~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/iov_iter.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 #include <linux/export.h>
  3 #include <linux/bvec.h>
  4 #include <linux/fault-inject-usercopy.h>
  5 #include <linux/uio.h>
  6 #include <linux/pagemap.h>
  7 #include <linux/highmem.h>
  8 #include <linux/slab.h>
  9 #include <linux/vmalloc.h>
 10 #include <linux/splice.h>
 11 #include <linux/compat.h>
 12 #include <linux/scatterlist.h>
 13 #include <linux/instrumented.h>
 14 #include <linux/iov_iter.h>
 15 
 16 static __always_inline
 17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
 18                          size_t len, void *from, void *priv2)
 19 {
 20         if (should_fail_usercopy())
 21                 return len;
 22         if (access_ok(iter_to, len)) {
 23                 from += progress;
 24                 instrument_copy_to_user(iter_to, from, len);
 25                 len = raw_copy_to_user(iter_to, from, len);
 26         }
 27         return len;
 28 }
 29 
 30 static __always_inline
 31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
 32                                  size_t len, void *from, void *priv2)
 33 {
 34         ssize_t res;
 35 
 36         if (should_fail_usercopy())
 37                 return len;
 38 
 39         from += progress;
 40         res = copy_to_user_nofault(iter_to, from, len);
 41         return res < 0 ? len : res;
 42 }
 43 
 44 static __always_inline
 45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
 46                            size_t len, void *to, void *priv2)
 47 {
 48         size_t res = len;
 49 
 50         if (should_fail_usercopy())
 51                 return len;
 52         if (access_ok(iter_from, len)) {
 53                 to += progress;
 54                 instrument_copy_from_user_before(to, iter_from, len);
 55                 res = raw_copy_from_user(to, iter_from, len);
 56                 instrument_copy_from_user_after(to, iter_from, len, res);
 57         }
 58         return res;
 59 }
 60 
 61 static __always_inline
 62 size_t memcpy_to_iter(void *iter_to, size_t progress,
 63                       size_t len, void *from, void *priv2)
 64 {
 65         memcpy(iter_to, from + progress, len);
 66         return 0;
 67 }
 68 
 69 static __always_inline
 70 size_t memcpy_from_iter(void *iter_from, size_t progress,
 71                         size_t len, void *to, void *priv2)
 72 {
 73         memcpy(to + progress, iter_from, len);
 74         return 0;
 75 }
 76 
 77 /*
 78  * fault_in_iov_iter_readable - fault in iov iterator for reading
 79  * @i: iterator
 80  * @size: maximum length
 81  *
 82  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
 83  * @size.  For each iovec, fault in each page that constitutes the iovec.
 84  *
 85  * Returns the number of bytes not faulted in (like copy_to_user() and
 86  * copy_from_user()).
 87  *
 88  * Always returns 0 for non-userspace iterators.
 89  */
 90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
 91 {
 92         if (iter_is_ubuf(i)) {
 93                 size_t n = min(size, iov_iter_count(i));
 94                 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
 95                 return size - n;
 96         } else if (iter_is_iovec(i)) {
 97                 size_t count = min(size, iov_iter_count(i));
 98                 const struct iovec *p;
 99                 size_t skip;
100 
101                 size -= count;
102                 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103                         size_t len = min(count, p->iov_len - skip);
104                         size_t ret;
105 
106                         if (unlikely(!len))
107                                 continue;
108                         ret = fault_in_readable(p->iov_base + skip, len);
109                         count -= len - ret;
110                         if (ret)
111                                 break;
112                 }
113                 return count + size;
114         }
115         return 0;
116 }
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
118 
119 /*
120  * fault_in_iov_iter_writeable - fault in iov iterator for writing
121  * @i: iterator
122  * @size: maximum length
123  *
124  * Faults in the iterator using get_user_pages(), i.e., without triggering
125  * hardware page faults.  This is primarily useful when we already know that
126  * some or all of the pages in @i aren't in memory.
127  *
128  * Returns the number of bytes not faulted in, like copy_to_user() and
129  * copy_from_user().
130  *
131  * Always returns 0 for non-user-space iterators.
132  */
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134 {
135         if (iter_is_ubuf(i)) {
136                 size_t n = min(size, iov_iter_count(i));
137                 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138                 return size - n;
139         } else if (iter_is_iovec(i)) {
140                 size_t count = min(size, iov_iter_count(i));
141                 const struct iovec *p;
142                 size_t skip;
143 
144                 size -= count;
145                 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146                         size_t len = min(count, p->iov_len - skip);
147                         size_t ret;
148 
149                         if (unlikely(!len))
150                                 continue;
151                         ret = fault_in_safe_writeable(p->iov_base + skip, len);
152                         count -= len - ret;
153                         if (ret)
154                                 break;
155                 }
156                 return count + size;
157         }
158         return 0;
159 }
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161 
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163                         const struct iovec *iov, unsigned long nr_segs,
164                         size_t count)
165 {
166         WARN_ON(direction & ~(READ | WRITE));
167         *i = (struct iov_iter) {
168                 .iter_type = ITER_IOVEC,
169                 .nofault = false,
170                 .data_source = direction,
171                 .__iov = iov,
172                 .nr_segs = nr_segs,
173                 .iov_offset = 0,
174                 .count = count
175         };
176 }
177 EXPORT_SYMBOL(iov_iter_init);
178 
179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180 {
181         if (WARN_ON_ONCE(i->data_source))
182                 return 0;
183         if (user_backed_iter(i))
184                 might_fault();
185         return iterate_and_advance(i, bytes, (void *)addr,
186                                    copy_to_user_iter, memcpy_to_iter);
187 }
188 EXPORT_SYMBOL(_copy_to_iter);
189 
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193                             size_t len, void *from, void *priv2)
194 {
195         if (access_ok(iter_to, len)) {
196                 from += progress;
197                 instrument_copy_to_user(iter_to, from, len);
198                 len = copy_mc_to_user(iter_to, from, len);
199         }
200         return len;
201 }
202 
203 static __always_inline
204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205                          size_t len, void *from, void *priv2)
206 {
207         return copy_mc_to_kernel(iter_to, from + progress, len);
208 }
209 
210 /**
211  * _copy_mc_to_iter - copy to iter with source memory error exception handling
212  * @addr: source kernel address
213  * @bytes: total transfer length
214  * @i: destination iterator
215  *
216  * The pmem driver deploys this for the dax operation
217  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219  * successfully copied.
