof(map->extent[0]));
797 
798                 map->forward = forward;
799                 map->reverse = NULL;
800         }
801 
802         if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
803                 dest = &map->extent[map->nr_extents];
804         else
805                 dest = &map->forward[map->nr_extents];
806 
807         *dest = *extent;
808         map->nr_extents++;
809         return 0;
810 }
811 
812 /* cmp function to sort() forward mappings */
813 static int cmp_extents_forward(const void *a, const void *b)
814 {
815         const struct uid_gid_extent *e1 = a;
816         const struct uid_gid_extent *e2 = b;
817 
818         if (e1->first < e2->first)
819                 return -1;
820 
821         if (e1->first > e2->first)
822                 return 1;
823 
824         return 0;
825 }
826 
827 /* cmp function to sort() reverse mappings */
828 static int cmp_extents_reverse(const void *a, const void *b)
829 {
830         const struct uid_gid_extent *e1 = a;
831         const struct uid_gid_extent *e2 = b;
832 
833         if (e1->lower_first < e2->lower_first)
834                 return -1;
835 
836         if (e1->lower_first > e2->lower_first)
837                 return 1;
838 
839         return 0;
840 }
841 
842 /*
843  * sort_idmaps - Sorts an array of idmap entries.
844  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
845  */
846 static int sort_idmaps(struct uid_gid_map *map)
847 {
848         if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
849                 return 0;
850 
851         /* Sort forward array. */
852         sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
853              cmp_extents_forward, NULL);
854 
855         /* Only copy the memory from forward we actually need. */
856         map->reverse = kmemdup(map->forward,
857                                map->nr_extents * sizeof(struct uid_gid_extent),
858                                GFP_KERNEL);
859         if (!map->reverse)
860                 return -ENOMEM;
861 
862         /* Sort reverse array. */
863         sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
864              cmp_extents_reverse, NULL);
865 
866         return 0;
867 }
868 
869 /**
870  * verify_root_map() - check the uid 0 mapping
871  * @file: idmapping file
872  * @map_ns: user namespace of the target process
873  * @new_map: requested idmap
874  *
875  * If a process requests mapping parent uid 0 into the new ns, verify that the
876  * process writing the map had the CAP_SETFCAP capability as the target process
877  * will be able to write fscaps that are valid in ancestor user namespaces.
878  *
879  * Return: true if the mapping is allowed, false if not.
880  */
881 static bool verify_root_map(const struct file *file,
882                             struct user_namespace *map_ns,
883                             struct uid_gid_map *new_map)
884 {
885         int idx;
886         const struct user_namespace *file_ns = file->f_cred->user_ns;
887         struct uid_gid_extent *extent0 = NULL;
888 
889         for (idx = 0; idx < new_map->nr_extents; idx++) {
890                 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
891                         extent0 = &new_map->extent[idx];
892                 else
893                         extent0 = &new_map->forward[idx];
894                 if (extent0->lower_first == 0)
895                         break;
896 
897                 extent0 = NULL;
898         }
899 
900         if (!extent0)
901                 return true;
902 
903         if (map_ns == file_ns) {
904                 /* The process unshared its ns and is writing to its own
905                  * /proc/self/uid_map.  User already has full capabilites in
906                  * the new namespace.  Verify that the parent had CAP_SETFCAP
907                  * when it unshared.
