1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 * Copyright (c) 2023 ByteDance 8 * Author: Peng Zhang <zhangpeng.00@bytedance.com> 9 */ 10 11 /* 12 * DOC: Interesting implementation details of the Maple Tree 13 * 14 * Each node type has a number of slots for entries and a number of slots for 15 * pivots. In the case of dense nodes, the pivots are implied by the position 16 * and are simply the slot index + the minimum of the node. 17 * 18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 19 * indicate that the tree is specifying ranges. Pivots may appear in the 20 * subtree with an entry attached to the value whereas keys are unique to a 21 * specific position of a B-tree. Pivot values are inclusive of the slot with 22 * the same index. 23 * 24 * 25 * The following illustrates the layout of a range64 nodes slots and pivots. 26 * 27 * 28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 30 * │ │ │ │ │ │ │ │ └─ Implied maximum 31 * │ │ │ │ │ │ │ └─ Pivot 14 32 * │ │ │ │ │ │ └─ Pivot 13 33 * │ │ │ │ │ └─ Pivot 12 34 * │ │ │ │ └─ Pivot 11 35 * │ │ │ └─ Pivot 2 36 * │ │ └─ Pivot 1 37 * │ └─ Pivot 0 38 * └─ Implied minimum 39 * 40 * Slot contents: 41 * Internal (non-leaf) nodes contain pointers to other nodes. 42 * Leaf nodes contain entries. 43 * 44 * The location of interest is often referred to as an offset. All offsets have 45 * a slot, but the last offset has an implied pivot from the node above (or 46 * UINT_MAX for the root node. 47 * 48 * Ranges complicate certain write activities. When modifying any of 49 * the B-tree variants, it is known that one entry will either be added or 50 * deleted. When modifying the Maple Tree, one store operation may overwrite 51 * the entire data set, or one half of the tree, or the middle half of the tree. 52 * 53 */ 54 55 56 #include <linux/maple_tree.h> 57 #include <linux/xarray.h> 58 #include <linux/types.h> 59 #include <linux/export.h> 60 #include <linux/slab.h> 61 #include <linux/limits.h> 62 #include <asm/barrier.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/maple_tree.h> 66 67 #define MA_ROOT_PARENT 1 68 69 /* 70 * Maple state flags 71 * * MA_STATE_BULK - Bulk insert mode 72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 74 */ 75 #define MA_STATE_BULK 1 76 #define MA_STATE_REBALANCE 2 77 #define MA_STATE_PREALLOC 4 78 79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) 81 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 82 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 83 static struct kmem_cache *maple_node_cache; 84 85 #ifdef CONFIG_DEBUG_MAPLE_TREE 86 static const unsigned long mt_max[] = { 87 [maple_dense] = MAPLE_NODE_SLOTS, 88 [maple_leaf_64] = ULONG_MAX, 89 [maple_range_64] = ULONG_MAX, 90 [maple_arange_64] = ULONG_MAX, 91 }; 92 #define mt_node_max(x) mt_max[mte_node_type(x)] 93 #endif 94 95 static const unsigned char mt_slots[] = { 96 [maple_dense] = MAPLE_NODE_SLOTS, 97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 98 [maple_range_64] = MAPLE_RANGE64_SLOTS, 99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 100 }; 101 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 102 103 static const unsigned char mt_pivots[] = { 104 [maple_dense] = 0, 105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 108 }; 109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 110 111 static const unsigned char mt_min_slots[] = { 112 [maple_dense] = MAPLE_NODE_SLOTS / 2, 113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 116 }; 117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 118 119 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 120 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 121 122 struct maple_big_node { 123 struct maple_pnode *parent; 124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 125 union { 126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 127 struct { 128 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 129 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 130 }; 131 }; 132 unsigned char b_end; 133 enum maple_type type; 134 }; 135 136 /* 137 * The maple_subtree_state is used to build a tree to replace a segment of an 138 * existing tree in a more atomic way. Any walkers of the older tree will hit a 139 * dead node and restart on updates. 140 */ 141 struct maple_subtree_state { 142 struct ma_state *orig_l; /* Original left side of subtree */ 143 struct ma_state *orig_r; /* Original right side of subtree */ 144 struct ma_state *l; /* New left side of subtree */ 145 struct ma_state *m; /* New middle of subtree (rare) */ 146 struct ma_state *r; /* New right side of subtree */ 147 struct ma_topiary *free; /* nodes to be freed */ 148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 149 struct maple_big_node *bn; 150 }; 151 152 #ifdef CONFIG_KASAN_STACK 153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 154 #define noinline_for_kasan noinline_for_stack 155 #else 156 #define noinline_for_kasan inline 157 #endif 158 159 /* Functions */ 160 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 161 { 162 return kmem_cache_alloc(maple_node_cache, gfp); 163 } 164 165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 166 { 167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 168 } 169 170 static inline void mt_free_one(struct maple_node *node) 171 { 172 kmem_cache_free(maple_node_cache, node); 173 } 174 175 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 176 { 177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 178 } 179 180 static void mt_free_rcu(struct rcu_head *head) 181 { 182 struct maple_node *node = container_of(head, struct maple_node, rcu); 183 184 kmem_cache_free(maple_node_cache, node); 185 } 186 187 /* 188 * ma_free_rcu() - Use rcu callback to free a maple node 189 * @node: The node to free 190 * 191 * The maple tree uses the parent pointer to indicate this node is no longer in 192 * use and will be freed. 193 */ 194 static void ma_free_rcu(struct maple_node *node) 195 { 196 WARN_ON(node->parent != ma_parent_ptr(node)); 197 call_rcu(&node->rcu, mt_free_rcu); 198 } 199 200 static void mas_set_height(struct ma_state *mas) 201 { 202 unsigned int new_flags = mas->tree->ma_flags; 203 204 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 207 mas->tree->ma_flags = new_flags; 208 } 209 210 static unsigned int mas_mt_height(struct ma_state *mas) 211 { 212 return mt_height(mas->tree); 213 } 214 215 static inline unsigned int mt_attr(struct maple_tree *mt) 216 { 217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; 218 } 219 220 static __always_inline enum maple_type mte_node_type( 221 const struct maple_enode *entry) 222 { 223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 224 MAPLE_NODE_TYPE_MASK; 225 } 226 227 static __always_inline bool ma_is_dense(const enum maple_type type) 228 { 229 return type < maple_leaf_64; 230 } 231 232 static __always_inline bool ma_is_leaf(const enum maple_type type) 233 { 234 return type < maple_range_64; 235 } 236 237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry) 238 { 239 return ma_is_leaf(mte_node_type(entry)); 240 } 241 242 /* 243 * We also reserve values with the bottom two bits set to '10' which are 244 * below 4096 245 */ 246 static __always_inline bool mt_is_reserved(const void *entry) 247 { 248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 249 xa_is_internal(entry); 250 } 251 252 static __always_inline void mas_set_err(struct ma_state *mas, long err) 253 { 254 mas->node = MA_ERROR(err); 255 mas->status = ma_error; 256 } 257 258 static __always_inline bool mas_is_ptr(const struct ma_state *mas) 259 { 260 return mas->status == ma_root; 261 } 262 263 static __always_inline bool mas_is_start(const struct ma_state *mas) 264 { 265 return mas->status == ma_start; 266 } 267 268 static __always_inline bool mas_is_none(const struct ma_state *mas) 269 { 270 return mas->status == ma_none; 271 } 272 273 static __always_inline bool mas_is_paused(const struct ma_state *mas) 274 { 275 return mas->status == ma_pause; 276 } 277 278 static __always_inline bool mas_is_overflow(struct ma_state *mas) 279 { 280 return mas->status == ma_overflow; 281 } 282 283 static inline bool mas_is_underflow(struct ma_state *mas) 284 { 285 return mas->status == ma_underflow; 286 } 287 288 static __always_inline struct maple_node *mte_to_node( 289 const struct maple_enode *entry) 290 { 291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 292 } 293 294 /* 295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 296 * @entry: The maple encoded node 297 * 298 * Return: a maple topiary pointer 299 */ 300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 301 { 302 return (struct maple_topiary *) 303 ((unsigned long)entry & ~MAPLE_NODE_MASK); 304 } 305 306 /* 307 * mas_mn() - Get the maple state node. 308 * @mas: The maple state 309 * 310 * Return: the maple node (not encoded - bare pointer). 311 */ 312 static inline struct maple_node *mas_mn(const struct ma_state *mas) 313 { 314 return mte_to_node(mas->node); 315 } 316 317 /* 318 * mte_set_node_dead() - Set a maple encoded node as dead. 319 * @mn: The maple encoded node. 320 */ 321 static inline void mte_set_node_dead(struct maple_enode *mn) 322 { 323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 324 smp_wmb(); /* Needed for RCU */ 325 } 326 327 /* Bit 1 indicates the root is a node */ 328 #define MAPLE_ROOT_NODE 0x02 329 /* maple_type stored bit 3-6 */ 330 #define MAPLE_ENODE_TYPE_SHIFT 0x03 331 /* Bit 2 means a NULL somewhere below */ 332 #define MAPLE_ENODE_NULL 0x04 333 334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 335 enum maple_type type) 336 { 337 return (void *)((unsigned long)node | 338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 339 } 340 341 static inline void *mte_mk_root(const struct maple_enode *node) 342 { 343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 344 } 345 346 static inline void *mte_safe_root(const struct maple_enode *node) 347 { 348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 349 } 350 351 static inline void *mte_set_full(const struct maple_enode *node) 352 { 353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 354 } 355 356 static inline void *mte_clear_full(const struct maple_enode *node) 357 { 358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 359 } 360 361 static inline bool mte_has_null(const struct maple_enode *node) 362 { 363 return (unsigned long)node & MAPLE_ENODE_NULL; 364 } 365 366 static __always_inline bool ma_is_root(struct maple_node *node) 367 { 368 return ((unsigned long)node->parent & MA_ROOT_PARENT); 369 } 370 371 static __always_inline bool mte_is_root(const struct maple_enode *node) 372 { 373 return ma_is_root(mte_to_node(node)); 374 } 375 376 static inline bool mas_is_root_limits(const struct ma_state *mas) 377 { 378 return !mas->min && mas->max == ULONG_MAX; 379 } 380 381 static __always_inline bool mt_is_alloc(struct maple_tree *mt) 382 { 383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 384 } 385 386 /* 387 * The Parent Pointer 388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 390 * bit values need an extra bit to store the offset. This extra bit comes from 391 * a reuse of the last bit in the node type. This is possible by using bit 1 to 392 * indicate if bit 2 is part of the type or the slot. 393 * 394 * Note types: 395 * 0x??1 = Root 396 * 0x?00 = 16 bit nodes 397 * 0x010 = 32 bit nodes 398 * 0x110 = 64 bit nodes 399 * 400 * Slot size and alignment 401 * 0b??1 : Root 402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 405 */ 406 407 #define MAPLE_PARENT_ROOT 0x01 408 409 #define MAPLE_PARENT_SLOT_SHIFT 0x03 410 #define MAPLE_PARENT_SLOT_MASK 0xF8 411 412 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 413 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 414 415 #define MAPLE_PARENT_RANGE64 0x06 416 #define MAPLE_PARENT_RANGE32 0x04 417 #define MAPLE_PARENT_NOT_RANGE16 0x02 418 419 /* 420 * mte_parent_shift() - Get the parent shift for the slot storage. 421 * @parent: The parent pointer cast as an unsigned long 422 * Return: The shift into that pointer to the star to of the slot 423 */ 424 static inline unsigned long mte_parent_shift(unsigned long parent) 425 { 426 /* Note bit 1 == 0 means 16B */ 427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 428 return MAPLE_PARENT_SLOT_SHIFT; 429 430 return MAPLE_PARENT_16B_SLOT_SHIFT; 431 } 432 433 /* 434 * mte_parent_slot_mask() - Get the slot mask for the parent. 435 * @parent: The parent pointer cast as an unsigned long. 436 * Return: The slot mask for that parent. 437 */ 438 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 439 { 440 /* Note bit 1 == 0 means 16B */ 441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 442 return MAPLE_PARENT_SLOT_MASK; 443 444 return MAPLE_PARENT_16B_SLOT_MASK; 445 } 446 447 /* 448 * mas_parent_type() - Return the maple_type of the parent from the stored 449 * parent type. 450 * @mas: The maple state 451 * @enode: The maple_enode to extract the parent's enum 452 * Return: The node->parent maple_type 453 */ 454 static inline 455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 456 { 457 unsigned long p_type; 458 459 p_type = (unsigned long)mte_to_node(enode)->parent; 460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 461 return 0; 462 463 p_type &= MAPLE_NODE_MASK; 464 p_type &= ~mte_parent_slot_mask(p_type); 465 switch (p_type) { 466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 467 if (mt_is_alloc(mas->tree)) 468 return maple_arange_64; 469 return maple_range_64; 470 } 471 472 return 0; 473 } 474 475 /* 476 * mas_set_parent() - Set the parent node and encode the slot 477 * @enode: The encoded maple node. 478 * @parent: The encoded maple node that is the parent of @enode. 479 * @slot: The slot that @enode resides in @parent. 480 * 481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 482 * parent type. 483 */ 484 static inline 485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 486 const struct maple_enode *parent, unsigned char slot) 487 { 488 unsigned long val = (unsigned long)parent; 489 unsigned long shift; 490 unsigned long type; 491 enum maple_type p_type = mte_node_type(parent); 492 493 MAS_BUG_ON(mas, p_type == maple_dense); 494 MAS_BUG_ON(mas, p_type == maple_leaf_64); 495 496 switch (p_type) { 497 case maple_range_64: 498 case maple_arange_64: 499 shift = MAPLE_PARENT_SLOT_SHIFT; 500 type = MAPLE_PARENT_RANGE64; 501 break; 502 default: 503 case maple_dense: 504 case maple_leaf_64: 505 shift = type = 0; 506 break; 507 } 508 509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 510 val |= (slot << shift) | type; 511 mte_to_node(enode)->parent = ma_parent_ptr(val); 512 } 513 514 /* 515 * mte_parent_slot() - get the parent slot of @enode. 516 * @enode: The encoded maple node. 517 * 518 * Return: The slot in the parent node where @enode resides. 519 */ 520 static __always_inline 521 unsigned int mte_parent_slot(const struct maple_enode *enode) 522 { 523 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 524 525 if (unlikely(val & MA_ROOT_PARENT)) 526 return 0; 527 528 /* 529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 531 */ 532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 533 } 534 535 /* 536 * mte_parent() - Get the parent of @node. 537 * @node: The encoded maple node. 538 * 539 * Return: The parent maple node. 540 */ 541 static __always_inline 542 struct maple_node *mte_parent(const struct maple_enode *enode) 543 { 544 return (void *)((unsigned long) 545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 546 } 547 548 /* 549 * ma_dead_node() - check if the @enode is dead. 550 * @enode: The encoded maple node 551 * 552 * Return: true if dead, false otherwise. 553 */ 554 static __always_inline bool ma_dead_node(const struct maple_node *node) 555 { 556 struct maple_node *parent; 557 558 /* Do not reorder reads from the node prior to the parent check */ 559 smp_rmb(); 560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 561 return (parent == node); 562 } 563 564 /* 565 * mte_dead_node() - check if the @enode is dead. 566 * @enode: The encoded maple node 567 * 568 * Return: true if dead, false otherwise. 569 */ 570 static __always_inline bool mte_dead_node(const struct maple_enode *enode) 571 { 572 struct maple_node *parent, *node; 573 574 node = mte_to_node(enode); 575 /* Do not reorder reads from the node prior to the parent check */ 576 smp_rmb(); 577 parent = mte_parent(enode); 578 return (parent == node); 579 } 580 581 /* 582 * mas_allocated() - Get the number of nodes allocated in a maple state. 583 * @mas: The maple state 584 * 585 * The ma_state alloc member is overloaded to hold a pointer to the first 586 * allocated node or to the number of requested nodes to allocate. If bit 0 is 587 * set, then the alloc contains the number of requested nodes. If there is an 588 * allocated node, then the total allocated nodes is in that node. 589 * 590 * Return: The total number of nodes allocated 591 */ 592 static inline unsigned long mas_allocated(const struct ma_state *mas) 593 { 594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 595 return 0; 596 597 return mas->alloc->total; 598 } 599 600 /* 601 * mas_set_alloc_req() - Set the requested number of allocations. 602 * @mas: the maple state 603 * @count: the number of allocations. 604 * 605 * The requested number of allocations is either in the first allocated node, 606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 607 * no allocated node. Set the request either in the node or do the necessary 608 * encoding to store in @mas->alloc directly. 609 */ 610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 611 { 612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 613 if (!count) 614 mas->alloc = NULL; 615 else 616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 617 return; 618 } 619 620 mas->alloc->request_count = count; 621 } 622 623 /* 624 * mas_alloc_req() - get the requested number of allocations. 625 * @mas: The maple state 626 * 627 * The alloc count is either stored directly in @mas, or in 628 * @mas->alloc->request_count if there is at least one node allocated. Decode 629 * the request count if it's stored directly in @mas->alloc. 630 * 631 * Return: The allocation request count. 632 */ 633 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 634 { 635 if ((unsigned long)mas->alloc & 0x1) 636 return (unsigned long)(mas->alloc) >> 1; 637 else if (mas->alloc) 638 return mas->alloc->request_count; 639 return 0; 640 } 641 642 /* 643 * ma_pivots() - Get a pointer to the maple node pivots. 644 * @node - the maple node 645 * @type - the node type 646 * 647 * In the event of a dead node, this array may be %NULL 648 * 649 * Return: A pointer to the maple node pivots 650 */ 651 static inline unsigned long *ma_pivots(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.pivot; 657 case maple_range_64: 658 case maple_leaf_64: 659 return node->mr64.pivot; 660 case maple_dense: 661 return NULL; 662 } 663 return NULL; 664 } 665 666 /* 667 * ma_gaps() - Get a pointer to the maple node gaps. 668 * @node - the maple node 669 * @type - the node type 670 * 671 * Return: A pointer to the maple node gaps 672 */ 673 static inline unsigned long *ma_gaps(struct maple_node *node, 674 enum maple_type type) 675 { 676 switch (type) { 677 case maple_arange_64: 678 return node->ma64.gap; 679 case maple_range_64: 680 case maple_leaf_64: 681 case maple_dense: 682 return NULL; 683 } 684 return NULL; 685 } 686 687 /* 688 * mas_safe_pivot() - get the pivot at @piv or mas->max. 689 * @mas: The maple state 690 * @pivots: The pointer to the maple node pivots 691 * @piv: The pivot to fetch 692 * @type: The maple node type 693 * 694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 695 * otherwise. 696 */ 697 static __always_inline unsigned long 698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 699 unsigned char piv, enum maple_type type) 700 { 701 if (piv >= mt_pivots[type]) 702 return mas->max; 703 704 return pivots[piv]; 705 } 706 707 /* 708 * mas_safe_min() - Return the minimum for a given offset. 709 * @mas: The maple state 710 * @pivots: The pointer to the maple node pivots 711 * @offset: The offset into the pivot array 712 * 713 * Return: The minimum range value that is contained in @offset. 714 */ 715 static inline unsigned long 716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 717 { 718 if (likely(offset)) 719 return pivots[offset - 1] + 1; 720 721 return mas->min; 722 } 723 724 /* 725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 726 * @mn: The encoded maple node 727 * @piv: The pivot offset 728 * @val: The value of the pivot 729 */ 730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 731 unsigned long val) 732 { 733 struct maple_node *node = mte_to_node(mn); 734 enum maple_type type = mte_node_type(mn); 735 736 BUG_ON(piv >= mt_pivots[type]); 737 switch (type) { 738 case maple_range_64: 739 case maple_leaf_64: 740 node->mr64.pivot[piv] = val; 741 break; 742 case maple_arange_64: 743 node->ma64.pivot[piv] = val; 744 break; 745 case maple_dense: 746 break; 747 } 748 749 } 750 751 /* 752 * ma_slots() - Get a pointer to the maple node slots. 753 * @mn: The maple node 754 * @mt: The maple node type 755 * 756 * Return: A pointer to the maple node slots 757 */ 758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 759 { 760 switch (mt) { 761 case maple_arange_64: 762 return mn->ma64.slot; 763 case maple_range_64: 764 case maple_leaf_64: 765 return mn->mr64.slot; 766 case maple_dense: 767 return mn->slot; 768 } 769 770 return NULL; 771 } 772 773 static inline bool mt_write_locked(const struct maple_tree *mt) 774 { 775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : 776 lockdep_is_held(&mt->ma_lock); 777 } 778 779 static __always_inline bool mt_locked(const struct maple_tree *mt) 780 { 781 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 782 lockdep_is_held(&mt->ma_lock); 783 } 784 785 static __always_inline void *mt_slot(const struct maple_tree *mt, 786 void __rcu **slots, unsigned char offset) 787 { 788 return rcu_dereference_check(slots[offset], mt_locked(mt)); 789 } 790 791 static __always_inline void *mt_slot_locked(struct maple_tree *mt, 792 void __rcu **slots, unsigned char offset) 793 { 794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); 795 } 796 /* 797 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 798 * @mas: The maple state 799 * @slots: The pointer to the slots 800 * @offset: The offset into the slots array to fetch 801 * 802 * Return: The entry stored in @slots at the @offset. 