220  *
221  * The main differences between this and typical _copy_to_iter().
222  *
223  * * Typical tail/residue handling after a fault retries the copy
224  *   byte-by-byte until the fault happens again. Re-triggering machine
225  *   checks is potentially fatal so the implementation uses source
226  *   alignment and poison alignment assumptions to avoid re-triggering
227  *   hardware exceptions.
228  *
229  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
230  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231  *
232  * Return: number of bytes copied (may be %0)
233  */
234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235 {
236         if (WARN_ON_ONCE(i->data_source))
237                 return 0;
238         if (user_backed_iter(i))
239                 might_fault();
240         return iterate_and_advance(i, bytes, (void *)addr,
241                                    copy_to_user_iter_mc, memcpy_to_iter_mc);
242 }
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
245 
246 static __always_inline
247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248 {
249         return iterate_and_advance(i, bytes, addr,
250                                    copy_from_user_iter, memcpy_from_iter);
251 }
252 
253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254 {
255         if (WARN_ON_ONCE(!i->data_source))
256                 return 0;
257 
258         if (user_backed_iter(i))
259                 might_fault();
260         return __copy_from_iter(addr, bytes, i);
261 }
262 EXPORT_SYMBOL(_copy_from_iter);
263 
264 static __always_inline
265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266                                    size_t len, void *to, void *priv2)
267 {
268         return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269 }
270 
271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272 {
273         if (WARN_ON_ONCE(!i->data_source))
274                 return 0;
275 
276         return iterate_and_advance(i, bytes, addr,
277                                    copy_from_user_iter_nocache,
278                                    memcpy_from_iter);
279 }
280 EXPORT_SYMBOL(_copy_from_iter_nocache);
281 
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285                                       size_t len, void *to, void *priv2)
286 {
287         return __copy_from_user_flushcache(to + progress, iter_from, len);
288 }
289 
290 static __always_inline
291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292                                    size_t len, void *to, void *priv2)
293 {
294         memcpy_flushcache(to + progress, iter_from, len);
295         return 0;
296 }
297 
298 /**
299  * _copy_from_iter_flushcache - write destination through cpu cache
300  * @addr: destination kernel address
301  * @bytes: total transfer length
302  * @i: source iterator
303  *
304  * The pmem driver arranges for filesystem-dax to use this facility via
305  * dax_copy_from_iter() for ensuring that writes to persistent memory
306  * are flushed through the CPU cache. It is differentiated from
307  * _copy_from_iter_nocache() in that guarantees all data is flushed for
308  * all iterator types. The _copy_from_iter_nocache() only attempts to
309  * bypass the cache for the ITER_IOVEC case, and on some archs may use
310  * instructions that strand dirty-data in the cache.
311  *
312  * Return: number of bytes copied (may be %0)
313  */
314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315 {
316         if (WARN_ON_ONCE(!i->data_source))
317                 return 0;
318 
319         return iterate_and_advance(i, bytes, addr,
320                                    copy_from_user_iter_flushcache,
321                                    memcpy_from_iter_flushcache);
322 }
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324 #endif
325 
326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327 {
328         struct page *head;
329         size_t v = n + offset;
330 
331         /*
332          * The general case needs to access the page order in order
333          * to compute the page size.
334          * However, we mostly deal with order-0 pages and thus can
335          * avoid a possible cache line miss for requests that fit all
336          * page orders.
337          */
338         if (n <= v && v <= PAGE_SIZE)
339                 return true;
340 
341         head = compound_head(page);
342         v += (page - head) << PAGE_SHIFT;
343 
344         if (WARN_ON(n > v || v > page_size(head)))
345                 return false;
346         return true;
347 }
348 
349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350                          struct iov_iter *i)
351 {
352         size_t res = 0;
353         if (!page_copy_sane(page, offset, bytes))
354                 return 0;
355         if (WARN_ON_ONCE(i->data_source))
356                 return 0;
357         page += offset / PAGE_SIZE; // first subpage
358         offset %= PAGE_SIZE;
359         while (1) {
360                 void *kaddr = kmap_local_page(page);
361                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362                 n = _copy_to_iter(kaddr + offset, n, i);
363                 kunmap_local(kaddr);
364                 res += n;
365                 bytes -= n;
366                 if (!bytes || !n)
367                         break;
368                 offset += n;
369                 if (offset == PAGE_SIZE) {
370                         page++;
371                         offset = 0;
372                 }
373         }
374         return res;
375 }
376 EXPORT_SYMBOL(copy_page_to_iter);
377 
378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379                                  struct iov_iter *i)
380 {
381         size_t res = 0;
382 
383         if (!page_copy_sane(page, offset, bytes))
384                 return 0;
385         if (WARN_ON_ONCE(i->data_source))
386                 return 0;
387         page += offset / PAGE_SIZE; // first subpage
388         offset %= PAGE_SIZE;
389         while (1) {
390                 void *kaddr = kmap_local_page(page);
391                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392 
393                 n = iterate_and_advance(i, n, kaddr + offset,
394                                         copy_to_user_iter_nofault,
395                                         memcpy_to_iter);
396                 kunmap_local(kaddr);
397                 res += n;
398                 bytes -= n;
399                 if (!bytes || !n)
400                         break;
401                 offset += n;
402                 if (offset == PAGE_SIZE) {
403                         page++;
404                         offset = 0;
405                 }
406         }
407         return res;
408 }
409 EXPORT_SYMBOL(copy_page_to_iter_nofault);
410 
411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412                          struct iov_iter *i)
413 {
414         size_t res = 0;
415         if (!page_copy_sane(page, offset, bytes))
416                 return 0;
417         page += offset / PAGE_SIZE; // first subpage
418         offset %= PAGE_SIZE;
419         while (1) {
420                 void *kaddr = kmap_local_page(page);
421                 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422                 n = _copy_from_iter(kaddr + offset, n, i);
423                 kunmap_local(kaddr);
424                 res += n;
425                 bytes -= n;
426                 if (!bytes || !n)
427                         break;
428                 offset += n;
