~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/crypto/mpi/ec.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* ec.c -  Elliptic Curve functions
  2  * Copyright (C) 2007 Free Software Foundation, Inc.
  3  * Copyright (C) 2013 g10 Code GmbH
  4  *
  5  * This file is part of Libgcrypt.
  6  *
  7  * Libgcrypt is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU Lesser General Public License as
  9  * published by the Free Software Foundation; either version 2.1 of
 10  * the License, or (at your option) any later version.
 11  *
 12  * Libgcrypt is distributed in the hope that it will be useful,
 13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  * GNU Lesser General Public License for more details.
 16  *
 17  * You should have received a copy of the GNU Lesser General Public
 18  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 19  */
 20 
 21 #include "mpi-internal.h"
 22 #include "longlong.h"
 23 
 24 #define point_init(a)  mpi_point_init((a))
 25 #define point_free(a)  mpi_point_free_parts((a))
 26 
 27 #define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
 28 #define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
 29 
 30 #define DIM(v) (sizeof(v)/sizeof((v)[0]))
 31 
 32 
 33 /* Create a new point option.  NBITS gives the size in bits of one
 34  * coordinate; it is only used to pre-allocate some resources and
 35  * might also be passed as 0 to use a default value.
 36  */
 37 MPI_POINT mpi_point_new(unsigned int nbits)
 38 {
 39         MPI_POINT p;
 40 
 41         (void)nbits;  /* Currently not used.  */
 42 
 43         p = kmalloc(sizeof(*p), GFP_KERNEL);
 44         if (p)
 45                 mpi_point_init(p);
 46         return p;
 47 }
 48 EXPORT_SYMBOL_GPL(mpi_point_new);
 49 
 50 /* Release the point object P.  P may be NULL. */
 51 void mpi_point_release(MPI_POINT p)
 52 {
 53         if (p) {
 54                 mpi_point_free_parts(p);
 55                 kfree(p);
 56         }
 57 }
 58 EXPORT_SYMBOL_GPL(mpi_point_release);
 59 
 60 /* Initialize the fields of a point object.  gcry_mpi_point_free_parts
 61  * may be used to release the fields.
 62  */
 63 void mpi_point_init(MPI_POINT p)
 64 {
 65         p->x = mpi_new(0);
 66         p->y = mpi_new(0);
 67         p->z = mpi_new(0);
 68 }
 69 EXPORT_SYMBOL_GPL(mpi_point_init);
 70 
 71 /* Release the parts of a point object. */
 72 void mpi_point_free_parts(MPI_POINT p)
 73 {
 74         mpi_free(p->x); p->x = NULL;
 75         mpi_free(p->y); p->y = NULL;
 76         mpi_free(p->z); p->z = NULL;
 77 }
 78 EXPORT_SYMBOL_GPL(mpi_point_free_parts);
 79 
 80 /* Set the value from S into D.  */
 81 static void point_set(MPI_POINT d, MPI_POINT s)
 82 {
 83         mpi_set(d->x, s->x);
 84         mpi_set(d->y, s->y);
 85         mpi_set(d->z, s->z);
 86 }
 87 
 88 static void point_resize(MPI_POINT p, struct mpi_ec_ctx *ctx)
 89 {
 90         size_t nlimbs = ctx->p->nlimbs;
 91 
 92         mpi_resize(p->x, nlimbs);
 93         p->x->nlimbs = nlimbs;
 94         mpi_resize(p->z, nlimbs);
 95         p->z->nlimbs = nlimbs;
 96 
 97         if (ctx->model != MPI_EC_MONTGOMERY) {
 98                 mpi_resize(p->y, nlimbs);
 99                 p->y->nlimbs = nlimbs;
100         }
101 }
102 
103 static void point_swap_cond(MPI_POINT d, MPI_POINT s, unsigned long swap,
104                 struct mpi_ec_ctx *ctx)
105 {
106         mpi_swap_cond(d->x, s->x, swap);
107         if (ctx->model != MPI_EC_MONTGOMERY)
108                 mpi_swap_cond(d->y, s->y, swap);
109         mpi_swap_cond(d->z, s->z, swap);
110 }
111 
112 
113 /* W = W mod P.  */
114 static void ec_mod(MPI w, struct mpi_ec_ctx *ec)
115 {
116         if (ec->t.p_barrett)
117                 mpi_mod_barrett(w, w, ec->t.p_barrett);
118         else
119                 mpi_mod(w, w, ec->p);
120 }
121 
122 static void ec_addm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
123 {
124         mpi_add(w, u, v);
125         ec_mod(w, ctx);
126 }
127 
128 static void ec_subm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec)
129 {
130         mpi_sub(w, u, v);
131         while (w->sign)
132                 mpi_add(w, w, ec->p);
133         /*ec_mod(w, ec);*/
134 }
135 
136 static void ec_mulm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
137 {
138         mpi_mul(w, u, v);
139         ec_mod(w, ctx);
140 }
141 
142 /* W = 2 * U mod P.  */
143 static void ec_mul2(MPI w, MPI u, struct mpi_ec_ctx *ctx)
144 {
145         mpi_lshift(w, u, 1);
146         ec_mod(w, ctx);
147 }
148 
149 static void ec_powm(MPI w, const MPI b, const MPI e,
150                 struct mpi_ec_ctx *ctx)
151 {
152         mpi_powm(w, b, e, ctx->p);
153         /* mpi_abs(w); */
154 }
155 
156 /* Shortcut for
157  * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx);
158  * for easier optimization.
159  */
160 static void ec_pow2(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
161 {
162         /* Using mpi_mul is slightly faster (at least on amd64).  */
163         /* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */
164         ec_mulm(w, b, b, ctx);
165 }
166 
167 /* Shortcut for
168  * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx);
169  * for easier optimization.