803 */ 804 static __always_inline void *mas_slot_locked(struct ma_state *mas, 805 void __rcu **slots, unsigned char offset) 806 { 807 return mt_slot_locked(mas->tree, slots, offset); 808 } 809 810 /* 811 * mas_slot() - Get the slot value when not holding the maple tree lock. 812 * @mas: The maple state 813 * @slots: The pointer to the slots 814 * @offset: The offset into the slots array to fetch 815 * 816 * Return: The entry stored in @slots at the @offset 817 */ 818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 819 unsigned char offset) 820 { 821 return mt_slot(mas->tree, slots, offset); 822 } 823 824 /* 825 * mas_root() - Get the maple tree root. 826 * @mas: The maple state. 827 * 828 * Return: The pointer to the root of the tree 829 */ 830 static __always_inline void *mas_root(struct ma_state *mas) 831 { 832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 833 } 834 835 static inline void *mt_root_locked(struct maple_tree *mt) 836 { 837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); 838 } 839 840 /* 841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 842 * @mas: The maple state. 843 * 844 * Return: The pointer to the root of the tree 845 */ 846 static inline void *mas_root_locked(struct ma_state *mas) 847 { 848 return mt_root_locked(mas->tree); 849 } 850 851 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 852 enum maple_type mt) 853 { 854 switch (mt) { 855 case maple_arange_64: 856 return &mn->ma64.meta; 857 default: 858 return &mn->mr64.meta; 859 } 860 } 861 862 /* 863 * ma_set_meta() - Set the metadata information of a node. 864 * @mn: The maple node 865 * @mt: The maple node type 866 * @offset: The offset of the highest sub-gap in this node. 867 * @end: The end of the data in this node. 868 */ 869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 870 unsigned char offset, unsigned char end) 871 { 872 struct maple_metadata *meta = ma_meta(mn, mt); 873 874 meta->gap = offset; 875 meta->end = end; 876 } 877 878 /* 879 * mt_clear_meta() - clear the metadata information of a node, if it exists 880 * @mt: The maple tree 881 * @mn: The maple node 882 * @type: The maple node type 883 * @offset: The offset of the highest sub-gap in this node. 884 * @end: The end of the data in this node. 885 */ 886 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 887 enum maple_type type) 888 { 889 struct maple_metadata *meta; 890 unsigned long *pivots; 891 void __rcu **slots; 892 void *next; 893 894 switch (type) { 895 case maple_range_64: 896 pivots = mn->mr64.pivot; 897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 898 slots = mn->mr64.slot; 899 next = mt_slot_locked(mt, slots, 900 MAPLE_RANGE64_SLOTS - 1); 901 if (unlikely((mte_to_node(next) && 902 mte_node_type(next)))) 903 return; /* no metadata, could be node */ 904 } 905 fallthrough; 906 case maple_arange_64: 907 meta = ma_meta(mn, type); 908 break; 909 default: 910 return; 911 } 912 913 meta->gap = 0; 914 meta->end = 0; 915 } 916 917 /* 918 * ma_meta_end() - Get the data end of a node from the metadata 919 * @mn: The maple node 920 * @mt: The maple node type 921 */ 922 static inline unsigned char ma_meta_end(struct maple_node *mn, 923 enum maple_type mt) 924 { 925 struct maple_metadata *meta = ma_meta(mn, mt); 926 927 return meta->end; 928 } 929 930 /* 931 * ma_meta_gap() - Get the largest gap location of a node from the metadata 932 * @mn: The maple node 933 */ 934 static inline unsigned char ma_meta_gap(struct maple_node *mn) 935 { 936 return mn->ma64.meta.gap; 937 } 938 939 /* 940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 941 * @mn: The maple node 942 * @mn: The maple node type 943 * @offset: The location of the largest gap. 944 */ 945 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 946 unsigned char offset) 947 { 948 949 struct maple_metadata *meta = ma_meta(mn, mt); 950 951 meta->gap = offset; 952 } 953 954 /* 955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 956 * @mat - the ma_topiary, a linked list of dead nodes. 957 * @dead_enode - the node to be marked as dead and added to the tail of the list 958 * 959 * Add the @dead_enode to the linked list in @mat. 960 */ 961 static inline void mat_add(struct ma_topiary *mat, 962 struct maple_enode *dead_enode) 963 { 964 mte_set_node_dead(dead_enode); 965 mte_to_mat(dead_enode)->next = NULL; 966 if (!mat->tail) { 967 mat->tail = mat->head = dead_enode; 968 return; 969 } 970 971 mte_to_mat(mat->tail)->next = dead_enode; 972 mat->tail = dead_enode; 973 } 974 975 static void mt_free_walk(struct rcu_head *head); 976 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 977 bool free); 978 /* 979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 980 * @mas - the maple state 981 * @mat - the ma_topiary linked list of dead nodes to free. 982 * 983 * Destroy walk a dead list. 984 */ 985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 986 { 987 struct maple_enode *next; 988 struct maple_node *node; 989 bool in_rcu = mt_in_rcu(mas->tree); 990 991 while (mat->head) { 992 next = mte_to_mat(mat->head)->next; 993 node = mte_to_node(mat->head); 994 mt_destroy_walk(mat->head, mas->tree, !in_rcu); 995 if (in_rcu) 996 call_rcu(&node->rcu, mt_free_walk); 997 mat->head = next; 998 } 999 } 1000 /* 1001 * mas_descend() - Descend into the slot stored in the ma_state. 1002 * @mas - the maple state. 1003 * 1004 * Note: Not RCU safe, only use in write side or debug code. 1005 */ 1006 static inline void mas_descend(struct ma_state *mas) 1007 { 1008 enum maple_type type; 1009 unsigned long *pivots; 1010 struct maple_node *node; 1011 void __rcu **slots; 1012 1013 node = mas_mn(mas); 1014 type = mte_node_type(mas->node); 1015 pivots = ma_pivots(node, type); 1016 slots = ma_slots(node, type); 1017 1018 if (mas->offset) 1019 mas->min = pivots[mas->offset - 1] + 1; 1020 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1021 mas->node = mas_slot(mas, slots, mas->offset); 1022 } 1023 1024 /* 1025 * mte_set_gap() - Set a maple node gap. 1026 * @mn: The encoded maple node 1027 * @gap: The offset of the gap to set 1028 * @val: The gap value 1029 */ 1030 static inline void mte_set_gap(const struct maple_enode *mn, 1031 unsigned char gap, unsigned long val) 1032 { 1033 switch (mte_node_type(mn)) { 1034 default: 1035 break; 1036 case maple_arange_64: 1037 mte_to_node(mn)->ma64.gap[gap] = val; 1038 break; 1039 } 1040 } 1041 1042 /* 1043 * mas_ascend() - Walk up a level of the tree. 1044 * @mas: The maple state 1045 * 1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1047 * may cause several levels of walking up to find the correct min and max. 1048 * May find a dead node which will cause a premature return. 1049 * Return: 1 on dead node, 0 otherwise 1050 */ 1051 static int mas_ascend(struct ma_state *mas) 1052 { 1053 struct maple_enode *p_enode; /* parent enode. */ 1054 struct maple_enode *a_enode; /* ancestor enode. */ 1055 struct maple_node *a_node; /* ancestor node. */ 1056 struct maple_node *p_node; /* parent node. */ 1057 unsigned char a_slot; 1058 enum maple_type a_type; 1059 unsigned long min, max; 1060 unsigned long *pivots; 1061 bool set_max = false, set_min = false; 1062 1063 a_node = mas_mn(mas); 1064 if (ma_is_root(a_node)) { 1065 mas->offset = 0; 1066 return 0; 1067 } 1068 1069 p_node = mte_parent(mas->node); 1070 if (unlikely(a_node == p_node)) 1071 return 1; 1072 1073 a_type = mas_parent_type(mas, mas->node); 1074 mas->offset = mte_parent_slot(mas->node); 1075 a_enode = mt_mk_node(p_node, a_type); 1076 1077 /* Check to make sure all parent information is still accurate */ 1078 if (p_node != mte_parent(mas->node)) 1079 return 1; 1080 1081 mas->node = a_enode; 1082 1083 if (mte_is_root(a_enode)) { 1084 mas->max = ULONG_MAX; 1085 mas->min = 0; 1086 return 0; 1087 } 1088 1089 min = 0; 1090 max = ULONG_MAX; 1091 if (!mas->offset) { 1092 min = mas->min; 1093 set_min = true; 1094 } 1095 1096 if (mas->max == ULONG_MAX) 1097 set_max = true; 1098 1099 do { 1100 p_enode = a_enode; 1101 a_type = mas_parent_type(mas, p_enode); 1102 a_node = mte_parent(p_enode); 1103 a_slot = mte_parent_slot(p_enode); 1104 a_enode = mt_mk_node(a_node, a_type); 1105 pivots = ma_pivots(a_node, a_type); 1106 1107 if (unlikely(ma_dead_node(a_node))) 1108 return 1; 1109 1110 if (!set_min && a_slot) { 1111 set_min = true; 1112 min = pivots[a_slot - 1] + 1; 1113 } 1114 1115 if (!set_max && a_slot < mt_pivots[a_type]) { 1116 set_max = true; 1117 max = pivots[a_slot]; 1118 } 1119 1120 if (unlikely(ma_dead_node(a_node))) 1121 return 1; 1122 1123 if (unlikely(ma_is_root(a_node))) 1124 break; 1125 1126 } while (!set_min || !set_max); 1127 1128 mas->max = max; 1129 mas->min = min; 1130 return 0; 1131 } 1132 1133 /* 1134 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1135 * @mas: The maple state 1136 * 1137 * Return: A pointer to a maple node. 1138 */ 1139 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1140 { 1141 struct maple_alloc *ret, *node = mas->alloc; 1142 unsigned long total = mas_allocated(mas); 1143 unsigned int req = mas_alloc_req(mas); 1144 1145 /* nothing or a request pending. */ 1146 if (WARN_ON(!total)) 1147 return NULL; 1148 1149 if (total == 1) { 1150 /* single allocation in this ma_state */ 1151 mas->alloc = NULL; 1152 ret = node; 1153 goto single_node; 1154 } 1155 1156 if (node->node_count == 1) { 1157 /* Single allocation in this node. */ 1158 mas->alloc = node->slot[0]; 1159 mas->alloc->total = node->total - 1; 1160 ret = node; 1161 goto new_head; 1162 } 1163 node->total--; 1164 ret = node->slot[--node->node_count]; 1165 node->slot[node->node_count] = NULL; 1166 1167 single_node: 1168 new_head: 1169 if (req) { 1170 req++; 1171 mas_set_alloc_req(mas, req); 1172 } 1173 1174 memset(ret, 0, sizeof(*ret)); 1175 return (struct maple_node *)ret; 1176 } 1177 1178 /* 1179 * mas_push_node() - Push a node back on the maple state allocation. 1180 * @mas: The maple state 1181 * @used: The used maple node 1182 * 1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1184 * requested node count as necessary. 1185 */ 1186 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1187 { 1188 struct maple_alloc *reuse = (struct maple_alloc *)used; 1189 struct maple_alloc *head = mas->alloc; 1190 unsigned long count; 1191 unsigned int requested = mas_alloc_req(mas); 1192 1193 count = mas_allocated(mas); 1194 1195 reuse->request_count = 0; 1196 reuse->node_count = 0; 1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1198 head->slot[head->node_count++] = reuse; 1199 head->total++; 1200 goto done; 1201 } 1202 1203 reuse->total = 1; 1204 if ((head) && !((unsigned long)head & 0x1)) { 1205 reuse->slot[0] = head; 1206 reuse->node_count = 1; 1207 reuse->total += head->total; 1208 } 1209 1210 mas->alloc = reuse; 1211 done: 1212 if (requested > 1) 1213 mas_set_alloc_req(mas, requested - 1); 1214 } 1215 1216 /* 1217 * mas_alloc_nodes() - Allocate nodes into a maple state 1218 * @mas: The maple state 1219 * @gfp: The GFP Flags 1220 */ 1221 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1222 { 1223 struct maple_alloc *node; 1224 unsigned long allocated = mas_allocated(mas); 1225 unsigned int requested = mas_alloc_req(mas); 1226 unsigned int count; 1227 void **slots = NULL; 1228 unsigned int max_req = 0; 1229 1230 if (!requested) 1231 return; 1232 1233 mas_set_alloc_req(mas, 0); 1234 if (mas->mas_flags & MA_STATE_PREALLOC) { 1235 if (allocated) 1236 return; 1237 BUG_ON(!allocated); 1238 WARN_ON(!allocated); 1239 } 1240 1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1242 node = (struct maple_alloc *)mt_alloc_one(gfp); 1243 if (!node) 1244 goto nomem_one; 1245 1246 if (allocated) { 1247 node->slot[0] = mas->alloc; 1248 node->node_count = 1; 1249 } else { 1250 node->node_count = 0; 1251 } 1252 1253 mas->alloc = node; 1254 node->total = ++allocated; 1255 requested--; 1256 } 1257 1258 node = mas->alloc; 1259 node->request_count = 0; 1260 while (requested) { 1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1262 slots = (void **)&node->slot[node->node_count]; 1263 max_req = min(requested, max_req); 1264 count = mt_alloc_bulk(gfp, max_req, slots); 1265 if (!count) 1266 goto nomem_bulk; 1267 1268 if (node->node_count == 0) { 1269 node->slot[0]->node_count = 0; 1270 node->slot[0]->request_count = 0; 1271 } 1272 1273 node->node_count += count; 1274 allocated += count; 1275 node = node->slot[0]; 1276 requested -= count; 1277 } 1278 mas->alloc->total = allocated; 1279 return; 1280 1281 nomem_bulk: 1282 /* Clean up potential freed allocations on bulk failure */ 1283 memset(slots, 0, max_req * sizeof(unsigned long)); 1284 nomem_one: 1285 mas_set_alloc_req(mas, requested); 1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1287 mas->alloc->total = allocated; 1288 mas_set_err(mas, -ENOMEM); 1289 } 1290 1291 /* 1292 * mas_free() - Free an encoded maple node 1293 * @mas: The maple state 1294 * @used: The encoded maple node to free. 1295 * 1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1297 * otherwise. 1298 */ 1299 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1300 { 1301 struct maple_node *tmp = mte_to_node(used); 1302 1303 if (mt_in_rcu(mas->tree)) 1304 ma_free_rcu(tmp); 1305 else 1306 mas_push_node(mas, tmp); 1307 } 1308 1309 /* 1310 * mas_node_count_gfp() - Check if enough nodes are allocated and request more 1311 * if there is not enough nodes. 1312 * @mas: The maple state 1313 * @count: The number of nodes needed 1314 * @gfp: the gfp flags 1315 */ 1316 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1317 { 1318 unsigned long allocated = mas_allocated(mas); 1319 1320 if (allocated < count) { 1321 mas_set_alloc_req(mas, count - allocated); 1322 mas_alloc_nodes(mas, gfp); 1323 } 1324 } 1325 1326 /* 1327 * mas_node_count() - Check if enough nodes are allocated and request more if 1328 * there is not enough nodes. 1329 * @mas: The maple state 1330 * @count: The number of nodes needed 1331 * 1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1333 */ 1334 static void mas_node_count(struct ma_state *mas, int count) 1335 { 1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1337 } 1338 1339 /* 1340 * mas_start() - Sets up maple state for operations. 1341 * @mas: The maple state. 1342 * 1343 * If mas->status == mas_start, then set the min, max and depth to 1344 * defaults. 1345 * 1346 * Return: 1347 * - If mas->node is an error or not mas_start, return NULL. 1348 * - If it's an empty tree: NULL & mas->status == ma_none 1349 * - If it's a single entry: The entry & mas->status == mas_root 1350 * - If it's a tree: NULL & mas->status == safe root node. 1351 */ 1352 static inline struct maple_enode *mas_start(struct ma_state *mas) 1353 { 1354 if (likely(mas_is_start(mas))) { 1355 struct maple_enode *root; 1356 1357 mas->min = 0; 1358 mas->max = ULONG_MAX; 1359 1360 retry: 1361 mas->depth = 0; 1362 root = mas_root(mas); 1363 /* Tree with nodes */ 1364 if (likely(xa_is_node(root))) { 1365 mas->depth = 1; 1366 mas->status = ma_active; 1367 mas->node = mte_safe_root(root); 1368 mas->offset = 0; 1369 if (mte_dead_node(mas->node)) 1370 goto retry; 1371 1372 return NULL; 1373 } 1374 1375 /* empty tree */ 1376 if (unlikely(!root)) { 1377 mas->node = NULL; 1378 mas->status = ma_none; 1379 mas->offset = MAPLE_NODE_SLOTS; 1380 return NULL; 1381 } 1382 1383 /* Single entry tree */ 1384 mas->status = ma_root; 1385 mas->offset = MAPLE_NODE_SLOTS; 1386 1387 /* Single entry tree. */ 1388 if (mas->index > 0) 1389 return NULL; 1390 1391 return root; 1392 } 1393 1394 return NULL; 1395 } 1396 1397 /* 1398 * ma_data_end() - Find the end of the data in a node. 1399 * @node: The maple node 1400 * @type: The maple node type 1401 * @pivots: The array of pivots in the node 1402 * @max: The maximum value in the node 1403 * 1404 * Uses metadata to find the end of the data when possible. 1405 * Return: The zero indexed last slot with data (may be null). 1406 */ 1407 static __always_inline unsigned char ma_data_end(struct maple_node *node, 1408 enum maple_type type, unsigned long *pivots, unsigned long max) 1409 { 1410 unsigned char offset; 1411 1412 if (!pivots) 1413 return 0; 1414 1415 if (type == maple_arange_64) 1416 return ma_meta_end(node, type); 1417 1418 offset = mt_pivots[type] - 1; 1419 if (likely(!pivots[offset])) 1420 return ma_meta_end(node, type); 1421 1422 if (likely(pivots[offset] == max)) 1423 return offset; 1424 1425 return mt_pivots[type]; 1426 } 1427 1428 /* 1429 * mas_data_end() - Find the end of the data (slot). 1430 * @mas: the maple state 1431 * 1432 * This method is optimized to check the metadata of a node if the node type 1433 * supports data end metadata. 1434 * 1435 * Return: The zero indexed last slot with data (may be null). 1436 */ 1437 static inline unsigned char mas_data_end(struct ma_state *mas) 1438 { 1439 enum maple_type type; 1440 struct maple_node *node; 1441 unsigned char offset; 1442 unsigned long *pivots; 1443 1444 type = mte_node_type(mas->node); 1445 node = mas_mn(mas); 1446 if (type == maple_arange_64) 1447 return ma_meta_end(node, type); 1448 1449 pivots = ma_pivots(node, type); 1450 if (unlikely(ma_dead_node(node))) 1451 return 0; 1452 1453 offset = mt_pivots[type] - 1; 1454 if (likely(!pivots[offset])) 1455 return ma_meta_end(node, type); 1456 1457 if (likely(pivots[offset] == mas->max)) 1458 return offset; 1459 1460 return mt_pivots[type]; 1461 } 1462 1463 /* 1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1465 * @mas - the maple state 1466 * 1467 * Return: The maximum gap in the leaf. 1468 */ 1469 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1470 { 1471 enum maple_type mt; 1472 unsigned long pstart, gap, max_gap; 1473 struct maple_node *mn; 1474 unsigned long *pivots; 1475 void __rcu **slots; 1476 unsigned char i; 1477 unsigned char max_piv; 1478 1479 mt = mte_node_type(mas->node); 1480 mn = mas_mn(mas); 1481 slots = ma_slots(mn, mt); 1482 max_gap = 0; 1483 if (unlikely(ma_is_dense(mt))) { 1484 gap = 0; 1485 for (i = 0; i < mt_slots[mt]; i++) { 1486 if (slots[i]) { 1487 if (gap > max_gap) 1488 max_gap = gap; 1489 gap = 0; 1490 } else { 1491 gap++; 1492 } 1493 } 1494 if (gap > max_gap) 1495 max_gap = gap; 1496 return max_gap; 1497 } 1498 1499 /* 1500 * Check the first implied pivot optimizes the loop below and slot 1 may 1501 * be skipped if there is a gap in slot 0. 1502 */ 1503 pivots = ma_pivots(mn, mt); 1504 if (likely(!slots[0])) { 1505 max_gap = pivots[0] - mas->min + 1; 1506 i = 2; 1507 } else { 1508 i = 1; 1509 } 1510 1511 /* reduce max_piv as the special case is checked before the loop */ 1512 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1513 /* 1514 * Check end implied pivot which can only be a gap on the right most 1515 * node. 1516 */ 1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1518 gap = ULONG_MAX - pivots[max_piv]; 1519 if (gap > max_gap) 1520 max_gap = gap; 1521 1522 if (max_gap > pivots[max_piv] - mas->min) 1523 return max_gap; 1524 } 1525 1526 for (; i <= max_piv; i++) { 1527 /* data == no gap. */ 1528 if (likely(slots[i])) 1529 continue; 1530 1531 pstart = pivots[i - 1]; 1532 gap = pivots[i] - pstart; 1533 if (gap > max_gap) 1534 max_gap = gap; 1535 1536 /* There cannot be two gaps in a row. */ 1537 i++; 1538 } 1539 return max_gap; 1540 } 1541 1542 /* 1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1544 * @node: The maple node 1545 * @gaps: The pointer to the gaps 1546 * @mt: The maple node type 1547 * @*off: Pointer to store the offset location of the gap. 1548 * 1549 * Uses the metadata data end to scan backwards across set gaps. 1550 * 1551 * Return: The maximum gap value 1552 */ 1553 static inline unsigned long 1554 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1555 unsigned char *off) 1556 { 1557 unsigned char offset, i; 1558 unsigned long max_gap = 0; 1559 1560 i = offset = ma_meta_end(node, mt); 1561 do { 1562 if (gaps[i] > max_gap) { 1563 max_gap = gaps[i]; 1564 offset = i; 1565 } 1566 } while (i--); 1567 1568 *off = offset; 1569 return max_gap; 1570 } 1571 1572 /* 1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1574 * @mas: The maple state. 1575 * 1576 * Return: The gap value. 1577 */ 1578 static inline unsigned long mas_max_gap(struct ma_state *mas) 1579 { 1580 unsigned long *gaps; 1581 unsigned char offset; 1582 enum maple_type mt; 1583 struct maple_node *node; 1584 1585 mt = mte_node_type(mas->node); 1586 if (ma_is_leaf(mt)) 1587 return mas_leaf_max_gap(mas); 1588 1589 node = mas_mn(mas); 1590 MAS_BUG_ON(mas, mt != maple_arange_64); 1591 offset = ma_meta_gap(node); 1592 gaps = ma_gaps(node, mt); 1593 return gaps[offset]; 1594 } 1595 1596 /* 1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1598 * @mas: The maple state 1599 * @offset: The gap offset in the parent to set 1600 * @new: The new gap value. 1601 * 1602 * Set the parent gap then continue to set the gap upwards, using the metadata 1603 * of the parent to see if it is necessary to check the node above. 1604 */ 1605 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1606 unsigned long new) 1607 { 1608 unsigned long meta_gap = 0; 1609 struct maple_node *pnode; 1610 struct maple_enode *penode; 1611 unsigned long *pgaps; 1612 unsigned char meta_offset; 1613 enum maple_type pmt; 1614 1615 pnode = mte_parent(mas->node); 1616 pmt = mas_parent_type(mas, mas->node); 1617 penode = mt_mk_node(pnode, pmt); 1618 pgaps = ma_gaps(pnode, pmt); 1619 1620 ascend: 1621 MAS_BUG_ON(mas, pmt != maple_arange_64); 1622 meta_offset = ma_meta_gap(pnode); 1623 meta_gap = pgaps[meta_offset]; 1624 1625 pgaps[offset] = new; 1626 1627 if (meta_gap == new) 1628 return; 1629 1630 if (offset != meta_offset) { 1631 if (meta_gap > new) 1632 return; 1633 1634 ma_set_meta_gap(pnode, pmt, offset); 1635 } else if (new < meta_gap) { 1636 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1637 ma_set_meta_gap(pnode, pmt, meta_offset); 1638 } 1639 1640 if (ma_is_root(pnode)) 1641 return; 1642 1643 /* Go to the parent node. */ 1644 pnode = mte_parent(penode); 1645 pmt = mas_parent_type(mas, penode); 1646 pgaps = ma_gaps(pnode, pmt); 1647 offset = mte_parent_slot(penode); 1648 penode = mt_mk_node(pnode, pmt); 1649 goto ascend; 1650 } 1651 1652 /* 1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1654 * @mas - the maple state. 