1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/fault-inject-usercopy.h> 5 #include <linux/uio.h> 6 #include <linux/pagemap.h> 7 #include <linux/highmem.h> 8 #include <linux/slab.h> 9 #include <linux/vmalloc.h> 10 #include <linux/splice.h> 11 #include <linux/compat.h> 12 #include <linux/scatterlist.h> 13 #include <linux/instrumented.h> 14 #include <linux/iov_iter.h> 15 16 static __always_inline 17 size_t copy_to_user_iter(void __user *iter_to, size_t progress, 18 size_t len, void *from, void *priv2) 19 { 20 if (should_fail_usercopy()) 21 return len; 22 if (access_ok(iter_to, len)) { 23 from += progress; 24 instrument_copy_to_user(iter_to, from, len); 25 len = raw_copy_to_user(iter_to, from, len); 26 } 27 return len; 28 } 29 30 static __always_inline 31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, 32 size_t len, void *from, void *priv2) 33 { 34 ssize_t res; 35 36 if (should_fail_usercopy()) 37 return len; 38 39 from += progress; 40 res = copy_to_user_nofault(iter_to, from, len); 41 return res < 0 ? len : res; 42 } 43 44 static __always_inline 45 size_t copy_from_user_iter(void __user *iter_from, size_t progress, 46 size_t len, void *to, void *priv2) 47 { 48 size_t res = len; 49 50 if (should_fail_usercopy()) 51 return len; 52 if (access_ok(iter_from, len)) { 53 to += progress; 54 instrument_copy_from_user_before(to, iter_from, len); 55 res = raw_copy_from_user(to, iter_from, len); 56 instrument_copy_from_user_after(to, iter_from, len, res); 57 } 58 return res; 59 } 60 61 static __always_inline 62 size_t memcpy_to_iter(void *iter_to, size_t progress, 63 size_t len, void *from, void *priv2) 64 { 65 memcpy(iter_to, from + progress, len); 66 return 0; 67 } 68 69 static __always_inline 70 size_t memcpy_from_iter(void *iter_from, size_t progress, 71 size_t len, void *to, void *priv2) 72 { 73 memcpy(to + progress, iter_from, len); 74 return 0; 75 } 76 77 /* 78 * fault_in_iov_iter_readable - fault in iov iterator for reading 79 * @i: iterator 80 * @size: maximum length 81 * 82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 83 * @size. For each iovec, fault in each page that constitutes the iovec. 84 * 85 * Returns the number of bytes not faulted in (like copy_to_user() and 86 * copy_from_user()). 87 * 88 * Always returns 0 for non-userspace iterators. 89 */ 90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 91 { 92 if (iter_is_ubuf(i)) { 93 size_t n = min(size, iov_iter_count(i)); 94 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 95 return size - n; 96 } else if (iter_is_iovec(i)) { 97 size_t count = min(size, iov_iter_count(i)); 98 const struct iovec *p; 99 size_t skip; 100 101 size -= count; 102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 103 size_t len = min(count, p->iov_len - skip); 104 size_t ret; 105 106 if (unlikely(!len)) 107 continue; 108 ret = fault_in_readable(p->iov_base + skip, len); 109 count -= len - ret; 110 if (ret) 111 break; 112 } 113 return count + size; 114 } 115 return 0; 116 } 117 EXPORT_SYMBOL(fault_in_iov_iter_readable); 118 119 /* 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing 121 * @i: iterator 122 * @size: maximum length 123 * 124 * Faults in the iterator using get_user_pages(), i.e., without triggering 125 * hardware page faults. This is primarily useful when we already know that 126 * some or all of the pages in @i aren't in memory. 127 * 128 * Returns the number of bytes not faulted in, like copy_to_user() and 129 * copy_from_user(). 130 * 131 * Always returns 0 for non-user-space iterators. 132 */ 133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 134 { 135 if (iter_is_ubuf(i)) { 136 size_t n = min(size, iov_iter_count(i)); 137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 138 return size - n; 139 } else if (iter_is_iovec(i)) { 140 size_t count = min(size, iov_iter_count(i)); 141 const struct iovec *p; 142 size_t skip; 143 144 size -= count; 145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 146 size_t len = min(count, p->iov_len - skip); 147 size_t ret; 148 149 if (unlikely(!len)) 150 continue; 151 ret = fault_in_safe_writeable(p->iov_base + skip, len); 152 count -= len - ret; 153 if (ret) 154 break; 155 } 156 return count + size; 157 } 158 return 0; 159 } 160 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 161 162 void iov_iter_init(struct iov_iter *i, unsigned int direction, 163 const struct iovec *iov, unsigned long nr_segs, 164 size_t count) 165 { 166 WARN_ON(direction & ~(READ | WRITE)); 167 *i = (struct iov_iter) { 168 .iter_type = ITER_IOVEC, 169 .nofault = false, 170 .data_source = direction, 171 .__iov = iov, 172 .nr_segs = nr_segs, 173 .iov_offset = 0, 174 .count = count 175 }; 176 } 177 EXPORT_SYMBOL(iov_iter_init); 178 179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 180 { 181 if (WARN_ON_ONCE(i->data_source)) 182 return 0; 183 if (user_backed_iter(i)) 184 might_fault(); 185 return iterate_and_advance(i, bytes, (void *)addr, 186 copy_to_user_iter, memcpy_to_iter); 187 } 188 EXPORT_SYMBOL(_copy_to_iter); 189 190 #ifdef CONFIG_ARCH_HAS_COPY_MC 191 static __always_inline 192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, 193 size_t len, void *from, void *priv2) 194 { 195 if (access_ok(iter_to, len)) { 196 from += progress; 197 instrument_copy_to_user(iter_to, from, len); 198 len = copy_mc_to_user(iter_to, from, len); 199 } 200 return len; 201 } 202 203 static __always_inline 204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress, 205 size_t len, void *from, void *priv2) 206 { 207 return copy_mc_to_kernel(iter_to, from + progress, len); 208 } 209 210 /** 211 * _copy_mc_to_iter - copy to iter with source memory error exception handling 212 * @addr: source kernel address 213 * @bytes: total transfer length 214 * @i: destination iterator 215 * 216 * The pmem driver deploys this for the dax operation 217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 219 * successfully copied. 