~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/crypto/mpi/mpih-mul.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* mpihelp-mul.c  -  MPI helper functions
  3  * Copyright (C) 1994, 1996, 1998, 1999,
  4  *               2000 Free Software Foundation, Inc.
  5  *
  6  * This file is part of GnuPG.
  7  *
  8  * Note: This code is heavily based on the GNU MP Library.
  9  *       Actually it's the same code with only minor changes in the
 10  *       way the data is stored; this is to support the abstraction
 11  *       of an optional secure memory allocation which may be used
 12  *       to avoid revealing of sensitive data due to paging etc.
 13  *       The GNU MP Library itself is published under the LGPL;
 14  *       however I decided to publish this code under the plain GPL.
 15  */
 16 
 17 #include <linux/string.h>
 18 #include "mpi-internal.h"
 19 #include "longlong.h"
 20 
 21 #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)          \
 22         do {                                                    \
 23                 if ((size) < KARATSUBA_THRESHOLD)               \
 24                         mul_n_basecase(prodp, up, vp, size);    \
 25                 else                                            \
 26                         mul_n(prodp, up, vp, size, tspace);     \
 27         } while (0);
 28 
 29 #define MPN_SQR_N_RECURSE(prodp, up, size, tspace)              \
 30         do {                                                    \
 31                 if ((size) < KARATSUBA_THRESHOLD)               \
 32                         mpih_sqr_n_basecase(prodp, up, size);   \
 33                 else                                            \
 34                         mpih_sqr_n(prodp, up, size, tspace);    \
 35         } while (0);
 36 
 37 /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
 38  * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
 39  * always stored.  Return the most significant limb.
 40  *
 41  * Argument constraints:
 42  * 1. PRODP != UP and PRODP != VP, i.e. the destination
 43  *    must be distinct from the multiplier and the multiplicand.
 44  *
 45  *
 46  * Handle simple cases with traditional multiplication.
 47  *
 48  * This is the most critical code of multiplication.  All multiplies rely
 49  * on this, both small and huge.  Small ones arrive here immediately.  Huge
 50  * ones arrive here as this is the base case for Karatsuba's recursive
 51  * algorithm below.
 52  */
 53 
 54 static mpi_limb_t
 55 mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
 56 {
 57         mpi_size_t i;
 58         mpi_limb_t cy;
 59         mpi_limb_t v_limb;
 60 
 61         /* Multiply by the first limb in V separately, as the result can be
 62          * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
 63         v_limb = vp[0];
 64         if (v_limb <= 1) {
 65                 if (v_limb == 1)
 66                         MPN_COPY(prodp, up, size);
 67                 else
 68                         MPN_ZERO(prodp, size);
 69                 cy = 0;
 70         } else
 71                 cy = mpihelp_mul_1(prodp, up, size, v_limb);
 72 
 73         prodp[size] = cy;
 74         prodp++;
 75 
 76         /* For each iteration in the outer loop, multiply one limb from
 77          * U with one limb from V, and add it to PROD.  */
 78         for (i = 1; i < size; i++) {
 79                 v_limb = vp[i];
 80                 if (v_limb <= 1) {
 81                         cy = 0;
 82                         if (v_limb == 1)
 83                                 cy = mpihelp_add_n(prodp, prodp, up, size);
 84                 } else
 85                         cy = mpihelp_addmul_1(prodp, up, size, v_limb);
 86 
 87                 prodp[size] = cy;
 88                 prodp++;
 89         }
 90 
 91         return cy;
 92 }
 93 
 94 static void
 95 mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
 96                 mpi_size_t size, mpi_ptr_t tspace)
 97 {
 98         if (size & 1) {
 99                 /* The size is odd, and the code below doesn't handle that.
100                  * Multiply the least significant (size - 1) limbs with a recursive
101                  * call, and handle the most significant limb of S1 and S2
102                  * separately.
103                  * A slightly faster way to do this would be to make the Karatsuba
104                  * code below behave as if the size were even, and let it check for
105                  * odd size in the end.  I.e., in essence move this code to the end.
106                  * Doing so would save us a recursive call, and potentially make the
107                  * stack grow a lot less.