908                  * */
909                 if (!file_ns->parent_could_setfcap)
910                         return false;
911         } else {
912                 /* Process p1 is writing to uid_map of p2, who is in a child
913                  * user namespace to p1's.  Verify that the opener of the map
914                  * file has CAP_SETFCAP against the parent of the new map
915                  * namespace */
916                 if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
917                         return false;
918         }
919 
920         return true;
921 }
922 
923 static ssize_t map_write(struct file *file, const char __user *buf,
924                          size_t count, loff_t *ppos,
925                          int cap_setid,
926                          struct uid_gid_map *map,
927                          struct uid_gid_map *parent_map)
928 {
929         struct seq_file *seq = file->private_data;
930         struct user_namespace *map_ns = seq->private;
931         struct uid_gid_map new_map;
932         unsigned idx;
933         struct uid_gid_extent extent;
934         char *kbuf, *pos, *next_line;
935         ssize_t ret;
936 
937         /* Only allow < page size writes at the beginning of the file */
938         if ((*ppos != 0) || (count >= PAGE_SIZE))
939                 return -EINVAL;
940 
941         /* Slurp in the user data */
942         kbuf = memdup_user_nul(buf, count);
943         if (IS_ERR(kbuf))
944                 return PTR_ERR(kbuf);
945 
946         /*
947          * The userns_state_mutex serializes all writes to any given map.
948          *
949          * Any map is only ever written once.
950          *
951          * An id map fits within 1 cache line on most architectures.
952          *
953          * On read nothing needs to be done unless you are on an
954          * architecture with a crazy cache coherency model like alpha.
955          *
956          * There is a one time data dependency between reading the
957          * count of the extents and the values of the extents.  The
958          * desired behavior is to see the values of the extents that
959          * were written before the count of the extents.
960          *
961          * To achieve this smp_wmb() is used on guarantee the write
962          * order and smp_rmb() is guaranteed that we don't have crazy
963          * architectures returning stale data.
964          */
965         mutex_lock(&userns_state_mutex);
966 
967         memset(&new_map, 0, sizeof(struct uid_gid_map));
968 
969         ret = -EPERM;
970         /* Only allow one successful write to the map */
971         if (map->nr_extents != 0)
972                 goto out;
973 
974         /*
975          * Adjusting namespace settings requires capabilities on the target.
976          */
977         if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
978                 goto out;
979 
980         /* Parse the user data */
981         ret = -EINVAL;
982         pos = kbuf;
983         for (; pos; pos = next_line) {
984 
985                 /* Find the end of line and ensure I don't look past it */
986                 next_line = strchr(pos, '\n');
987                 if (next_line) {
988                         *next_line = '\0';
989                         next_line++;
990                         if (*next_line == '\0')
991                                 next_line = NULL;
992                 }
993 
994                 pos = skip_spaces(pos);
995                 extent.first = simple_strtoul(pos, &pos, 10);
996                 if (!isspace(*pos))
997                         goto out;
998 
999                 pos = skip_spaces(pos);
1000                 extent.lower_first = simple_strtoul(pos, &pos, 10);
1001                 if (!isspace(*pos))
1002                         goto out;
1003 
1004                 pos = skip_spaces(pos);
1005                 extent.count = simple_strtoul(pos, &pos, 10);
1006                 if (*pos && !isspace(*pos))
1007                         goto out;
1008 
1009                 /* Verify there is not trailing junk on the line */
1010                 pos = skip_spaces(pos);
1011                 if (*pos != '\0')
1012                         goto out;
1013 
1014                 /* Verify we have been given valid starting values */
1015                 if ((extent.first == (u32) -1) ||
1016                     (extent.lower_first == (u32) -1))
1017                         goto out;
1018 
1019                 /* Verify count is not zero and does not cause the
1020                  * extent to wrap
1021                  */
1022                 if ((extent.first + extent.count) <= extent.first)
1023                         goto out;
1024                 if ((extent.lower_first + extent.count) <=
1025                      extent.lower_first)
1026                         goto out;
1027 
1028                 /* Do the ranges in extent overlap any previous extents? */
1029                 if (mappings_overlap(&new_map, &extent))
1030                         goto out;
1031 
1032                 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1033                     (next_line != NULL))
1034                         goto out;
1035 
1036                 ret = insert_extent(&new_map, &extent);
1037                 if (ret < 0)
1038                         goto out;
1039                 ret = -EINVAL;
1040         }
1041         /* Be very certain the new map actually exists */
1042         if (new_map.nr_extents == 0)
1043                 goto out;
1044 
1045         ret = -EPERM;
1046         /* Validate the user is allowed to use user id's mapped to. */
1047         if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1048                 goto out;
1049 
1050         ret = -EPERM;
1051         /* Map the lower ids from the parent user namespace to the
1052          * kernel global id space.
