~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/bch.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Generic binary BCH encoding/decoding library
  3  *
  4  * This program is free software; you can redistribute it and/or modify it
  5  * under the terms of the GNU General Public License version 2 as published by
  6  * the Free Software Foundation.
  7  *
  8  * This program is distributed in the hope that it will be useful, but WITHOUT
  9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11  * more details.
 12  *
 13  * You should have received a copy of the GNU General Public License along with
 14  * this program; if not, write to the Free Software Foundation, Inc., 51
 15  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 16  *
 17  * Copyright © 2011 Parrot S.A.
 18  *
 19  * Author: Ivan Djelic <ivan.djelic@parrot.com>
 20  *
 21  * Description:
 22  *
 23  * This library provides runtime configurable encoding/decoding of binary
 24  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
 25  *
 26  * Call bch_init to get a pointer to a newly allocated bch_control structure for
 27  * the given m (Galois field order), t (error correction capability) and
 28  * (optional) primitive polynomial parameters.
 29  *
 30  * Call bch_encode to compute and store ecc parity bytes to a given buffer.
 31  * Call bch_decode to detect and locate errors in received data.
 32  *
 33  * On systems supporting hw BCH features, intermediate results may be provided
 34  * to bch_decode in order to skip certain steps. See bch_decode() documentation
 35  * for details.
 36  *
 37  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
 38  * parameters m and t; thus allowing extra compiler optimizations and providing
 39  * better (up to 2x) encoding performance. Using this option makes sense when
 40  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
 41  * on a particular NAND flash device.
 42  *
 43  * Algorithmic details:
 44  *
 45  * Encoding is performed by processing 32 input bits in parallel, using 4
 46  * remainder lookup tables.
 47  *
 48  * The final stage of decoding involves the following internal steps:
 49  * a. Syndrome computation
 50  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
 51  * c. Error locator root finding (by far the most expensive step)
 52  *
 53  * In this implementation, step c is not performed using the usual Chien search.
 54  * Instead, an alternative approach described in [1] is used. It consists in
 55  * factoring the error locator polynomial using the Berlekamp Trace algorithm
 56  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
 57  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
 58  * much better performance than Chien search for usual (m,t) values (typically
 59  * m >= 13, t < 32, see [1]).
 60  *
 61  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
 62  * of characteristic 2, in: Western European Workshop on Research in Cryptology
 63  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
 64  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
 65  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
 66  */
 67 
 68 #include <linux/kernel.h>
 69 #include <linux/errno.h>
 70 #include <linux/init.h>
 71 #include <linux/module.h>
 72 #include <linux/slab.h>
 73 #include <linux/bitops.h>
 74 #include <linux/bitrev.h>
 75 #include <asm/byteorder.h>
 76 #include <linux/bch.h>
 77 
 78 #if defined(CONFIG_BCH_CONST_PARAMS)
 79 #define GF_M(_p)               (CONFIG_BCH_CONST_M)
 80 #define GF_T(_p)               (CONFIG_BCH_CONST_T)
 81 #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
 82 #define BCH_MAX_M              (CONFIG_BCH_CONST_M)
 83 #define BCH_MAX_T              (CONFIG_BCH_CONST_T)
 84 #else
 85 #define GF_M(_p)               ((_p)->m)
 86 #define GF_T(_p)               ((_p)->t)
 87 #define GF_N(_p)               ((_p)->n)
 88 #define BCH_MAX_M              15 /* 2KB */
 89 #define BCH_MAX_T              64 /* 64 bit correction */
 90 #endif
 91 
 92 #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
 93 #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
 94 
 95 #define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
 96 
 97 #ifndef dbg
 98 #define dbg(_fmt, args...)     do {} while (0)
 99 #endif
100 
101 /*
102  * represent a polynomial over GF(2^m)
103  */
104 struct gf_poly {
105         unsigned int deg;    /* polynomial degree */
106         unsigned int c[];   /* polynomial terms */
107 };
108 
109 /* given its degree, compute a polynomial size in bytes */
110 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
111 
112 /* polynomial of degree 1 */
113 struct gf_poly_deg1 {
114         struct gf_poly poly;
115         unsigned int   c[2];
116 };
117 
118 static u8 swap_bits(struct bch_control *bch, u8 in)
119 {
120         if (!bch->swap_bits)
121                 return in;
122 
123         return bitrev8(in);
124 }
125 
126 /*
127  * same as bch_encode(), but process input data one byte at a time
128  */
129 static void bch_encode_unaligned(struct bch_control *bch,
130                                  const unsigned char *data, unsigned int len,
131                                  uint32_t *ecc)
132 {
133         int i;
134         const uint32_t *p;
135         const int l = BCH_ECC_WORDS(bch)-1;
136 
137         while (len--) {
138                 u8 tmp = swap_bits(bch, *data++);
139 
140                 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
141 
142                 for (i = 0; i < l; i++)
143                         ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
144 
145                 ecc[l] = (ecc[l] << 8)^(*p);
146         }
147 }
148 
149 /*
150  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
151  */
152 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
153                       const uint8_t *src)
154 {
155         uint8_t pad[4] = {0, 0, 0, 0};
156         unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
157 
158         for (i = 0; i < nwords; i++, src += 4)
159                 dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
160                         ((u32)swap_bits(bch, src[1]) << 16) |
161                         ((u32)swap_bits(bch, src[2]) << 8) |
162                         swap_bits(bch, src[3]);
163 
164         memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
165         dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
166                 ((u32)swap_bits(bch, pad[1]) << 16) |
167                 ((u32)swap_bits(bch, pad[2]) << 8) |
168                 swap_bits(bch, pad[3]);
169 }
170 
171 /*
172  * convert 32-bit ecc words to ecc bytes
173  */
174 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
175                        const uint32_t *src)
176 {
177         uint8_t pad[4];
178         unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
179 
180         for (i = 0; i < nwords; i++) {
181                 *dst++ = swap_bits(bch, src[i] >> 24);
182                 *dst++ = swap_bits(bch, src[i] >> 16);
183                 *dst++ = swap_bits(bch, src[i] >> 8);
184                 *dst++ = swap_bits(bch, src[i]);
185         }
186         pad[0] = swap_bits(bch, src[nwords] >> 24);
187         pad[1] = swap_bits(bch, src[nwords] >> 16);
188         pad[2] = swap_bits(bch, src[nwords] >> 8);
189         pad[3] = swap_bits(bch, src[nwords]);
190         memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
191 }
192 
193 /**
194  * bch_encode - calculate BCH ecc parity of data
195  * @bch:   BCH control structure
196  * @data:  data to encode
197  * @len:   data length in bytes
198  * @ecc:   ecc parity data, must be initialized by caller
199  *
200  * The @ecc parity array is used both as input and output parameter, in order to
201  * allow incremental computations. It should be of the size indicated by member
202  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
203  *
204  * The exact number of computed ecc parity bits is given by member @ecc_bits of
205  * @bch; it may be less than m*t for large values of t.
