1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map lockdep_map; 368 #endif 369 char name[WQ_NAME_LEN]; /* I: workqueue name */ 370 371 /* 372 * Destruction of workqueue_struct is RCU protected to allow walking 373 * the workqueues list without grabbing wq_pool_mutex. 374 * This is used to dump all workqueues from sysrq. 375 */ 376 struct rcu_head rcu; 377 378 /* hot fields used during command issue, aligned to cacheline */ 379 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 380 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */ 381 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 382 }; 383 384 /* 385 * Each pod type describes how CPUs should be grouped for unbound workqueues. 386 * See the comment above workqueue_attrs->affn_scope. 387 */ 388 struct wq_pod_type { 389 int nr_pods; /* number of pods */ 390 cpumask_var_t *pod_cpus; /* pod -> cpus */ 391 int *pod_node; /* pod -> node */ 392 int *cpu_pod; /* cpu -> pod */ 393 }; 394 395 struct work_offq_data { 396 u32 pool_id; 397 u32 disable; 398 u32 flags; 399 }; 400 401 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 402 [WQ_AFFN_DFL] = "default", 403 [WQ_AFFN_CPU] = "cpu", 404 [WQ_AFFN_SMT] = "smt", 405 [WQ_AFFN_CACHE] = "cache", 406 [WQ_AFFN_NUMA] = "numa", 407 [WQ_AFFN_SYSTEM] = "system", 408 }; 409 410 /* 411 * Per-cpu work items which run for longer than the following threshold are 412 * automatically considered CPU intensive and excluded from concurrency 413 * management to prevent them from noticeably delaying other per-cpu work items. 414 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 415 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 416 */ 417 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 418 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 419 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 420 static unsigned int wq_cpu_intensive_warning_thresh = 4; 421 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 422 #endif 423 424 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 425 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 426 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 427 428 static bool wq_online; /* can kworkers be created yet? */ 429 static bool wq_topo_initialized __read_mostly = false; 430 431 static struct kmem_cache *pwq_cache; 432 433 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 434 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 435 436 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 437 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 438 439 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 440 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 441 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 442 /* wait for manager to go away */ 443 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 444 445 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 446 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 447 448 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 449 static cpumask_var_t wq_online_cpumask; 450 451 /* PL&A: allowable cpus for unbound wqs and work items */ 452 static cpumask_var_t wq_unbound_cpumask; 453 454 /* PL: user requested unbound cpumask via sysfs */ 455 static cpumask_var_t wq_requested_unbound_cpumask; 456 457 /* PL: isolated cpumask to be excluded from unbound cpumask */ 458 static cpumask_var_t wq_isolated_cpumask; 459 460 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 461 static struct cpumask wq_cmdline_cpumask __initdata; 462 463 /* CPU where unbound work was last round robin scheduled from this CPU */ 464 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 465 466 /* 467 * Local execution of unbound work items is no longer guaranteed. The 468 * following always forces round-robin CPU selection on unbound work items 469 * to uncover usages which depend on it. 470 */ 471 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 472 static bool wq_debug_force_rr_cpu = true; 473 #else 474 static bool wq_debug_force_rr_cpu = false; 475 #endif 476 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 477 478 /* to raise softirq for the BH worker pools on other CPUs */ 479 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 480 bh_pool_irq_works); 481 482 /* the BH worker pools */ 483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 484 bh_worker_pools); 485 486 /* the per-cpu worker pools */ 487 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 488 cpu_worker_pools); 489 490 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 491 492 /* PL: hash of all unbound pools keyed by pool->attrs */ 493 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 494 495 /* I: attributes used when instantiating standard unbound pools on demand */ 496 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 497 498 /* I: attributes used when instantiating ordered pools on demand */ 499 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 500 501 /* 502 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 503 * process context while holding a pool lock. Bounce to a dedicated kthread 504 * worker to avoid A-A deadlocks. 505 */ 506 static struct kthread_worker *pwq_release_worker __ro_after_init; 507 508 struct workqueue_struct *system_wq __ro_after_init; 509 EXPORT_SYMBOL(system_wq); 510 struct workqueue_struct *system_highpri_wq __ro_after_init; 511 EXPORT_SYMBOL_GPL(system_highpri_wq); 512 struct workqueue_struct *system_long_wq __ro_after_init; 513 EXPORT_SYMBOL_GPL(system_long_wq); 514 struct workqueue_struct *system_unbound_wq __ro_after_init; 515 EXPORT_SYMBOL_GPL(system_unbound_wq); 516 struct workqueue_struct *system_freezable_wq __ro_after_init; 517 EXPORT_SYMBOL_GPL(system_freezable_wq); 518 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 519 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 520 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 521 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 522 struct workqueue_struct *system_bh_wq; 523 EXPORT_SYMBOL_GPL(system_bh_wq); 524 struct workqueue_struct *system_bh_highpri_wq; 525 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 526 527 static int worker_thread(void *__worker); 528 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 529 static void show_pwq(struct pool_workqueue *pwq); 530 static void show_one_worker_pool(struct worker_pool *pool); 531 532 #define CREATE_TRACE_POINTS 533 #include <trace/events/workqueue.h> 534 535 #define assert_rcu_or_pool_mutex() \ 536 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 537 !lockdep_is_held(&wq_pool_mutex), \ 538 "RCU or wq_pool_mutex should be held") 539 540 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 541 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 542 !lockdep_is_held(&wq->mutex) && \ 543 !lockdep_is_held(&wq_pool_mutex), \ 544 "RCU, wq->mutex or wq_pool_mutex should be held") 545 546 #define for_each_bh_worker_pool(pool, cpu) \ 547 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 548 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 549 (pool)++) 550 551 #define for_each_cpu_worker_pool(pool, cpu) \ 552 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 553 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 554 (pool)++) 555 556 /** 557 * for_each_pool - iterate through all worker_pools in the system 558 * @pool: iteration cursor 559 * @pi: integer used for iteration 560 * 561 * This must be called either with wq_pool_mutex held or RCU read 562 * locked. If the pool needs to be used beyond the locking in effect, the 563 * caller is responsible for guaranteeing that the pool stays online. 564 * 565 * The if/else clause exists only for the lockdep assertion and can be 566 * ignored. 567 */ 568 #define for_each_pool(pool, pi) \ 569 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 570 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 571 else 572 573 /** 574 * for_each_pool_worker - iterate through all workers of a worker_pool 575 * @worker: iteration cursor 576 * @pool: worker_pool to iterate workers of 577 * 578 * This must be called with wq_pool_attach_mutex. 579 * 580 * The if/else clause exists only for the lockdep assertion and can be 581 * ignored. 582 */ 583 #define for_each_pool_worker(worker, pool) \ 584 list_for_each_entry((worker), &(pool)->workers, node) \ 585 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 586 else 587 588 /** 589 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 590 * @pwq: iteration cursor 591 * @wq: the target workqueue 592 * 593 * This must be called either with wq->mutex held or RCU read locked. 594 * If the pwq needs to be used beyond the locking in effect, the caller is 595 * responsible for guaranteeing that the pwq stays online. 596 * 597 * The if/else clause exists only for the lockdep assertion and can be 598 * ignored. 599 */ 600 #define for_each_pwq(pwq, wq) \ 601 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 602 lockdep_is_held(&(wq->mutex))) 603 604 #ifdef CONFIG_DEBUG_OBJECTS_WORK 605 606 static const struct debug_obj_descr work_debug_descr; 607 608 static void *work_debug_hint(void *addr) 609 { 610 return ((struct work_struct *) addr)->func; 611 } 612 613 static bool work_is_static_object(void *addr) 614 { 615 struct work_struct *work = addr; 616 617 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 618 } 619 620 /* 621 * fixup_init is called when: 622 * - an active object is initialized 623 */ 624 static bool work_fixup_init(void *addr, enum debug_obj_state state) 625 { 626 struct work_struct *work = addr; 627 628 switch (state) { 629 case ODEBUG_STATE_ACTIVE: 630 cancel_work_sync(work); 631 debug_object_init(work, &work_debug_descr); 632 return true; 633 default: 634 return false; 635 } 636 } 637 638 /* 639 * fixup_free is called when: 640 * - an active object is freed 641 */ 642 static bool work_fixup_free(void *addr, enum debug_obj_state state) 643 { 644 struct work_struct *work = addr; 645 646 switch (state) { 647 case ODEBUG_STATE_ACTIVE: 648 cancel_work_sync(work); 649 debug_object_free(work, &work_debug_descr); 650 return true; 651 default: 652 return false; 653 } 654 } 655 656 static const struct debug_obj_descr work_debug_descr = { 657 .name = "work_struct", 658 .debug_hint = work_debug_hint, 659 .is_static_object = work_is_static_object, 660 .fixup_init = work_fixup_init, 661 .fixup_free = work_fixup_free, 662 }; 663 664 static inline void debug_work_activate(struct work_struct *work) 665 { 666 debug_object_activate(work, &work_debug_descr); 667 } 668 669 static inline void debug_work_deactivate(struct work_struct *work) 670 { 671 debug_object_deactivate(work, &work_debug_descr); 672 } 673 674 void __init_work(struct work_struct *work, int onstack) 675 { 676 if (onstack) 677 debug_object_init_on_stack(work, &work_debug_descr); 678 else 679 debug_object_init(work, &work_debug_descr); 680 } 681 EXPORT_SYMBOL_GPL(__init_work); 682 683 void destroy_work_on_stack(struct work_struct *work) 684 { 685 debug_object_free(work, &work_debug_descr); 686 } 687 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 688 689 void destroy_delayed_work_on_stack(struct delayed_work *work) 690 { 691 destroy_timer_on_stack(&work->timer); 692 debug_object_free(&work->work, &work_debug_descr); 693 } 694 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 695 696 #else 697 static inline void debug_work_activate(struct work_struct *work) { } 698 static inline void debug_work_deactivate(struct work_struct *work) { } 699 #endif 700 701 /** 702 * worker_pool_assign_id - allocate ID and assign it to @pool 703 * @pool: the pool pointer of interest 704 * 705 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 706 * successfully, -errno on failure. 707 */ 708 static int worker_pool_assign_id(struct worker_pool *pool) 709 { 710 int ret; 711 712 lockdep_assert_held(&wq_pool_mutex); 713 714 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 715 GFP_KERNEL); 716 if (ret >= 0) { 717 pool->id = ret; 718 return 0; 719 } 720 return ret; 721 } 722 723 static struct pool_workqueue __rcu ** 724 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 725 { 726 if (cpu >= 0) 727 return per_cpu_ptr(wq->cpu_pwq, cpu); 728 else 729 return &wq->dfl_pwq; 730 } 731 732 /* @cpu < 0 for dfl_pwq */ 733 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 734 { 735 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 736 lockdep_is_held(&wq_pool_mutex) || 737 lockdep_is_held(&wq->mutex)); 738 } 739 740 /** 741 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 742 * @wq: workqueue of interest 743 * 744 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 745 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 746 * default pwq is always mapped to the pool with the current effective cpumask. 747 */ 748 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 749 { 750 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 751 } 752 753 static unsigned int work_color_to_flags(int color) 754 { 755 return color << WORK_STRUCT_COLOR_SHIFT; 756 } 757 758 static int get_work_color(unsigned long work_data) 759 { 760 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 761 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 762 } 763 764 static int work_next_color(int color) 765 { 766 return (color + 1) % WORK_NR_COLORS; 767 } 768 769 static unsigned long pool_offq_flags(struct worker_pool *pool) 770 { 771 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 772 } 773 774 /* 775 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 776 * contain the pointer to the queued pwq. Once execution starts, the flag 777 * is cleared and the high bits contain OFFQ flags and pool ID. 778 * 779 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 780 * can be used to set the pwq, pool or clear work->data. These functions should 781 * only be called while the work is owned - ie. while the PENDING bit is set. 782 * 783 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 784 * corresponding to a work. Pool is available once the work has been 785 * queued anywhere after initialization until it is sync canceled. pwq is 786 * available only while the work item is queued. 787 */ 788 static inline void set_work_data(struct work_struct *work, unsigned long data) 789 { 790 WARN_ON_ONCE(!work_pending(work)); 791 atomic_long_set(&work->data, data | work_static(work)); 792 } 793 794 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 795 unsigned long flags) 796 { 797 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 798 WORK_STRUCT_PWQ | flags); 799 } 800 801 static void set_work_pool_and_keep_pending(struct work_struct *work, 802 int pool_id, unsigned long flags) 803 { 804 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 805 WORK_STRUCT_PENDING | flags); 806 } 807 808 static void set_work_pool_and_clear_pending(struct work_struct *work, 809 int pool_id, unsigned long flags) 810 { 811 /* 812 * The following wmb is paired with the implied mb in 813 * test_and_set_bit(PENDING) and ensures all updates to @work made 814 * here are visible to and precede any updates by the next PENDING 815 * owner. 816 */ 817 smp_wmb(); 818 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 819 flags); 820 /* 821 * The following mb guarantees that previous clear of a PENDING bit 822 * will not be reordered with any speculative LOADS or STORES from 823 * work->current_func, which is executed afterwards. This possible 824 * reordering can lead to a missed execution on attempt to queue 825 * the same @work. E.g. consider this case: 826 * 827 * CPU#0 CPU#1 828 * ---------------------------- -------------------------------- 829 * 830 * 1 STORE event_indicated 831 * 2 queue_work_on() { 832 * 3 test_and_set_bit(PENDING) 833 * 4 } set_..._and_clear_pending() { 834 * 5 set_work_data() # clear bit 835 * 6 smp_mb() 836 * 7 work->current_func() { 837 * 8 LOAD event_indicated 838 * } 839 * 840 * Without an explicit full barrier speculative LOAD on line 8 can 841 * be executed before CPU#0 does STORE on line 1. If that happens, 842 * CPU#0 observes the PENDING bit is still set and new execution of 843 * a @work is not queued in a hope, that CPU#1 will eventually 844 * finish the queued @work. Meanwhile CPU#1 does not see 845 * event_indicated is set, because speculative LOAD was executed 846 * before actual STORE. 847 */ 848 smp_mb(); 849 } 850 851 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 852 { 853 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 854 } 855 856 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 857 { 858 unsigned long data = atomic_long_read(&work->data); 859 860 if (data & WORK_STRUCT_PWQ) 861 return work_struct_pwq(data); 862 else 863 return NULL; 864 } 865 866 /** 867 * get_work_pool - return the worker_pool a given work was associated with 868 * @work: the work item of interest 869 * 870 * Pools are created and destroyed under wq_pool_mutex, and allows read 871 * access under RCU read lock. As such, this function should be 872 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 873 * 874 * All fields of the returned pool are accessible as long as the above 875 * mentioned locking is in effect. If the returned pool needs to be used 876 * beyond the critical section, the caller is responsible for ensuring the 877 * returned pool is and stays online. 878 * 879 * Return: The worker_pool @work was last associated with. %NULL if none. 880 */ 881 static struct worker_pool *get_work_pool(struct work_struct *work) 882 { 883 unsigned long data = atomic_long_read(&work->data); 884 int pool_id; 885 886 assert_rcu_or_pool_mutex(); 887 888 if (data & WORK_STRUCT_PWQ) 889 return work_struct_pwq(data)->pool; 890 891 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 892 if (pool_id == WORK_OFFQ_POOL_NONE) 893 return NULL; 894 895 return idr_find(&worker_pool_idr, pool_id); 896 } 897 898 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 899 { 900 return (v >> shift) & ((1U << bits) - 1); 901 } 902 903 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 904 { 905 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 906 907 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 908 WORK_OFFQ_POOL_BITS); 909 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 910 WORK_OFFQ_DISABLE_BITS); 911 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 912 } 913 914 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 915 { 916 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 917 ((unsigned long)offqd->flags); 918 } 919 920 /* 921 * Policy functions. These define the policies on how the global worker 922 * pools are managed. Unless noted otherwise, these functions assume that 923 * they're being called with pool->lock held. 924 */ 925 926 /* 927 * Need to wake up a worker? Called from anything but currently 928 * running workers. 929 * 930 * Note that, because unbound workers never contribute to nr_running, this 931 * function will always return %true for unbound pools as long as the 932 * worklist isn't empty. 933 */ 934 static bool need_more_worker(struct worker_pool *pool) 935 { 936 return !list_empty(&pool->worklist) && !pool->nr_running; 937 } 938 939 /* Can I start working? Called from busy but !running workers. */ 940 static bool may_start_working(struct worker_pool *pool) 941 { 942 return pool->nr_idle; 943 } 944 945 /* Do I need to keep working? Called from currently running workers. */ 946 static bool keep_working(struct worker_pool *pool) 947 { 948 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 949 } 950 951 /* Do we need a new worker? Called from manager. */ 952 static bool need_to_create_worker(struct worker_pool *pool) 953 { 954 return need_more_worker(pool) && !may_start_working(pool); 955 } 956 957 /* Do we have too many workers and should some go away? */ 958 static bool too_many_workers(struct worker_pool *pool) 959 { 960 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 961 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 962 int nr_busy = pool->nr_workers - nr_idle; 963 964 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 965 } 966 967 /** 968 * worker_set_flags - set worker flags and adjust nr_running accordingly 969 * @worker: self 970 * @flags: flags to set 971 * 972 * Set @flags in @worker->flags and adjust nr_running accordingly. 973 */ 974 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 975 { 976 struct worker_pool *pool = worker->pool; 977 978 lockdep_assert_held(&pool->lock); 979 980 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 981 if ((flags & WORKER_NOT_RUNNING) && 982 !(worker->flags & WORKER_NOT_RUNNING)) { 983 pool->nr_running--; 984 } 985 986 worker->flags |= flags; 987 } 988 989 /** 990 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 991 * @worker: self 992 * @flags: flags to clear 993 * 994 * Clear @flags in @worker->flags and adjust nr_running accordingly. 995 */ 996 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 997 { 998 struct worker_pool *pool = worker->pool; 999 unsigned int oflags = worker->flags; 1000 1001 lockdep_assert_held(&pool->lock); 1002 1003 worker->flags &= ~flags; 1004 1005 /* 1006 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1007 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1008 * of multiple flags, not a single flag. 1009 */ 1010 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1011 if (!(worker->flags & WORKER_NOT_RUNNING)) 1012 pool->nr_running++; 1013 } 1014 1015 /* Return the first idle worker. Called with pool->lock held. */ 1016 static struct worker *first_idle_worker(struct worker_pool *pool) 1017 { 1018 if (unlikely(list_empty(&pool->idle_list))) 1019 return NULL; 1020 1021 return list_first_entry(&pool->idle_list, struct worker, entry); 1022 } 1023 1024 /** 1025 * worker_enter_idle - enter idle state 1026 * @worker: worker which is entering idle state 1027 * 1028 * @worker is entering idle state. Update stats and idle timer if 1029 * necessary. 1030 * 1031 * LOCKING: 1032 * raw_spin_lock_irq(pool->lock). 1033 */ 1034 static void worker_enter_idle(struct worker *worker) 1035 { 1036 struct worker_pool *pool = worker->pool; 1037 1038 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1039 WARN_ON_ONCE(!list_empty(&worker->entry) && 1040 (worker->hentry.next || worker->hentry.pprev))) 1041 return; 1042 1043 /* can't use worker_set_flags(), also called from create_worker() */ 1044 worker->flags |= WORKER_IDLE; 1045 pool->nr_idle++; 1046 worker->last_active = jiffies; 1047 1048 /* idle_list is LIFO */ 1049 list_add(&worker->entry, &pool->idle_list); 1050 1051 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1052 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1053 1054 /* Sanity check nr_running. */ 1055 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1056 } 1057 1058 /** 1059 * worker_leave_idle - leave idle state 1060 * @worker: worker which is leaving idle state 1061 * 1062 * @worker is leaving idle state. Update stats. 1063 * 1064 * LOCKING: 1065 * raw_spin_lock_irq(pool->lock). 1066 */ 1067 static void worker_leave_idle(struct worker *worker) 1068 { 1069 struct worker_pool *pool = worker->pool; 1070 1071 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1072 return; 1073 worker_clr_flags(worker, WORKER_IDLE); 1074 pool->nr_idle--; 1075 list_del_init(&worker->entry); 1076 } 1077 1078 /** 1079 * find_worker_executing_work - find worker which is executing a work 1080 * @pool: pool of interest 1081 * @work: work to find worker for 1082 * 1083 * Find a worker which is executing @work on @pool by searching 1084 * @pool->busy_hash which is keyed by the address of @work. For a worker 1085 * to match, its current execution should match the address of @work and 1086 * its work function. This is to avoid unwanted dependency between 1087 * unrelated work executions through a work item being recycled while still 1088 * being executed. 1089 * 1090 * This is a bit tricky. A work item may be freed once its execution 1091 * starts and nothing prevents the freed area from being recycled for 1092 * another work item. If the same work item address ends up being reused 1093 * before the original execution finishes, workqueue will identify the 1094 * recycled work item as currently executing and make it wait until the 1095 * current execution finishes, introducing an unwanted dependency. 1096 * 1097 * This function checks the work item address and work function to avoid 1098 * false positives. Note that this isn't complete as one may construct a 1099 * work function which can introduce dependency onto itself through a 1100 * recycled work item. Well, if somebody wants to shoot oneself in the 1101 * foot that badly, there's only so much we can do, and if such deadlock 1102 * actually occurs, it should be easy to locate the culprit work function. 1103 * 1104 * CONTEXT: 1105 * raw_spin_lock_irq(pool->lock). 1106 * 1107 * Return: 1108 * Pointer to worker which is executing @work if found, %NULL 1109 * otherwise. 1110 */ 1111 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1112 struct work_struct *work) 1113 { 1114 struct worker *worker; 1115 1116 hash_for_each_possible(pool->busy_hash, worker, hentry, 1117 (unsigned long)work) 1118 if (worker->current_work == work && 1119 worker->current_func == work->func) 1120 return worker; 1121 1122 return NULL; 1123 } 1124 1125 /** 1126 * move_linked_works - move linked works to a list 1127 * @work: start of series of works to be scheduled 1128 * @head: target list to append @work to 1129 * @nextp: out parameter for nested worklist walking 1130 * 1131 * Schedule linked works starting from @work to @head. Work series to be 1132 * scheduled starts at @work and includes any consecutive work with 1133 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1134 * @nextp. 1135 * 1136 * CONTEXT: 1137 * raw_spin_lock_irq(pool->lock). 1138 */ 1139 static void move_linked_works(struct work_struct *work, struct list_head *head, 1140 struct work_struct **nextp) 1141 { 1142 struct work_struct *n; 1143 1144 /* 1145 * Linked worklist will always end before the end of the list, 1146 * use NULL for list head. 1147 */ 1148 list_for_each_entry_safe_from(work, n, NULL, entry) { 1149 list_move_tail(&work->entry, head); 1150 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1151 break; 1152 } 1153 1154 /* 1155 * If we're already inside safe list traversal and have moved 1156 * multiple works to the scheduled queue, the next position 1157 * needs to be updated. 1158 */ 1159 if (nextp) 1160 *nextp = n; 1161 } 1162 1163 /** 1164 * assign_work - assign a work item and its linked work items to a worker 1165 * @work: work to assign 1166 * @worker: worker to assign to 1167 * @nextp: out parameter for nested worklist walking 1168 * 1169 * Assign @work and its linked work items to @worker. If @work is already being 1170 * executed by another worker in the same pool, it'll be punted there. 1171 * 1172 * If @nextp is not NULL, it's updated to point to the next work of the last 1173 * scheduled work. This allows assign_work() to be nested inside 1174 * list_for_each_entry_safe(). 1175 * 1176 * Returns %true if @work was successfully assigned to @worker. %false if @work 1177 * was punted to another worker already executing it. 1178 */ 1179 static bool assign_work(struct work_struct *work, struct worker *worker, 1180 struct work_struct **nextp) 1181 { 1182 struct worker_pool *pool = worker->pool; 1183 struct worker *collision; 1184 1185 lockdep_assert_held(&pool->lock); 1186 1187 /* 1188 * A single work shouldn't be executed concurrently by multiple workers. 1189 * __queue_work() ensures that @work doesn't jump to a different pool 1190 * while still running in the previous pool. Here, we should ensure that 1191 * @work is not executed concurrently by multiple workers from the same 1192 * pool. Check whether anyone is already processing the work. If so, 1193 * defer the work to the currently executing one. 1194 */ 1195 collision = find_worker_executing_work(pool, work); 1196 if (unlikely(collision)) { 1197 move_linked_works(work, &collision->scheduled, nextp); 1198 return false; 1199 } 1200 1201 move_linked_works(work, &worker->scheduled, nextp); 1202 return true; 1203 } 1204 1205 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1206 { 1207 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1208 1209 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1210 } 1211 1212 static void kick_bh_pool(struct worker_pool *pool) 1213 { 1214 #ifdef CONFIG_SMP 1215 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1216 if (unlikely(pool->cpu != smp_processor_id() && 1217 !(pool->flags & POOL_BH_DRAINING))) { 1218 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1219 return; 1220 } 1221 #endif 1222 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1223 raise_softirq_irqoff(HI_SOFTIRQ); 1224 else 1225 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1226 } 1227 1228 /** 1229 * kick_pool - wake up an idle worker if necessary 1230 * @pool: pool to kick 1231 * 1232 * @pool may have pending work items. Wake up worker if necessary. Returns 1233 * whether a worker was woken up. 1234 */ 1235 static bool kick_pool(struct worker_pool *pool) 1236 { 1237 struct worker *worker = first_idle_worker(pool); 1238 struct task_struct *p; 1239 1240 lockdep_assert_held(&pool->lock); 1241 1242 if (!need_more_worker(pool) || !worker) 1243 return false; 1244 1245 if (pool->flags & POOL_BH) { 1246 kick_bh_pool(pool); 1247 return true; 1248 } 1249 1250 p = worker->task; 1251 1252 #ifdef CONFIG_SMP 1253 /* 1254 * Idle @worker is about to execute @work and waking up provides an 1255 * opportunity to migrate @worker at a lower cost by setting the task's 1256 * wake_cpu field. Let's see if we want to move @worker to improve 1257 * execution locality. 