~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/group_cpus.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2016 Thomas Gleixner.
  4  * Copyright (C) 2016-2017 Christoph Hellwig.
  5  */
  6 #include <linux/kernel.h>
  7 #include <linux/slab.h>
  8 #include <linux/cpu.h>
  9 #include <linux/sort.h>
 10 #include <linux/group_cpus.h>
 11 
 12 #ifdef CONFIG_SMP
 13 
 14 static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
 15                                 unsigned int cpus_per_grp)
 16 {
 17         const struct cpumask *siblmsk;
 18         int cpu, sibl;
 19 
 20         for ( ; cpus_per_grp > 0; ) {
 21                 cpu = cpumask_first(nmsk);
 22 
 23                 /* Should not happen, but I'm too lazy to think about it */
 24                 if (cpu >= nr_cpu_ids)
 25                         return;
 26 
 27                 cpumask_clear_cpu(cpu, nmsk);
 28                 cpumask_set_cpu(cpu, irqmsk);
 29                 cpus_per_grp--;
 30 
 31                 /* If the cpu has siblings, use them first */
 32                 siblmsk = topology_sibling_cpumask(cpu);
 33                 for (sibl = -1; cpus_per_grp > 0; ) {
 34                         sibl = cpumask_next(sibl, siblmsk);
 35                         if (sibl >= nr_cpu_ids)
 36                                 break;
 37                         if (!cpumask_test_and_clear_cpu(sibl, nmsk))
 38                                 continue;
 39                         cpumask_set_cpu(sibl, irqmsk);
 40                         cpus_per_grp--;
 41                 }
 42         }
 43 }
 44 
 45 static cpumask_var_t *alloc_node_to_cpumask(void)
 46 {
 47         cpumask_var_t *masks;
 48         int node;
 49 
 50         masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
 51         if (!masks)
 52                 return NULL;
 53 
 54         for (node = 0; node < nr_node_ids; node++) {
 55                 if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
 56                         goto out_unwind;
 57         }
 58 
 59         return masks;
 60 
 61 out_unwind:
 62         while (--node >= 0)
 63                 free_cpumask_var(masks[node]);
 64         kfree(masks);
 65         return NULL;
 66 }
 67 
 68 static void free_node_to_cpumask(cpumask_var_t *masks)
 69 {
 70         int node;
 71 
 72         for (node = 0; node < nr_node_ids; node++)
 73                 free_cpumask_var(masks[node]);
 74         kfree(masks);
 75 }
 76 
 77 static void build_node_to_cpumask(cpumask_var_t *masks)
 78 {
 79         int cpu;
 80 
 81         for_each_possible_cpu(cpu)
 82                 cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
 83 }
 84 
 85 static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
 86                                 const struct cpumask *mask, nodemask_t *nodemsk)
 87 {
 88         int n, nodes = 0;
 89 
 90         /* Calculate the number of nodes in the supplied affinity mask */
 91         for_each_node(n) {
 92                 if (cpumask_intersects(mask, node_to_cpumask[n])) {
 93                         node_set(n, *nodemsk);
 94                         nodes++;
 95                 }
 96         }
 97         return nodes;
 98 }
 99 
100 struct node_groups {
101         unsigned id;
102 
103         union {
104                 unsigned ngroups;
105                 unsigned ncpus;
106         };
107 };
108 
109 static int ncpus_cmp_func(const void *l, const void *r)
110 {
111         const struct node_groups *ln = l;
112         const struct node_groups *rn = r;
113 
114         return ln->ncpus - rn->ncpus;
115 }
116 
117 /*
118  * Allocate group number for each node, so that for each node:
119  *
120  * 1) the allocated number is >= 1
121  *
122  * 2) the allocated number is <= active CPU number of this node
123  *
124  * The actual allocated total groups may be less than @numgrps when
125  * active total CPU number is less than @numgrps.
126  *
127  * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
128  * for each node.
129  */
130 static void alloc_nodes_groups(unsigned int numgrps,
131                                cpumask_var_t *node_to_cpumask,
132                                const struct cpumask *cpu_mask,
133                                const nodemask_t nodemsk,
134                                struct cpumask *nmsk,
135                                struct node_groups *node_groups)
136 {
137         unsigned n, remaining_ncpus = 0;
138 
139         for (n = 0; n < nr_node_ids; n++) {
140                 node_groups[n].id = n;
141                 node_groups[n].ncpus = UINT_MAX;
142         }
143 
144         for_each_node_mask(n, nodemsk) {
145                 unsigned ncpus;
146 
147                 cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
148                 ncpus = cpumask_weight(nmsk);
149 
150                 if (!ncpus)
151                         continue;
152                 remaining_ncpus += ncpus;
153                 node_groups[n].ncpus = ncpus;
154         }
155 
156         numgrps = min_t(unsigned, remaining_ncpus, numgrps);
157 
158         sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
159              ncpus_cmp_func, NULL);
160 
161         /*
162          * Allocate groups for each node according to the ratio of this
163          * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
164          * bigger than number of active numa nodes. Always start the
165          * allocation from the node with minimized nr_cpus.