220 * 221 * The main differences between this and typical _copy_to_iter(). 222 * 223 * * Typical tail/residue handling after a fault retries the copy 224 * byte-by-byte until the fault happens again. Re-triggering machine 225 * checks is potentially fatal so the implementation uses source 226 * alignment and poison alignment assumptions to avoid re-triggering 227 * hardware exceptions. 228 * 229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 231 * 232 * Return: number of bytes copied (may be %0) 233 */ 234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 235 { 236 if (WARN_ON_ONCE(i->data_source)) 237 return 0; 238 if (user_backed_iter(i)) 239 might_fault(); 240 return iterate_and_advance(i, bytes, (void *)addr, 241 copy_to_user_iter_mc, memcpy_to_iter_mc); 242 } 243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 244 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 245 246 static __always_inline 247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 248 { 249 return iterate_and_advance(i, bytes, addr, 250 copy_from_user_iter, memcpy_from_iter); 251 } 252 253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 254 { 255 if (WARN_ON_ONCE(!i->data_source)) 256 return 0; 257 258 if (user_backed_iter(i)) 259 might_fault(); 260 return __copy_from_iter(addr, bytes, i); 261 } 262 EXPORT_SYMBOL(_copy_from_iter); 263 264 static __always_inline 265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, 266 size_t len, void *to, void *priv2) 267 { 268 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); 269 } 270 271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 272 { 273 if (WARN_ON_ONCE(!i->data_source)) 274 return 0; 275 276 return iterate_and_advance(i, bytes, addr, 277 copy_from_user_iter_nocache, 278 memcpy_from_iter); 279 } 280 EXPORT_SYMBOL(_copy_from_iter_nocache); 281 282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 283 static __always_inline 284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, 285 size_t len, void *to, void *priv2) 286 { 287 return __copy_from_user_flushcache(to + progress, iter_from, len); 288 } 289 290 static __always_inline 291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, 292 size_t len, void *to, void *priv2) 293 { 294 memcpy_flushcache(to + progress, iter_from, len); 295 return 0; 296 } 297 298 /** 299 * _copy_from_iter_flushcache - write destination through cpu cache 300 * @addr: destination kernel address 301 * @bytes: total transfer length 302 * @i: source iterator 303 * 304 * The pmem driver arranges for filesystem-dax to use this facility via 305 * dax_copy_from_iter() for ensuring that writes to persistent memory 306 * are flushed through the CPU cache. It is differentiated from 307 * _copy_from_iter_nocache() in that guarantees all data is flushed for 308 * all iterator types. The _copy_from_iter_nocache() only attempts to 309 * bypass the cache for the ITER_IOVEC case, and on some archs may use 310 * instructions that strand dirty-data in the cache. 311 * 312 * Return: number of bytes copied (may be %0) 313 */ 314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 315 { 316 if (WARN_ON_ONCE(!i->data_source)) 317 return 0; 318 319 return iterate_and_advance(i, bytes, addr, 320 copy_from_user_iter_flushcache, 321 memcpy_from_iter_flushcache); 322 } 323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 324 #endif 325 326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 327 { 328 struct page *head; 329 size_t v = n + offset; 330 331 /* 332 * The general case needs to access the page order in order 333 * to compute the page size. 334 * However, we mostly deal with order-0 pages and thus can 335 * avoid a possible cache line miss for requests that fit all 336 * page orders. 337 */ 338 if (n <= v && v <= PAGE_SIZE) 339 return true; 340 341 head = compound_head(page); 342 v += (page - head) << PAGE_SHIFT; 343 344 if (WARN_ON(n > v || v > page_size(head))) 345 return false; 346 return true; 347 } 348 349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 350 struct iov_iter *i) 351 { 352 size_t res = 0; 353 if (!page_copy_sane(page, offset, bytes)) 354 return 0; 355 if (WARN_ON_ONCE(i->data_source)) 356 return 0; 357 page += offset / PAGE_SIZE; // first subpage 358 offset %= PAGE_SIZE; 359 while (1) { 360 void *kaddr = kmap_local_page(page); 361 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 362 n = _copy_to_iter(kaddr + offset, n, i); 363 kunmap_local(kaddr); 364 res += n; 365 bytes -= n; 366 if (!bytes || !n) 367 break; 368 offset += n; 369 if (offset == PAGE_SIZE) { 370 page++; 371 offset = 0; 372 } 373 } 374 return res; 375 } 376 EXPORT_SYMBOL(copy_page_to_iter); 377 378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 379 struct iov_iter *i) 380 { 381 size_t res = 0; 382 383 if (!page_copy_sane(page, offset, bytes)) 384 return 0; 385 if (WARN_ON_ONCE(i->data_source)) 386 return 0; 387 page += offset / PAGE_SIZE; // first subpage 388 offset %= PAGE_SIZE; 389 while (1) { 390 void *kaddr = kmap_local_page(page); 391 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 392 393 n = iterate_and_advance(i, n, kaddr + offset, 394 copy_to_user_iter_nofault, 395 memcpy_to_iter); 396 kunmap_local(kaddr); 397 res += n; 398 bytes -= n; 399 if (!bytes || !n) 400 break; 401 offset += n; 402 if (offset == PAGE_SIZE) { 403 page++; 404 offset = 0; 405 } 406 } 407 return res; 408 } 409 EXPORT_SYMBOL(copy_page_to_iter_nofault); 410 411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 412 struct iov_iter *i) 413 { 414 size_t res = 0; 415 if (!page_copy_sane(page, offset, bytes)) 416 return 0; 417 page += offset / PAGE_SIZE; // first subpage 418 offset %= PAGE_SIZE; 419 while (1) { 420 void *kaddr = kmap_local_page(page); 421 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 422 n = _copy_from_iter(kaddr + offset, n, i); 423 kunmap_local(kaddr); 424 res += n; 425 bytes -= n; 426 if (!bytes || !n) 427 break; 428 offset += n; 429 if (offset == PAGE_SIZE) { 430 page++; 431 offset = 0; 432 } 433 } 434 return res; 435 } 436 EXPORT_SYMBOL(copy_page_from_iter); 437 438 static __always_inline 439 size_t zero_to_user_iter(void __user *iter_to, size_t progress, 440 size_t len, void *priv, void *priv2) 441 { 442 return clear_user(iter_to, len); 443 } 444 445 static __always_inline 446 size_t zero_to_iter(void *iter_to, size_t progress, 447 size_t len, void *priv, void *priv2) 448 { 449 memset(iter_to, 0, len); 450 return 0; 451 } 452 453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 454 { 455 return iterate_and_advance(i, bytes, NULL, 456 zero_to_user_iter, zero_to_iter); 457 } 458 EXPORT_SYMBOL(iov_iter_zero); 459 460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset, 461 size_t bytes, struct iov_iter *i) 462 { 463 size_t n, copied = 0; 464 465 if (!page_copy_sane(page, offset, bytes)) 466 return 0; 467 if (WARN_ON_ONCE(!i->data_source)) 468 return 0; 469 470 do { 471 char *p; 472 473 n = bytes - copied; 474 if (PageHighMem(page)) { 475 page += offset / PAGE_SIZE; 476 offset %= PAGE_SIZE; 477 n = min_t(size_t, n, PAGE_SIZE - offset); 478 } 479 480 p = kmap_atomic(page) + offset; 481 n = __copy_from_iter(p, n, i); 482 kunmap_atomic(p); 483 copied += n; 484 offset += n; 485 } while (PageHighMem(page) && copied != bytes && n > 0); 486 487 return copied; 488 } 489 EXPORT_SYMBOL(copy_page_from_iter_atomic); 490 491 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 492 { 493 const struct bio_vec *bvec, *end; 494 495 if (!i->count) 496 return; 497 i->count -= size; 498 499 size += i->iov_offset; 500 501 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 502 if (likely(size < bvec->bv_len)) 503 break; 504 size -= bvec->bv_len; 505 } 506 i->iov_offset = size; 507 i->nr_segs -= bvec - i->bvec; 508 i->bvec = bvec; 509 } 510 511 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 512 { 513 const struct iovec *iov, *end; 514 515 if (!i->count) 516 return; 517 i->count -= size; 518 519 size += i->iov_offset; // from beginning of current segment 520 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 521 if (likely(size < iov->iov_len)) 522 break; 523 size -= iov->iov_len; 524 } 525 i->iov_offset = size; 526 i->nr_segs -= iov - iter_iov(i); 527 i->__iov = iov; 528 } 529 530 void iov_iter_advance(struct iov_iter *i, size_t size) 531 { 532 if (unlikely(i->count < size)) 533 size = i->count; 534 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 535 i->iov_offset += size; 536 i->count -= size; 537 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 538 /* iovec and kvec have identical layouts */ 539 iov_iter_iovec_advance(i, size); 540 } else if (iov_iter_is_bvec(i)) { 541 iov_iter_bvec_advance(i, size); 542 } else if (iov_iter_is_discard(i)) { 543 i->count -= size; 544 } 545 } 546 EXPORT_SYMBOL(iov_iter_advance); 547 548 void iov_iter_revert(struct iov_iter *i, size_t unroll) 549 { 550 if (!unroll) 551 return; 552 if (WARN_ON(unroll > MAX_RW_COUNT)) 553 return; 554 i->count += unroll; 555 if (unlikely(iov_iter_is_discard(i))) 556 return; 557 if (unroll <= i->iov_offset) { 558 i->iov_offset -= unroll; 559 return; 560 } 561 unroll -= i->iov_offset; 562 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 563 BUG(); /* We should never go beyond the start of the specified 564 * range since we might then be straying into pages that 565 * aren't pinned. 566 */ 567 } else if (iov_iter_is_bvec(i)) { 568 const struct bio_vec *bvec = i->bvec; 569 while (1) { 570 size_t n = (--bvec)->bv_len; 571 i->nr_segs++; 572 if (unroll <= n) { 573 i->bvec = bvec; 574 i->iov_offset = n - unroll; 575 return; 576 } 577 unroll -= n; 578 } 579 } else { /* same logics for iovec and kvec */ 580 const struct iovec *iov = iter_iov(i); 581 while (1) { 582 size_t n = (--iov)->iov_len; 583 i->nr_segs++; 584 if (unroll <= n) { 585 i->__iov = iov; 586 i->iov_offset = n - unroll; 587 return; 588 } 589 unroll -= n; 590 } 591 } 592 } 593 EXPORT_SYMBOL(iov_iter_revert); 594 595 /* 596 * Return the count of just the current iov_iter segment. 597 */ 598 size_t iov_iter_single_seg_count(const struct iov_iter *i) 599 { 600 if (i->nr_segs > 1) { 601 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 602 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 603 if (iov_iter_is_bvec(i)) 604 return min(i->count, i->bvec->bv_len - i->iov_offset); 605 } 606 return i->count; 607 } 608 EXPORT_SYMBOL(iov_iter_single_seg_count); 609 610 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 611 const struct kvec *kvec, unsigned long nr_segs, 612 size_t count) 613 { 614 WARN_ON(direction & ~(READ | WRITE)); 615 *i = (struct iov_iter){ 616 .iter_type = ITER_KVEC, 617 .data_source = direction, 618 .kvec = kvec, 619 .nr_segs = nr_segs, 620 .iov_offset = 0, 621 .count = count 622 }; 623 } 624 EXPORT_SYMBOL(iov_iter_kvec); 625 626 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 627 const struct bio_vec *bvec, unsigned long nr_segs, 628 size_t count) 629 { 630 WARN_ON(direction & ~(READ | WRITE)); 631 *i = (struct iov_iter){ 632 .iter_type = ITER_BVEC, 633 .data_source = direction, 634 .bvec = bvec, 635 .nr_segs = nr_segs, 636 .iov_offset = 0, 637 .count = count 638 }; 639 } 640 EXPORT_SYMBOL(iov_iter_bvec); 641 642 /** 643 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 644 * @i: The iterator to initialise. 