1258 * 1259 * We're waking the worker that went idle the latest and there's some 1260 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1261 * so, setting the wake_cpu won't do anything. As this is a best-effort 1262 * optimization and the race window is narrow, let's leave as-is for 1263 * now. If this becomes pronounced, we can skip over workers which are 1264 * still on cpu when picking an idle worker. 1265 * 1266 * If @pool has non-strict affinity, @worker might have ended up outside 1267 * its affinity scope. Repatriate. 1268 */ 1269 if (!pool->attrs->affn_strict && 1270 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1271 struct work_struct *work = list_first_entry(&pool->worklist, 1272 struct work_struct, entry); 1273 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1274 cpu_online_mask); 1275 if (wake_cpu < nr_cpu_ids) { 1276 p->wake_cpu = wake_cpu; 1277 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1278 } 1279 } 1280 #endif 1281 wake_up_process(p); 1282 return true; 1283 } 1284 1285 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1286 1287 /* 1288 * Concurrency-managed per-cpu work items that hog CPU for longer than 1289 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1290 * which prevents them from stalling other concurrency-managed work items. If a 1291 * work function keeps triggering this mechanism, it's likely that the work item 1292 * should be using an unbound workqueue instead. 1293 * 1294 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1295 * and report them so that they can be examined and converted to use unbound 1296 * workqueues as appropriate. To avoid flooding the console, each violating work 1297 * function is tracked and reported with exponential backoff. 1298 */ 1299 #define WCI_MAX_ENTS 128 1300 1301 struct wci_ent { 1302 work_func_t func; 1303 atomic64_t cnt; 1304 struct hlist_node hash_node; 1305 }; 1306 1307 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1308 static int wci_nr_ents; 1309 static DEFINE_RAW_SPINLOCK(wci_lock); 1310 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1311 1312 static struct wci_ent *wci_find_ent(work_func_t func) 1313 { 1314 struct wci_ent *ent; 1315 1316 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1317 (unsigned long)func) { 1318 if (ent->func == func) 1319 return ent; 1320 } 1321 return NULL; 1322 } 1323 1324 static void wq_cpu_intensive_report(work_func_t func) 1325 { 1326 struct wci_ent *ent; 1327 1328 restart: 1329 ent = wci_find_ent(func); 1330 if (ent) { 1331 u64 cnt; 1332 1333 /* 1334 * Start reporting from the warning_thresh and back off 1335 * exponentially. 1336 */ 1337 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1338 if (wq_cpu_intensive_warning_thresh && 1339 cnt >= wq_cpu_intensive_warning_thresh && 1340 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1341 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1342 ent->func, wq_cpu_intensive_thresh_us, 1343 atomic64_read(&ent->cnt)); 1344 return; 1345 } 1346 1347 /* 1348 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1349 * is exhausted, something went really wrong and we probably made enough 1350 * noise already. 1351 */ 1352 if (wci_nr_ents >= WCI_MAX_ENTS) 1353 return; 1354 1355 raw_spin_lock(&wci_lock); 1356 1357 if (wci_nr_ents >= WCI_MAX_ENTS) { 1358 raw_spin_unlock(&wci_lock); 1359 return; 1360 } 1361 1362 if (wci_find_ent(func)) { 1363 raw_spin_unlock(&wci_lock); 1364 goto restart; 1365 } 1366 1367 ent = &wci_ents[wci_nr_ents++]; 1368 ent->func = func; 1369 atomic64_set(&ent->cnt, 0); 1370 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1371 1372 raw_spin_unlock(&wci_lock); 1373 1374 goto restart; 1375 } 1376 1377 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1378 static void wq_cpu_intensive_report(work_func_t func) {} 1379 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1380 1381 /** 1382 * wq_worker_running - a worker is running again 1383 * @task: task waking up 1384 * 1385 * This function is called when a worker returns from schedule() 1386 */ 1387 void wq_worker_running(struct task_struct *task) 1388 { 1389 struct worker *worker = kthread_data(task); 1390 1391 if (!READ_ONCE(worker->sleeping)) 1392 return; 1393 1394 /* 1395 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1396 * and the nr_running increment below, we may ruin the nr_running reset 1397 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1398 * pool. Protect against such race. 1399 */ 1400 preempt_disable(); 1401 if (!(worker->flags & WORKER_NOT_RUNNING)) 1402 worker->pool->nr_running++; 1403 preempt_enable(); 1404 1405 /* 1406 * CPU intensive auto-detection cares about how long a work item hogged 1407 * CPU without sleeping. Reset the starting timestamp on wakeup. 1408 */ 1409 worker->current_at = worker->task->se.sum_exec_runtime; 1410 1411 WRITE_ONCE(worker->sleeping, 0); 1412 } 1413 1414 /** 1415 * wq_worker_sleeping - a worker is going to sleep 1416 * @task: task going to sleep 1417 * 1418 * This function is called from schedule() when a busy worker is 1419 * going to sleep. 1420 */ 1421 void wq_worker_sleeping(struct task_struct *task) 1422 { 1423 struct worker *worker = kthread_data(task); 1424 struct worker_pool *pool; 1425 1426 /* 1427 * Rescuers, which may not have all the fields set up like normal 1428 * workers, also reach here, let's not access anything before 1429 * checking NOT_RUNNING. 1430 */ 1431 if (worker->flags & WORKER_NOT_RUNNING) 1432 return; 1433 1434 pool = worker->pool; 1435 1436 /* Return if preempted before wq_worker_running() was reached */ 1437 if (READ_ONCE(worker->sleeping)) 1438 return; 1439 1440 WRITE_ONCE(worker->sleeping, 1); 1441 raw_spin_lock_irq(&pool->lock); 1442 1443 /* 1444 * Recheck in case unbind_workers() preempted us. We don't 1445 * want to decrement nr_running after the worker is unbound 1446 * and nr_running has been reset. 1447 */ 1448 if (worker->flags & WORKER_NOT_RUNNING) { 1449 raw_spin_unlock_irq(&pool->lock); 1450 return; 1451 } 1452 1453 pool->nr_running--; 1454 if (kick_pool(pool)) 1455 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1456 1457 raw_spin_unlock_irq(&pool->lock); 1458 } 1459 1460 /** 1461 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1462 * @task: task currently running 1463 * 1464 * Called from sched_tick(). We're in the IRQ context and the current 1465 * worker's fields which follow the 'K' locking rule can be accessed safely. 1466 */ 1467 void wq_worker_tick(struct task_struct *task) 1468 { 1469 struct worker *worker = kthread_data(task); 1470 struct pool_workqueue *pwq = worker->current_pwq; 1471 struct worker_pool *pool = worker->pool; 1472 1473 if (!pwq) 1474 return; 1475 1476 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1477 1478 if (!wq_cpu_intensive_thresh_us) 1479 return; 1480 1481 /* 1482 * If the current worker is concurrency managed and hogged the CPU for 1483 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1484 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1485 * 1486 * Set @worker->sleeping means that @worker is in the process of 1487 * switching out voluntarily and won't be contributing to 1488 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1489 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1490 * double decrements. The task is releasing the CPU anyway. Let's skip. 1491 * We probably want to make this prettier in the future. 1492 */ 1493 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1494 worker->task->se.sum_exec_runtime - worker->current_at < 1495 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1496 return; 1497 1498 raw_spin_lock(&pool->lock); 1499 1500 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1501 wq_cpu_intensive_report(worker->current_func); 1502 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1503 1504 if (kick_pool(pool)) 1505 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1506 1507 raw_spin_unlock(&pool->lock); 1508 } 1509 1510 /** 1511 * wq_worker_last_func - retrieve worker's last work function 1512 * @task: Task to retrieve last work function of. 1513 * 1514 * Determine the last function a worker executed. This is called from 1515 * the scheduler to get a worker's last known identity. 1516 * 1517 * CONTEXT: 1518 * raw_spin_lock_irq(rq->lock) 1519 * 1520 * This function is called during schedule() when a kworker is going 1521 * to sleep. It's used by psi to identify aggregation workers during 1522 * dequeuing, to allow periodic aggregation to shut-off when that 1523 * worker is the last task in the system or cgroup to go to sleep. 1524 * 1525 * As this function doesn't involve any workqueue-related locking, it 1526 * only returns stable values when called from inside the scheduler's 1527 * queuing and dequeuing paths, when @task, which must be a kworker, 1528 * is guaranteed to not be processing any works. 1529 * 1530 * Return: 1531 * The last work function %current executed as a worker, NULL if it 1532 * hasn't executed any work yet. 1533 */ 1534 work_func_t wq_worker_last_func(struct task_struct *task) 1535 { 1536 struct worker *worker = kthread_data(task); 1537 1538 return worker->last_func; 1539 } 1540 1541 /** 1542 * wq_node_nr_active - Determine wq_node_nr_active to use 1543 * @wq: workqueue of interest 1544 * @node: NUMA node, can be %NUMA_NO_NODE 1545 * 1546 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1547 * 1548 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1549 * 1550 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1551 * 1552 * - Otherwise, node_nr_active[@node]. 1553 */ 1554 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1555 int node) 1556 { 1557 if (!(wq->flags & WQ_UNBOUND)) 1558 return NULL; 1559 1560 if (node == NUMA_NO_NODE) 1561 node = nr_node_ids; 1562 1563 return wq->node_nr_active[node]; 1564 } 1565 1566 /** 1567 * wq_update_node_max_active - Update per-node max_actives to use 1568 * @wq: workqueue to update 1569 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1570 * 1571 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1572 * distributed among nodes according to the proportions of numbers of online 1573 * cpus. The result is always between @wq->min_active and max_active. 1574 */ 1575 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1576 { 1577 struct cpumask *effective = unbound_effective_cpumask(wq); 1578 int min_active = READ_ONCE(wq->min_active); 1579 int max_active = READ_ONCE(wq->max_active); 1580 int total_cpus, node; 1581 1582 lockdep_assert_held(&wq->mutex); 1583 1584 if (!wq_topo_initialized) 1585 return; 1586 1587 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1588 off_cpu = -1; 1589 1590 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1591 if (off_cpu >= 0) 1592 total_cpus--; 1593 1594 /* If all CPUs of the wq get offline, use the default values */ 1595 if (unlikely(!total_cpus)) { 1596 for_each_node(node) 1597 wq_node_nr_active(wq, node)->max = min_active; 1598 1599 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1600 return; 1601 } 1602 1603 for_each_node(node) { 1604 int node_cpus; 1605 1606 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1607 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1608 node_cpus--; 1609 1610 wq_node_nr_active(wq, node)->max = 1611 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1612 min_active, max_active); 1613 } 1614 1615 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1616 } 1617 1618 /** 1619 * get_pwq - get an extra reference on the specified pool_workqueue 1620 * @pwq: pool_workqueue to get 1621 * 1622 * Obtain an extra reference on @pwq. The caller should guarantee that 1623 * @pwq has positive refcnt and be holding the matching pool->lock. 1624 */ 1625 static void get_pwq(struct pool_workqueue *pwq) 1626 { 1627 lockdep_assert_held(&pwq->pool->lock); 1628 WARN_ON_ONCE(pwq->refcnt <= 0); 1629 pwq->refcnt++; 1630 } 1631 1632 /** 1633 * put_pwq - put a pool_workqueue reference 1634 * @pwq: pool_workqueue to put 1635 * 1636 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1637 * destruction. The caller should be holding the matching pool->lock. 1638 */ 1639 static void put_pwq(struct pool_workqueue *pwq) 1640 { 1641 lockdep_assert_held(&pwq->pool->lock); 1642 if (likely(--pwq->refcnt)) 1643 return; 1644 /* 1645 * @pwq can't be released under pool->lock, bounce to a dedicated 1646 * kthread_worker to avoid A-A deadlocks. 1647 */ 1648 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1649 } 1650 1651 /** 1652 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1653 * @pwq: pool_workqueue to put (can be %NULL) 1654 * 1655 * put_pwq() with locking. This function also allows %NULL @pwq. 1656 */ 1657 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1658 { 1659 if (pwq) { 1660 /* 1661 * As both pwqs and pools are RCU protected, the 1662 * following lock operations are safe. 1663 */ 1664 raw_spin_lock_irq(&pwq->pool->lock); 1665 put_pwq(pwq); 1666 raw_spin_unlock_irq(&pwq->pool->lock); 1667 } 1668 } 1669 1670 static bool pwq_is_empty(struct pool_workqueue *pwq) 1671 { 1672 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1673 } 1674 1675 static void __pwq_activate_work(struct pool_workqueue *pwq, 1676 struct work_struct *work) 1677 { 1678 unsigned long *wdb = work_data_bits(work); 1679 1680 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1681 trace_workqueue_activate_work(work); 1682 if (list_empty(&pwq->pool->worklist)) 1683 pwq->pool->watchdog_ts = jiffies; 1684 move_linked_works(work, &pwq->pool->worklist, NULL); 1685 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1686 } 1687 1688 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1689 { 1690 int max = READ_ONCE(nna->max); 1691 1692 while (true) { 1693 int old, tmp; 1694 1695 old = atomic_read(&nna->nr); 1696 if (old >= max) 1697 return false; 1698 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1699 if (tmp == old) 1700 return true; 1701 } 1702 } 1703 1704 /** 1705 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1706 * @pwq: pool_workqueue of interest 1707 * @fill: max_active may have increased, try to increase concurrency level 1708 * 1709 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1710 * successfully obtained. %false otherwise. 1711 */ 1712 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1713 { 1714 struct workqueue_struct *wq = pwq->wq; 1715 struct worker_pool *pool = pwq->pool; 1716 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1717 bool obtained = false; 1718 1719 lockdep_assert_held(&pool->lock); 1720 1721 if (!nna) { 1722 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1723 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1724 goto out; 1725 } 1726 1727 if (unlikely(pwq->plugged)) 1728 return false; 1729 1730 /* 1731 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1732 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1733 * concurrency level. Don't jump the line. 1734 * 1735 * We need to ignore the pending test after max_active has increased as 1736 * pwq_dec_nr_active() can only maintain the concurrency level but not 1737 * increase it. This is indicated by @fill. 1738 */ 1739 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1740 goto out; 1741 1742 obtained = tryinc_node_nr_active(nna); 1743 if (obtained) 1744 goto out; 1745 1746 /* 1747 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1748 * and try again. The smp_mb() is paired with the implied memory barrier 1749 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1750 * we see the decremented $nna->nr or they see non-empty 1751 * $nna->pending_pwqs. 1752 */ 1753 raw_spin_lock(&nna->lock); 1754 1755 if (list_empty(&pwq->pending_node)) 1756 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1757 else if (likely(!fill)) 1758 goto out_unlock; 1759 1760 smp_mb(); 1761 1762 obtained = tryinc_node_nr_active(nna); 1763 1764 /* 1765 * If @fill, @pwq might have already been pending. Being spuriously 1766 * pending in cold paths doesn't affect anything. Let's leave it be. 1767 */ 1768 if (obtained && likely(!fill)) 1769 list_del_init(&pwq->pending_node); 1770 1771 out_unlock: 1772 raw_spin_unlock(&nna->lock); 1773 out: 1774 if (obtained) 1775 pwq->nr_active++; 1776 return obtained; 1777 } 1778 1779 /** 1780 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1781 * @pwq: pool_workqueue of interest 1782 * @fill: max_active may have increased, try to increase concurrency level 1783 * 1784 * Activate the first inactive work item of @pwq if available and allowed by 1785 * max_active limit. 1786 * 1787 * Returns %true if an inactive work item has been activated. %false if no 1788 * inactive work item is found or max_active limit is reached. 1789 */ 1790 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1791 { 1792 struct work_struct *work = 1793 list_first_entry_or_null(&pwq->inactive_works, 1794 struct work_struct, entry); 1795 1796 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1797 __pwq_activate_work(pwq, work); 1798 return true; 1799 } else { 1800 return false; 1801 } 1802 } 1803 1804 /** 1805 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1806 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1807 * 1808 * This function should only be called for ordered workqueues where only the 1809 * oldest pwq is unplugged, the others are plugged to suspend execution to 1810 * ensure proper work item ordering:: 1811 * 1812 * dfl_pwq --------------+ [P] - plugged 1813 * | 1814 * v 1815 * pwqs -> A -> B [P] -> C [P] (newest) 1816 * | | | 1817 * 1 3 5 1818 * | | | 1819 * 2 4 6 1820 * 1821 * When the oldest pwq is drained and removed, this function should be called 1822 * to unplug the next oldest one to start its work item execution. Note that 1823 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1824 * the list is the oldest. 1825 */ 1826 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1827 { 1828 struct pool_workqueue *pwq; 1829 1830 lockdep_assert_held(&wq->mutex); 1831 1832 /* Caller should make sure that pwqs isn't empty before calling */ 1833 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1834 pwqs_node); 1835 raw_spin_lock_irq(&pwq->pool->lock); 1836 if (pwq->plugged) { 1837 pwq->plugged = false; 1838 if (pwq_activate_first_inactive(pwq, true)) 1839 kick_pool(pwq->pool); 1840 } 1841 raw_spin_unlock_irq(&pwq->pool->lock); 1842 } 1843 1844 /** 1845 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1846 * @nna: wq_node_nr_active to activate a pending pwq for 1847 * @caller_pool: worker_pool the caller is locking 1848 * 1849 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1850 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1851 */ 1852 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1853 struct worker_pool *caller_pool) 1854 { 1855 struct worker_pool *locked_pool = caller_pool; 1856 struct pool_workqueue *pwq; 1857 struct work_struct *work; 1858 1859 lockdep_assert_held(&caller_pool->lock); 1860 1861 raw_spin_lock(&nna->lock); 1862 retry: 1863 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1864 struct pool_workqueue, pending_node); 1865 if (!pwq) 1866 goto out_unlock; 1867 1868 /* 1869 * If @pwq is for a different pool than @locked_pool, we need to lock 1870 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1871 * / lock dance. For that, we also need to release @nna->lock as it's 1872 * nested inside pool locks. 1873 */ 1874 if (pwq->pool != locked_pool) { 1875 raw_spin_unlock(&locked_pool->lock); 1876 locked_pool = pwq->pool; 1877 if (!raw_spin_trylock(&locked_pool->lock)) { 1878 raw_spin_unlock(&nna->lock); 1879 raw_spin_lock(&locked_pool->lock); 1880 raw_spin_lock(&nna->lock); 1881 goto retry; 1882 } 1883 } 1884 1885 /* 1886 * $pwq may not have any inactive work items due to e.g. cancellations. 1887 * Drop it from pending_pwqs and see if there's another one. 1888 */ 1889 work = list_first_entry_or_null(&pwq->inactive_works, 1890 struct work_struct, entry); 1891 if (!work) { 1892 list_del_init(&pwq->pending_node); 1893 goto retry; 1894 } 1895 1896 /* 1897 * Acquire an nr_active count and activate the inactive work item. If 1898 * $pwq still has inactive work items, rotate it to the end of the 1899 * pending_pwqs so that we round-robin through them. This means that 1900 * inactive work items are not activated in queueing order which is fine 1901 * given that there has never been any ordering across different pwqs. 1902 */ 1903 if (likely(tryinc_node_nr_active(nna))) { 1904 pwq->nr_active++; 1905 __pwq_activate_work(pwq, work); 1906 1907 if (list_empty(&pwq->inactive_works)) 1908 list_del_init(&pwq->pending_node); 1909 else 1910 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1911 1912 /* if activating a foreign pool, make sure it's running */ 1913 if (pwq->pool != caller_pool) 1914 kick_pool(pwq->pool); 1915 } 1916 1917 out_unlock: 1918 raw_spin_unlock(&nna->lock); 1919 if (locked_pool != caller_pool) { 1920 raw_spin_unlock(&locked_pool->lock); 1921 raw_spin_lock(&caller_pool->lock); 1922 } 1923 } 1924 1925 /** 1926 * pwq_dec_nr_active - Retire an active count 1927 * @pwq: pool_workqueue of interest 1928 * 1929 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1930 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1931 */ 1932 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1933 { 1934 struct worker_pool *pool = pwq->pool; 1935 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1936 1937 lockdep_assert_held(&pool->lock); 1938 1939 /* 1940 * @pwq->nr_active should be decremented for both percpu and unbound 1941 * workqueues. 1942 */ 1943 pwq->nr_active--; 1944 1945 /* 1946 * For a percpu workqueue, it's simple. Just need to kick the first 1947 * inactive work item on @pwq itself. 1948 */ 1949 if (!nna) { 1950 pwq_activate_first_inactive(pwq, false); 1951 return; 1952 } 1953 1954 /* 1955 * If @pwq is for an unbound workqueue, it's more complicated because 1956 * multiple pwqs and pools may be sharing the nr_active count. When a 1957 * pwq needs to wait for an nr_active count, it puts itself on 1958 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1959 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1960 * guarantee that either we see non-empty pending_pwqs or they see 1961 * decremented $nna->nr. 1962 * 1963 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1964 * max_active gets updated. However, it is guaranteed to be equal to or 1965 * larger than @pwq->wq->min_active which is above zero unless freezing. 1966 * This maintains the forward progress guarantee. 1967 */ 1968 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1969 return; 1970 1971 if (!list_empty(&nna->pending_pwqs)) 1972 node_activate_pending_pwq(nna, pool); 1973 } 1974 1975 /** 1976 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1977 * @pwq: pwq of interest 1978 * @work_data: work_data of work which left the queue 1979 * 1980 * A work either has completed or is removed from pending queue, 1981 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1982 * 1983 * NOTE: 1984 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1985 * and thus should be called after all other state updates for the in-flight 1986 * work item is complete. 1987 * 1988 * CONTEXT: 1989 * raw_spin_lock_irq(pool->lock). 1990 */ 1991 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1992 { 1993 int color = get_work_color(work_data); 1994 1995 if (!(work_data & WORK_STRUCT_INACTIVE)) 1996 pwq_dec_nr_active(pwq); 1997 1998 pwq->nr_in_flight[color]--; 1999 2000 /* is flush in progress and are we at the flushing tip? */ 2001 if (likely(pwq->flush_color != color)) 2002 goto out_put; 2003 2004 /* are there still in-flight works? */ 2005 if (pwq->nr_in_flight[color]) 2006 goto out_put; 2007 2008 /* this pwq is done, clear flush_color */ 2009 pwq->flush_color = -1; 2010 2011 /* 2012 * If this was the last pwq, wake up the first flusher. It 2013 * will handle the rest. 2014 */ 2015 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2016 complete(&pwq->wq->first_flusher->done); 2017 out_put: 2018 put_pwq(pwq); 2019 } 2020 2021 /** 2022 * try_to_grab_pending - steal work item from worklist and disable irq 2023 * @work: work item to steal 2024 * @cflags: %WORK_CANCEL_ flags 2025 * @irq_flags: place to store irq state 2026 * 2027 * Try to grab PENDING bit of @work. This function can handle @work in any 2028 * stable state - idle, on timer or on worklist. 2029 * 2030 * Return: 2031 * 2032 * ======== ================================================================ 2033 * 1 if @work was pending and we successfully stole PENDING 2034 * 0 if @work was idle and we claimed PENDING 2035 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2036 * ======== ================================================================ 2037 * 2038 * Note: 2039 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2040 * interrupted while holding PENDING and @work off queue, irq must be 2041 * disabled on entry. This, combined with delayed_work->timer being 2042 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2043 * 2044 * On successful return, >= 0, irq is disabled and the caller is 2045 * responsible for releasing it using local_irq_restore(*@irq_flags). 2046 * 2047 * This function is safe to call from any context including IRQ handler. 2048 */ 2049 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2050 unsigned long *irq_flags) 2051 { 2052 struct worker_pool *pool; 2053 struct pool_workqueue *pwq; 2054 2055 local_irq_save(*irq_flags); 2056 2057 /* try to steal the timer if it exists */ 2058 if (cflags & WORK_CANCEL_DELAYED) { 2059 struct delayed_work *dwork = to_delayed_work(work); 2060 2061 /* 2062 * dwork->timer is irqsafe. If del_timer() fails, it's 2063 * guaranteed that the timer is not queued anywhere and not 2064 * running on the local CPU. 2065 */ 2066 if (likely(del_timer(&dwork->timer))) 2067 return 1; 2068 } 2069 2070 /* try to claim PENDING the normal way */ 2071 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2072 return 0; 2073 2074 rcu_read_lock(); 2075 /* 2076 * The queueing is in progress, or it is already queued. Try to 2077 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2078 */ 2079 pool = get_work_pool(work); 2080 if (!pool) 2081 goto fail; 2082 2083 raw_spin_lock(&pool->lock); 2084 /* 2085 * work->data is guaranteed to point to pwq only while the work 2086 * item is queued on pwq->wq, and both updating work->data to point 2087 * to pwq on queueing and to pool on dequeueing are done under 2088 * pwq->pool->lock. This in turn guarantees that, if work->data 2089 * points to pwq which is associated with a locked pool, the work 2090 * item is currently queued on that pool. 2091 */ 2092 pwq = get_work_pwq(work); 2093 if (pwq && pwq->pool == pool) { 2094 unsigned long work_data = *work_data_bits(work); 2095 2096 debug_work_deactivate(work); 2097 2098 /* 2099 * A cancelable inactive work item must be in the 2100 * pwq->inactive_works since a queued barrier can't be 2101 * canceled (see the comments in insert_wq_barrier()). 2102 * 2103 * An inactive work item cannot be deleted directly because 2104 * it might have linked barrier work items which, if left 2105 * on the inactive_works list, will confuse pwq->nr_active 2106 * management later on and cause stall. Move the linked 2107 * barrier work items to the worklist when deleting the grabbed 2108 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2109 * it doesn't participate in nr_active management in later 2110 * pwq_dec_nr_in_flight(). 2111 */ 2112 if (work_data & WORK_STRUCT_INACTIVE) 2113 move_linked_works(work, &pwq->pool->worklist, NULL); 2114 2115 list_del_init(&work->entry); 2116 2117 /* 2118 * work->data points to pwq iff queued. Let's point to pool. As 2119 * this destroys work->data needed by the next step, stash it. 2120 */ 2121 set_work_pool_and_keep_pending(work, pool->id, 2122 pool_offq_flags(pool)); 2123 2124 /* must be the last step, see the function comment */ 2125 pwq_dec_nr_in_flight(pwq, work_data); 2126 2127 raw_spin_unlock(&pool->lock); 2128 rcu_read_unlock(); 2129 return 1; 2130 } 2131 raw_spin_unlock(&pool->lock); 2132 fail: 2133 rcu_read_unlock(); 2134 local_irq_restore(*irq_flags); 2135 return -EAGAIN; 2136 } 2137 2138 /** 2139 * work_grab_pending - steal work item from worklist and disable irq 2140 * @work: work item to steal 2141 * @cflags: %WORK_CANCEL_ flags 2142 * @irq_flags: place to store IRQ state 2143 * 2144 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2145 * or on worklist. 2146 * 2147 * Can be called from any context. IRQ is disabled on return with IRQ state 2148 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2149 * local_irq_restore(). 