429                 if (offset == PAGE_SIZE) {
430                         page++;
431                         offset = 0;
432                 }
433         }
434         return res;
435 }
436 EXPORT_SYMBOL(copy_page_from_iter);
437 
438 static __always_inline
439 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440                          size_t len, void *priv, void *priv2)
441 {
442         return clear_user(iter_to, len);
443 }
444 
445 static __always_inline
446 size_t zero_to_iter(void *iter_to, size_t progress,
447                     size_t len, void *priv, void *priv2)
448 {
449         memset(iter_to, 0, len);
450         return 0;
451 }
452 
453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454 {
455         return iterate_and_advance(i, bytes, NULL,
456                                    zero_to_user_iter, zero_to_iter);
457 }
458 EXPORT_SYMBOL(iov_iter_zero);
459 
460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
461                 size_t bytes, struct iov_iter *i)
462 {
463         size_t n, copied = 0;
464 
465         if (!page_copy_sane(page, offset, bytes))
466                 return 0;
467         if (WARN_ON_ONCE(!i->data_source))
468                 return 0;
469 
470         do {
471                 char *p;
472 
473                 n = bytes - copied;
474                 if (PageHighMem(page)) {
475                         page += offset / PAGE_SIZE;
476                         offset %= PAGE_SIZE;
477                         n = min_t(size_t, n, PAGE_SIZE - offset);
478                 }
479 
480                 p = kmap_atomic(page) + offset;
481                 n = __copy_from_iter(p, n, i);
482                 kunmap_atomic(p);
483                 copied += n;
484                 offset += n;
485         } while (PageHighMem(page) && copied != bytes && n > 0);
486 
487         return copied;
488 }
489 EXPORT_SYMBOL(copy_page_from_iter_atomic);
490 
491 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
492 {
493         const struct bio_vec *bvec, *end;
494 
495         if (!i->count)
496                 return;
497         i->count -= size;
498 
499         size += i->iov_offset;
500 
501         for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
502                 if (likely(size < bvec->bv_len))
503                         break;
504                 size -= bvec->bv_len;
505         }
506         i->iov_offset = size;
507         i->nr_segs -= bvec - i->bvec;
508         i->bvec = bvec;
509 }
510 
511 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
512 {
513         const struct iovec *iov, *end;
514 
515         if (!i->count)
516                 return;
517         i->count -= size;
518 
519         size += i->iov_offset; // from beginning of current segment
520         for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
521                 if (likely(size < iov->iov_len))
522                         break;
523                 size -= iov->iov_len;
524         }
525         i->iov_offset = size;
526         i->nr_segs -= iov - iter_iov(i);
527         i->__iov = iov;
528 }
529 
530 void iov_iter_advance(struct iov_iter *i, size_t size)
531 {
532         if (unlikely(i->count < size))
533                 size = i->count;
534         if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
535                 i->iov_offset += size;
536                 i->count -= size;
537         } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
538                 /* iovec and kvec have identical layouts */
539                 iov_iter_iovec_advance(i, size);
540         } else if (iov_iter_is_bvec(i)) {
541                 iov_iter_bvec_advance(i, size);
542         } else if (iov_iter_is_discard(i)) {
543                 i->count -= size;
544         }
545 }
546 EXPORT_SYMBOL(iov_iter_advance);
547 
548 void iov_iter_revert(struct iov_iter *i, size_t unroll)
549 {
550         if (!unroll)
551                 return;
552         if (WARN_ON(unroll > MAX_RW_COUNT))
553                 return;
554         i->count += unroll;
555         if (unlikely(iov_iter_is_discard(i)))
556                 return;
557         if (unroll <= i->iov_offset) {
558                 i->iov_offset -= unroll;
559                 return;
560         }
561         unroll -= i->iov_offset;
562         if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
563                 BUG(); /* We should never go beyond the start of the specified
564                         * range since we might then be straying into pages that
565                         * aren't pinned.
566                         */
567         } else if (iov_iter_is_bvec(i)) {
568                 const struct bio_vec *bvec = i->bvec;
569                 while (1) {
570                         size_t n = (--bvec)->bv_len;
571                         i->nr_segs++;
572                         if (unroll <= n) {
573                                 i->bvec = bvec;
574                                 i->iov_offset = n - unroll;
575                                 return;
576                         }
577                         unroll -= n;
578                 }
579         } else { /* same logics for iovec and kvec */
580                 const struct iovec *iov = iter_iov(i);
581                 while (1) {
582                         size_t n = (--iov)->iov_len;
583                         i->nr_segs++;
584                         if (unroll <= n) {
585                                 i->__iov = iov;
586                                 i->iov_offset = n - unroll;
587                                 return;
588                         }
589                         unroll -= n;
590                 }
591         }
592 }
593 EXPORT_SYMBOL(iov_iter_revert);
594 
595 /*
596  * Return the count of just the current iov_iter segment.
597  */
598 size_t iov_iter_single_seg_count(const struct iov_iter *i)
599 {
600         if (i->nr_segs > 1) {
601                 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
602                         return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
603                 if (iov_iter_is_bvec(i))
604                         return min(i->count, i->bvec->bv_len - i->iov_offset);
605         }
606         return i->count;
607 }
608 EXPORT_SYMBOL(iov_iter_single_seg_count);
609 
610 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
611                         const struct kvec *kvec, unsigned long nr_segs,
612                         size_t count)
613 {
614         WARN_ON(direction & ~(READ | WRITE));
615         *i = (struct iov_iter){
616                 .iter_type = ITER_KVEC,
617                 .data_source = direction,
618                 .kvec = kvec,
619                 .nr_segs = nr_segs,
620                 .iov_offset = 0,
621                 .count = count
622         };
623 }
624 EXPORT_SYMBOL(iov_iter_kvec);
625 
626 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
627                         const struct bio_vec *bvec, unsigned long nr_segs,
628                         size_t count)
629 {
630         WARN_ON(direction & ~(READ | WRITE));
631         *i = (struct iov_iter){
632                 .iter_type = ITER_BVEC,
633                 .data_source = direction,
634                 .bvec = bvec,
635                 .nr_segs = nr_segs,
636                 .iov_offset = 0,
637                 .count = count
638         };
639 }
640 EXPORT_SYMBOL(iov_iter_bvec);
641 
642 /**
643  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
644  * @i: The iterator to initialise.