108                  */
109                 mpi_size_t esize = size - 1;    /* even size */
110                 mpi_limb_t cy_limb;
111 
112                 MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
113                 cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
114                 prodp[esize + esize] = cy_limb;
115                 cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
116                 prodp[esize + size] = cy_limb;
117         } else {
118                 /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
119                  *
120                  * Split U in two pieces, U1 and U0, such that
121                  * U = U0 + U1*(B**n),
122                  * and V in V1 and V0, such that
123                  * V = V0 + V1*(B**n).
124                  *
125                  * UV is then computed recursively using the identity
126                  *
127                  *        2n   n          n                     n
128                  * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
129                  *                1 1        1  0   0  1              0 0
130                  *
131                  * Where B = 2**BITS_PER_MP_LIMB.
132                  */
133                 mpi_size_t hsize = size >> 1;
134                 mpi_limb_t cy;
135                 int negflg;
136 
137                 /* Product H.      ________________  ________________
138                  *                |_____U1 x V1____||____U0 x V0_____|
139                  * Put result in upper part of PROD and pass low part of TSPACE
140                  * as new TSPACE.
141                  */
142                 MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
143                                   tspace);
144 
145                 /* Product M.      ________________
146                  *                |_(U1-U0)(V0-V1)_|
147                  */
148                 if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
149                         mpihelp_sub_n(prodp, up + hsize, up, hsize);
150                         negflg = 0;
151                 } else {
152                         mpihelp_sub_n(prodp, up, up + hsize, hsize);
153                         negflg = 1;
154                 }
155                 if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
156                         mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
157                         negflg ^= 1;
158                 } else {
159                         mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
160                         /* No change of NEGFLG.  */
161                 }
162                 /* Read temporary operands from low part of PROD.
163                  * Put result in low part of TSPACE using upper part of TSPACE
164                  * as new TSPACE.
165                  */
166                 MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
167                                   tspace + size);
168 
169                 /* Add/copy product H. */
170                 MPN_COPY(prodp + hsize, prodp + size, hsize);
171                 cy = mpihelp_add_n(prodp + size, prodp + size,
172                                    prodp + size + hsize, hsize);
173 
174                 /* Add product M (if NEGFLG M is a negative number) */
175                 if (negflg)
176                         cy -=
177                             mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
178                                           size);
179                 else
180                         cy +=
181                             mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
182                                           size);
183 
184                 /* Product L.      ________________  ________________
185                  *                |________________||____U0 x V0_____|
186                  * Read temporary operands from low part of PROD.
187                  * Put result in low part of TSPACE using upper part of TSPACE
188                  * as new TSPACE.
189                  */
190                 MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
191 
192                 /* Add/copy Product L (twice) */
193 
194                 cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
195                 if (cy)
196                         mpihelp_add_1(prodp + hsize + size,
197                                       prodp + hsize + size, hsize, cy);
198 
199                 MPN_COPY(prodp, tspace, hsize);
200                 cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
201                                    hsize);
202                 if (cy)
203                         mpihelp_add_1(prodp + size, prodp + size, size, 1);
204         }
205 }
206 
207 void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
208 {
209         mpi_size_t i;
210         mpi_limb_t cy_limb;
211         mpi_limb_t v_limb;
212 
213         /* Multiply by the first limb in V separately, as the result can be
214          * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
215         v_limb = up[0];
216         if (v_limb <= 1) {
217                 if (v_limb == 1)
218                         MPN_COPY(prodp, up, size);
219                 else
220                         MPN_ZERO(prodp, size);
221                 cy_limb = 0;
222         } else
223                 cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
224 
225         prodp[size] = cy_limb;
226         prodp++;
227 
228         /* For each iteration in the outer loop, multiply one limb from
229          * U with one limb from V, and add it to PROD.  */
230         for (i = 1; i < size; i++) {
231                 v_limb = up[i];
232                 if (v_limb <= 1) {
233                         cy_limb = 0;
234                         if (v_limb == 1)
235                                 cy_limb = mpihelp_add_n(prodp, prodp, up, size);
236                 } else
237                         cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
238 
239                 prodp[size] = cy_limb;
240                 prodp++;
241         }
242 }
243 
244 void
245 mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
246 {
247         if (size & 1) {
248                 /* The size is odd, and the code below doesn't handle that.
249                  * Multiply the least significant (size - 1) limbs with a recursive
250                  * call, and handle the most significant limb of S1 and S2
251                  * separately.