2150 * 2151 * Returns %true if @work was pending. %false if idle. 2152 */ 2153 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2154 unsigned long *irq_flags) 2155 { 2156 int ret; 2157 2158 while (true) { 2159 ret = try_to_grab_pending(work, cflags, irq_flags); 2160 if (ret >= 0) 2161 return ret; 2162 cpu_relax(); 2163 } 2164 } 2165 2166 /** 2167 * insert_work - insert a work into a pool 2168 * @pwq: pwq @work belongs to 2169 * @work: work to insert 2170 * @head: insertion point 2171 * @extra_flags: extra WORK_STRUCT_* flags to set 2172 * 2173 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2174 * work_struct flags. 2175 * 2176 * CONTEXT: 2177 * raw_spin_lock_irq(pool->lock). 2178 */ 2179 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2180 struct list_head *head, unsigned int extra_flags) 2181 { 2182 debug_work_activate(work); 2183 2184 /* record the work call stack in order to print it in KASAN reports */ 2185 kasan_record_aux_stack_noalloc(work); 2186 2187 /* we own @work, set data and link */ 2188 set_work_pwq(work, pwq, extra_flags); 2189 list_add_tail(&work->entry, head); 2190 get_pwq(pwq); 2191 } 2192 2193 /* 2194 * Test whether @work is being queued from another work executing on the 2195 * same workqueue. 2196 */ 2197 static bool is_chained_work(struct workqueue_struct *wq) 2198 { 2199 struct worker *worker; 2200 2201 worker = current_wq_worker(); 2202 /* 2203 * Return %true iff I'm a worker executing a work item on @wq. If 2204 * I'm @worker, it's safe to dereference it without locking. 2205 */ 2206 return worker && worker->current_pwq->wq == wq; 2207 } 2208 2209 /* 2210 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2211 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2212 * avoid perturbing sensitive tasks. 2213 */ 2214 static int wq_select_unbound_cpu(int cpu) 2215 { 2216 int new_cpu; 2217 2218 if (likely(!wq_debug_force_rr_cpu)) { 2219 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2220 return cpu; 2221 } else { 2222 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2223 } 2224 2225 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2226 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2227 if (unlikely(new_cpu >= nr_cpu_ids)) { 2228 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2229 if (unlikely(new_cpu >= nr_cpu_ids)) 2230 return cpu; 2231 } 2232 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2233 2234 return new_cpu; 2235 } 2236 2237 static void __queue_work(int cpu, struct workqueue_struct *wq, 2238 struct work_struct *work) 2239 { 2240 struct pool_workqueue *pwq; 2241 struct worker_pool *last_pool, *pool; 2242 unsigned int work_flags; 2243 unsigned int req_cpu = cpu; 2244 2245 /* 2246 * While a work item is PENDING && off queue, a task trying to 2247 * steal the PENDING will busy-loop waiting for it to either get 2248 * queued or lose PENDING. Grabbing PENDING and queueing should 2249 * happen with IRQ disabled. 2250 */ 2251 lockdep_assert_irqs_disabled(); 2252 2253 /* 2254 * For a draining wq, only works from the same workqueue are 2255 * allowed. The __WQ_DESTROYING helps to spot the issue that 2256 * queues a new work item to a wq after destroy_workqueue(wq). 2257 */ 2258 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2259 WARN_ON_ONCE(!is_chained_work(wq)))) 2260 return; 2261 rcu_read_lock(); 2262 retry: 2263 /* pwq which will be used unless @work is executing elsewhere */ 2264 if (req_cpu == WORK_CPU_UNBOUND) { 2265 if (wq->flags & WQ_UNBOUND) 2266 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2267 else 2268 cpu = raw_smp_processor_id(); 2269 } 2270 2271 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2272 pool = pwq->pool; 2273 2274 /* 2275 * If @work was previously on a different pool, it might still be 2276 * running there, in which case the work needs to be queued on that 2277 * pool to guarantee non-reentrancy. 2278 * 2279 * For ordered workqueue, work items must be queued on the newest pwq 2280 * for accurate order management. Guaranteed order also guarantees 2281 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2282 */ 2283 last_pool = get_work_pool(work); 2284 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2285 struct worker *worker; 2286 2287 raw_spin_lock(&last_pool->lock); 2288 2289 worker = find_worker_executing_work(last_pool, work); 2290 2291 if (worker && worker->current_pwq->wq == wq) { 2292 pwq = worker->current_pwq; 2293 pool = pwq->pool; 2294 WARN_ON_ONCE(pool != last_pool); 2295 } else { 2296 /* meh... not running there, queue here */ 2297 raw_spin_unlock(&last_pool->lock); 2298 raw_spin_lock(&pool->lock); 2299 } 2300 } else { 2301 raw_spin_lock(&pool->lock); 2302 } 2303 2304 /* 2305 * pwq is determined and locked. For unbound pools, we could have raced 2306 * with pwq release and it could already be dead. If its refcnt is zero, 2307 * repeat pwq selection. Note that unbound pwqs never die without 2308 * another pwq replacing it in cpu_pwq or while work items are executing 2309 * on it, so the retrying is guaranteed to make forward-progress. 2310 */ 2311 if (unlikely(!pwq->refcnt)) { 2312 if (wq->flags & WQ_UNBOUND) { 2313 raw_spin_unlock(&pool->lock); 2314 cpu_relax(); 2315 goto retry; 2316 } 2317 /* oops */ 2318 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2319 wq->name, cpu); 2320 } 2321 2322 /* pwq determined, queue */ 2323 trace_workqueue_queue_work(req_cpu, pwq, work); 2324 2325 if (WARN_ON(!list_empty(&work->entry))) 2326 goto out; 2327 2328 pwq->nr_in_flight[pwq->work_color]++; 2329 work_flags = work_color_to_flags(pwq->work_color); 2330 2331 /* 2332 * Limit the number of concurrently active work items to max_active. 2333 * @work must also queue behind existing inactive work items to maintain 2334 * ordering when max_active changes. See wq_adjust_max_active(). 2335 */ 2336 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2337 if (list_empty(&pool->worklist)) 2338 pool->watchdog_ts = jiffies; 2339 2340 trace_workqueue_activate_work(work); 2341 insert_work(pwq, work, &pool->worklist, work_flags); 2342 kick_pool(pool); 2343 } else { 2344 work_flags |= WORK_STRUCT_INACTIVE; 2345 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2346 } 2347 2348 out: 2349 raw_spin_unlock(&pool->lock); 2350 rcu_read_unlock(); 2351 } 2352 2353 static bool clear_pending_if_disabled(struct work_struct *work) 2354 { 2355 unsigned long data = *work_data_bits(work); 2356 struct work_offq_data offqd; 2357 2358 if (likely((data & WORK_STRUCT_PWQ) || 2359 !(data & WORK_OFFQ_DISABLE_MASK))) 2360 return false; 2361 2362 work_offqd_unpack(&offqd, data); 2363 set_work_pool_and_clear_pending(work, offqd.pool_id, 2364 work_offqd_pack_flags(&offqd)); 2365 return true; 2366 } 2367 2368 /** 2369 * queue_work_on - queue work on specific cpu 2370 * @cpu: CPU number to execute work on 2371 * @wq: workqueue to use 2372 * @work: work to queue 2373 * 2374 * We queue the work to a specific CPU, the caller must ensure it 2375 * can't go away. Callers that fail to ensure that the specified 2376 * CPU cannot go away will execute on a randomly chosen CPU. 2377 * But note well that callers specifying a CPU that never has been 2378 * online will get a splat. 2379 * 2380 * Return: %false if @work was already on a queue, %true otherwise. 2381 */ 2382 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2383 struct work_struct *work) 2384 { 2385 bool ret = false; 2386 unsigned long irq_flags; 2387 2388 local_irq_save(irq_flags); 2389 2390 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2391 !clear_pending_if_disabled(work)) { 2392 __queue_work(cpu, wq, work); 2393 ret = true; 2394 } 2395 2396 local_irq_restore(irq_flags); 2397 return ret; 2398 } 2399 EXPORT_SYMBOL(queue_work_on); 2400 2401 /** 2402 * select_numa_node_cpu - Select a CPU based on NUMA node 2403 * @node: NUMA node ID that we want to select a CPU from 2404 * 2405 * This function will attempt to find a "random" cpu available on a given 2406 * node. If there are no CPUs available on the given node it will return 2407 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2408 * available CPU if we need to schedule this work. 2409 */ 2410 static int select_numa_node_cpu(int node) 2411 { 2412 int cpu; 2413 2414 /* Delay binding to CPU if node is not valid or online */ 2415 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2416 return WORK_CPU_UNBOUND; 2417 2418 /* Use local node/cpu if we are already there */ 2419 cpu = raw_smp_processor_id(); 2420 if (node == cpu_to_node(cpu)) 2421 return cpu; 2422 2423 /* Use "random" otherwise know as "first" online CPU of node */ 2424 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2425 2426 /* If CPU is valid return that, otherwise just defer */ 2427 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2428 } 2429 2430 /** 2431 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2432 * @node: NUMA node that we are targeting the work for 2433 * @wq: workqueue to use 2434 * @work: work to queue 2435 * 2436 * We queue the work to a "random" CPU within a given NUMA node. The basic 2437 * idea here is to provide a way to somehow associate work with a given 2438 * NUMA node. 2439 * 2440 * This function will only make a best effort attempt at getting this onto 2441 * the right NUMA node. If no node is requested or the requested node is 2442 * offline then we just fall back to standard queue_work behavior. 2443 * 2444 * Currently the "random" CPU ends up being the first available CPU in the 2445 * intersection of cpu_online_mask and the cpumask of the node, unless we 2446 * are running on the node. In that case we just use the current CPU. 2447 * 2448 * Return: %false if @work was already on a queue, %true otherwise. 2449 */ 2450 bool queue_work_node(int node, struct workqueue_struct *wq, 2451 struct work_struct *work) 2452 { 2453 unsigned long irq_flags; 2454 bool ret = false; 2455 2456 /* 2457 * This current implementation is specific to unbound workqueues. 2458 * Specifically we only return the first available CPU for a given 2459 * node instead of cycling through individual CPUs within the node. 2460 * 2461 * If this is used with a per-cpu workqueue then the logic in 2462 * workqueue_select_cpu_near would need to be updated to allow for 2463 * some round robin type logic. 2464 */ 2465 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2466 2467 local_irq_save(irq_flags); 2468 2469 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2470 !clear_pending_if_disabled(work)) { 2471 int cpu = select_numa_node_cpu(node); 2472 2473 __queue_work(cpu, wq, work); 2474 ret = true; 2475 } 2476 2477 local_irq_restore(irq_flags); 2478 return ret; 2479 } 2480 EXPORT_SYMBOL_GPL(queue_work_node); 2481 2482 void delayed_work_timer_fn(struct timer_list *t) 2483 { 2484 struct delayed_work *dwork = from_timer(dwork, t, timer); 2485 2486 /* should have been called from irqsafe timer with irq already off */ 2487 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2488 } 2489 EXPORT_SYMBOL(delayed_work_timer_fn); 2490 2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2492 struct delayed_work *dwork, unsigned long delay) 2493 { 2494 struct timer_list *timer = &dwork->timer; 2495 struct work_struct *work = &dwork->work; 2496 2497 WARN_ON_ONCE(!wq); 2498 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2499 WARN_ON_ONCE(timer_pending(timer)); 2500 WARN_ON_ONCE(!list_empty(&work->entry)); 2501 2502 /* 2503 * If @delay is 0, queue @dwork->work immediately. This is for 2504 * both optimization and correctness. The earliest @timer can 2505 * expire is on the closest next tick and delayed_work users depend 2506 * on that there's no such delay when @delay is 0. 2507 */ 2508 if (!delay) { 2509 __queue_work(cpu, wq, &dwork->work); 2510 return; 2511 } 2512 2513 dwork->wq = wq; 2514 dwork->cpu = cpu; 2515 timer->expires = jiffies + delay; 2516 2517 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2518 /* If the current cpu is a housekeeping cpu, use it. */ 2519 cpu = smp_processor_id(); 2520 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2521 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2522 add_timer_on(timer, cpu); 2523 } else { 2524 if (likely(cpu == WORK_CPU_UNBOUND)) 2525 add_timer_global(timer); 2526 else 2527 add_timer_on(timer, cpu); 2528 } 2529 } 2530 2531 /** 2532 * queue_delayed_work_on - queue work on specific CPU after delay 2533 * @cpu: CPU number to execute work on 2534 * @wq: workqueue to use 2535 * @dwork: work to queue 2536 * @delay: number of jiffies to wait before queueing 2537 * 2538 * Return: %false if @work was already on a queue, %true otherwise. If 2539 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2540 * execution. 2541 */ 2542 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2543 struct delayed_work *dwork, unsigned long delay) 2544 { 2545 struct work_struct *work = &dwork->work; 2546 bool ret = false; 2547 unsigned long irq_flags; 2548 2549 /* read the comment in __queue_work() */ 2550 local_irq_save(irq_flags); 2551 2552 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2553 !clear_pending_if_disabled(work)) { 2554 __queue_delayed_work(cpu, wq, dwork, delay); 2555 ret = true; 2556 } 2557 2558 local_irq_restore(irq_flags); 2559 return ret; 2560 } 2561 EXPORT_SYMBOL(queue_delayed_work_on); 2562 2563 /** 2564 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2565 * @cpu: CPU number to execute work on 2566 * @wq: workqueue to use 2567 * @dwork: work to queue 2568 * @delay: number of jiffies to wait before queueing 2569 * 2570 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2571 * modify @dwork's timer so that it expires after @delay. If @delay is 2572 * zero, @work is guaranteed to be scheduled immediately regardless of its 2573 * current state. 2574 * 2575 * Return: %false if @dwork was idle and queued, %true if @dwork was 2576 * pending and its timer was modified. 2577 * 2578 * This function is safe to call from any context including IRQ handler. 2579 * See try_to_grab_pending() for details. 2580 */ 2581 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2582 struct delayed_work *dwork, unsigned long delay) 2583 { 2584 unsigned long irq_flags; 2585 bool ret; 2586 2587 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2588 2589 if (!clear_pending_if_disabled(&dwork->work)) 2590 __queue_delayed_work(cpu, wq, dwork, delay); 2591 2592 local_irq_restore(irq_flags); 2593 return ret; 2594 } 2595 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2596 2597 static void rcu_work_rcufn(struct rcu_head *rcu) 2598 { 2599 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2600 2601 /* read the comment in __queue_work() */ 2602 local_irq_disable(); 2603 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2604 local_irq_enable(); 2605 } 2606 2607 /** 2608 * queue_rcu_work - queue work after a RCU grace period 2609 * @wq: workqueue to use 2610 * @rwork: work to queue 2611 * 2612 * Return: %false if @rwork was already pending, %true otherwise. Note 2613 * that a full RCU grace period is guaranteed only after a %true return. 2614 * While @rwork is guaranteed to be executed after a %false return, the 2615 * execution may happen before a full RCU grace period has passed. 2616 */ 2617 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2618 { 2619 struct work_struct *work = &rwork->work; 2620 2621 /* 2622 * rcu_work can't be canceled or disabled. Warn if the user reached 2623 * inside @rwork and disabled the inner work. 2624 */ 2625 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2626 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2627 rwork->wq = wq; 2628 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2629 return true; 2630 } 2631 2632 return false; 2633 } 2634 EXPORT_SYMBOL(queue_rcu_work); 2635 2636 static struct worker *alloc_worker(int node) 2637 { 2638 struct worker *worker; 2639 2640 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2641 if (worker) { 2642 INIT_LIST_HEAD(&worker->entry); 2643 INIT_LIST_HEAD(&worker->scheduled); 2644 INIT_LIST_HEAD(&worker->node); 2645 /* on creation a worker is in !idle && prep state */ 2646 worker->flags = WORKER_PREP; 2647 } 2648 return worker; 2649 } 2650 2651 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2652 { 2653 if (pool->cpu < 0 && pool->attrs->affn_strict) 2654 return pool->attrs->__pod_cpumask; 2655 else 2656 return pool->attrs->cpumask; 2657 } 2658 2659 /** 2660 * worker_attach_to_pool() - attach a worker to a pool 2661 * @worker: worker to be attached 2662 * @pool: the target pool 2663 * 2664 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2665 * cpu-binding of @worker are kept coordinated with the pool across 2666 * cpu-[un]hotplugs. 2667 */ 2668 static void worker_attach_to_pool(struct worker *worker, 2669 struct worker_pool *pool) 2670 { 2671 mutex_lock(&wq_pool_attach_mutex); 2672 2673 /* 2674 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2675 * across this function. See the comments above the flag definition for 2676 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2677 */ 2678 if (pool->flags & POOL_DISASSOCIATED) { 2679 worker->flags |= WORKER_UNBOUND; 2680 } else { 2681 WARN_ON_ONCE(pool->flags & POOL_BH); 2682 kthread_set_per_cpu(worker->task, pool->cpu); 2683 } 2684 2685 if (worker->rescue_wq) 2686 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2687 2688 list_add_tail(&worker->node, &pool->workers); 2689 worker->pool = pool; 2690 2691 mutex_unlock(&wq_pool_attach_mutex); 2692 } 2693 2694 static void unbind_worker(struct worker *worker) 2695 { 2696 lockdep_assert_held(&wq_pool_attach_mutex); 2697 2698 kthread_set_per_cpu(worker->task, -1); 2699 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2700 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2701 else 2702 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2703 } 2704 2705 2706 static void detach_worker(struct worker *worker) 2707 { 2708 lockdep_assert_held(&wq_pool_attach_mutex); 2709 2710 unbind_worker(worker); 2711 list_del(&worker->node); 2712 } 2713 2714 /** 2715 * worker_detach_from_pool() - detach a worker from its pool 2716 * @worker: worker which is attached to its pool 2717 * 2718 * Undo the attaching which had been done in worker_attach_to_pool(). The 2719 * caller worker shouldn't access to the pool after detached except it has 2720 * other reference to the pool. 2721 */ 2722 static void worker_detach_from_pool(struct worker *worker) 2723 { 2724 struct worker_pool *pool = worker->pool; 2725 2726 /* there is one permanent BH worker per CPU which should never detach */ 2727 WARN_ON_ONCE(pool->flags & POOL_BH); 2728 2729 mutex_lock(&wq_pool_attach_mutex); 2730 detach_worker(worker); 2731 worker->pool = NULL; 2732 mutex_unlock(&wq_pool_attach_mutex); 2733 2734 /* clear leftover flags without pool->lock after it is detached */ 2735 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2736 } 2737 2738 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2739 struct worker_pool *pool) 2740 { 2741 if (worker->rescue_wq) 2742 return scnprintf(buf, size, "kworker/R-%s", 2743 worker->rescue_wq->name); 2744 2745 if (pool) { 2746 if (pool->cpu >= 0) 2747 return scnprintf(buf, size, "kworker/%d:%d%s", 2748 pool->cpu, worker->id, 2749 pool->attrs->nice < 0 ? "H" : ""); 2750 else 2751 return scnprintf(buf, size, "kworker/u%d:%d", 2752 pool->id, worker->id); 2753 } else { 2754 return scnprintf(buf, size, "kworker/dying"); 2755 } 2756 } 2757 2758 /** 2759 * create_worker - create a new workqueue worker 2760 * @pool: pool the new worker will belong to 2761 * 2762 * Create and start a new worker which is attached to @pool. 2763 * 2764 * CONTEXT: 2765 * Might sleep. Does GFP_KERNEL allocations. 2766 * 2767 * Return: 2768 * Pointer to the newly created worker. 2769 */ 2770 static struct worker *create_worker(struct worker_pool *pool) 2771 { 2772 struct worker *worker; 2773 int id; 2774 2775 /* ID is needed to determine kthread name */ 2776 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2777 if (id < 0) { 2778 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2779 ERR_PTR(id)); 2780 return NULL; 2781 } 2782 2783 worker = alloc_worker(pool->node); 2784 if (!worker) { 2785 pr_err_once("workqueue: Failed to allocate a worker\n"); 2786 goto fail; 2787 } 2788 2789 worker->id = id; 2790 2791 if (!(pool->flags & POOL_BH)) { 2792 char id_buf[WORKER_ID_LEN]; 2793 2794 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2795 worker->task = kthread_create_on_node(worker_thread, worker, 2796 pool->node, "%s", id_buf); 2797 if (IS_ERR(worker->task)) { 2798 if (PTR_ERR(worker->task) == -EINTR) { 2799 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2800 id_buf); 2801 } else { 2802 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2803 worker->task); 2804 } 2805 goto fail; 2806 } 2807 2808 set_user_nice(worker->task, pool->attrs->nice); 2809 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2810 } 2811 2812 /* successful, attach the worker to the pool */ 2813 worker_attach_to_pool(worker, pool); 2814 2815 /* start the newly created worker */ 2816 raw_spin_lock_irq(&pool->lock); 2817 2818 worker->pool->nr_workers++; 2819 worker_enter_idle(worker); 2820 2821 /* 2822 * @worker is waiting on a completion in kthread() and will trigger hung 2823 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2824 * wake it up explicitly. 2825 */ 2826 if (worker->task) 2827 wake_up_process(worker->task); 2828 2829 raw_spin_unlock_irq(&pool->lock); 2830 2831 return worker; 2832 2833 fail: 2834 ida_free(&pool->worker_ida, id); 2835 kfree(worker); 2836 return NULL; 2837 } 2838 2839 static void detach_dying_workers(struct list_head *cull_list) 2840 { 2841 struct worker *worker; 2842 2843 list_for_each_entry(worker, cull_list, entry) 2844 detach_worker(worker); 2845 } 2846 2847 static void reap_dying_workers(struct list_head *cull_list) 2848 { 2849 struct worker *worker, *tmp; 2850 2851 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2852 list_del_init(&worker->entry); 2853 kthread_stop_put(worker->task); 2854 kfree(worker); 2855 } 2856 } 2857 2858 /** 2859 * set_worker_dying - Tag a worker for destruction 2860 * @worker: worker to be destroyed 2861 * @list: transfer worker away from its pool->idle_list and into list 2862 * 2863 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2864 * should be idle. 2865 * 2866 * CONTEXT: 2867 * raw_spin_lock_irq(pool->lock). 2868 */ 2869 static void set_worker_dying(struct worker *worker, struct list_head *list) 2870 { 2871 struct worker_pool *pool = worker->pool; 2872 2873 lockdep_assert_held(&pool->lock); 2874 lockdep_assert_held(&wq_pool_attach_mutex); 2875 2876 /* sanity check frenzy */ 2877 if (WARN_ON(worker->current_work) || 2878 WARN_ON(!list_empty(&worker->scheduled)) || 2879 WARN_ON(!(worker->flags & WORKER_IDLE))) 2880 return; 2881 2882 pool->nr_workers--; 2883 pool->nr_idle--; 2884 2885 worker->flags |= WORKER_DIE; 2886 2887 list_move(&worker->entry, list); 2888 2889 /* get an extra task struct reference for later kthread_stop_put() */ 2890 get_task_struct(worker->task); 2891 } 2892 2893 /** 2894 * idle_worker_timeout - check if some idle workers can now be deleted. 2895 * @t: The pool's idle_timer that just expired 2896 * 2897 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2898 * worker_leave_idle(), as a worker flicking between idle and active while its 2899 * pool is at the too_many_workers() tipping point would cause too much timer 2900 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2901 * it expire and re-evaluate things from there. 2902 */ 2903 static void idle_worker_timeout(struct timer_list *t) 2904 { 2905 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2906 bool do_cull = false; 2907 2908 if (work_pending(&pool->idle_cull_work)) 2909 return; 2910 2911 raw_spin_lock_irq(&pool->lock); 2912 2913 if (too_many_workers(pool)) { 2914 struct worker *worker; 2915 unsigned long expires; 2916 2917 /* idle_list is kept in LIFO order, check the last one */ 2918 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2919 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2920 do_cull = !time_before(jiffies, expires); 2921 2922 if (!do_cull) 2923 mod_timer(&pool->idle_timer, expires); 2924 } 2925 raw_spin_unlock_irq(&pool->lock); 2926 2927 if (do_cull) 2928 queue_work(system_unbound_wq, &pool->idle_cull_work); 2929 } 2930 2931 /** 2932 * idle_cull_fn - cull workers that have been idle for too long. 2933 * @work: the pool's work for handling these idle workers 2934 * 2935 * This goes through a pool's idle workers and gets rid of those that have been 2936 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2937 * 2938 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2939 * culled, so this also resets worker affinity. This requires a sleepable 2940 * context, hence the split between timer callback and work item. 2941 */ 2942 static void idle_cull_fn(struct work_struct *work) 2943 { 2944 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2945 LIST_HEAD(cull_list); 2946 2947 /* 2948 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2949 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2950 * This is required as a previously-preempted worker could run after 2951 * set_worker_dying() has happened but before detach_dying_workers() did. 2952 */ 2953 mutex_lock(&wq_pool_attach_mutex); 2954 raw_spin_lock_irq(&pool->lock); 2955 2956 while (too_many_workers(pool)) { 2957 struct worker *worker; 2958 unsigned long expires; 2959 2960 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2961 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2962 2963 if (time_before(jiffies, expires)) { 2964 mod_timer(&pool->idle_timer, expires); 2965 break; 2966 } 2967 2968 set_worker_dying(worker, &cull_list); 2969 } 2970 2971 raw_spin_unlock_irq(&pool->lock); 2972 detach_dying_workers(&cull_list); 2973 mutex_unlock(&wq_pool_attach_mutex); 2974 2975 reap_dying_workers(&cull_list); 2976 } 2977 2978 static void send_mayday(struct work_struct *work) 2979 { 2980 struct pool_workqueue *pwq = get_work_pwq(work); 2981 struct workqueue_struct *wq = pwq->wq; 2982 2983 lockdep_assert_held(&wq_mayday_lock); 2984 2985 if (!wq->rescuer) 2986 return; 2987 2988 /* mayday mayday mayday */ 2989 if (list_empty(&pwq->mayday_node)) { 2990 /* 2991 * If @pwq is for an unbound wq, its base ref may be put at 2992 * any time due to an attribute change. Pin @pwq until the 2993 * rescuer is done with it. 2994 */ 2995 get_pwq(pwq); 2996 list_add_tail(&pwq->mayday_node, &wq->maydays); 2997 wake_up_process(wq->rescuer->task); 2998 pwq->stats[PWQ_STAT_MAYDAY]++; 2999 } 3000 } 3001 3002 static void pool_mayday_timeout(struct timer_list *t) 3003 { 3004 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3005 struct work_struct *work; 3006 3007 raw_spin_lock_irq(&pool->lock); 3008 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3009 3010 if (need_to_create_worker(pool)) { 3011 /* 3012 * We've been trying to create a new worker but 3013 * haven't been successful. We might be hitting an 3014 * allocation deadlock. Send distress signals to 3015 * rescuers. 3016 */ 3017 list_for_each_entry(work, &pool->worklist, entry) 3018 send_mayday(work); 3019 } 3020 3021 raw_spin_unlock(&wq_mayday_lock); 3022 raw_spin_unlock_irq(&pool->lock); 3023 3024 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3025 } 3026 3027 /** 3028 * maybe_create_worker - create a new worker if necessary 3029 * @pool: pool to create a new worker for 3030 * 3031 * Create a new worker for @pool if necessary. @pool is guaranteed to 3032 * have at least one idle worker on return from this function. If 3033 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3034 * sent to all rescuers with works scheduled on @pool to resolve 3035 * possible allocation deadlock. 3036 * 3037 * On return, need_to_create_worker() is guaranteed to be %false and 3038 * may_start_working() %true. 3039 * 3040 * LOCKING: 3041 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3042 * multiple times. Does GFP_KERNEL allocations. Called only from 3043 * manager. 3044 */ 3045 static void maybe_create_worker(struct worker_pool *pool) 3046 __releases(&pool->lock) 3047 __acquires(&pool->lock) 3048 { 3049 restart: 3050 raw_spin_unlock_irq(&pool->lock); 3051 3052 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3053 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3054 3055 while (true) { 3056 if (create_worker(pool) || !need_to_create_worker(pool)) 3057 break; 3058 3059 schedule_timeout_interruptible(CREATE_COOLDOWN); 3060 3061 if (!need_to_create_worker(pool)) 3062 break; 3063 } 3064 3065 del_timer_sync(&pool->mayday_timer); 3066 raw_spin_lock_irq(&pool->lock); 3067 /* 3068 * This is necessary even after a new worker was just successfully 3069 * created as @pool->lock was dropped and the new worker might have 3070 * already become busy. 3071 */ 3072 if (need_to_create_worker(pool)) 3073 goto restart; 3074 } 3075 3076 /** 3077 * manage_workers - manage worker pool 3078 * @worker: self 3079 * 3080 * Assume the manager role and manage the worker pool @worker belongs 3081 * to. At any given time, there can be only zero or one manager per 3082 * pool. The exclusion is handled automatically by this function. 3083 * 3084 * The caller can safely start processing works on false return. On 3085 * true return, it's guaranteed that need_to_create_worker() is false 3086 * and may_start_working() is true. 3087 * 3088 * CONTEXT: 3089 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3090 * multiple times. Does GFP_KERNEL allocations. 