206  */
207 void bch_encode(struct bch_control *bch, const uint8_t *data,
208                 unsigned int len, uint8_t *ecc)
209 {
210         const unsigned int l = BCH_ECC_WORDS(bch)-1;
211         unsigned int i, mlen;
212         unsigned long m;
213         uint32_t w, r[BCH_ECC_MAX_WORDS];
214         const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
215         const uint32_t * const tab0 = bch->mod8_tab;
216         const uint32_t * const tab1 = tab0 + 256*(l+1);
217         const uint32_t * const tab2 = tab1 + 256*(l+1);
218         const uint32_t * const tab3 = tab2 + 256*(l+1);
219         const uint32_t *pdata, *p0, *p1, *p2, *p3;
220 
221         if (WARN_ON(r_bytes > sizeof(r)))
222                 return;
223 
224         if (ecc) {
225                 /* load ecc parity bytes into internal 32-bit buffer */
226                 load_ecc8(bch, bch->ecc_buf, ecc);
227         } else {
228                 memset(bch->ecc_buf, 0, r_bytes);
229         }
230 
231         /* process first unaligned data bytes */
232         m = ((unsigned long)data) & 3;
233         if (m) {
234                 mlen = (len < (4-m)) ? len : 4-m;
235                 bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
236                 data += mlen;
237                 len  -= mlen;
238         }
239 
240         /* process 32-bit aligned data words */
241         pdata = (uint32_t *)data;
242         mlen  = len/4;
243         data += 4*mlen;
244         len  -= 4*mlen;
245         memcpy(r, bch->ecc_buf, r_bytes);
246 
247         /*
248          * split each 32-bit word into 4 polynomials of weight 8 as follows:
249          *
250          * 31 ...24  23 ...16  15 ... 8  7 ... 0
251          * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
252          *                               tttttttt  mod g = r0 (precomputed)
253          *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
254          *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
255          * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
256          * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
257          */
258         while (mlen--) {
259                 /* input data is read in big-endian format */
260                 w = cpu_to_be32(*pdata++);
261                 if (bch->swap_bits)
262                         w = (u32)swap_bits(bch, w) |
263                             ((u32)swap_bits(bch, w >> 8) << 8) |
264                             ((u32)swap_bits(bch, w >> 16) << 16) |
265                             ((u32)swap_bits(bch, w >> 24) << 24);
266                 w ^= r[0];
267                 p0 = tab0 + (l+1)*((w >>  0) & 0xff);
268                 p1 = tab1 + (l+1)*((w >>  8) & 0xff);
269                 p2 = tab2 + (l+1)*((w >> 16) & 0xff);
270                 p3 = tab3 + (l+1)*((w >> 24) & 0xff);
271 
272                 for (i = 0; i < l; i++)
273                         r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
274 
275                 r[l] = p0[l]^p1[l]^p2[l]^p3[l];
276         }
277         memcpy(bch->ecc_buf, r, r_bytes);
278 
279         /* process last unaligned bytes */
280         if (len)
281                 bch_encode_unaligned(bch, data, len, bch->ecc_buf);
282 
283         /* store ecc parity bytes into original parity buffer */
284         if (ecc)
285                 store_ecc8(bch, ecc, bch->ecc_buf);
286 }
287 EXPORT_SYMBOL_GPL(bch_encode);
288 
289 static inline int modulo(struct bch_control *bch, unsigned int v)
290 {
291         const unsigned int n = GF_N(bch);
292         while (v >= n) {
293                 v -= n;
294                 v = (v & n) + (v >> GF_M(bch));
295         }
296         return v;
297 }
298 
299 /*
300  * shorter and faster modulo function, only works when v < 2N.