1655 */ 1656 static inline void mas_update_gap(struct ma_state *mas) 1657 { 1658 unsigned char pslot; 1659 unsigned long p_gap; 1660 unsigned long max_gap; 1661 1662 if (!mt_is_alloc(mas->tree)) 1663 return; 1664 1665 if (mte_is_root(mas->node)) 1666 return; 1667 1668 max_gap = mas_max_gap(mas); 1669 1670 pslot = mte_parent_slot(mas->node); 1671 p_gap = ma_gaps(mte_parent(mas->node), 1672 mas_parent_type(mas, mas->node))[pslot]; 1673 1674 if (p_gap != max_gap) 1675 mas_parent_gap(mas, pslot, max_gap); 1676 } 1677 1678 /* 1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1680 * @parent with the slot encoded. 1681 * @mas - the maple state (for the tree) 1682 * @parent - the maple encoded node containing the children. 1683 */ 1684 static inline void mas_adopt_children(struct ma_state *mas, 1685 struct maple_enode *parent) 1686 { 1687 enum maple_type type = mte_node_type(parent); 1688 struct maple_node *node = mte_to_node(parent); 1689 void __rcu **slots = ma_slots(node, type); 1690 unsigned long *pivots = ma_pivots(node, type); 1691 struct maple_enode *child; 1692 unsigned char offset; 1693 1694 offset = ma_data_end(node, type, pivots, mas->max); 1695 do { 1696 child = mas_slot_locked(mas, slots, offset); 1697 mas_set_parent(mas, child, parent, offset); 1698 } while (offset--); 1699 } 1700 1701 /* 1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old 1703 * node as dead. 1704 * @mas - the maple state with the new node 1705 * @old_enode - The old maple encoded node to replace. 1706 */ 1707 static inline void mas_put_in_tree(struct ma_state *mas, 1708 struct maple_enode *old_enode) 1709 __must_hold(mas->tree->ma_lock) 1710 { 1711 unsigned char offset; 1712 void __rcu **slots; 1713 1714 if (mte_is_root(mas->node)) { 1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); 1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1717 mas_set_height(mas); 1718 } else { 1719 1720 offset = mte_parent_slot(mas->node); 1721 slots = ma_slots(mte_parent(mas->node), 1722 mas_parent_type(mas, mas->node)); 1723 rcu_assign_pointer(slots[offset], mas->node); 1724 } 1725 1726 mte_set_node_dead(old_enode); 1727 } 1728 1729 /* 1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it 1731 * dead, and freeing it. 1732 * the parent encoding to locate the maple node in the tree. 1733 * @mas - the ma_state with @mas->node pointing to the new node. 1734 * @old_enode - The old maple encoded node. 1735 */ 1736 static inline void mas_replace_node(struct ma_state *mas, 1737 struct maple_enode *old_enode) 1738 __must_hold(mas->tree->ma_lock) 1739 { 1740 mas_put_in_tree(mas, old_enode); 1741 mas_free(mas, old_enode); 1742 } 1743 1744 /* 1745 * mas_find_child() - Find a child who has the parent @mas->node. 1746 * @mas: the maple state with the parent. 1747 * @child: the maple state to store the child. 1748 */ 1749 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) 1750 __must_hold(mas->tree->ma_lock) 1751 { 1752 enum maple_type mt; 1753 unsigned char offset; 1754 unsigned char end; 1755 unsigned long *pivots; 1756 struct maple_enode *entry; 1757 struct maple_node *node; 1758 void __rcu **slots; 1759 1760 mt = mte_node_type(mas->node); 1761 node = mas_mn(mas); 1762 slots = ma_slots(node, mt); 1763 pivots = ma_pivots(node, mt); 1764 end = ma_data_end(node, mt, pivots, mas->max); 1765 for (offset = mas->offset; offset <= end; offset++) { 1766 entry = mas_slot_locked(mas, slots, offset); 1767 if (mte_parent(entry) == node) { 1768 *child = *mas; 1769 mas->offset = offset + 1; 1770 child->offset = offset; 1771 mas_descend(child); 1772 child->offset = 0; 1773 return true; 1774 } 1775 } 1776 return false; 1777 } 1778 1779 /* 1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1781 * old data or set b_node->b_end. 1782 * @b_node: the maple_big_node 1783 * @shift: the shift count 1784 */ 1785 static inline void mab_shift_right(struct maple_big_node *b_node, 1786 unsigned char shift) 1787 { 1788 unsigned long size = b_node->b_end * sizeof(unsigned long); 1789 1790 memmove(b_node->pivot + shift, b_node->pivot, size); 1791 memmove(b_node->slot + shift, b_node->slot, size); 1792 if (b_node->type == maple_arange_64) 1793 memmove(b_node->gap + shift, b_node->gap, size); 1794 } 1795 1796 /* 1797 * mab_middle_node() - Check if a middle node is needed (unlikely) 1798 * @b_node: the maple_big_node that contains the data. 1799 * @size: the amount of data in the b_node 1800 * @split: the potential split location 1801 * @slot_count: the size that can be stored in a single node being considered. 1802 * 1803 * Return: true if a middle node is required. 1804 */ 1805 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1806 unsigned char slot_count) 1807 { 1808 unsigned char size = b_node->b_end; 1809 1810 if (size >= 2 * slot_count) 1811 return true; 1812 1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1814 return true; 1815 1816 return false; 1817 } 1818 1819 /* 1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1821 * @b_node: the maple_big_node with the data 1822 * @split: the suggested split location 1823 * @slot_count: the number of slots in the node being considered. 1824 * 1825 * Return: the split location. 1826 */ 1827 static inline int mab_no_null_split(struct maple_big_node *b_node, 1828 unsigned char split, unsigned char slot_count) 1829 { 1830 if (!b_node->slot[split]) { 1831 /* 1832 * If the split is less than the max slot && the right side will 1833 * still be sufficient, then increment the split on NULL. 1834 */ 1835 if ((split < slot_count - 1) && 1836 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1837 split++; 1838 else 1839 split--; 1840 } 1841 return split; 1842 } 1843 1844 /* 1845 * mab_calc_split() - Calculate the split location and if there needs to be two 1846 * splits. 1847 * @bn: The maple_big_node with the data 1848 * @mid_split: The second split, if required. 0 otherwise. 1849 * 1850 * Return: The first split location. The middle split is set in @mid_split. 1851 */ 1852 static inline int mab_calc_split(struct ma_state *mas, 1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1854 { 1855 unsigned char b_end = bn->b_end; 1856 int split = b_end / 2; /* Assume equal split. */ 1857 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1858 1859 /* 1860 * To support gap tracking, all NULL entries are kept together and a node cannot 1861 * end on a NULL entry, with the exception of the left-most leaf. The 1862 * limitation means that the split of a node must be checked for this condition 1863 * and be able to put more data in one direction or the other. 1864 */ 1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1866 *mid_split = 0; 1867 split = b_end - mt_min_slots[bn->type]; 1868 1869 if (!ma_is_leaf(bn->type)) 1870 return split; 1871 1872 mas->mas_flags |= MA_STATE_REBALANCE; 1873 if (!bn->slot[split]) 1874 split--; 1875 return split; 1876 } 1877 1878 /* 1879 * Although extremely rare, it is possible to enter what is known as the 3-way 1880 * split scenario. The 3-way split comes about by means of a store of a range 1881 * that overwrites the end and beginning of two full nodes. The result is a set 1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1883 * also be located in different parent nodes which are also full. This can 1884 * carry upwards all the way to the root in the worst case. 1885 */ 1886 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1887 split = b_end / 3; 1888 *mid_split = split * 2; 1889 } else { 1890 slot_min = mt_min_slots[bn->type]; 1891 1892 *mid_split = 0; 1893 /* 1894 * Avoid having a range less than the slot count unless it 1895 * causes one node to be deficient. 1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1897 */ 1898 while ((split < slot_count - 1) && 1899 ((bn->pivot[split] - min) < slot_count - 1) && 1900 (b_end - split > slot_min)) 1901 split++; 1902 } 1903 1904 /* Avoid ending a node on a NULL entry */ 1905 split = mab_no_null_split(bn, split, slot_count); 1906 1907 if (unlikely(*mid_split)) 1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1909 1910 return split; 1911 } 1912 1913 /* 1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1915 * and set @b_node->b_end to the next free slot. 1916 * @mas: The maple state 1917 * @mas_start: The starting slot to copy 1918 * @mas_end: The end slot to copy (inclusively) 1919 * @b_node: The maple_big_node to place the data 1920 * @mab_start: The starting location in maple_big_node to store the data. 1921 */ 1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1923 unsigned char mas_end, struct maple_big_node *b_node, 1924 unsigned char mab_start) 1925 { 1926 enum maple_type mt; 1927 struct maple_node *node; 1928 void __rcu **slots; 1929 unsigned long *pivots, *gaps; 1930 int i = mas_start, j = mab_start; 1931 unsigned char piv_end; 1932 1933 node = mas_mn(mas); 1934 mt = mte_node_type(mas->node); 1935 pivots = ma_pivots(node, mt); 1936 if (!i) { 1937 b_node->pivot[j] = pivots[i++]; 1938 if (unlikely(i > mas_end)) 1939 goto complete; 1940 j++; 1941 } 1942 1943 piv_end = min(mas_end, mt_pivots[mt]); 1944 for (; i < piv_end; i++, j++) { 1945 b_node->pivot[j] = pivots[i]; 1946 if (unlikely(!b_node->pivot[j])) 1947 break; 1948 1949 if (unlikely(mas->max == b_node->pivot[j])) 1950 goto complete; 1951 } 1952 1953 if (likely(i <= mas_end)) 1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1955 1956 complete: 1957 b_node->b_end = ++j; 1958 j -= mab_start; 1959 slots = ma_slots(node, mt); 1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1961 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1962 gaps = ma_gaps(node, mt); 1963 memcpy(b_node->gap + mab_start, gaps + mas_start, 1964 sizeof(unsigned long) * j); 1965 } 1966 } 1967 1968 /* 1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1970 * @node: The maple node 1971 * @mt: The maple type 1972 * @end: The node end 1973 */ 1974 static inline void mas_leaf_set_meta(struct maple_node *node, 1975 enum maple_type mt, unsigned char end) 1976 { 1977 if (end < mt_slots[mt] - 1) 1978 ma_set_meta(node, mt, 0, end); 1979 } 1980 1981 /* 1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1983 * @b_node: the maple_big_node that has the data 1984 * @mab_start: the start location in @b_node. 1985 * @mab_end: The end location in @b_node (inclusively) 1986 * @mas: The maple state with the maple encoded node. 1987 */ 1988 static inline void mab_mas_cp(struct maple_big_node *b_node, 1989 unsigned char mab_start, unsigned char mab_end, 1990 struct ma_state *mas, bool new_max) 1991 { 1992 int i, j = 0; 1993 enum maple_type mt = mte_node_type(mas->node); 1994 struct maple_node *node = mte_to_node(mas->node); 1995 void __rcu **slots = ma_slots(node, mt); 1996 unsigned long *pivots = ma_pivots(node, mt); 1997 unsigned long *gaps = NULL; 1998 unsigned char end; 1999 2000 if (mab_end - mab_start > mt_pivots[mt]) 2001 mab_end--; 2002 2003 if (!pivots[mt_pivots[mt] - 1]) 2004 slots[mt_pivots[mt]] = NULL; 2005 2006 i = mab_start; 2007 do { 2008 pivots[j++] = b_node->pivot[i++]; 2009 } while (i <= mab_end && likely(b_node->pivot[i])); 2010 2011 memcpy(slots, b_node->slot + mab_start, 2012 sizeof(void *) * (i - mab_start)); 2013 2014 if (new_max) 2015 mas->max = b_node->pivot[i - 1]; 2016 2017 end = j - 1; 2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2019 unsigned long max_gap = 0; 2020 unsigned char offset = 0; 2021 2022 gaps = ma_gaps(node, mt); 2023 do { 2024 gaps[--j] = b_node->gap[--i]; 2025 if (gaps[j] > max_gap) { 2026 offset = j; 2027 max_gap = gaps[j]; 2028 } 2029 } while (j); 2030 2031 ma_set_meta(node, mt, offset, end); 2032 } else { 2033 mas_leaf_set_meta(node, mt, end); 2034 } 2035 } 2036 2037 /* 2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2039 * @mas: The maple state 2040 * @end: The maple node end 2041 * @mt: The maple node type 2042 */ 2043 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2044 enum maple_type mt) 2045 { 2046 if (!(mas->mas_flags & MA_STATE_BULK)) 2047 return; 2048 2049 if (mte_is_root(mas->node)) 2050 return; 2051 2052 if (end > mt_min_slots[mt]) { 2053 mas->mas_flags &= ~MA_STATE_REBALANCE; 2054 return; 2055 } 2056 } 2057 2058 /* 2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2060 * data from a maple encoded node. 2061 * @wr_mas: the maple write state 2062 * @b_node: the maple_big_node to fill with data 2063 * @offset_end: the offset to end copying 2064 * 2065 * Return: The actual end of the data stored in @b_node 2066 */ 2067 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2068 struct maple_big_node *b_node, unsigned char offset_end) 2069 { 2070 unsigned char slot; 2071 unsigned char b_end; 2072 /* Possible underflow of piv will wrap back to 0 before use. */ 2073 unsigned long piv; 2074 struct ma_state *mas = wr_mas->mas; 2075 2076 b_node->type = wr_mas->type; 2077 b_end = 0; 2078 slot = mas->offset; 2079 if (slot) { 2080 /* Copy start data up to insert. */ 2081 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2082 b_end = b_node->b_end; 2083 piv = b_node->pivot[b_end - 1]; 2084 } else 2085 piv = mas->min - 1; 2086 2087 if (piv + 1 < mas->index) { 2088 /* Handle range starting after old range */ 2089 b_node->slot[b_end] = wr_mas->content; 2090 if (!wr_mas->content) 2091 b_node->gap[b_end] = mas->index - 1 - piv; 2092 b_node->pivot[b_end++] = mas->index - 1; 2093 } 2094 2095 /* Store the new entry. */ 2096 mas->offset = b_end; 2097 b_node->slot[b_end] = wr_mas->entry; 2098 b_node->pivot[b_end] = mas->last; 2099 2100 /* Appended. */ 2101 if (mas->last >= mas->max) 2102 goto b_end; 2103 2104 /* Handle new range ending before old range ends */ 2105 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2106 if (piv > mas->last) { 2107 if (piv == ULONG_MAX) 2108 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2109 2110 if (offset_end != slot) 2111 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2112 offset_end); 2113 2114 b_node->slot[++b_end] = wr_mas->content; 2115 if (!wr_mas->content) 2116 b_node->gap[b_end] = piv - mas->last + 1; 2117 b_node->pivot[b_end] = piv; 2118 } 2119 2120 slot = offset_end + 1; 2121 if (slot > mas->end) 2122 goto b_end; 2123 2124 /* Copy end data to the end of the node. */ 2125 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end); 2126 b_node->b_end--; 2127 return; 2128 2129 b_end: 2130 b_node->b_end = b_end; 2131 } 2132 2133 /* 2134 * mas_prev_sibling() - Find the previous node with the same parent. 2135 * @mas: the maple state 2136 * 2137 * Return: True if there is a previous sibling, false otherwise. 2138 */ 2139 static inline bool mas_prev_sibling(struct ma_state *mas) 2140 { 2141 unsigned int p_slot = mte_parent_slot(mas->node); 2142 2143 if (mte_is_root(mas->node)) 2144 return false; 2145 2146 if (!p_slot) 2147 return false; 2148 2149 mas_ascend(mas); 2150 mas->offset = p_slot - 1; 2151 mas_descend(mas); 2152 return true; 2153 } 2154 2155 /* 2156 * mas_next_sibling() - Find the next node with the same parent. 2157 * @mas: the maple state 2158 * 2159 * Return: true if there is a next sibling, false otherwise. 2160 */ 2161 static inline bool mas_next_sibling(struct ma_state *mas) 2162 { 2163 MA_STATE(parent, mas->tree, mas->index, mas->last); 2164 2165 if (mte_is_root(mas->node)) 2166 return false; 2167 2168 parent = *mas; 2169 mas_ascend(&parent); 2170 parent.offset = mte_parent_slot(mas->node) + 1; 2171 if (parent.offset > mas_data_end(&parent)) 2172 return false; 2173 2174 *mas = parent; 2175 mas_descend(mas); 2176 return true; 2177 } 2178 2179 /* 2180 * mte_node_or_none() - Set the enode and state. 2181 * @enode: The encoded maple node. 2182 * 2183 * Set the node to the enode and the status. 2184 */ 2185 static inline void mas_node_or_none(struct ma_state *mas, 2186 struct maple_enode *enode) 2187 { 2188 if (enode) { 2189 mas->node = enode; 2190 mas->status = ma_active; 2191 } else { 2192 mas->node = NULL; 2193 mas->status = ma_none; 2194 } 2195 } 2196 2197 /* 2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2199 * If @mas->index cannot be found within the containing 2200 * node, we traverse to the last entry in the node. 2201 * @wr_mas: The maple write state 2202 * 2203 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2204 */ 2205 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2206 { 2207 struct ma_state *mas = wr_mas->mas; 2208 unsigned char count, offset; 2209 2210 if (unlikely(ma_is_dense(wr_mas->type))) { 2211 wr_mas->r_max = wr_mas->r_min = mas->index; 2212 mas->offset = mas->index = mas->min; 2213 return; 2214 } 2215 2216 wr_mas->node = mas_mn(wr_mas->mas); 2217 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2218 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type, 2219 wr_mas->pivots, mas->max); 2220 offset = mas->offset; 2221 2222 while (offset < count && mas->index > wr_mas->pivots[offset]) 2223 offset++; 2224 2225 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2226 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2227 wr_mas->offset_end = mas->offset = offset; 2228 } 2229 2230 /* 2231 * mast_rebalance_next() - Rebalance against the next node 2232 * @mast: The maple subtree state 2233 * @old_r: The encoded maple node to the right (next node). 2234 */ 2235 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2236 { 2237 unsigned char b_end = mast->bn->b_end; 2238 2239 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2240 mast->bn, b_end); 2241 mast->orig_r->last = mast->orig_r->max; 2242 } 2243 2244 /* 2245 * mast_rebalance_prev() - Rebalance against the previous node 2246 * @mast: The maple subtree state 2247 * @old_l: The encoded maple node to the left (previous node) 2248 */ 2249 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2250 { 2251 unsigned char end = mas_data_end(mast->orig_l) + 1; 2252 unsigned char b_end = mast->bn->b_end; 2253 2254 mab_shift_right(mast->bn, end); 2255 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2256 mast->l->min = mast->orig_l->min; 2257 mast->orig_l->index = mast->orig_l->min; 2258 mast->bn->b_end = end + b_end; 2259 mast->l->offset += end; 2260 } 2261 2262 /* 2263 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2264 * the node to the right. Checking the nodes to the right then the left at each 2265 * level upwards until root is reached. 2266 * Data is copied into the @mast->bn. 2267 * @mast: The maple_subtree_state. 2268 */ 2269 static inline 2270 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2271 { 2272 struct ma_state r_tmp = *mast->orig_r; 2273 struct ma_state l_tmp = *mast->orig_l; 2274 unsigned char depth = 0; 2275 2276 do { 2277 mas_ascend(mast->orig_r); 2278 mas_ascend(mast->orig_l); 2279 depth++; 2280 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2281 mast->orig_r->offset++; 2282 do { 2283 mas_descend(mast->orig_r); 2284 mast->orig_r->offset = 0; 2285 } while (--depth); 2286 2287 mast_rebalance_next(mast); 2288 *mast->orig_l = l_tmp; 2289 return true; 2290 } else if (mast->orig_l->offset != 0) { 2291 mast->orig_l->offset--; 2292 do { 2293 mas_descend(mast->orig_l); 2294 mast->orig_l->offset = 2295 mas_data_end(mast->orig_l); 2296 } while (--depth); 2297 2298 mast_rebalance_prev(mast); 2299 *mast->orig_r = r_tmp; 2300 return true; 2301 } 2302 } while (!mte_is_root(mast->orig_r->node)); 2303 2304 *mast->orig_r = r_tmp; 2305 *mast->orig_l = l_tmp; 2306 return false; 2307 } 2308 2309 /* 2310 * mast_ascend() - Ascend the original left and right maple states. 2311 * @mast: the maple subtree state. 2312 * 2313 * Ascend the original left and right sides. Set the offsets to point to the 2314 * data already in the new tree (@mast->l and @mast->r). 2315 */ 2316 static inline void mast_ascend(struct maple_subtree_state *mast) 2317 { 2318 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2319 mas_ascend(mast->orig_l); 2320 mas_ascend(mast->orig_r); 2321 2322 mast->orig_r->offset = 0; 2323 mast->orig_r->index = mast->r->max; 2324 /* last should be larger than or equal to index */ 2325 if (mast->orig_r->last < mast->orig_r->index) 2326 mast->orig_r->last = mast->orig_r->index; 2327 2328 wr_mas.type = mte_node_type(mast->orig_r->node); 2329 mas_wr_node_walk(&wr_mas); 2330 /* Set up the left side of things */ 2331 mast->orig_l->offset = 0; 2332 mast->orig_l->index = mast->l->min; 2333 wr_mas.mas = mast->orig_l; 2334 wr_mas.type = mte_node_type(mast->orig_l->node); 2335 mas_wr_node_walk(&wr_mas); 2336 2337 mast->bn->type = wr_mas.type; 2338 } 2339 2340 /* 2341 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2342 * @mas: the maple state with the allocations. 2343 * @b_node: the maple_big_node with the type encoding. 2344 * 2345 * Use the node type from the maple_big_node to allocate a new node from the 2346 * ma_state. This function exists mainly for code readability. 2347 * 2348 * Return: A new maple encoded node 2349 */ 2350 static inline struct maple_enode 2351 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2352 { 2353 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2354 } 2355 2356 /* 2357 * mas_mab_to_node() - Set up right and middle nodes 2358 * 2359 * @mas: the maple state that contains the allocations. 2360 * @b_node: the node which contains the data. 2361 * @left: The pointer which will have the left node 2362 * @right: The pointer which may have the right node 2363 * @middle: the pointer which may have the middle node (rare) 2364 * @mid_split: the split location for the middle node 2365 * 2366 * Return: the split of left. 2367 */ 2368 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2369 struct maple_big_node *b_node, struct maple_enode **left, 2370 struct maple_enode **right, struct maple_enode **middle, 2371 unsigned char *mid_split, unsigned long min) 2372 { 2373 unsigned char split = 0; 2374 unsigned char slot_count = mt_slots[b_node->type]; 2375 2376 *left = mas_new_ma_node(mas, b_node); 2377 *right = NULL; 2378 *middle = NULL; 2379 *mid_split = 0; 2380 2381 if (b_node->b_end < slot_count) { 2382 split = b_node->b_end; 2383 } else { 2384 split = mab_calc_split(mas, b_node, mid_split, min); 2385 *right = mas_new_ma_node(mas, b_node); 2386 } 2387 2388 if (*mid_split) 2389 *middle = mas_new_ma_node(mas, b_node); 2390 2391 return split; 2392 2393 } 2394 2395 /* 2396 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2397 * pointer. 2398 * @b_node - the big node to add the entry 2399 * @mas - the maple state to get the pivot (mas->max) 2400 * @entry - the entry to add, if NULL nothing happens. 