3091 * 3092 * Return: 3093 * %false if the pool doesn't need management and the caller can safely 3094 * start processing works, %true if management function was performed and 3095 * the conditions that the caller verified before calling the function may 3096 * no longer be true. 3097 */ 3098 static bool manage_workers(struct worker *worker) 3099 { 3100 struct worker_pool *pool = worker->pool; 3101 3102 if (pool->flags & POOL_MANAGER_ACTIVE) 3103 return false; 3104 3105 pool->flags |= POOL_MANAGER_ACTIVE; 3106 pool->manager = worker; 3107 3108 maybe_create_worker(pool); 3109 3110 pool->manager = NULL; 3111 pool->flags &= ~POOL_MANAGER_ACTIVE; 3112 rcuwait_wake_up(&manager_wait); 3113 return true; 3114 } 3115 3116 /** 3117 * process_one_work - process single work 3118 * @worker: self 3119 * @work: work to process 3120 * 3121 * Process @work. This function contains all the logics necessary to 3122 * process a single work including synchronization against and 3123 * interaction with other workers on the same cpu, queueing and 3124 * flushing. As long as context requirement is met, any worker can 3125 * call this function to process a work. 3126 * 3127 * CONTEXT: 3128 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3129 */ 3130 static void process_one_work(struct worker *worker, struct work_struct *work) 3131 __releases(&pool->lock) 3132 __acquires(&pool->lock) 3133 { 3134 struct pool_workqueue *pwq = get_work_pwq(work); 3135 struct worker_pool *pool = worker->pool; 3136 unsigned long work_data; 3137 int lockdep_start_depth, rcu_start_depth; 3138 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3139 #ifdef CONFIG_LOCKDEP 3140 /* 3141 * It is permissible to free the struct work_struct from 3142 * inside the function that is called from it, this we need to 3143 * take into account for lockdep too. To avoid bogus "held 3144 * lock freed" warnings as well as problems when looking into 3145 * work->lockdep_map, make a copy and use that here. 3146 */ 3147 struct lockdep_map lockdep_map; 3148 3149 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3150 #endif 3151 /* ensure we're on the correct CPU */ 3152 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3153 raw_smp_processor_id() != pool->cpu); 3154 3155 /* claim and dequeue */ 3156 debug_work_deactivate(work); 3157 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3158 worker->current_work = work; 3159 worker->current_func = work->func; 3160 worker->current_pwq = pwq; 3161 if (worker->task) 3162 worker->current_at = worker->task->se.sum_exec_runtime; 3163 work_data = *work_data_bits(work); 3164 worker->current_color = get_work_color(work_data); 3165 3166 /* 3167 * Record wq name for cmdline and debug reporting, may get 3168 * overridden through set_worker_desc(). 3169 */ 3170 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3171 3172 list_del_init(&work->entry); 3173 3174 /* 3175 * CPU intensive works don't participate in concurrency management. 3176 * They're the scheduler's responsibility. This takes @worker out 3177 * of concurrency management and the next code block will chain 3178 * execution of the pending work items. 3179 */ 3180 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3181 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3182 3183 /* 3184 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3185 * since nr_running would always be >= 1 at this point. This is used to 3186 * chain execution of the pending work items for WORKER_NOT_RUNNING 3187 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3188 */ 3189 kick_pool(pool); 3190 3191 /* 3192 * Record the last pool and clear PENDING which should be the last 3193 * update to @work. Also, do this inside @pool->lock so that 3194 * PENDING and queued state changes happen together while IRQ is 3195 * disabled. 3196 */ 3197 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3198 3199 pwq->stats[PWQ_STAT_STARTED]++; 3200 raw_spin_unlock_irq(&pool->lock); 3201 3202 rcu_start_depth = rcu_preempt_depth(); 3203 lockdep_start_depth = lockdep_depth(current); 3204 /* see drain_dead_softirq_workfn() */ 3205 if (!bh_draining) 3206 lock_map_acquire(&pwq->wq->lockdep_map); 3207 lock_map_acquire(&lockdep_map); 3208 /* 3209 * Strictly speaking we should mark the invariant state without holding 3210 * any locks, that is, before these two lock_map_acquire()'s. 3211 * 3212 * However, that would result in: 3213 * 3214 * A(W1) 3215 * WFC(C) 3216 * A(W1) 3217 * C(C) 3218 * 3219 * Which would create W1->C->W1 dependencies, even though there is no 3220 * actual deadlock possible. There are two solutions, using a 3221 * read-recursive acquire on the work(queue) 'locks', but this will then 3222 * hit the lockdep limitation on recursive locks, or simply discard 3223 * these locks. 3224 * 3225 * AFAICT there is no possible deadlock scenario between the 3226 * flush_work() and complete() primitives (except for single-threaded 3227 * workqueues), so hiding them isn't a problem. 3228 */ 3229 lockdep_invariant_state(true); 3230 trace_workqueue_execute_start(work); 3231 worker->current_func(work); 3232 /* 3233 * While we must be careful to not use "work" after this, the trace 3234 * point will only record its address. 3235 */ 3236 trace_workqueue_execute_end(work, worker->current_func); 3237 pwq->stats[PWQ_STAT_COMPLETED]++; 3238 lock_map_release(&lockdep_map); 3239 if (!bh_draining) 3240 lock_map_release(&pwq->wq->lockdep_map); 3241 3242 if (unlikely((worker->task && in_atomic()) || 3243 lockdep_depth(current) != lockdep_start_depth || 3244 rcu_preempt_depth() != rcu_start_depth)) { 3245 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3246 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3247 current->comm, task_pid_nr(current), preempt_count(), 3248 lockdep_start_depth, lockdep_depth(current), 3249 rcu_start_depth, rcu_preempt_depth(), 3250 worker->current_func); 3251 debug_show_held_locks(current); 3252 dump_stack(); 3253 } 3254 3255 /* 3256 * The following prevents a kworker from hogging CPU on !PREEMPTION 3257 * kernels, where a requeueing work item waiting for something to 3258 * happen could deadlock with stop_machine as such work item could 3259 * indefinitely requeue itself while all other CPUs are trapped in 3260 * stop_machine. At the same time, report a quiescent RCU state so 3261 * the same condition doesn't freeze RCU. 3262 */ 3263 if (worker->task) 3264 cond_resched(); 3265 3266 raw_spin_lock_irq(&pool->lock); 3267 3268 /* 3269 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3270 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3271 * wq_cpu_intensive_thresh_us. Clear it. 3272 */ 3273 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3274 3275 /* tag the worker for identification in schedule() */ 3276 worker->last_func = worker->current_func; 3277 3278 /* we're done with it, release */ 3279 hash_del(&worker->hentry); 3280 worker->current_work = NULL; 3281 worker->current_func = NULL; 3282 worker->current_pwq = NULL; 3283 worker->current_color = INT_MAX; 3284 3285 /* must be the last step, see the function comment */ 3286 pwq_dec_nr_in_flight(pwq, work_data); 3287 } 3288 3289 /** 3290 * process_scheduled_works - process scheduled works 3291 * @worker: self 3292 * 3293 * Process all scheduled works. Please note that the scheduled list 3294 * may change while processing a work, so this function repeatedly 3295 * fetches a work from the top and executes it. 3296 * 3297 * CONTEXT: 3298 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3299 * multiple times. 3300 */ 3301 static void process_scheduled_works(struct worker *worker) 3302 { 3303 struct work_struct *work; 3304 bool first = true; 3305 3306 while ((work = list_first_entry_or_null(&worker->scheduled, 3307 struct work_struct, entry))) { 3308 if (first) { 3309 worker->pool->watchdog_ts = jiffies; 3310 first = false; 3311 } 3312 process_one_work(worker, work); 3313 } 3314 } 3315 3316 static void set_pf_worker(bool val) 3317 { 3318 mutex_lock(&wq_pool_attach_mutex); 3319 if (val) 3320 current->flags |= PF_WQ_WORKER; 3321 else 3322 current->flags &= ~PF_WQ_WORKER; 3323 mutex_unlock(&wq_pool_attach_mutex); 3324 } 3325 3326 /** 3327 * worker_thread - the worker thread function 3328 * @__worker: self 3329 * 3330 * The worker thread function. All workers belong to a worker_pool - 3331 * either a per-cpu one or dynamic unbound one. These workers process all 3332 * work items regardless of their specific target workqueue. The only 3333 * exception is work items which belong to workqueues with a rescuer which 3334 * will be explained in rescuer_thread(). 3335 * 3336 * Return: 0 3337 */ 3338 static int worker_thread(void *__worker) 3339 { 3340 struct worker *worker = __worker; 3341 struct worker_pool *pool = worker->pool; 3342 3343 /* tell the scheduler that this is a workqueue worker */ 3344 set_pf_worker(true); 3345 woke_up: 3346 raw_spin_lock_irq(&pool->lock); 3347 3348 /* am I supposed to die? */ 3349 if (unlikely(worker->flags & WORKER_DIE)) { 3350 raw_spin_unlock_irq(&pool->lock); 3351 set_pf_worker(false); 3352 /* 3353 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool 3354 * shouldn't be accessed, reset it to NULL in case otherwise. 3355 */ 3356 worker->pool = NULL; 3357 ida_free(&pool->worker_ida, worker->id); 3358 return 0; 3359 } 3360 3361 worker_leave_idle(worker); 3362 recheck: 3363 /* no more worker necessary? */ 3364 if (!need_more_worker(pool)) 3365 goto sleep; 3366 3367 /* do we need to manage? */ 3368 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3369 goto recheck; 3370 3371 /* 3372 * ->scheduled list can only be filled while a worker is 3373 * preparing to process a work or actually processing it. 3374 * Make sure nobody diddled with it while I was sleeping. 3375 */ 3376 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3377 3378 /* 3379 * Finish PREP stage. We're guaranteed to have at least one idle 3380 * worker or that someone else has already assumed the manager 3381 * role. This is where @worker starts participating in concurrency 3382 * management if applicable and concurrency management is restored 3383 * after being rebound. See rebind_workers() for details. 3384 */ 3385 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3386 3387 do { 3388 struct work_struct *work = 3389 list_first_entry(&pool->worklist, 3390 struct work_struct, entry); 3391 3392 if (assign_work(work, worker, NULL)) 3393 process_scheduled_works(worker); 3394 } while (keep_working(pool)); 3395 3396 worker_set_flags(worker, WORKER_PREP); 3397 sleep: 3398 /* 3399 * pool->lock is held and there's no work to process and no need to 3400 * manage, sleep. Workers are woken up only while holding 3401 * pool->lock or from local cpu, so setting the current state 3402 * before releasing pool->lock is enough to prevent losing any 3403 * event. 3404 */ 3405 worker_enter_idle(worker); 3406 __set_current_state(TASK_IDLE); 3407 raw_spin_unlock_irq(&pool->lock); 3408 schedule(); 3409 goto woke_up; 3410 } 3411 3412 /** 3413 * rescuer_thread - the rescuer thread function 3414 * @__rescuer: self 3415 * 3416 * Workqueue rescuer thread function. There's one rescuer for each 3417 * workqueue which has WQ_MEM_RECLAIM set. 3418 * 3419 * Regular work processing on a pool may block trying to create a new 3420 * worker which uses GFP_KERNEL allocation which has slight chance of 3421 * developing into deadlock if some works currently on the same queue 3422 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3423 * the problem rescuer solves. 3424 * 3425 * When such condition is possible, the pool summons rescuers of all 3426 * workqueues which have works queued on the pool and let them process 3427 * those works so that forward progress can be guaranteed. 3428 * 3429 * This should happen rarely. 3430 * 3431 * Return: 0 3432 */ 3433 static int rescuer_thread(void *__rescuer) 3434 { 3435 struct worker *rescuer = __rescuer; 3436 struct workqueue_struct *wq = rescuer->rescue_wq; 3437 bool should_stop; 3438 3439 set_user_nice(current, RESCUER_NICE_LEVEL); 3440 3441 /* 3442 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3443 * doesn't participate in concurrency management. 3444 */ 3445 set_pf_worker(true); 3446 repeat: 3447 set_current_state(TASK_IDLE); 3448 3449 /* 3450 * By the time the rescuer is requested to stop, the workqueue 3451 * shouldn't have any work pending, but @wq->maydays may still have 3452 * pwq(s) queued. This can happen by non-rescuer workers consuming 3453 * all the work items before the rescuer got to them. Go through 3454 * @wq->maydays processing before acting on should_stop so that the 3455 * list is always empty on exit. 3456 */ 3457 should_stop = kthread_should_stop(); 3458 3459 /* see whether any pwq is asking for help */ 3460 raw_spin_lock_irq(&wq_mayday_lock); 3461 3462 while (!list_empty(&wq->maydays)) { 3463 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3464 struct pool_workqueue, mayday_node); 3465 struct worker_pool *pool = pwq->pool; 3466 struct work_struct *work, *n; 3467 3468 __set_current_state(TASK_RUNNING); 3469 list_del_init(&pwq->mayday_node); 3470 3471 raw_spin_unlock_irq(&wq_mayday_lock); 3472 3473 worker_attach_to_pool(rescuer, pool); 3474 3475 raw_spin_lock_irq(&pool->lock); 3476 3477 /* 3478 * Slurp in all works issued via this workqueue and 3479 * process'em. 3480 */ 3481 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3482 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3483 if (get_work_pwq(work) == pwq && 3484 assign_work(work, rescuer, &n)) 3485 pwq->stats[PWQ_STAT_RESCUED]++; 3486 } 3487 3488 if (!list_empty(&rescuer->scheduled)) { 3489 process_scheduled_works(rescuer); 3490 3491 /* 3492 * The above execution of rescued work items could 3493 * have created more to rescue through 3494 * pwq_activate_first_inactive() or chained 3495 * queueing. Let's put @pwq back on mayday list so 3496 * that such back-to-back work items, which may be 3497 * being used to relieve memory pressure, don't 3498 * incur MAYDAY_INTERVAL delay inbetween. 3499 */ 3500 if (pwq->nr_active && need_to_create_worker(pool)) { 3501 raw_spin_lock(&wq_mayday_lock); 3502 /* 3503 * Queue iff we aren't racing destruction 3504 * and somebody else hasn't queued it already. 3505 */ 3506 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3507 get_pwq(pwq); 3508 list_add_tail(&pwq->mayday_node, &wq->maydays); 3509 } 3510 raw_spin_unlock(&wq_mayday_lock); 3511 } 3512 } 3513 3514 /* 3515 * Put the reference grabbed by send_mayday(). @pool won't 3516 * go away while we're still attached to it. 3517 */ 3518 put_pwq(pwq); 3519 3520 /* 3521 * Leave this pool. Notify regular workers; otherwise, we end up 3522 * with 0 concurrency and stalling the execution. 3523 */ 3524 kick_pool(pool); 3525 3526 raw_spin_unlock_irq(&pool->lock); 3527 3528 worker_detach_from_pool(rescuer); 3529 3530 raw_spin_lock_irq(&wq_mayday_lock); 3531 } 3532 3533 raw_spin_unlock_irq(&wq_mayday_lock); 3534 3535 if (should_stop) { 3536 __set_current_state(TASK_RUNNING); 3537 set_pf_worker(false); 3538 return 0; 3539 } 3540 3541 /* rescuers should never participate in concurrency management */ 3542 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3543 schedule(); 3544 goto repeat; 3545 } 3546 3547 static void bh_worker(struct worker *worker) 3548 { 3549 struct worker_pool *pool = worker->pool; 3550 int nr_restarts = BH_WORKER_RESTARTS; 3551 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3552 3553 raw_spin_lock_irq(&pool->lock); 3554 worker_leave_idle(worker); 3555 3556 /* 3557 * This function follows the structure of worker_thread(). See there for 3558 * explanations on each step. 3559 */ 3560 if (!need_more_worker(pool)) 3561 goto done; 3562 3563 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3564 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3565 3566 do { 3567 struct work_struct *work = 3568 list_first_entry(&pool->worklist, 3569 struct work_struct, entry); 3570 3571 if (assign_work(work, worker, NULL)) 3572 process_scheduled_works(worker); 3573 } while (keep_working(pool) && 3574 --nr_restarts && time_before(jiffies, end)); 3575 3576 worker_set_flags(worker, WORKER_PREP); 3577 done: 3578 worker_enter_idle(worker); 3579 kick_pool(pool); 3580 raw_spin_unlock_irq(&pool->lock); 3581 } 3582 3583 /* 3584 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3585 * 3586 * This is currently called from tasklet[_hi]action() and thus is also called 3587 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3588 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3589 * can be dropped. 3590 * 3591 * After full conversion, we'll add worker->softirq_action, directly use the 3592 * softirq action and obtain the worker pointer from the softirq_action pointer. 3593 */ 3594 void workqueue_softirq_action(bool highpri) 3595 { 3596 struct worker_pool *pool = 3597 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3598 if (need_more_worker(pool)) 3599 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3600 } 3601 3602 struct wq_drain_dead_softirq_work { 3603 struct work_struct work; 3604 struct worker_pool *pool; 3605 struct completion done; 3606 }; 3607 3608 static void drain_dead_softirq_workfn(struct work_struct *work) 3609 { 3610 struct wq_drain_dead_softirq_work *dead_work = 3611 container_of(work, struct wq_drain_dead_softirq_work, work); 3612 struct worker_pool *pool = dead_work->pool; 3613 bool repeat; 3614 3615 /* 3616 * @pool's CPU is dead and we want to execute its still pending work 3617 * items from this BH work item which is running on a different CPU. As 3618 * its CPU is dead, @pool can't be kicked and, as work execution path 3619 * will be nested, a lockdep annotation needs to be suppressed. Mark 3620 * @pool with %POOL_BH_DRAINING for the special treatments. 3621 */ 3622 raw_spin_lock_irq(&pool->lock); 3623 pool->flags |= POOL_BH_DRAINING; 3624 raw_spin_unlock_irq(&pool->lock); 3625 3626 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3627 3628 raw_spin_lock_irq(&pool->lock); 3629 pool->flags &= ~POOL_BH_DRAINING; 3630 repeat = need_more_worker(pool); 3631 raw_spin_unlock_irq(&pool->lock); 3632 3633 /* 3634 * bh_worker() might hit consecutive execution limit and bail. If there 3635 * still are pending work items, reschedule self and return so that we 3636 * don't hog this CPU's BH. 3637 */ 3638 if (repeat) { 3639 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3640 queue_work(system_bh_highpri_wq, work); 3641 else 3642 queue_work(system_bh_wq, work); 3643 } else { 3644 complete(&dead_work->done); 3645 } 3646 } 3647 3648 /* 3649 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3650 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3651 * have to worry about draining overlapping with CPU coming back online or 3652 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3653 * on). Let's keep it simple and drain them synchronously. These are BH work 3654 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3655 */ 3656 void workqueue_softirq_dead(unsigned int cpu) 3657 { 3658 int i; 3659 3660 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3661 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3662 struct wq_drain_dead_softirq_work dead_work; 3663 3664 if (!need_more_worker(pool)) 3665 continue; 3666 3667 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3668 dead_work.pool = pool; 3669 init_completion(&dead_work.done); 3670 3671 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3672 queue_work(system_bh_highpri_wq, &dead_work.work); 3673 else 3674 queue_work(system_bh_wq, &dead_work.work); 3675 3676 wait_for_completion(&dead_work.done); 3677 destroy_work_on_stack(&dead_work.work); 3678 } 3679 } 3680 3681 /** 3682 * check_flush_dependency - check for flush dependency sanity 3683 * @target_wq: workqueue being flushed 3684 * @target_work: work item being flushed (NULL for workqueue flushes) 3685 * 3686 * %current is trying to flush the whole @target_wq or @target_work on it. 3687 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3688 * reclaiming memory or running on a workqueue which doesn't have 3689 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3690 * a deadlock. 3691 */ 3692 static void check_flush_dependency(struct workqueue_struct *target_wq, 3693 struct work_struct *target_work) 3694 { 3695 work_func_t target_func = target_work ? target_work->func : NULL; 3696 struct worker *worker; 3697 3698 if (target_wq->flags & WQ_MEM_RECLAIM) 3699 return; 3700 3701 worker = current_wq_worker(); 3702 3703 WARN_ONCE(current->flags & PF_MEMALLOC, 3704 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3705 current->pid, current->comm, target_wq->name, target_func); 3706 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3707 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3708 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3709 worker->current_pwq->wq->name, worker->current_func, 3710 target_wq->name, target_func); 3711 } 3712 3713 struct wq_barrier { 3714 struct work_struct work; 3715 struct completion done; 3716 struct task_struct *task; /* purely informational */ 3717 }; 3718 3719 static void wq_barrier_func(struct work_struct *work) 3720 { 3721 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3722 complete(&barr->done); 3723 } 3724 3725 /** 3726 * insert_wq_barrier - insert a barrier work 3727 * @pwq: pwq to insert barrier into 3728 * @barr: wq_barrier to insert 3729 * @target: target work to attach @barr to 3730 * @worker: worker currently executing @target, NULL if @target is not executing 3731 * 3732 * @barr is linked to @target such that @barr is completed only after 3733 * @target finishes execution. Please note that the ordering 3734 * guarantee is observed only with respect to @target and on the local 3735 * cpu. 3736 * 3737 * Currently, a queued barrier can't be canceled. This is because 3738 * try_to_grab_pending() can't determine whether the work to be 3739 * grabbed is at the head of the queue and thus can't clear LINKED 3740 * flag of the previous work while there must be a valid next work 3741 * after a work with LINKED flag set. 3742 * 3743 * Note that when @worker is non-NULL, @target may be modified 3744 * underneath us, so we can't reliably determine pwq from @target. 3745 * 3746 * CONTEXT: 3747 * raw_spin_lock_irq(pool->lock). 3748 */ 3749 static void insert_wq_barrier(struct pool_workqueue *pwq, 3750 struct wq_barrier *barr, 3751 struct work_struct *target, struct worker *worker) 3752 { 3753 static __maybe_unused struct lock_class_key bh_key, thr_key; 3754 unsigned int work_flags = 0; 3755 unsigned int work_color; 3756 struct list_head *head; 3757 3758 /* 3759 * debugobject calls are safe here even with pool->lock locked 3760 * as we know for sure that this will not trigger any of the 3761 * checks and call back into the fixup functions where we 3762 * might deadlock. 3763 * 3764 * BH and threaded workqueues need separate lockdep keys to avoid 3765 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3766 * usage". 3767 */ 3768 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3769 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3770 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3771 3772 init_completion_map(&barr->done, &target->lockdep_map); 3773 3774 barr->task = current; 3775 3776 /* The barrier work item does not participate in nr_active. */ 3777 work_flags |= WORK_STRUCT_INACTIVE; 3778 3779 /* 3780 * If @target is currently being executed, schedule the 3781 * barrier to the worker; otherwise, put it after @target. 3782 */ 3783 if (worker) { 3784 head = worker->scheduled.next; 3785 work_color = worker->current_color; 3786 } else { 3787 unsigned long *bits = work_data_bits(target); 3788 3789 head = target->entry.next; 3790 /* there can already be other linked works, inherit and set */ 3791 work_flags |= *bits & WORK_STRUCT_LINKED; 3792 work_color = get_work_color(*bits); 3793 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3794 } 3795 3796 pwq->nr_in_flight[work_color]++; 3797 work_flags |= work_color_to_flags(work_color); 3798 3799 insert_work(pwq, &barr->work, head, work_flags); 3800 } 3801 3802 /** 3803 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3804 * @wq: workqueue being flushed 3805 * @flush_color: new flush color, < 0 for no-op 3806 * @work_color: new work color, < 0 for no-op 3807 * 3808 * Prepare pwqs for workqueue flushing. 3809 * 3810 * If @flush_color is non-negative, flush_color on all pwqs should be 3811 * -1. If no pwq has in-flight commands at the specified color, all 3812 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3813 * has in flight commands, its pwq->flush_color is set to 3814 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3815 * wakeup logic is armed and %true is returned. 3816 * 3817 * The caller should have initialized @wq->first_flusher prior to 3818 * calling this function with non-negative @flush_color. If 3819 * @flush_color is negative, no flush color update is done and %false 3820 * is returned. 3821 * 3822 * If @work_color is non-negative, all pwqs should have the same 3823 * work_color which is previous to @work_color and all will be 3824 * advanced to @work_color. 3825 * 3826 * CONTEXT: 3827 * mutex_lock(wq->mutex). 3828 * 3829 * Return: 3830 * %true if @flush_color >= 0 and there's something to flush. %false 3831 * otherwise. 3832 */ 3833 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3834 int flush_color, int work_color) 3835 { 3836 bool wait = false; 3837 struct pool_workqueue *pwq; 3838 3839 if (flush_color >= 0) { 3840 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3841 atomic_set(&wq->nr_pwqs_to_flush, 1); 3842 } 3843 3844 for_each_pwq(pwq, wq) { 3845 struct worker_pool *pool = pwq->pool; 3846 3847 raw_spin_lock_irq(&pool->lock); 3848 3849 if (flush_color >= 0) { 3850 WARN_ON_ONCE(pwq->flush_color != -1); 3851 3852 if (pwq->nr_in_flight[flush_color]) { 3853 pwq->flush_color = flush_color; 3854 atomic_inc(&wq->nr_pwqs_to_flush); 3855 wait = true; 3856 } 3857 } 3858 3859 if (work_color >= 0) { 3860 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3861 pwq->work_color = work_color; 3862 } 3863 3864 raw_spin_unlock_irq(&pool->lock); 3865 } 3866 3867 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3868 complete(&wq->first_flusher->done); 3869 3870 return wait; 3871 } 3872 3873 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3874 { 3875 #ifdef CONFIG_LOCKDEP 3876 if (wq->flags & WQ_BH) 3877 local_bh_disable(); 3878 3879 lock_map_acquire(&wq->lockdep_map); 3880 lock_map_release(&wq->lockdep_map); 3881 3882 if (wq->flags & WQ_BH) 3883 local_bh_enable(); 3884 #endif 3885 } 3886 3887 static void touch_work_lockdep_map(struct work_struct *work, 3888 struct workqueue_struct *wq) 3889 { 3890 #ifdef CONFIG_LOCKDEP 3891 if (wq->flags & WQ_BH) 3892 local_bh_disable(); 3893 3894 lock_map_acquire(&work->lockdep_map); 3895 lock_map_release(&work->lockdep_map); 3896 3897 if (wq->flags & WQ_BH) 3898 local_bh_enable(); 3899 #endif 3900 } 3901 3902 /** 3903 * __flush_workqueue - ensure that any scheduled work has run to completion. 3904 * @wq: workqueue to flush 3905 * 3906 * This function sleeps until all work items which were queued on entry 3907 * have finished execution, but it is not livelocked by new incoming ones. 3908 */ 3909 void __flush_workqueue(struct workqueue_struct *wq) 3910 { 3911 struct wq_flusher this_flusher = { 3912 .list = LIST_HEAD_INIT(this_flusher.list), 3913 .flush_color = -1, 3914 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3915 }; 3916 int next_color; 3917 3918 if (WARN_ON(!wq_online)) 3919 return; 3920 3921 touch_wq_lockdep_map(wq); 3922 3923 mutex_lock(&wq->mutex); 3924 3925 /* 3926 * Start-to-wait phase 3927 */ 3928 next_color = work_next_color(wq->work_color); 3929 3930 if (next_color != wq->flush_color) { 3931 /* 3932 * Color space is not full. The current work_color 3933 * becomes our flush_color and work_color is advanced 3934 * by one. 3935 */ 3936 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3937 this_flusher.flush_color = wq->work_color; 3938 wq->work_color = next_color; 3939 3940 if (!wq->first_flusher) { 3941 /* no flush in progress, become the first flusher */ 3942 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3943 3944 wq->first_flusher = &this_flusher; 3945 3946 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3947 wq->work_color)) { 3948 /* nothing to flush, done */ 3949 wq->flush_color = next_color; 3950 wq->first_flusher = NULL; 3951 goto out_unlock; 3952 } 3953 } else { 3954 /* wait in queue */ 3955 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3956 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3957 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3958 } 3959 } else { 3960 /* 3961 * Oops, color space is full, wait on overflow queue. 3962 * The next flush completion will assign us 3963 * flush_color and transfer to flusher_queue. 3964 */ 3965 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3966 } 3967 3968 check_flush_dependency(wq, NULL); 3969 3970 mutex_unlock(&wq->mutex); 3971 3972 wait_for_completion(&this_flusher.done); 3973 3974 /* 3975 * Wake-up-and-cascade phase 3976 * 3977 * First flushers are responsible for cascading flushes and 3978 * handling overflow. Non-first flushers can simply return. 