1053          */
1054         for (idx = 0; idx < new_map.nr_extents; idx++) {
1055                 struct uid_gid_extent *e;
1056                 u32 lower_first;
1057 
1058                 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1059                         e = &new_map.extent[idx];
1060                 else
1061                         e = &new_map.forward[idx];
1062 
1063                 lower_first = map_id_range_down(parent_map,
1064                                                 e->lower_first,
1065                                                 e->count);
1066 
1067                 /* Fail if we can not map the specified extent to
1068                  * the kernel global id space.
1069                  */
1070                 if (lower_first == (u32) -1)
1071                         goto out;
1072 
1073                 e->lower_first = lower_first;
1074         }
1075 
1076         /*
1077          * If we want to use binary search for lookup, this clones the extent
1078          * array and sorts both copies.
1079          */
1080         ret = sort_idmaps(&new_map);
1081         if (ret < 0)
1082                 goto out;
1083 
1084         /* Install the map */
1085         if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1086                 memcpy(map->extent, new_map.extent,
1087                        new_map.nr_extents * sizeof(new_map.extent[0]));
1088         } else {
1089                 map->forward = new_map.forward;
1090                 map->reverse = new_map.reverse;
1091         }
1092         smp_wmb();
1093         map->nr_extents = new_map.nr_extents;
1094 
1095         *ppos = count;
1096         ret = count;
1097 out:
1098         if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1099                 kfree(new_map.forward);
1100                 kfree(new_map.reverse);
1101                 map->forward = NULL;
1102                 map->reverse = NULL;
1103                 map->nr_extents = 0;
1104         }
1105 
1106         mutex_unlock(&userns_state_mutex);
1107         kfree(kbuf);
1108         return ret;
1109 }
1110 
1111 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1112                            size_t size, loff_t *ppos)
1113 {
1114         struct seq_file *seq = file->private_data;
1115         struct user_namespace *ns = seq->private;
1116         struct user_namespace *seq_ns = seq_user_ns(seq);
1117 
1118         if (!ns->parent)
1119                 return -EPERM;
1120 
1121         if ((seq_ns != ns) && (seq_ns != ns->parent))
1122                 return -EPERM;
1123 
1124         return map_write(file, buf, size, ppos, CAP_SETUID,
1125                          &ns->uid_map, &ns->parent->uid_map);
1126 }
1127 
1128 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1129                            size_t size, loff_t *ppos)
1130 {
1131         struct seq_file *seq = file->private_data;
1132         struct user_namespace *ns = seq->private;
1133         struct user_namespace *seq_ns = seq_user_ns(seq);
1134 
1135         if (!ns->parent)
1136                 return -EPERM;
1137 
1138         if ((seq_ns != ns) && (seq_ns != ns->parent))
1139                 return -EPERM;
1140 
1141         return map_write(file, buf, size, ppos, CAP_SETGID,
1142                          &ns->gid_map, &ns->parent->gid_map);
1143 }
1144 
1145 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1146                               size_t size, loff_t *ppos)
1147 {
1148         struct seq_file *seq = file->private_data;
1149         struct user_namespace *ns = seq->private;
1150         struct user_namespace *seq_ns = seq_user_ns(seq);
1151 
1152         if (!ns->parent)
1153                 return -EPERM;
1154 
1155         if ((seq_ns != ns) && (seq_ns != ns->parent))
1156                 return -EPERM;
1157 
1158         /* Anyone can set any valid project id no capability needed */
1159         return map_write(file, buf, size, ppos, -1,
1160                          &ns->projid_map, &ns->parent->projid_map);
1161 }
1162 
1163 static bool new_idmap_permitted(const struct file *file,
1164                                 struct user_namespace *ns, int cap_setid,
1165                                 struct uid_gid_map *new_map)
1166 {
1167         const struct cred *cred = file->f_cred;
1168 
1169         if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1170                 return false;
1171 
1172         /* Don't allow mappings that would allow anything that wouldn't
1173          * be allowed without the establishment of unprivileged mappings.