2401 */ 2402 static inline void mab_set_b_end(struct maple_big_node *b_node, 2403 struct ma_state *mas, 2404 void *entry) 2405 { 2406 if (!entry) 2407 return; 2408 2409 b_node->slot[b_node->b_end] = entry; 2410 if (mt_is_alloc(mas->tree)) 2411 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2412 b_node->pivot[b_node->b_end++] = mas->max; 2413 } 2414 2415 /* 2416 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2417 * of @mas->node to either @left or @right, depending on @slot and @split 2418 * 2419 * @mas - the maple state with the node that needs a parent 2420 * @left - possible parent 1 2421 * @right - possible parent 2 2422 * @slot - the slot the mas->node was placed 2423 * @split - the split location between @left and @right 2424 */ 2425 static inline void mas_set_split_parent(struct ma_state *mas, 2426 struct maple_enode *left, 2427 struct maple_enode *right, 2428 unsigned char *slot, unsigned char split) 2429 { 2430 if (mas_is_none(mas)) 2431 return; 2432 2433 if ((*slot) <= split) 2434 mas_set_parent(mas, mas->node, left, *slot); 2435 else if (right) 2436 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2437 2438 (*slot)++; 2439 } 2440 2441 /* 2442 * mte_mid_split_check() - Check if the next node passes the mid-split 2443 * @**l: Pointer to left encoded maple node. 2444 * @**m: Pointer to middle encoded maple node. 2445 * @**r: Pointer to right encoded maple node. 2446 * @slot: The offset 2447 * @*split: The split location. 2448 * @mid_split: The middle split. 2449 */ 2450 static inline void mte_mid_split_check(struct maple_enode **l, 2451 struct maple_enode **r, 2452 struct maple_enode *right, 2453 unsigned char slot, 2454 unsigned char *split, 2455 unsigned char mid_split) 2456 { 2457 if (*r == right) 2458 return; 2459 2460 if (slot < mid_split) 2461 return; 2462 2463 *l = *r; 2464 *r = right; 2465 *split = mid_split; 2466 } 2467 2468 /* 2469 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2470 * is taken from @mast->l. 2471 * @mast - the maple subtree state 2472 * @left - the left node 2473 * @right - the right node 2474 * @split - the split location. 2475 */ 2476 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2477 struct maple_enode *left, 2478 struct maple_enode *middle, 2479 struct maple_enode *right, 2480 unsigned char split, 2481 unsigned char mid_split) 2482 { 2483 unsigned char slot; 2484 struct maple_enode *l = left; 2485 struct maple_enode *r = right; 2486 2487 if (mas_is_none(mast->l)) 2488 return; 2489 2490 if (middle) 2491 r = middle; 2492 2493 slot = mast->l->offset; 2494 2495 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2496 mas_set_split_parent(mast->l, l, r, &slot, split); 2497 2498 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2499 mas_set_split_parent(mast->m, l, r, &slot, split); 2500 2501 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2502 mas_set_split_parent(mast->r, l, r, &slot, split); 2503 } 2504 2505 /* 2506 * mas_topiary_node() - Dispose of a single node 2507 * @mas: The maple state for pushing nodes 2508 * @enode: The encoded maple node 2509 * @in_rcu: If the tree is in rcu mode 2510 * 2511 * The node will either be RCU freed or pushed back on the maple state. 2512 */ 2513 static inline void mas_topiary_node(struct ma_state *mas, 2514 struct ma_state *tmp_mas, bool in_rcu) 2515 { 2516 struct maple_node *tmp; 2517 struct maple_enode *enode; 2518 2519 if (mas_is_none(tmp_mas)) 2520 return; 2521 2522 enode = tmp_mas->node; 2523 tmp = mte_to_node(enode); 2524 mte_set_node_dead(enode); 2525 if (in_rcu) 2526 ma_free_rcu(tmp); 2527 else 2528 mas_push_node(mas, tmp); 2529 } 2530 2531 /* 2532 * mas_topiary_replace() - Replace the data with new data, then repair the 2533 * parent links within the new tree. Iterate over the dead sub-tree and collect 2534 * the dead subtrees and topiary the nodes that are no longer of use. 2535 * 2536 * The new tree will have up to three children with the correct parent. Keep 2537 * track of the new entries as they need to be followed to find the next level 2538 * of new entries. 2539 * 2540 * The old tree will have up to three children with the old parent. Keep track 2541 * of the old entries as they may have more nodes below replaced. Nodes within 2542 * [index, last] are dead subtrees, others need to be freed and followed. 2543 * 2544 * @mas: The maple state pointing at the new data 2545 * @old_enode: The maple encoded node being replaced 2546 * 2547 */ 2548 static inline void mas_topiary_replace(struct ma_state *mas, 2549 struct maple_enode *old_enode) 2550 { 2551 struct ma_state tmp[3], tmp_next[3]; 2552 MA_TOPIARY(subtrees, mas->tree); 2553 bool in_rcu; 2554 int i, n; 2555 2556 /* Place data in tree & then mark node as old */ 2557 mas_put_in_tree(mas, old_enode); 2558 2559 /* Update the parent pointers in the tree */ 2560 tmp[0] = *mas; 2561 tmp[0].offset = 0; 2562 tmp[1].status = ma_none; 2563 tmp[2].status = ma_none; 2564 while (!mte_is_leaf(tmp[0].node)) { 2565 n = 0; 2566 for (i = 0; i < 3; i++) { 2567 if (mas_is_none(&tmp[i])) 2568 continue; 2569 2570 while (n < 3) { 2571 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2572 break; 2573 n++; 2574 } 2575 2576 mas_adopt_children(&tmp[i], tmp[i].node); 2577 } 2578 2579 if (MAS_WARN_ON(mas, n == 0)) 2580 break; 2581 2582 while (n < 3) 2583 tmp_next[n++].status = ma_none; 2584 2585 for (i = 0; i < 3; i++) 2586 tmp[i] = tmp_next[i]; 2587 } 2588 2589 /* Collect the old nodes that need to be discarded */ 2590 if (mte_is_leaf(old_enode)) 2591 return mas_free(mas, old_enode); 2592 2593 tmp[0] = *mas; 2594 tmp[0].offset = 0; 2595 tmp[0].node = old_enode; 2596 tmp[1].status = ma_none; 2597 tmp[2].status = ma_none; 2598 in_rcu = mt_in_rcu(mas->tree); 2599 do { 2600 n = 0; 2601 for (i = 0; i < 3; i++) { 2602 if (mas_is_none(&tmp[i])) 2603 continue; 2604 2605 while (n < 3) { 2606 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2607 break; 2608 2609 if ((tmp_next[n].min >= tmp_next->index) && 2610 (tmp_next[n].max <= tmp_next->last)) { 2611 mat_add(&subtrees, tmp_next[n].node); 2612 tmp_next[n].status = ma_none; 2613 } else { 2614 n++; 2615 } 2616 } 2617 } 2618 2619 if (MAS_WARN_ON(mas, n == 0)) 2620 break; 2621 2622 while (n < 3) 2623 tmp_next[n++].status = ma_none; 2624 2625 for (i = 0; i < 3; i++) { 2626 mas_topiary_node(mas, &tmp[i], in_rcu); 2627 tmp[i] = tmp_next[i]; 2628 } 2629 } while (!mte_is_leaf(tmp[0].node)); 2630 2631 for (i = 0; i < 3; i++) 2632 mas_topiary_node(mas, &tmp[i], in_rcu); 2633 2634 mas_mat_destroy(mas, &subtrees); 2635 } 2636 2637 /* 2638 * mas_wmb_replace() - Write memory barrier and replace 2639 * @mas: The maple state 2640 * @old: The old maple encoded node that is being replaced. 2641 * 2642 * Updates gap as necessary. 2643 */ 2644 static inline void mas_wmb_replace(struct ma_state *mas, 2645 struct maple_enode *old_enode) 2646 { 2647 /* Insert the new data in the tree */ 2648 mas_topiary_replace(mas, old_enode); 2649 2650 if (mte_is_leaf(mas->node)) 2651 return; 2652 2653 mas_update_gap(mas); 2654 } 2655 2656 /* 2657 * mast_cp_to_nodes() - Copy data out to nodes. 2658 * @mast: The maple subtree state 2659 * @left: The left encoded maple node 2660 * @middle: The middle encoded maple node 2661 * @right: The right encoded maple node 2662 * @split: The location to split between left and (middle ? middle : right) 2663 * @mid_split: The location to split between middle and right. 2664 */ 2665 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2666 struct maple_enode *left, struct maple_enode *middle, 2667 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2668 { 2669 bool new_lmax = true; 2670 2671 mas_node_or_none(mast->l, left); 2672 mas_node_or_none(mast->m, middle); 2673 mas_node_or_none(mast->r, right); 2674 2675 mast->l->min = mast->orig_l->min; 2676 if (split == mast->bn->b_end) { 2677 mast->l->max = mast->orig_r->max; 2678 new_lmax = false; 2679 } 2680 2681 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2682 2683 if (middle) { 2684 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2685 mast->m->min = mast->bn->pivot[split] + 1; 2686 split = mid_split; 2687 } 2688 2689 mast->r->max = mast->orig_r->max; 2690 if (right) { 2691 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2692 mast->r->min = mast->bn->pivot[split] + 1; 2693 } 2694 } 2695 2696 /* 2697 * mast_combine_cp_left - Copy in the original left side of the tree into the 2698 * combined data set in the maple subtree state big node. 2699 * @mast: The maple subtree state 2700 */ 2701 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2702 { 2703 unsigned char l_slot = mast->orig_l->offset; 2704 2705 if (!l_slot) 2706 return; 2707 2708 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2709 } 2710 2711 /* 2712 * mast_combine_cp_right: Copy in the original right side of the tree into the 2713 * combined data set in the maple subtree state big node. 2714 * @mast: The maple subtree state 2715 */ 2716 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2717 { 2718 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2719 return; 2720 2721 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2722 mt_slot_count(mast->orig_r->node), mast->bn, 2723 mast->bn->b_end); 2724 mast->orig_r->last = mast->orig_r->max; 2725 } 2726 2727 /* 2728 * mast_sufficient: Check if the maple subtree state has enough data in the big 2729 * node to create at least one sufficient node 2730 * @mast: the maple subtree state 2731 */ 2732 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2733 { 2734 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2735 return true; 2736 2737 return false; 2738 } 2739 2740 /* 2741 * mast_overflow: Check if there is too much data in the subtree state for a 2742 * single node. 2743 * @mast: The maple subtree state 2744 */ 2745 static inline bool mast_overflow(struct maple_subtree_state *mast) 2746 { 2747 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2748 return true; 2749 2750 return false; 2751 } 2752 2753 static inline void *mtree_range_walk(struct ma_state *mas) 2754 { 2755 unsigned long *pivots; 2756 unsigned char offset; 2757 struct maple_node *node; 2758 struct maple_enode *next, *last; 2759 enum maple_type type; 2760 void __rcu **slots; 2761 unsigned char end; 2762 unsigned long max, min; 2763 unsigned long prev_max, prev_min; 2764 2765 next = mas->node; 2766 min = mas->min; 2767 max = mas->max; 2768 do { 2769 last = next; 2770 node = mte_to_node(next); 2771 type = mte_node_type(next); 2772 pivots = ma_pivots(node, type); 2773 end = ma_data_end(node, type, pivots, max); 2774 prev_min = min; 2775 prev_max = max; 2776 if (pivots[0] >= mas->index) { 2777 offset = 0; 2778 max = pivots[0]; 2779 goto next; 2780 } 2781 2782 offset = 1; 2783 while (offset < end) { 2784 if (pivots[offset] >= mas->index) { 2785 max = pivots[offset]; 2786 break; 2787 } 2788 offset++; 2789 } 2790 2791 min = pivots[offset - 1] + 1; 2792 next: 2793 slots = ma_slots(node, type); 2794 next = mt_slot(mas->tree, slots, offset); 2795 if (unlikely(ma_dead_node(node))) 2796 goto dead_node; 2797 } while (!ma_is_leaf(type)); 2798 2799 mas->end = end; 2800 mas->offset = offset; 2801 mas->index = min; 2802 mas->last = max; 2803 mas->min = prev_min; 2804 mas->max = prev_max; 2805 mas->node = last; 2806 return (void *)next; 2807 2808 dead_node: 2809 mas_reset(mas); 2810 return NULL; 2811 } 2812 2813 /* 2814 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2815 * @mas: The starting maple state 2816 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2817 * @count: The estimated count of iterations needed. 2818 * 2819 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2820 * is hit. First @b_node is split into two entries which are inserted into the 2821 * next iteration of the loop. @b_node is returned populated with the final 2822 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2823 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2824 * to account of what has been copied into the new sub-tree. The update of 2825 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2826 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2827 * the new sub-tree in case the sub-tree becomes the full tree. 2828 * 2829 * Return: the number of elements in b_node during the last loop. 2830 */ 2831 static int mas_spanning_rebalance(struct ma_state *mas, 2832 struct maple_subtree_state *mast, unsigned char count) 2833 { 2834 unsigned char split, mid_split; 2835 unsigned char slot = 0; 2836 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2837 struct maple_enode *old_enode; 2838 2839 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2840 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2841 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2842 2843 /* 2844 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2845 * Rebalancing is done by use of the ``struct maple_topiary``. 2846 */ 2847 mast->l = &l_mas; 2848 mast->m = &m_mas; 2849 mast->r = &r_mas; 2850 l_mas.status = r_mas.status = m_mas.status = ma_none; 2851 2852 /* Check if this is not root and has sufficient data. */ 2853 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 2854 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2855 mast_spanning_rebalance(mast); 2856 2857 l_mas.depth = 0; 2858 2859 /* 2860 * Each level of the tree is examined and balanced, pushing data to the left or 2861 * right, or rebalancing against left or right nodes is employed to avoid 2862 * rippling up the tree to limit the amount of churn. Once a new sub-section of 2863 * the tree is created, there may be a mix of new and old nodes. The old nodes 2864 * will have the incorrect parent pointers and currently be in two trees: the 2865 * original tree and the partially new tree. To remedy the parent pointers in 2866 * the old tree, the new data is swapped into the active tree and a walk down 2867 * the tree is performed and the parent pointers are updated. 2868 * See mas_topiary_replace() for more information. 2869 */ 2870 while (count--) { 2871 mast->bn->b_end--; 2872 mast->bn->type = mte_node_type(mast->orig_l->node); 2873 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 2874 &mid_split, mast->orig_l->min); 2875 mast_set_split_parents(mast, left, middle, right, split, 2876 mid_split); 2877 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 2878 2879 /* 2880 * Copy data from next level in the tree to mast->bn from next 2881 * iteration 2882 */ 2883 memset(mast->bn, 0, sizeof(struct maple_big_node)); 2884 mast->bn->type = mte_node_type(left); 2885 l_mas.depth++; 2886 2887 /* Root already stored in l->node. */ 2888 if (mas_is_root_limits(mast->l)) 2889 goto new_root; 2890 2891 mast_ascend(mast); 2892 mast_combine_cp_left(mast); 2893 l_mas.offset = mast->bn->b_end; 2894 mab_set_b_end(mast->bn, &l_mas, left); 2895 mab_set_b_end(mast->bn, &m_mas, middle); 2896 mab_set_b_end(mast->bn, &r_mas, right); 2897 2898 /* Copy anything necessary out of the right node. */ 2899 mast_combine_cp_right(mast); 2900 mast->orig_l->last = mast->orig_l->max; 2901 2902 if (mast_sufficient(mast)) 2903 continue; 2904 2905 if (mast_overflow(mast)) 2906 continue; 2907 2908 /* May be a new root stored in mast->bn */ 2909 if (mas_is_root_limits(mast->orig_l)) 2910 break; 2911 2912 mast_spanning_rebalance(mast); 2913 2914 /* rebalancing from other nodes may require another loop. */ 2915 if (!count) 2916 count++; 2917 } 2918 2919 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 2920 mte_node_type(mast->orig_l->node)); 2921 l_mas.depth++; 2922 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 2923 mas_set_parent(mas, left, l_mas.node, slot); 2924 if (middle) 2925 mas_set_parent(mas, middle, l_mas.node, ++slot); 2926 2927 if (right) 2928 mas_set_parent(mas, right, l_mas.node, ++slot); 2929 2930 if (mas_is_root_limits(mast->l)) { 2931 new_root: 2932 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); 2933 while (!mte_is_root(mast->orig_l->node)) 2934 mast_ascend(mast); 2935 } else { 2936 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 2937 } 2938 2939 old_enode = mast->orig_l->node; 2940 mas->depth = l_mas.depth; 2941 mas->node = l_mas.node; 2942 mas->min = l_mas.min; 2943 mas->max = l_mas.max; 2944 mas->offset = l_mas.offset; 2945 mas_wmb_replace(mas, old_enode); 2946 mtree_range_walk(mas); 2947 return mast->bn->b_end; 2948 } 2949 2950 /* 2951 * mas_rebalance() - Rebalance a given node. 2952 * @mas: The maple state 2953 * @b_node: The big maple node. 2954 * 2955 * Rebalance two nodes into a single node or two new nodes that are sufficient. 2956 * Continue upwards until tree is sufficient. 2957 * 2958 * Return: the number of elements in b_node during the last loop. 2959 */ 2960 static inline int mas_rebalance(struct ma_state *mas, 2961 struct maple_big_node *b_node) 2962 { 2963 char empty_count = mas_mt_height(mas); 2964 struct maple_subtree_state mast; 2965 unsigned char shift, b_end = ++b_node->b_end; 2966 2967 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 2968 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2969 2970 trace_ma_op(__func__, mas); 2971 2972 /* 2973 * Rebalancing occurs if a node is insufficient. Data is rebalanced 2974 * against the node to the right if it exists, otherwise the node to the 2975 * left of this node is rebalanced against this node. If rebalancing 2976 * causes just one node to be produced instead of two, then the parent 2977 * is also examined and rebalanced if it is insufficient. Every level 2978 * tries to combine the data in the same way. If one node contains the 2979 * entire range of the tree, then that node is used as a new root node. 2980 */ 2981 mas_node_count(mas, empty_count * 2 - 1); 2982 if (mas_is_err(mas)) 2983 return 0; 2984 2985 mast.orig_l = &l_mas; 2986 mast.orig_r = &r_mas; 2987 mast.bn = b_node; 2988 mast.bn->type = mte_node_type(mas->node); 2989 2990 l_mas = r_mas = *mas; 2991 2992 if (mas_next_sibling(&r_mas)) { 2993 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 2994 r_mas.last = r_mas.index = r_mas.max; 2995 } else { 2996 mas_prev_sibling(&l_mas); 2997 shift = mas_data_end(&l_mas) + 1; 2998 mab_shift_right(b_node, shift); 2999 mas->offset += shift; 3000 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3001 b_node->b_end = shift + b_end; 3002 l_mas.index = l_mas.last = l_mas.min; 3003 } 3004 3005 return mas_spanning_rebalance(mas, &mast, empty_count); 3006 } 3007 3008 /* 3009 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3010 * state. 3011 * @mas: The maple state 3012 * @end: The end of the left-most node. 3013 * 3014 * During a mass-insert event (such as forking), it may be necessary to 3015 * rebalance the left-most node when it is not sufficient. 3016 */ 3017 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3018 { 3019 enum maple_type mt = mte_node_type(mas->node); 3020 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3021 struct maple_enode *eparent, *old_eparent; 3022 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3023 void __rcu **l_slots, **slots; 3024 unsigned long *l_pivs, *pivs, gap; 3025 bool in_rcu = mt_in_rcu(mas->tree); 3026 3027 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3028 3029 l_mas = *mas; 3030 mas_prev_sibling(&l_mas); 3031 3032 /* set up node. */ 3033 if (in_rcu) { 3034 /* Allocate for both left and right as well as parent. */ 3035 mas_node_count(mas, 3); 3036 if (mas_is_err(mas)) 3037 return; 3038 3039 newnode = mas_pop_node(mas); 3040 } else { 3041 newnode = &reuse; 3042 } 3043 3044 node = mas_mn(mas); 3045 newnode->parent = node->parent; 3046 slots = ma_slots(newnode, mt); 3047 pivs = ma_pivots(newnode, mt); 3048 left = mas_mn(&l_mas); 3049 l_slots = ma_slots(left, mt); 3050 l_pivs = ma_pivots(left, mt); 3051 if (!l_slots[split]) 3052 split++; 3053 tmp = mas_data_end(&l_mas) - split; 3054 3055 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3056 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3057 pivs[tmp] = l_mas.max; 3058 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3059 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3060 3061 l_mas.max = l_pivs[split]; 3062 mas->min = l_mas.max + 1; 3063 old_eparent = mt_mk_node(mte_parent(l_mas.node), 3064 mas_parent_type(&l_mas, l_mas.node)); 3065 tmp += end; 3066 if (!in_rcu) { 3067 unsigned char max_p = mt_pivots[mt]; 3068 unsigned char max_s = mt_slots[mt]; 3069 3070 if (tmp < max_p) 3071 memset(pivs + tmp, 0, 3072 sizeof(unsigned long) * (max_p - tmp)); 3073 3074 if (tmp < mt_slots[mt]) 3075 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3076 3077 memcpy(node, newnode, sizeof(struct maple_node)); 3078 ma_set_meta(node, mt, 0, tmp - 1); 3079 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node), 3080 l_pivs[split]); 3081 3082 /* Remove data from l_pivs. */ 3083 tmp = split + 1; 3084 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3085 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3086 ma_set_meta(left, mt, 0, split); 3087 eparent = old_eparent; 3088 3089 goto done; 3090 } 3091 3092 /* RCU requires replacing both l_mas, mas, and parent. */ 3093 mas->node = mt_mk_node(newnode, mt); 3094 ma_set_meta(newnode, mt, 0, tmp); 3095 3096 new_left = mas_pop_node(mas); 3097 new_left->parent = left->parent; 3098 mt = mte_node_type(l_mas.node); 3099 slots = ma_slots(new_left, mt); 3100 pivs = ma_pivots(new_left, mt); 3101 memcpy(slots, l_slots, sizeof(void *) * split); 3102 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3103 ma_set_meta(new_left, mt, 0, split); 3104 l_mas.node = mt_mk_node(new_left, mt); 3105 3106 /* replace parent. */ 3107 offset = mte_parent_slot(mas->node); 3108 mt = mas_parent_type(&l_mas, l_mas.node); 3109 parent = mas_pop_node(mas); 3110 slots = ma_slots(parent, mt); 3111 pivs = ma_pivots(parent, mt); 3112 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node)); 3113 rcu_assign_pointer(slots[offset], mas->node); 3114 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3115 pivs[offset - 1] = l_mas.max; 3116 eparent = mt_mk_node(parent, mt); 3117 done: 3118 gap = mas_leaf_max_gap(mas); 3119 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3120 gap = mas_leaf_max_gap(&l_mas); 3121 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3122 mas_ascend(mas); 3123 3124 if (in_rcu) { 3125 mas_replace_node(mas, old_eparent); 3126 mas_adopt_children(mas, mas->node); 3127 } 3128 3129 mas_update_gap(mas); 3130 } 3131 3132 /* 3133 * mas_split_final_node() - Split the final node in a subtree operation. 