170  */
171 static void ec_pow3(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
172 {
173         mpi_powm(w, b, mpi_const(MPI_C_THREE), ctx->p);
174 }
175 
176 static void ec_invm(MPI x, MPI a, struct mpi_ec_ctx *ctx)
177 {
178         if (!mpi_invm(x, a, ctx->p))
179                 log_error("ec_invm: inverse does not exist:\n");
180 }
181 
182 static void mpih_set_cond(mpi_ptr_t wp, mpi_ptr_t up,
183                 mpi_size_t usize, unsigned long set)
184 {
185         mpi_size_t i;
186         mpi_limb_t mask = ((mpi_limb_t)0) - set;
187         mpi_limb_t x;
188 
189         for (i = 0; i < usize; i++) {
190                 x = mask & (wp[i] ^ up[i]);
191                 wp[i] = wp[i] ^ x;
192         }
193 }
194 
195 /* Routines for 2^255 - 19.  */
196 
197 #define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
198 
199 static void ec_addm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
200 {
201         mpi_ptr_t wp, up, vp;
202         mpi_size_t wsize = LIMB_SIZE_25519;
203         mpi_limb_t n[LIMB_SIZE_25519];
204         mpi_limb_t borrow;
205 
206         if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
207                 log_bug("addm_25519: different sizes\n");
208 
209         memset(n, 0, sizeof(n));
210         up = u->d;
211         vp = v->d;
212         wp = w->d;
213 
214         mpihelp_add_n(wp, up, vp, wsize);
215         borrow = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
216         mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
217         mpihelp_add_n(wp, wp, n, wsize);
218         wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
219 }
220 
221 static void ec_subm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
222 {
223         mpi_ptr_t wp, up, vp;
224         mpi_size_t wsize = LIMB_SIZE_25519;
225         mpi_limb_t n[LIMB_SIZE_25519];
226         mpi_limb_t borrow;
227 
228         if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
229                 log_bug("subm_25519: different sizes\n");
230 
231         memset(n, 0, sizeof(n));
232         up = u->d;
233         vp = v->d;
234         wp = w->d;
235 
236         borrow = mpihelp_sub_n(wp, up, vp, wsize);
237         mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
238         mpihelp_add_n(wp, wp, n, wsize);
239         wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
240 }
241 
242 static void ec_mulm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
243 {
244         mpi_ptr_t wp, up, vp;
245         mpi_size_t wsize = LIMB_SIZE_25519;
246         mpi_limb_t n[LIMB_SIZE_25519*2];
247         mpi_limb_t m[LIMB_SIZE_25519+1];
248         mpi_limb_t cy;
249         int msb;
250 
251         (void)ctx;
252         if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
253                 log_bug("mulm_25519: different sizes\n");
254 
255         up = u->d;
256         vp = v->d;
257         wp = w->d;
258 
259         mpihelp_mul_n(n, up, vp, wsize);
260         memcpy(wp, n, wsize * BYTES_PER_MPI_LIMB);
261         wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
262 
263         memcpy(m, n+LIMB_SIZE_25519-1, (wsize+1) * BYTES_PER_MPI_LIMB);
264         mpihelp_rshift(m, m, LIMB_SIZE_25519+1, (255 % BITS_PER_MPI_LIMB));
265 
266         memcpy(n, m, wsize * BYTES_PER_MPI_LIMB);
267         cy = mpihelp_lshift(m, m, LIMB_SIZE_25519, 4);
268         m[LIMB_SIZE_25519] = cy;
269         cy = mpihelp_add_n(m, m, n, wsize);
270         m[LIMB_SIZE_25519] += cy;
271         cy = mpihelp_add_n(m, m, n, wsize);
272         m[LIMB_SIZE_25519] += cy;
273         cy = mpihelp_add_n(m, m, n, wsize);
274         m[LIMB_SIZE_25519] += cy;
275 
276         cy = mpihelp_add_n(wp, wp, m, wsize);
277         m[LIMB_SIZE_25519] += cy;
278 
279         memset(m, 0, wsize * BYTES_PER_MPI_LIMB);
280         msb = (wp[LIMB_SIZE_25519-1] >> (255 % BITS_PER_MPI_LIMB));
281         m[0] = (m[LIMB_SIZE_25519] * 2 + msb) * 19;
282         wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
283         mpihelp_add_n(wp, wp, m, wsize);
284 
285         m[0] = 0;
286         cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
287         mpih_set_cond(m, ctx->p->d, wsize, (cy != 0UL));
288         mpihelp_add_n(wp, wp, m, wsize);
289 }
290 
291 static void ec_mul2_25519(MPI w, MPI u, struct mpi_ec_ctx *ctx)
292 {
293         ec_addm_25519(w, u, u, ctx);
294 }
295 
296 static void ec_pow2_25519(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
297 {
298         ec_mulm_25519(w, b, b, ctx);
299 }
300 
301 /* Routines for 2^448 - 2^224 - 1.  */
302 
303 #define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
304 #define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2)
305 
306 static void ec_addm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
307 {
308         mpi_ptr_t wp, up, vp;
309         mpi_size_t wsize = LIMB_SIZE_448;
310         mpi_limb_t n[LIMB_SIZE_448];
311         mpi_limb_t cy;
312 
313         if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
314                 log_bug("addm_448: different sizes\n");
315 
316         memset(n, 0, sizeof(n));
317         up = u->d;
318         vp = v->d;
319         wp = w->d;
320 
321         cy = mpihelp_add_n(wp, up, vp, wsize);
322         mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
323         mpihelp_sub_n(wp, wp, n, wsize);
324 }
325 
326 static void ec_subm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
327 {
328         mpi_ptr_t wp, up, vp;
329         mpi_size_t wsize = LIMB_SIZE_448;
330         mpi_limb_t n[LIMB_SIZE_448];
331         mpi_limb_t borrow;
332 
333         if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
334                 log_bug("subm_448: different sizes\n");
335 
336         memset(n, 0, sizeof(n));
337         up = u->d;
338         vp = v->d;
339         wp = w->d;
340 
341         borrow = mpihelp_sub_n(wp, up, vp, wsize);
342         mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
343         mpihelp_add_n(wp, wp, n, wsize);
344 }
345 
346 static void ec_mulm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
347 {
348         mpi_ptr_t wp, up, vp;
349         mpi_size_t wsize = LIMB_SIZE_448;
350         mpi_limb_t n[LIMB_SIZE_448*2];
351         mpi_limb_t a2[LIMB_SIZE_HALF_448];
352         mpi_limb_t a3[LIMB_SIZE_HALF_448];
353         mpi_limb_t b0[LIMB_SIZE_HALF_448];
354         mpi_limb_t b1[LIMB_SIZE_HALF_448];
355         mpi_limb_t cy;
356         int i;
357 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
358         mpi_limb_t b1_rest, a3_rest;
359 #endif
360 
361         if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
362                 log_bug("mulm_448: different sizes\n");
363 
364         up = u->d;
365         vp = v->d;
366         wp = w->d;
367 
368         mpihelp_mul_n(n, up, vp, wsize);
369 
370         for (i = 0; i < (wsize + 1) / 2; i++) {
371                 b0[i] = n[i];
372                 b1[i] = n[i+wsize/2];
373                 a2[i] = n[i+wsize];
374                 a3[i] = n[i+wsize+wsize/2];