301  */
302 static inline int mod_s(struct bch_control *bch, unsigned int v)
303 {
304         const unsigned int n = GF_N(bch);
305         return (v < n) ? v : v-n;
306 }
307 
308 static inline int deg(unsigned int poly)
309 {
310         /* polynomial degree is the most-significant bit index */
311         return fls(poly)-1;
312 }
313 
314 static inline int parity(unsigned int x)
315 {
316         /*
317          * public domain code snippet, lifted from
318          * http://www-graphics.stanford.edu/~seander/bithacks.html
319          */
320         x ^= x >> 1;
321         x ^= x >> 2;
322         x = (x & 0x11111111U) * 0x11111111U;
323         return (x >> 28) & 1;
324 }
325 
326 /* Galois field basic operations: multiply, divide, inverse, etc. */
327 
328 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
329                                   unsigned int b)
330 {
331         return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
332                                                bch->a_log_tab[b])] : 0;
333 }
334 
335 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
336 {
337         return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
338 }
339 
340 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
341                                   unsigned int b)
342 {
343         return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
344                                         GF_N(bch)-bch->a_log_tab[b])] : 0;
345 }
346 
347 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
348 {
349         return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
350 }
351 
352 static inline unsigned int a_pow(struct bch_control *bch, int i)
353 {
354         return bch->a_pow_tab[modulo(bch, i)];
355 }
356 
357 static inline int a_log(struct bch_control *bch, unsigned int x)
358 {
359         return bch->a_log_tab[x];
360 }
361 
362 static inline int a_ilog(struct bch_control *bch, unsigned int x)
363 {
364         return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
365 }
366 
367 /*
368  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
369  */
370 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
371                               unsigned int *syn)
372 {
373         int i, j, s;
374         unsigned int m;
375         uint32_t poly;
376         const int t = GF_T(bch);
377 
378         s = bch->ecc_bits;
379 
380         /* make sure extra bits in last ecc word are cleared */
381         m = ((unsigned int)s) & 31;
382         if (m)
383                 ecc[s/32] &= ~((1u << (32-m))-1);
384         memset(syn, 0, 2*t*sizeof(*syn));
385 
386         /* compute v(a^j) for j=1 .. 2t-1 */
387         do {
388                 poly = *ecc++;
389                 s -= 32;
390                 while (poly) {
391                         i = deg(poly);
392                         for (j = 0; j < 2*t; j += 2)
393                                 syn[j] ^= a_pow(bch, (j+1)*(i+s));
394 
395                         poly ^= (1 << i);
396                 }
397         } while (s > 0);
398 
399         /* v(a^(2j)) = v(a^j)^2 */
400         for (j = 0; j < t; j++)
401                 syn[2*j+1] = gf_sqr(bch, syn[j]);
402 }
403 
404 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
405 {
406         memcpy(dst, src, GF_POLY_SZ(src->deg));
407 }
408 
409 static int compute_error_locator_polynomial(struct bch_control *bch,
410                                             const unsigned int *syn)
411 {
412         const unsigned int t = GF_T(bch);
413         const unsigned int n = GF_N(bch);
414         unsigned int i, j, tmp, l, pd = 1, d = syn[0];
415         struct gf_poly *elp = bch->elp;
416         struct gf_poly *pelp = bch->poly_2t[0];
417         struct gf_poly *elp_copy = bch->poly_2t[1];
418         int k, pp = -1;
419 
420         memset(pelp, 0, GF_POLY_SZ(2*t));
421         memset(elp, 0, GF_POLY_SZ(2*t));
422 
423         pelp->deg = 0;
424         pelp->c[0] = 1;
425         elp->deg = 0;
426         elp->c[0] = 1;
427 
428         /* use simplified binary Berlekamp-Massey algorithm */
429         for (i = 0; (i < t) && (elp->deg <= t); i++) {
430                 if (d) {
431                         k = 2*i-pp;
432                         gf_poly_copy(elp_copy, elp);
433                         /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
434                         tmp = a_log(bch, d)+n-a_log(bch, pd);
435                         for (j = 0; j <= pelp->deg; j++) {
436                                 if (pelp->c[j]) {
437                                         l = a_log(bch, pelp->c[j]);
438                                         elp->c[j+k] ^= a_pow(bch, tmp+l);
439                                 }
440                         }
441                         /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
442                         tmp = pelp->deg+k;
443                         if (tmp > elp->deg) {
444                                 elp->deg = tmp;
445                                 gf_poly_copy(pelp, elp_copy);
446                                 pd = d;
447                                 pp = 2*i;
448                         }
449                 }
450                 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
451                 if (i < t-1) {
452                         d = syn[2*i+2];
453                         for (j = 1; j <= elp->deg; j++)
454                                 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
455                 }
456         }
457         dbg("elp=%s\n", gf_poly_str(elp));
458         return (elp->deg > t) ? -1 : (int)elp->deg;
459 }
460 
461 /*
462  * solve a m x m linear system in GF(2) with an expected number of solutions,
463  * and return the number of found solutions
464  */
465 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
466                                unsigned int *sol, int nsol)
467 {
468         const int m = GF_M(bch);
469         unsigned int tmp, mask;
470         int rem, c, r, p, k, param[BCH_MAX_M];
471 
472         k = 0;
473         mask = 1 << m;
474 
475         /* Gaussian elimination */
476         for (c = 0; c < m; c++) {
477                 rem = 0;
478                 p = c-k;
479                 /* find suitable row for elimination */
480                 for (r = p; r < m; r++) {
481                         if (rows[r] & mask) {
482                                 if (r != p)
483                                         swap(rows[r], rows[p]);
484                                 rem = r+1;
485                                 break;
486                         }
487                 }
488                 if (rem) {
489                         /* perform elimination on remaining rows */
490                         tmp = rows[p];
491                         for (r = rem; r < m; r++) {
492                                 if (rows[r] & mask)
493                                         rows[r] ^= tmp;
494                         }
495                 } else {
496                         /* elimination not needed, store defective row index */
497                         param[k++] = c;
498                 }
499                 mask >>= 1;
500         }
501         /* rewrite system, inserting fake parameter rows */
502         if (k > 0) {
503                 p = k;
504                 for (r = m-1; r >= 0; r--) {
505                         if ((r > m-1-k) && rows[r])
506                                 /* system has no solution */
507                                 return 0;
508 
509                         rows[r] = (p && (r == param[p-1])) ?