645 * @direction: The direction of the transfer. 646 * @xarray: The xarray to access. 647 * @start: The start file position. 648 * @count: The size of the I/O buffer in bytes. 649 * 650 * Set up an I/O iterator to either draw data out of the pages attached to an 651 * inode or to inject data into those pages. The pages *must* be prevented 652 * from evaporation, either by taking a ref on them or locking them by the 653 * caller. 654 */ 655 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 656 struct xarray *xarray, loff_t start, size_t count) 657 { 658 BUG_ON(direction & ~1); 659 *i = (struct iov_iter) { 660 .iter_type = ITER_XARRAY, 661 .data_source = direction, 662 .xarray = xarray, 663 .xarray_start = start, 664 .count = count, 665 .iov_offset = 0 666 }; 667 } 668 EXPORT_SYMBOL(iov_iter_xarray); 669 670 /** 671 * iov_iter_discard - Initialise an I/O iterator that discards data 672 * @i: The iterator to initialise. 673 * @direction: The direction of the transfer. 674 * @count: The size of the I/O buffer in bytes. 675 * 676 * Set up an I/O iterator that just discards everything that's written to it. 677 * It's only available as a READ iterator. 678 */ 679 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 680 { 681 BUG_ON(direction != READ); 682 *i = (struct iov_iter){ 683 .iter_type = ITER_DISCARD, 684 .data_source = false, 685 .count = count, 686 .iov_offset = 0 687 }; 688 } 689 EXPORT_SYMBOL(iov_iter_discard); 690 691 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 692 unsigned len_mask) 693 { 694 const struct iovec *iov = iter_iov(i); 695 size_t size = i->count; 696 size_t skip = i->iov_offset; 697 698 do { 699 size_t len = iov->iov_len - skip; 700 701 if (len > size) 702 len = size; 703 if (len & len_mask) 704 return false; 705 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 706 return false; 707 708 iov++; 709 size -= len; 710 skip = 0; 711 } while (size); 712 713 return true; 714 } 715 716 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 717 unsigned len_mask) 718 { 719 const struct bio_vec *bvec = i->bvec; 720 unsigned skip = i->iov_offset; 721 size_t size = i->count; 722 723 do { 724 size_t len = bvec->bv_len; 725 726 if (len > size) 727 len = size; 728 if (len & len_mask) 729 return false; 730 if ((unsigned long)(bvec->bv_offset + skip) & addr_mask) 731 return false; 732 733 bvec++; 734 size -= len; 735 skip = 0; 736 } while (size); 737 738 return true; 739 } 740 741 /** 742 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 743 * are aligned to the parameters. 744 * 745 * @i: &struct iov_iter to restore 746 * @addr_mask: bit mask to check against the iov element's addresses 747 * @len_mask: bit mask to check against the iov element's lengths 748 * 749 * Return: false if any addresses or lengths intersect with the provided masks 750 */ 751 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 752 unsigned len_mask) 753 { 754 if (likely(iter_is_ubuf(i))) { 755 if (i->count & len_mask) 756 return false; 757 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 758 return false; 759 return true; 760 } 761 762 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 763 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 764 765 if (iov_iter_is_bvec(i)) 766 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 767 768 if (iov_iter_is_xarray(i)) { 769 if (i->count & len_mask) 770 return false; 771 if ((i->xarray_start + i->iov_offset) & addr_mask) 772 return false; 773 } 774 775 return true; 776 } 777 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 778 779 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 780 { 781 const struct iovec *iov = iter_iov(i); 782 unsigned long res = 0; 783 size_t size = i->count; 784 size_t skip = i->iov_offset; 785 786 do { 787 size_t len = iov->iov_len - skip; 788 if (len) { 789 res |= (unsigned long)iov->iov_base + skip; 790 if (len > size) 791 len = size; 792 res |= len; 793 size -= len; 794 } 795 iov++; 796 skip = 0; 797 } while (size); 798 return res; 799 } 800 801 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 802 { 803 const struct bio_vec *bvec = i->bvec; 804 unsigned res = 0; 805 size_t size = i->count; 806 unsigned skip = i->iov_offset; 807 808 do { 809 size_t len = bvec->bv_len - skip; 810 res |= (unsigned long)bvec->bv_offset + skip; 811 if (len > size) 812 len = size; 813 res |= len; 814 bvec++; 815 size -= len; 816 skip = 0; 817 } while (size); 818 819 return res; 820 } 821 822 unsigned long iov_iter_alignment(const struct iov_iter *i) 823 { 824 if (likely(iter_is_ubuf(i))) { 825 size_t size = i->count; 826 if (size) 827 return ((unsigned long)i->ubuf + i->iov_offset) | size; 828 return 0; 829 } 830 831 /* iovec and kvec have identical layouts */ 832 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 833 return iov_iter_alignment_iovec(i); 834 835 if (iov_iter_is_bvec(i)) 836 return iov_iter_alignment_bvec(i); 837 838 if (iov_iter_is_xarray(i)) 839 return (i->xarray_start + i->iov_offset) | i->count; 840 841 return 0; 842 } 843 EXPORT_SYMBOL(iov_iter_alignment); 844 845 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 846 { 847 unsigned long res = 0; 848 unsigned long v = 0; 849 size_t size = i->count; 850 unsigned k; 851 852 if (iter_is_ubuf(i)) 853 return 0; 854 855 if (WARN_ON(!iter_is_iovec(i))) 856 return ~0U; 857 858 for (k = 0; k < i->nr_segs; k++) { 859 const struct iovec *iov = iter_iov(i) + k; 860 if (iov->iov_len) { 861 unsigned long base = (unsigned long)iov->iov_base; 862 if (v) // if not the first one 863 res |= base | v; // this start | previous end 864 v = base + iov->iov_len; 865 if (size <= iov->iov_len) 866 break; 867 size -= iov->iov_len; 868 } 869 } 870 return res; 871 } 872 EXPORT_SYMBOL(iov_iter_gap_alignment); 873 874 static int want_pages_array(struct page ***res, size_t size, 875 size_t start, unsigned int maxpages) 876 { 877 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 878 879 if (count > maxpages) 880 count = maxpages; 881 WARN_ON(!count); // caller should've prevented that 882 if (!