~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/crypto/gf128mul.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* gf128mul.c - GF(2^128) multiplication functions
  2  *
  3  * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
  4  * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
  5  *
  6  * Based on Dr Brian Gladman's (GPL'd) work published at
  7  * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
  8  * See the original copyright notice below.
  9  *
 10  * This program is free software; you can redistribute it and/or modify it
 11  * under the terms of the GNU General Public License as published by the Free
 12  * Software Foundation; either version 2 of the License, or (at your option)
 13  * any later version.
 14  */
 15 
 16 /*
 17  ---------------------------------------------------------------------------
 18  Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 19 
 20  LICENSE TERMS
 21 
 22  The free distribution and use of this software in both source and binary
 23  form is allowed (with or without changes) provided that:
 24 
 25    1. distributions of this source code include the above copyright
 26       notice, this list of conditions and the following disclaimer;
 27 
 28    2. distributions in binary form include the above copyright
 29       notice, this list of conditions and the following disclaimer
 30       in the documentation and/or other associated materials;
 31 
 32    3. the copyright holder's name is not used to endorse products
 33       built using this software without specific written permission.
 34 
 35  ALTERNATIVELY, provided that this notice is retained in full, this product
 36  may be distributed under the terms of the GNU General Public License (GPL),
 37  in which case the provisions of the GPL apply INSTEAD OF those given above.
 38 
 39  DISCLAIMER
 40 
 41  This software is provided 'as is' with no explicit or implied warranties
 42  in respect of its properties, including, but not limited to, correctness
 43  and/or fitness for purpose.
 44  ---------------------------------------------------------------------------
 45  Issue 31/01/2006
 46 
 47  This file provides fast multiplication in GF(2^128) as required by several
 48  cryptographic authentication modes
 49 */
 50 
 51 #include <crypto/gf128mul.h>
 52 #include <linux/kernel.h>
 53 #include <linux/module.h>
 54 #include <linux/slab.h>
 55 
 56 #define gf128mul_dat(q) { \
 57         q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
 58         q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
 59         q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
 60         q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
 61         q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
 62         q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
 63         q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
 64         q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
 65         q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
 66         q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
 67         q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
 68         q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
 69         q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
 70         q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
 71         q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
 72         q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
 73         q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
 74         q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
 75         q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
 76         q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
 77         q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
 78         q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
 79         q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
 80         q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
 81         q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
 82         q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
 83         q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
 84         q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
 85         q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
 86         q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
 87         q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
 88         q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
 89 }
 90 
 91 /*
 92  * Given a value i in 0..255 as the byte overflow when a field element
 93  * in GF(2^128) is multiplied by x^8, the following macro returns the
 94  * 16-bit value that must be XOR-ed into the low-degree end of the
 95  * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
 96  *
 97  * There are two versions of the macro, and hence two tables: one for
 98  * the "be" convention where the highest-order bit is the coefficient of
 99  * the highest-degree polynomial term, and one for the "le" convention
100  * where the highest-order bit is the coefficient of the lowest-degree
101  * polynomial term.  In both cases the values are stored in CPU byte
102  * endianness such that the coefficients are ordered consistently across
103  * bytes, i.e. in the "be" table bits 15..0 of the stored value
104  * correspond to the coefficients of x^15..x^0, and in the "le" table
105  * bits 15..0 correspond to the coefficients of x^0..x^15.
106  *
107  * Therefore, provided that the appropriate byte endianness conversions
108  * are done by the multiplication functions (and these must be in place
109  * anyway to support both little endian and big endian CPUs), the "be"
110  * table can be used for multiplications of both "bbe" and "ble"
111  * elements, and the "le" table can be used for multiplications of both
112  * "lle" and "lbe" elements.
113  */
114 
115 #define xda_be(i) ( \
116         (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117         (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118         (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119         (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
120 )
121 
122 #define xda_le(i) ( \
123         (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124         (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125         (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126         (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
127 )
128 
129 static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130 static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
131 
132 /*
133  * The following functions multiply a field element by x^8 in
134  * the polynomial field representation.  They use 64-bit word operations
135  * to gain speed but compensate for machine endianness and hence work
136  * correctly on both styles of machine.