510                                 p--, 1u << (m-r) : rows[r-p];
511                 }
512         }
513 
514         if (nsol != (1 << k))
515                 /* unexpected number of solutions */
516                 return 0;
517 
518         for (p = 0; p < nsol; p++) {
519                 /* set parameters for p-th solution */
520                 for (c = 0; c < k; c++)
521                         rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
522 
523                 /* compute unique solution */
524                 tmp = 0;
525                 for (r = m-1; r >= 0; r--) {
526                         mask = rows[r] & (tmp|1);
527                         tmp |= parity(mask) << (m-r);
528                 }
529                 sol[p] = tmp >> 1;
530         }
531         return nsol;
532 }
533 
534 /*
535  * this function builds and solves a linear system for finding roots of a degree
536  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
537  */
538 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
539                               unsigned int b, unsigned int c,
540                               unsigned int *roots)
541 {
542         int i, j, k;
543         const int m = GF_M(bch);
544         unsigned int mask = 0xff, t, rows[16] = {0,};
545 
546         j = a_log(bch, b);
547         k = a_log(bch, a);
548         rows[0] = c;
549 
550         /* build linear system to solve X^4+aX^2+bX+c = 0 */
551         for (i = 0; i < m; i++) {
552                 rows[i+1] = bch->a_pow_tab[4*i]^
553                         (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
554                         (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
555                 j++;
556                 k += 2;
557         }
558         /*
559          * transpose 16x16 matrix before passing it to linear solver
560          * warning: this code assumes m < 16
561          */
562         for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
563                 for (k = 0; k < 16; k = (k+j+1) & ~j) {
564                         t = ((rows[k] >> j)^rows[k+j]) & mask;
565                         rows[k] ^= (t << j);
566                         rows[k+j] ^= t;
567                 }
568         }
569         return solve_linear_system(bch, rows, roots, 4);
570 }
571 
572 /*
573  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
574  */
575 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
576                                 unsigned int *roots)
577 {
578         int n = 0;
579 
580         if (poly->c[0])
581                 /* poly[X] = bX+c with c!=0, root=c/b */
582                 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
583                                    bch->a_log_tab[poly->c[1]]);
584         return n;
585 }
586 
587 /*
588  * compute roots of a degree 2 polynomial over GF(2^m)
589  */
590 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
591                                 unsigned int *roots)
592 {
593         int n = 0, i, l0, l1, l2;
594         unsigned int u, v, r;
595 
596         if (poly->c[0] && poly->c[1]) {
597 
598                 l0 = bch->a_log_tab[poly->c[0]];
599                 l1 = bch->a_log_tab[poly->c[1]];
600                 l2 = bch->a_log_tab[poly->c[2]];
601 
602                 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
603                 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
604                 /*
605                  * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
606                  * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
607                  * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
608                  * i.e. r and r+1 are roots iff Tr(u)=0
609                  */
610                 r = 0;
611                 v = u;
612                 while (v) {
613                         i = deg(v);
614                         r ^= bch->xi_tab[i];
615                         v ^= (1 << i);
616                 }
617                 /* verify root */
618                 if ((gf_sqr(bch, r)^r) == u) {
619                         /* reverse z=a/bX transformation and compute log(1/r) */
620                         roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
621                                             bch->a_log_tab[r]+l2);
622                         roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
623                                             bch->a_log_tab[r^1]+l2);
624                 }
625         }
626         return n;
627 }
628 
629 /*
630  * compute roots of a degree 3 polynomial over GF(2^m)
631  */
632 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
633                                 unsigned int *roots)
634 {
635         int i, n = 0;
636         unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
637 
638         if (poly->c[0]) {
639                 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
640                 e3 = poly->c[3];
641                 c2 = gf_div(bch, poly->c[0], e3);
642                 b2 = gf_div(bch, poly->c[1], e3);
643                 a2 = gf_div(bch, poly->c[2], e3);
644 
645                 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
646                 c = gf_mul(bch, a2, c2);           /* c = a2c2      */
647                 b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
648                 a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
649 
650                 /* find the 4 roots of this affine polynomial */
651                 if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
652                         /* remove a2 from final list of roots */
653                         for (i = 0; i < 4; i++) {
654                                 if (tmp[i] != a2)
655                                         roots[n++] = a_ilog(bch, tmp[i]);
656                         }
657                 }
658         }
659         return n;
660 }
661 
662 /*
663  * compute roots of a degree 4 polynomial over GF(2^m)
664  */
665 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
666                                 unsigned int *roots)
667 {
668         int i, l, n = 0;
669         unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
670 
671         if (poly->c[0] == 0)
672                 return 0;
673 
674         /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