252                  * A slightly faster way to do this would be to make the Karatsuba
253                  * code below behave as if the size were even, and let it check for
254                  * odd size in the end.  I.e., in essence move this code to the end.
255                  * Doing so would save us a recursive call, and potentially make the
256                  * stack grow a lot less.
257                  */
258                 mpi_size_t esize = size - 1;    /* even size */
259                 mpi_limb_t cy_limb;
260 
261                 MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
262                 cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
263                 prodp[esize + esize] = cy_limb;
264                 cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
265 
266                 prodp[esize + size] = cy_limb;
267         } else {
268                 mpi_size_t hsize = size >> 1;
269                 mpi_limb_t cy;
270 
271                 /* Product H.      ________________  ________________
272                  *                |_____U1 x U1____||____U0 x U0_____|
273                  * Put result in upper part of PROD and pass low part of TSPACE
274                  * as new TSPACE.
275                  */
276                 MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
277 
278                 /* Product M.      ________________
279                  *                |_(U1-U0)(U0-U1)_|
280                  */
281                 if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
282                         mpihelp_sub_n(prodp, up + hsize, up, hsize);
283                 else
284                         mpihelp_sub_n(prodp, up, up + hsize, hsize);
285 
286                 /* Read temporary operands from low part of PROD.
287                  * Put result in low part of TSPACE using upper part of TSPACE
288                  * as new TSPACE.  */
289                 MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
290 
291                 /* Add/copy product H  */
292                 MPN_COPY(prodp + hsize, prodp + size, hsize);
293                 cy = mpihelp_add_n(prodp + size, prodp + size,
294                                    prodp + size + hsize, hsize);
295 
296                 /* Add product M (if NEGFLG M is a negative number).  */
297                 cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
298 
299                 /* Product L.      ________________  ________________
300                  *                |________________||____U0 x U0_____|
301                  * Read temporary operands from low part of PROD.
302                  * Put result in low part of TSPACE using upper part of TSPACE
303                  * as new TSPACE.  */
304                 MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
305 
306                 /* Add/copy Product L (twice).  */
307                 cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
308                 if (cy)
309                         mpihelp_add_1(prodp + hsize + size,
310                                       prodp + hsize + size, hsize, cy);
311 
312                 MPN_COPY(prodp, tspace, hsize);
313                 cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
314                                    hsize);
315                 if (cy)
316                         mpihelp_add_1(prodp + size, prodp + size, size, 1);
317         }
318 }
319 
320 
321 void mpihelp_mul_n(mpi_ptr_t prodp,
322                 mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
323 {
324         if (up == vp) {
325                 if (size < KARATSUBA_THRESHOLD)
326                         mpih_sqr_n_basecase(prodp, up, size);
327                 else {
328                         mpi_ptr_t tspace;
329                         tspace = mpi_alloc_limb_space(2 * size);
330                         mpih_sqr_n(prodp, up, size, tspace);
331                         mpi_free_limb_space(tspace);
332                 }
333         } else {
334                 if (size < KARATSUBA_THRESHOLD)
335                         mul_n_basecase(prodp, up, vp, size);
336                 else {
337                         mpi_ptr_t tspace;
338                         tspace = mpi_alloc_limb_space(2 * size);
339                         mul_n(prodp, up, vp, size, tspace);
340                         mpi_free_limb_space(tspace);
341                 }
342         }
343 }
344 
345 int
346 mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
347                            mpi_ptr_t up, mpi_size_t usize,
348                            mpi_ptr_t vp, mpi_size_t vsize,
349                            struct karatsuba_ctx *ctx)
350 {
351         mpi_limb_t cy;
352 
353         if (!ctx->tspace || ctx->tspace_size < vsize) {
354                 if (ctx->tspace)
355                         mpi_free_limb_space(ctx->tspace);
356                 ctx->tspace = mpi_alloc_limb_space(2 * vsize);
357                 if (!ctx->tspace)
358                         return -ENOMEM;
359                 ctx->tspace_size = vsize;
360         }
361 
362         MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
363 
364         prodp += vsize;
365         up += vsize;
366         usize -= vsize;
367         if (usize >= vsize) {
368                 if (!ctx->tp || ctx->tp_size < vsize) {
369                         if (ctx->tp)
370                                 mpi_free_limb_space(ctx->tp);
371                         ctx->tp = mpi_alloc_limb_space(2 * vsize);
372                         if (!ctx->tp) {
373                                 if (ctx->tspace)