137  */
138 
139 static void gf128mul_x8_lle(be128 *x)
140 {
141         u64 a = be64_to_cpu(x->a);
142         u64 b = be64_to_cpu(x->b);
143         u64 _tt = gf128mul_table_le[b & 0xff];
144 
145         x->b = cpu_to_be64((b >> 8) | (a << 56));
146         x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
147 }
148 
149 /* time invariant version of gf128mul_x8_lle */
150 static void gf128mul_x8_lle_ti(be128 *x)
151 {
152         u64 a = be64_to_cpu(x->a);
153         u64 b = be64_to_cpu(x->b);
154         u64 _tt = xda_le(b & 0xff); /* avoid table lookup */
155 
156         x->b = cpu_to_be64((b >> 8) | (a << 56));
157         x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
158 }
159 
160 static void gf128mul_x8_bbe(be128 *x)
161 {
162         u64 a = be64_to_cpu(x->a);
163         u64 b = be64_to_cpu(x->b);
164         u64 _tt = gf128mul_table_be[a >> 56];
165 
166         x->a = cpu_to_be64((a << 8) | (b >> 56));
167         x->b = cpu_to_be64((b << 8) ^ _tt);
168 }
169 
170 void gf128mul_x8_ble(le128 *r, const le128 *x)
171 {
172         u64 a = le64_to_cpu(x->a);
173         u64 b = le64_to_cpu(x->b);
174         u64 _tt = gf128mul_table_be[a >> 56];
175 
176         r->a = cpu_to_le64((a << 8) | (b >> 56));
177         r->b = cpu_to_le64((b << 8) ^ _tt);
178 }
179 EXPORT_SYMBOL(gf128mul_x8_ble);
180 
181 void gf128mul_lle(be128 *r, const be128 *b)
182 {
183         /*
184          * The p array should be aligned to twice the size of its element type,
185          * so that every even/odd pair is guaranteed to share a cacheline
186          * (assuming a cacheline size of 32 bytes or more, which is by far the
187          * most common). This ensures that each be128_xor() call in the loop
188          * takes the same amount of time regardless of the value of 'ch', which
189          * is derived from function parameter 'b', which is commonly used as a
190          * key, e.g., for GHASH. The odd array elements are all set to zero,
191          * making each be128_xor() a NOP if its associated bit in 'ch' is not
192          * set, and this is equivalent to calling be128_xor() conditionally.
193          * This approach aims to avoid leaking information about such keys
194          * through execution time variances.
195          *
196          * Unfortunately, __aligned(16) or higher does not work on x86 for
197          * variables on the stack so we need to perform the alignment by hand.
198          */
199         be128 array[16 + 3] = {};
200         be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128));
201         int i;
202 
203         p[0] = *r;
204         for (i = 0; i < 7; ++i)
205                 gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]);
206 
207         memset(r, 0, sizeof(*r));
208         for (i = 0;;) {
209                 u8 ch = ((u8 *)b)[15 - i];
210 
211                 be128_xor(r, r, &p[ 0 + !(ch & 0x80)]);
212                 be128_xor(r, r, &p[ 2 + !(ch & 0x40)]);
213                 be128_xor(r, r, &p[ 4 + !(ch & 0x20)]);
214                 be128_xor(r, r, &p[ 6 + !(ch & 0x10)]);
215                 be128_xor(r, r, &p[ 8 + !(ch & 0x08)]);
216                 be128_xor(r, r, &p[10 + !(ch & 0x04)]);
217                 be128_xor(r, r, &p[12 + !(ch & 0x02)]);
218                 be128_xor(r, r, &p[14 + !(ch & 0x01)]);
219 
220                 if (++i >= 16)
221                         break;
222 
223                 gf128mul_x8_lle_ti(r); /* use the time invariant version */
224         }
225 }
226 EXPORT_SYMBOL(gf128mul_lle);
227 
228 void gf128mul_bbe(be128 *r, const be128 *b)
229 {
230         be128 p[8];
231         int i;
232 
233         p[0] = *r;
234         for (i = 0; i < 7; ++i)
235                 gf128mul_x_bbe(&p[i + 1], &p[i]);
236 
237         memset(r, 0, sizeof(*r));
238         for (i = 0;;) {
239                 u8 ch = ((u8 *)b)[i];
240 
241                 if (ch & 0x80)
242                         be128_xor(r, r, &p[7]);
243                 if (ch & 0x40)
244                         be128_xor(r, r, &p[6]);
245                 if (ch & 0x20)
246                         be128_xor(r, r, &p[5]);
247                 if (ch & 0x10)
248                         be128_xor(r, r, &p[4]);
249                 if (ch & 0x08)
250                         be128_xor(r, r, &p[3]);
251                 if (ch & 0x04)
252                         be128_xor(r, r, &p[2]);
253                 if (ch & 0x02)
254                         be128_xor(r, r, &p[1]);
255                 if (ch & 0x01)
256                         be128_xor(r, r, &p[0]);
257 
258                 if (++i >= 16)
259                         break;
260 
261                 gf128mul_x8_bbe(r);
262         }
263 }
264 EXPORT_SYMBOL(gf128mul_bbe);
265 
266 /*      This version uses 64k bytes of table space.
267     A 16 byte buffer has to be multiplied by a 16 byte key
268     value in GF(2^128).  If we consider a GF(2^128) value in
269     the buffer's lowest byte, we can construct a table of
270     the 256 16 byte values that result from the 256 values
271     of this byte.  This requires 4096 bytes. But we also
272     need tables for each of the 16 higher bytes in the
273     buffer as well, which makes 64 kbytes in total.
274 */
275 /* additional explanation
276  * t[0][BYTE] contains g*BYTE
277  * t[1][BYTE] contains g*x^8*BYTE
278  *  ..