675         e4 = poly->c[4];
676         d = gf_div(bch, poly->c[0], e4);
677         c = gf_div(bch, poly->c[1], e4);
678         b = gf_div(bch, poly->c[2], e4);
679         a = gf_div(bch, poly->c[3], e4);
680 
681         /* use Y=1/X transformation to get an affine polynomial */
682         if (a) {
683                 /* first, eliminate cX by using z=X+e with ae^2+c=0 */
684                 if (c) {
685                         /* compute e such that e^2 = c/a */
686                         f = gf_div(bch, c, a);
687                         l = a_log(bch, f);
688                         l += (l & 1) ? GF_N(bch) : 0;
689                         e = a_pow(bch, l/2);
690                         /*
691                          * use transformation z=X+e:
692                          * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
693                          * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
694                          * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
695                          * z^4 + az^3 +     b'z^2 + d'
696                          */
697                         d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
698                         b = gf_mul(bch, a, e)^b;
699                 }
700                 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
701                 if (d == 0)
702                         /* assume all roots have multiplicity 1 */
703                         return 0;
704 
705                 c2 = gf_inv(bch, d);
706                 b2 = gf_div(bch, a, d);
707                 a2 = gf_div(bch, b, d);
708         } else {
709                 /* polynomial is already affine */
710                 c2 = d;
711                 b2 = c;
712                 a2 = b;
713         }
714         /* find the 4 roots of this affine polynomial */
715         if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
716                 for (i = 0; i < 4; i++) {
717                         /* post-process roots (reverse transformations) */
718                         f = a ? gf_inv(bch, roots[i]) : roots[i];
719                         roots[i] = a_ilog(bch, f^e);
720                 }
721                 n = 4;
722         }
723         return n;
724 }
725 
726 /*
727  * build monic, log-based representation of a polynomial
728  */
729 static void gf_poly_logrep(struct bch_control *bch,
730                            const struct gf_poly *a, int *rep)
731 {
732         int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
733 
734         /* represent 0 values with -1; warning, rep[d] is not set to 1 */
735         for (i = 0; i < d; i++)
736                 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
737 }
738 
739 /*
740  * compute polynomial Euclidean division remainder in GF(2^m)[X]
741  */
742 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
743                         const struct gf_poly *b, int *rep)
744 {
745         int la, p, m;
746         unsigned int i, j, *c = a->c;
747         const unsigned int d = b->deg;
748 
749         if (a->deg < d)
750                 return;
751 
752         /* reuse or compute log representation of denominator */
753         if (!rep) {
754                 rep = bch->cache;
755                 gf_poly_logrep(bch, b, rep);
756         }
757 
758         for (j = a->deg; j >= d; j--) {
759                 if (c[j]) {
760                         la = a_log(bch, c[j]);
761                         p = j-d;
762                         for (i = 0; i < d; i++, p++) {
763                                 m = rep[i];
764                                 if (m >= 0)
765                                         c[p] ^= bch->a_pow_tab[mod_s(bch,
766                                                                      m+la)];
767                         }
768                 }
769         }
770         a->deg = d-1;
771         while (!c[a->deg] && a->deg)
772                 a->deg--;
773 }
774 
775 /*
776  * compute polynomial Euclidean division quotient in GF(2^m)[X]
777  */
778 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
779                         const struct gf_poly *b, struct gf_poly *q)
780 {
781         if (a->deg >= b->deg) {
782                 q->deg = a->deg-b->deg;
783                 /* compute a mod b (modifies a) */
784                 gf_poly_mod(bch, a, b, NULL);
785                 /* quotient is stored in upper part of polynomial a */
786                 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
787         } else {
788                 q->deg = 0;
789                 q->c[0] = 0;
790         }
791 }
792 
793 /*
794  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
795  */
796 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
797                                    struct gf_poly *b)
798 {
799         dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
800 
801         if (a->deg < b->deg)
802                 swap(a, b);
803 
804         while (b->deg > 0) {
805                 gf_poly_mod(bch, a, b, NULL);
806                 swap(a, b);
807         }
808 
809         dbg("%s\n", gf_poly_str(a));
810 
811         return a;
812 }
813 
814 /*
815  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
816  * This is used in Berlekamp Trace algorithm for splitting polynomials
817  */
818 static void compute_trace_bk_mod(struct bch_control *bch, int k,
819                                  const struct gf_poly *f, struct gf_poly *z,
820                                  struct gf_poly *out)
821 {
822         const int m = GF_M(bch);
823         int i, j;
824 
825         /* z contains z^2j mod f */
826         z->deg = 1;
827         z->c[0] = 0;
828         z->c[1] = bch->a_pow_tab[k];
829 
830         out->deg = 0;
831         memset(out, 0, GF_POLY_SZ(f->deg));
832 
833         /* compute f log representation only once */
834         gf_poly_logrep(bch, f, bch->cache);
835 
836         for (i = 0; i < m; i++) {
837                 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
838                 for (j = z->deg; j >= 0; j--) {
839                         out->c[j] ^= z->c[j];
840                         z->c[2*j] = gf_sqr(bch, z->c[j]);
841                         z->c[2*j+1] = 0;
842                 }
843                 if (z->deg > out->deg)
844                         out->deg = z->deg;
845 
846                 if (i < m-1) {