3979 */ 3980 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3981 return; 3982 3983 mutex_lock(&wq->mutex); 3984 3985 /* we might have raced, check again with mutex held */ 3986 if (wq->first_flusher != &this_flusher) 3987 goto out_unlock; 3988 3989 WRITE_ONCE(wq->first_flusher, NULL); 3990 3991 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3992 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3993 3994 while (true) { 3995 struct wq_flusher *next, *tmp; 3996 3997 /* complete all the flushers sharing the current flush color */ 3998 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3999 if (next->flush_color != wq->flush_color) 4000 break; 4001 list_del_init(&next->list); 4002 complete(&next->done); 4003 } 4004 4005 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4006 wq->flush_color != work_next_color(wq->work_color)); 4007 4008 /* this flush_color is finished, advance by one */ 4009 wq->flush_color = work_next_color(wq->flush_color); 4010 4011 /* one color has been freed, handle overflow queue */ 4012 if (!list_empty(&wq->flusher_overflow)) { 4013 /* 4014 * Assign the same color to all overflowed 4015 * flushers, advance work_color and append to 4016 * flusher_queue. This is the start-to-wait 4017 * phase for these overflowed flushers. 4018 */ 4019 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4020 tmp->flush_color = wq->work_color; 4021 4022 wq->work_color = work_next_color(wq->work_color); 4023 4024 list_splice_tail_init(&wq->flusher_overflow, 4025 &wq->flusher_queue); 4026 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4027 } 4028 4029 if (list_empty(&wq->flusher_queue)) { 4030 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4031 break; 4032 } 4033 4034 /* 4035 * Need to flush more colors. Make the next flusher 4036 * the new first flusher and arm pwqs. 4037 */ 4038 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4039 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4040 4041 list_del_init(&next->list); 4042 wq->first_flusher = next; 4043 4044 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4045 break; 4046 4047 /* 4048 * Meh... this color is already done, clear first 4049 * flusher and repeat cascading. 4050 */ 4051 wq->first_flusher = NULL; 4052 } 4053 4054 out_unlock: 4055 mutex_unlock(&wq->mutex); 4056 } 4057 EXPORT_SYMBOL(__flush_workqueue); 4058 4059 /** 4060 * drain_workqueue - drain a workqueue 4061 * @wq: workqueue to drain 4062 * 4063 * Wait until the workqueue becomes empty. While draining is in progress, 4064 * only chain queueing is allowed. IOW, only currently pending or running 4065 * work items on @wq can queue further work items on it. @wq is flushed 4066 * repeatedly until it becomes empty. The number of flushing is determined 4067 * by the depth of chaining and should be relatively short. Whine if it 4068 * takes too long. 4069 */ 4070 void drain_workqueue(struct workqueue_struct *wq) 4071 { 4072 unsigned int flush_cnt = 0; 4073 struct pool_workqueue *pwq; 4074 4075 /* 4076 * __queue_work() needs to test whether there are drainers, is much 4077 * hotter than drain_workqueue() and already looks at @wq->flags. 4078 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4079 */ 4080 mutex_lock(&wq->mutex); 4081 if (!wq->nr_drainers++) 4082 wq->flags |= __WQ_DRAINING; 4083 mutex_unlock(&wq->mutex); 4084 reflush: 4085 __flush_workqueue(wq); 4086 4087 mutex_lock(&wq->mutex); 4088 4089 for_each_pwq(pwq, wq) { 4090 bool drained; 4091 4092 raw_spin_lock_irq(&pwq->pool->lock); 4093 drained = pwq_is_empty(pwq); 4094 raw_spin_unlock_irq(&pwq->pool->lock); 4095 4096 if (drained) 4097 continue; 4098 4099 if (++flush_cnt == 10 || 4100 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4101 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4102 wq->name, __func__, flush_cnt); 4103 4104 mutex_unlock(&wq->mutex); 4105 goto reflush; 4106 } 4107 4108 if (!--wq->nr_drainers) 4109 wq->flags &= ~__WQ_DRAINING; 4110 mutex_unlock(&wq->mutex); 4111 } 4112 EXPORT_SYMBOL_GPL(drain_workqueue); 4113 4114 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4115 bool from_cancel) 4116 { 4117 struct worker *worker = NULL; 4118 struct worker_pool *pool; 4119 struct pool_workqueue *pwq; 4120 struct workqueue_struct *wq; 4121 4122 rcu_read_lock(); 4123 pool = get_work_pool(work); 4124 if (!pool) { 4125 rcu_read_unlock(); 4126 return false; 4127 } 4128 4129 raw_spin_lock_irq(&pool->lock); 4130 /* see the comment in try_to_grab_pending() with the same code */ 4131 pwq = get_work_pwq(work); 4132 if (pwq) { 4133 if (unlikely(pwq->pool != pool)) 4134 goto already_gone; 4135 } else { 4136 worker = find_worker_executing_work(pool, work); 4137 if (!worker) 4138 goto already_gone; 4139 pwq = worker->current_pwq; 4140 } 4141 4142 wq = pwq->wq; 4143 check_flush_dependency(wq, work); 4144 4145 insert_wq_barrier(pwq, barr, work, worker); 4146 raw_spin_unlock_irq(&pool->lock); 4147 4148 touch_work_lockdep_map(work, wq); 4149 4150 /* 4151 * Force a lock recursion deadlock when using flush_work() inside a 4152 * single-threaded or rescuer equipped workqueue. 4153 * 4154 * For single threaded workqueues the deadlock happens when the work 4155 * is after the work issuing the flush_work(). For rescuer equipped 4156 * workqueues the deadlock happens when the rescuer stalls, blocking 4157 * forward progress. 4158 */ 4159 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4160 touch_wq_lockdep_map(wq); 4161 4162 rcu_read_unlock(); 4163 return true; 4164 already_gone: 4165 raw_spin_unlock_irq(&pool->lock); 4166 rcu_read_unlock(); 4167 return false; 4168 } 4169 4170 static bool __flush_work(struct work_struct *work, bool from_cancel) 4171 { 4172 struct wq_barrier barr; 4173 4174 if (WARN_ON(!wq_online)) 4175 return false; 4176 4177 if (WARN_ON(!work->func)) 4178 return false; 4179 4180 if (!start_flush_work(work, &barr, from_cancel)) 4181 return false; 4182 4183 /* 4184 * start_flush_work() returned %true. If @from_cancel is set, we know 4185 * that @work must have been executing during start_flush_work() and 4186 * can't currently be queued. Its data must contain OFFQ bits. If @work 4187 * was queued on a BH workqueue, we also know that it was running in the 4188 * BH context and thus can be busy-waited. 4189 */ 4190 if (from_cancel) { 4191 unsigned long data = *work_data_bits(work); 4192 4193 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && 4194 (data & WORK_OFFQ_BH)) { 4195 /* 4196 * On RT, prevent a live lock when %current preempted 4197 * soft interrupt processing or prevents ksoftirqd from 4198 * running by keeping flipping BH. If the BH work item 4199 * runs on a different CPU then this has no effect other 4200 * than doing the BH disable/enable dance for nothing. 4201 * This is copied from 4202 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4203 */ 4204 while (!try_wait_for_completion(&barr.done)) { 4205 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4206 local_bh_disable(); 4207 local_bh_enable(); 4208 } else { 4209 cpu_relax(); 4210 } 4211 } 4212 goto out_destroy; 4213 } 4214 } 4215 4216 wait_for_completion(&barr.done); 4217 4218 out_destroy: 4219 destroy_work_on_stack(&barr.work); 4220 return true; 4221 } 4222 4223 /** 4224 * flush_work - wait for a work to finish executing the last queueing instance 4225 * @work: the work to flush 4226 * 4227 * Wait until @work has finished execution. @work is guaranteed to be idle 4228 * on return if it hasn't been requeued since flush started. 4229 * 4230 * Return: 4231 * %true if flush_work() waited for the work to finish execution, 4232 * %false if it was already idle. 4233 */ 4234 bool flush_work(struct work_struct *work) 4235 { 4236 might_sleep(); 4237 return __flush_work(work, false); 4238 } 4239 EXPORT_SYMBOL_GPL(flush_work); 4240 4241 /** 4242 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4243 * @dwork: the delayed work to flush 4244 * 4245 * Delayed timer is cancelled and the pending work is queued for 4246 * immediate execution. Like flush_work(), this function only 4247 * considers the last queueing instance of @dwork. 4248 * 4249 * Return: 4250 * %true if flush_work() waited for the work to finish execution, 4251 * %false if it was already idle. 4252 */ 4253 bool flush_delayed_work(struct delayed_work *dwork) 4254 { 4255 local_irq_disable(); 4256 if (del_timer_sync(&dwork->timer)) 4257 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4258 local_irq_enable(); 4259 return flush_work(&dwork->work); 4260 } 4261 EXPORT_SYMBOL(flush_delayed_work); 4262 4263 /** 4264 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4265 * @rwork: the rcu work to flush 4266 * 4267 * Return: 4268 * %true if flush_rcu_work() waited for the work to finish execution, 4269 * %false if it was already idle. 4270 */ 4271 bool flush_rcu_work(struct rcu_work *rwork) 4272 { 4273 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4274 rcu_barrier(); 4275 flush_work(&rwork->work); 4276 return true; 4277 } else { 4278 return flush_work(&rwork->work); 4279 } 4280 } 4281 EXPORT_SYMBOL(flush_rcu_work); 4282 4283 static void work_offqd_disable(struct work_offq_data *offqd) 4284 { 4285 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4286 4287 if (likely(offqd->disable < max)) 4288 offqd->disable++; 4289 else 4290 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4291 } 4292 4293 static void work_offqd_enable(struct work_offq_data *offqd) 4294 { 4295 if (likely(offqd->disable > 0)) 4296 offqd->disable--; 4297 else 4298 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4299 } 4300 4301 static bool __cancel_work(struct work_struct *work, u32 cflags) 4302 { 4303 struct work_offq_data offqd; 4304 unsigned long irq_flags; 4305 int ret; 4306 4307 ret = work_grab_pending(work, cflags, &irq_flags); 4308 4309 work_offqd_unpack(&offqd, *work_data_bits(work)); 4310 4311 if (cflags & WORK_CANCEL_DISABLE) 4312 work_offqd_disable(&offqd); 4313 4314 set_work_pool_and_clear_pending(work, offqd.pool_id, 4315 work_offqd_pack_flags(&offqd)); 4316 local_irq_restore(irq_flags); 4317 return ret; 4318 } 4319 4320 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4321 { 4322 bool ret; 4323 4324 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4325 4326 if (*work_data_bits(work) & WORK_OFFQ_BH) 4327 WARN_ON_ONCE(in_hardirq()); 4328 else 4329 might_sleep(); 4330 4331 /* 4332 * Skip __flush_work() during early boot when we know that @work isn't 4333 * executing. This allows canceling during early boot. 4334 */ 4335 if (wq_online) 4336 __flush_work(work, true); 4337 4338 if (!(cflags & WORK_CANCEL_DISABLE)) 4339 enable_work(work); 4340 4341 return ret; 4342 } 4343 4344 /* 4345 * See cancel_delayed_work() 4346 */ 4347 bool cancel_work(struct work_struct *work) 4348 { 4349 return __cancel_work(work, 0); 4350 } 4351 EXPORT_SYMBOL(cancel_work); 4352 4353 /** 4354 * cancel_work_sync - cancel a work and wait for it to finish 4355 * @work: the work to cancel 4356 * 4357 * Cancel @work and wait for its execution to finish. This function can be used 4358 * even if the work re-queues itself or migrates to another workqueue. On return 4359 * from this function, @work is guaranteed to be not pending or executing on any 4360 * CPU as long as there aren't racing enqueues. 4361 * 4362 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4363 * Use cancel_delayed_work_sync() instead. 4364 * 4365 * Must be called from a sleepable context if @work was last queued on a non-BH 4366 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4367 * if @work was last queued on a BH workqueue. 4368 * 4369 * Returns %true if @work was pending, %false otherwise. 4370 */ 4371 bool cancel_work_sync(struct work_struct *work) 4372 { 4373 return __cancel_work_sync(work, 0); 4374 } 4375 EXPORT_SYMBOL_GPL(cancel_work_sync); 4376 4377 /** 4378 * cancel_delayed_work - cancel a delayed work 4379 * @dwork: delayed_work to cancel 4380 * 4381 * Kill off a pending delayed_work. 4382 * 4383 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4384 * pending. 4385 * 4386 * Note: 4387 * The work callback function may still be running on return, unless 4388 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4389 * use cancel_delayed_work_sync() to wait on it. 4390 * 4391 * This function is safe to call from any context including IRQ handler. 4392 */ 4393 bool cancel_delayed_work(struct delayed_work *dwork) 4394 { 4395 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4396 } 4397 EXPORT_SYMBOL(cancel_delayed_work); 4398 4399 /** 4400 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4401 * @dwork: the delayed work cancel 4402 * 4403 * This is cancel_work_sync() for delayed works. 4404 * 4405 * Return: 4406 * %true if @dwork was pending, %false otherwise. 4407 */ 4408 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4409 { 4410 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4411 } 4412 EXPORT_SYMBOL(cancel_delayed_work_sync); 4413 4414 /** 4415 * disable_work - Disable and cancel a work item 4416 * @work: work item to disable 4417 * 4418 * Disable @work by incrementing its disable count and cancel it if currently 4419 * pending. As long as the disable count is non-zero, any attempt to queue @work 4420 * will fail and return %false. The maximum supported disable depth is 2 to the 4421 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4422 * 4423 * Can be called from any context. Returns %true if @work was pending, %false 4424 * otherwise. 4425 */ 4426 bool disable_work(struct work_struct *work) 4427 { 4428 return __cancel_work(work, WORK_CANCEL_DISABLE); 4429 } 4430 EXPORT_SYMBOL_GPL(disable_work); 4431 4432 /** 4433 * disable_work_sync - Disable, cancel and drain a work item 4434 * @work: work item to disable 4435 * 4436 * Similar to disable_work() but also wait for @work to finish if currently 4437 * executing. 4438 * 4439 * Must be called from a sleepable context if @work was last queued on a non-BH 4440 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4441 * if @work was last queued on a BH workqueue. 4442 * 4443 * Returns %true if @work was pending, %false otherwise. 4444 */ 4445 bool disable_work_sync(struct work_struct *work) 4446 { 4447 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4448 } 4449 EXPORT_SYMBOL_GPL(disable_work_sync); 4450 4451 /** 4452 * enable_work - Enable a work item 4453 * @work: work item to enable 4454 * 4455 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4456 * only be queued if its disable count is 0. 4457 * 4458 * Can be called from any context. Returns %true if the disable count reached 0. 4459 * Otherwise, %false. 4460 */ 4461 bool enable_work(struct work_struct *work) 4462 { 4463 struct work_offq_data offqd; 4464 unsigned long irq_flags; 4465 4466 work_grab_pending(work, 0, &irq_flags); 4467 4468 work_offqd_unpack(&offqd, *work_data_bits(work)); 4469 work_offqd_enable(&offqd); 4470 set_work_pool_and_clear_pending(work, offqd.pool_id, 4471 work_offqd_pack_flags(&offqd)); 4472 local_irq_restore(irq_flags); 4473 4474 return !offqd.disable; 4475 } 4476 EXPORT_SYMBOL_GPL(enable_work); 4477 4478 /** 4479 * disable_delayed_work - Disable and cancel a delayed work item 4480 * @dwork: delayed work item to disable 4481 * 4482 * disable_work() for delayed work items. 4483 */ 4484 bool disable_delayed_work(struct delayed_work *dwork) 4485 { 4486 return __cancel_work(&dwork->work, 4487 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4488 } 4489 EXPORT_SYMBOL_GPL(disable_delayed_work); 4490 4491 /** 4492 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4493 * @dwork: delayed work item to disable 4494 * 4495 * disable_work_sync() for delayed work items. 4496 */ 4497 bool disable_delayed_work_sync(struct delayed_work *dwork) 4498 { 4499 return __cancel_work_sync(&dwork->work, 4500 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4501 } 4502 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4503 4504 /** 4505 * enable_delayed_work - Enable a delayed work item 4506 * @dwork: delayed work item to enable 4507 * 4508 * enable_work() for delayed work items. 4509 */ 4510 bool enable_delayed_work(struct delayed_work *dwork) 4511 { 4512 return enable_work(&dwork->work); 4513 } 4514 EXPORT_SYMBOL_GPL(enable_delayed_work); 4515 4516 /** 4517 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4518 * @func: the function to call 4519 * 4520 * schedule_on_each_cpu() executes @func on each online CPU using the 4521 * system workqueue and blocks until all CPUs have completed. 4522 * schedule_on_each_cpu() is very slow. 4523 * 4524 * Return: 4525 * 0 on success, -errno on failure. 4526 */ 4527 int schedule_on_each_cpu(work_func_t func) 4528 { 4529 int cpu; 4530 struct work_struct __percpu *works; 4531 4532 works = alloc_percpu(struct work_struct); 4533 if (!works) 4534 return -ENOMEM; 4535 4536 cpus_read_lock(); 4537 4538 for_each_online_cpu(cpu) { 4539 struct work_struct *work = per_cpu_ptr(works, cpu); 4540 4541 INIT_WORK(work, func); 4542 schedule_work_on(cpu, work); 4543 } 4544 4545 for_each_online_cpu(cpu) 4546 flush_work(per_cpu_ptr(works, cpu)); 4547 4548 cpus_read_unlock(); 4549 free_percpu(works); 4550 return 0; 4551 } 4552 4553 /** 4554 * execute_in_process_context - reliably execute the routine with user context 4555 * @fn: the function to execute 4556 * @ew: guaranteed storage for the execute work structure (must 4557 * be available when the work executes) 4558 * 4559 * Executes the function immediately if process context is available, 4560 * otherwise schedules the function for delayed execution. 4561 * 4562 * Return: 0 - function was executed 4563 * 1 - function was scheduled for execution 4564 */ 4565 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4566 { 4567 if (!in_interrupt()) { 4568 fn(&ew->work); 4569 return 0; 4570 } 4571 4572 INIT_WORK(&ew->work, fn); 4573 schedule_work(&ew->work); 4574 4575 return 1; 4576 } 4577 EXPORT_SYMBOL_GPL(execute_in_process_context); 4578 4579 /** 4580 * free_workqueue_attrs - free a workqueue_attrs 4581 * @attrs: workqueue_attrs to free 4582 * 4583 * Undo alloc_workqueue_attrs(). 4584 */ 4585 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4586 { 4587 if (attrs) { 4588 free_cpumask_var(attrs->cpumask); 4589 free_cpumask_var(attrs->__pod_cpumask); 4590 kfree(attrs); 4591 } 4592 } 4593 4594 /** 4595 * alloc_workqueue_attrs - allocate a workqueue_attrs 4596 * 4597 * Allocate a new workqueue_attrs, initialize with default settings and 4598 * return it. 4599 * 4600 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4601 */ 4602 struct workqueue_attrs *alloc_workqueue_attrs(void) 4603 { 4604 struct workqueue_attrs *attrs; 4605 4606 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4607 if (!attrs) 4608 goto fail; 4609 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4610 goto fail; 4611 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4612 goto fail; 4613 4614 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4615 attrs->affn_scope = WQ_AFFN_DFL; 4616 return attrs; 4617 fail: 4618 free_workqueue_attrs(attrs); 4619 return NULL; 4620 } 4621 4622 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4623 const struct workqueue_attrs *from) 4624 { 4625 to->nice = from->nice; 4626 cpumask_copy(to->cpumask, from->cpumask); 4627 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4628 to->affn_strict = from->affn_strict; 4629 4630 /* 4631 * Unlike hash and equality test, copying shouldn't ignore wq-only 4632 * fields as copying is used for both pool and wq attrs. Instead, 4633 * get_unbound_pool() explicitly clears the fields. 4634 */ 4635 to->affn_scope = from->affn_scope; 4636 to->ordered = from->ordered; 4637 } 4638 4639 /* 4640 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4641 * comments in 'struct workqueue_attrs' definition. 4642 */ 4643 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4644 { 4645 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4646 attrs->ordered = false; 4647 if (attrs->affn_strict) 4648 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4649 } 4650 4651 /* hash value of the content of @attr */ 4652 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4653 { 4654 u32 hash = 0; 4655 4656 hash = jhash_1word(attrs->nice, hash); 4657 hash = jhash_1word(attrs->affn_strict, hash); 4658 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4659 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4660 if (!attrs->affn_strict) 4661 hash = jhash(cpumask_bits(attrs->cpumask), 4662 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4663 return hash; 4664 } 4665 4666 /* content equality test */ 4667 static bool wqattrs_equal(const struct workqueue_attrs *a, 4668 const struct workqueue_attrs *b) 4669 { 4670 if (a->nice != b->nice) 4671 return false; 4672 if (a->affn_strict != b->affn_strict) 4673 return false; 4674 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4675 return false; 4676 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4677 return false; 4678 return true; 4679 } 4680 4681 /* Update @attrs with actually available CPUs */ 4682 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4683 const cpumask_t *unbound_cpumask) 4684 { 4685 /* 4686 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4687 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4688 * @unbound_cpumask. 4689 */ 4690 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4691 if (unlikely(cpumask_empty(attrs->cpumask))) 4692 cpumask_copy(attrs->cpumask, unbound_cpumask); 4693 } 4694 4695 /* find wq_pod_type to use for @attrs */ 4696 static const struct wq_pod_type * 4697 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4698 { 4699 enum wq_affn_scope scope; 4700 struct wq_pod_type *pt; 4701 4702 /* to synchronize access to wq_affn_dfl */ 4703 lockdep_assert_held(&wq_pool_mutex); 4704 4705 if (attrs->affn_scope == WQ_AFFN_DFL) 4706 scope = wq_affn_dfl; 4707 else 4708 scope = attrs->affn_scope; 4709 4710 pt = &wq_pod_types[scope]; 4711 4712 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4713 likely(pt->nr_pods)) 4714 return pt; 4715 4716 /* 4717 * Before workqueue_init_topology(), only SYSTEM is available which is 4718 * initialized in workqueue_init_early(). 4719 */ 4720 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4721 BUG_ON(!pt->nr_pods); 4722 return pt; 4723 } 4724 4725 /** 4726 * init_worker_pool - initialize a newly zalloc'd worker_pool 4727 * @pool: worker_pool to initialize 4728 * 4729 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4730 * 4731 * Return: 0 on success, -errno on failure. Even on failure, all fields 4732 * inside @pool proper are initialized and put_unbound_pool() can be called 4733 * on @pool safely to release it. 4734 */ 4735 static int init_worker_pool(struct worker_pool *pool) 4736 { 4737 raw_spin_lock_init(&pool->lock); 4738 pool->id = -1; 4739 pool->cpu = -1; 4740 pool->node = NUMA_NO_NODE; 4741 pool->flags |= POOL_DISASSOCIATED; 4742 pool->watchdog_ts = jiffies; 4743 INIT_LIST_HEAD(&pool->worklist); 4744 INIT_LIST_HEAD(&pool->idle_list); 4745 hash_init(pool->busy_hash); 4746 4747 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4748 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4749 4750 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4751 4752 INIT_LIST_HEAD(&pool->workers); 4753 4754 ida_init(&pool->worker_ida); 4755 INIT_HLIST_NODE(&pool->hash_node); 4756 pool->refcnt = 1; 4757 4758 /* shouldn't fail above this point */ 4759 pool->attrs = alloc_workqueue_attrs(); 4760 if (!pool->attrs) 4761 return -ENOMEM; 4762 4763 wqattrs_clear_for_pool(pool->attrs); 4764 4765 return 0; 4766 } 4767 4768 #ifdef CONFIG_LOCKDEP 4769 static void wq_init_lockdep(struct workqueue_struct *wq) 4770 { 4771 char *lock_name; 4772 4773 lockdep_register_key(&wq->key); 4774 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4775 if (!lock_name) 4776 lock_name = wq->name; 4777 4778 wq->lock_name = lock_name; 4779 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4780 } 4781 4782 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4783 { 4784 lockdep_unregister_key(&wq->key); 4785 } 4786 4787 static void wq_free_lockdep(struct workqueue_struct *wq) 4788 { 4789 if (wq->lock_name != wq->name) 4790 kfree(wq->lock_name); 4791 } 4792 #else 4793 static void wq_init_lockdep(struct workqueue_struct *wq) 4794 { 4795 } 4796 4797 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4798 { 4799 } 4800 4801 static void wq_free_lockdep(struct workqueue_struct *wq) 4802 { 4803 } 4804 #endif 4805 4806 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4807 { 4808 int node; 4809 4810 for_each_node(node) { 4811 kfree(nna_ar[node]); 4812 nna_ar[node] = NULL; 4813 } 4814 4815 kfree(nna_ar[nr_node_ids]); 4816 nna_ar[nr_node_ids] = NULL; 4817 } 4818 4819 static void init_node_nr_active(struct wq_node_nr_active *nna) 4820 { 4821 nna->max = WQ_DFL_MIN_ACTIVE; 4822 atomic_set(&nna->nr, 0); 4823 raw_spin_lock_init(&nna->lock); 4824 INIT_LIST_HEAD(&nna->pending_pwqs); 4825 } 4826 4827 /* 4828 * Each node's nr_active counter will be accessed mostly from its own node and 4829 * should be allocated in the node. 4830 */ 4831 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4832 { 4833 struct wq_node_nr_active *nna; 4834 int node; 4835 4836 for_each_node(node) { 4837 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4838 if (!nna) 4839 goto err_free; 4840 init_node_nr_active(nna); 4841 nna_ar[node] = nna; 4842 } 4843 4844 /* [nr_node_ids] is used as the fallback */ 4845 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4846 if (!nna) 4847 goto err_free; 4848 init_node_nr_active(nna); 4849 nna_ar[nr_node_ids] = nna; 4850 4851 return 0; 4852 4853 err_free: 4854 free_node_nr_active(nna_ar); 4855 return -ENOMEM; 4856 } 4857 4858 static void rcu_free_wq(struct rcu_head *rcu) 4859 { 4860 struct workqueue_struct *wq = 4861 container_of(rcu, struct workqueue_struct, rcu); 4862 4863 if (wq->flags & WQ_UNBOUND) 4864 free_node_nr_active(wq->node_nr_active); 4865 4866 wq_free_lockdep(wq); 4867 free_percpu(wq->cpu_pwq); 4868 free_workqueue_attrs(wq->unbound_attrs); 4869 kfree(wq); 4870 } 4871 4872 static void rcu_free_pool(struct rcu_head *rcu) 4873 { 4874 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4875 4876 ida_destroy(&pool->worker_ida); 4877 free_workqueue_attrs(pool->attrs); 4878 kfree(pool); 4879 } 4880 4881 /** 4882 * put_unbound_pool - put a worker_pool 4883 * @pool: worker_pool to put 4884 * 4885 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4886 * safe manner. get_unbound_pool() calls this function on its failure path 4887 * and this function should be able to release pools which went through, 4888 * successfully or not, init_worker_pool(). 4889 * 4890 * Should be called with wq_pool_mutex held. 4891 */ 4892 static void put_unbound_pool(struct worker_pool *pool) 4893 { 4894 struct worker *worker; 4895 LIST_HEAD(cull_list); 4896 4897 lockdep_assert_held(&wq_pool_mutex); 4898 4899 if (--pool->refcnt) 4900 return; 4901 4902 /* sanity checks */ 4903 if (WARN_ON(!(pool->cpu < 0)) || 4904 WARN_ON(!list_empty(&pool->worklist))) 4905 return; 4906 4907 /* release id and unhash */ 4908 if (pool->id >= 0) 4909 idr_remove(&worker_pool_idr, pool->id); 4910 hash_del(&pool->hash_node); 4911 4912 /* 4913 * Become the manager and destroy all workers. This prevents 4914 * @pool's workers from blocking on attach_mutex. We're the last 4915 * manager and @pool gets freed with the flag set. 4916 * 4917 * Having a concurrent manager is quite unlikely to happen as we can 4918 * only get here with 4919 * pwq->refcnt == pool->refcnt == 0 4920 * which implies no work queued to the pool, which implies no worker can 4921 * become the manager. However a worker could have taken the role of 4922 * manager before the refcnts dropped to 0, since maybe_create_worker() 4923 * drops pool->lock 4924 */ 4925 while (true) { 4926 rcuwait_wait_event(&manager_wait, 4927 !(pool->flags & POOL_MANAGER_ACTIVE), 4928 TASK_UNINTERRUPTIBLE); 4929 4930 mutex_lock(&wq_pool_attach_mutex); 4931 raw_spin_lock_irq(&pool->lock); 4932 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4933 pool->flags |= POOL_MANAGER_ACTIVE; 4934 break; 4935 } 4936 raw_spin_unlock_irq(&pool->lock); 4937 mutex_unlock(&wq_pool_attach_mutex); 4938 } 4939 4940 while ((worker = first_idle_worker(pool))) 4941 set_worker_dying(worker, &cull_list); 4942 WARN_ON(pool->nr_workers || pool->nr_idle); 4943 raw_spin_unlock_irq(&pool->lock); 4944 4945 detach_dying_workers(&cull_list); 4946 4947 mutex_unlock(&wq_pool_attach_mutex); 4948 4949 reap_dying_workers(&cull_list); 4950 4951 /* shut down the timers */ 4952 del_timer_sync(&pool->idle_timer); 4953 cancel_work_sync(&pool->idle_cull_work); 4954 del_timer_sync(&pool->mayday_timer); 4955 4956 /* RCU protected to allow dereferences from get_work_pool() */ 4957 call_rcu(&pool->rcu, rcu_free_pool); 4958 } 4959 4960 /** 4961 * get_unbound_pool - get a worker_pool with the specified attributes 4962 * @attrs: the attributes of the worker_pool to get 4963 * 4964 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4965 * reference count and return it. If there already is a matching 4966 * worker_pool, it will be used; otherwise, this function attempts to 4967 * create a new one. 4968 * 4969 * Should be called with wq_pool_mutex held. 4970 * 4971 * Return: On success, a worker_pool with the same attributes as @attrs. 