1174          */
1175         if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1176             uid_eq(ns->owner, cred->euid)) {
1177                 u32 id = new_map->extent[0].lower_first;
1178                 if (cap_setid == CAP_SETUID) {
1179                         kuid_t uid = make_kuid(ns->parent, id);
1180                         if (uid_eq(uid, cred->euid))
1181                                 return true;
1182                 } else if (cap_setid == CAP_SETGID) {
1183                         kgid_t gid = make_kgid(ns->parent, id);
1184                         if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1185                             gid_eq(gid, cred->egid))
1186                                 return true;
1187                 }
1188         }
1189 
1190         /* Allow anyone to set a mapping that doesn't require privilege */
1191         if (!cap_valid(cap_setid))
1192                 return true;
1193 
1194         /* Allow the specified ids if we have the appropriate capability
1195          * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1196          * And the opener of the id file also has the appropriate capability.
1197          */
1198         if (ns_capable(ns->parent, cap_setid) &&
1199             file_ns_capable(file, ns->parent, cap_setid))
1200                 return true;
1201 
1202         return false;
1203 }
1204 
1205 int proc_setgroups_show(struct seq_file *seq, void *v)
1206 {
1207         struct user_namespace *ns = seq->private;
1208         unsigned long userns_flags = READ_ONCE(ns->flags);
1209 
1210         seq_printf(seq, "%s\n",
1211                    (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1212                    "allow" : "deny");
1213         return 0;
1214 }
1215 
1216 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1217                              size_t count, loff_t *ppos)
1218 {
1219         struct seq_file *seq = file->private_data;
1220         struct user_namespace *ns = seq->private;
1221         char kbuf[8], *pos;
1222         bool setgroups_allowed;
1223         ssize_t ret;
1224 
1225         /* Only allow a very narrow range of strings to be written */
1226         ret = -EINVAL;
1227         if ((*ppos != 0) || (count >= sizeof(kbuf)))
1228                 goto out;
1229 
1230         /* What was written? */
1231         ret = -EFAULT;
1232         if (copy_from_user(kbuf, buf, count))
1233                 goto out;
1234         kbuf[count] = '\0';
1235         pos = kbuf;
1236 
1237         /* What is being requested? */
1238         ret = -EINVAL;
1239         if (strncmp(pos, "allow", 5) == 0) {
1240                 pos += 5;
1241                 setgroups_allowed = true;
1242         }
1243         else if (strncmp(pos, "deny", 4) == 0) {
1244                 pos += 4;
1245                 setgroups_allowed = false;
1246         }
1247         else
1248                 goto out;
1249 
1250         /* Verify there is not trailing junk on the line */
1251         pos = skip_spaces(pos);
1252         if (*pos != '\0')
1253                 goto out;
1254 
1255         ret = -EPERM;
1256         mutex_lock(&userns_state_mutex);
1257         if (setgroups_allowed) {
1258                 /* Enabling setgroups after setgroups has been disabled
1259                  * is not allowed.
1260                  */
1261                 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1262                         goto out_unlock;
1263         } else {
1264                 /* Permanently disabling setgroups after setgroups has
1265                  * been enabled by writing the gid_map is not allowed.
1266                  */
1267                 if (ns->gid_map.nr_extents != 0)
1268                         goto out_unlock;
1269                 ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1270         }
1271         mutex_unlock(&userns_state_mutex);
1272 
1273         /* Report a successful write */
1274         *ppos = count;
1275         ret = count;
1276 out:
1277         return ret;
1278 out_unlock:
1279         mutex_unlock(&userns_state_mutex);
1280         goto out;
1281 }
1282 
1283 bool userns_may_setgroups(const struct user_namespace *ns)
1284 {
1285         bool allowed;
1286 
1287         mutex_lock(&userns_state_mutex);
1288         /* It is not safe to use setgroups until a gid mapping in
1289          * the user namespace has been established.