279  * t[15][BYTE] contains g*x^120*BYTE */
280 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
281 {
282         struct gf128mul_64k *t;
283         int i, j, k;
284 
285         t = kzalloc(sizeof(*t), GFP_KERNEL);
286         if (!t)
287                 goto out;
288 
289         for (i = 0; i < 16; i++) {
290                 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
291                 if (!t->t[i]) {
292                         gf128mul_free_64k(t);
293                         t = NULL;
294                         goto out;
295                 }
296         }
297 
298         t->t[0]->t[1] = *g;
299         for (j = 1; j <= 64; j <<= 1)
300                 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
301 
302         for (i = 0;;) {
303                 for (j = 2; j < 256; j += j)
304                         for (k = 1; k < j; ++k)
305                                 be128_xor(&t->t[i]->t[j + k],
306                                           &t->t[i]->t[j], &t->t[i]->t[k]);
307 
308                 if (++i >= 16)
309                         break;
310 
311                 for (j = 128; j > 0; j >>= 1) {
312                         t->t[i]->t[j] = t->t[i - 1]->t[j];
313                         gf128mul_x8_bbe(&t->t[i]->t[j]);
314                 }
315         }
316 
317 out:
318         return t;
319 }
320 EXPORT_SYMBOL(gf128mul_init_64k_bbe);
321 
322 void gf128mul_free_64k(struct gf128mul_64k *t)
323 {
324         int i;
325 
326         for (i = 0; i < 16; i++)
327                 kfree_sensitive(t->t[i]);
328         kfree_sensitive(t);
329 }
330 EXPORT_SYMBOL(gf128mul_free_64k);
331 
332 void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
333 {
334         u8 *ap = (u8 *)a;
335         be128 r[1];
336         int i;
337 
338         *r = t->t[0]->t[ap[15]];
339         for (i = 1; i < 16; ++i)
340                 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
341         *a = *r;
342 }
343 EXPORT_SYMBOL(gf128mul_64k_bbe);
344 
345 /*      This version uses 4k bytes of table space.
346     A 16 byte buffer has to be multiplied by a 16 byte key
347     value in GF(2^128).  If we consider a GF(2^128) value in a
348     single byte, we can construct a table of the 256 16 byte
349     values that result from the 256 values of this byte.
350     This requires 4096 bytes. If we take the highest byte in
351     the buffer and use this table to get the result, we then
352     have to multiply by x^120 to get the final value. For the
353     next highest byte the result has to be multiplied by x^112
354     and so on. But we can do this by accumulating the result
355     in an accumulator starting with the result for the top
356     byte.  We repeatedly multiply the accumulator value by
357     x^8 and then add in (i.e. xor) the 16 bytes of the next
358     lower byte in the buffer, stopping when we reach the
359     lowest byte. This requires a 4096 byte table.
360 */
361 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
362 {
363         struct gf128mul_4k *t;
364         int j, k;
365 
366         t = kzalloc(sizeof(*t), GFP_KERNEL);
367         if (!t)
368                 goto out;
369 
370         t->t[128] = *g;
371         for (j = 64; j > 0; j >>= 1)
372                 gf128mul_x_lle(&t->t[j], &t->t[j+j]);
373 
374         for (j = 2; j < 256; j += j)
375                 for (k = 1; k < j; ++k)
376                         be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
377 
378 out:
379         return t;
380 }
381 EXPORT_SYMBOL(gf128mul_init_4k_lle);
382 
383 struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
384 {
385         struct gf128mul_4k *t;
386         int j, k;
387 
388         t = kzalloc(sizeof(*t), GFP_KERNEL);
389         if (!t)
390                 goto out;
391 
392         t->t[1] = *g;
393         for (j = 1; j <= 64; j <<= 1)
394                 gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
395 
396         for (j = 2; j < 256; j += j)
397                 for (k = 1; k < j; ++k)
398                         be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
399 
400 out:
401         return t;
402 }
403 EXPORT_SYMBOL(gf128mul_init_4k_bbe);
404 
405 void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
406 {
407         u8 *ap = (u8 *)a;
408         be128 r[1];
409         int i = 15;
410 
411         *r = t->t[ap[15]];
412         while (i--) {
413                 gf128mul_x8_lle(r);
414                 be128_xor(r, r, &t->t[ap[i]]);
415         }
416         *a = *r;
417 }
418 EXPORT_SYMBOL(gf128mul_4k_lle);
419 
420 void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
421 {
422         u8 *ap = (u8 *)a;
423         be128 r[1];
424         int i = 0;
425 
426         *r = t->t[ap[0]];
427         while (++i < 16) {
428                 gf128mul_x8_bbe(r);
429                 be128_xor(r, r, &t->t[ap[i]]);
430         }
431         *a = *r;
432 }
433 EXPORT_SYMBOL(gf128mul_4k_bbe);
434 
435 MODULE_LICENSE("GPL");
436 MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
437 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php