4972 * On failure, %NULL. 4973 */ 4974 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4975 { 4976 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4977 u32 hash = wqattrs_hash(attrs); 4978 struct worker_pool *pool; 4979 int pod, node = NUMA_NO_NODE; 4980 4981 lockdep_assert_held(&wq_pool_mutex); 4982 4983 /* do we already have a matching pool? */ 4984 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4985 if (wqattrs_equal(pool->attrs, attrs)) { 4986 pool->refcnt++; 4987 return pool; 4988 } 4989 } 4990 4991 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4992 for (pod = 0; pod < pt->nr_pods; pod++) { 4993 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4994 node = pt->pod_node[pod]; 4995 break; 4996 } 4997 } 4998 4999 /* nope, create a new one */ 5000 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5001 if (!pool || init_worker_pool(pool) < 0) 5002 goto fail; 5003 5004 pool->node = node; 5005 copy_workqueue_attrs(pool->attrs, attrs); 5006 wqattrs_clear_for_pool(pool->attrs); 5007 5008 if (worker_pool_assign_id(pool) < 0) 5009 goto fail; 5010 5011 /* create and start the initial worker */ 5012 if (wq_online && !create_worker(pool)) 5013 goto fail; 5014 5015 /* install */ 5016 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5017 5018 return pool; 5019 fail: 5020 if (pool) 5021 put_unbound_pool(pool); 5022 return NULL; 5023 } 5024 5025 /* 5026 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5027 * refcnt and needs to be destroyed. 5028 */ 5029 static void pwq_release_workfn(struct kthread_work *work) 5030 { 5031 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5032 release_work); 5033 struct workqueue_struct *wq = pwq->wq; 5034 struct worker_pool *pool = pwq->pool; 5035 bool is_last = false; 5036 5037 /* 5038 * When @pwq is not linked, it doesn't hold any reference to the 5039 * @wq, and @wq is invalid to access. 5040 */ 5041 if (!list_empty(&pwq->pwqs_node)) { 5042 mutex_lock(&wq->mutex); 5043 list_del_rcu(&pwq->pwqs_node); 5044 is_last = list_empty(&wq->pwqs); 5045 5046 /* 5047 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5048 */ 5049 if (!is_last && (wq->flags & __WQ_ORDERED)) 5050 unplug_oldest_pwq(wq); 5051 5052 mutex_unlock(&wq->mutex); 5053 } 5054 5055 if (wq->flags & WQ_UNBOUND) { 5056 mutex_lock(&wq_pool_mutex); 5057 put_unbound_pool(pool); 5058 mutex_unlock(&wq_pool_mutex); 5059 } 5060 5061 if (!list_empty(&pwq->pending_node)) { 5062 struct wq_node_nr_active *nna = 5063 wq_node_nr_active(pwq->wq, pwq->pool->node); 5064 5065 raw_spin_lock_irq(&nna->lock); 5066 list_del_init(&pwq->pending_node); 5067 raw_spin_unlock_irq(&nna->lock); 5068 } 5069 5070 kfree_rcu(pwq, rcu); 5071 5072 /* 5073 * If we're the last pwq going away, @wq is already dead and no one 5074 * is gonna access it anymore. Schedule RCU free. 5075 */ 5076 if (is_last) { 5077 wq_unregister_lockdep(wq); 5078 call_rcu(&wq->rcu, rcu_free_wq); 5079 } 5080 } 5081 5082 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5083 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5084 struct worker_pool *pool) 5085 { 5086 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5087 5088 memset(pwq, 0, sizeof(*pwq)); 5089 5090 pwq->pool = pool; 5091 pwq->wq = wq; 5092 pwq->flush_color = -1; 5093 pwq->refcnt = 1; 5094 INIT_LIST_HEAD(&pwq->inactive_works); 5095 INIT_LIST_HEAD(&pwq->pending_node); 5096 INIT_LIST_HEAD(&pwq->pwqs_node); 5097 INIT_LIST_HEAD(&pwq->mayday_node); 5098 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5099 } 5100 5101 /* sync @pwq with the current state of its associated wq and link it */ 5102 static void link_pwq(struct pool_workqueue *pwq) 5103 { 5104 struct workqueue_struct *wq = pwq->wq; 5105 5106 lockdep_assert_held(&wq->mutex); 5107 5108 /* may be called multiple times, ignore if already linked */ 5109 if (!list_empty(&pwq->pwqs_node)) 5110 return; 5111 5112 /* set the matching work_color */ 5113 pwq->work_color = wq->work_color; 5114 5115 /* link in @pwq */ 5116 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5117 } 5118 5119 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5120 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5121 const struct workqueue_attrs *attrs) 5122 { 5123 struct worker_pool *pool; 5124 struct pool_workqueue *pwq; 5125 5126 lockdep_assert_held(&wq_pool_mutex); 5127 5128 pool = get_unbound_pool(attrs); 5129 if (!pool) 5130 return NULL; 5131 5132 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5133 if (!pwq) { 5134 put_unbound_pool(pool); 5135 return NULL; 5136 } 5137 5138 init_pwq(pwq, wq, pool); 5139 return pwq; 5140 } 5141 5142 static void apply_wqattrs_lock(void) 5143 { 5144 mutex_lock(&wq_pool_mutex); 5145 } 5146 5147 static void apply_wqattrs_unlock(void) 5148 { 5149 mutex_unlock(&wq_pool_mutex); 5150 } 5151 5152 /** 5153 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5154 * @attrs: the wq_attrs of the default pwq of the target workqueue 5155 * @cpu: the target CPU 5156 * 5157 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5158 * The result is stored in @attrs->__pod_cpumask. 5159 * 5160 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5161 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5162 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5163 * 5164 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5165 */ 5166 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5167 { 5168 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5169 int pod = pt->cpu_pod[cpu]; 5170 5171 /* calculate possible CPUs in @pod that @attrs wants */ 5172 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5173 /* does @pod have any online CPUs @attrs wants? */ 5174 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5175 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5176 return; 5177 } 5178 } 5179 5180 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5181 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5182 int cpu, struct pool_workqueue *pwq) 5183 { 5184 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5185 struct pool_workqueue *old_pwq; 5186 5187 lockdep_assert_held(&wq_pool_mutex); 5188 lockdep_assert_held(&wq->mutex); 5189 5190 /* link_pwq() can handle duplicate calls */ 5191 link_pwq(pwq); 5192 5193 old_pwq = rcu_access_pointer(*slot); 5194 rcu_assign_pointer(*slot, pwq); 5195 return old_pwq; 5196 } 5197 5198 /* context to store the prepared attrs & pwqs before applying */ 5199 struct apply_wqattrs_ctx { 5200 struct workqueue_struct *wq; /* target workqueue */ 5201 struct workqueue_attrs *attrs; /* attrs to apply */ 5202 struct list_head list; /* queued for batching commit */ 5203 struct pool_workqueue *dfl_pwq; 5204 struct pool_workqueue *pwq_tbl[]; 5205 }; 5206 5207 /* free the resources after success or abort */ 5208 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5209 { 5210 if (ctx) { 5211 int cpu; 5212 5213 for_each_possible_cpu(cpu) 5214 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5215 put_pwq_unlocked(ctx->dfl_pwq); 5216 5217 free_workqueue_attrs(ctx->attrs); 5218 5219 kfree(ctx); 5220 } 5221 } 5222 5223 /* allocate the attrs and pwqs for later installation */ 5224 static struct apply_wqattrs_ctx * 5225 apply_wqattrs_prepare(struct workqueue_struct *wq, 5226 const struct workqueue_attrs *attrs, 5227 const cpumask_var_t unbound_cpumask) 5228 { 5229 struct apply_wqattrs_ctx *ctx; 5230 struct workqueue_attrs *new_attrs; 5231 int cpu; 5232 5233 lockdep_assert_held(&wq_pool_mutex); 5234 5235 if (WARN_ON(attrs->affn_scope < 0 || 5236 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5237 return ERR_PTR(-EINVAL); 5238 5239 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5240 5241 new_attrs = alloc_workqueue_attrs(); 5242 if (!ctx || !new_attrs) 5243 goto out_free; 5244 5245 /* 5246 * If something goes wrong during CPU up/down, we'll fall back to 5247 * the default pwq covering whole @attrs->cpumask. Always create 5248 * it even if we don't use it immediately. 5249 */ 5250 copy_workqueue_attrs(new_attrs, attrs); 5251 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5252 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5253 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5254 if (!ctx->dfl_pwq) 5255 goto out_free; 5256 5257 for_each_possible_cpu(cpu) { 5258 if (new_attrs->ordered) { 5259 ctx->dfl_pwq->refcnt++; 5260 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5261 } else { 5262 wq_calc_pod_cpumask(new_attrs, cpu); 5263 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5264 if (!ctx->pwq_tbl[cpu]) 5265 goto out_free; 5266 } 5267 } 5268 5269 /* save the user configured attrs and sanitize it. */ 5270 copy_workqueue_attrs(new_attrs, attrs); 5271 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5272 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5273 ctx->attrs = new_attrs; 5274 5275 /* 5276 * For initialized ordered workqueues, there should only be one pwq 5277 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5278 * of newly queued work items until execution of older work items in 5279 * the old pwq's have completed. 5280 */ 5281 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5282 ctx->dfl_pwq->plugged = true; 5283 5284 ctx->wq = wq; 5285 return ctx; 5286 5287 out_free: 5288 free_workqueue_attrs(new_attrs); 5289 apply_wqattrs_cleanup(ctx); 5290 return ERR_PTR(-ENOMEM); 5291 } 5292 5293 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5294 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5295 { 5296 int cpu; 5297 5298 /* all pwqs have been created successfully, let's install'em */ 5299 mutex_lock(&ctx->wq->mutex); 5300 5301 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5302 5303 /* save the previous pwqs and install the new ones */ 5304 for_each_possible_cpu(cpu) 5305 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5306 ctx->pwq_tbl[cpu]); 5307 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5308 5309 /* update node_nr_active->max */ 5310 wq_update_node_max_active(ctx->wq, -1); 5311 5312 /* rescuer needs to respect wq cpumask changes */ 5313 if (ctx->wq->rescuer) 5314 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5315 unbound_effective_cpumask(ctx->wq)); 5316 5317 mutex_unlock(&ctx->wq->mutex); 5318 } 5319 5320 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5321 const struct workqueue_attrs *attrs) 5322 { 5323 struct apply_wqattrs_ctx *ctx; 5324 5325 /* only unbound workqueues can change attributes */ 5326 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5327 return -EINVAL; 5328 5329 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5330 if (IS_ERR(ctx)) 5331 return PTR_ERR(ctx); 5332 5333 /* the ctx has been prepared successfully, let's commit it */ 5334 apply_wqattrs_commit(ctx); 5335 apply_wqattrs_cleanup(ctx); 5336 5337 return 0; 5338 } 5339 5340 /** 5341 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5342 * @wq: the target workqueue 5343 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5344 * 5345 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5346 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5347 * work items are affine to the pod it was issued on. Older pwqs are released as 5348 * in-flight work items finish. Note that a work item which repeatedly requeues 5349 * itself back-to-back will stay on its current pwq. 5350 * 5351 * Performs GFP_KERNEL allocations. 5352 * 5353 * Return: 0 on success and -errno on failure. 5354 */ 5355 int apply_workqueue_attrs(struct workqueue_struct *wq, 5356 const struct workqueue_attrs *attrs) 5357 { 5358 int ret; 5359 5360 mutex_lock(&wq_pool_mutex); 5361 ret = apply_workqueue_attrs_locked(wq, attrs); 5362 mutex_unlock(&wq_pool_mutex); 5363 5364 return ret; 5365 } 5366 5367 /** 5368 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5369 * @wq: the target workqueue 5370 * @cpu: the CPU to update the pwq slot for 5371 * 5372 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5373 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5374 * 5375 * 5376 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5377 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5378 * 5379 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5380 * with a cpumask spanning multiple pods, the workers which were already 5381 * executing the work items for the workqueue will lose their CPU affinity and 5382 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5383 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5384 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5385 */ 5386 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5387 { 5388 struct pool_workqueue *old_pwq = NULL, *pwq; 5389 struct workqueue_attrs *target_attrs; 5390 5391 lockdep_assert_held(&wq_pool_mutex); 5392 5393 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5394 return; 5395 5396 /* 5397 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5398 * Let's use a preallocated one. The following buf is protected by 5399 * CPU hotplug exclusion. 5400 */ 5401 target_attrs = unbound_wq_update_pwq_attrs_buf; 5402 5403 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5404 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5405 5406 /* nothing to do if the target cpumask matches the current pwq */ 5407 wq_calc_pod_cpumask(target_attrs, cpu); 5408 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5409 return; 5410 5411 /* create a new pwq */ 5412 pwq = alloc_unbound_pwq(wq, target_attrs); 5413 if (!pwq) { 5414 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5415 wq->name); 5416 goto use_dfl_pwq; 5417 } 5418 5419 /* Install the new pwq. */ 5420 mutex_lock(&wq->mutex); 5421 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5422 goto out_unlock; 5423 5424 use_dfl_pwq: 5425 mutex_lock(&wq->mutex); 5426 pwq = unbound_pwq(wq, -1); 5427 raw_spin_lock_irq(&pwq->pool->lock); 5428 get_pwq(pwq); 5429 raw_spin_unlock_irq(&pwq->pool->lock); 5430 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5431 out_unlock: 5432 mutex_unlock(&wq->mutex); 5433 put_pwq_unlocked(old_pwq); 5434 } 5435 5436 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5437 { 5438 bool highpri = wq->flags & WQ_HIGHPRI; 5439 int cpu, ret; 5440 5441 lockdep_assert_held(&wq_pool_mutex); 5442 5443 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5444 if (!wq->cpu_pwq) 5445 goto enomem; 5446 5447 if (!(wq->flags & WQ_UNBOUND)) { 5448 struct worker_pool __percpu *pools; 5449 5450 if (wq->flags & WQ_BH) 5451 pools = bh_worker_pools; 5452 else 5453 pools = cpu_worker_pools; 5454 5455 for_each_possible_cpu(cpu) { 5456 struct pool_workqueue **pwq_p; 5457 struct worker_pool *pool; 5458 5459 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5460 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5461 5462 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5463 pool->node); 5464 if (!*pwq_p) 5465 goto enomem; 5466 5467 init_pwq(*pwq_p, wq, pool); 5468 5469 mutex_lock(&wq->mutex); 5470 link_pwq(*pwq_p); 5471 mutex_unlock(&wq->mutex); 5472 } 5473 return 0; 5474 } 5475 5476 if (wq->flags & __WQ_ORDERED) { 5477 struct pool_workqueue *dfl_pwq; 5478 5479 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5480 /* there should only be single pwq for ordering guarantee */ 5481 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5482 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5483 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5484 "ordering guarantee broken for workqueue %s\n", wq->name); 5485 } else { 5486 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5487 } 5488 5489 return ret; 5490 5491 enomem: 5492 if (wq->cpu_pwq) { 5493 for_each_possible_cpu(cpu) { 5494 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5495 5496 if (pwq) 5497 kmem_cache_free(pwq_cache, pwq); 5498 } 5499 free_percpu(wq->cpu_pwq); 5500 wq->cpu_pwq = NULL; 5501 } 5502 return -ENOMEM; 5503 } 5504 5505 static int wq_clamp_max_active(int max_active, unsigned int flags, 5506 const char *name) 5507 { 5508 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5509 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5510 max_active, name, 1, WQ_MAX_ACTIVE); 5511 5512 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5513 } 5514 5515 /* 5516 * Workqueues which may be used during memory reclaim should have a rescuer 5517 * to guarantee forward progress. 5518 */ 5519 static int init_rescuer(struct workqueue_struct *wq) 5520 { 5521 struct worker *rescuer; 5522 char id_buf[WORKER_ID_LEN]; 5523 int ret; 5524 5525 lockdep_assert_held(&wq_pool_mutex); 5526 5527 if (!(wq->flags & WQ_MEM_RECLAIM)) 5528 return 0; 5529 5530 rescuer = alloc_worker(NUMA_NO_NODE); 5531 if (!rescuer) { 5532 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5533 wq->name); 5534 return -ENOMEM; 5535 } 5536 5537 rescuer->rescue_wq = wq; 5538 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5539 5540 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5541 if (IS_ERR(rescuer->task)) { 5542 ret = PTR_ERR(rescuer->task); 5543 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5544 wq->name, ERR_PTR(ret)); 5545 kfree(rescuer); 5546 return ret; 5547 } 5548 5549 wq->rescuer = rescuer; 5550 if (wq->flags & WQ_UNBOUND) 5551 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5552 else 5553 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5554 wake_up_process(rescuer->task); 5555 5556 return 0; 5557 } 5558 5559 /** 5560 * wq_adjust_max_active - update a wq's max_active to the current setting 5561 * @wq: target workqueue 5562 * 5563 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5564 * activate inactive work items accordingly. If @wq is freezing, clear 5565 * @wq->max_active to zero. 5566 */ 5567 static void wq_adjust_max_active(struct workqueue_struct *wq) 5568 { 5569 bool activated; 5570 int new_max, new_min; 5571 5572 lockdep_assert_held(&wq->mutex); 5573 5574 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5575 new_max = 0; 5576 new_min = 0; 5577 } else { 5578 new_max = wq->saved_max_active; 5579 new_min = wq->saved_min_active; 5580 } 5581 5582 if (wq->max_active == new_max && wq->min_active == new_min) 5583 return; 5584 5585 /* 5586 * Update @wq->max/min_active and then kick inactive work items if more 5587 * active work items are allowed. This doesn't break work item ordering 5588 * because new work items are always queued behind existing inactive 5589 * work items if there are any. 5590 */ 5591 WRITE_ONCE(wq->max_active, new_max); 5592 WRITE_ONCE(wq->min_active, new_min); 5593 5594 if (wq->flags & WQ_UNBOUND) 5595 wq_update_node_max_active(wq, -1); 5596 5597 if (new_max == 0) 5598 return; 5599 5600 /* 5601 * Round-robin through pwq's activating the first inactive work item 5602 * until max_active is filled. 5603 */ 5604 do { 5605 struct pool_workqueue *pwq; 5606 5607 activated = false; 5608 for_each_pwq(pwq, wq) { 5609 unsigned long irq_flags; 5610 5611 /* can be called during early boot w/ irq disabled */ 5612 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5613 if (pwq_activate_first_inactive(pwq, true)) { 5614 activated = true; 5615 kick_pool(pwq->pool); 5616 } 5617 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5618 } 5619 } while (activated); 5620 } 5621 5622 __printf(1, 4) 5623 struct workqueue_struct *alloc_workqueue(const char *fmt, 5624 unsigned int flags, 5625 int max_active, ...) 5626 { 5627 va_list args; 5628 struct workqueue_struct *wq; 5629 size_t wq_size; 5630 int name_len; 5631 5632 if (flags & WQ_BH) { 5633 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5634 return NULL; 5635 if (WARN_ON_ONCE(max_active)) 5636 return NULL; 5637 } 5638 5639 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5640 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5641 flags |= WQ_UNBOUND; 5642 5643 /* allocate wq and format name */ 5644 if (flags & WQ_UNBOUND) 5645 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5646 else 5647 wq_size = sizeof(*wq); 5648 5649 wq = kzalloc(wq_size, GFP_KERNEL); 5650 if (!wq) 5651 return NULL; 5652 5653 if (flags & WQ_UNBOUND) { 5654 wq->unbound_attrs = alloc_workqueue_attrs(); 5655 if (!wq->unbound_attrs) 5656 goto err_free_wq; 5657 } 5658 5659 va_start(args, max_active); 5660 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5661 va_end(args); 5662 5663 if (name_len >= WQ_NAME_LEN) 5664 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5665 wq->name); 5666 5667 if (flags & WQ_BH) { 5668 /* 5669 * BH workqueues always share a single execution context per CPU 5670 * and don't impose any max_active limit. 5671 */ 5672 max_active = INT_MAX; 5673 } else { 5674 max_active = max_active ?: WQ_DFL_ACTIVE; 5675 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5676 } 5677 5678 /* init wq */ 5679 wq->flags = flags; 5680 wq->max_active = max_active; 5681 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5682 wq->saved_max_active = wq->max_active; 5683 wq->saved_min_active = wq->min_active; 5684 mutex_init(&wq->mutex); 5685 atomic_set(&wq->nr_pwqs_to_flush, 0); 5686 INIT_LIST_HEAD(&wq->pwqs); 5687 INIT_LIST_HEAD(&wq->flusher_queue); 5688 INIT_LIST_HEAD(&wq->flusher_overflow); 5689 INIT_LIST_HEAD(&wq->maydays); 5690 5691 wq_init_lockdep(wq); 5692 INIT_LIST_HEAD(&wq->list); 5693 5694 if (flags & WQ_UNBOUND) { 5695 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5696 goto err_unreg_lockdep; 5697 } 5698 5699 /* 5700 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5701 * and the global freeze state. 5702 */ 5703 apply_wqattrs_lock(); 5704 5705 if (alloc_and_link_pwqs(wq) < 0) 5706 goto err_unlock_free_node_nr_active; 5707 5708 mutex_lock(&wq->mutex); 5709 wq_adjust_max_active(wq); 5710 mutex_unlock(&wq->mutex); 5711 5712 list_add_tail_rcu(&wq->list, &workqueues); 5713 5714 if (wq_online && init_rescuer(wq) < 0) 5715 goto err_unlock_destroy; 5716 5717 apply_wqattrs_unlock(); 5718 5719 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5720 goto err_destroy; 5721 5722 return wq; 5723 5724 err_unlock_free_node_nr_active: 5725 apply_wqattrs_unlock(); 5726 /* 5727 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5728 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5729 * completes before calling kfree(wq). 5730 */ 5731 if (wq->flags & WQ_UNBOUND) { 5732 kthread_flush_worker(pwq_release_worker); 5733 free_node_nr_active(wq->node_nr_active); 5734 } 5735 err_unreg_lockdep: 5736 wq_unregister_lockdep(wq); 5737 wq_free_lockdep(wq); 5738 err_free_wq: 5739 free_workqueue_attrs(wq->unbound_attrs); 5740 kfree(wq); 5741 return NULL; 5742 err_unlock_destroy: 5743 apply_wqattrs_unlock(); 5744 err_destroy: 5745 destroy_workqueue(wq); 5746 return NULL; 5747 } 5748 EXPORT_SYMBOL_GPL(alloc_workqueue); 5749 5750 static bool pwq_busy(struct pool_workqueue *pwq) 5751 { 5752 int i; 5753 5754 for (i = 0; i < WORK_NR_COLORS; i++) 5755 if (pwq->nr_in_flight[i]) 5756 return true; 5757 5758 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5759 return true; 5760 if (!pwq_is_empty(pwq)) 5761 return true; 5762 5763 return false; 5764 } 5765 5766 /** 5767 * destroy_workqueue - safely terminate a workqueue 5768 * @wq: target workqueue 5769 * 5770 * Safely destroy a workqueue. All work currently pending will be done first. 5771 */ 5772 void destroy_workqueue(struct workqueue_struct *wq) 5773 { 5774 struct pool_workqueue *pwq; 5775 int cpu; 5776 5777 /* 5778 * Remove it from sysfs first so that sanity check failure doesn't 5779 * lead to sysfs name conflicts. 5780 */ 5781 workqueue_sysfs_unregister(wq); 5782 5783 /* mark the workqueue destruction is in progress */ 5784 mutex_lock(&wq->mutex); 5785 wq->flags |= __WQ_DESTROYING; 5786 mutex_unlock(&wq->mutex); 5787 5788 /* drain it before proceeding with destruction */ 5789 drain_workqueue(wq); 5790 5791 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5792 if (wq->rescuer) { 5793 struct worker *rescuer = wq->rescuer; 5794 5795 /* this prevents new queueing */ 5796 raw_spin_lock_irq(&wq_mayday_lock); 5797 wq->rescuer = NULL; 5798 raw_spin_unlock_irq(&wq_mayday_lock); 5799 5800 /* rescuer will empty maydays list before exiting */ 5801 kthread_stop(rescuer->task); 5802 kfree(rescuer); 5803 } 5804 5805 /* 5806 * Sanity checks - grab all the locks so that we wait for all 5807 * in-flight operations which may do put_pwq(). 5808 */ 5809 mutex_lock(&wq_pool_mutex); 5810 mutex_lock(&wq->mutex); 5811 for_each_pwq(pwq, wq) { 5812 raw_spin_lock_irq(&pwq->pool->lock); 5813 if (WARN_ON(pwq_busy(pwq))) { 5814 pr_warn("%s: %s has the following busy pwq\n", 5815 __func__, wq->name); 5816 show_pwq(pwq); 5817 raw_spin_unlock_irq(&pwq->pool->lock); 5818 mutex_unlock(&wq->mutex); 5819 mutex_unlock(&wq_pool_mutex); 5820 show_one_workqueue(wq); 5821 return; 5822 } 5823 raw_spin_unlock_irq(&pwq->pool->lock); 5824 } 5825 mutex_unlock(&wq->mutex); 5826 5827 /* 5828 * wq list is used to freeze wq, remove from list after 5829 * flushing is complete in case freeze races us. 5830 */ 5831 list_del_rcu(&wq->list); 5832 mutex_unlock(&wq_pool_mutex); 5833 5834 /* 5835 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5836 * to put the base refs. @wq will be auto-destroyed from the last 5837 * pwq_put. RCU read lock prevents @wq from going away from under us. 5838 */ 5839 rcu_read_lock(); 5840 5841 for_each_possible_cpu(cpu) { 5842 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5843 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5844 } 5845 5846 put_pwq_unlocked(unbound_pwq(wq, -1)); 5847 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5848 5849 rcu_read_unlock(); 5850 } 5851 EXPORT_SYMBOL_GPL(destroy_workqueue); 5852 5853 /** 5854 * workqueue_set_max_active - adjust max_active of a workqueue 5855 * @wq: target workqueue 5856 * @max_active: new max_active value. 5857 * 5858 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5859 * comment. 5860 * 5861 * CONTEXT: 5862 * Don't call from IRQ context. 5863 */ 5864 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5865 { 5866 /* max_active doesn't mean anything for BH workqueues */ 5867 if (WARN_ON(wq->flags & WQ_BH)) 5868 return; 5869 /* disallow meddling with max_active for ordered workqueues */ 5870 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5871 return; 5872 5873 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5874 5875 mutex_lock(&wq->mutex); 5876 5877 wq->saved_max_active = max_active; 5878 if (wq->flags & WQ_UNBOUND) 5879 wq->saved_min_active = min(wq->saved_min_active, max_active); 5880 5881 wq_adjust_max_active(wq); 5882 5883 mutex_unlock(&wq->mutex); 5884 } 5885 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5886 5887 /** 5888 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5889 * @wq: target unbound workqueue 5890 * @min_active: new min_active value 5891 * 5892 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5893 * unbound workqueue is not guaranteed to be able to process max_active 5894 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5895 * able to process min_active number of interdependent work items which is 5896 * %WQ_DFL_MIN_ACTIVE by default. 5897 * 5898 * Use this function to adjust the min_active value between 0 and the current 5899 * max_active. 5900 */ 5901 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5902 { 5903 /* min_active is only meaningful for non-ordered unbound workqueues */ 5904 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5905 WQ_UNBOUND)) 5906 return; 5907 5908 mutex_lock(&wq->mutex); 5909 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5910 wq_adjust_max_active(wq); 5911 mutex_unlock(&wq->mutex); 5912 } 5913 5914 /** 5915 * current_work - retrieve %current task's work struct 5916 * 5917 * Determine if %current task is a workqueue worker and what it's working on. 5918 * Useful to find out the context that the %current task is running in. 5919 * 5920 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5921 */ 5922 struct work_struct *current_work(void) 5923 { 5924 struct worker *worker = current_wq_worker(); 5925 5926 return worker ? worker->current_work : NULL; 5927 } 5928 EXPORT_SYMBOL(current_work); 5929 5930 /** 5931 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5932 * 5933 * Determine whether %current is a workqueue rescuer. Can be used from 5934 * work functions to determine whether it's being run off the rescuer task. 5935 * 5936 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5937 */ 5938 bool current_is_workqueue_rescuer(void) 5939 { 5940 struct worker *worker = current_wq_worker(); 5941 5942 return worker && worker->rescue_wq; 5943 } 5944 5945 /** 5946 * workqueue_congested - test whether a workqueue is congested 5947 * @cpu: CPU in question 5948 * @wq: target workqueue 5949 * 5950 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5951 * no synchronization around this function and the test result is 5952 * unreliable and only useful as advisory hints or for debugging. 5953 * 5954 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5955 * 5956 * With the exception of ordered workqueues, all workqueues have per-cpu 5957 * pool_workqueues, each with its own congested state. A workqueue being 5958 * congested on one CPU doesn't mean that the workqueue is contested on any 5959 * other CPUs. 5960 * 5961 * Return: 5962 * %true if congested, %false otherwise. 