847                         z->deg *= 2;
848                         /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
849                         gf_poly_mod(bch, z, f, bch->cache);
850                 }
851         }
852         while (!out->c[out->deg] && out->deg)
853                 out->deg--;
854 
855         dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
856 }
857 
858 /*
859  * factor a polynomial using Berlekamp Trace algorithm (BTA)
860  */
861 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
862                               struct gf_poly **g, struct gf_poly **h)
863 {
864         struct gf_poly *f2 = bch->poly_2t[0];
865         struct gf_poly *q  = bch->poly_2t[1];
866         struct gf_poly *tk = bch->poly_2t[2];
867         struct gf_poly *z  = bch->poly_2t[3];
868         struct gf_poly *gcd;
869 
870         dbg("factoring %s...\n", gf_poly_str(f));
871 
872         *g = f;
873         *h = NULL;
874 
875         /* tk = Tr(a^k.X) mod f */
876         compute_trace_bk_mod(bch, k, f, z, tk);
877 
878         if (tk->deg > 0) {
879                 /* compute g = gcd(f, tk) (destructive operation) */
880                 gf_poly_copy(f2, f);
881                 gcd = gf_poly_gcd(bch, f2, tk);
882                 if (gcd->deg < f->deg) {
883                         /* compute h=f/gcd(f,tk); this will modify f and q */
884                         gf_poly_div(bch, f, gcd, q);
885                         /* store g and h in-place (clobbering f) */
886                         *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
887                         gf_poly_copy(*g, gcd);
888                         gf_poly_copy(*h, q);
889                 }
890         }
891 }
892 
893 /*
894  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
895  * file for details
896  */
897 static int find_poly_roots(struct bch_control *bch, unsigned int k,
898                            struct gf_poly *poly, unsigned int *roots)
899 {
900         int cnt;
901         struct gf_poly *f1, *f2;
902 
903         switch (poly->deg) {
904                 /* handle low degree polynomials with ad hoc techniques */
905         case 1:
906                 cnt = find_poly_deg1_roots(bch, poly, roots);
907                 break;
908         case 2:
909                 cnt = find_poly_deg2_roots(bch, poly, roots);
910                 break;
911         case 3:
912                 cnt = find_poly_deg3_roots(bch, poly, roots);
913                 break;
914         case 4:
915                 cnt = find_poly_deg4_roots(bch, poly, roots);
916                 break;
917         default:
918                 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
919                 cnt = 0;
920                 if (poly->deg && (k <= GF_M(bch))) {
921                         factor_polynomial(bch, k, poly, &f1, &f2);
922                         if (f1)
923                                 cnt += find_poly_roots(bch, k+1, f1, roots);
924                         if (f2)
925                                 cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
926                 }
927                 break;
928         }
929         return cnt;
930 }
931 
932 #if defined(USE_CHIEN_SEARCH)
933 /*
934  * exhaustive root search (Chien) implementation - not used, included only for
935  * reference/comparison tests
936  */
937 static int chien_search(struct bch_control *bch, unsigned int len,
938                         struct gf_poly *p, unsigned int *roots)
939 {
940         int m;
941         unsigned int i, j, syn, syn0, count = 0;
942         const unsigned int k = 8*len+bch->ecc_bits;
943 
944         /* use a log-based representation of polynomial */
945         gf_poly_logrep(bch, p, bch->cache);
946         bch->cache[p->deg] = 0;
947         syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
948 
949         for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
950                 /* compute elp(a^i) */
951                 for (j = 1, syn = syn0; j <= p->deg; j++) {
952                         m = bch->cache[j];
953                         if (m >= 0)
954                                 syn ^= a_pow(bch, m+j*i);
955                 }
956                 if (syn == 0) {
957                         roots[count++] = GF_N(bch)-i;
958                         if (count == p->deg)
959                                 break;
960                 }
961         }
962         return (count == p->deg) ? count : 0;
963 }
964 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
965 #endif /* USE_CHIEN_SEARCH */
966 
967 /**
968  * bch_decode - decode received codeword and find bit error locations
969  * @bch:      BCH control structure
970  * @data:     received data, ignored if @calc_ecc is provided
971  * @len:      data length in bytes, must always be provided
972  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
973  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
974  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
975  * @errloc:   output array of error locations
976  *
977  * Returns:
978  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
979  *  invalid parameters were provided
980  *
981  * Depending on the available hw BCH support and the need to compute @calc_ecc
982  * separately (using bch_encode()), this function should be called with one of
983  * the following parameter configurations -
984  *
985  * by providing @data and @recv_ecc only:
986  *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
987  *
988  * by providing @recv_ecc and @calc_ecc:
989  *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
990  *
991  * by providing ecc = recv_ecc XOR calc_ecc:
992  *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
993  *
994  * by providing syndrome results @syn:
995  *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
996  *
997  * Once bch_decode() has successfully returned with a positive value, error
998  * locations returned in array @errloc should be interpreted as follows -
999  *
1000  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1001  * data correction)
1002  *
1003  * if (errloc[n] < 8*len), then n-th error is located in data and can be
1004  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1005  *
1006  * Note that this function does not perform any data correction by itself, it
1007  * merely indicates error locations.