3134 * @mast: the maple subtree state 3135 * @mas: The maple state 3136 * @height: The height of the tree in case it's a new root. 3137 */ 3138 static inline void mas_split_final_node(struct maple_subtree_state *mast, 3139 struct ma_state *mas, int height) 3140 { 3141 struct maple_enode *ancestor; 3142 3143 if (mte_is_root(mas->node)) { 3144 if (mt_is_alloc(mas->tree)) 3145 mast->bn->type = maple_arange_64; 3146 else 3147 mast->bn->type = maple_range_64; 3148 mas->depth = height; 3149 } 3150 /* 3151 * Only a single node is used here, could be root. 3152 * The Big_node data should just fit in a single node. 3153 */ 3154 ancestor = mas_new_ma_node(mas, mast->bn); 3155 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3156 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3157 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3158 3159 mast->l->node = ancestor; 3160 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3161 mas->offset = mast->bn->b_end - 1; 3162 } 3163 3164 /* 3165 * mast_fill_bnode() - Copy data into the big node in the subtree state 3166 * @mast: The maple subtree state 3167 * @mas: the maple state 3168 * @skip: The number of entries to skip for new nodes insertion. 3169 */ 3170 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3171 struct ma_state *mas, 3172 unsigned char skip) 3173 { 3174 bool cp = true; 3175 unsigned char split; 3176 3177 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3178 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3179 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3180 mast->bn->b_end = 0; 3181 3182 if (mte_is_root(mas->node)) { 3183 cp = false; 3184 } else { 3185 mas_ascend(mas); 3186 mas->offset = mte_parent_slot(mas->node); 3187 } 3188 3189 if (cp && mast->l->offset) 3190 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3191 3192 split = mast->bn->b_end; 3193 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3194 mast->r->offset = mast->bn->b_end; 3195 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3196 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3197 cp = false; 3198 3199 if (cp) 3200 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3201 mast->bn, mast->bn->b_end); 3202 3203 mast->bn->b_end--; 3204 mast->bn->type = mte_node_type(mas->node); 3205 } 3206 3207 /* 3208 * mast_split_data() - Split the data in the subtree state big node into regular 3209 * nodes. 3210 * @mast: The maple subtree state 3211 * @mas: The maple state 3212 * @split: The location to split the big node 3213 */ 3214 static inline void mast_split_data(struct maple_subtree_state *mast, 3215 struct ma_state *mas, unsigned char split) 3216 { 3217 unsigned char p_slot; 3218 3219 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3220 mte_set_pivot(mast->r->node, 0, mast->r->max); 3221 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3222 mast->l->offset = mte_parent_slot(mas->node); 3223 mast->l->max = mast->bn->pivot[split]; 3224 mast->r->min = mast->l->max + 1; 3225 if (mte_is_leaf(mas->node)) 3226 return; 3227 3228 p_slot = mast->orig_l->offset; 3229 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3230 &p_slot, split); 3231 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3232 &p_slot, split); 3233 } 3234 3235 /* 3236 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3237 * data to the right or left node if there is room. 3238 * @mas: The maple state 3239 * @height: The current height of the maple state 3240 * @mast: The maple subtree state 3241 * @left: Push left or not. 3242 * 3243 * Keeping the height of the tree low means faster lookups. 3244 * 3245 * Return: True if pushed, false otherwise. 3246 */ 3247 static inline bool mas_push_data(struct ma_state *mas, int height, 3248 struct maple_subtree_state *mast, bool left) 3249 { 3250 unsigned char slot_total = mast->bn->b_end; 3251 unsigned char end, space, split; 3252 3253 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3254 tmp_mas = *mas; 3255 tmp_mas.depth = mast->l->depth; 3256 3257 if (left && !mas_prev_sibling(&tmp_mas)) 3258 return false; 3259 else if (!left && !mas_next_sibling(&tmp_mas)) 3260 return false; 3261 3262 end = mas_data_end(&tmp_mas); 3263 slot_total += end; 3264 space = 2 * mt_slot_count(mas->node) - 2; 3265 /* -2 instead of -1 to ensure there isn't a triple split */ 3266 if (ma_is_leaf(mast->bn->type)) 3267 space--; 3268 3269 if (mas->max == ULONG_MAX) 3270 space--; 3271 3272 if (slot_total >= space) 3273 return false; 3274 3275 /* Get the data; Fill mast->bn */ 3276 mast->bn->b_end++; 3277 if (left) { 3278 mab_shift_right(mast->bn, end + 1); 3279 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3280 mast->bn->b_end = slot_total + 1; 3281 } else { 3282 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3283 } 3284 3285 /* Configure mast for splitting of mast->bn */ 3286 split = mt_slots[mast->bn->type] - 2; 3287 if (left) { 3288 /* Switch mas to prev node */ 3289 *mas = tmp_mas; 3290 /* Start using mast->l for the left side. */ 3291 tmp_mas.node = mast->l->node; 3292 *mast->l = tmp_mas; 3293 } else { 3294 tmp_mas.node = mast->r->node; 3295 *mast->r = tmp_mas; 3296 split = slot_total - split; 3297 } 3298 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3299 /* Update parent slot for split calculation. */ 3300 if (left) 3301 mast->orig_l->offset += end + 1; 3302 3303 mast_split_data(mast, mas, split); 3304 mast_fill_bnode(mast, mas, 2); 3305 mas_split_final_node(mast, mas, height + 1); 3306 return true; 3307 } 3308 3309 /* 3310 * mas_split() - Split data that is too big for one node into two. 3311 * @mas: The maple state 3312 * @b_node: The maple big node 3313 * Return: 1 on success, 0 on failure. 3314 */ 3315 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3316 { 3317 struct maple_subtree_state mast; 3318 int height = 0; 3319 unsigned char mid_split, split = 0; 3320 struct maple_enode *old; 3321 3322 /* 3323 * Splitting is handled differently from any other B-tree; the Maple 3324 * Tree splits upwards. Splitting up means that the split operation 3325 * occurs when the walk of the tree hits the leaves and not on the way 3326 * down. The reason for splitting up is that it is impossible to know 3327 * how much space will be needed until the leaf is (or leaves are) 3328 * reached. Since overwriting data is allowed and a range could 3329 * overwrite more than one range or result in changing one entry into 3 3330 * entries, it is impossible to know if a split is required until the 3331 * data is examined. 3332 * 3333 * Splitting is a balancing act between keeping allocations to a minimum 3334 * and avoiding a 'jitter' event where a tree is expanded to make room 3335 * for an entry followed by a contraction when the entry is removed. To 3336 * accomplish the balance, there are empty slots remaining in both left 3337 * and right nodes after a split. 3338 */ 3339 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3340 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3341 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3342 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3343 3344 trace_ma_op(__func__, mas); 3345 mas->depth = mas_mt_height(mas); 3346 /* Allocation failures will happen early. */ 3347 mas_node_count(mas, 1 + mas->depth * 2); 3348 if (mas_is_err(mas)) 3349 return 0; 3350 3351 mast.l = &l_mas; 3352 mast.r = &r_mas; 3353 mast.orig_l = &prev_l_mas; 3354 mast.orig_r = &prev_r_mas; 3355 mast.bn = b_node; 3356 3357 while (height++ <= mas->depth) { 3358 if (mt_slots[b_node->type] > b_node->b_end) { 3359 mas_split_final_node(&mast, mas, height); 3360 break; 3361 } 3362 3363 l_mas = r_mas = *mas; 3364 l_mas.node = mas_new_ma_node(mas, b_node); 3365 r_mas.node = mas_new_ma_node(mas, b_node); 3366 /* 3367 * Another way that 'jitter' is avoided is to terminate a split up early if the 3368 * left or right node has space to spare. This is referred to as "pushing left" 3369 * or "pushing right" and is similar to the B* tree, except the nodes left or 3370 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3371 * is a significant savings. 3372 */ 3373 /* Try to push left. */ 3374 if (mas_push_data(mas, height, &mast, true)) 3375 break; 3376 /* Try to push right. */ 3377 if (mas_push_data(mas, height, &mast, false)) 3378 break; 3379 3380 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3381 mast_split_data(&mast, mas, split); 3382 /* 3383 * Usually correct, mab_mas_cp in the above call overwrites 3384 * r->max. 3385 */ 3386 mast.r->max = mas->max; 3387 mast_fill_bnode(&mast, mas, 1); 3388 prev_l_mas = *mast.l; 3389 prev_r_mas = *mast.r; 3390 } 3391 3392 /* Set the original node as dead */ 3393 old = mas->node; 3394 mas->node = l_mas.node; 3395 mas_wmb_replace(mas, old); 3396 mtree_range_walk(mas); 3397 return 1; 3398 } 3399 3400 /* 3401 * mas_reuse_node() - Reuse the node to store the data. 3402 * @wr_mas: The maple write state 3403 * @bn: The maple big node 3404 * @end: The end of the data. 3405 * 3406 * Will always return false in RCU mode. 3407 * 3408 * Return: True if node was reused, false otherwise. 3409 */ 3410 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3411 struct maple_big_node *bn, unsigned char end) 3412 { 3413 /* Need to be rcu safe. */ 3414 if (mt_in_rcu(wr_mas->mas->tree)) 3415 return false; 3416 3417 if (end > bn->b_end) { 3418 int clear = mt_slots[wr_mas->type] - bn->b_end; 3419 3420 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3421 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3422 } 3423 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3424 return true; 3425 } 3426 3427 /* 3428 * mas_commit_b_node() - Commit the big node into the tree. 3429 * @wr_mas: The maple write state 3430 * @b_node: The maple big node 3431 * @end: The end of the data. 3432 */ 3433 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3434 struct maple_big_node *b_node, unsigned char end) 3435 { 3436 struct maple_node *node; 3437 struct maple_enode *old_enode; 3438 unsigned char b_end = b_node->b_end; 3439 enum maple_type b_type = b_node->type; 3440 3441 old_enode = wr_mas->mas->node; 3442 if ((b_end < mt_min_slots[b_type]) && 3443 (!mte_is_root(old_enode)) && 3444 (mas_mt_height(wr_mas->mas) > 1)) 3445 return mas_rebalance(wr_mas->mas, b_node); 3446 3447 if (b_end >= mt_slots[b_type]) 3448 return mas_split(wr_mas->mas, b_node); 3449 3450 if (mas_reuse_node(wr_mas, b_node, end)) 3451 goto reuse_node; 3452 3453 mas_node_count(wr_mas->mas, 1); 3454 if (mas_is_err(wr_mas->mas)) 3455 return 0; 3456 3457 node = mas_pop_node(wr_mas->mas); 3458 node->parent = mas_mn(wr_mas->mas)->parent; 3459 wr_mas->mas->node = mt_mk_node(node, b_type); 3460 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3461 mas_replace_node(wr_mas->mas, old_enode); 3462 reuse_node: 3463 mas_update_gap(wr_mas->mas); 3464 wr_mas->mas->end = b_end; 3465 return 1; 3466 } 3467 3468 /* 3469 * mas_root_expand() - Expand a root to a node 3470 * @mas: The maple state 3471 * @entry: The entry to store into the tree 3472 */ 3473 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3474 { 3475 void *contents = mas_root_locked(mas); 3476 enum maple_type type = maple_leaf_64; 3477 struct maple_node *node; 3478 void __rcu **slots; 3479 unsigned long *pivots; 3480 int slot = 0; 3481 3482 mas_node_count(mas, 1); 3483 if (unlikely(mas_is_err(mas))) 3484 return 0; 3485 3486 node = mas_pop_node(mas); 3487 pivots = ma_pivots(node, type); 3488 slots = ma_slots(node, type); 3489 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3490 mas->node = mt_mk_node(node, type); 3491 mas->status = ma_active; 3492 3493 if (mas->index) { 3494 if (contents) { 3495 rcu_assign_pointer(slots[slot], contents); 3496 if (likely(mas->index > 1)) 3497 slot++; 3498 } 3499 pivots[slot++] = mas->index - 1; 3500 } 3501 3502 rcu_assign_pointer(slots[slot], entry); 3503 mas->offset = slot; 3504 pivots[slot] = mas->last; 3505 if (mas->last != ULONG_MAX) 3506 pivots[++slot] = ULONG_MAX; 3507 3508 mas->depth = 1; 3509 mas_set_height(mas); 3510 ma_set_meta(node, maple_leaf_64, 0, slot); 3511 /* swap the new root into the tree */ 3512 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3513 return slot; 3514 } 3515 3516 static inline void mas_store_root(struct ma_state *mas, void *entry) 3517 { 3518 if (likely((mas->last != 0) || (mas->index != 0))) 3519 mas_root_expand(mas, entry); 3520 else if (((unsigned long) (entry) & 3) == 2) 3521 mas_root_expand(mas, entry); 3522 else { 3523 rcu_assign_pointer(mas->tree->ma_root, entry); 3524 mas->status = ma_start; 3525 } 3526 } 3527 3528 /* 3529 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3530 * spans the node. 3531 * @mas: The maple state 3532 * @piv: The pivot value being written 3533 * @type: The maple node type 3534 * @entry: The data to write 3535 * 3536 * Spanning writes are writes that start in one node and end in another OR if 3537 * the write of a %NULL will cause the node to end with a %NULL. 3538 * 3539 * Return: True if this is a spanning write, false otherwise. 3540 */ 3541 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3542 { 3543 unsigned long max = wr_mas->r_max; 3544 unsigned long last = wr_mas->mas->last; 3545 enum maple_type type = wr_mas->type; 3546 void *entry = wr_mas->entry; 3547 3548 /* Contained in this pivot, fast path */ 3549 if (last < max) 3550 return false; 3551 3552 if (ma_is_leaf(type)) { 3553 max = wr_mas->mas->max; 3554 if (last < max) 3555 return false; 3556 } 3557 3558 if (last == max) { 3559 /* 3560 * The last entry of leaf node cannot be NULL unless it is the 3561 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3562 */ 3563 if (entry || last == ULONG_MAX) 3564 return false; 3565 } 3566 3567 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3568 return true; 3569 } 3570 3571 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3572 { 3573 wr_mas->type = mte_node_type(wr_mas->mas->node); 3574 mas_wr_node_walk(wr_mas); 3575 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3576 } 3577 3578 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3579 { 3580 wr_mas->mas->max = wr_mas->r_max; 3581 wr_mas->mas->min = wr_mas->r_min; 3582 wr_mas->mas->node = wr_mas->content; 3583 wr_mas->mas->offset = 0; 3584 wr_mas->mas->depth++; 3585 } 3586 /* 3587 * mas_wr_walk() - Walk the tree for a write. 3588 * @wr_mas: The maple write state 3589 * 3590 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3591 * 3592 * Return: True if it's contained in a node, false on spanning write. 3593 */ 3594 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3595 { 3596 struct ma_state *mas = wr_mas->mas; 3597 3598 while (true) { 3599 mas_wr_walk_descend(wr_mas); 3600 if (unlikely(mas_is_span_wr(wr_mas))) 3601 return false; 3602 3603 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3604 mas->offset); 3605 if (ma_is_leaf(wr_mas->type)) 3606 return true; 3607 3608 mas_wr_walk_traverse(wr_mas); 3609 } 3610 3611 return true; 3612 } 3613 3614 static void mas_wr_walk_index(struct ma_wr_state *wr_mas) 3615 { 3616 struct ma_state *mas = wr_mas->mas; 3617 3618 while (true) { 3619 mas_wr_walk_descend(wr_mas); 3620 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3621 mas->offset); 3622 if (ma_is_leaf(wr_mas->type)) 3623 return; 3624 mas_wr_walk_traverse(wr_mas); 3625 } 3626 } 3627 /* 3628 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3629 * @l_wr_mas: The left maple write state 3630 * @r_wr_mas: The right maple write state 3631 */ 3632 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3633 struct ma_wr_state *r_wr_mas) 3634 { 3635 struct ma_state *r_mas = r_wr_mas->mas; 3636 struct ma_state *l_mas = l_wr_mas->mas; 3637 unsigned char l_slot; 3638 3639 l_slot = l_mas->offset; 3640 if (!l_wr_mas->content) 3641 l_mas->index = l_wr_mas->r_min; 3642 3643 if ((l_mas->index == l_wr_mas->r_min) && 3644 (l_slot && 3645 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3646 if (l_slot > 1) 3647 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3648 else 3649 l_mas->index = l_mas->min; 3650 3651 l_mas->offset = l_slot - 1; 3652 } 3653 3654 if (!r_wr_mas->content) { 3655 if (r_mas->last < r_wr_mas->r_max) 3656 r_mas->last = r_wr_mas->r_max; 3657 r_mas->offset++; 3658 } else if ((r_mas->last == r_wr_mas->r_max) && 3659 (r_mas->last < r_mas->max) && 3660 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3661 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3662 r_wr_mas->type, r_mas->offset + 1); 3663 r_mas->offset++; 3664 } 3665 } 3666 3667 static inline void *mas_state_walk(struct ma_state *mas) 3668 { 3669 void *entry; 3670 3671 entry = mas_start(mas); 3672 if (mas_is_none(mas)) 3673 return NULL; 3674 3675 if (mas_is_ptr(mas)) 3676 return entry; 3677 3678 return mtree_range_walk(mas); 3679 } 3680 3681 /* 3682 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3683 * to date. 3684 * 3685 * @mas: The maple state. 3686 * 3687 * Note: Leaves mas in undesirable state. 3688 * Return: The entry for @mas->index or %NULL on dead node. 3689 */ 3690 static inline void *mtree_lookup_walk(struct ma_state *mas) 3691 { 3692 unsigned long *pivots; 3693 unsigned char offset; 3694 struct maple_node *node; 3695 struct maple_enode *next; 3696 enum maple_type type; 3697 void __rcu **slots; 3698 unsigned char end; 3699 3700 next = mas->node; 3701 do { 3702 node = mte_to_node(next); 3703 type = mte_node_type(next); 3704 pivots = ma_pivots(node, type); 3705 end = mt_pivots[type]; 3706 offset = 0; 3707 do { 3708 if (pivots[offset] >= mas->index) 3709 break; 3710 } while (++offset < end); 3711 3712 slots = ma_slots(node, type); 3713 next = mt_slot(mas->tree, slots, offset); 3714 if (unlikely(ma_dead_node(node))) 3715 goto dead_node; 3716 } while (!ma_is_leaf(type)); 3717 3718 return (void *)next; 3719 3720 dead_node: 3721 mas_reset(mas); 3722 return NULL; 3723 } 3724 3725 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 3726 /* 3727 * mas_new_root() - Create a new root node that only contains the entry passed 3728 * in. 3729 * @mas: The maple state 3730 * @entry: The entry to store. 3731 * 3732 * Only valid when the index == 0 and the last == ULONG_MAX 3733 * 3734 * Return 0 on error, 1 on success. 3735 */ 3736 static inline int mas_new_root(struct ma_state *mas, void *entry) 3737 { 3738 struct maple_enode *root = mas_root_locked(mas); 3739 enum maple_type type = maple_leaf_64; 3740 struct maple_node *node; 3741 void __rcu **slots; 3742 unsigned long *pivots; 3743 3744 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3745 mas->depth = 0; 3746 mas_set_height(mas); 3747 rcu_assign_pointer(mas->tree->ma_root, entry); 3748 mas->status = ma_start; 3749 goto done; 3750 } 3751 3752 mas_node_count(mas, 1); 3753 if (mas_is_err(mas)) 3754 return 0; 3755 3756 node = mas_pop_node(mas); 3757 pivots = ma_pivots(node, type); 3758 slots = ma_slots(node, type); 3759 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3760 mas->node = mt_mk_node(node, type); 3761 mas->status = ma_active; 3762 rcu_assign_pointer(slots[0], entry); 3763 pivots[0] = mas->last; 3764 mas->depth = 1; 3765 mas_set_height(mas); 3766 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3767 3768 done: 3769 if (xa_is_node(root)) 3770 mte_destroy_walk(root, mas->tree); 3771 3772 return 1; 3773 } 3774 /* 3775 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3776 * and new nodes where necessary, then place the sub-tree in the actual tree. 3777 * Note that mas is expected to point to the node which caused the store to 3778 * span. 3779 * @wr_mas: The maple write state 3780 * 3781 * Return: 0 on error, positive on success. 3782 */ 3783 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3784 { 3785 struct maple_subtree_state mast; 3786 struct maple_big_node b_node; 3787 struct ma_state *mas; 3788 unsigned char height; 3789 3790 /* Left and Right side of spanning store */ 3791 MA_STATE(l_mas, NULL, 0, 0); 3792 MA_STATE(r_mas, NULL, 0, 0); 3793 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3794 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3795 3796 /* 3797 * A store operation that spans multiple nodes is called a spanning 3798 * store and is handled early in the store call stack by the function 3799 * mas_is_span_wr(). When a spanning store is identified, the maple 3800 * state is duplicated. The first maple state walks the left tree path 3801 * to ``index``, the duplicate walks the right tree path to ``last``. 3802 * The data in the two nodes are combined into a single node, two nodes, 3803 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3804 * written to the last entry of a node is considered a spanning store as 3805 * a rebalance is required for the operation to complete and an overflow 3806 * of data may happen. 3807 */ 3808 mas = wr_mas->mas; 3809 trace_ma_op(__func__, mas); 3810 3811 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3812 return mas_new_root(mas, wr_mas->entry); 3813 /* 3814 * Node rebalancing may occur due to this store, so there may be three new 3815 * entries per level plus a new root. 3816 */ 3817 height = mas_mt_height(mas); 3818 mas_node_count(mas, 1 + height * 3); 3819 if (mas_is_err(mas)) 3820 return 0; 3821 3822 /* 3823 * Set up right side. Need to get to the next offset after the spanning 3824 * store to ensure it's not NULL and to combine both the next node and 3825 * the node with the start together. 3826 */ 3827 r_mas = *mas; 3828 /* Avoid overflow, walk to next slot in the tree. */ 3829 if (r_mas.last + 1) 3830 r_mas.last++; 3831 3832 r_mas.index = r_mas.last; 3833 mas_wr_walk_index(&r_wr_mas); 3834 r_mas.last = r_mas.index = mas->last; 3835 3836 /* Set up left side. */ 3837 l_mas = *mas; 3838 mas_wr_walk_index(&l_wr_mas); 3839 3840 if (!wr_mas->entry) { 3841 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 3842 mas->offset = l_mas.offset; 3843 mas->index = l_mas.index; 3844 mas->last = l_mas.last = r_mas.last; 3845 } 3846 3847 /* expanding NULLs may make this cover the entire range */ 3848 if (!l_mas.index && r_mas.last == ULONG_MAX) { 3849 mas_set_range(mas, 0, ULONG_MAX); 3850 return mas_new_root(mas, wr_mas->entry); 3851 } 3852 3853 memset(&b_node, 0, sizeof(struct maple_big_node)); 3854 /* Copy l_mas and store the value in b_node. */ 3855 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end); 3856 /* Copy r_mas into b_node if there is anything to copy. */ 3857 if (r_mas.max > r_mas.last) 3858 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end, 3859 &b_node, b_node.b_end + 1); 3860 else 3861 b_node.b_end++; 3862 3863 /* Stop spanning searches by searching for just index. */ 3864 l_mas.index = l_mas.last = mas->index; 3865 3866 mast.bn = &b_node; 3867 mast.orig_l = &l_mas; 3868 mast.orig_r = &r_mas; 3869 /* Combine l_mas and r_mas and split them up evenly again. */ 3870 return mas_spanning_rebalance(mas, &mast, height + 1); 3871 } 3872 3873 /* 3874 * mas_wr_node_store() - Attempt to store the value in a node 3875 * @wr_mas: The maple write state 3876 * 3877 * Attempts to reuse the node, but may allocate. 