5963 */ 5964 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5965 { 5966 struct pool_workqueue *pwq; 5967 bool ret; 5968 5969 rcu_read_lock(); 5970 preempt_disable(); 5971 5972 if (cpu == WORK_CPU_UNBOUND) 5973 cpu = smp_processor_id(); 5974 5975 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5976 ret = !list_empty(&pwq->inactive_works); 5977 5978 preempt_enable(); 5979 rcu_read_unlock(); 5980 5981 return ret; 5982 } 5983 EXPORT_SYMBOL_GPL(workqueue_congested); 5984 5985 /** 5986 * work_busy - test whether a work is currently pending or running 5987 * @work: the work to be tested 5988 * 5989 * Test whether @work is currently pending or running. There is no 5990 * synchronization around this function and the test result is 5991 * unreliable and only useful as advisory hints or for debugging. 5992 * 5993 * Return: 5994 * OR'd bitmask of WORK_BUSY_* bits. 5995 */ 5996 unsigned int work_busy(struct work_struct *work) 5997 { 5998 struct worker_pool *pool; 5999 unsigned long irq_flags; 6000 unsigned int ret = 0; 6001 6002 if (work_pending(work)) 6003 ret |= WORK_BUSY_PENDING; 6004 6005 rcu_read_lock(); 6006 pool = get_work_pool(work); 6007 if (pool) { 6008 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6009 if (find_worker_executing_work(pool, work)) 6010 ret |= WORK_BUSY_RUNNING; 6011 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6012 } 6013 rcu_read_unlock(); 6014 6015 return ret; 6016 } 6017 EXPORT_SYMBOL_GPL(work_busy); 6018 6019 /** 6020 * set_worker_desc - set description for the current work item 6021 * @fmt: printf-style format string 6022 * @...: arguments for the format string 6023 * 6024 * This function can be called by a running work function to describe what 6025 * the work item is about. If the worker task gets dumped, this 6026 * information will be printed out together to help debugging. The 6027 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6028 */ 6029 void set_worker_desc(const char *fmt, ...) 6030 { 6031 struct worker *worker = current_wq_worker(); 6032 va_list args; 6033 6034 if (worker) { 6035 va_start(args, fmt); 6036 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6037 va_end(args); 6038 } 6039 } 6040 EXPORT_SYMBOL_GPL(set_worker_desc); 6041 6042 /** 6043 * print_worker_info - print out worker information and description 6044 * @log_lvl: the log level to use when printing 6045 * @task: target task 6046 * 6047 * If @task is a worker and currently executing a work item, print out the 6048 * name of the workqueue being serviced and worker description set with 6049 * set_worker_desc() by the currently executing work item. 6050 * 6051 * This function can be safely called on any task as long as the 6052 * task_struct itself is accessible. While safe, this function isn't 6053 * synchronized and may print out mixups or garbages of limited length. 6054 */ 6055 void print_worker_info(const char *log_lvl, struct task_struct *task) 6056 { 6057 work_func_t *fn = NULL; 6058 char name[WQ_NAME_LEN] = { }; 6059 char desc[WORKER_DESC_LEN] = { }; 6060 struct pool_workqueue *pwq = NULL; 6061 struct workqueue_struct *wq = NULL; 6062 struct worker *worker; 6063 6064 if (!(task->flags & PF_WQ_WORKER)) 6065 return; 6066 6067 /* 6068 * This function is called without any synchronization and @task 6069 * could be in any state. Be careful with dereferences. 6070 */ 6071 worker = kthread_probe_data(task); 6072 6073 /* 6074 * Carefully copy the associated workqueue's workfn, name and desc. 6075 * Keep the original last '\0' in case the original is garbage. 6076 */ 6077 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6078 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6079 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6080 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6081 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6082 6083 if (fn || name[0] || desc[0]) { 6084 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6085 if (strcmp(name, desc)) 6086 pr_cont(" (%s)", desc); 6087 pr_cont("\n"); 6088 } 6089 } 6090 6091 static void pr_cont_pool_info(struct worker_pool *pool) 6092 { 6093 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6094 if (pool->node != NUMA_NO_NODE) 6095 pr_cont(" node=%d", pool->node); 6096 pr_cont(" flags=0x%x", pool->flags); 6097 if (pool->flags & POOL_BH) 6098 pr_cont(" bh%s", 6099 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6100 else 6101 pr_cont(" nice=%d", pool->attrs->nice); 6102 } 6103 6104 static void pr_cont_worker_id(struct worker *worker) 6105 { 6106 struct worker_pool *pool = worker->pool; 6107 6108 if (pool->flags & WQ_BH) 6109 pr_cont("bh%s", 6110 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6111 else 6112 pr_cont("%d%s", task_pid_nr(worker->task), 6113 worker->rescue_wq ? "(RESCUER)" : ""); 6114 } 6115 6116 struct pr_cont_work_struct { 6117 bool comma; 6118 work_func_t func; 6119 long ctr; 6120 }; 6121 6122 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6123 { 6124 if (!pcwsp->ctr) 6125 goto out_record; 6126 if (func == pcwsp->func) { 6127 pcwsp->ctr++; 6128 return; 6129 } 6130 if (pcwsp->ctr == 1) 6131 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6132 else 6133 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6134 pcwsp->ctr = 0; 6135 out_record: 6136 if ((long)func == -1L) 6137 return; 6138 pcwsp->comma = comma; 6139 pcwsp->func = func; 6140 pcwsp->ctr = 1; 6141 } 6142 6143 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6144 { 6145 if (work->func == wq_barrier_func) { 6146 struct wq_barrier *barr; 6147 6148 barr = container_of(work, struct wq_barrier, work); 6149 6150 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6151 pr_cont("%s BAR(%d)", comma ? "," : "", 6152 task_pid_nr(barr->task)); 6153 } else { 6154 if (!comma) 6155 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6156 pr_cont_work_flush(comma, work->func, pcwsp); 6157 } 6158 } 6159 6160 static void show_pwq(struct pool_workqueue *pwq) 6161 { 6162 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6163 struct worker_pool *pool = pwq->pool; 6164 struct work_struct *work; 6165 struct worker *worker; 6166 bool has_in_flight = false, has_pending = false; 6167 int bkt; 6168 6169 pr_info(" pwq %d:", pool->id); 6170 pr_cont_pool_info(pool); 6171 6172 pr_cont(" active=%d refcnt=%d%s\n", 6173 pwq->nr_active, pwq->refcnt, 6174 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6175 6176 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6177 if (worker->current_pwq == pwq) { 6178 has_in_flight = true; 6179 break; 6180 } 6181 } 6182 if (has_in_flight) { 6183 bool comma = false; 6184 6185 pr_info(" in-flight:"); 6186 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6187 if (worker->current_pwq != pwq) 6188 continue; 6189 6190 pr_cont(" %s", comma ? "," : ""); 6191 pr_cont_worker_id(worker); 6192 pr_cont(":%ps", worker->current_func); 6193 list_for_each_entry(work, &worker->scheduled, entry) 6194 pr_cont_work(false, work, &pcws); 6195 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6196 comma = true; 6197 } 6198 pr_cont("\n"); 6199 } 6200 6201 list_for_each_entry(work, &pool->worklist, entry) { 6202 if (get_work_pwq(work) == pwq) { 6203 has_pending = true; 6204 break; 6205 } 6206 } 6207 if (has_pending) { 6208 bool comma = false; 6209 6210 pr_info(" pending:"); 6211 list_for_each_entry(work, &pool->worklist, entry) { 6212 if (get_work_pwq(work) != pwq) 6213 continue; 6214 6215 pr_cont_work(comma, work, &pcws); 6216 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6217 } 6218 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6219 pr_cont("\n"); 6220 } 6221 6222 if (!list_empty(&pwq->inactive_works)) { 6223 bool comma = false; 6224 6225 pr_info(" inactive:"); 6226 list_for_each_entry(work, &pwq->inactive_works, entry) { 6227 pr_cont_work(comma, work, &pcws); 6228 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6229 } 6230 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6231 pr_cont("\n"); 6232 } 6233 } 6234 6235 /** 6236 * show_one_workqueue - dump state of specified workqueue 6237 * @wq: workqueue whose state will be printed 6238 */ 6239 void show_one_workqueue(struct workqueue_struct *wq) 6240 { 6241 struct pool_workqueue *pwq; 6242 bool idle = true; 6243 unsigned long irq_flags; 6244 6245 for_each_pwq(pwq, wq) { 6246 if (!pwq_is_empty(pwq)) { 6247 idle = false; 6248 break; 6249 } 6250 } 6251 if (idle) /* Nothing to print for idle workqueue */ 6252 return; 6253 6254 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6255 6256 for_each_pwq(pwq, wq) { 6257 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6258 if (!pwq_is_empty(pwq)) { 6259 /* 6260 * Defer printing to avoid deadlocks in console 6261 * drivers that queue work while holding locks 6262 * also taken in their write paths. 6263 */ 6264 printk_deferred_enter(); 6265 show_pwq(pwq); 6266 printk_deferred_exit(); 6267 } 6268 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6269 /* 6270 * We could be printing a lot from atomic context, e.g. 6271 * sysrq-t -> show_all_workqueues(). Avoid triggering 6272 * hard lockup. 6273 */ 6274 touch_nmi_watchdog(); 6275 } 6276 6277 } 6278 6279 /** 6280 * show_one_worker_pool - dump state of specified worker pool 6281 * @pool: worker pool whose state will be printed 6282 */ 6283 static void show_one_worker_pool(struct worker_pool *pool) 6284 { 6285 struct worker *worker; 6286 bool first = true; 6287 unsigned long irq_flags; 6288 unsigned long hung = 0; 6289 6290 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6291 if (pool->nr_workers == pool->nr_idle) 6292 goto next_pool; 6293 6294 /* How long the first pending work is waiting for a worker. */ 6295 if (!list_empty(&pool->worklist)) 6296 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6297 6298 /* 6299 * Defer printing to avoid deadlocks in console drivers that 6300 * queue work while holding locks also taken in their write 6301 * paths. 6302 */ 6303 printk_deferred_enter(); 6304 pr_info("pool %d:", pool->id); 6305 pr_cont_pool_info(pool); 6306 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6307 if (pool->manager) 6308 pr_cont(" manager: %d", 6309 task_pid_nr(pool->manager->task)); 6310 list_for_each_entry(worker, &pool->idle_list, entry) { 6311 pr_cont(" %s", first ? "idle: " : ""); 6312 pr_cont_worker_id(worker); 6313 first = false; 6314 } 6315 pr_cont("\n"); 6316 printk_deferred_exit(); 6317 next_pool: 6318 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6319 /* 6320 * We could be printing a lot from atomic context, e.g. 6321 * sysrq-t -> show_all_workqueues(). Avoid triggering 6322 * hard lockup. 6323 */ 6324 touch_nmi_watchdog(); 6325 6326 } 6327 6328 /** 6329 * show_all_workqueues - dump workqueue state 6330 * 6331 * Called from a sysrq handler and prints out all busy workqueues and pools. 6332 */ 6333 void show_all_workqueues(void) 6334 { 6335 struct workqueue_struct *wq; 6336 struct worker_pool *pool; 6337 int pi; 6338 6339 rcu_read_lock(); 6340 6341 pr_info("Showing busy workqueues and worker pools:\n"); 6342 6343 list_for_each_entry_rcu(wq, &workqueues, list) 6344 show_one_workqueue(wq); 6345 6346 for_each_pool(pool, pi) 6347 show_one_worker_pool(pool); 6348 6349 rcu_read_unlock(); 6350 } 6351 6352 /** 6353 * show_freezable_workqueues - dump freezable workqueue state 6354 * 6355 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6356 * still busy. 6357 */ 6358 void show_freezable_workqueues(void) 6359 { 6360 struct workqueue_struct *wq; 6361 6362 rcu_read_lock(); 6363 6364 pr_info("Showing freezable workqueues that are still busy:\n"); 6365 6366 list_for_each_entry_rcu(wq, &workqueues, list) { 6367 if (!(wq->flags & WQ_FREEZABLE)) 6368 continue; 6369 show_one_workqueue(wq); 6370 } 6371 6372 rcu_read_unlock(); 6373 } 6374 6375 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6376 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6377 { 6378 /* stabilize PF_WQ_WORKER and worker pool association */ 6379 mutex_lock(&wq_pool_attach_mutex); 6380 6381 if (task->flags & PF_WQ_WORKER) { 6382 struct worker *worker = kthread_data(task); 6383 struct worker_pool *pool = worker->pool; 6384 int off; 6385 6386 off = format_worker_id(buf, size, worker, pool); 6387 6388 if (pool) { 6389 raw_spin_lock_irq(&pool->lock); 6390 /* 6391 * ->desc tracks information (wq name or 6392 * set_worker_desc()) for the latest execution. If 6393 * current, prepend '+', otherwise '-'. 6394 */ 6395 if (worker->desc[0] != '\0') { 6396 if (worker->current_work) 6397 scnprintf(buf + off, size - off, "+%s", 6398 worker->desc); 6399 else 6400 scnprintf(buf + off, size - off, "-%s", 6401 worker->desc); 6402 } 6403 raw_spin_unlock_irq(&pool->lock); 6404 } 6405 } else { 6406 strscpy(buf, task->comm, size); 6407 } 6408 6409 mutex_unlock(&wq_pool_attach_mutex); 6410 } 6411 6412 #ifdef CONFIG_SMP 6413 6414 /* 6415 * CPU hotplug. 6416 * 6417 * There are two challenges in supporting CPU hotplug. Firstly, there 6418 * are a lot of assumptions on strong associations among work, pwq and 6419 * pool which make migrating pending and scheduled works very 6420 * difficult to implement without impacting hot paths. Secondly, 6421 * worker pools serve mix of short, long and very long running works making 6422 * blocked draining impractical. 6423 * 6424 * This is solved by allowing the pools to be disassociated from the CPU 6425 * running as an unbound one and allowing it to be reattached later if the 6426 * cpu comes back online. 6427 */ 6428 6429 static void unbind_workers(int cpu) 6430 { 6431 struct worker_pool *pool; 6432 struct worker *worker; 6433 6434 for_each_cpu_worker_pool(pool, cpu) { 6435 mutex_lock(&wq_pool_attach_mutex); 6436 raw_spin_lock_irq(&pool->lock); 6437 6438 /* 6439 * We've blocked all attach/detach operations. Make all workers 6440 * unbound and set DISASSOCIATED. Before this, all workers 6441 * must be on the cpu. After this, they may become diasporas. 6442 * And the preemption disabled section in their sched callbacks 6443 * are guaranteed to see WORKER_UNBOUND since the code here 6444 * is on the same cpu. 6445 */ 6446 for_each_pool_worker(worker, pool) 6447 worker->flags |= WORKER_UNBOUND; 6448 6449 pool->flags |= POOL_DISASSOCIATED; 6450 6451 /* 6452 * The handling of nr_running in sched callbacks are disabled 6453 * now. Zap nr_running. After this, nr_running stays zero and 6454 * need_more_worker() and keep_working() are always true as 6455 * long as the worklist is not empty. This pool now behaves as 6456 * an unbound (in terms of concurrency management) pool which 6457 * are served by workers tied to the pool. 6458 */ 6459 pool->nr_running = 0; 6460 6461 /* 6462 * With concurrency management just turned off, a busy 6463 * worker blocking could lead to lengthy stalls. Kick off 6464 * unbound chain execution of currently pending work items. 6465 */ 6466 kick_pool(pool); 6467 6468 raw_spin_unlock_irq(&pool->lock); 6469 6470 for_each_pool_worker(worker, pool) 6471 unbind_worker(worker); 6472 6473 mutex_unlock(&wq_pool_attach_mutex); 6474 } 6475 } 6476 6477 /** 6478 * rebind_workers - rebind all workers of a pool to the associated CPU 6479 * @pool: pool of interest 6480 * 6481 * @pool->cpu is coming online. Rebind all workers to the CPU. 6482 */ 6483 static void rebind_workers(struct worker_pool *pool) 6484 { 6485 struct worker *worker; 6486 6487 lockdep_assert_held(&wq_pool_attach_mutex); 6488 6489 /* 6490 * Restore CPU affinity of all workers. As all idle workers should 6491 * be on the run-queue of the associated CPU before any local 6492 * wake-ups for concurrency management happen, restore CPU affinity 6493 * of all workers first and then clear UNBOUND. As we're called 6494 * from CPU_ONLINE, the following shouldn't fail. 6495 */ 6496 for_each_pool_worker(worker, pool) { 6497 kthread_set_per_cpu(worker->task, pool->cpu); 6498 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6499 pool_allowed_cpus(pool)) < 0); 6500 } 6501 6502 raw_spin_lock_irq(&pool->lock); 6503 6504 pool->flags &= ~POOL_DISASSOCIATED; 6505 6506 for_each_pool_worker(worker, pool) { 6507 unsigned int worker_flags = worker->flags; 6508 6509 /* 6510 * We want to clear UNBOUND but can't directly call 6511 * worker_clr_flags() or adjust nr_running. Atomically 6512 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6513 * @worker will clear REBOUND using worker_clr_flags() when 6514 * it initiates the next execution cycle thus restoring 6515 * concurrency management. Note that when or whether 6516 * @worker clears REBOUND doesn't affect correctness. 6517 * 6518 * WRITE_ONCE() is necessary because @worker->flags may be 6519 * tested without holding any lock in 6520 * wq_worker_running(). Without it, NOT_RUNNING test may 6521 * fail incorrectly leading to premature concurrency 6522 * management operations. 6523 */ 6524 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6525 worker_flags |= WORKER_REBOUND; 6526 worker_flags &= ~WORKER_UNBOUND; 6527 WRITE_ONCE(worker->flags, worker_flags); 6528 } 6529 6530 raw_spin_unlock_irq(&pool->lock); 6531 } 6532 6533 /** 6534 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6535 * @pool: unbound pool of interest 6536 * @cpu: the CPU which is coming up 6537 * 6538 * An unbound pool may end up with a cpumask which doesn't have any online 6539 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6540 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6541 * online CPU before, cpus_allowed of all its workers should be restored. 6542 */ 6543 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6544 { 6545 static cpumask_t cpumask; 6546 struct worker *worker; 6547 6548 lockdep_assert_held(&wq_pool_attach_mutex); 6549 6550 /* is @cpu allowed for @pool? */ 6551 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6552 return; 6553 6554 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6555 6556 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6557 for_each_pool_worker(worker, pool) 6558 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6559 } 6560 6561 int workqueue_prepare_cpu(unsigned int cpu) 6562 { 6563 struct worker_pool *pool; 6564 6565 for_each_cpu_worker_pool(pool, cpu) { 6566 if (pool->nr_workers) 6567 continue; 6568 if (!create_worker(pool)) 6569 return -ENOMEM; 6570 } 6571 return 0; 6572 } 6573 6574 int workqueue_online_cpu(unsigned int cpu) 6575 { 6576 struct worker_pool *pool; 6577 struct workqueue_struct *wq; 6578 int pi; 6579 6580 mutex_lock(&wq_pool_mutex); 6581 6582 cpumask_set_cpu(cpu, wq_online_cpumask); 6583 6584 for_each_pool(pool, pi) { 6585 /* BH pools aren't affected by hotplug */ 6586 if (pool->flags & POOL_BH) 6587 continue; 6588 6589 mutex_lock(&wq_pool_attach_mutex); 6590 if (pool->cpu == cpu) 6591 rebind_workers(pool); 6592 else if (pool->cpu < 0) 6593 restore_unbound_workers_cpumask(pool, cpu); 6594 mutex_unlock(&wq_pool_attach_mutex); 6595 } 6596 6597 /* update pod affinity of unbound workqueues */ 6598 list_for_each_entry(wq, &workqueues, list) { 6599 struct workqueue_attrs *attrs = wq->unbound_attrs; 6600 6601 if (attrs) { 6602 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6603 int tcpu; 6604 6605 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6606 unbound_wq_update_pwq(wq, tcpu); 6607 6608 mutex_lock(&wq->mutex); 6609 wq_update_node_max_active(wq, -1); 6610 mutex_unlock(&wq->mutex); 6611 } 6612 } 6613 6614 mutex_unlock(&wq_pool_mutex); 6615 return 0; 6616 } 6617 6618 int workqueue_offline_cpu(unsigned int cpu) 6619 { 6620 struct workqueue_struct *wq; 6621 6622 /* unbinding per-cpu workers should happen on the local CPU */ 6623 if (WARN_ON(cpu != smp_processor_id())) 6624 return -1; 6625 6626 unbind_workers(cpu); 6627 6628 /* update pod affinity of unbound workqueues */ 6629 mutex_lock(&wq_pool_mutex); 6630 6631 cpumask_clear_cpu(cpu, wq_online_cpumask); 6632 6633 list_for_each_entry(wq, &workqueues, list) { 6634 struct workqueue_attrs *attrs = wq->unbound_attrs; 6635 6636 if (attrs) { 6637 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6638 int tcpu; 6639 6640 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6641 unbound_wq_update_pwq(wq, tcpu); 6642 6643 mutex_lock(&wq->mutex); 6644 wq_update_node_max_active(wq, cpu); 6645 mutex_unlock(&wq->mutex); 6646 } 6647 } 6648 mutex_unlock(&wq_pool_mutex); 6649 6650 return 0; 6651 } 6652 6653 struct work_for_cpu { 6654 struct work_struct work; 6655 long (*fn)(void *); 6656 void *arg; 6657 long ret; 6658 }; 6659 6660 static void work_for_cpu_fn(struct work_struct *work) 6661 { 6662 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6663 6664 wfc->ret = wfc->fn(wfc->arg); 6665 } 6666 6667 /** 6668 * work_on_cpu_key - run a function in thread context on a particular cpu 6669 * @cpu: the cpu to run on 6670 * @fn: the function to run 6671 * @arg: the function arg 6672 * @key: The lock class key for lock debugging purposes 6673 * 6674 * It is up to the caller to ensure that the cpu doesn't go offline. 6675 * The caller must not hold any locks which would prevent @fn from completing. 6676 * 6677 * Return: The value @fn returns. 6678 */ 6679 long work_on_cpu_key(int cpu, long (*fn)(void *), 6680 void *arg, struct lock_class_key *key) 6681 { 6682 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6683 6684 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6685 schedule_work_on(cpu, &wfc.work); 6686 flush_work(&wfc.work); 6687 destroy_work_on_stack(&wfc.work); 6688 return wfc.ret; 6689 } 6690 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6691 6692 /** 6693 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6694 * @cpu: the cpu to run on 6695 * @fn: the function to run 6696 * @arg: the function argument 6697 * @key: The lock class key for lock debugging purposes 6698 * 6699 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6700 * any locks which would prevent @fn from completing. 6701 * 6702 * Return: The value @fn returns. 6703 */ 6704 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6705 void *arg, struct lock_class_key *key) 6706 { 6707 long ret = -ENODEV; 6708 6709 cpus_read_lock(); 6710 if (cpu_online(cpu)) 6711 ret = work_on_cpu_key(cpu, fn, arg, key); 6712 cpus_read_unlock(); 6713 return ret; 6714 } 6715 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6716 #endif /* CONFIG_SMP */ 6717 6718 #ifdef CONFIG_FREEZER 6719 6720 /** 6721 * freeze_workqueues_begin - begin freezing workqueues 6722 * 6723 * Start freezing workqueues. After this function returns, all freezable 6724 * workqueues will queue new works to their inactive_works list instead of 6725 * pool->worklist. 6726 * 6727 * CONTEXT: 6728 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6729 */ 6730 void freeze_workqueues_begin(void) 6731 { 6732 struct workqueue_struct *wq; 6733 6734 mutex_lock(&wq_pool_mutex); 6735 6736 WARN_ON_ONCE(workqueue_freezing); 6737 workqueue_freezing = true; 6738 6739 list_for_each_entry(wq, &workqueues, list) { 6740 mutex_lock(&wq->mutex); 6741 wq_adjust_max_active(wq); 6742 mutex_unlock(&wq->mutex); 6743 } 6744 6745 mutex_unlock(&wq_pool_mutex); 6746 } 6747 6748 /** 6749 * freeze_workqueues_busy - are freezable workqueues still busy? 6750 * 6751 * Check whether freezing is complete. This function must be called 6752 * between freeze_workqueues_begin() and thaw_workqueues(). 6753 * 6754 * CONTEXT: 6755 * Grabs and releases wq_pool_mutex. 6756 * 6757 * Return: 6758 * %true if some freezable workqueues are still busy. %false if freezing 6759 * is complete. 6760 */ 6761 bool freeze_workqueues_busy(void) 6762 { 6763 bool busy = false; 6764 struct workqueue_struct *wq; 6765 struct pool_workqueue *pwq; 6766 6767 mutex_lock(&wq_pool_mutex); 6768 6769 WARN_ON_ONCE(!workqueue_freezing); 6770 6771 list_for_each_entry(wq, &workqueues, list) { 6772 if (!(wq->flags & WQ_FREEZABLE)) 6773 continue; 6774 /* 6775 * nr_active is monotonically decreasing. It's safe 6776 * to peek without lock. 6777 */ 6778 rcu_read_lock(); 6779 for_each_pwq(pwq, wq) { 6780 WARN_ON_ONCE(pwq->nr_active < 0); 6781 if (pwq->nr_active) { 6782 busy = true; 6783 rcu_read_unlock(); 6784 goto out_unlock; 6785 } 6786 } 6787 rcu_read_unlock(); 6788 } 6789 out_unlock: 6790 mutex_unlock(&wq_pool_mutex); 6791 return busy; 6792 } 6793 6794 /** 6795 * thaw_workqueues - thaw workqueues 6796 * 6797 * Thaw workqueues. Normal queueing is restored and all collected 6798 * frozen works are transferred to their respective pool worklists. 6799 * 6800 * CONTEXT: 6801 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6802 */ 6803 void thaw_workqueues(void) 6804 { 6805 struct workqueue_struct *wq; 6806 6807 mutex_lock(&wq_pool_mutex); 6808 6809 if (!workqueue_freezing) 6810 goto out_unlock; 6811 6812 workqueue_freezing = false; 6813 6814 /* restore max_active and repopulate worklist */ 6815 list_for_each_entry(wq, &workqueues, list) { 6816 mutex_lock(&wq->mutex); 6817 wq_adjust_max_active(wq); 6818 mutex_unlock(&wq->mutex); 6819 } 6820 6821 out_unlock: 6822 mutex_unlock(&wq_pool_mutex); 6823 } 6824 #endif /* CONFIG_FREEZER */ 6825 6826 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6827 { 6828 LIST_HEAD(ctxs); 6829 int ret = 0; 6830 struct workqueue_struct *wq; 6831 struct apply_wqattrs_ctx *ctx, *n; 6832 6833 lockdep_assert_held(&wq_pool_mutex); 6834 6835 list_for_each_entry(wq, &workqueues, list) { 6836 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6837 continue; 6838 6839 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6840 if (IS_ERR(ctx)) { 6841 ret = PTR_ERR(ctx); 6842 break; 6843 } 6844 6845 list_add_tail(&ctx->list, &ctxs); 6846 } 6847 6848 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6849 if (!ret) 6850 apply_wqattrs_commit(ctx); 6851 apply_wqattrs_cleanup(ctx); 6852 } 6853 6854 if (!ret) { 6855 mutex_lock(&wq_pool_attach_mutex); 6856 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6857 mutex_unlock(&wq_pool_attach_mutex); 6858 } 6859 return ret; 6860 } 6861 6862 /** 6863 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6864 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6865 * 6866 * This function can be called from cpuset code to provide a set of isolated 6867 * CPUs that should be excluded from wq_unbound_cpumask. 6868 */ 6869 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6870 { 6871 cpumask_var_t cpumask; 6872 int ret = 0; 6873 6874 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6875 return -ENOMEM; 6876 6877 mutex_lock(&wq_pool_mutex); 6878 6879 /* 6880 * If the operation fails, it will fall back to 6881 * wq_requested_unbound_cpumask which is initially set to 6882 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6883 * by any subsequent write to workqueue/cpumask sysfs file. 6884 */ 6885 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6886 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6887 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6888 ret = workqueue_apply_unbound_cpumask(cpumask); 6889 6890 /* Save the current isolated cpumask & export it via sysfs */ 6891 if (!ret) 6892 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6893 6894 mutex_unlock(&wq_pool_mutex); 6895 free_cpumask_var(cpumask); 6896 return ret; 6897 } 6898 6899 static int parse_affn_scope(const char *val) 6900 { 6901 int i; 6902 6903 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6904 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6905 return i; 6906 } 6907 return -EINVAL; 6908 } 6909 6910 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6911 { 6912 struct workqueue_struct *wq; 6913 int affn, cpu; 6914 6915 affn = parse_affn_scope(val); 6916 if (affn < 0) 6917 return affn; 6918 if (affn == WQ_AFFN_DFL) 6919 return -EINVAL; 6920 6921 cpus_read_lock(); 6922 mutex_lock(&wq_pool_mutex); 6923 6924 wq_affn_dfl = affn; 6925 6926 list_for_each_entry(wq, &workqueues, list) { 6927 for_each_online_cpu(cpu) 6928 unbound_wq_update_pwq(wq, cpu); 6929 } 6930 6931 mutex_unlock(&wq_pool_mutex); 6932 cpus_read_unlock(); 6933 6934 return 0; 6935 } 6936 6937 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6938 { 6939 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6940 } 6941 6942 static const struct kernel_param_ops wq_affn_dfl_ops = { 6943 .set = wq_affn_dfl_set, 6944 .get = wq_affn_dfl_get, 6945 }; 6946 6947 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6948 6949 #ifdef CONFIG_SYSFS 6950 /* 6951 * Workqueues with WQ_SYSFS flag set is visible to userland via 6952 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6953 * following attributes. 6954 * 6955 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6956 * max_active RW int : maximum number of in-flight work items 6957 * 6958 * Unbound workqueues have the following extra attributes. 