*res) { 883 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 884 if (!*res) 885 return 0; 886 } 887 return count; 888 } 889 890 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 891 pgoff_t index, unsigned int nr_pages) 892 { 893 XA_STATE(xas, xa, index); 894 struct page *page; 895 unsigned int ret = 0; 896 897 rcu_read_lock(); 898 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 899 if (xas_retry(&xas, page)) 900 continue; 901 902 /* Has the page moved or been split? */ 903 if (unlikely(page != xas_reload(&xas))) { 904 xas_reset(&xas); 905 continue; 906 } 907 908 pages[ret] = find_subpage(page, xas.xa_index); 909 get_page(pages[ret]); 910 if (++ret == nr_pages) 911 break; 912 } 913 rcu_read_unlock(); 914 return ret; 915 } 916 917 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 918 struct page ***pages, size_t maxsize, 919 unsigned maxpages, size_t *_start_offset) 920 { 921 unsigned nr, offset, count; 922 pgoff_t index; 923 loff_t pos; 924 925 pos = i->xarray_start + i->iov_offset; 926 index = pos >> PAGE_SHIFT; 927 offset = pos & ~PAGE_MASK; 928 *_start_offset = offset; 929 930 count = want_pages_array(pages, maxsize, offset, maxpages); 931 if (!count) 932 return -ENOMEM; 933 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 934 if (nr == 0) 935 return 0; 936 937 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 938 i->iov_offset += maxsize; 939 i->count -= maxsize; 940 return maxsize; 941 } 942 943 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 944 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 945 { 946 size_t skip; 947 long k; 948 949 if (iter_is_ubuf(i)) 950 return (unsigned long)i->ubuf + i->iov_offset; 951 952 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 953 const struct iovec *iov = iter_iov(i) + k; 954 size_t len = iov->iov_len - skip; 955 956 if (unlikely(!len)) 957 continue; 958 if (*size > len) 959 *size = len; 960 return (unsigned long)iov->iov_base + skip; 961 } 962 BUG(); // if it had been empty, we wouldn't get called 963 } 964 965 /* must be done on non-empty ITER_BVEC one */ 966 static struct page *first_bvec_segment(const struct iov_iter *i, 967 size_t *size, size_t *start) 968 { 969 struct page *page; 970 size_t skip = i->iov_offset, len; 971 972 len = i->bvec->bv_len - skip; 973 if (*size > len) 974 *size = len; 975 skip += i->bvec->bv_offset; 976 page = i->bvec->bv_page + skip / PAGE_SIZE; 977 *start = skip % PAGE_SIZE; 978 return page; 979 } 980 981 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 982 struct page ***pages, size_t maxsize, 983 unsigned int maxpages, size_t *start) 984 { 985 unsigned int n, gup_flags = 0; 986 987 if (maxsize > i->count) 988 maxsize = i->count; 989 if (!maxsize) 990 return 0; 991 if (maxsize > MAX_RW_COUNT) 992 maxsize = MAX_RW_COUNT; 993 994 if (likely(user_backed_iter(i))) { 995 unsigned long addr; 996 int res; 997 998 if (iov_iter_rw(i) != WRITE) 999 gup_flags |= FOLL_WRITE; 1000 if (i->nofault) 1001 gup_flags |= FOLL_NOFAULT; 1002 1003 addr = first_iovec_segment(i, &maxsize); 1004 *start = addr % PAGE_SIZE; 1005 addr &= PAGE_MASK; 1006 n = want_pages_array(pages, maxsize, *start, maxpages); 1007 if (!n) 1008 return -ENOMEM; 1009 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1010 if (unlikely(res <= 0)) 1011 return res; 1012 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1013 iov_iter_advance(i, maxsize); 1014 return maxsize; 1015 } 1016 if (iov_iter_is_bvec(i)) { 1017 struct page **p; 1018 struct page *page; 1019 1020 page = first_bvec_segment(i, &maxsize, start); 1021 n = want_pages_array(pages, maxsize, *start, maxpages); 1022 if (!n) 1023 return -ENOMEM; 1024 p = *pages; 1025 for (int k = 0; k < n; k++) 1026 get_page(p[k] = page + k); 1027 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1028 i->count -= maxsize; 1029 i->iov_offset += maxsize; 1030 if (i->iov_offset == i->bvec->bv_len) { 1031 i->iov_offset = 0; 1032 i->bvec++; 1033 i->nr_segs--; 1034 } 1035 return maxsize; 1036 } 1037 if (iov_iter_is_xarray(i)) 1038 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1039 return -EFAULT; 1040 } 1041 1042 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1043 size_t maxsize, unsigned maxpages, size_t *start) 1044 { 1045 if (!maxpages) 1046 return 0; 1047 BUG_ON(!pages); 1048 1049 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1050 } 1051 EXPORT_SYMBOL(iov_iter_get_pages2); 1052 1053 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1054 struct page ***pages, size_t maxsize, size_t *start) 1055 { 1056 ssize_t len; 1057 1058 *pages = NULL; 1059 1060 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1061 if (len <= 0) { 1062 kvfree(*pages); 1063 *pages = NULL; 1064 } 1065 return len; 1066 } 1067 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1068 1069 static int iov_npages(const struct iov_iter *i, int maxpages) 1070 { 1071 size_t skip = i->iov_offset, size = i->count; 1072 const struct iovec *p; 1073 int npages = 0; 1074 1075 for (p = iter_iov(i); size; skip = 0, p++) { 1076 unsigned offs = offset_in_page(p->iov_base + skip); 1077 size_t len = min(p->iov_len - skip, size); 1078 1079 if (len) { 1080 size -= len; 1081 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1082 if (unlikely(npages > maxpages)) 1083 return maxpages; 1084 } 1085 } 1086 return npages; 1087 } 1088 1089 static int bvec_npages(const struct iov_iter *i, int maxpages) 1090 { 1091 size_t skip = i->iov_offset, size = i->count; 1092 const struct bio_vec *p; 1093 int npages = 0; 1094 1095 for (p = i->bvec; size; skip = 0, p++) { 1096 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1097 size_t len = min(p->bv_len - skip, size); 1098 1099 size -= len; 1100 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1101 if (unlikely(npages > maxpages)) 1102 return maxpages; 1103 } 1104 return npages; 1105 } 1106 1107 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1108 { 1109 if (unlikely(!i->count)) 1110 return 0; 1111 if (likely(iter_is_ubuf(i))) { 1112 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1113 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1114 return min(npages, maxpages); 1115 } 1116 /* iovec and kvec have identical layouts */ 1117 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1118 return iov_npages(i, maxpages); 1119 if (iov_iter_is_bvec(i)) 1120 return bvec_npages(i, maxpages); 1121 if (iov_iter_is_xarray(i)) { 1122 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1123 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1124 return min(npages, maxpages); 1125 } 1126 return 0; 1127 } 1128 EXPORT_SYMBOL(iov_iter_npages); 1129 1130 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1131 { 1132 *new = *old; 1133 if (iov_iter_is_bvec(new)) 1134 return new->bvec = kmemdup(new->bvec, 1135 new->nr_segs * sizeof(struct bio_vec), 1136 flags); 1137 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1138 /* iovec and kvec have identical layout */ 1139 return new->__iov = kmemdup(new->__iov, 1140 new->nr_segs * sizeof(struct iovec), 1141 flags); 1142 return NULL; 1143 } 1144 EXPORT_SYMBOL(dup_iter); 1145 1146 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1147 const struct iovec __user *uvec, u32 nr_segs) 1148 { 1149 const struct compat_iovec __user *uiov = 1150 (const struct compat_iovec __user *)uvec; 1151 int ret = -EFAULT; 1152 u32 i; 1153 1154 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1155 return -EFAULT; 1156 1157 for (i = 0; i < nr_segs; i++) { 1158 compat_uptr_t buf; 1159 compat_ssize_t len; 1160 1161 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1162 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1163 1164 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1165 if (len < 0) { 1166 ret = -EINVAL; 1167 goto uaccess_end; 1168 } 1169 iov[i].iov_base = compat_ptr(buf); 1170 iov[i].iov_len = len; 1171 } 1172 1173 ret = 0; 1174 uaccess_end: 1175 user_access_end(); 1176 return ret; 1177 } 1178 1179 static __noclone int copy_iovec_from_user(struct iovec *iov, 1180 const struct iovec __user *uiov, unsigned long nr_segs) 1181 { 1182 int ret = -EFAULT; 1183 1184 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1185 return -EFAULT; 1186 1187 do { 1188 void __user *buf; 1189 ssize_t len; 1190 1191 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1192 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1193 1194 /* check for size_t not fitting in ssize_t .. */ 1195 if (unlikely(len < 0)) { 1196 ret = -EINVAL; 1197 goto uaccess_end; 1198 } 1199 iov->iov_base = buf; 1200 iov->iov_len = len; 1201 1202 uiov++; iov++; 1203 } while (--nr_segs); 1204 1205 ret = 0; 1206 uaccess_end: 1207 user_access_end(); 1208 return ret; 1209 } 1210 1211 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1212 unsigned long nr_segs, unsigned long fast_segs, 1213 struct iovec *fast_iov, bool compat) 1214 { 1215 struct iovec *iov = fast_iov; 1216 int ret; 1217 1218 /* 1219 * SuS says "The readv() function *may* fail if the iovcnt argument was 1220 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1221 * traditionally returned zero for zero segments, so... 1222 */ 1223 if (nr_segs == 0) 1224 return iov; 1225 if (nr_segs > UIO_MAXIOV) 1226 return ERR_PTR(-EINVAL); 1227 if (nr_segs > fast_segs) { 1228 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1229 if (!iov) 1230 return ERR_PTR(-ENOMEM); 1231 } 1232 1233 if (unlikely(compat)) 1234 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1235 else 1236 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1237 if (ret) { 1238 if (iov != fast_iov) 1239 kfree(iov); 1240 return ERR_PTR(ret); 1241 } 1242 1243 return iov; 1244 } 1245 1246 /* 1247 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1248 */ 1249 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1250 struct iovec **iovp, struct iov_iter *i, 1251 bool compat) 1252 { 1253 struct iovec *iov = *iovp; 1254 ssize_t ret; 1255 1256 if (compat) 1257 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1258 else 1259 ret = copy_iovec_from_user(iov, uvec, 1); 1260 if (unlikely(ret)) 1261 return ret; 1262 1263 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1264 if (unlikely(ret)) 1265 return ret; 1266 *iovp = NULL; 1267 return i->count; 1268 } 1269 1270 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1271 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1272 struct iov_iter *i, bool compat) 1273 { 1274 ssize_t total_len = 0; 1275 unsigned long seg; 1276 struct iovec *iov; 1277 1278 if (nr_segs == 1) 1279 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1280 1281 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1282 if (IS_ERR(iov)) { 1283 *iovp = NULL; 1284 return PTR_ERR(iov); 1285 } 1286 1287 /* 1288 * According to the Single Unix Specification we should return EINVAL if 1289 * an element length is < 0 when cast to ssize_t or if the total length 1290 * would overflow the ssize_t return value of the system call. 1291 * 1292 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1293 * overflow case. 1294 */ 1295 for (seg = 0; seg < nr_segs; seg++) { 1296 ssize_t len = (ssize_t)iov[seg].iov_len; 1297 1298 if (!access_ok(iov[seg].iov_base, len)) { 1299 if (iov != *iovp) 1300 kfree(iov); 1301 *iovp = NULL; 1302 return -EFAULT; 1303 } 1304 1305 if (len > MAX_RW_COUNT - total_len) { 1306 len = MAX_RW_COUNT - total_len; 1307 iov[seg].iov_len = len; 1308 } 1309 total_len += len; 1310 } 1311 1312 iov_iter_init(i, type, iov, nr_segs, total_len); 1313 if (iov == *iovp) 1314 *iovp = NULL; 1315 else 1316 *iovp = iov; 1317 return total_len; 1318 } 1319 1320 /** 1321 * import_iovec() - Copy an array of &struct iovec from userspace 1322 * into the kernel, check that it is valid, and initialize a new 1323 * &struct iov_iter iterator to access it. 1324 * 1325 * @type: One of %READ or %WRITE. 