375         }
376 
377 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
378         b0[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;
379         a2[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;
380 
381         b1_rest = 0;
382         a3_rest = 0;
383 
384         for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
385                 mpi_limb_t b1v, a3v;
386                 b1v = b1[i];
387                 a3v = a3[i];
388                 b1[i] = (b1_rest << 32) | (b1v >> 32);
389                 a3[i] = (a3_rest << 32) | (a3v >> 32);
390                 b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
391                 a3_rest = a3v & (((mpi_limb_t)1UL << 32)-1);
392         }
393 #endif
394 
395         cy = mpihelp_add_n(b0, b0, a2, LIMB_SIZE_HALF_448);
396         cy += mpihelp_add_n(b0, b0, a3, LIMB_SIZE_HALF_448);
397         for (i = 0; i < (wsize + 1) / 2; i++)
398                 wp[i] = b0[i];
399 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
400         wp[LIMB_SIZE_HALF_448-1] &= (((mpi_limb_t)1UL << 32)-1);
401 #endif
402 
403 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
404         cy = b0[LIMB_SIZE_HALF_448-1] >> 32;
405 #endif
406 
407         cy = mpihelp_add_1(b1, b1, LIMB_SIZE_HALF_448, cy);
408         cy += mpihelp_add_n(b1, b1, a2, LIMB_SIZE_HALF_448);
409         cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
410         cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
411 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
412         b1_rest = 0;
413         for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
414                 mpi_limb_t b1v = b1[i];
415                 b1[i] = (b1_rest << 32) | (b1v >> 32);
416                 b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
417         }
418         wp[LIMB_SIZE_HALF_448-1] |= (b1_rest << 32);
419 #endif
420         for (i = 0; i < wsize / 2; i++)
421                 wp[i+(wsize + 1) / 2] = b1[i];
422 
423 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
424         cy = b1[LIMB_SIZE_HALF_448-1];
425 #endif
426 
427         memset(n, 0, wsize * BYTES_PER_MPI_LIMB);
428 
429 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
430         n[LIMB_SIZE_HALF_448-1] = cy << 32;
431 #else
432         n[LIMB_SIZE_HALF_448] = cy;
433 #endif
434         n[0] = cy;
435         mpihelp_add_n(wp, wp, n, wsize);
436 
437         memset(n, 0, wsize * BYTES_PER_MPI_LIMB);
438         cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
439         mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
440         mpihelp_add_n(wp, wp, n, wsize);
441 }
442 
443 static void ec_mul2_448(MPI w, MPI u, struct mpi_ec_ctx *ctx)
444 {
445         ec_addm_448(w, u, u, ctx);
446 }
447 
448 static void ec_pow2_448(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
449 {
450         ec_mulm_448(w, b, b, ctx);
451 }
452 
453 struct field_table {
454         const char *p;
455 
456         /* computation routines for the field.  */
457         void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
458         void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
459         void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
460         void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx);
461         void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx);
462 };
463 
464 static const struct field_table field_table[] = {
465         {
466                 "0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED",
467                 ec_addm_25519,
468                 ec_subm_25519,
469                 ec_mulm_25519,
470                 ec_mul2_25519,
471                 ec_pow2_25519
472         },
473         {
474                 "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
475                 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
476                 ec_addm_448,
477                 ec_subm_448,
478                 ec_mulm_448,
479                 ec_mul2_448,
480                 ec_pow2_448
481         },
482         { NULL, NULL, NULL, NULL, NULL, NULL },
483 };
484 
485 /* Force recomputation of all helper variables.  */
486 static void mpi_ec_get_reset(struct mpi_ec_ctx *ec)
487 {
488         ec->t.valid.a_is_pminus3 = 0;
489         ec->t.valid.two_inv_p = 0;
490 }
491 
492 /* Accessor for helper variable.  */
493 static int ec_get_a_is_pminus3(struct mpi_ec_ctx *ec)
494 {
495         MPI tmp;
496 
497         if (!ec->t.valid.a_is_pminus3) {
498                 ec->t.valid.a_is_pminus3 = 1;
499                 tmp = mpi_alloc_like(ec->p);
500                 mpi_sub_ui(tmp, ec->p, 3);
501                 ec->t.a_is_pminus3 = !mpi_cmp(ec->a, tmp);
502                 mpi_free(tmp);
503         }
504 
505         return ec->t.a_is_pminus3;
506 }
507 
508 /* Accessor for helper variable.  */
509 static MPI ec_get_two_inv_p(struct mpi_ec_ctx *ec)
510 {
511         if (!ec->t.valid.two_inv_p) {
512                 ec->t.valid.two_inv_p = 1;
513                 if (!ec->t.two_inv_p)
514                         ec->t.two_inv_p = mpi_alloc(0);
515                 ec_invm(ec->t.two_inv_p, mpi_const(MPI_C_TWO), ec);
516         }
517         return ec->t.two_inv_p;
518 }
519 
520 static const char *const curve25519_bad_points[] = {
521         "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed",
522         "0x0000000000000000000000000000000000000000000000000000000000000000",
523         "0x0000000000000000000000000000000000000000000000000000000000000001",
524         "0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0",
525         "0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f",
526         "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec",
527         "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee",
528         NULL
529 };
530 
531 static const char *const curve448_bad_points[] = {
532         "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
533         "ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
534         "0x00000000000000000000000000000000000000000000000000000000"
535         "00000000000000000000000000000000000000000000000000000000",
536         "0x00000000000000000000000000000000000000000000000000000000"
537         "00000000000000000000000000000000000000000000000000000001",
538         "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
539         "fffffffffffffffffffffffffffffffffffffffffffffffffffffffe",
540         "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
541         "00000000000000000000000000000000000000000000000000000000",
542         NULL
543 };
544 
545 static const char *const *bad_points_table[] = {
546         curve25519_bad_points,
547         curve448_bad_points,
548 };
549 
550 static void mpi_ec_coefficient_normalize(MPI a, MPI p)
551 {
552         if (a->sign) {
553                 mpi_resize(a, p->nlimbs);
554                 mpihelp_sub_n(a->d, p->d, a->d, p->nlimbs);
555                 a->nlimbs = p->nlimbs;