6959 * 6960 * nice RW int : nice value of the workers 6961 * cpumask RW mask : bitmask of allowed CPUs for the workers 6962 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6963 * affinity_strict RW bool : worker CPU affinity is strict 6964 */ 6965 struct wq_device { 6966 struct workqueue_struct *wq; 6967 struct device dev; 6968 }; 6969 6970 static struct workqueue_struct *dev_to_wq(struct device *dev) 6971 { 6972 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6973 6974 return wq_dev->wq; 6975 } 6976 6977 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6978 char *buf) 6979 { 6980 struct workqueue_struct *wq = dev_to_wq(dev); 6981 6982 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6983 } 6984 static DEVICE_ATTR_RO(per_cpu); 6985 6986 static ssize_t max_active_show(struct device *dev, 6987 struct device_attribute *attr, char *buf) 6988 { 6989 struct workqueue_struct *wq = dev_to_wq(dev); 6990 6991 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6992 } 6993 6994 static ssize_t max_active_store(struct device *dev, 6995 struct device_attribute *attr, const char *buf, 6996 size_t count) 6997 { 6998 struct workqueue_struct *wq = dev_to_wq(dev); 6999 int val; 7000 7001 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7002 return -EINVAL; 7003 7004 workqueue_set_max_active(wq, val); 7005 return count; 7006 } 7007 static DEVICE_ATTR_RW(max_active); 7008 7009 static struct attribute *wq_sysfs_attrs[] = { 7010 &dev_attr_per_cpu.attr, 7011 &dev_attr_max_active.attr, 7012 NULL, 7013 }; 7014 ATTRIBUTE_GROUPS(wq_sysfs); 7015 7016 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7017 char *buf) 7018 { 7019 struct workqueue_struct *wq = dev_to_wq(dev); 7020 int written; 7021 7022 mutex_lock(&wq->mutex); 7023 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7024 mutex_unlock(&wq->mutex); 7025 7026 return written; 7027 } 7028 7029 /* prepare workqueue_attrs for sysfs store operations */ 7030 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7031 { 7032 struct workqueue_attrs *attrs; 7033 7034 lockdep_assert_held(&wq_pool_mutex); 7035 7036 attrs = alloc_workqueue_attrs(); 7037 if (!attrs) 7038 return NULL; 7039 7040 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7041 return attrs; 7042 } 7043 7044 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7045 const char *buf, size_t count) 7046 { 7047 struct workqueue_struct *wq = dev_to_wq(dev); 7048 struct workqueue_attrs *attrs; 7049 int ret = -ENOMEM; 7050 7051 apply_wqattrs_lock(); 7052 7053 attrs = wq_sysfs_prep_attrs(wq); 7054 if (!attrs) 7055 goto out_unlock; 7056 7057 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7058 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7059 ret = apply_workqueue_attrs_locked(wq, attrs); 7060 else 7061 ret = -EINVAL; 7062 7063 out_unlock: 7064 apply_wqattrs_unlock(); 7065 free_workqueue_attrs(attrs); 7066 return ret ?: count; 7067 } 7068 7069 static ssize_t wq_cpumask_show(struct device *dev, 7070 struct device_attribute *attr, char *buf) 7071 { 7072 struct workqueue_struct *wq = dev_to_wq(dev); 7073 int written; 7074 7075 mutex_lock(&wq->mutex); 7076 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7077 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7078 mutex_unlock(&wq->mutex); 7079 return written; 7080 } 7081 7082 static ssize_t wq_cpumask_store(struct device *dev, 7083 struct device_attribute *attr, 7084 const char *buf, size_t count) 7085 { 7086 struct workqueue_struct *wq = dev_to_wq(dev); 7087 struct workqueue_attrs *attrs; 7088 int ret = -ENOMEM; 7089 7090 apply_wqattrs_lock(); 7091 7092 attrs = wq_sysfs_prep_attrs(wq); 7093 if (!attrs) 7094 goto out_unlock; 7095 7096 ret = cpumask_parse(buf, attrs->cpumask); 7097 if (!ret) 7098 ret = apply_workqueue_attrs_locked(wq, attrs); 7099 7100 out_unlock: 7101 apply_wqattrs_unlock(); 7102 free_workqueue_attrs(attrs); 7103 return ret ?: count; 7104 } 7105 7106 static ssize_t wq_affn_scope_show(struct device *dev, 7107 struct device_attribute *attr, char *buf) 7108 { 7109 struct workqueue_struct *wq = dev_to_wq(dev); 7110 int written; 7111 7112 mutex_lock(&wq->mutex); 7113 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7114 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7115 wq_affn_names[WQ_AFFN_DFL], 7116 wq_affn_names[wq_affn_dfl]); 7117 else 7118 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7119 wq_affn_names[wq->unbound_attrs->affn_scope]); 7120 mutex_unlock(&wq->mutex); 7121 7122 return written; 7123 } 7124 7125 static ssize_t wq_affn_scope_store(struct device *dev, 7126 struct device_attribute *attr, 7127 const char *buf, size_t count) 7128 { 7129 struct workqueue_struct *wq = dev_to_wq(dev); 7130 struct workqueue_attrs *attrs; 7131 int affn, ret = -ENOMEM; 7132 7133 affn = parse_affn_scope(buf); 7134 if (affn < 0) 7135 return affn; 7136 7137 apply_wqattrs_lock(); 7138 attrs = wq_sysfs_prep_attrs(wq); 7139 if (attrs) { 7140 attrs->affn_scope = affn; 7141 ret = apply_workqueue_attrs_locked(wq, attrs); 7142 } 7143 apply_wqattrs_unlock(); 7144 free_workqueue_attrs(attrs); 7145 return ret ?: count; 7146 } 7147 7148 static ssize_t wq_affinity_strict_show(struct device *dev, 7149 struct device_attribute *attr, char *buf) 7150 { 7151 struct workqueue_struct *wq = dev_to_wq(dev); 7152 7153 return scnprintf(buf, PAGE_SIZE, "%d\n", 7154 wq->unbound_attrs->affn_strict); 7155 } 7156 7157 static ssize_t wq_affinity_strict_store(struct device *dev, 7158 struct device_attribute *attr, 7159 const char *buf, size_t count) 7160 { 7161 struct workqueue_struct *wq = dev_to_wq(dev); 7162 struct workqueue_attrs *attrs; 7163 int v, ret = -ENOMEM; 7164 7165 if (sscanf(buf, "%d", &v) != 1) 7166 return -EINVAL; 7167 7168 apply_wqattrs_lock(); 7169 attrs = wq_sysfs_prep_attrs(wq); 7170 if (attrs) { 7171 attrs->affn_strict = (bool)v; 7172 ret = apply_workqueue_attrs_locked(wq, attrs); 7173 } 7174 apply_wqattrs_unlock(); 7175 free_workqueue_attrs(attrs); 7176 return ret ?: count; 7177 } 7178 7179 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7180 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7181 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7182 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7183 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7184 __ATTR_NULL, 7185 }; 7186 7187 static const struct bus_type wq_subsys = { 7188 .name = "workqueue", 7189 .dev_groups = wq_sysfs_groups, 7190 }; 7191 7192 /** 7193 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7194 * @cpumask: the cpumask to set 7195 * 7196 * The low-level workqueues cpumask is a global cpumask that limits 7197 * the affinity of all unbound workqueues. This function check the @cpumask 7198 * and apply it to all unbound workqueues and updates all pwqs of them. 7199 * 7200 * Return: 0 - Success 7201 * -EINVAL - Invalid @cpumask 7202 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7203 */ 7204 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7205 { 7206 int ret = -EINVAL; 7207 7208 /* 7209 * Not excluding isolated cpus on purpose. 7210 * If the user wishes to include them, we allow that. 7211 */ 7212 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7213 if (!cpumask_empty(cpumask)) { 7214 ret = 0; 7215 apply_wqattrs_lock(); 7216 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7217 ret = workqueue_apply_unbound_cpumask(cpumask); 7218 if (!ret) 7219 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7220 apply_wqattrs_unlock(); 7221 } 7222 7223 return ret; 7224 } 7225 7226 static ssize_t __wq_cpumask_show(struct device *dev, 7227 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7228 { 7229 int written; 7230 7231 mutex_lock(&wq_pool_mutex); 7232 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7233 mutex_unlock(&wq_pool_mutex); 7234 7235 return written; 7236 } 7237 7238 static ssize_t cpumask_requested_show(struct device *dev, 7239 struct device_attribute *attr, char *buf) 7240 { 7241 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7242 } 7243 static DEVICE_ATTR_RO(cpumask_requested); 7244 7245 static ssize_t cpumask_isolated_show(struct device *dev, 7246 struct device_attribute *attr, char *buf) 7247 { 7248 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7249 } 7250 static DEVICE_ATTR_RO(cpumask_isolated); 7251 7252 static ssize_t cpumask_show(struct device *dev, 7253 struct device_attribute *attr, char *buf) 7254 { 7255 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7256 } 7257 7258 static ssize_t cpumask_store(struct device *dev, 7259 struct device_attribute *attr, const char *buf, size_t count) 7260 { 7261 cpumask_var_t cpumask; 7262 int ret; 7263 7264 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7265 return -ENOMEM; 7266 7267 ret = cpumask_parse(buf, cpumask); 7268 if (!ret) 7269 ret = workqueue_set_unbound_cpumask(cpumask); 7270 7271 free_cpumask_var(cpumask); 7272 return ret ? ret : count; 7273 } 7274 static DEVICE_ATTR_RW(cpumask); 7275 7276 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7277 &dev_attr_cpumask.attr, 7278 &dev_attr_cpumask_requested.attr, 7279 &dev_attr_cpumask_isolated.attr, 7280 NULL, 7281 }; 7282 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7283 7284 static int __init wq_sysfs_init(void) 7285 { 7286 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7287 } 7288 core_initcall(wq_sysfs_init); 7289 7290 static void wq_device_release(struct device *dev) 7291 { 7292 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7293 7294 kfree(wq_dev); 7295 } 7296 7297 /** 7298 * workqueue_sysfs_register - make a workqueue visible in sysfs 7299 * @wq: the workqueue to register 7300 * 7301 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7302 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7303 * which is the preferred method. 7304 * 7305 * Workqueue user should use this function directly iff it wants to apply 7306 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7307 * apply_workqueue_attrs() may race against userland updating the 7308 * attributes. 7309 * 7310 * Return: 0 on success, -errno on failure. 7311 */ 7312 int workqueue_sysfs_register(struct workqueue_struct *wq) 7313 { 7314 struct wq_device *wq_dev; 7315 int ret; 7316 7317 /* 7318 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7319 * ordered workqueues. 7320 */ 7321 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7322 return -EINVAL; 7323 7324 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7325 if (!wq_dev) 7326 return -ENOMEM; 7327 7328 wq_dev->wq = wq; 7329 wq_dev->dev.bus = &wq_subsys; 7330 wq_dev->dev.release = wq_device_release; 7331 dev_set_name(&wq_dev->dev, "%s", wq->name); 7332 7333 /* 7334 * unbound_attrs are created separately. Suppress uevent until 7335 * everything is ready. 7336 */ 7337 dev_set_uevent_suppress(&wq_dev->dev, true); 7338 7339 ret = device_register(&wq_dev->dev); 7340 if (ret) { 7341 put_device(&wq_dev->dev); 7342 wq->wq_dev = NULL; 7343 return ret; 7344 } 7345 7346 if (wq->flags & WQ_UNBOUND) { 7347 struct device_attribute *attr; 7348 7349 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7350 ret = device_create_file(&wq_dev->dev, attr); 7351 if (ret) { 7352 device_unregister(&wq_dev->dev); 7353 wq->wq_dev = NULL; 7354 return ret; 7355 } 7356 } 7357 } 7358 7359 dev_set_uevent_suppress(&wq_dev->dev, false); 7360 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7361 return 0; 7362 } 7363 7364 /** 7365 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7366 * @wq: the workqueue to unregister 7367 * 7368 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7369 */ 7370 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7371 { 7372 struct wq_device *wq_dev = wq->wq_dev; 7373 7374 if (!wq->wq_dev) 7375 return; 7376 7377 wq->wq_dev = NULL; 7378 device_unregister(&wq_dev->dev); 7379 } 7380 #else /* CONFIG_SYSFS */ 7381 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7382 #endif /* CONFIG_SYSFS */ 7383 7384 /* 7385 * Workqueue watchdog. 7386 * 7387 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7388 * flush dependency, a concurrency managed work item which stays RUNNING 7389 * indefinitely. Workqueue stalls can be very difficult to debug as the 7390 * usual warning mechanisms don't trigger and internal workqueue state is 7391 * largely opaque. 7392 * 7393 * Workqueue watchdog monitors all worker pools periodically and dumps 7394 * state if some pools failed to make forward progress for a while where 7395 * forward progress is defined as the first item on ->worklist changing. 7396 * 7397 * This mechanism is controlled through the kernel parameter 7398 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7399 * corresponding sysfs parameter file. 7400 */ 7401 #ifdef CONFIG_WQ_WATCHDOG 7402 7403 static unsigned long wq_watchdog_thresh = 30; 7404 static struct timer_list wq_watchdog_timer; 7405 7406 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7407 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7408 7409 /* 7410 * Show workers that might prevent the processing of pending work items. 7411 * The only candidates are CPU-bound workers in the running state. 7412 * Pending work items should be handled by another idle worker 7413 * in all other situations. 7414 */ 7415 static void show_cpu_pool_hog(struct worker_pool *pool) 7416 { 7417 struct worker *worker; 7418 unsigned long irq_flags; 7419 int bkt; 7420 7421 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7422 7423 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7424 if (task_is_running(worker->task)) { 7425 /* 7426 * Defer printing to avoid deadlocks in console 7427 * drivers that queue work while holding locks 7428 * also taken in their write paths. 7429 */ 7430 printk_deferred_enter(); 7431 7432 pr_info("pool %d:\n", pool->id); 7433 sched_show_task(worker->task); 7434 7435 printk_deferred_exit(); 7436 } 7437 } 7438 7439 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7440 } 7441 7442 static void show_cpu_pools_hogs(void) 7443 { 7444 struct worker_pool *pool; 7445 int pi; 7446 7447 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7448 7449 rcu_read_lock(); 7450 7451 for_each_pool(pool, pi) { 7452 if (pool->cpu_stall) 7453 show_cpu_pool_hog(pool); 7454 7455 } 7456 7457 rcu_read_unlock(); 7458 } 7459 7460 static void wq_watchdog_reset_touched(void) 7461 { 7462 int cpu; 7463 7464 wq_watchdog_touched = jiffies; 7465 for_each_possible_cpu(cpu) 7466 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7467 } 7468 7469 static void wq_watchdog_timer_fn(struct timer_list *unused) 7470 { 7471 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7472 bool lockup_detected = false; 7473 bool cpu_pool_stall = false; 7474 unsigned long now = jiffies; 7475 struct worker_pool *pool; 7476 int pi; 7477 7478 if (!thresh) 7479 return; 7480 7481 rcu_read_lock(); 7482 7483 for_each_pool(pool, pi) { 7484 unsigned long pool_ts, touched, ts; 7485 7486 pool->cpu_stall = false; 7487 if (list_empty(&pool->worklist)) 7488 continue; 7489 7490 /* 7491 * If a virtual machine is stopped by the host it can look to 7492 * the watchdog like a stall. 7493 */ 7494 kvm_check_and_clear_guest_paused(); 7495 7496 /* get the latest of pool and touched timestamps */ 7497 if (pool->cpu >= 0) 7498 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7499 else 7500 touched = READ_ONCE(wq_watchdog_touched); 7501 pool_ts = READ_ONCE(pool->watchdog_ts); 7502 7503 if (time_after(pool_ts, touched)) 7504 ts = pool_ts; 7505 else 7506 ts = touched; 7507 7508 /* did we stall? */ 7509 if (time_after(now, ts + thresh)) { 7510 lockup_detected = true; 7511 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7512 pool->cpu_stall = true; 7513 cpu_pool_stall = true; 7514 } 7515 pr_emerg("BUG: workqueue lockup - pool"); 7516 pr_cont_pool_info(pool); 7517 pr_cont(" stuck for %us!\n", 7518 jiffies_to_msecs(now - pool_ts) / 1000); 7519 } 7520 7521 7522 } 7523 7524 rcu_read_unlock(); 7525 7526 if (lockup_detected) 7527 show_all_workqueues(); 7528 7529 if (cpu_pool_stall) 7530 show_cpu_pools_hogs(); 7531 7532 wq_watchdog_reset_touched(); 7533 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7534 } 7535 7536 notrace void wq_watchdog_touch(int cpu) 7537 { 7538 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7539 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7540 unsigned long now = jiffies; 7541 7542 if (cpu >= 0) 7543 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7544 else 7545 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7546 7547 /* Don't unnecessarily store to global cacheline */ 7548 if (time_after(now, touch_ts + thresh / 4)) 7549 WRITE_ONCE(wq_watchdog_touched, jiffies); 7550 } 7551 7552 static void wq_watchdog_set_thresh(unsigned long thresh) 7553 { 7554 wq_watchdog_thresh = 0; 7555 del_timer_sync(&wq_watchdog_timer); 7556 7557 if (thresh) { 7558 wq_watchdog_thresh = thresh; 7559 wq_watchdog_reset_touched(); 7560 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7561 } 7562 } 7563 7564 static int wq_watchdog_param_set_thresh(const char *val, 7565 const struct kernel_param *kp) 7566 { 7567 unsigned long thresh; 7568 int ret; 7569 7570 ret = kstrtoul(val, 0, &thresh); 7571 if (ret) 7572 return ret; 7573 7574 if (system_wq) 7575 wq_watchdog_set_thresh(thresh); 7576 else 7577 wq_watchdog_thresh = thresh; 7578 7579 return 0; 7580 } 7581 7582 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7583 .set = wq_watchdog_param_set_thresh, 7584 .get = param_get_ulong, 7585 }; 7586 7587 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7588 0644); 7589 7590 static void wq_watchdog_init(void) 7591 { 7592 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7593 wq_watchdog_set_thresh(wq_watchdog_thresh); 7594 } 7595 7596 #else /* CONFIG_WQ_WATCHDOG */ 7597 7598 static inline void wq_watchdog_init(void) { } 7599 7600 #endif /* CONFIG_WQ_WATCHDOG */ 7601 7602 static void bh_pool_kick_normal(struct irq_work *irq_work) 7603 { 7604 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7605 } 7606 7607 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7608 { 7609 raise_softirq_irqoff(HI_SOFTIRQ); 7610 } 7611 7612 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7613 { 7614 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7615 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7616 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7617 return; 7618 } 7619 7620 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7621 } 7622 7623 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7624 { 7625 BUG_ON(init_worker_pool(pool)); 7626 pool->cpu = cpu; 7627 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7628 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7629 pool->attrs->nice = nice; 7630 pool->attrs->affn_strict = true; 7631 pool->node = cpu_to_node(cpu); 7632 7633 /* alloc pool ID */ 7634 mutex_lock(&wq_pool_mutex); 7635 BUG_ON(worker_pool_assign_id(pool)); 7636 mutex_unlock(&wq_pool_mutex); 7637 } 7638 7639 /** 7640 * workqueue_init_early - early init for workqueue subsystem 7641 * 7642 * This is the first step of three-staged workqueue subsystem initialization and 7643 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7644 * up. It sets up all the data structures and system workqueues and allows early 7645 * boot code to create workqueues and queue/cancel work items. Actual work item 7646 * execution starts only after kthreads can be created and scheduled right 7647 * before early initcalls. 7648 */ 7649 void __init workqueue_init_early(void) 7650 { 7651 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7652 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7653 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7654 bh_pool_kick_highpri }; 7655 int i, cpu; 7656 7657 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7658 7659 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7660 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7661 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7662 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7663 7664 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7665 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7666 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7667 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7668 if (!cpumask_empty(&wq_cmdline_cpumask)) 7669 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7670 7671 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7672 7673 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7674 7675 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7676 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7677 7678 /* 7679 * If nohz_full is enabled, set power efficient workqueue as unbound. 7680 * This allows workqueue items to be moved to HK CPUs. 7681 */ 7682 if (housekeeping_enabled(HK_TYPE_TICK)) 7683 wq_power_efficient = true; 7684 7685 /* initialize WQ_AFFN_SYSTEM pods */ 7686 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7687 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7688 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7689 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7690 7691 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7692 7693 pt->nr_pods = 1; 7694 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7695 pt->pod_node[0] = NUMA_NO_NODE; 7696 pt->cpu_pod[0] = 0; 7697 7698 /* initialize BH and CPU pools */ 7699 for_each_possible_cpu(cpu) { 7700 struct worker_pool *pool; 7701 7702 i = 0; 7703 for_each_bh_worker_pool(pool, cpu) { 7704 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7705 pool->flags |= POOL_BH; 7706 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7707 i++; 7708 } 7709 7710 i = 0; 7711 for_each_cpu_worker_pool(pool, cpu) 7712 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7713 } 7714 7715 /* create default unbound and ordered wq attrs */ 7716 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7717 struct workqueue_attrs *attrs; 7718 7719 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7720 attrs->nice = std_nice[i]; 7721 unbound_std_wq_attrs[i] = attrs; 7722 7723 /* 7724 * An ordered wq should have only one pwq as ordering is 7725 * guaranteed by max_active which is enforced by pwqs. 7726 */ 7727 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7728 attrs->nice = std_nice[i]; 7729 attrs->ordered = true; 7730 ordered_wq_attrs[i] = attrs; 7731 } 7732 7733 system_wq = alloc_workqueue("events", 0, 0); 7734 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7735 system_long_wq = alloc_workqueue("events_long", 0, 0); 7736 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7737 WQ_MAX_ACTIVE); 7738 system_freezable_wq = alloc_workqueue("events_freezable", 7739 WQ_FREEZABLE, 0); 7740 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7741 WQ_POWER_EFFICIENT, 0); 7742 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7743 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7744 0); 7745 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7746 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7747 WQ_BH | WQ_HIGHPRI, 0); 7748 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7749 !system_unbound_wq || !system_freezable_wq || 7750 !system_power_efficient_wq || 7751 !system_freezable_power_efficient_wq || 7752 !system_bh_wq || !system_bh_highpri_wq); 7753 } 7754 7755 static void __init wq_cpu_intensive_thresh_init(void) 7756 { 7757 unsigned long thresh; 7758 unsigned long bogo; 7759 7760 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7761 BUG_ON(IS_ERR(pwq_release_worker)); 7762 7763 /* if the user set it to a specific value, keep it */ 7764 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7765 return; 7766 7767 /* 7768 * The default of 10ms is derived from the fact that most modern (as of 7769 * 2023) processors can do a lot in 10ms and that it's just below what 7770 * most consider human-perceivable. However, the kernel also runs on a 7771 * lot slower CPUs including microcontrollers where the threshold is way 7772 * too low. 7773 * 7774 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7775 * This is by no means accurate but it doesn't have to be. The mechanism 7776 * is still useful even when the threshold is fully scaled up. Also, as 7777 * the reports would usually be applicable to everyone, some machines 7778 * operating on longer thresholds won't significantly diminish their 7779 * usefulness. 7780 */ 7781 thresh = 10 * USEC_PER_MSEC; 7782 7783 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7784 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7785 if (bogo < 4000) 7786 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7787 7788 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7789 loops_per_jiffy, bogo, thresh); 7790 7791 wq_cpu_intensive_thresh_us = thresh; 7792 } 7793 7794 /** 7795 * workqueue_init - bring workqueue subsystem fully online 7796 * 7797 * This is the second step of three-staged workqueue subsystem initialization 7798 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7799 * been created and work items queued on them, but there are no kworkers 7800 * executing the work items yet. Populate the worker pools with the initial 7801 * workers and enable future kworker creations. 7802 */ 7803 void __init workqueue_init(void) 7804 { 7805 struct workqueue_struct *wq; 7806 struct worker_pool *pool; 7807 int cpu, bkt; 7808 7809 wq_cpu_intensive_thresh_init(); 7810 7811 mutex_lock(&wq_pool_mutex); 7812 7813 /* 7814 * Per-cpu pools created earlier could be missing node hint. Fix them 7815 * up. Also, create a rescuer for workqueues that requested it. 7816 */ 7817 for_each_possible_cpu(cpu) { 7818 for_each_bh_worker_pool(pool, cpu) 7819 pool->node = cpu_to_node(cpu); 7820 for_each_cpu_worker_pool(pool, cpu) 7821 pool->node = cpu_to_node(cpu); 7822 } 7823 7824 list_for_each_entry(wq, &workqueues, list) { 7825 WARN(init_rescuer(wq), 7826 "workqueue: failed to create early rescuer for %s", 7827 wq->name); 7828 } 7829 7830 mutex_unlock(&wq_pool_mutex); 7831 7832 /* 7833 * Create the initial workers. A BH pool has one pseudo worker that 7834 * represents the shared BH execution context and thus doesn't get 7835 * affected by hotplug events. Create the BH pseudo workers for all 7836 * possible CPUs here. 7837 */ 7838 for_each_possible_cpu(cpu) 7839 for_each_bh_worker_pool(pool, cpu) 7840 BUG_ON(!create_worker(pool)); 7841 7842 for_each_online_cpu(cpu) { 7843 for_each_cpu_worker_pool(pool, cpu) { 7844 pool->flags &= ~POOL_DISASSOCIATED; 7845 BUG_ON(!create_worker(pool)); 7846 } 7847 } 7848 7849 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7850 BUG_ON(!create_worker(pool)); 7851 7852 wq_online = true; 7853 wq_watchdog_init(); 7854 } 7855 7856 /* 7857 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7858 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7859 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7860 */ 7861 static void __init init_pod_type(struct wq_pod_type *pt, 7862 bool (*cpus_share_pod)(int, int)) 7863 { 7864 int cur, pre, cpu, pod; 7865 7866 pt->nr_pods = 0; 7867 7868 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7869 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7870 BUG_ON(!pt->cpu_pod); 7871 7872 for_each_possible_cpu(cur) { 7873 for_each_possible_cpu(pre) { 7874 if (pre >= cur) { 7875 pt->cpu_pod[cur] = pt->nr_pods++; 7876 break; 7877 } 7878 if (cpus_share_pod(cur, pre)) { 7879 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7880 break; 7881 } 7882 } 7883 } 7884 7885 /* init the rest to match @pt->cpu_pod[] */ 7886 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7887 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7888 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7889 7890 for (pod = 0; pod < pt->nr_pods; pod++) 7891 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7892 7893 for_each_possible_cpu(cpu) { 7894 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7895 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7896 } 7897 } 7898 7899 static bool __init cpus_dont_share(int cpu0, int cpu1) 7900 { 7901 return false; 7902 } 7903 7904 static bool __init cpus_share_smt(int cpu0, int cpu1) 7905 { 7906 #ifdef CONFIG_SCHED_SMT 7907 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7908 #else 7909 return false; 7910 #endif 7911 } 7912 7913 static bool __init cpus_share_numa(int cpu0, int cpu1) 7914 { 7915 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7916 } 7917 7918 /** 7919 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7920 * 7921 * This is the third step of three-staged workqueue subsystem initialization and 7922 * invoked after SMP and topology information are fully initialized. It 7923 * initializes the unbound CPU pods accordingly. 7924 */ 7925 void __init workqueue_init_topology(void) 7926 { 7927 struct workqueue_struct *wq; 7928 int cpu; 7929 7930 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7931 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7932 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7933 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7934 7935 wq_topo_initialized = true; 7936 7937 mutex_lock(&wq_pool_mutex); 7938 7939 /* 7940 * Workqueues allocated earlier would have all CPUs sharing the default 7941 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 7942 * and CPU combinations to apply per-pod sharing. 7943 */ 7944 list_for_each_entry(wq, &workqueues, list) { 7945 for_each_online_cpu(cpu) 7946 unbound_wq_update_pwq(wq, cpu); 7947 if (wq->flags & WQ_UNBOUND) { 7948 mutex_lock(&wq->mutex); 7949 wq_update_node_max_active(wq, -1); 7950 mutex_unlock(&wq->mutex); 7951 } 7952 } 7953 7954 mutex_unlock(&wq_pool_mutex); 7955 } 7956 7957 void __warn_flushing_systemwide_wq(void) 7958 { 7959 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7960 dump_stack(); 7961 } 7962 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7963 7964 static int __init workqueue_unbound_cpus_setup(char *str) 7965 { 7966 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7967 cpumask_clear(&wq_cmdline_cpumask); 7968 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7969 } 7970 7971 return 1; 7972 } 7973 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7974
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.