645  * @direction: The direction of the transfer.
646  * @xarray: The xarray to access.
647  * @start: The start file position.
648  * @count: The size of the I/O buffer in bytes.
649  *
650  * Set up an I/O iterator to either draw data out of the pages attached to an
651  * inode or to inject data into those pages.  The pages *must* be prevented
652  * from evaporation, either by taking a ref on them or locking them by the
653  * caller.
654  */
655 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
656                      struct xarray *xarray, loff_t start, size_t count)
657 {
658         BUG_ON(direction & ~1);
659         *i = (struct iov_iter) {
660                 .iter_type = ITER_XARRAY,
661                 .data_source = direction,
662                 .xarray = xarray,
663                 .xarray_start = start,
664                 .count = count,
665                 .iov_offset = 0
666         };
667 }
668 EXPORT_SYMBOL(iov_iter_xarray);
669 
670 /**
671  * iov_iter_discard - Initialise an I/O iterator that discards data
672  * @i: The iterator to initialise.
673  * @direction: The direction of the transfer.
674  * @count: The size of the I/O buffer in bytes.
675  *
676  * Set up an I/O iterator that just discards everything that's written to it.
677  * It's only available as a READ iterator.
678  */
679 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
680 {
681         BUG_ON(direction != READ);
682         *i = (struct iov_iter){
683                 .iter_type = ITER_DISCARD,
684                 .data_source = false,
685                 .count = count,
686                 .iov_offset = 0
687         };
688 }
689 EXPORT_SYMBOL(iov_iter_discard);
690 
691 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
692                                    unsigned len_mask)
693 {
694         const struct iovec *iov = iter_iov(i);
695         size_t size = i->count;
696         size_t skip = i->iov_offset;
697 
698         do {
699                 size_t len = iov->iov_len - skip;
700 
701                 if (len > size)
702                         len = size;
703                 if (len & len_mask)
704                         return false;
705                 if ((unsigned long)(iov->iov_base + skip) & addr_mask)
706                         return false;
707 
708                 iov++;
709                 size -= len;
710                 skip = 0;
711         } while (size);
712 
713         return true;
714 }
715 
716 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
717                                   unsigned len_mask)
718 {
719         const struct bio_vec *bvec = i->bvec;
720         unsigned skip = i->iov_offset;
721         size_t size = i->count;
722 
723         do {
724                 size_t len = bvec->bv_len;
725 
726                 if (len > size)
727                         len = size;
728                 if (len & len_mask)
729                         return false;
730                 if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
731                         return false;
732 
733                 bvec++;
734                 size -= len;
735                 skip = 0;
736         } while (size);
737 
738         return true;
739 }
740 
741 /**
742  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
743  *      are aligned to the parameters.
744  *
745  * @i: &struct iov_iter to restore
746  * @addr_mask: bit mask to check against the iov element's addresses
747  * @len_mask: bit mask to check against the iov element's lengths
748  *
749  * Return: false if any addresses or lengths intersect with the provided masks
750  */
751 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
752                          unsigned len_mask)
753 {
754         if (likely(iter_is_ubuf(i))) {
755                 if (i->count & len_mask)
756                         return false;
757                 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
758                         return false;
759                 return true;
760         }
761 
762         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
763                 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
764 
765         if (iov_iter_is_bvec(i))
766                 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
767 
768         if (iov_iter_is_xarray(i)) {
769                 if (i->count & len_mask)
770                         return false;
771                 if ((i->xarray_start + i->iov_offset) & addr_mask)
772                         return false;
773         }
774 
775         return true;
776 }
777 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
778 
779 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
780 {
781         const struct iovec *iov = iter_iov(i);
782         unsigned long res = 0;
783         size_t size = i->count;
784         size_t skip = i->iov_offset;
785 
786         do {
787                 size_t len = iov->iov_len - skip;
788                 if (len) {
789                         res |= (unsigned long)iov->iov_base + skip;
790                         if (len > size)
791                                 len = size;
792                         res |= len;
793                         size -= len;
794                 }
795                 iov++;
796                 skip = 0;
797         } while (size);
798         return res;
799 }
800 
801 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
802 {
803         const struct bio_vec *bvec = i->bvec;
804         unsigned res = 0;
805         size_t size = i->count;
806         unsigned skip = i->iov_offset;
807 
808         do {
809                 size_t len = bvec->bv_len - skip;
810                 res |= (unsigned long)bvec->bv_offset + skip;
811                 if (len > size)
812                         len = size;
813                 res |= len;
814                 bvec++;
815                 size -= len;
816                 skip = 0;
817         } while (size);
818 
819         return res;
820 }
821 
822 unsigned long iov_iter_alignment(const struct iov_iter *i)
823 {
824         if (likely(iter_is_ubuf(i))) {
825                 size_t size = i->count;
826                 if (size)
827                         return ((unsigned long)i->ubuf + i->iov_offset) | size;
828                 return 0;
829         }
830 
831         /* iovec and kvec have identical layouts */
832         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
833                 return iov_iter_alignment_iovec(i);
834 
835         if (iov_iter_is_bvec(i))
836                 return iov_iter_alignment_bvec(i);
837 
838         if (iov_iter_is_xarray(i))
839                 return (i->xarray_start + i->iov_offset) | i->count;
840 
841         return 0;
842 }
843 EXPORT_SYMBOL(iov_iter_alignment);
844 
845 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
846 {
847         unsigned long res = 0;
848         unsigned long v = 0;
849         size_t size = i->count;
850         unsigned k;
851 
852         if (iter_is_ubuf(i))
853                 return 0;
854 
855         if (WARN_ON(!iter_is_iovec(i)))
856                 return ~0U;
857 
858         for (k = 0; k < i->nr_segs; k++) {
859                 const struct iovec *iov = iter_iov(i) + k;
860                 if (iov->iov_len) {
861                         unsigned long base = (unsigned long)iov->iov_base;
862                         if (v) // if not the first one
863                                 res |= base | v; // this start | previous end
864                         v = base + iov->iov_len;
865                         if (size <= iov->iov_len)
866                                 break;
867                         size -= iov->iov_len;
868                 }
869         }
870         return res;
871 }