3878 * 3879 * Return: True if stored, false otherwise 3880 */ 3881 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas, 3882 unsigned char new_end) 3883 { 3884 struct ma_state *mas = wr_mas->mas; 3885 void __rcu **dst_slots; 3886 unsigned long *dst_pivots; 3887 unsigned char dst_offset, offset_end = wr_mas->offset_end; 3888 struct maple_node reuse, *newnode; 3889 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 3890 bool in_rcu = mt_in_rcu(mas->tree); 3891 3892 /* Check if there is enough data. The room is enough. */ 3893 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 3894 !(mas->mas_flags & MA_STATE_BULK)) 3895 return false; 3896 3897 if (mas->last == wr_mas->end_piv) 3898 offset_end++; /* don't copy this offset */ 3899 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 3900 mas_bulk_rebalance(mas, mas->end, wr_mas->type); 3901 3902 /* set up node. */ 3903 if (in_rcu) { 3904 mas_node_count(mas, 1); 3905 if (mas_is_err(mas)) 3906 return false; 3907 3908 newnode = mas_pop_node(mas); 3909 } else { 3910 memset(&reuse, 0, sizeof(struct maple_node)); 3911 newnode = &reuse; 3912 } 3913 3914 newnode->parent = mas_mn(mas)->parent; 3915 dst_pivots = ma_pivots(newnode, wr_mas->type); 3916 dst_slots = ma_slots(newnode, wr_mas->type); 3917 /* Copy from start to insert point */ 3918 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 3919 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 3920 3921 /* Handle insert of new range starting after old range */ 3922 if (wr_mas->r_min < mas->index) { 3923 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 3924 dst_pivots[mas->offset++] = mas->index - 1; 3925 } 3926 3927 /* Store the new entry and range end. */ 3928 if (mas->offset < node_pivots) 3929 dst_pivots[mas->offset] = mas->last; 3930 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 3931 3932 /* 3933 * this range wrote to the end of the node or it overwrote the rest of 3934 * the data 3935 */ 3936 if (offset_end > mas->end) 3937 goto done; 3938 3939 dst_offset = mas->offset + 1; 3940 /* Copy to the end of node if necessary. */ 3941 copy_size = mas->end - offset_end + 1; 3942 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 3943 sizeof(void *) * copy_size); 3944 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 3945 sizeof(unsigned long) * (copy_size - 1)); 3946 3947 if (new_end < node_pivots) 3948 dst_pivots[new_end] = mas->max; 3949 3950 done: 3951 mas_leaf_set_meta(newnode, maple_leaf_64, new_end); 3952 if (in_rcu) { 3953 struct maple_enode *old_enode = mas->node; 3954 3955 mas->node = mt_mk_node(newnode, wr_mas->type); 3956 mas_replace_node(mas, old_enode); 3957 } else { 3958 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 3959 } 3960 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3961 mas_update_gap(mas); 3962 mas->end = new_end; 3963 return true; 3964 } 3965 3966 /* 3967 * mas_wr_slot_store: Attempt to store a value in a slot. 3968 * @wr_mas: the maple write state 3969 * 3970 * Return: True if stored, false otherwise 3971 */ 3972 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 3973 { 3974 struct ma_state *mas = wr_mas->mas; 3975 unsigned char offset = mas->offset; 3976 void __rcu **slots = wr_mas->slots; 3977 bool gap = false; 3978 3979 gap |= !mt_slot_locked(mas->tree, slots, offset); 3980 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 3981 3982 if (wr_mas->offset_end - offset == 1) { 3983 if (mas->index == wr_mas->r_min) { 3984 /* Overwriting the range and a part of the next one */ 3985 rcu_assign_pointer(slots[offset], wr_mas->entry); 3986 wr_mas->pivots[offset] = mas->last; 3987 } else { 3988 /* Overwriting a part of the range and the next one */ 3989 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3990 wr_mas->pivots[offset] = mas->index - 1; 3991 mas->offset++; /* Keep mas accurate. */ 3992 } 3993 } else if (!mt_in_rcu(mas->tree)) { 3994 /* 3995 * Expand the range, only partially overwriting the previous and 3996 * next ranges 3997 */ 3998 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 3999 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4000 wr_mas->pivots[offset] = mas->index - 1; 4001 wr_mas->pivots[offset + 1] = mas->last; 4002 mas->offset++; /* Keep mas accurate. */ 4003 } else { 4004 return false; 4005 } 4006 4007 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4008 /* 4009 * Only update gap when the new entry is empty or there is an empty 4010 * entry in the original two ranges. 4011 */ 4012 if (!wr_mas->entry || gap) 4013 mas_update_gap(mas); 4014 4015 return true; 4016 } 4017 4018 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4019 { 4020 struct ma_state *mas = wr_mas->mas; 4021 4022 if (!wr_mas->slots[wr_mas->offset_end]) { 4023 /* If this one is null, the next and prev are not */ 4024 mas->last = wr_mas->end_piv; 4025 } else { 4026 /* Check next slot(s) if we are overwriting the end */ 4027 if ((mas->last == wr_mas->end_piv) && 4028 (mas->end != wr_mas->offset_end) && 4029 !wr_mas->slots[wr_mas->offset_end + 1]) { 4030 wr_mas->offset_end++; 4031 if (wr_mas->offset_end == mas->end) 4032 mas->last = mas->max; 4033 else 4034 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4035 wr_mas->end_piv = mas->last; 4036 } 4037 } 4038 4039 if (!wr_mas->content) { 4040 /* If this one is null, the next and prev are not */ 4041 mas->index = wr_mas->r_min; 4042 } else { 4043 /* Check prev slot if we are overwriting the start */ 4044 if (mas->index == wr_mas->r_min && mas->offset && 4045 !wr_mas->slots[mas->offset - 1]) { 4046 mas->offset--; 4047 wr_mas->r_min = mas->index = 4048 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4049 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4050 } 4051 } 4052 } 4053 4054 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4055 { 4056 while ((wr_mas->offset_end < wr_mas->mas->end) && 4057 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4058 wr_mas->offset_end++; 4059 4060 if (wr_mas->offset_end < wr_mas->mas->end) 4061 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4062 else 4063 wr_mas->end_piv = wr_mas->mas->max; 4064 4065 if (!wr_mas->entry) 4066 mas_wr_extend_null(wr_mas); 4067 } 4068 4069 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 4070 { 4071 struct ma_state *mas = wr_mas->mas; 4072 unsigned char new_end = mas->end + 2; 4073 4074 new_end -= wr_mas->offset_end - mas->offset; 4075 if (wr_mas->r_min == mas->index) 4076 new_end--; 4077 4078 if (wr_mas->end_piv == mas->last) 4079 new_end--; 4080 4081 return new_end; 4082 } 4083 4084 /* 4085 * mas_wr_append: Attempt to append 4086 * @wr_mas: the maple write state 4087 * @new_end: The end of the node after the modification 4088 * 4089 * This is currently unsafe in rcu mode since the end of the node may be cached 4090 * by readers while the node contents may be updated which could result in 4091 * inaccurate information. 4092 * 4093 * Return: True if appended, false otherwise 4094 */ 4095 static inline bool mas_wr_append(struct ma_wr_state *wr_mas, 4096 unsigned char new_end) 4097 { 4098 struct ma_state *mas; 4099 void __rcu **slots; 4100 unsigned char end; 4101 4102 mas = wr_mas->mas; 4103 if (mt_in_rcu(mas->tree)) 4104 return false; 4105 4106 end = mas->end; 4107 if (mas->offset != end) 4108 return false; 4109 4110 if (new_end < mt_pivots[wr_mas->type]) { 4111 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4112 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end); 4113 } 4114 4115 slots = wr_mas->slots; 4116 if (new_end == end + 1) { 4117 if (mas->last == wr_mas->r_max) { 4118 /* Append to end of range */ 4119 rcu_assign_pointer(slots[new_end], wr_mas->entry); 4120 wr_mas->pivots[end] = mas->index - 1; 4121 mas->offset = new_end; 4122 } else { 4123 /* Append to start of range */ 4124 rcu_assign_pointer(slots[new_end], wr_mas->content); 4125 wr_mas->pivots[end] = mas->last; 4126 rcu_assign_pointer(slots[end], wr_mas->entry); 4127 } 4128 } else { 4129 /* Append to the range without touching any boundaries. */ 4130 rcu_assign_pointer(slots[new_end], wr_mas->content); 4131 wr_mas->pivots[end + 1] = mas->last; 4132 rcu_assign_pointer(slots[end + 1], wr_mas->entry); 4133 wr_mas->pivots[end] = mas->index - 1; 4134 mas->offset = end + 1; 4135 } 4136 4137 if (!wr_mas->content || !wr_mas->entry) 4138 mas_update_gap(mas); 4139 4140 mas->end = new_end; 4141 trace_ma_write(__func__, mas, new_end, wr_mas->entry); 4142 return true; 4143 } 4144 4145 /* 4146 * mas_wr_bnode() - Slow path for a modification. 4147 * @wr_mas: The write maple state 4148 * 4149 * This is where split, rebalance end up. 4150 */ 4151 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4152 { 4153 struct maple_big_node b_node; 4154 4155 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4156 memset(&b_node, 0, sizeof(struct maple_big_node)); 4157 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4158 mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end); 4159 } 4160 4161 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4162 { 4163 struct ma_state *mas = wr_mas->mas; 4164 unsigned char new_end; 4165 4166 /* Direct replacement */ 4167 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4168 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4169 if (!!wr_mas->entry ^ !!wr_mas->content) 4170 mas_update_gap(mas); 4171 return; 4172 } 4173 4174 /* 4175 * new_end exceeds the size of the maple node and cannot enter the fast 4176 * path. 4177 */ 4178 new_end = mas_wr_new_end(wr_mas); 4179 if (new_end >= mt_slots[wr_mas->type]) 4180 goto slow_path; 4181 4182 /* Attempt to append */ 4183 if (mas_wr_append(wr_mas, new_end)) 4184 return; 4185 4186 if (new_end == mas->end && mas_wr_slot_store(wr_mas)) 4187 return; 4188 4189 if (mas_wr_node_store(wr_mas, new_end)) 4190 return; 4191 4192 if (mas_is_err(mas)) 4193 return; 4194 4195 slow_path: 4196 mas_wr_bnode(wr_mas); 4197 } 4198 4199 /* 4200 * mas_wr_store_entry() - Internal call to store a value 4201 * @mas: The maple state 4202 * @entry: The entry to store. 4203 * 4204 * Return: The contents that was stored at the index. 4205 */ 4206 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas) 4207 { 4208 struct ma_state *mas = wr_mas->mas; 4209 4210 wr_mas->content = mas_start(mas); 4211 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4212 mas_store_root(mas, wr_mas->entry); 4213 return; 4214 } 4215 4216 if (unlikely(!mas_wr_walk(wr_mas))) { 4217 mas_wr_spanning_store(wr_mas); 4218 return; 4219 } 4220 4221 /* At this point, we are at the leaf node that needs to be altered. */ 4222 mas_wr_end_piv(wr_mas); 4223 /* New root for a single pointer */ 4224 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 4225 mas_new_root(mas, wr_mas->entry); 4226 else 4227 mas_wr_modify(wr_mas); 4228 } 4229 4230 /** 4231 * mas_insert() - Internal call to insert a value 4232 * @mas: The maple state 4233 * @entry: The entry to store 4234 * 4235 * Return: %NULL or the contents that already exists at the requested index 4236 * otherwise. The maple state needs to be checked for error conditions. 4237 */ 4238 static inline void *mas_insert(struct ma_state *mas, void *entry) 4239 { 4240 MA_WR_STATE(wr_mas, mas, entry); 4241 4242 /* 4243 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4244 * tree. If the insert fits exactly into an existing gap with a value 4245 * of NULL, then the slot only needs to be written with the new value. 4246 * If the range being inserted is adjacent to another range, then only a 4247 * single pivot needs to be inserted (as well as writing the entry). If 4248 * the new range is within a gap but does not touch any other ranges, 4249 * then two pivots need to be inserted: the start - 1, and the end. As 4250 * usual, the entry must be written. Most operations require a new node 4251 * to be allocated and replace an existing node to ensure RCU safety, 4252 * when in RCU mode. The exception to requiring a newly allocated node 4253 * is when inserting at the end of a node (appending). When done 4254 * carefully, appending can reuse the node in place. 4255 */ 4256 wr_mas.content = mas_start(mas); 4257 if (wr_mas.content) 4258 goto exists; 4259 4260 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4261 mas_store_root(mas, entry); 4262 return NULL; 4263 } 4264 4265 /* spanning writes always overwrite something */ 4266 if (!mas_wr_walk(&wr_mas)) 4267 goto exists; 4268 4269 /* At this point, we are at the leaf node that needs to be altered. */ 4270 wr_mas.offset_end = mas->offset; 4271 wr_mas.end_piv = wr_mas.r_max; 4272 4273 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4274 goto exists; 4275 4276 if (!entry) 4277 return NULL; 4278 4279 mas_wr_modify(&wr_mas); 4280 return wr_mas.content; 4281 4282 exists: 4283 mas_set_err(mas, -EEXIST); 4284 return wr_mas.content; 4285 4286 } 4287 4288 /** 4289 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry 4290 * @mas: The maple state. 4291 * @startp: Pointer to ID. 4292 * @range_lo: Lower bound of range to search. 4293 * @range_hi: Upper bound of range to search. 4294 * @entry: The entry to store. 4295 * @next: Pointer to next ID to allocate. 4296 * @gfp: The GFP_FLAGS to use for allocations. 4297 * 4298 * Return: 0 if the allocation succeeded without wrapping, 1 if the 4299 * allocation succeeded after wrapping, or -EBUSY if there are no 4300 * free entries. 4301 */ 4302 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 4303 void *entry, unsigned long range_lo, unsigned long range_hi, 4304 unsigned long *next, gfp_t gfp) 4305 { 4306 unsigned long min = range_lo; 4307 int ret = 0; 4308 4309 range_lo = max(min, *next); 4310 ret = mas_empty_area(mas, range_lo, range_hi, 1); 4311 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) { 4312 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED; 4313 ret = 1; 4314 } 4315 if (ret < 0 && range_lo > min) { 4316 ret = mas_empty_area(mas, min, range_hi, 1); 4317 if (ret == 0) 4318 ret = 1; 4319 } 4320 if (ret < 0) 4321 return ret; 4322 4323 do { 4324 mas_insert(mas, entry); 4325 } while (mas_nomem(mas, gfp)); 4326 if (mas_is_err(mas)) 4327 return xa_err(mas->node); 4328 4329 *startp = mas->index; 4330 *next = *startp + 1; 4331 if (*next == 0) 4332 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED; 4333 4334 return ret; 4335 } 4336 EXPORT_SYMBOL(mas_alloc_cyclic); 4337 4338 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4339 { 4340 retry: 4341 mas_set(mas, index); 4342 mas_state_walk(mas); 4343 if (mas_is_start(mas)) 4344 goto retry; 4345 } 4346 4347 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, 4348 struct maple_node *node, const unsigned long index) 4349 { 4350 if (unlikely(ma_dead_node(node))) { 4351 mas_rewalk(mas, index); 4352 return true; 4353 } 4354 return false; 4355 } 4356 4357 /* 4358 * mas_prev_node() - Find the prev non-null entry at the same level in the 4359 * tree. The prev value will be mas->node[mas->offset] or the status will be 4360 * ma_none. 4361 * @mas: The maple state 4362 * @min: The lower limit to search 4363 * 4364 * The prev node value will be mas->node[mas->offset] or the status will be 4365 * ma_none. 4366 * Return: 1 if the node is dead, 0 otherwise. 4367 */ 4368 static int mas_prev_node(struct ma_state *mas, unsigned long min) 4369 { 4370 enum maple_type mt; 4371 int offset, level; 4372 void __rcu **slots; 4373 struct maple_node *node; 4374 unsigned long *pivots; 4375 unsigned long max; 4376 4377 node = mas_mn(mas); 4378 if (!mas->min) 4379 goto no_entry; 4380 4381 max = mas->min - 1; 4382 if (max < min) 4383 goto no_entry; 4384 4385 level = 0; 4386 do { 4387 if (ma_is_root(node)) 4388 goto no_entry; 4389 4390 /* Walk up. */ 4391 if (unlikely(mas_ascend(mas))) 4392 return 1; 4393 offset = mas->offset; 4394 level++; 4395 node = mas_mn(mas); 4396 } while (!offset); 4397 4398 offset--; 4399 mt = mte_node_type(mas->node); 4400 while (level > 1) { 4401 level--; 4402 slots = ma_slots(node, mt); 4403 mas->node = mas_slot(mas, slots, offset); 4404 if (unlikely(ma_dead_node(node))) 4405 return 1; 4406 4407 mt = mte_node_type(mas->node); 4408 node = mas_mn(mas); 4409 pivots = ma_pivots(node, mt); 4410 offset = ma_data_end(node, mt, pivots, max); 4411 if (unlikely(ma_dead_node(node))) 4412 return 1; 4413 } 4414 4415 slots = ma_slots(node, mt); 4416 mas->node = mas_slot(mas, slots, offset); 4417 pivots = ma_pivots(node, mt); 4418 if (unlikely(ma_dead_node(node))) 4419 return 1; 4420 4421 if (likely(offset)) 4422 mas->min = pivots[offset - 1] + 1; 4423 mas->max = max; 4424 mas->offset = mas_data_end(mas); 4425 if (unlikely(mte_dead_node(mas->node))) 4426 return 1; 4427 4428 mas->end = mas->offset; 4429 return 0; 4430 4431 no_entry: 4432 if (unlikely(ma_dead_node(node))) 4433 return 1; 4434 4435 mas->status = ma_underflow; 4436 return 0; 4437 } 4438 4439 /* 4440 * mas_prev_slot() - Get the entry in the previous slot 4441 * 4442 * @mas: The maple state 4443 * @max: The minimum starting range 4444 * @empty: Can be empty 4445 * @set_underflow: Set the @mas->node to underflow state on limit. 4446 * 4447 * Return: The entry in the previous slot which is possibly NULL 4448 */ 4449 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4450 { 4451 void *entry; 4452 void __rcu **slots; 4453 unsigned long pivot; 4454 enum maple_type type; 4455 unsigned long *pivots; 4456 struct maple_node *node; 4457 unsigned long save_point = mas->index; 4458 4459 retry: 4460 node = mas_mn(mas); 4461 type = mte_node_type(mas->node); 4462 pivots = ma_pivots(node, type); 4463 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4464 goto retry; 4465 4466 if (mas->min <= min) { 4467 pivot = mas_safe_min(mas, pivots, mas->offset); 4468 4469 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4470 goto retry; 4471 4472 if (pivot <= min) 4473 goto underflow; 4474 } 4475 4476 again: 4477 if (likely(mas->offset)) { 4478 mas->offset--; 4479 mas->last = mas->index - 1; 4480 mas->index = mas_safe_min(mas, pivots, mas->offset); 4481 } else { 4482 if (mas->index <= min) 4483 goto underflow; 4484 4485 if (mas_prev_node(mas, min)) { 4486 mas_rewalk(mas, save_point); 4487 goto retry; 4488 } 4489 4490 if (WARN_ON_ONCE(mas_is_underflow(mas))) 4491 return NULL; 4492 4493 mas->last = mas->max; 4494 node = mas_mn(mas); 4495 type = mte_node_type(mas->node); 4496 pivots = ma_pivots(node, type); 4497 mas->index = pivots[mas->offset - 1] + 1; 4498 } 4499 4500 slots = ma_slots(node, type); 4501 entry = mas_slot(mas, slots, mas->offset); 4502 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4503 goto retry; 4504 4505 4506 if (likely(entry)) 4507 return entry; 4508 4509 if (!empty) { 4510 if (mas->index <= min) { 4511 mas->status = ma_underflow; 4512 return NULL; 4513 } 4514 4515 goto again; 4516 } 4517 4518 return entry; 4519 4520 underflow: 4521 mas->status = ma_underflow; 4522 return NULL; 4523 } 4524 4525 /* 4526 * mas_next_node() - Get the next node at the same level in the tree. 4527 * @mas: The maple state 4528 * @max: The maximum pivot value to check. 4529 * 4530 * The next value will be mas->node[mas->offset] or the status will have 4531 * overflowed. 4532 * Return: 1 on dead node, 0 otherwise. 4533 */ 4534 static int mas_next_node(struct ma_state *mas, struct maple_node *node, 4535 unsigned long max) 4536 { 4537 unsigned long min; 4538 unsigned long *pivots; 4539 struct maple_enode *enode; 4540 struct maple_node *tmp; 4541 int level = 0; 4542 unsigned char node_end; 4543 enum maple_type mt; 4544 void __rcu **slots; 4545 4546 if (mas->max >= max) 4547 goto overflow; 4548 4549 min = mas->max + 1; 4550 level = 0; 4551 do { 4552 if (ma_is_root(node)) 4553 goto overflow; 4554 4555 /* Walk up. */ 4556 if (unlikely(mas_ascend(mas))) 4557 return 1; 4558 4559 level++; 4560 node = mas_mn(mas); 4561 mt = mte_node_type(mas->node); 4562 pivots = ma_pivots(node, mt); 4563 node_end = ma_data_end(node, mt, pivots, mas->max); 4564 if (unlikely(ma_dead_node(node))) 4565 return 1; 4566 4567 } while (unlikely(mas->offset == node_end)); 4568 4569 slots = ma_slots(node, mt); 4570 mas->offset++; 4571 enode = mas_slot(mas, slots, mas->offset); 4572 if (unlikely(ma_dead_node(node))) 4573 return 1; 4574 4575 if (level > 1) 4576 mas->offset = 0; 4577 4578 while (unlikely(level > 1)) { 4579 level--; 4580 mas->node = enode; 4581 node = mas_mn(mas); 4582 mt = mte_node_type(mas->node); 4583 slots = ma_slots(node, mt); 4584 enode = mas_slot(mas, slots, 0); 4585 if (unlikely(ma_dead_node(node))) 4586 return 1; 4587 } 4588 4589 if (!mas->offset) 4590 pivots = ma_pivots(node, mt); 4591 4592 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4593 tmp = mte_to_node(enode); 4594 mt = mte_node_type(enode); 4595 pivots = ma_pivots(tmp, mt); 4596 mas->end = ma_data_end(tmp, mt, pivots, mas->max); 4597 if (unlikely(ma_dead_node(node))) 4598 return 1; 4599 4600 mas->node = enode; 4601 mas->min = min; 4602 return 0; 4603 4604 overflow: 4605 if (unlikely(ma_dead_node(node))) 4606 return 1; 4607 4608 mas->status = ma_overflow; 4609 return 0; 4610 } 4611 4612 /* 4613 * mas_next_slot() - Get the entry in the next slot 4614 * 4615 * @mas: The maple state 4616 * @max: The maximum starting range 4617 * @empty: Can be empty 4618 * @set_overflow: Should @mas->node be set to overflow when the limit is 4619 * reached. 4620 * 4621 * Return: The entry in the next slot which is possibly NULL 4622 */ 4623 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4624 { 4625 void __rcu **slots; 4626 unsigned long *pivots; 4627 unsigned long pivot; 4628 enum maple_type type; 4629 struct maple_node *node; 4630 unsigned long save_point = mas->last; 4631 void *entry; 4632 4633 retry: 4634 node = mas_mn(mas); 4635 type = mte_node_type(mas->node); 4636 pivots = ma_pivots(node, type); 4637 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4638 goto retry; 4639 4640 if (mas->max >= max) { 4641 if (likely(mas->offset < mas->end)) 4642 pivot = pivots[mas->offset]; 4643 else 4644 pivot = mas->max; 4645 4646 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4647 goto retry; 4648 4649 if (pivot >= max) { /* Was at the limit, next will extend beyond */ 4650 mas->status = ma_overflow; 4651 return NULL; 4652 } 4653 } 4654 4655 if (likely(mas->offset < mas->end)) { 4656 mas->index = pivots[mas->offset] + 1; 4657 again: 4658 mas->offset++; 4659 if (likely(mas->offset < mas->end)) 4660 mas->last = pivots[mas->offset]; 4661 else 4662 mas->last = mas->max; 4663 } else { 4664 if (mas->last >= max) { 4665 mas->status = ma_overflow; 4666 return NULL; 4667 } 4668 4669 if (mas_next_node(mas, node, max)) { 4670 mas_rewalk(mas, save_point); 4671 goto retry; 4672 } 4673 4674 if (WARN_ON_ONCE(mas_is_overflow(mas))) 4675 return NULL; 4676 4677 mas->offset = 0; 4678 mas->index = mas->min; 4679 node = mas_mn(mas); 4680 type = mte_node_type(mas->node); 4681 pivots = ma_pivots(node, type); 4682 mas->last = pivots[0]; 4683 } 4684 4685 slots = ma_slots(node, type); 4686 entry = mt_slot(mas->tree, slots, mas->offset); 4687 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4688 goto retry; 4689 4690 if (entry) 4691 return entry; 4692 4693 4694 if (!empty) { 4695 if (mas->last >= max) { 4696 mas->status = ma_overflow; 4697 return NULL; 4698 } 4699 4700 mas->index = mas->last + 1; 4701 goto again; 4702 } 4703 4704 return entry; 4705 } 4706 4707 /* 4708 * mas_next_entry() - Internal function to get the next entry. 