1326 * @uvec: Pointer to the userspace array. 1327 * @nr_segs: Number of elements in userspace array. 1328 * @fast_segs: Number of elements in @iov. 1329 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1330 * on-stack) kernel array. 1331 * @i: Pointer to iterator that will be initialized on success. 1332 * 1333 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1334 * then this function places %NULL in *@iov on return. Otherwise, a new 1335 * array will be allocated and the result placed in *@iov. This means that 1336 * the caller may call kfree() on *@iov regardless of whether the small 1337 * on-stack array was used or not (and regardless of whether this function 1338 * returns an error or not). 1339 * 1340 * Return: Negative error code on error, bytes imported on success 1341 */ 1342 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1343 unsigned nr_segs, unsigned fast_segs, 1344 struct iovec **iovp, struct iov_iter *i) 1345 { 1346 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1347 in_compat_syscall()); 1348 } 1349 EXPORT_SYMBOL(import_iovec); 1350 1351 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1352 { 1353 if (len > MAX_RW_COUNT) 1354 len = MAX_RW_COUNT; 1355 if (unlikely(!access_ok(buf, len))) 1356 return -EFAULT; 1357 1358 iov_iter_ubuf(i, rw, buf, len); 1359 return 0; 1360 } 1361 EXPORT_SYMBOL_GPL(import_ubuf); 1362 1363 /** 1364 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1365 * iov_iter_save_state() was called. 1366 * 1367 * @i: &struct iov_iter to restore 1368 * @state: state to restore from 1369 * 1370 * Used after iov_iter_save_state() to bring restore @i, if operations may 1371 * have advanced it. 1372 * 1373 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1374 */ 1375 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1376 { 1377 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1378 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1379 return; 1380 i->iov_offset = state->iov_offset; 1381 i->count = state->count; 1382 if (iter_is_ubuf(i)) 1383 return; 1384 /* 1385 * For the *vec iters, nr_segs + iov is constant - if we increment 1386 * the vec, then we also decrement the nr_segs count. Hence we don't 1387 * need to track both of these, just one is enough and we can deduct 1388 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1389 * size, so we can just increment the iov pointer as they are unionzed. 1390 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1391 * not. Be safe and handle it separately. 1392 */ 1393 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1394 if (iov_iter_is_bvec(i)) 1395 i->bvec -= state->nr_segs - i->nr_segs; 1396 else 1397 i->__iov -= state->nr_segs - i->nr_segs; 1398 i->nr_segs = state->nr_segs; 1399 } 1400 1401 /* 1402 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1403 * get references on the pages, nor does it get a pin on them. 1404 */ 1405 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1406 struct page ***pages, size_t maxsize, 1407 unsigned int maxpages, 1408 iov_iter_extraction_t extraction_flags, 1409 size_t *offset0) 1410 { 1411 struct page *page, **p; 1412 unsigned int nr = 0, offset; 1413 loff_t pos = i->xarray_start + i->iov_offset; 1414 pgoff_t index = pos >> PAGE_SHIFT; 1415 XA_STATE(xas, i->xarray, index); 1416 1417 offset = pos & ~PAGE_MASK; 1418 *offset0 = offset; 1419 1420 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1421 if (!maxpages) 1422 return -ENOMEM; 1423 p = *pages; 1424 1425 rcu_read_lock(); 1426 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1427 if (xas_retry(&xas, page)) 1428 continue; 1429 1430 /* Has the page moved or been split? */ 1431 if (unlikely(page != xas_reload(&xas))) { 1432 xas_reset(&xas); 1433 continue; 1434 } 1435 1436 p[nr++] = find_subpage(page, xas.xa_index); 1437 if (nr == maxpages) 1438 break; 1439 } 1440 rcu_read_unlock(); 1441 1442 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1443 iov_iter_advance(i, maxsize); 1444 return maxsize; 1445 } 1446 1447 /* 1448 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does 1449 * not get references on the pages, nor does it get a pin on them. 1450 */ 1451 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1452 struct page ***pages, size_t maxsize, 1453 unsigned int maxpages, 1454 iov_iter_extraction_t extraction_flags, 1455 size_t *offset0) 1456 { 1457 struct page **p, *page; 1458 size_t skip = i->iov_offset, offset, size; 1459 int k; 1460 1461 for (;;) { 1462 if (i->nr_segs == 0) 1463 return 0; 1464 size = min(maxsize, i->bvec->bv_len - skip); 1465 if (size) 1466 break; 1467 i->iov_offset = 0; 1468 i->nr_segs--; 1469 i->bvec++; 1470 skip = 0; 1471 } 1472 1473 skip += i->bvec->bv_offset; 1474 page = i->bvec->bv_page + skip / PAGE_SIZE; 1475 offset = skip % PAGE_SIZE; 1476 *offset0 = offset; 1477 1478 maxpages = want_pages_array(pages, size, offset, maxpages); 1479 if (!maxpages) 1480 return -ENOMEM; 1481 p = *pages; 1482 for (k = 0; k < maxpages; k++) 1483 p[k] = page + k; 1484 1485 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1486 iov_iter_advance(i, size); 