872 EXPORT_SYMBOL(iov_iter_gap_alignment);
873 
874 static int want_pages_array(struct page ***res, size_t size,
875                             size_t start, unsigned int maxpages)
876 {
877         unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
878 
879         if (count > maxpages)
880                 count = maxpages;
881         WARN_ON(!count);        // caller should've prevented that
882         if (!*res) {
883                 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
884                 if (!*res)
885                         return 0;
886         }
887         return count;
888 }
889 
890 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
891                                           pgoff_t index, unsigned int nr_pages)
892 {
893         XA_STATE(xas, xa, index);
894         struct page *page;
895         unsigned int ret = 0;
896 
897         rcu_read_lock();
898         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
899                 if (xas_retry(&xas, page))
900                         continue;
901 
902                 /* Has the page moved or been split? */
903                 if (unlikely(page != xas_reload(&xas))) {
904                         xas_reset(&xas);
905                         continue;
906                 }
907 
908                 pages[ret] = find_subpage(page, xas.xa_index);
909                 get_page(pages[ret]);
910                 if (++ret == nr_pages)
911                         break;
912         }
913         rcu_read_unlock();
914         return ret;
915 }
916 
917 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
918                                      struct page ***pages, size_t maxsize,
919                                      unsigned maxpages, size_t *_start_offset)
920 {
921         unsigned nr, offset, count;
922         pgoff_t index;
923         loff_t pos;
924 
925         pos = i->xarray_start + i->iov_offset;
926         index = pos >> PAGE_SHIFT;
927         offset = pos & ~PAGE_MASK;
928         *_start_offset = offset;
929 
930         count = want_pages_array(pages, maxsize, offset, maxpages);
931         if (!count)
932                 return -ENOMEM;
933         nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
934         if (nr == 0)
935                 return 0;
936 
937         maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
938         i->iov_offset += maxsize;
939         i->count -= maxsize;
940         return maxsize;
941 }
942 
943 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
944 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
945 {
946         size_t skip;
947         long k;
948 
949         if (iter_is_ubuf(i))
950                 return (unsigned long)i->ubuf + i->iov_offset;
951 
952         for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
953                 const struct iovec *iov = iter_iov(i) + k;
954                 size_t len = iov->iov_len - skip;
955 
956                 if (unlikely(!len))
957                         continue;
958                 if (*size > len)
959                         *size = len;
960                 return (unsigned long)iov->iov_base + skip;
961         }
962         BUG(); // if it had been empty, we wouldn't get called
963 }
964 
965 /* must be done on non-empty ITER_BVEC one */
966 static struct page *first_bvec_segment(const struct iov_iter *i,
967                                        size_t *size, size_t *start)
968 {
969         struct page *page;
970         size_t skip = i->iov_offset, len;
971 
972         len = i->bvec->bv_len - skip;
973         if (*size > len)
974                 *size = len;
975         skip += i->bvec->bv_offset;
976         page = i->bvec->bv_page + skip / PAGE_SIZE;
977         *start = skip % PAGE_SIZE;
978         return page;
979 }
980 
981 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
982                    struct page ***pages, size_t maxsize,
983                    unsigned int maxpages, size_t *start)
984 {
985         unsigned int n, gup_flags = 0;
986 
987         if (maxsize > i->count)
988                 maxsize = i->count;
989         if (!maxsize)
990                 return 0;
991         if (maxsize > MAX_RW_COUNT)
992                 maxsize = MAX_RW_COUNT;
993 
994         if (likely(user_backed_iter(i))) {
995                 unsigned long addr;
996                 int res;
997 
998                 if (iov_iter_rw(i) != WRITE)
999                         gup_flags |= FOLL_WRITE;
1000                 if (i->nofault)
1001                         gup_flags |= FOLL_NOFAULT;
1002 
1003                 addr = first_iovec_segment(i, &maxsize);
1004                 *start = addr % PAGE_SIZE;
1005                 addr &= PAGE_MASK;
1006                 n = want_pages_array(pages, maxsize, *start, maxpages);
1007                 if (!n)
1008                         return -ENOMEM;
1009                 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1010                 if (unlikely(res <= 0))
1011                         return res;
1012                 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1013                 iov_iter_advance(i, maxsize);
1014                 return maxsize;
1015         }
1016         if (iov_iter_is_bvec(i)) {
1017                 struct page **p;
1018                 struct page *page;
1019 
1020                 page = first_bvec_segment(i, &maxsize, start);
1021                 n = want_pages_array(pages, maxsize, *start, maxpages);
1022                 if (!n)
1023                         return -ENOMEM;
1024                 p = *pages;
1025                 for (int k = 0; k < n; k++)
1026                         get_page(p[k] = page + k);
1027                 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1028                 i->count -= maxsize;
1029                 i->iov_offset += maxsize;
1030                 if (i->iov_offset == i->bvec->bv_len) {
1031                         i->iov_offset = 0;
1032                         i->bvec++;
1033                         i->nr_segs--;
1034                 }
1035                 return maxsize;
1036         }
1037         if (iov_iter_is_xarray(i))
1038                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1039         return -EFAULT;
1040 }
1041 
1042 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1043                 size_t maxsize, unsigned maxpages, size_t *start)
1044 {
1045         if (!maxpages)
1046                 return 0;
1047         BUG_ON(!pages);
1048 
1049         return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1050 }
1051 EXPORT_SYMBOL(iov_iter_get_pages2);
1052 
1053 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1054                 struct page ***pages, size_t maxsize, size_t *start)
1055 {
1056         ssize_t len;
1057 
1058         *pages = NULL;
1059 
1060         len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1061         if (len <= 0) {
1062                 kvfree(*pages);
1063                 *pages = NULL;
1064         }
1065         return len;
1066 }
1067 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1068 
1069 static int iov_npages(const struct iov_iter *i, int maxpages)
1070 {
1071         size_t skip = i->iov_offset, size = i->count;
1072         const struct iovec *p;
1073         int npages = 0;
1074 
1075         for (p = iter_iov(i); size; skip = 0, p++) {
1076                 unsigned offs = offset_in_page(p->iov_base + skip);
1077                 size_t len = min(p->iov_len - skip, size);
1078 
1079                 if (len) {
1080                         size -= len;
1081                         npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1082                         if (unlikely(npages > maxpages))