166          *
167          * This way guarantees that each active node gets allocated at
168          * least one group, and the theory is simple: over-allocation
169          * is only done when this node is assigned by one group, so
170          * other nodes will be allocated >= 1 groups, since 'numgrps' is
171          * bigger than number of numa nodes.
172          *
173          * One perfect invariant is that number of allocated groups for
174          * each node is <= CPU count of this node:
175          *
176          * 1) suppose there are two nodes: A and B
177          *      ncpu(X) is CPU count of node X
178          *      grps(X) is the group count allocated to node X via this
179          *      algorithm
180          *
181          *      ncpu(A) <= ncpu(B)
182          *      ncpu(A) + ncpu(B) = N
183          *      grps(A) + grps(B) = G
184          *
185          *      grps(A) = max(1, round_down(G * ncpu(A) / N))
186          *      grps(B) = G - grps(A)
187          *
188          *      both N and G are integer, and 2 <= G <= N, suppose
189          *      G = N - delta, and 0 <= delta <= N - 2
190          *
191          * 2) obviously grps(A) <= ncpu(A) because:
192          *
193          *      if grps(A) is 1, then grps(A) <= ncpu(A) given
194          *      ncpu(A) >= 1
195          *
196          *      otherwise,
197          *              grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
198          *
199          * 3) prove how grps(B) <= ncpu(B):
200          *
201          *      if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
202          *      over-allocated, so grps(B) <= ncpu(B),
203          *
204          *      otherwise:
205          *
206          *      grps(A) =
207          *              round_down(G * ncpu(A) / N) =
208          *              round_down((N - delta) * ncpu(A) / N) =
209          *              round_down((N * ncpu(A) - delta * ncpu(A)) / N)  >=
210          *              round_down((N * ncpu(A) - delta * N) / N)        =
211          *              cpu(A) - delta
212          *
213          *      then:
214          *
215          *      grps(A) - G >= ncpu(A) - delta - G
216          *      =>
217          *      G - grps(A) <= G + delta - ncpu(A)
218          *      =>
219          *      grps(B) <= N - ncpu(A)
220          *      =>
221          *      grps(B) <= cpu(B)
222          *
223          * For nodes >= 3, it can be thought as one node and another big
224          * node given that is exactly what this algorithm is implemented,
225          * and we always re-calculate 'remaining_ncpus' & 'numgrps', and
226          * finally for each node X: grps(X) <= ncpu(X).
227          *
228          */
229         for (n = 0; n < nr_node_ids; n++) {
230                 unsigned ngroups, ncpus;
231 
232                 if (node_groups[n].ncpus == UINT_MAX)
233                         continue;
234 
235                 WARN_ON_ONCE(numgrps == 0);
236 
237                 ncpus = node_groups[n].ncpus;
238                 ngroups = max_t(unsigned, 1,
239                                  numgrps * ncpus / remaining_ncpus);
240                 WARN_ON_ONCE(ngroups > ncpus);
241 
242                 node_groups[n].ngroups = ngroups;
243 
244                 remaining_ncpus -= ncpus;
245                 numgrps -= ngroups;
246         }
247 }
248 
249 static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
250                                cpumask_var_t *node_to_cpumask,
251                                const struct cpumask *cpu_mask,
252                                struct cpumask *nmsk, struct cpumask *masks)
253 {
254         unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
255         unsigned int last_grp = numgrps;
256         unsigned int curgrp = startgrp;
257         nodemask_t nodemsk = NODE_MASK_NONE;
258         struct node_groups *node_groups;
259 
260         if (cpumask_empty(cpu_mask))
261                 return 0;
262 
263         nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
264 
265         /*
266          * If the number of nodes in the mask is greater than or equal the
267          * number of groups we just spread the groups across the nodes.