556                 a->sign = 0;
557         }
558 }
559 
560 /* This function initialized a context for elliptic curve based on the
561  * field GF(p).  P is the prime specifying this field, A is the first
562  * coefficient.  CTX is expected to be zeroized.
563  */
564 void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model,
565                         enum ecc_dialects dialect,
566                         int flags, MPI p, MPI a, MPI b)
567 {
568         int i;
569         static int use_barrett = -1 /* TODO: 1 or -1 */;
570 
571         mpi_ec_coefficient_normalize(a, p);
572         mpi_ec_coefficient_normalize(b, p);
573 
574         /* Fixme: Do we want to check some constraints? e.g.  a < p  */
575 
576         ctx->model = model;
577         ctx->dialect = dialect;
578         ctx->flags = flags;
579         if (dialect == ECC_DIALECT_ED25519)
580                 ctx->nbits = 256;
581         else
582                 ctx->nbits = mpi_get_nbits(p);
583         ctx->p = mpi_copy(p);
584         ctx->a = mpi_copy(a);
585         ctx->b = mpi_copy(b);
586 
587         ctx->d = NULL;
588         ctx->t.two_inv_p = NULL;
589 
590         ctx->t.p_barrett = use_barrett > 0 ? mpi_barrett_init(ctx->p, 0) : NULL;
591 
592         mpi_ec_get_reset(ctx);
593 
594         if (model == MPI_EC_MONTGOMERY) {
595                 for (i = 0; i < DIM(bad_points_table); i++) {
596                         MPI p_candidate = mpi_scanval(bad_points_table[i][0]);
597                         int match_p = !mpi_cmp(ctx->p, p_candidate);
598                         int j;
599 
600                         mpi_free(p_candidate);
601                         if (!match_p)
602                                 continue;
603 
604                         for (j = 0; i < DIM(ctx->t.scratch) && bad_points_table[i][j]; j++)
605                                 ctx->t.scratch[j] = mpi_scanval(bad_points_table[i][j]);
606                 }
607         } else {
608                 /* Allocate scratch variables.  */
609                 for (i = 0; i < DIM(ctx->t.scratch); i++)
610                         ctx->t.scratch[i] = mpi_alloc_like(ctx->p);
611         }
612 
613         ctx->addm = ec_addm;
614         ctx->subm = ec_subm;
615         ctx->mulm = ec_mulm;
616         ctx->mul2 = ec_mul2;
617         ctx->pow2 = ec_pow2;
618 
619         for (i = 0; field_table[i].p; i++) {
620                 MPI f_p;
621 
622                 f_p = mpi_scanval(field_table[i].p);
623                 if (!f_p)
624                         break;
625 
626                 if (!mpi_cmp(p, f_p)) {
627                         ctx->addm = field_table[i].addm;
628                         ctx->subm = field_table[i].subm;
629                         ctx->mulm = field_table[i].mulm;
630                         ctx->mul2 = field_table[i].mul2;
631                         ctx->pow2 = field_table[i].pow2;
632                         mpi_free(f_p);
633 
634                         mpi_resize(ctx->a, ctx->p->nlimbs);
635                         ctx->a->nlimbs = ctx->p->nlimbs;
636 
637                         mpi_resize(ctx->b, ctx->p->nlimbs);
638                         ctx->b->nlimbs = ctx->p->nlimbs;
639 
640                         for (i = 0; i < DIM(ctx->t.scratch) && ctx->t.scratch[i]; i++)
641                                 ctx->t.scratch[i]->nlimbs = ctx->p->nlimbs;
642 
643                         break;
644                 }
645 
646                 mpi_free(f_p);
647         }
648 }
649 EXPORT_SYMBOL_GPL(mpi_ec_init);
650 
651 void mpi_ec_deinit(struct mpi_ec_ctx *ctx)
652 {
653         int i;
654 
655         mpi_barrett_free(ctx->t.p_barrett);
656 
657         /* Domain parameter.  */
658         mpi_free(ctx->p);
659         mpi_free(ctx->a);
660         mpi_free(ctx->b);
661         mpi_point_release(ctx->G);
662         mpi_free(ctx->n);
663 
664         /* The key.  */
665         mpi_point_release(ctx->Q);
666         mpi_free(ctx->d);
667 
668         /* Private data of ec.c.  */
669         mpi_free(ctx->t.two_inv_p);
670 
671         for (i = 0; i < DIM(ctx->t.scratch); i++)
672                 mpi_free(ctx->t.scratch[i]);
673 }
674 EXPORT_SYMBOL_GPL(mpi_ec_deinit);
675 
676 /* Compute the affine coordinates from the projective coordinates in
677  * POINT.  Set them into X and Y.  If one coordinate is not required,
678  * X or Y may be passed as NULL.  CTX is the usual context. Returns: 0
679  * on success or !0 if POINT is at infinity.
680  */
681 int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx)
682 {
683         if (!mpi_cmp_ui(point->z, 0))
684                 return -1;
685 
686         switch (ctx->model) {
687         case MPI_EC_WEIERSTRASS: /* Using Jacobian coordinates.  */
688                 {
689                         MPI z1, z2, z3;
690 
691                         z1 = mpi_new(0);
692                         z2 = mpi_new(0);
693                         ec_invm(z1, point->z, ctx);  /* z1 = z^(-1) mod p  */
694                         ec_mulm(z2, z1, z1, ctx);    /* z2 = z^(-2) mod p  */
695 
696                         if (x)
697                                 ec_mulm(x, point->x, z2, ctx);
698 
699                         if (y) {
700                                 z3 = mpi_new(0);
701                                 ec_mulm(z3, z2, z1, ctx);      /* z3 = z^(-3) mod p */
702                                 ec_mulm(y, point->y, z3, ctx);
703                                 mpi_free(z3);
704                         }
705 
706                         mpi_free(z2);
707                         mpi_free(z1);
708                 }
709                 return 0;
710 
711         case MPI_EC_MONTGOMERY:
712                 {
713                         if (x)
714                                 mpi_set(x, point->x);
715 
716                         if (y) {
717                                 log_fatal("%s: Getting Y-coordinate on %s is not supported\n",
718                                                 "mpi_ec_get_affine", "Montgomery");
719                                 return -1;
720                         }
721                 }
722                 return 0;
723 
724         case MPI_EC_EDWARDS:
725                 {
726                         MPI z;
727 
728                         z = mpi_new(0);
729                         ec_invm(z, point->z, ctx);
730 
731                         mpi_resize(z, ctx->p->nlimbs);
732                         z->nlimbs = ctx->p->nlimbs;
733 
734                         if (x) {
735                                 mpi_resize(x, ctx->p->nlimbs);
736                                 x->nlimbs = ctx->p->nlimbs;
737                                 ctx->mulm(x, point->x, z, ctx);
738                         }
739                         if (y) {
740                                 mpi_resize(y, ctx->p->nlimbs);
741                                 y->nlimbs = ctx->p->nlimbs;
742                                 ctx->mulm(y, point->y, z, ctx);
743                         }
744 
745                         mpi_free(z);