1083                                 return maxpages;
1084                 }
1085         }
1086         return npages;
1087 }
1088 
1089 static int bvec_npages(const struct iov_iter *i, int maxpages)
1090 {
1091         size_t skip = i->iov_offset, size = i->count;
1092         const struct bio_vec *p;
1093         int npages = 0;
1094 
1095         for (p = i->bvec; size; skip = 0, p++) {
1096                 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1097                 size_t len = min(p->bv_len - skip, size);
1098 
1099                 size -= len;
1100                 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1101                 if (unlikely(npages > maxpages))
1102                         return maxpages;
1103         }
1104         return npages;
1105 }
1106 
1107 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1108 {
1109         if (unlikely(!i->count))
1110                 return 0;
1111         if (likely(iter_is_ubuf(i))) {
1112                 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1113                 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1114                 return min(npages, maxpages);
1115         }
1116         /* iovec and kvec have identical layouts */
1117         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1118                 return iov_npages(i, maxpages);
1119         if (iov_iter_is_bvec(i))
1120                 return bvec_npages(i, maxpages);
1121         if (iov_iter_is_xarray(i)) {
1122                 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1123                 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1124                 return min(npages, maxpages);
1125         }
1126         return 0;
1127 }
1128 EXPORT_SYMBOL(iov_iter_npages);
1129 
1130 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1131 {
1132         *new = *old;
1133         if (iov_iter_is_bvec(new))
1134                 return new->bvec = kmemdup(new->bvec,
1135                                     new->nr_segs * sizeof(struct bio_vec),
1136                                     flags);
1137         else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1138                 /* iovec and kvec have identical layout */
1139                 return new->__iov = kmemdup(new->__iov,
1140                                    new->nr_segs * sizeof(struct iovec),
1141                                    flags);
1142         return NULL;
1143 }
1144 EXPORT_SYMBOL(dup_iter);
1145 
1146 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1147                 const struct iovec __user *uvec, u32 nr_segs)
1148 {
1149         const struct compat_iovec __user *uiov =
1150                 (const struct compat_iovec __user *)uvec;
1151         int ret = -EFAULT;
1152         u32 i;
1153 
1154         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1155                 return -EFAULT;
1156 
1157         for (i = 0; i < nr_segs; i++) {
1158                 compat_uptr_t buf;
1159                 compat_ssize_t len;
1160 
1161                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1162                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1163 
1164                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1165                 if (len < 0) {
1166                         ret = -EINVAL;
1167                         goto uaccess_end;
1168                 }
1169                 iov[i].iov_base = compat_ptr(buf);
1170                 iov[i].iov_len = len;
1171         }
1172 
1173         ret = 0;
1174 uaccess_end:
1175         user_access_end();
1176         return ret;
1177 }
1178 
1179 static __noclone int copy_iovec_from_user(struct iovec *iov,
1180                 const struct iovec __user *uiov, unsigned long nr_segs)
1181 {
1182         int ret = -EFAULT;
1183 
1184         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1185                 return -EFAULT;
1186 
1187         do {
1188                 void __user *buf;
1189                 ssize_t len;
1190 
1191                 unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1192                 unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1193 
1194                 /* check for size_t not fitting in ssize_t .. */
1195                 if (unlikely(len < 0)) {
1196                         ret = -EINVAL;
1197                         goto uaccess_end;
1198                 }
1199                 iov->iov_base = buf;
1200                 iov->iov_len = len;
1201 
1202                 uiov++; iov++;
1203         } while (--nr_segs);
1204 
1205         ret = 0;
1206 uaccess_end:
1207         user_access_end();
1208         return ret;
1209 }
1210 
1211 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1212                 unsigned long nr_segs, unsigned long fast_segs,
1213                 struct iovec *fast_iov, bool compat)
1214 {
1215         struct iovec *iov = fast_iov;
1216         int ret;
1217 
1218         /*
1219          * SuS says "The readv() function *may* fail if the iovcnt argument was
1220          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1221          * traditionally returned zero for zero segments, so...
1222          */
1223         if (nr_segs == 0)
1224                 return iov;
1225         if (nr_segs > UIO_MAXIOV)
1226                 return ERR_PTR(-EINVAL);
1227         if (nr_segs > fast_segs) {
1228                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1229                 if (!iov)
1230                         return ERR_PTR(-ENOMEM);
1231         }
1232 
1233         if (unlikely(compat))
1234                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1235         else
1236                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1237         if (ret) {
1238                 if (iov != fast_iov)
1239                         kfree(iov);
1240                 return ERR_PTR(ret);
1241         }
1242 
1243         return iov;
1244 }
1245 
1246 /*
1247  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1248  */
1249 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1250                                    struct iovec **iovp, struct iov_iter *i,
1251                                    bool compat)
1252 {
1253         struct iovec *iov = *iovp;
1254         ssize_t ret;
1255 
1256         if (compat)
1257                 ret = copy_compat_iovec_from_user(iov, uvec, 1);
1258         else
1259                 ret = copy_iovec_from_user(iov, uvec, 1);
1260         if (unlikely(ret))
1261                 return ret;
1262 
1263         ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1264         if (unlikely(ret))
1265                 return ret;
1266         *iovp = NULL;
1267         return i->count;
1268 }
1269 
1270 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1271                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1272                  struct iov_iter *i, bool compat)
1273 {
1274         ssize_t total_len = 0;
1275         unsigned long seg;
1276         struct iovec *iov;
1277 
1278         if (nr_segs == 1)
1279                 return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1280 
1281         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1282         if (IS_ERR(iov)) {
1283                 *iovp = NULL;
1284                 return PTR_ERR(iov);
1285         }
1286 
1287         /*
1288          * According to the Single Unix Specification we should return EINVAL if
1289          * an element length is < 0 when cast to ssize_t or if the total length
1290          * would overflow the ssize_t return value of the system call.
1291          *
1292          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1293          * overflow case.