1290          */
1291         allowed = ns->gid_map.nr_extents != 0;
1292         /* Is setgroups allowed? */
1293         allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1294         mutex_unlock(&userns_state_mutex);
1295 
1296         return allowed;
1297 }
1298 
1299 /*
1300  * Returns true if @child is the same namespace or a descendant of
1301  * @ancestor.
1302  */
1303 bool in_userns(const struct user_namespace *ancestor,
1304                const struct user_namespace *child)
1305 {
1306         const struct user_namespace *ns;
1307         for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1308                 ;
1309         return (ns == ancestor);
1310 }
1311 
1312 bool current_in_userns(const struct user_namespace *target_ns)
1313 {
1314         return in_userns(target_ns, current_user_ns());
1315 }
1316 EXPORT_SYMBOL(current_in_userns);
1317 
1318 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1319 {
1320         return container_of(ns, struct user_namespace, ns);
1321 }
1322 
1323 static struct ns_common *userns_get(struct task_struct *task)
1324 {
1325         struct user_namespace *user_ns;
1326 
1327         rcu_read_lock();
1328         user_ns = get_user_ns(__task_cred(task)->user_ns);
1329         rcu_read_unlock();
1330 
1331         return user_ns ? &user_ns->ns : NULL;
1332 }
1333 
1334 static void userns_put(struct ns_common *ns)
1335 {
1336         put_user_ns(to_user_ns(ns));
1337 }
1338 
1339 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1340 {
1341         struct user_namespace *user_ns = to_user_ns(ns);
1342         struct cred *cred;
1343 
1344         /* Don't allow gaining capabilities by reentering
1345          * the same user namespace.
1346          */
1347         if (user_ns == current_user_ns())
1348                 return -EINVAL;
1349 
1350         /* Tasks that share a thread group must share a user namespace */
1351         if (!thread_group_empty(current))
1352                 return -EINVAL;
1353 
1354         if (current->fs->users != 1)
1355                 return -EINVAL;
1356 
1357         if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1358                 return -EPERM;
1359 
1360         cred = nsset_cred(nsset);
1361         if (!cred)
1362                 return -EINVAL;
1363 
1364         put_user_ns(cred->user_ns);
1365         set_cred_user_ns(cred, get_user_ns(user_ns));
1366 
1367         if (set_cred_ucounts(cred) < 0)
1368                 return -EINVAL;
1369 
1370         return 0;
1371 }
1372 
1373 struct ns_common *ns_get_owner(struct ns_common *ns)
1374 {
1375         struct user_namespace *my_user_ns = current_user_ns();
1376         struct user_namespace *owner, *p;
1377 
1378         /* See if the owner is in the current user namespace */
1379         owner = p = ns->ops->owner(ns);
1380         for (;;) {
1381                 if (!p)
1382                         return ERR_PTR(-EPERM);
1383                 if (p == my_user_ns)
1384                         break;
1385                 p = p->parent;
1386         }
1387 
1388         return &get_user_ns(owner)->ns;
1389 }
1390 
1391 static struct user_namespace *userns_owner(struct ns_common *ns)
1392 {
1393         return to_user_ns(ns)->parent;
1394 }
1395 
1396 const struct proc_ns_operations userns_operations = {
1397         .name           = "user",
1398         .type           = CLONE_NEWUSER,
1399         .get            = userns_get,
1400         .put            = userns_put,
1401         .install        = userns_install,
1402         .owner          = userns_owner,
1403         .get_parent     = ns_get_owner,
1404 };
1405 
1406 static __init int user_namespaces_init(void)
1407 {
1408         user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT);
1409         return 0;
1410 }
1411 subsys_initcall(user_namespaces_init);
1412 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php