1487 return size; 1488 } 1489 1490 /* 1491 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1492 * This does not get references on the pages, nor does it get a pin on them. 1493 */ 1494 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1495 struct page ***pages, size_t maxsize, 1496 unsigned int maxpages, 1497 iov_iter_extraction_t extraction_flags, 1498 size_t *offset0) 1499 { 1500 struct page **p, *page; 1501 const void *kaddr; 1502 size_t skip = i->iov_offset, offset, len, size; 1503 int k; 1504 1505 for (;;) { 1506 if (i->nr_segs == 0) 1507 return 0; 1508 size = min(maxsize, i->kvec->iov_len - skip); 1509 if (size) 1510 break; 1511 i->iov_offset = 0; 1512 i->nr_segs--; 1513 i->kvec++; 1514 skip = 0; 1515 } 1516 1517 kaddr = i->kvec->iov_base + skip; 1518 offset = (unsigned long)kaddr & ~PAGE_MASK; 1519 *offset0 = offset; 1520 1521 maxpages = want_pages_array(pages, size, offset, maxpages); 1522 if (!maxpages) 1523 return -ENOMEM; 1524 p = *pages; 1525 1526 kaddr -= offset; 1527 len = offset + size; 1528 for (k = 0; k < maxpages; k++) { 1529 size_t seg = min_t(size_t, len, PAGE_SIZE); 1530 1531 if (is_vmalloc_or_module_addr(kaddr)) 1532 page = vmalloc_to_page(kaddr); 1533 else 1534 page = virt_to_page(kaddr); 1535 1536 p[k] = page; 1537 len -= seg; 1538 kaddr += PAGE_SIZE; 1539 } 1540 1541 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1542 iov_iter_advance(i, size); 1543 return size; 1544 } 1545 1546 /* 1547 * Extract a list of contiguous pages from a user iterator and get a pin on 1548 * each of them. This should only be used if the iterator is user-backed 1549 * (IOBUF/UBUF). 1550 * 1551 * It does not get refs on the pages, but the pages must be unpinned by the 1552 * caller once the transfer is complete. 1553 * 1554 * This is safe to be used where background IO/DMA *is* going to be modifying 1555 * the buffer; using a pin rather than a ref makes forces fork() to give the 1556 * child a copy of the page. 1557 */ 1558 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1559 struct page ***pages, 1560 size_t maxsize, 1561 unsigned int maxpages, 1562 iov_iter_extraction_t extraction_flags, 1563 size_t *offset0) 1564 { 1565 unsigned long addr; 1566 unsigned int gup_flags = 0; 1567 size_t offset; 1568 int res; 1569 1570 if (i->data_source == ITER_DEST) 1571 gup_flags |= FOLL_WRITE; 1572 if (extraction_flags & ITER_ALLOW_P2PDMA) 1573 gup_flags |= FOLL_PCI_P2PDMA; 1574 if (i->nofault) 1575 gup_flags |= FOLL_NOFAULT; 1576 1577 addr = first_iovec_segment(i, &maxsize); 1578 *offset0 = offset = addr % PAGE_SIZE; 1579 addr &= PAGE_MASK; 1580 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1581 if (!maxpages) 1582 return -ENOMEM; 1583 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1584 if (unlikely(res <= 0)) 1585 return res; 1586 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1587 iov_iter_advance(i, maxsize); 1588 return maxsize; 1589 } 1590 1591 /** 1592 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1593 * @i: The iterator to extract from 1594 * @pages: Where to return the list of pages 1595 * @maxsize: The maximum amount of iterator to extract 1596 * @maxpages: The maximum size of the list of pages 1597 * @extraction_flags: Flags to qualify request 1598 * @offset0: Where to return the starting offset into (*@pages)[0] 1599 * 1600 * Extract a list of contiguous pages from the current point of the iterator, 1601 * advancing the iterator. The maximum number of pages and the maximum amount 1602 * of page contents can be set. 1603 * 1604 * If *@pages is NULL, a page list will be allocated to the required size and 1605 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1606 * that the caller allocated a page list at least @maxpages in size and this 1607 * will be filled in. 1608 * 1609 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1610 * be allowed on the pages extracted. 1611 * 1612 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1613 * should be performed. 1614 * 1615 * Extra refs or pins on the pages may be obtained as follows: 1616 * 1617 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1618 * added to the pages, but refs will not be taken. 1619 * iov_iter_extract_will_pin() will return true. 1620 * 1621 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are 1622 * merely listed; no extra refs or pins are obtained. 1623 * iov_iter_extract_will_pin() will return 0. 1624 * 1625 * Note also: 1626 * 1627 * (*) Use with ITER_DISCARD is not supported as that has no content. 1628 * 1629 * On success, the function sets *@pages to the new pagelist, if allocated, and 1630 * sets *offset0 to the offset into the first page. 1631 * 1632 * It may also return -ENOMEM and -EFAULT. 1633 */ 1634 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1635 struct page ***pages, 1636 size_t maxsize, 1637 unsigned int maxpages, 1638 iov_iter_extraction_t extraction_flags, 1639 size_t *offset0) 1640 { 1641 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1642 if (!maxsize) 1643 return 0; 1644 1645 if (likely(user_backed_iter(i))) 1646 return iov_iter_extract_user_pages(i, pages, maxsize, 1647 maxpages, extraction_flags, 1648 offset0); 1649 if (iov_iter_is_kvec(i)) 1650 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1651 maxpages, extraction_flags, 1652 offset0); 1653 if (iov_iter_is_bvec(i)) 1654 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1655 maxpages, extraction_flags, 1656 offset0); 1657 if (iov_iter_is_xarray(i)) 1658 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1659 maxpages, extraction_flags, 1660 offset0); 1661 return -EFAULT; 1662 } 1663 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1664
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.