746                 }
747                 return 0;
748 
749         default:
750                 return -1;
751         }
752 }
753 EXPORT_SYMBOL_GPL(mpi_ec_get_affine);
754 
755 /*  RESULT = 2 * POINT  (Weierstrass version). */
756 static void dup_point_weierstrass(MPI_POINT result,
757                 MPI_POINT point, struct mpi_ec_ctx *ctx)
758 {
759 #define x3 (result->x)
760 #define y3 (result->y)
761 #define z3 (result->z)
762 #define t1 (ctx->t.scratch[0])
763 #define t2 (ctx->t.scratch[1])
764 #define t3 (ctx->t.scratch[2])
765 #define l1 (ctx->t.scratch[3])
766 #define l2 (ctx->t.scratch[4])
767 #define l3 (ctx->t.scratch[5])
768 
769         if (!mpi_cmp_ui(point->y, 0) || !mpi_cmp_ui(point->z, 0)) {
770                 /* P_y == 0 || P_z == 0 => [1:1:0] */
771                 mpi_set_ui(x3, 1);
772                 mpi_set_ui(y3, 1);
773                 mpi_set_ui(z3, 0);
774         } else {
775                 if (ec_get_a_is_pminus3(ctx)) {
776                         /* Use the faster case.  */
777                         /* L1 = 3(X - Z^2)(X + Z^2) */
778                         /*                          T1: used for Z^2. */
779                         /*                          T2: used for the right term. */
780                         ec_pow2(t1, point->z, ctx);
781                         ec_subm(l1, point->x, t1, ctx);
782                         ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
783                         ec_addm(t2, point->x, t1, ctx);
784                         ec_mulm(l1, l1, t2, ctx);
785                 } else {
786                         /* Standard case. */
787                         /* L1 = 3X^2 + aZ^4 */
788                         /*                          T1: used for aZ^4. */
789                         ec_pow2(l1, point->x, ctx);
790                         ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
791                         ec_powm(t1, point->z, mpi_const(MPI_C_FOUR), ctx);
792                         ec_mulm(t1, t1, ctx->a, ctx);
793                         ec_addm(l1, l1, t1, ctx);
794                 }
795                 /* Z3 = 2YZ */
796                 ec_mulm(z3, point->y, point->z, ctx);
797                 ec_mul2(z3, z3, ctx);
798 
799                 /* L2 = 4XY^2 */
800                 /*                              T2: used for Y2; required later. */
801                 ec_pow2(t2, point->y, ctx);
802                 ec_mulm(l2, t2, point->x, ctx);
803                 ec_mulm(l2, l2, mpi_const(MPI_C_FOUR), ctx);
804 
805                 /* X3 = L1^2 - 2L2 */
806                 /*                              T1: used for L2^2. */
807                 ec_pow2(x3, l1, ctx);
808                 ec_mul2(t1, l2, ctx);
809                 ec_subm(x3, x3, t1, ctx);
810 
811                 /* L3 = 8Y^4 */
812                 /*                              T2: taken from above. */
813                 ec_pow2(t2, t2, ctx);
814                 ec_mulm(l3, t2, mpi_const(MPI_C_EIGHT), ctx);
815 
816                 /* Y3 = L1(L2 - X3) - L3 */
817                 ec_subm(y3, l2, x3, ctx);
818                 ec_mulm(y3, y3, l1, ctx);
819                 ec_subm(y3, y3, l3, ctx);
820         }
821 
822 #undef x3
823 #undef y3
824 #undef z3
825 #undef t1
826 #undef t2
827 #undef t3
828 #undef l1
829 #undef l2
830 #undef l3
831 }
832 
833 /*  RESULT = 2 * POINT  (Montgomery version). */
834 static void dup_point_montgomery(MPI_POINT result,
835                                 MPI_POINT point, struct mpi_ec_ctx *ctx)
836 {
837         (void)result;
838         (void)point;
839         (void)ctx;
840         log_fatal("%s: %s not yet supported\n",
841                         "mpi_ec_dup_point", "Montgomery");
842 }
843 
844 /*  RESULT = 2 * POINT  (Twisted Edwards version). */
845 static void dup_point_edwards(MPI_POINT result,
846                 MPI_POINT point, struct mpi_ec_ctx *ctx)
847 {
848 #define X1 (point->x)
849 #define Y1 (point->y)
850 #define Z1 (point->z)
851 #define X3 (result->x)
852 #define Y3 (result->y)
853 #define Z3 (result->z)
854 #define B (ctx->t.scratch[0])
855 #define C (ctx->t.scratch[1])
856 #define D (ctx->t.scratch[2])
857 #define E (ctx->t.scratch[3])
858 #define F (ctx->t.scratch[4])
859 #define H (ctx->t.scratch[5])
860 #define J (ctx->t.scratch[6])
861 
862         /* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */
863 
864         /* B = (X_1 + Y_1)^2  */
865         ctx->addm(B, X1, Y1, ctx);
866         ctx->pow2(B, B, ctx);
867 
868         /* C = X_1^2 */
869         /* D = Y_1^2 */
870         ctx->pow2(C, X1, ctx);
871         ctx->pow2(D, Y1, ctx);
872 
873         /* E = aC */
874         if (ctx->dialect == ECC_DIALECT_ED25519)
875                 ctx->subm(E, ctx->p, C, ctx);
876         else
877                 ctx->mulm(E, ctx->a, C, ctx);
878 
879         /* F = E + D */
880         ctx->addm(F, E, D, ctx);
881 
882         /* H = Z_1^2 */
883         ctx->pow2(H, Z1, ctx);
884 
885         /* J = F - 2H */
886         ctx->mul2(J, H, ctx);
887         ctx->subm(J, F, J, ctx);
888 
889         /* X_3 = (B - C - D) · J */
890         ctx->subm(X3, B, C, ctx);
891         ctx->subm(X3, X3, D, ctx);
892         ctx->mulm(X3, X3, J, ctx);
893 
894         /* Y_3 = F · (E - D) */
895         ctx->subm(Y3, E, D, ctx);
896         ctx->mulm(Y3, Y3, F, ctx);
897 
898         /* Z_3 = F · J */
899         ctx->mulm(Z3, F, J, ctx);
900 
901 #undef X1
902 #undef Y1
903 #undef Z1
904 #undef X3
905 #undef Y3
906 #undef Z3
907 #undef B
908 #undef C
909 #undef D
910 #undef E
911 #undef F
912 #undef H
913 #undef J
914 }
915 
916 /*  RESULT = 2 * POINT  */
917 static void
918 mpi_ec_dup_point(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx)
919 {
920         switch (ctx->model) {
921         case MPI_EC_WEIERSTRASS:
922                 dup_point_weierstrass(result, point, ctx);
923                 break;
924         case MPI_EC_MONTGOMERY:
925                 dup_point_montgomery(result, point, ctx);
926                 break;
927         case MPI_EC_EDWARDS:
928                 dup_point_edwards(result, point, ctx);
929                 break;
930         }
931 }
932 
933 /* RESULT = P1 + P2  (Weierstrass version).*/
934 static void add_points_weierstrass(MPI_POINT result,
935                 MPI_POINT p1, MPI_POINT p2,
936                 struct mpi_ec_ctx *ctx)
937 {
938 #define x1 (p1->x)
939 #define y1 (p1->y)
940 #define z1 (p1->z)
941 #define x2 (p2->x)
942 #define y2 (p2->y)
943 #define z2 (p2->z)
944 #define x3 (result->x)
945 #define y3 (result->y)
946 #define z3 (result->z)
947 #define l1 (ctx->t.scratch[0])
948 #define l2 (ctx->t.scratch[1])
949 #define l3 (ctx->t.scratch[2])
950 #define l4 (ctx->t.scratch[3])
951 #define l5 (ctx->t.scratch[4])
952 #define l6 (ctx->t.scratch[5])
953 #define l7 (ctx->t.scratch[6])
954 #define l8 (ctx->t.scratch[7])
955 #define l9 (ctx->t.scratch[8])
956 #define t1 (ctx->t.scratch[9])
957 #define t2 (ctx->t.scratch[10])
958 