4709 * @mas: The maple state 4710 * @limit: The maximum range start. 4711 * 4712 * Set the @mas->node to the next entry and the range_start to 4713 * the beginning value for the entry. Does not check beyond @limit. 4714 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and 4715 * @mas->last on overflow. 4716 * Restarts on dead nodes. 4717 * 4718 * Return: the next entry or %NULL. 4719 */ 4720 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4721 { 4722 if (mas->last >= limit) { 4723 mas->status = ma_overflow; 4724 return NULL; 4725 } 4726 4727 return mas_next_slot(mas, limit, false); 4728 } 4729 4730 /* 4731 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4732 * highest gap address of a given size in a given node and descend. 4733 * @mas: The maple state 4734 * @size: The needed size. 4735 * 4736 * Return: True if found in a leaf, false otherwise. 4737 * 4738 */ 4739 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4740 unsigned long *gap_min, unsigned long *gap_max) 4741 { 4742 enum maple_type type = mte_node_type(mas->node); 4743 struct maple_node *node = mas_mn(mas); 4744 unsigned long *pivots, *gaps; 4745 void __rcu **slots; 4746 unsigned long gap = 0; 4747 unsigned long max, min; 4748 unsigned char offset; 4749 4750 if (unlikely(mas_is_err(mas))) 4751 return true; 4752 4753 if (ma_is_dense(type)) { 4754 /* dense nodes. */ 4755 mas->offset = (unsigned char)(mas->index - mas->min); 4756 return true; 4757 } 4758 4759 pivots = ma_pivots(node, type); 4760 slots = ma_slots(node, type); 4761 gaps = ma_gaps(node, type); 4762 offset = mas->offset; 4763 min = mas_safe_min(mas, pivots, offset); 4764 /* Skip out of bounds. */ 4765 while (mas->last < min) 4766 min = mas_safe_min(mas, pivots, --offset); 4767 4768 max = mas_safe_pivot(mas, pivots, offset, type); 4769 while (mas->index <= max) { 4770 gap = 0; 4771 if (gaps) 4772 gap = gaps[offset]; 4773 else if (!mas_slot(mas, slots, offset)) 4774 gap = max - min + 1; 4775 4776 if (gap) { 4777 if ((size <= gap) && (size <= mas->last - min + 1)) 4778 break; 4779 4780 if (!gaps) { 4781 /* Skip the next slot, it cannot be a gap. */ 4782 if (offset < 2) 4783 goto ascend; 4784 4785 offset -= 2; 4786 max = pivots[offset]; 4787 min = mas_safe_min(mas, pivots, offset); 4788 continue; 4789 } 4790 } 4791 4792 if (!offset) 4793 goto ascend; 4794 4795 offset--; 4796 max = min - 1; 4797 min = mas_safe_min(mas, pivots, offset); 4798 } 4799 4800 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4801 goto no_space; 4802 4803 if (unlikely(ma_is_leaf(type))) { 4804 mas->offset = offset; 4805 *gap_min = min; 4806 *gap_max = min + gap - 1; 4807 return true; 4808 } 4809 4810 /* descend, only happens under lock. */ 4811 mas->node = mas_slot(mas, slots, offset); 4812 mas->min = min; 4813 mas->max = max; 4814 mas->offset = mas_data_end(mas); 4815 return false; 4816 4817 ascend: 4818 if (!mte_is_root(mas->node)) 4819 return false; 4820 4821 no_space: 4822 mas_set_err(mas, -EBUSY); 4823 return false; 4824 } 4825 4826 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4827 { 4828 enum maple_type type = mte_node_type(mas->node); 4829 unsigned long pivot, min, gap = 0; 4830 unsigned char offset, data_end; 4831 unsigned long *gaps, *pivots; 4832 void __rcu **slots; 4833 struct maple_node *node; 4834 bool found = false; 4835 4836 if (ma_is_dense(type)) { 4837 mas->offset = (unsigned char)(mas->index - mas->min); 4838 return true; 4839 } 4840 4841 node = mas_mn(mas); 4842 pivots = ma_pivots(node, type); 4843 slots = ma_slots(node, type); 4844 gaps = ma_gaps(node, type); 4845 offset = mas->offset; 4846 min = mas_safe_min(mas, pivots, offset); 4847 data_end = ma_data_end(node, type, pivots, mas->max); 4848 for (; offset <= data_end; offset++) { 4849 pivot = mas_safe_pivot(mas, pivots, offset, type); 4850 4851 /* Not within lower bounds */ 4852 if (mas->index > pivot) 4853 goto next_slot; 4854 4855 if (gaps) 4856 gap = gaps[offset]; 4857 else if (!mas_slot(mas, slots, offset)) 4858 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4859 else 4860 goto next_slot; 4861 4862 if (gap >= size) { 4863 if (ma_is_leaf(type)) { 4864 found = true; 4865 goto done; 4866 } 4867 if (mas->index <= pivot) { 4868 mas->node = mas_slot(mas, slots, offset); 4869 mas->min = min; 4870 mas->max = pivot; 4871 offset = 0; 4872 break; 4873 } 4874 } 4875 next_slot: 4876 min = pivot + 1; 4877 if (mas->last <= pivot) { 4878 mas_set_err(mas, -EBUSY); 4879 return true; 4880 } 4881 } 4882 4883 if (mte_is_root(mas->node)) 4884 found = true; 4885 done: 4886 mas->offset = offset; 4887 return found; 4888 } 4889 4890 /** 4891 * mas_walk() - Search for @mas->index in the tree. 4892 * @mas: The maple state. 4893 * 4894 * mas->index and mas->last will be set to the range if there is a value. If 4895 * mas->status is ma_none, reset to ma_start 4896 * 4897 * Return: the entry at the location or %NULL. 4898 */ 4899 void *mas_walk(struct ma_state *mas) 4900 { 4901 void *entry; 4902 4903 if (!mas_is_active(mas) || !mas_is_start(mas)) 4904 mas->status = ma_start; 4905 retry: 4906 entry = mas_state_walk(mas); 4907 if (mas_is_start(mas)) { 4908 goto retry; 4909 } else if (mas_is_none(mas)) { 4910 mas->index = 0; 4911 mas->last = ULONG_MAX; 4912 } else if (mas_is_ptr(mas)) { 4913 if (!mas->index) { 4914 mas->last = 0; 4915 return entry; 4916 } 4917 4918 mas->index = 1; 4919 mas->last = ULONG_MAX; 4920 mas->status = ma_none; 4921 return NULL; 4922 } 4923 4924 return entry; 4925 } 4926 EXPORT_SYMBOL_GPL(mas_walk); 4927 4928 static inline bool mas_rewind_node(struct ma_state *mas) 4929 { 4930 unsigned char slot; 4931 4932 do { 4933 if (mte_is_root(mas->node)) { 4934 slot = mas->offset; 4935 if (!slot) 4936 return false; 4937 } else { 4938 mas_ascend(mas); 4939 slot = mas->offset; 4940 } 4941 } while (!slot); 4942 4943 mas->offset = --slot; 4944 return true; 4945 } 4946 4947 /* 4948 * mas_skip_node() - Internal function. Skip over a node. 4949 * @mas: The maple state. 4950 * 4951 * Return: true if there is another node, false otherwise. 4952 */ 4953 static inline bool mas_skip_node(struct ma_state *mas) 4954 { 4955 if (mas_is_err(mas)) 4956 return false; 4957 4958 do { 4959 if (mte_is_root(mas->node)) { 4960 if (mas->offset >= mas_data_end(mas)) { 4961 mas_set_err(mas, -EBUSY); 4962 return false; 4963 } 4964 } else { 4965 mas_ascend(mas); 4966 } 4967 } while (mas->offset >= mas_data_end(mas)); 4968 4969 mas->offset++; 4970 return true; 4971 } 4972 4973 /* 4974 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 4975 * @size 4976 * @mas: The maple state 4977 * @size: The size of the gap required 4978 * 4979 * Search between @mas->index and @mas->last for a gap of @size. 4980 */ 4981 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 4982 { 4983 struct maple_enode *last = NULL; 4984 4985 /* 4986 * There are 4 options: 4987 * go to child (descend) 4988 * go back to parent (ascend) 4989 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 4990 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 4991 */ 4992 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 4993 if (last == mas->node) 4994 mas_skip_node(mas); 4995 else 4996 last = mas->node; 4997 } 4998 } 4999 5000 /* 5001 * mas_sparse_area() - Internal function. Return upper or lower limit when 5002 * searching for a gap in an empty tree. 5003 * @mas: The maple state 5004 * @min: the minimum range 5005 * @max: The maximum range 5006 * @size: The size of the gap 5007 * @fwd: Searching forward or back 5008 */ 5009 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5010 unsigned long max, unsigned long size, bool fwd) 5011 { 5012 if (!unlikely(mas_is_none(mas)) && min == 0) { 5013 min++; 5014 /* 5015 * At this time, min is increased, we need to recheck whether 5016 * the size is satisfied. 5017 */ 5018 if (min > max || max - min + 1 < size) 5019 return -EBUSY; 5020 } 5021 /* mas_is_ptr */ 5022 5023 if (fwd) { 5024 mas->index = min; 5025 mas->last = min + size - 1; 5026 } else { 5027 mas->last = max; 5028 mas->index = max - size + 1; 5029 } 5030 return 0; 5031 } 5032 5033 /* 5034 * mas_empty_area() - Get the lowest address within the range that is 5035 * sufficient for the size requested. 5036 * @mas: The maple state 5037 * @min: The lowest value of the range 5038 * @max: The highest value of the range 5039 * @size: The size needed 5040 */ 5041 int mas_empty_area(struct ma_state *mas, unsigned long min, 5042 unsigned long max, unsigned long size) 5043 { 5044 unsigned char offset; 5045 unsigned long *pivots; 5046 enum maple_type mt; 5047 struct maple_node *node; 5048 5049 if (min > max) 5050 return -EINVAL; 5051 5052 if (size == 0 || max - min < size - 1) 5053 return -EINVAL; 5054 5055 if (mas_is_start(mas)) 5056 mas_start(mas); 5057 else if (mas->offset >= 2) 5058 mas->offset -= 2; 5059 else if (!mas_skip_node(mas)) 5060 return -EBUSY; 5061 5062 /* Empty set */ 5063 if (mas_is_none(mas) || mas_is_ptr(mas)) 5064 return mas_sparse_area(mas, min, max, size, true); 5065 5066 /* The start of the window can only be within these values */ 5067 mas->index = min; 5068 mas->last = max; 5069 mas_awalk(mas, size); 5070 5071 if (unlikely(mas_is_err(mas))) 5072 return xa_err(mas->node); 5073 5074 offset = mas->offset; 5075 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5076 return -EBUSY; 5077 5078 node = mas_mn(mas); 5079 mt = mte_node_type(mas->node); 5080 pivots = ma_pivots(node, mt); 5081 min = mas_safe_min(mas, pivots, offset); 5082 if (mas->index < min) 5083 mas->index = min; 5084 mas->last = mas->index + size - 1; 5085 mas->end = ma_data_end(node, mt, pivots, mas->max); 5086 return 0; 5087 } 5088 EXPORT_SYMBOL_GPL(mas_empty_area); 5089 5090 /* 5091 * mas_empty_area_rev() - Get the highest address within the range that is 5092 * sufficient for the size requested. 5093 * @mas: The maple state 5094 * @min: The lowest value of the range 5095 * @max: The highest value of the range 5096 * @size: The size needed 5097 */ 5098 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5099 unsigned long max, unsigned long size) 5100 { 5101 struct maple_enode *last = mas->node; 5102 5103 if (min > max) 5104 return -EINVAL; 5105 5106 if (size == 0 || max - min < size - 1) 5107 return -EINVAL; 5108 5109 if (mas_is_start(mas)) 5110 mas_start(mas); 5111 else if ((mas->offset < 2) && (!mas_rewind_node(mas))) 5112 return -EBUSY; 5113 5114 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5115 return mas_sparse_area(mas, min, max, size, false); 5116 else if (mas->offset >= 2) 5117 mas->offset -= 2; 5118 else 5119 mas->offset = mas_data_end(mas); 5120 5121 5122 /* The start of the window can only be within these values. */ 5123 mas->index = min; 5124 mas->last = max; 5125 5126 while (!mas_rev_awalk(mas, size, &min, &max)) { 5127 if (last == mas->node) { 5128 if (!mas_rewind_node(mas)) 5129 return -EBUSY; 5130 } else { 5131 last = mas->node; 5132 } 5133 } 5134 5135 if (mas_is_err(mas)) 5136 return xa_err(mas->node); 5137 5138 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5139 return -EBUSY; 5140 5141 /* Trim the upper limit to the max. */ 5142 if (max < mas->last) 5143 mas->last = max; 5144 5145 mas->index = mas->last - size + 1; 5146 mas->end = mas_data_end(mas); 5147 return 0; 5148 } 5149 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5150 5151 /* 5152 * mte_dead_leaves() - Mark all leaves of a node as dead. 5153 * @mas: The maple state 5154 * @slots: Pointer to the slot array 5155 * @type: The maple node type 5156 * 5157 * Must hold the write lock. 5158 * 5159 * Return: The number of leaves marked as dead. 5160 */ 5161 static inline 5162 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5163 void __rcu **slots) 5164 { 5165 struct maple_node *node; 5166 enum maple_type type; 5167 void *entry; 5168 int offset; 5169 5170 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5171 entry = mt_slot(mt, slots, offset); 5172 type = mte_node_type(entry); 5173 node = mte_to_node(entry); 5174 /* Use both node and type to catch LE & BE metadata */ 5175 if (!node || !type) 5176 break; 5177 5178 mte_set_node_dead(entry); 5179 node->type = type; 5180 rcu_assign_pointer(slots[offset], node); 5181 } 5182 5183 return offset; 5184 } 5185 5186 /** 5187 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5188 * @enode: The maple encoded node 5189 * @offset: The starting offset 5190 * 5191 * Note: This can only be used from the RCU callback context. 5192 */ 5193 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5194 { 5195 struct maple_node *node, *next; 5196 void __rcu **slots = NULL; 5197 5198 next = mte_to_node(*enode); 5199 do { 5200 *enode = ma_enode_ptr(next); 5201 node = mte_to_node(*enode); 5202 slots = ma_slots(node, node->type); 5203 next = rcu_dereference_protected(slots[offset], 5204 lock_is_held(&rcu_callback_map)); 5205 offset = 0; 5206 } while (!ma_is_leaf(next->type)); 5207 5208 return slots; 5209 } 5210 5211 /** 5212 * mt_free_walk() - Walk & free a tree in the RCU callback context 5213 * @head: The RCU head that's within the node. 5214 * 5215 * Note: This can only be used from the RCU callback context. 5216 */ 5217 static void mt_free_walk(struct rcu_head *head) 5218 { 5219 void __rcu **slots; 5220 struct maple_node *node, *start; 5221 struct maple_enode *enode; 5222 unsigned char offset; 5223 enum maple_type type; 5224 5225 node = container_of(head, struct maple_node, rcu); 5226 5227 if (ma_is_leaf(node->type)) 5228 goto free_leaf; 5229 5230 start = node; 5231 enode = mt_mk_node(node, node->type); 5232 slots = mte_dead_walk(&enode, 0); 5233 node = mte_to_node(enode); 5234 do { 5235 mt_free_bulk(node->slot_len, slots); 5236 offset = node->parent_slot + 1; 5237 enode = node->piv_parent; 5238 if (mte_to_node(enode) == node) 5239 goto free_leaf; 5240 5241 type = mte_node_type(enode); 5242 slots = ma_slots(mte_to_node(enode), type); 5243 if ((offset < mt_slots[type]) && 5244 rcu_dereference_protected(slots[offset], 5245 lock_is_held(&rcu_callback_map))) 5246 slots = mte_dead_walk(&enode, offset); 5247 node = mte_to_node(enode); 5248 } while ((node != start) || (node->slot_len < offset)); 5249 5250 slots = ma_slots(node, node->type); 5251 mt_free_bulk(node->slot_len, slots); 5252 5253 free_leaf: 5254 mt_free_rcu(&node->rcu); 5255 } 5256 5257 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5258 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5259 { 5260 struct maple_node *node; 5261 struct maple_enode *next = *enode; 5262 void __rcu **slots = NULL; 5263 enum maple_type type; 5264 unsigned char next_offset = 0; 5265 5266 do { 5267 *enode = next; 5268 node = mte_to_node(*enode); 5269 type = mte_node_type(*enode); 5270 slots = ma_slots(node, type); 5271 next = mt_slot_locked(mt, slots, next_offset); 5272 if ((mte_dead_node(next))) 5273 next = mt_slot_locked(mt, slots, ++next_offset); 5274 5275 mte_set_node_dead(*enode); 5276 node->type = type; 5277 node->piv_parent = prev; 5278 node->parent_slot = offset; 5279 offset = next_offset; 5280 next_offset = 0; 5281 prev = *enode; 5282 } while (!mte_is_leaf(next)); 5283 5284 return slots; 5285 } 5286 5287 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5288 bool free) 5289 { 5290 void __rcu **slots; 5291 struct maple_node *node = mte_to_node(enode); 5292 struct maple_enode *start; 5293 5294 if (mte_is_leaf(enode)) { 5295 node->type = mte_node_type(enode); 5296 goto free_leaf; 5297 } 5298 5299 start = enode; 5300 slots = mte_destroy_descend(&enode, mt, start, 0); 5301 node = mte_to_node(enode); // Updated in the above call. 5302 do { 5303 enum maple_type type; 5304 unsigned char offset; 5305 struct maple_enode *parent, *tmp; 5306 5307 node->slot_len = mte_dead_leaves(enode, mt, slots); 5308 if (free) 5309 mt_free_bulk(node->slot_len, slots); 5310 offset = node->parent_slot + 1; 5311 enode = node->piv_parent; 5312 if (mte_to_node(enode) == node) 5313 goto free_leaf; 5314 5315 type = mte_node_type(enode); 5316 slots = ma_slots(mte_to_node(enode), type); 5317 if (offset >= mt_slots[type]) 5318 goto next; 5319 5320 tmp = mt_slot_locked(mt, slots, offset); 5321 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5322 parent = enode; 5323 enode = tmp; 5324 slots = mte_destroy_descend(&enode, mt, parent, offset); 5325 } 5326 next: 5327 node = mte_to_node(enode); 5328 } while (start != enode); 5329 5330 node = mte_to_node(enode); 5331 node->slot_len = mte_dead_leaves(enode, mt, slots); 5332 if (free) 5333 mt_free_bulk(node->slot_len, slots); 5334 5335 free_leaf: 5336 if (free) 5337 mt_free_rcu(&node->rcu); 5338 else 5339 mt_clear_meta(mt, node, node->type); 5340 } 5341 5342 /* 5343 * mte_destroy_walk() - Free a tree or sub-tree. 5344 * @enode: the encoded maple node (maple_enode) to start 5345 * @mt: the tree to free - needed for node types. 5346 * 5347 * Must hold the write lock. 5348 */ 5349 static inline void mte_destroy_walk(struct maple_enode *enode, 5350 struct maple_tree *mt) 5351 { 5352 struct maple_node *node = mte_to_node(enode); 5353 5354 if (mt_in_rcu(mt)) { 5355 mt_destroy_walk(enode, mt, false); 5356 call_rcu(&node->rcu, mt_free_walk); 5357 } else { 5358 mt_destroy_walk(enode, mt, true); 5359 } 5360 } 5361 5362 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5363 { 5364 if (!mas_is_active(wr_mas->mas)) { 5365 if (mas_is_start(wr_mas->mas)) 5366 return; 5367 5368 if (unlikely(mas_is_paused(wr_mas->mas))) 5369 goto reset; 5370 5371 if (unlikely(mas_is_none(wr_mas->mas))) 5372 goto reset; 5373 5374 if (unlikely(mas_is_overflow(wr_mas->mas))) 5375 goto reset; 5376 5377 if (unlikely(mas_is_underflow(wr_mas->mas))) 5378 goto reset; 5379 } 5380 5381 /* 5382 * A less strict version of mas_is_span_wr() where we allow spanning 5383 * writes within this node. This is to stop partial walks in 5384 * mas_prealloc() from being reset. 5385 */ 5386 if (wr_mas->mas->last > wr_mas->mas->max) 5387 goto reset; 5388 5389 if (wr_mas->entry) 5390 return; 5391 5392 if (mte_is_leaf(wr_mas->mas->node) && 5393 wr_mas->mas->last == wr_mas->mas->max) 5394 goto reset; 5395 5396 return; 5397 5398 reset: 5399 mas_reset(wr_mas->mas); 5400 } 5401 5402 /* Interface */ 5403 5404 /** 5405 * mas_store() - Store an @entry. 5406 * @mas: The maple state. 5407 * @entry: The entry to store. 5408 * 5409 * The @mas->index and @mas->last is used to set the range for the @entry. 5410 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5411 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5412 * 5413 * Return: the first entry between mas->index and mas->last or %NULL. 5414 */ 5415 void *mas_store(struct ma_state *mas, void *entry) 5416 { 5417 MA_WR_STATE(wr_mas, mas, entry); 5418 5419 trace_ma_write(__func__, mas, 0, entry); 5420 #ifdef CONFIG_DEBUG_MAPLE_TREE 5421 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5422 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5423 5424 if (mas->index > mas->last) { 5425 mas_set_err(mas, -EINVAL); 5426 return NULL; 5427 } 5428 5429 #endif 5430 5431 /* 5432 * Storing is the same operation as insert with the added caveat that it 5433 * can overwrite entries. Although this seems simple enough, one may 5434 * want to examine what happens if a single store operation was to 5435 * overwrite multiple entries within a self-balancing B-Tree. 5436 */ 5437 mas_wr_store_setup(&wr_mas); 5438 mas_wr_store_entry(&wr_mas); 5439 return wr_mas.content; 5440 } 5441 EXPORT_SYMBOL_GPL(mas_store); 5442 5443 /** 5444 * mas_store_gfp() - Store a value into the tree. 5445 * @mas: The maple state 5446 * @entry: The entry to store 5447 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5448 * 5449 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5450 * be allocated. 5451 */ 5452 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5453 { 5454 MA_WR_STATE(wr_mas, mas, entry); 5455 5456 mas_wr_store_setup(&wr_mas); 5457 trace_ma_write(__func__, mas, 0, entry); 5458 retry: 5459 mas_wr_store_entry(&wr_mas); 5460 if (unlikely(mas_nomem(mas, gfp))) 5461 goto retry; 5462 5463 if (unlikely(mas_is_err(mas))) 5464 return xa_err(mas->node); 5465 5466 return 0; 5467 } 5468 EXPORT_SYMBOL_GPL(mas_store_gfp); 5469 5470 /** 5471 * mas_store_prealloc() - Store a value into the tree using memory 5472 * preallocated in the maple state. 5473 * @mas: The maple state 5474 * @entry: The entry to store. 5475 */ 5476 void mas_store_prealloc(struct ma_state *mas, void *entry) 5477 { 5478 MA_WR_STATE(wr_mas, mas, entry); 5479 5480 mas_wr_store_setup(&wr_mas); 5481 trace_ma_write(__func__, mas, 0, entry); 5482 mas_wr_store_entry(&wr_mas); 5483 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5484 mas_destroy(mas); 5485 } 5486 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5487 5488 /** 5489 * mas_preallocate() - Preallocate enough nodes for a store operation 5490 * @mas: The maple state 5491 * @entry: The entry that will be stored 5492 * @gfp: The GFP_FLAGS to use for allocations. 