1008  */
1009 int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
1010                const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1011                const unsigned int *syn, unsigned int *errloc)
1012 {
1013         const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1014         unsigned int nbits;
1015         int i, err, nroots;
1016         uint32_t sum;
1017 
1018         /* sanity check: make sure data length can be handled */
1019         if (8*len > (bch->n-bch->ecc_bits))
1020                 return -EINVAL;
1021 
1022         /* if caller does not provide syndromes, compute them */
1023         if (!syn) {
1024                 if (!calc_ecc) {
1025                         /* compute received data ecc into an internal buffer */
1026                         if (!data || !recv_ecc)
1027                                 return -EINVAL;
1028                         bch_encode(bch, data, len, NULL);
1029                 } else {
1030                         /* load provided calculated ecc */
1031                         load_ecc8(bch, bch->ecc_buf, calc_ecc);
1032                 }
1033                 /* load received ecc or assume it was XORed in calc_ecc */
1034                 if (recv_ecc) {
1035                         load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1036                         /* XOR received and calculated ecc */
1037                         for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1038                                 bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1039                                 sum |= bch->ecc_buf[i];
1040                         }
1041                         if (!sum)
1042                                 /* no error found */
1043                                 return 0;
1044                 }
1045                 compute_syndromes(bch, bch->ecc_buf, bch->syn);
1046                 syn = bch->syn;
1047         }
1048 
1049         err = compute_error_locator_polynomial(bch, syn);
1050         if (err > 0) {
1051                 nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1052                 if (err != nroots)
1053                         err = -1;
1054         }
1055         if (err > 0) {
1056                 /* post-process raw error locations for easier correction */
1057                 nbits = (len*8)+bch->ecc_bits;
1058                 for (i = 0; i < err; i++) {
1059                         if (errloc[i] >= nbits) {
1060                                 err = -1;
1061                                 break;
1062                         }
1063                         errloc[i] = nbits-1-errloc[i];
1064                         if (!bch->swap_bits)
1065                                 errloc[i] = (errloc[i] & ~7) |
1066                                             (7-(errloc[i] & 7));
1067                 }
1068         }
1069         return (err >= 0) ? err : -EBADMSG;
1070 }
1071 EXPORT_SYMBOL_GPL(bch_decode);
1072 
1073 /*
1074  * generate Galois field lookup tables
1075  */
1076 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1077 {
1078         unsigned int i, x = 1;
1079         const unsigned int k = 1 << deg(poly);
1080 
1081         /* primitive polynomial must be of degree m */
1082         if (k != (1u << GF_M(bch)))
1083                 return -1;
1084 
1085         for (i = 0; i < GF_N(bch); i++) {
1086                 bch->a_pow_tab[i] = x;
1087                 bch->a_log_tab[x] = i;
1088                 if (i && (x == 1))
1089                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1090                         return -1;
1091                 x <<= 1;
1092                 if (x & k)
1093                         x ^= poly;
1094         }
1095         bch->a_pow_tab[GF_N(bch)] = 1;
1096         bch->a_log_tab[0] = 0;
1097 
1098         return 0;
1099 }
1100 
1101 /*
1102  * compute generator polynomial remainder tables for fast encoding
1103  */
1104 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1105 {
1106         int i, j, b, d;
1107         uint32_t data, hi, lo, *tab;
1108         const int l = BCH_ECC_WORDS(bch);
1109         const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1110         const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1111 
1112         memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1113 
1114         for (i = 0; i < 256; i++) {
1115                 /* p(X)=i is a small polynomial of weight <= 8 */
1116                 for (b = 0; b < 4; b++) {
1117                         /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1118                         tab = bch->mod8_tab + (b*256+i)*l;
1119                         data = i << (8*b);
1120                         while (data) {
1121                                 d = deg(data);
1122                                 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1123                                 data ^= g[0] >> (31-d);
1124                                 for (j = 0; j < ecclen; j++) {
1125                                         hi = (d < 31) ? g[j] << (d+1) : 0;
1126                                         lo = (j+1 < plen) ?
1127                                                 g[j+1] >> (31-d) : 0;
1128                                         tab[j] ^= hi|lo;
1129                                 }
1130                         }
1131                 }
1132         }
1133 }
1134 
1135 /*
1136  * build a base for factoring degree 2 polynomials
1137  */
1138 static int build_deg2_base(struct bch_control *bch)
1139 {
1140         const int m = GF_M(bch);
1141         int i, j, r;
1142         unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1143 
1144         /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1145         for (i = 0; i < m; i++) {
1146                 for (j = 0, sum = 0; j < m; j++)
1147                         sum ^= a_pow(bch, i*(1 << j));
1148 
1149                 if (sum) {
1150                         ak = bch->a_pow_tab[i];
1151                         break;
1152                 }
1153         }
1154         /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1155         remaining = m;
1156         memset(xi, 0, sizeof(xi));
1157 
1158         for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1159                 y = gf_sqr(bch, x)^x;
1160                 for (i = 0; i < 2; i++) {
1161                         r = a_log(bch, y);
1162                         if (y && (r < m) && !xi[r]) {
1163                                 bch->xi_tab[r] = x;
1164                                 xi[r] = 1;
1165                                 remaining--;
1166                                 dbg("x%d = %x\n", r, x);
1167                                 break;
1168                         }
1169                         y ^= ak;
1170                 }
1171         }
1172         /* should not happen but check anyway */
1173         return remaining ? -1 : 0;
1174 }
1175 
1176 static void *bch_alloc(size_t size, int *err)
1177 {
1178         void *ptr;
1179 
1180         ptr = kmalloc(size, GFP_KERNEL);
1181         if (ptr == NULL)
1182                 *err = 1;
1183         return ptr;
1184 }
1185 
1186 /*
1187  * compute generator polynomial for given (m,t) parameters.