959         if ((!mpi_cmp(x1, x2)) && (!mpi_cmp(y1, y2)) && (!mpi_cmp(z1, z2))) {
960                 /* Same point; need to call the duplicate function.  */
961                 mpi_ec_dup_point(result, p1, ctx);
962         } else if (!mpi_cmp_ui(z1, 0)) {
963                 /* P1 is at infinity.  */
964                 mpi_set(x3, p2->x);
965                 mpi_set(y3, p2->y);
966                 mpi_set(z3, p2->z);
967         } else if (!mpi_cmp_ui(z2, 0)) {
968                 /* P2 is at infinity.  */
969                 mpi_set(x3, p1->x);
970                 mpi_set(y3, p1->y);
971                 mpi_set(z3, p1->z);
972         } else {
973                 int z1_is_one = !mpi_cmp_ui(z1, 1);
974                 int z2_is_one = !mpi_cmp_ui(z2, 1);
975 
976                 /* l1 = x1 z2^2  */
977                 /* l2 = x2 z1^2  */
978                 if (z2_is_one)
979                         mpi_set(l1, x1);
980                 else {
981                         ec_pow2(l1, z2, ctx);
982                         ec_mulm(l1, l1, x1, ctx);
983                 }
984                 if (z1_is_one)
985                         mpi_set(l2, x2);
986                 else {
987                         ec_pow2(l2, z1, ctx);
988                         ec_mulm(l2, l2, x2, ctx);
989                 }
990                 /* l3 = l1 - l2 */
991                 ec_subm(l3, l1, l2, ctx);
992                 /* l4 = y1 z2^3  */
993                 ec_powm(l4, z2, mpi_const(MPI_C_THREE), ctx);
994                 ec_mulm(l4, l4, y1, ctx);
995                 /* l5 = y2 z1^3  */
996                 ec_powm(l5, z1, mpi_const(MPI_C_THREE), ctx);
997                 ec_mulm(l5, l5, y2, ctx);
998                 /* l6 = l4 - l5  */
999                 ec_subm(l6, l4, l5, ctx);
1000 
1001                 if (!mpi_cmp_ui(l3, 0)) {
1002                         if (!mpi_cmp_ui(l6, 0)) {
1003                                 /* P1 and P2 are the same - use duplicate function. */
1004                                 mpi_ec_dup_point(result, p1, ctx);
1005                         } else {
1006                                 /* P1 is the inverse of P2.  */
1007                                 mpi_set_ui(x3, 1);
1008                                 mpi_set_ui(y3, 1);
1009                                 mpi_set_ui(z3, 0);
1010                         }
1011                 } else {
1012                         /* l7 = l1 + l2  */
1013                         ec_addm(l7, l1, l2, ctx);
1014                         /* l8 = l4 + l5  */
1015                         ec_addm(l8, l4, l5, ctx);
1016                         /* z3 = z1 z2 l3  */
1017                         ec_mulm(z3, z1, z2, ctx);
1018                         ec_mulm(z3, z3, l3, ctx);
1019                         /* x3 = l6^2 - l7 l3^2  */
1020                         ec_pow2(t1, l6, ctx);
1021                         ec_pow2(t2, l3, ctx);
1022                         ec_mulm(t2, t2, l7, ctx);
1023                         ec_subm(x3, t1, t2, ctx);
1024                         /* l9 = l7 l3^2 - 2 x3  */
1025                         ec_mul2(t1, x3, ctx);
1026                         ec_subm(l9, t2, t1, ctx);
1027                         /* y3 = (l9 l6 - l8 l3^3)/2  */
1028                         ec_mulm(l9, l9, l6, ctx);
1029                         ec_powm(t1, l3, mpi_const(MPI_C_THREE), ctx); /* fixme: Use saved value*/
1030                         ec_mulm(t1, t1, l8, ctx);
1031                         ec_subm(y3, l9, t1, ctx);
1032                         ec_mulm(y3, y3, ec_get_two_inv_p(ctx), ctx);
1033                 }
1034         }
1035 
1036 #undef x1
1037 #undef y1
1038 #undef z1
1039 #undef x2
1040 #undef y2
1041 #undef z2
1042 #undef x3
1043 #undef y3
1044 #undef z3
1045 #undef l1
1046 #undef l2
1047 #undef l3
1048 #undef l4
1049 #undef l5
1050 #undef l6
1051 #undef l7
1052 #undef l8
1053 #undef l9
1054 #undef t1
1055 #undef t2
1056 }
1057 
1058 /* RESULT = P1 + P2  (Montgomery version).*/
1059 static void add_points_montgomery(MPI_POINT result,
1060                 MPI_POINT p1, MPI_POINT p2,
1061                 struct mpi_ec_ctx *ctx)
1062 {
1063         (void)result;
1064         (void)p1;
1065         (void)p2;
1066         (void)ctx;
1067         log_fatal("%s: %s not yet supported\n",
1068                         "mpi_ec_add_points", "Montgomery");
1069 }
1070 
1071 /* RESULT = P1 + P2  (Twisted Edwards version).*/
1072 static void add_points_edwards(MPI_POINT result,
1073                 MPI_POINT p1, MPI_POINT p2,
1074                 struct mpi_ec_ctx *ctx)
1075 {
1076 #define X1 (p1->x)
1077 #define Y1 (p1->y)
1078 #define Z1 (p1->z)
1079 #define X2 (p2->x)
1080 #define Y2 (p2->y)
1081 #define Z2 (p2->z)
1082 #define X3 (result->x)
1083 #define Y3 (result->y)
1084 #define Z3 (result->z)
1085 #define A (ctx->t.scratch[0])
1086 #define B (ctx->t.scratch[1])
1087 #define C (ctx->t.scratch[2])
1088 #define D (ctx->t.scratch[3])
1089 #define E (ctx->t.scratch[4])
1090 #define F (ctx->t.scratch[5])
1091 #define G (ctx->t.scratch[6])
1092 #define tmp (ctx->t.scratch[7])
1093 
1094         point_resize(result, ctx);
1095 
1096         /* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */
1097 
1098         /* A = Z1 · Z2 */
1099         ctx->mulm(A, Z1, Z2, ctx);
1100 
1101         /* B = A^2 */
1102         ctx->pow2(B, A, ctx);
1103 
1104         /* C = X1 · X2 */
1105         ctx->mulm(C, X1, X2, ctx);
1106 
1107         /* D = Y1 · Y2 */
1108         ctx->mulm(D, Y1, Y2, ctx);
1109 
1110         /* E = d · C · D */
1111         ctx->mulm(E, ctx->b, C, ctx);
1112         ctx->mulm(E, E, D, ctx);
1113 
1114         /* F = B - E */
1115         ctx->subm(F, B, E, ctx);
1116 
1117         /* G = B + E */
1118         ctx->addm(G, B, E, ctx);
1119 
1120         /* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */
1121         ctx->addm(tmp, X1, Y1, ctx);
1122         ctx->addm(X3, X2, Y2, ctx);
1123         ctx->mulm(X3, X3, tmp, ctx);
1124         ctx->subm(X3, X3, C, ctx);
1125         ctx->subm(X3, X3, D, ctx);
1126         ctx->mulm(X3, X3, F, ctx);
1127         ctx->mulm(X3, X3, A, ctx);
1128 
1129         /* Y_3 = A · G · (D - aC) */
1130         if (ctx->dialect == ECC_DIALECT_ED25519) {
1131                 ctx->addm(Y3, D, C, ctx);
1132         } else {
1133                 ctx->mulm(Y3, ctx->a, C, ctx);
1134                 ctx->subm(Y3, D, Y3, ctx);
1135         }
1136         ctx->mulm(Y3, Y3, G, ctx);
1137         ctx->mulm(Y3, Y3, A, ctx);
1138 
1139         /* Z_3 = F · G */
1140         ctx->mulm(Z3, F, G, ctx);
1141 
1142 
1143 #undef X1
1144 #undef Y1
1145 #undef Z1
1146 #undef X2
1147 #undef Y2
1148 #undef Z2
1149 #undef X3
1150 #undef Y3
1151 #undef Z3
1152 #undef A
1153 #undef B
1154 #undef C
1155 #undef D
1156 #undef E
1157 #undef F
1158 #undef G
1159 #undef tmp
1160 }
1161 
1162 /* Compute a step of Montgomery Ladder (only use X and Z in the point).
1163  * Inputs:  P1, P2, and x-coordinate of DIF = P1 - P1.
1164  * Outputs: PRD = 2 * P1 and  SUM = P1 + P2.