1294          */
1295         for (seg = 0; seg < nr_segs; seg++) {
1296                 ssize_t len = (ssize_t)iov[seg].iov_len;
1297 
1298                 if (!access_ok(iov[seg].iov_base, len)) {
1299                         if (iov != *iovp)
1300                                 kfree(iov);
1301                         *iovp = NULL;
1302                         return -EFAULT;
1303                 }
1304 
1305                 if (len > MAX_RW_COUNT - total_len) {
1306                         len = MAX_RW_COUNT - total_len;
1307                         iov[seg].iov_len = len;
1308                 }
1309                 total_len += len;
1310         }
1311 
1312         iov_iter_init(i, type, iov, nr_segs, total_len);
1313         if (iov == *iovp)
1314                 *iovp = NULL;
1315         else
1316                 *iovp = iov;
1317         return total_len;
1318 }
1319 
1320 /**
1321  * import_iovec() - Copy an array of &struct iovec from userspace
1322  *     into the kernel, check that it is valid, and initialize a new
1323  *     &struct iov_iter iterator to access it.
1324  *
1325  * @type: One of %READ or %WRITE.
1326  * @uvec: Pointer to the userspace array.
1327  * @nr_segs: Number of elements in userspace array.
1328  * @fast_segs: Number of elements in @iov.
1329  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1330  *     on-stack) kernel array.
1331  * @i: Pointer to iterator that will be initialized on success.
1332  *
1333  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1334  * then this function places %NULL in *@iov on return. Otherwise, a new
1335  * array will be allocated and the result placed in *@iov. This means that
1336  * the caller may call kfree() on *@iov regardless of whether the small
1337  * on-stack array was used or not (and regardless of whether this function
1338  * returns an error or not).
1339  *
1340  * Return: Negative error code on error, bytes imported on success
1341  */
1342 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1343                  unsigned nr_segs, unsigned fast_segs,
1344                  struct iovec **iovp, struct iov_iter *i)
1345 {
1346         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1347                               in_compat_syscall());
1348 }
1349 EXPORT_SYMBOL(import_iovec);
1350 
1351 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1352 {
1353         if (len > MAX_RW_COUNT)
1354                 len = MAX_RW_COUNT;
1355         if (unlikely(!access_ok(buf, len)))
1356                 return -EFAULT;
1357 
1358         iov_iter_ubuf(i, rw, buf, len);
1359         return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(import_ubuf);
1362 
1363 /**
1364  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1365  *     iov_iter_save_state() was called.
1366  *
1367  * @i: &struct iov_iter to restore
1368  * @state: state to restore from
1369  *
1370  * Used after iov_iter_save_state() to bring restore @i, if operations may
1371  * have advanced it.
1372  *
1373  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1374  */
1375 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1376 {
1377         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1378                          !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1379                 return;
1380         i->iov_offset = state->iov_offset;
1381         i->count = state->count;
1382         if (iter_is_ubuf(i))
1383                 return;
1384         /*
1385          * For the *vec iters, nr_segs + iov is constant - if we increment
1386          * the vec, then we also decrement the nr_segs count. Hence we don't
1387          * need to track both of these, just one is enough and we can deduct
1388          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1389          * size, so we can just increment the iov pointer as they are unionzed.
1390          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1391          * not. Be safe and handle it separately.
1392          */
1393         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1394         if (iov_iter_is_bvec(i))
1395                 i->bvec -= state->nr_segs - i->nr_segs;
1396         else
1397                 i->__iov -= state->nr_segs - i->nr_segs;
1398         i->nr_segs = state->nr_segs;
1399 }
1400 
1401 /*
1402  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1403  * get references on the pages, nor does it get a pin on them.
1404  */
1405 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1406                                              struct page ***pages, size_t maxsize,
1407                                              unsigned int maxpages,
1408                                              iov_iter_extraction_t extraction_flags,
1409                                              size_t *offset0)
1410 {
1411         struct page *page, **p;
1412         unsigned int nr = 0, offset;
1413         loff_t pos = i->xarray_start + i->iov_offset;
1414         pgoff_t index = pos >> PAGE_SHIFT;
1415         XA_STATE(xas, i->xarray, index);
1416 
1417         offset = pos & ~PAGE_MASK;
1418         *offset0 = offset;
1419 
1420         maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1421         if (!maxpages)
1422                 return -ENOMEM;
1423         p = *pages;
1424 
1425         rcu_read_lock();
1426         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1427                 if (xas_retry(&xas, page))
1428                         continue;
1429 
1430                 /* Has the page moved or been split? */
1431                 if (unlikely(page != xas_reload(&xas))) {
1432                         xas_reset(&xas);
1433                         continue;
1434                 }
1435 
1436                 p[nr++] = find_subpage(page, xas.xa_index);
1437                 if (nr == maxpages)
1438                         break;
1439         }
1440         rcu_read_unlock();
1441 
1442         maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1443         iov_iter_advance(i, maxsize);
1444         return maxsize;
1445 }
1446 
1447 /*
1448  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1449  * not get references on the pages, nor does it get a pin on them.
1450  */
1451 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1452                                            struct page ***pages, size_t maxsize,
1453                                            unsigned int maxpages,
1454                                            iov_iter_extraction_t extraction_flags,
1455                                            size_t *offset0)
1456 {
1457         struct page **p, *page;
1458         size_t skip = i->iov_offset, offset, size;
1459         int k;
1460 
1461         for (;;) {
1462                 if (i->nr_segs == 0)
1463                         return 0;
1464                 size = min(maxsize, i->bvec->bv_len - skip);
1465                 if (size)
1466                         break;
1467                 i->iov_offset = 0;
1468                 i->nr_segs--;
1469                 i->bvec++;
1470                 skip = 0;
1471         }
1472 
1473         skip += i->bvec->bv_offset;
1474         page = i->bvec->bv_page + skip / PAGE_SIZE;
1475         offset = skip % PAGE_SIZE;
1476         *offset0 = offset;
1477 
1478         maxpages = want_pages_array(pages, size, offset, maxpages);
1479         if (!maxpages)
1480                 return -ENOMEM;
1481         p = *pages;
1482         for (k = 0; k < maxpages; k++)
1483                 p[k] = page + k;
1484 
1485         size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1486         iov_iter_advance(i, size);
1487         return size;
1488 }
1489 
1490 /*
1491  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1492  * This does not get references on the pages, nor does it get a pin on them.