1188  */
1189 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1190 {
1191         const unsigned int m = GF_M(bch);
1192         const unsigned int t = GF_T(bch);
1193         int n, err = 0;
1194         unsigned int i, j, nbits, r, word, *roots;
1195         struct gf_poly *g;
1196         uint32_t *genpoly;
1197 
1198         g = bch_alloc(GF_POLY_SZ(m*t), &err);
1199         roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1200         genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1201 
1202         if (err) {
1203                 kfree(genpoly);
1204                 genpoly = NULL;
1205                 goto finish;
1206         }
1207 
1208         /* enumerate all roots of g(X) */
1209         memset(roots , 0, (bch->n+1)*sizeof(*roots));
1210         for (i = 0; i < t; i++) {
1211                 for (j = 0, r = 2*i+1; j < m; j++) {
1212                         roots[r] = 1;
1213                         r = mod_s(bch, 2*r);
1214                 }
1215         }
1216         /* build generator polynomial g(X) */
1217         g->deg = 0;
1218         g->c[0] = 1;
1219         for (i = 0; i < GF_N(bch); i++) {
1220                 if (roots[i]) {
1221                         /* multiply g(X) by (X+root) */
1222                         r = bch->a_pow_tab[i];
1223                         g->c[g->deg+1] = 1;
1224                         for (j = g->deg; j > 0; j--)
1225                                 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1226 
1227                         g->c[0] = gf_mul(bch, g->c[0], r);
1228                         g->deg++;
1229                 }
1230         }
1231         /* store left-justified binary representation of g(X) */
1232         n = g->deg+1;
1233         i = 0;
1234 
1235         while (n > 0) {
1236                 nbits = (n > 32) ? 32 : n;
1237                 for (j = 0, word = 0; j < nbits; j++) {
1238                         if (g->c[n-1-j])
1239                                 word |= 1u << (31-j);
1240                 }
1241                 genpoly[i++] = word;
1242                 n -= nbits;
1243         }
1244         bch->ecc_bits = g->deg;
1245 
1246 finish:
1247         kfree(g);
1248         kfree(roots);
1249 
1250         return genpoly;
1251 }
1252 
1253 /**
1254  * bch_init - initialize a BCH encoder/decoder
1255  * @m:          Galois field order, should be in the range 5-15
1256  * @t:          maximum error correction capability, in bits
1257  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1258  * @swap_bits:  swap bits within data and syndrome bytes
1259  *
1260  * Returns:
1261  *  a newly allocated BCH control structure if successful, NULL otherwise
1262  *
1263  * This initialization can take some time, as lookup tables are built for fast
1264  * encoding/decoding; make sure not to call this function from a time critical
1265  * path. Usually, bch_init() should be called on module/driver init and
1266  * bch_free() should be called to release memory on exit.
1267  *
1268  * You may provide your own primitive polynomial of degree @m in argument
1269  * @prim_poly, or let bch_init() use its default polynomial.
1270  *
1271  * Once bch_init() has successfully returned a pointer to a newly allocated
1272  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1273  * the structure.
1274  */
1275 struct bch_control *bch_init(int m, int t, unsigned int prim_poly,
1276                              bool swap_bits)
1277 {
1278         int err = 0;
1279         unsigned int i, words;
1280         uint32_t *genpoly;
1281         struct bch_control *bch = NULL;
1282 
1283         const int min_m = 5;
1284 
1285         /* default primitive polynomials */
1286         static const unsigned int prim_poly_tab[] = {
1287                 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1288                 0x402b, 0x8003,
1289         };
1290 
1291 #if defined(CONFIG_BCH_CONST_PARAMS)
1292         if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1293                 printk(KERN_ERR "bch encoder/decoder was configured to support "
1294                        "parameters m=%d, t=%d only!\n",
1295                        CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1296                 goto fail;
1297         }
1298 #endif
1299         if ((m < min_m) || (m > BCH_MAX_M))
1300                 /*
1301                  * values of m greater than 15 are not currently supported;
1302                  * supporting m > 15 would require changing table base type
1303                  * (uint16_t) and a small patch in matrix transposition
1304                  */
1305                 goto fail;
1306 
1307         if (t > BCH_MAX_T)
1308                 /*
1309                  * we can support larger than 64 bits if necessary, at the
1310                  * cost of higher stack usage.
1311                  */
1312                 goto fail;
1313 
1314         /* sanity checks */
1315         if ((t < 1) || (m*t >= ((1 << m)-1)))
1316                 /* invalid t value */
1317                 goto fail;
1318 
1319         /* select a primitive polynomial for generating GF(2^m) */
1320         if (prim_poly == 0)
1321                 prim_poly = prim_poly_tab[m-min_m];
1322 
1323         bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1324         if (bch == NULL)
1325                 goto fail;
1326 
1327         bch->m = m;
1328         bch->t = t;
1329         bch->n = (1 << m)-1;
1330         words  = DIV_ROUND_UP(m*t, 32);
1331         bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1332         bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1333         bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1334         bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1335         bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1336         bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1337         bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1338         bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1339         bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1340         bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1341         bch->swap_bits = swap_bits;
1342 
1343         for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1344                 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1345 
1346         if (err)
1347                 goto fail;
1348 
1349         err = build_gf_tables(bch, prim_poly);
1350         if (err)
1351                 goto fail;
1352 
1353         /* use generator polynomial for computing encoding tables */
1354         genpoly = compute_generator_polynomial(bch);
1355         if (genpoly == NULL)
1356                 goto fail;
1357 
1358         build_mod8_tables(bch, genpoly);
1359         kfree(genpoly);
1360 
1361         err = build_deg2_base(bch);
1362         if (err)
1363                 goto fail;
1364 
1365         return bch;
1366 
1367 fail:
1368         bch_free(bch);
1369         return NULL;
1370 }
1371 EXPORT_SYMBOL_GPL(bch_init);
1372 
1373 /**
1374  *  bch_free - free the BCH control structure
1375  *  @bch:    BCH control structure to release
1376  */
1377 void bch_free(struct bch_control *bch)
1378 {
1379         unsigned int i;
1380 
1381         if (bch) {
1382                 kfree(bch->a_pow_tab);
1383                 kfree(bch->a_log_tab);
1384                 kfree(bch->mod8_tab);
1385                 kfree(bch->ecc_buf);
1386                 kfree(bch->ecc_buf2);
1387                 kfree(bch->xi_tab);
1388                 kfree(bch->syn);
1389                 kfree(bch->cache);
1390                 kfree(bch->elp);
1391 
1392                 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1393                         kfree(bch->poly_2t[i]);
1394 
1395                 kfree(bch);
1396         }
1397 }
1398 EXPORT_SYMBOL_GPL(bch_free);
1399 
1400 MODULE_LICENSE("GPL");
1401 MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1402 MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1403 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php