1165  */
1166 static void montgomery_ladder(MPI_POINT prd, MPI_POINT sum,
1167                 MPI_POINT p1, MPI_POINT p2, MPI dif_x,
1168                 struct mpi_ec_ctx *ctx)
1169 {
1170         ctx->addm(sum->x, p2->x, p2->z, ctx);
1171         ctx->subm(p2->z, p2->x, p2->z, ctx);
1172         ctx->addm(prd->x, p1->x, p1->z, ctx);
1173         ctx->subm(p1->z, p1->x, p1->z, ctx);
1174         ctx->mulm(p2->x, p1->z, sum->x, ctx);
1175         ctx->mulm(p2->z, prd->x, p2->z, ctx);
1176         ctx->pow2(p1->x, prd->x, ctx);
1177         ctx->pow2(p1->z, p1->z, ctx);
1178         ctx->addm(sum->x, p2->x, p2->z, ctx);
1179         ctx->subm(p2->z, p2->x, p2->z, ctx);
1180         ctx->mulm(prd->x, p1->x, p1->z, ctx);
1181         ctx->subm(p1->z, p1->x, p1->z, ctx);
1182         ctx->pow2(sum->x, sum->x, ctx);
1183         ctx->pow2(sum->z, p2->z, ctx);
1184         ctx->mulm(prd->z, p1->z, ctx->a, ctx); /* CTX->A: (a-2)/4 */
1185         ctx->mulm(sum->z, sum->z, dif_x, ctx);
1186         ctx->addm(prd->z, p1->x, prd->z, ctx);
1187         ctx->mulm(prd->z, prd->z, p1->z, ctx);
1188 }
1189 
1190 /* RESULT = P1 + P2 */
1191 void mpi_ec_add_points(MPI_POINT result,
1192                 MPI_POINT p1, MPI_POINT p2,
1193                 struct mpi_ec_ctx *ctx)
1194 {
1195         switch (ctx->model) {
1196         case MPI_EC_WEIERSTRASS:
1197                 add_points_weierstrass(result, p1, p2, ctx);
1198                 break;
1199         case MPI_EC_MONTGOMERY:
1200                 add_points_montgomery(result, p1, p2, ctx);
1201                 break;
1202         case MPI_EC_EDWARDS:
1203                 add_points_edwards(result, p1, p2, ctx);
1204                 break;
1205         }
1206 }
1207 EXPORT_SYMBOL_GPL(mpi_ec_add_points);
1208 
1209 /* Scalar point multiplication - the main function for ECC.  If takes
1210  * an integer SCALAR and a POINT as well as the usual context CTX.
1211  * RESULT will be set to the resulting point.
1212  */
1213 void mpi_ec_mul_point(MPI_POINT result,
1214                         MPI scalar, MPI_POINT point,
1215                         struct mpi_ec_ctx *ctx)
1216 {
1217         MPI x1, y1, z1, k, h, yy;
1218         unsigned int i, loops;
1219         struct gcry_mpi_point p1, p2, p1inv;
1220 
1221         if (ctx->model == MPI_EC_EDWARDS) {
1222                 /* Simple left to right binary method.  Algorithm 3.27 from
1223                  * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott},
1224                  *  title = {Guide to Elliptic Curve Cryptography},
1225                  *  year = {2003}, isbn = {038795273X},
1226                  *  url = {http://www.cacr.math.uwaterloo.ca/ecc/},
1227                  *  publisher = {Springer-Verlag New York, Inc.}}
1228                  */
1229                 unsigned int nbits;
1230                 int j;
1231 
1232                 if (mpi_cmp(scalar, ctx->p) >= 0)
1233                         nbits = mpi_get_nbits(scalar);
1234                 else
1235                         nbits = mpi_get_nbits(ctx->p);
1236 
1237                 mpi_set_ui(result->x, 0);
1238                 mpi_set_ui(result->y, 1);
1239                 mpi_set_ui(result->z, 1);
1240                 point_resize(point, ctx);
1241 
1242                 point_resize(result, ctx);
1243                 point_resize(point, ctx);
1244 
1245                 for (j = nbits-1; j >= 0; j--) {
1246                         mpi_ec_dup_point(result, result, ctx);
1247                         if (mpi_test_bit(scalar, j))
1248                                 mpi_ec_add_points(result, result, point, ctx);
1249                 }
1250                 return;
1251         } else if (ctx->model == MPI_EC_MONTGOMERY) {
1252                 unsigned int nbits;
1253                 int j;
1254                 struct gcry_mpi_point p1_, p2_;
1255                 MPI_POINT q1, q2, prd, sum;
1256                 unsigned long sw;
1257                 mpi_size_t rsize;
1258 
1259                 /* Compute scalar point multiplication with Montgomery Ladder.
1260                  * Note that we don't use Y-coordinate in the points at all.
1261                  * RESULT->Y will be filled by zero.
1262                  */
1263 
1264                 nbits = mpi_get_nbits(scalar);
1265                 point_init(&p1);
1266                 point_init(&p2);
1267                 point_init(&p1_);
1268                 point_init(&p2_);
1269                 mpi_set_ui(p1.x, 1);
1270                 mpi_free(p2.x);
1271                 p2.x = mpi_copy(point->x);
1272                 mpi_set_ui(p2.z, 1);
1273 
1274                 point_resize(&p1, ctx);
1275                 point_resize(&p2, ctx);
1276                 point_resize(&p1_, ctx);
1277                 point_resize(&p2_, ctx);
1278 
1279                 mpi_resize(point->x, ctx->p->nlimbs);
1280                 point->x->nlimbs = ctx->p->nlimbs;
1281 
1282                 q1 = &p1;
1283                 q2 = &p2;
1284                 prd = &p1_;
1285                 sum = &p2_;
1286 
1287                 for (j = nbits-1; j >= 0; j--) {
1288                         sw = mpi_test_bit(scalar, j);
1289                         point_swap_cond(q1, q2, sw, ctx);
1290                         montgomery_ladder(prd, sum, q1, q2, point->x, ctx);
1291                         point_swap_cond(prd, sum, sw, ctx);
1292                         swap(q1, prd);
1293                         swap(q2, sum);
1294                 }
1295 
1296                 mpi_clear(result->y);
1297                 sw = (nbits & 1);
1298                 point_swap_cond(&p1, &p1_, sw, ctx);
1299 
1300                 rsize = p1.z->nlimbs;
1301                 MPN_NORMALIZE(p1.z->d, rsize);
1302                 if (rsize == 0) {
1303                         mpi_set_ui(result->x, 1);
1304                         mpi_set_ui(result->z, 0);
1305                 } else {
1306                         z1 = mpi_new(0);
1307                         ec_invm(z1, p1.z, ctx);
1308                         ec_mulm(result->x, p1.x, z1, ctx);
1309                         mpi_set_ui(result->z, 1);
1310                         mpi_free(z1);
1311                 }
1312 
1313                 point_free(&p1);
1314                 point_free(&p2);
1315                 point_free(&p1_);
1316                 point_free(&p2_);
1317                 return;
1318         }
1319 
1320         x1 = mpi_alloc_like(ctx->p);
1321         y1 = mpi_alloc_like(ctx->p);
1322         h  = mpi_alloc_like(ctx->p);
1323         k  = mpi_copy(scalar);
1324         yy = mpi_copy(point->y);
1325 
1326         if (mpi_has_sign(k)) {
1327                 k->sign = 0;
1328                 ec_invm(yy, yy, ctx);
1329         }
1330 
1331         if (!mpi_cmp_ui(point->z, 1)) {
1332                 mpi_set(x1, point->x);
1333                 mpi_set(y1, yy);
1334         } else {
1335                 MPI z2, z3;
1336 
1337                 z2 = mpi_alloc_like(ctx->p);
1338                 z3 = mpi_alloc_like(ctx->p);
1339                 ec_mulm(z2, point->z, point->z, ctx);
1340                 ec_mulm(z3, point->z, z2, ctx);
1341                 ec_invm(z2, z2, ctx);
1342                 ec_mulm(x1, point->x, z2, ctx);
1343                 ec_invm(z3, z3, ctx);
1344                 ec_mulm(y1, yy, z3, ctx);
1345                 mpi_free(z2);
1346                 mpi_free(z3);
1347         }
1348         z1 = mpi_copy(mpi_const(MPI_C_ONE));
1349 
1350         mpi_mul(h, k, mpi_const(MPI_C_THREE)); /* h = 3k */
1351         loops = mpi_get_nbits(h);
1352         if (loops < 2) {
1353                 /* If SCALAR is zero, the above mpi_mul sets H to zero and thus
1354                  * LOOPs will be zero.  To avoid an underflow of I in the main
1355                  * loop we set LOOP to 2 and the result to (0,0,0).