268          */
269         if (numgrps <= nodes) {
270                 for_each_node_mask(n, nodemsk) {
271                         /* Ensure that only CPUs which are in both masks are set */
272                         cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
273                         cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
274                         if (++curgrp == last_grp)
275                                 curgrp = 0;
276                 }
277                 return numgrps;
278         }
279 
280         node_groups = kcalloc(nr_node_ids,
281                                sizeof(struct node_groups),
282                                GFP_KERNEL);
283         if (!node_groups)
284                 return -ENOMEM;
285 
286         /* allocate group number for each node */
287         alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
288                            nodemsk, nmsk, node_groups);
289         for (i = 0; i < nr_node_ids; i++) {
290                 unsigned int ncpus, v;
291                 struct node_groups *nv = &node_groups[i];
292 
293                 if (nv->ngroups == UINT_MAX)
294                         continue;
295 
296                 /* Get the cpus on this node which are in the mask */
297                 cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
298                 ncpus = cpumask_weight(nmsk);
299                 if (!ncpus)
300                         continue;
301 
302                 WARN_ON_ONCE(nv->ngroups > ncpus);
303 
304                 /* Account for rounding errors */
305                 extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
306 
307                 /* Spread allocated groups on CPUs of the current node */
308                 for (v = 0; v < nv->ngroups; v++, curgrp++) {
309                         cpus_per_grp = ncpus / nv->ngroups;
310 
311                         /* Account for extra groups to compensate rounding errors */
312                         if (extra_grps) {
313                                 cpus_per_grp++;
314                                 --extra_grps;
315                         }
316 
317                         /*
318                          * wrapping has to be considered given 'startgrp'
319                          * may start anywhere
320                          */
321                         if (curgrp >= last_grp)
322                                 curgrp = 0;
323                         grp_spread_init_one(&masks[curgrp], nmsk,
324                                                 cpus_per_grp);
325                 }
326                 done += nv->ngroups;
327         }
328         kfree(node_groups);
329         return done;
330 }
331 
332 /**
333  * group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality
334  * @numgrps: number of groups
335  *
336  * Return: cpumask array if successful, NULL otherwise. And each element
337  * includes CPUs assigned to this group
338  *
339  * Try to put close CPUs from viewpoint of CPU and NUMA locality into
340  * same group, and run two-stage grouping:
341  *      1) allocate present CPUs on these groups evenly first
342  *      2) allocate other possible CPUs on these groups evenly
343  *
344  * We guarantee in the resulted grouping that all CPUs are covered, and
345  * no same CPU is assigned to multiple groups
346  */
347 struct cpumask *group_cpus_evenly(unsigned int numgrps)
348 {
349         unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
350         cpumask_var_t *node_to_cpumask;
351         cpumask_var_t nmsk, npresmsk;
352         int ret = -ENOMEM;
353         struct cpumask *masks = NULL;
354 
355         if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
356                 return NULL;
357 
358         if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
359                 goto fail_nmsk;
360 
361         node_to_cpumask = alloc_node_to_cpumask();
362         if (!node_to_cpumask)
363                 goto fail_npresmsk;
364 
365         masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
366         if (!masks)
367                 goto fail_node_to_cpumask;
368 
369         build_node_to_cpumask(node_to_cpumask);
370 
371         /*
372          * Make a local cache of 'cpu_present_mask', so the two stages
373          * spread can observe consistent 'cpu_present_mask' without holding
374          * cpu hotplug lock, then we can reduce deadlock risk with cpu
375          * hotplug code.
376          *
377          * Here CPU hotplug may happen when reading `cpu_present_mask`, and
378          * we can live with the case because it only affects that hotplug
379          * CPU is handled in the 1st or 2nd stage, and either way is correct
380          * from API user viewpoint since 2-stage spread is sort of
381          * optimization.
382          */
383         cpumask_copy(npresmsk, data_race(cpu_present_mask));
384 
385         /* grouping present CPUs first */
386         ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
387                                   npresmsk, nmsk, masks);
388         if (ret < 0)
389                 goto fail_build_affinity;
390         nr_present = ret;
391 
392         /*
393          * Allocate non present CPUs starting from the next group to be
394          * handled. If the grouping of present CPUs already exhausted the
395          * group space, assign the non present CPUs to the already
396          * allocated out groups.
397          */
398         if (nr_present >= numgrps)
399                 curgrp = 0;
400         else
401                 curgrp = nr_present;
402         cpumask_andnot(npresmsk, cpu_possible_mask, npresmsk);
403         ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
404                                   npresmsk, nmsk, masks);
405         if (ret >= 0)
406                 nr_others = ret;
407 
408  fail_build_affinity:
409         if (ret >= 0)
410                 WARN_ON(nr_present + nr_others < numgrps);
411 
412  fail_node_to_cpumask:
413         free_node_to_cpumask(node_to_cpumask);
414 
415  fail_npresmsk:
416         free_cpumask_var(npresmsk);
417 
418  fail_nmsk:
419         free_cpumask_var(nmsk);
420         if (ret < 0) {
421                 kfree(masks);
422                 return NULL;
423         }
424         return masks;
425 }
426 #else /* CONFIG_SMP */
427 struct cpumask *group_cpus_evenly(unsigned int numgrps)
428 {
429         struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
430 
431         if (!masks)
432                 return NULL;
433 
434         /* assign all CPUs(cpu 0) to the 1st group only */
435         cpumask_copy(&masks[0], cpu_possible_mask);
436         return masks;
437 }
438 #endif /* CONFIG_SMP */
439 EXPORT_SYMBOL_GPL(group_cpus_evenly);
440 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php