1493  */
1494 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1495                                            struct page ***pages, size_t maxsize,
1496                                            unsigned int maxpages,
1497                                            iov_iter_extraction_t extraction_flags,
1498                                            size_t *offset0)
1499 {
1500         struct page **p, *page;
1501         const void *kaddr;
1502         size_t skip = i->iov_offset, offset, len, size;
1503         int k;
1504 
1505         for (;;) {
1506                 if (i->nr_segs == 0)
1507                         return 0;
1508                 size = min(maxsize, i->kvec->iov_len - skip);
1509                 if (size)
1510                         break;
1511                 i->iov_offset = 0;
1512                 i->nr_segs--;
1513                 i->kvec++;
1514                 skip = 0;
1515         }
1516 
1517         kaddr = i->kvec->iov_base + skip;
1518         offset = (unsigned long)kaddr & ~PAGE_MASK;
1519         *offset0 = offset;
1520 
1521         maxpages = want_pages_array(pages, size, offset, maxpages);
1522         if (!maxpages)
1523                 return -ENOMEM;
1524         p = *pages;
1525 
1526         kaddr -= offset;
1527         len = offset + size;
1528         for (k = 0; k < maxpages; k++) {
1529                 size_t seg = min_t(size_t, len, PAGE_SIZE);
1530 
1531                 if (is_vmalloc_or_module_addr(kaddr))
1532                         page = vmalloc_to_page(kaddr);
1533                 else
1534                         page = virt_to_page(kaddr);
1535 
1536                 p[k] = page;
1537                 len -= seg;
1538                 kaddr += PAGE_SIZE;
1539         }
1540 
1541         size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1542         iov_iter_advance(i, size);
1543         return size;
1544 }
1545 
1546 /*
1547  * Extract a list of contiguous pages from a user iterator and get a pin on
1548  * each of them.  This should only be used if the iterator is user-backed
1549  * (IOBUF/UBUF).
1550  *
1551  * It does not get refs on the pages, but the pages must be unpinned by the
1552  * caller once the transfer is complete.
1553  *
1554  * This is safe to be used where background IO/DMA *is* going to be modifying
1555  * the buffer; using a pin rather than a ref makes forces fork() to give the
1556  * child a copy of the page.
1557  */
1558 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1559                                            struct page ***pages,
1560                                            size_t maxsize,
1561                                            unsigned int maxpages,
1562                                            iov_iter_extraction_t extraction_flags,
1563                                            size_t *offset0)
1564 {
1565         unsigned long addr;
1566         unsigned int gup_flags = 0;
1567         size_t offset;
1568         int res;
1569 
1570         if (i->data_source == ITER_DEST)
1571                 gup_flags |= FOLL_WRITE;
1572         if (extraction_flags & ITER_ALLOW_P2PDMA)
1573                 gup_flags |= FOLL_PCI_P2PDMA;
1574         if (i->nofault)
1575                 gup_flags |= FOLL_NOFAULT;
1576 
1577         addr = first_iovec_segment(i, &maxsize);
1578         *offset0 = offset = addr % PAGE_SIZE;
1579         addr &= PAGE_MASK;
1580         maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1581         if (!maxpages)
1582                 return -ENOMEM;
1583         res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1584         if (unlikely(res <= 0))
1585                 return res;
1586         maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1587         iov_iter_advance(i, maxsize);
1588         return maxsize;
1589 }
1590 
1591 /**
1592  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1593  * @i: The iterator to extract from
1594  * @pages: Where to return the list of pages
1595  * @maxsize: The maximum amount of iterator to extract
1596  * @maxpages: The maximum size of the list of pages
1597  * @extraction_flags: Flags to qualify request
1598  * @offset0: Where to return the starting offset into (*@pages)[0]
1599  *
1600  * Extract a list of contiguous pages from the current point of the iterator,
1601  * advancing the iterator.  The maximum number of pages and the maximum amount
1602  * of page contents can be set.
1603  *
1604  * If *@pages is NULL, a page list will be allocated to the required size and
1605  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1606  * that the caller allocated a page list at least @maxpages in size and this
1607  * will be filled in.
1608  *
1609  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1610  * be allowed on the pages extracted.
1611  *
1612  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1613  * should be performed.
1614  *
1615  * Extra refs or pins on the pages may be obtained as follows:
1616  *
1617  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1618  *      added to the pages, but refs will not be taken.
1619  *      iov_iter_extract_will_pin() will return true.
1620  *
1621  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1622  *      merely listed; no extra refs or pins are obtained.
1623  *      iov_iter_extract_will_pin() will return 0.
1624  *
1625  * Note also:
1626  *
1627  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1628  *
1629  * On success, the function sets *@pages to the new pagelist, if allocated, and
1630  * sets *offset0 to the offset into the first page.
1631  *
1632  * It may also return -ENOMEM and -EFAULT.
1633  */
1634 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1635                                struct page ***pages,
1636                                size_t maxsize,
1637                                unsigned int maxpages,
1638                                iov_iter_extraction_t extraction_flags,
1639                                size_t *offset0)
1640 {
1641         maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1642         if (!maxsize)
1643                 return 0;
1644 
1645         if (likely(user_backed_iter(i)))
1646                 return iov_iter_extract_user_pages(i, pages, maxsize,
1647                                                    maxpages, extraction_flags,
1648                                                    offset0);
1649         if (iov_iter_is_kvec(i))
1650                 return iov_iter_extract_kvec_pages(i, pages, maxsize,
1651                                                    maxpages, extraction_flags,
1652                                                    offset0);
1653         if (iov_iter_is_bvec(i))
1654                 return iov_iter_extract_bvec_pages(i, pages, maxsize,
1655                                                    maxpages, extraction_flags,
1656                                                    offset0);
1657         if (iov_iter_is_xarray(i))
1658                 return iov_iter_extract_xarray_pages(i, pages, maxsize,
1659                                                      maxpages, extraction_flags,
1660                                                      offset0);
1661         return -EFAULT;
1662 }
1663 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1664 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php