1356                  */
1357                 loops = 2;
1358                 mpi_clear(result->x);
1359                 mpi_clear(result->y);
1360                 mpi_clear(result->z);
1361         } else {
1362                 mpi_set(result->x, point->x);
1363                 mpi_set(result->y, yy);
1364                 mpi_set(result->z, point->z);
1365         }
1366         mpi_free(yy); yy = NULL;
1367 
1368         p1.x = x1; x1 = NULL;
1369         p1.y = y1; y1 = NULL;
1370         p1.z = z1; z1 = NULL;
1371         point_init(&p2);
1372         point_init(&p1inv);
1373 
1374         /* Invert point: y = p - y mod p  */
1375         point_set(&p1inv, &p1);
1376         ec_subm(p1inv.y, ctx->p, p1inv.y, ctx);
1377 
1378         for (i = loops-2; i > 0; i--) {
1379                 mpi_ec_dup_point(result, result, ctx);
1380                 if (mpi_test_bit(h, i) == 1 && mpi_test_bit(k, i) == 0) {
1381                         point_set(&p2, result);
1382                         mpi_ec_add_points(result, &p2, &p1, ctx);
1383                 }
1384                 if (mpi_test_bit(h, i) == 0 && mpi_test_bit(k, i) == 1) {
1385                         point_set(&p2, result);
1386                         mpi_ec_add_points(result, &p2, &p1inv, ctx);
1387                 }
1388         }
1389 
1390         point_free(&p1);
1391         point_free(&p2);
1392         point_free(&p1inv);
1393         mpi_free(h);
1394         mpi_free(k);
1395 }
1396 EXPORT_SYMBOL_GPL(mpi_ec_mul_point);
1397 
1398 /* Return true if POINT is on the curve described by CTX.  */
1399 int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx)
1400 {
1401         int res = 0;
1402         MPI x, y, w;
1403 
1404         x = mpi_new(0);
1405         y = mpi_new(0);
1406         w = mpi_new(0);
1407 
1408         /* Check that the point is in range.  This needs to be done here and
1409          * not after conversion to affine coordinates.
1410          */
1411         if (mpi_cmpabs(point->x, ctx->p) >= 0)
1412                 goto leave;
1413         if (mpi_cmpabs(point->y, ctx->p) >= 0)
1414                 goto leave;
1415         if (mpi_cmpabs(point->z, ctx->p) >= 0)
1416                 goto leave;
1417 
1418         switch (ctx->model) {
1419         case MPI_EC_WEIERSTRASS:
1420                 {
1421                         MPI xxx;
1422 
1423                         if (mpi_ec_get_affine(x, y, point, ctx))
1424                                 goto leave;
1425 
1426                         xxx = mpi_new(0);
1427 
1428                         /* y^2 == x^3 + a·x + b */
1429                         ec_pow2(y, y, ctx);
1430 
1431                         ec_pow3(xxx, x, ctx);
1432                         ec_mulm(w, ctx->a, x, ctx);
1433                         ec_addm(w, w, ctx->b, ctx);
1434                         ec_addm(w, w, xxx, ctx);
1435 
1436                         if (!mpi_cmp(y, w))
1437                                 res = 1;
1438 
1439                         mpi_free(xxx);
1440                 }
1441                 break;
1442 
1443         case MPI_EC_MONTGOMERY:
1444                 {
1445 #define xx y
1446                         /* With Montgomery curve, only X-coordinate is valid. */
1447                         if (mpi_ec_get_affine(x, NULL, point, ctx))
1448                                 goto leave;
1449 
1450                         /* The equation is: b * y^2 == x^3 + a · x^2 + x */
1451                         /* We check if right hand is quadratic residue or not by
1452                          * Euler's criterion.
1453                          */
1454                         /* CTX->A has (a-2)/4 and CTX->B has b^-1 */
1455                         ec_mulm(w, ctx->a, mpi_const(MPI_C_FOUR), ctx);
1456                         ec_addm(w, w, mpi_const(MPI_C_TWO), ctx);
1457                         ec_mulm(w, w, x, ctx);
1458                         ec_pow2(xx, x, ctx);
1459                         ec_addm(w, w, xx, ctx);
1460                         ec_addm(w, w, mpi_const(MPI_C_ONE), ctx);
1461                         ec_mulm(w, w, x, ctx);
1462                         ec_mulm(w, w, ctx->b, ctx);
1463 #undef xx
1464                         /* Compute Euler's criterion: w^(p-1)/2 */
1465 #define p_minus1 y
1466                         ec_subm(p_minus1, ctx->p, mpi_const(MPI_C_ONE), ctx);
1467                         mpi_rshift(p_minus1, p_minus1, 1);
1468                         ec_powm(w, w, p_minus1, ctx);
1469 
1470                         res = !mpi_cmp_ui(w, 1);
1471 #undef p_minus1
1472                 }
1473                 break;
1474 
1475         case MPI_EC_EDWARDS:
1476                 {
1477                         if (mpi_ec_get_affine(x, y, point, ctx))
1478                                 goto leave;
1479 
1480                         mpi_resize(w, ctx->p->nlimbs);
1481                         w->nlimbs = ctx->p->nlimbs;
1482 
1483                         /* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */
1484                         ctx->pow2(x, x, ctx);
1485                         ctx->pow2(y, y, ctx);
1486                         if (ctx->dialect == ECC_DIALECT_ED25519)
1487                                 ctx->subm(w, ctx->p, x, ctx);
1488                         else
1489                                 ctx->mulm(w, ctx->a, x, ctx);
1490                         ctx->addm(w, w, y, ctx);
1491                         ctx->mulm(x, x, y, ctx);
1492                         ctx->mulm(x, x, ctx->b, ctx);
1493                         ctx->subm(w, w, x, ctx);
1494                         if (!mpi_cmp_ui(w, 1))
1495                                 res = 1;
1496                 }
1497                 break;
1498         }
1499 
1500 leave:
1501         mpi_free(w);
1502         mpi_free(x);
1503         mpi_free(y);
1504 
1505         return res;
1506 }
1507 EXPORT_SYMBOL_GPL(mpi_ec_curve_point);
1508 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php