374                                         mpi_free_limb_space(ctx->tspace);
375                                 ctx->tspace = NULL;
376                                 return -ENOMEM;
377                         }
378                         ctx->tp_size = vsize;
379                 }
380 
381                 do {
382                         MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
383                         cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
384                         mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
385                                       cy);
386                         prodp += vsize;
387                         up += vsize;
388                         usize -= vsize;
389                 } while (usize >= vsize);
390         }
391 
392         if (usize) {
393                 if (usize < KARATSUBA_THRESHOLD) {
394                         mpi_limb_t tmp;
395                         if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
396                             < 0)
397                                 return -ENOMEM;
398                 } else {
399                         if (!ctx->next) {
400                                 ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
401                                 if (!ctx->next)
402                                         return -ENOMEM;
403                         }
404                         if (mpihelp_mul_karatsuba_case(ctx->tspace,
405                                                        vp, vsize,
406                                                        up, usize,
407                                                        ctx->next) < 0)
408                                 return -ENOMEM;
409                 }
410 
411                 cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
412                 mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
413         }
414 
415         return 0;
416 }
417 
418 void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
419 {
420         struct karatsuba_ctx *ctx2;
421 
422         if (ctx->tp)
423                 mpi_free_limb_space(ctx->tp);
424         if (ctx->tspace)
425                 mpi_free_limb_space(ctx->tspace);
426         for (ctx = ctx->next; ctx; ctx = ctx2) {
427                 ctx2 = ctx->next;
428                 if (ctx->tp)
429                         mpi_free_limb_space(ctx->tp);
430                 if (ctx->tspace)
431                         mpi_free_limb_space(ctx->tspace);
432                 kfree(ctx);
433         }
434 }
435 
436 /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
437  * and v (pointed to by VP, with VSIZE limbs), and store the result at
438  * PRODP.  USIZE + VSIZE limbs are always stored, but if the input
439  * operands are normalized.  Return the most significant limb of the
440  * result.
441  *
442  * NOTE: The space pointed to by PRODP is overwritten before finished
443  * with U and V, so overlap is an error.
444  *
445  * Argument constraints:
446  * 1. USIZE >= VSIZE.
447  * 2. PRODP != UP and PRODP != VP, i.e. the destination
448  *    must be distinct from the multiplier and the multiplicand.
449  */
450 
451 int
452 mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
453             mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
454 {
455         mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
456         mpi_limb_t cy;
457         struct karatsuba_ctx ctx;
458 
459         if (vsize < KARATSUBA_THRESHOLD) {
460                 mpi_size_t i;
461                 mpi_limb_t v_limb;
462 
463                 if (!vsize) {
464                         *_result = 0;
465                         return 0;
466                 }
467 
468                 /* Multiply by the first limb in V separately, as the result can be
469                  * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
470                 v_limb = vp[0];
471                 if (v_limb <= 1) {
472                         if (v_limb == 1)
473                                 MPN_COPY(prodp, up, usize);
474                         else
475                                 MPN_ZERO(prodp, usize);
476                         cy = 0;
477                 } else
478                         cy = mpihelp_mul_1(prodp, up, usize, v_limb);
479 
480                 prodp[usize] = cy;
481                 prodp++;
482 
483                 /* For each iteration in the outer loop, multiply one limb from
484                  * U with one limb from V, and add it to PROD.  */
485                 for (i = 1; i < vsize; i++) {
486                         v_limb = vp[i];
487                         if (v_limb <= 1) {
488                                 cy = 0;
489                                 if (v_limb == 1)
490                                         cy = mpihelp_add_n(prodp, prodp, up,
491                                                            usize);
492                         } else
493                                 cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
494 
495                         prodp[usize] = cy;
496                         prodp++;
497                 }
498 
499                 *_result = cy;
500                 return 0;
501         }
502 
503         memset(&ctx, 0, sizeof ctx);
504         if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
505                 return -ENOMEM;
506         mpihelp_release_karatsuba_ctx(&ctx);
507         *_result = *prod_endp;
508         return 0;
509 }
510 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php