5493 * 5494 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5495 */ 5496 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5497 { 5498 MA_WR_STATE(wr_mas, mas, entry); 5499 unsigned char node_size; 5500 int request = 1; 5501 int ret; 5502 5503 5504 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 5505 goto ask_now; 5506 5507 mas_wr_store_setup(&wr_mas); 5508 wr_mas.content = mas_start(mas); 5509 /* Root expand */ 5510 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5511 goto ask_now; 5512 5513 if (unlikely(!mas_wr_walk(&wr_mas))) { 5514 /* Spanning store, use worst case for now */ 5515 request = 1 + mas_mt_height(mas) * 3; 5516 goto ask_now; 5517 } 5518 5519 /* At this point, we are at the leaf node that needs to be altered. */ 5520 /* Exact fit, no nodes needed. */ 5521 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last) 5522 return 0; 5523 5524 mas_wr_end_piv(&wr_mas); 5525 node_size = mas_wr_new_end(&wr_mas); 5526 5527 /* Slot store, does not require additional nodes */ 5528 if (node_size == mas->end) { 5529 /* reuse node */ 5530 if (!mt_in_rcu(mas->tree)) 5531 return 0; 5532 /* shifting boundary */ 5533 if (wr_mas.offset_end - mas->offset == 1) 5534 return 0; 5535 } 5536 5537 if (node_size >= mt_slots[wr_mas.type]) { 5538 /* Split, worst case for now. */ 5539 request = 1 + mas_mt_height(mas) * 2; 5540 goto ask_now; 5541 } 5542 5543 /* New root needs a single node */ 5544 if (unlikely(mte_is_root(mas->node))) 5545 goto ask_now; 5546 5547 /* Potential spanning rebalance collapsing a node, use worst-case */ 5548 if (node_size - 1 <= mt_min_slots[wr_mas.type]) 5549 request = mas_mt_height(mas) * 2 - 1; 5550 5551 /* node store, slot store needs one node */ 5552 ask_now: 5553 mas_node_count_gfp(mas, request, gfp); 5554 mas->mas_flags |= MA_STATE_PREALLOC; 5555 if (likely(!mas_is_err(mas))) 5556 return 0; 5557 5558 mas_set_alloc_req(mas, 0); 5559 ret = xa_err(mas->node); 5560 mas_reset(mas); 5561 mas_destroy(mas); 5562 mas_reset(mas); 5563 return ret; 5564 } 5565 EXPORT_SYMBOL_GPL(mas_preallocate); 5566 5567 /* 5568 * mas_destroy() - destroy a maple state. 5569 * @mas: The maple state 5570 * 5571 * Upon completion, check the left-most node and rebalance against the node to 5572 * the right if necessary. Frees any allocated nodes associated with this maple 5573 * state. 5574 */ 5575 void mas_destroy(struct ma_state *mas) 5576 { 5577 struct maple_alloc *node; 5578 unsigned long total; 5579 5580 /* 5581 * When using mas_for_each() to insert an expected number of elements, 5582 * it is possible that the number inserted is less than the expected 5583 * number. To fix an invalid final node, a check is performed here to 5584 * rebalance the previous node with the final node. 5585 */ 5586 if (mas->mas_flags & MA_STATE_REBALANCE) { 5587 unsigned char end; 5588 5589 mas_start(mas); 5590 mtree_range_walk(mas); 5591 end = mas->end + 1; 5592 if (end < mt_min_slot_count(mas->node) - 1) 5593 mas_destroy_rebalance(mas, end); 5594 5595 mas->mas_flags &= ~MA_STATE_REBALANCE; 5596 } 5597 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5598 5599 total = mas_allocated(mas); 5600 while (total) { 5601 node = mas->alloc; 5602 mas->alloc = node->slot[0]; 5603 if (node->node_count > 1) { 5604 size_t count = node->node_count - 1; 5605 5606 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5607 total -= count; 5608 } 5609 mt_free_one(ma_mnode_ptr(node)); 5610 total--; 5611 } 5612 5613 mas->alloc = NULL; 5614 } 5615 EXPORT_SYMBOL_GPL(mas_destroy); 5616 5617 /* 5618 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5619 * @mas: The maple state 5620 * @nr_entries: The number of expected entries. 5621 * 5622 * This will attempt to pre-allocate enough nodes to store the expected number 5623 * of entries. The allocations will occur using the bulk allocator interface 5624 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5625 * to ensure any unused nodes are freed. 5626 * 5627 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5628 */ 5629 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5630 { 5631 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5632 struct maple_enode *enode = mas->node; 5633 int nr_nodes; 5634 int ret; 5635 5636 /* 5637 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5638 * forking a process and duplicating the VMAs from one tree to a new 5639 * tree. When such a situation arises, it is known that the new tree is 5640 * not going to be used until the entire tree is populated. For 5641 * performance reasons, it is best to use a bulk load with RCU disabled. 5642 * This allows for optimistic splitting that favours the left and reuse 5643 * of nodes during the operation. 5644 */ 5645 5646 /* Optimize splitting for bulk insert in-order */ 5647 mas->mas_flags |= MA_STATE_BULK; 5648 5649 /* 5650 * Avoid overflow, assume a gap between each entry and a trailing null. 5651 * If this is wrong, it just means allocation can happen during 5652 * insertion of entries. 5653 */ 5654 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5655 if (!mt_is_alloc(mas->tree)) 5656 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5657 5658 /* Leaves; reduce slots to keep space for expansion */ 5659 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5660 /* Internal nodes */ 5661 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5662 /* Add working room for split (2 nodes) + new parents */ 5663 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL); 5664 5665 /* Detect if allocations run out */ 5666 mas->mas_flags |= MA_STATE_PREALLOC; 5667 5668 if (!mas_is_err(mas)) 5669 return 0; 5670 5671 ret = xa_err(mas->node); 5672 mas->node = enode; 5673 mas_destroy(mas); 5674 return ret; 5675 5676 } 5677 EXPORT_SYMBOL_GPL(mas_expected_entries); 5678 5679 static bool mas_next_setup(struct ma_state *mas, unsigned long max, 5680 void **entry) 5681 { 5682 bool was_none = mas_is_none(mas); 5683 5684 if (unlikely(mas->last >= max)) { 5685 mas->status = ma_overflow; 5686 return true; 5687 } 5688 5689 switch (mas->status) { 5690 case ma_active: 5691 return false; 5692 case ma_none: 5693 fallthrough; 5694 case ma_pause: 5695 mas->status = ma_start; 5696 fallthrough; 5697 case ma_start: 5698 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5699 break; 5700 case ma_overflow: 5701 /* Overflowed before, but the max changed */ 5702 mas->status = ma_active; 5703 break; 5704 case ma_underflow: 5705 /* The user expects the mas to be one before where it is */ 5706 mas->status = ma_active; 5707 *entry = mas_walk(mas); 5708 if (*entry) 5709 return true; 5710 break; 5711 case ma_root: 5712 break; 5713 case ma_error: 5714 return true; 5715 } 5716 5717 if (likely(mas_is_active(mas))) /* Fast path */ 5718 return false; 5719 5720 if (mas_is_ptr(mas)) { 5721 *entry = NULL; 5722 if (was_none && mas->index == 0) { 5723 mas->index = mas->last = 0; 5724 return true; 5725 } 5726 mas->index = 1; 5727 mas->last = ULONG_MAX; 5728 mas->status = ma_none; 5729 return true; 5730 } 5731 5732 if (mas_is_none(mas)) 5733 return true; 5734 5735 return false; 5736 } 5737 5738 /** 5739 * mas_next() - Get the next entry. 5740 * @mas: The maple state 5741 * @max: The maximum index to check. 5742 * 5743 * Returns the next entry after @mas->index. 5744 * Must hold rcu_read_lock or the write lock. 5745 * Can return the zero entry. 5746 * 5747 * Return: The next entry or %NULL 5748 */ 5749 void *mas_next(struct ma_state *mas, unsigned long max) 5750 { 5751 void *entry = NULL; 5752 5753 if (mas_next_setup(mas, max, &entry)) 5754 return entry; 5755 5756 /* Retries on dead nodes handled by mas_next_slot */ 5757 return mas_next_slot(mas, max, false); 5758 } 5759 EXPORT_SYMBOL_GPL(mas_next); 5760 5761 /** 5762 * mas_next_range() - Advance the maple state to the next range 5763 * @mas: The maple state 5764 * @max: The maximum index to check. 5765 * 5766 * Sets @mas->index and @mas->last to the range. 5767 * Must hold rcu_read_lock or the write lock. 5768 * Can return the zero entry. 5769 * 5770 * Return: The next entry or %NULL 5771 */ 5772 void *mas_next_range(struct ma_state *mas, unsigned long max) 5773 { 5774 void *entry = NULL; 5775 5776 if (mas_next_setup(mas, max, &entry)) 5777 return entry; 5778 5779 /* Retries on dead nodes handled by mas_next_slot */ 5780 return mas_next_slot(mas, max, true); 5781 } 5782 EXPORT_SYMBOL_GPL(mas_next_range); 5783 5784 /** 5785 * mt_next() - get the next value in the maple tree 5786 * @mt: The maple tree 5787 * @index: The start index 5788 * @max: The maximum index to check 5789 * 5790 * Takes RCU read lock internally to protect the search, which does not 5791 * protect the returned pointer after dropping RCU read lock. 5792 * See also: Documentation/core-api/maple_tree.rst 5793 * 5794 * Return: The entry higher than @index or %NULL if nothing is found. 5795 */ 5796 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5797 { 5798 void *entry = NULL; 5799 MA_STATE(mas, mt, index, index); 5800 5801 rcu_read_lock(); 5802 entry = mas_next(&mas, max); 5803 rcu_read_unlock(); 5804 return entry; 5805 } 5806 EXPORT_SYMBOL_GPL(mt_next); 5807 5808 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) 5809 { 5810 if (unlikely(mas->index <= min)) { 5811 mas->status = ma_underflow; 5812 return true; 5813 } 5814 5815 switch (mas->status) { 5816 case ma_active: 5817 return false; 5818 case ma_start: 5819 break; 5820 case ma_none: 5821 fallthrough; 5822 case ma_pause: 5823 mas->status = ma_start; 5824 break; 5825 case ma_underflow: 5826 /* underflowed before but the min changed */ 5827 mas->status = ma_active; 5828 break; 5829 case ma_overflow: 5830 /* User expects mas to be one after where it is */ 5831 mas->status = ma_active; 5832 *entry = mas_walk(mas); 5833 if (*entry) 5834 return true; 5835 break; 5836 case ma_root: 5837 break; 5838 case ma_error: 5839 return true; 5840 } 5841 5842 if (mas_is_start(mas)) 5843 mas_walk(mas); 5844 5845 if (unlikely(mas_is_ptr(mas))) { 5846 if (!mas->index) { 5847 mas->status = ma_none; 5848 return true; 5849 } 5850 mas->index = mas->last = 0; 5851 *entry = mas_root(mas); 5852 return true; 5853 } 5854 5855 if (mas_is_none(mas)) { 5856 if (mas->index) { 5857 /* Walked to out-of-range pointer? */ 5858 mas->index = mas->last = 0; 5859 mas->status = ma_root; 5860 *entry = mas_root(mas); 5861 return true; 5862 } 5863 return true; 5864 } 5865 5866 return false; 5867 } 5868 5869 /** 5870 * mas_prev() - Get the previous entry 5871 * @mas: The maple state 5872 * @min: The minimum value to check. 5873 * 5874 * Must hold rcu_read_lock or the write lock. 5875 * Will reset mas to ma_start if the status is ma_none. Will stop on not 5876 * searchable nodes. 5877 * 5878 * Return: the previous value or %NULL. 5879 */ 5880 void *mas_prev(struct ma_state *mas, unsigned long min) 5881 { 5882 void *entry = NULL; 5883 5884 if (mas_prev_setup(mas, min, &entry)) 5885 return entry; 5886 5887 return mas_prev_slot(mas, min, false); 5888 } 5889 EXPORT_SYMBOL_GPL(mas_prev); 5890 5891 /** 5892 * mas_prev_range() - Advance to the previous range 5893 * @mas: The maple state 5894 * @min: The minimum value to check. 5895 * 5896 * Sets @mas->index and @mas->last to the range. 5897 * Must hold rcu_read_lock or the write lock. 5898 * Will reset mas to ma_start if the node is ma_none. Will stop on not 5899 * searchable nodes. 5900 * 5901 * Return: the previous value or %NULL. 5902 */ 5903 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5904 { 5905 void *entry = NULL; 5906 5907 if (mas_prev_setup(mas, min, &entry)) 5908 return entry; 5909 5910 return mas_prev_slot(mas, min, true); 5911 } 5912 EXPORT_SYMBOL_GPL(mas_prev_range); 5913 5914 /** 5915 * mt_prev() - get the previous value in the maple tree 5916 * @mt: The maple tree 5917 * @index: The start index 5918 * @min: The minimum index to check 5919 * 5920 * Takes RCU read lock internally to protect the search, which does not 5921 * protect the returned pointer after dropping RCU read lock. 5922 * See also: Documentation/core-api/maple_tree.rst 5923 * 5924 * Return: The entry before @index or %NULL if nothing is found. 5925 */ 5926 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5927 { 5928 void *entry = NULL; 5929 MA_STATE(mas, mt, index, index); 5930 5931 rcu_read_lock(); 5932 entry = mas_prev(&mas, min); 5933 rcu_read_unlock(); 5934 return entry; 5935 } 5936 EXPORT_SYMBOL_GPL(mt_prev); 5937 5938 /** 5939 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5940 * @mas: The maple state to pause 5941 * 5942 * Some users need to pause a walk and drop the lock they're holding in 5943 * order to yield to a higher priority thread or carry out an operation 5944 * on an entry. Those users should call this function before they drop 5945 * the lock. It resets the @mas to be suitable for the next iteration 5946 * of the loop after the user has reacquired the lock. If most entries 5947 * found during a walk require you to call mas_pause(), the mt_for_each() 5948 * iterator may be more appropriate. 5949 * 5950 */ 5951 void mas_pause(struct ma_state *mas) 5952 { 5953 mas->status = ma_pause; 5954 mas->node = NULL; 5955 } 5956 EXPORT_SYMBOL_GPL(mas_pause); 5957 5958 /** 5959 * mas_find_setup() - Internal function to set up mas_find*(). 5960 * @mas: The maple state 5961 * @max: The maximum index 5962 * @entry: Pointer to the entry 5963 * 5964 * Returns: True if entry is the answer, false otherwise. 5965 */ 5966 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) 5967 { 5968 switch (mas->status) { 5969 case ma_active: 5970 if (mas->last < max) 5971 return false; 5972 return true; 5973 case ma_start: 5974 break; 5975 case ma_pause: 5976 if (unlikely(mas->last >= max)) 5977 return true; 5978 5979 mas->index = ++mas->last; 5980 mas->status = ma_start; 5981 break; 5982 case ma_none: 5983 if (unlikely(mas->last >= max)) 5984 return true; 5985 5986 mas->index = mas->last; 5987 mas->status = ma_start; 5988 break; 5989 case ma_underflow: 5990 /* mas is pointing at entry before unable to go lower */ 5991 if (unlikely(mas->index >= max)) { 5992 mas->status = ma_overflow; 5993 return true; 5994 } 5995 5996 mas->status = ma_active; 5997 *entry = mas_walk(mas); 5998 if (*entry) 5999 return true; 6000 break; 6001 case ma_overflow: 6002 if (unlikely(mas->last >= max)) 6003 return true; 6004 6005 mas->status = ma_active; 6006 *entry = mas_walk(mas); 6007 if (*entry) 6008 return true; 6009 break; 6010 case ma_root: 6011 break; 6012 case ma_error: 6013 return true; 6014 } 6015 6016 if (mas_is_start(mas)) { 6017 /* First run or continue */ 6018 if (mas->index > max) 6019 return true; 6020 6021 *entry = mas_walk(mas); 6022 if (*entry) 6023 return true; 6024 6025 } 6026 6027 if (unlikely(mas_is_ptr(mas))) 6028 goto ptr_out_of_range; 6029 6030 if (unlikely(mas_is_none(mas))) 6031 return true; 6032 6033 if (mas->index == max) 6034 return true; 6035 6036 return false; 6037 6038 ptr_out_of_range: 6039 mas->status = ma_none; 6040 mas->index = 1; 6041 mas->last = ULONG_MAX; 6042 return true; 6043 } 6044 6045 /** 6046 * mas_find() - On the first call, find the entry at or after mas->index up to 6047 * %max. Otherwise, find the entry after mas->index. 6048 * @mas: The maple state 6049 * @max: The maximum value to check. 6050 * 6051 * Must hold rcu_read_lock or the write lock. 6052 * If an entry exists, last and index are updated accordingly. 6053 * May set @mas->status to ma_overflow. 6054 * 6055 * Return: The entry or %NULL. 6056 */ 6057 void *mas_find(struct ma_state *mas, unsigned long max) 6058 { 6059 void *entry = NULL; 6060 6061 if (mas_find_setup(mas, max, &entry)) 6062 return entry; 6063 6064 /* Retries on dead nodes handled by mas_next_slot */ 6065 entry = mas_next_slot(mas, max, false); 6066 /* Ignore overflow */ 6067 mas->status = ma_active; 6068 return entry; 6069 } 6070 EXPORT_SYMBOL_GPL(mas_find); 6071 6072 /** 6073 * mas_find_range() - On the first call, find the entry at or after 6074 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6075 * @mas: The maple state 6076 * @max: The maximum value to check. 6077 * 6078 * Must hold rcu_read_lock or the write lock. 6079 * If an entry exists, last and index are updated accordingly. 6080 * May set @mas->status to ma_overflow. 6081 * 6082 * Return: The entry or %NULL. 6083 */ 6084 void *mas_find_range(struct ma_state *mas, unsigned long max) 6085 { 6086 void *entry = NULL; 6087 6088 if (mas_find_setup(mas, max, &entry)) 6089 return entry; 6090 6091 /* Retries on dead nodes handled by mas_next_slot */ 6092 return mas_next_slot(mas, max, true); 6093 } 6094 EXPORT_SYMBOL_GPL(mas_find_range); 6095 6096 /** 6097 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6098 * @mas: The maple state 6099 * @min: The minimum index 6100 * @entry: Pointer to the entry 6101 * 6102 * Returns: True if entry is the answer, false otherwise. 6103 */ 6104 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6105 void **entry) 6106 { 6107 6108 switch (mas->status) { 6109 case ma_active: 6110 goto active; 6111 case ma_start: 6112 break; 6113 case ma_pause: 6114 if (unlikely(mas->index <= min)) { 6115 mas->status = ma_underflow; 6116 return true; 6117 } 6118 mas->last = --mas->index; 6119 mas->status = ma_start; 6120 break; 6121 case ma_none: 6122 if (mas->index <= min) 6123 goto none; 6124 6125 mas->last = mas->index; 6126 mas->status = ma_start; 6127 break; 6128 case ma_overflow: /* user expects the mas to be one after where it is */ 6129 if (unlikely(mas->index <= min)) { 6130 mas->status = ma_underflow; 6131 return true; 6132 } 6133 6134 mas->status = ma_active; 6135 break; 6136 case ma_underflow: /* user expects the mas to be one before where it is */ 6137 if (unlikely(mas->index <= min)) 6138 return true; 6139 6140 mas->status = ma_active; 6141 break; 6142 case ma_root: 6143 break; 6144 case ma_error: 6145 return true; 6146 } 6147 6148 if (mas_is_start(mas)) { 6149 /* First run or continue */ 6150 if (mas->index < min) 6151 return true; 6152 6153 *entry = mas_walk(mas); 6154 if (*entry) 6155 return true; 6156 } 6157 6158 if (unlikely(mas_is_ptr(mas))) 6159 goto none; 6160 6161 if (unlikely(mas_is_none(mas))) { 6162 /* 6163 * Walked to the location, and there was nothing so the previous 6164 * location is 0. 6165 */ 6166 mas->last = mas->index = 0; 6167 mas->status = ma_root; 6168 *entry = mas_root(mas); 6169 return true; 6170 } 6171 6172 active: 6173 if (mas->index < min) 6174 return true; 6175 6176 return false; 6177 6178 none: 6179 mas->status = ma_none; 6180 return true; 6181 } 6182 6183 /** 6184 * mas_find_rev: On the first call, find the first non-null entry at or below 6185 * mas->index down to %min. Otherwise find the first non-null entry below 6186 * mas->index down to %min. 6187 * @mas: The maple state 6188 * @min: The minimum value to check. 6189 * 6190 * Must hold rcu_read_lock or the write lock. 6191 * If an entry exists, last and index are updated accordingly. 6192 * May set @mas->status to ma_underflow. 6193 * 6194 * Return: The entry or %NULL. 6195 */ 6196 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6197 { 6198 void *entry = NULL; 6199 6200 if (mas_find_rev_setup(mas, min, &entry)) 6201 return entry; 6202 6203 /* Retries on dead nodes handled by mas_prev_slot */ 6204 return mas_prev_slot(mas, min, false); 6205 6206 } 6207 EXPORT_SYMBOL_GPL(mas_find_rev); 6208 6209 /** 6210 * mas_find_range_rev: On the first call, find the first non-null entry at or 6211 * below mas->index down to %min. Otherwise advance to the previous slot after 6212 * mas->index down to %min. 6213 * @mas: The maple state 6214 * @min: The minimum value to check. 6215 * 6216 * Must hold rcu_read_lock or the write lock. 6217 * If an entry exists, last and index are updated accordingly. 6218 * May set @mas->status to ma_underflow. 6219 * 6220 * Return: The entry or %NULL. 6221 */ 6222 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6223 { 6224 void *entry = NULL; 6225 6226 if (mas_find_rev_setup(mas, min, &entry)) 6227 return entry; 6228 6229 /* Retries on dead nodes handled by mas_prev_slot */ 6230 return mas_prev_slot(mas, min, true); 6231 } 6232 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6233 6234 /** 6235 * mas_erase() - Find the range in which index resides and erase the entire 6236 * range. 6237 * @mas: The maple state 6238 * 6239 * Must hold the write lock. 6240 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6241 * erases that range. 6242 * 6243 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6244 */ 6245 void *mas_erase(struct ma_state *mas) 6246 { 6247 void *entry; 6248 MA_WR_STATE(wr_mas, mas, NULL); 6249 6250 if (!mas_is_active(mas) || !mas_is_start(mas)) 6251 mas->status = ma_start; 6252 6253 /* Retry unnecessary when holding the write lock. */ 6254 entry = mas_state_walk(mas); 6255 if (!entry) 6256 return NULL; 6257 6258 write_retry: 6259 /* Must reset to ensure spanning writes of last slot are detected */ 6260 mas_reset(mas); 6261 mas_wr_store_setup(&wr_mas); 6262 mas_wr_store_entry(&wr_mas); 6263 if (mas_nomem(mas, GFP_KERNEL)) 6264 goto write_retry; 6265 6266 return entry; 6267 } 6268 EXPORT_SYMBOL_GPL(mas_erase); 6269 6270 /** 6271 * mas_nomem() - Check if there was an error allocating and do the allocation 6272 * if necessary If there are allocations, then free them. 6273 * @mas: The maple state 6274 * @gfp: The GFP_FLAGS to use for allocations 6275 * Return: true on allocation, false otherwise. 6276 */ 6277 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6278 __must_hold(mas->tree->ma_lock) 6279 { 6280 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6281 mas_destroy(mas); 6282 return false; 6283 } 6284 6285 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6286 mtree_unlock(mas->tree); 6287 mas_alloc_nodes(mas, gfp); 6288 mtree_lock(mas->tree); 6289 } else { 6290 mas_alloc_nodes(mas, gfp); 6291 } 6292 6293 if (!mas_allocated(mas)) 6294 return false; 6295 6296 mas->status = ma_start; 6297 return true; 6298 } 6299 6300 void __init maple_tree_init(void) 6301 { 6302 maple_node_cache = kmem_cache_create("maple_node", 6303 sizeof(struct maple_node), sizeof(struct maple_node), 6304 SLAB_PANIC, NULL); 6305 } 6306 6307 /** 6308 * mtree_load() - Load a value stored in a maple tree 6309 * @mt: The maple tree 6310 * @index: The index to load 6311 * 6312 * Return: the entry or %NULL 6313 */ 6314 void *mtree_load(struct maple_tree *mt, unsigned long index) 6315 { 6316 MA_STATE(mas, mt, index, index); 6317 void *entry; 6318 6319 trace_ma_read(__func__, &mas); 6320 rcu_read_lock(); 6321 retry: 6322 entry = mas_start(&mas); 6323 if (unlikely(mas_is_none(&mas))) 6324 goto unlock; 6325 6326 if (unlikely(mas_is_ptr(&mas))) { 6327 if (index) 6328 entry = NULL; 6329 6330 goto unlock; 6331 } 6332 6333 entry = mtree_lookup_walk(&mas); 6334 if (!entry && unlikely(mas_is_start(&mas))) 6335 goto retry; 6336 unlock: 6337 rcu_read_unlock(); 6338 if (xa_is_zero(entry)) 6339 return NULL; 6340 6341 return entry; 6342 } 6343 EXPORT_SYMBOL(mtree_load); 6344 6345 /** 6346 * mtree_store_range() - Store an entry at a given range. 6347 * @mt: The maple tree 6348 * @index: The start of the range 6349 * @last: The end of the range 6350 * @entry: The entry to store 6351 * @gfp: The GFP_FLAGS to use for allocations 6352 * 6353 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6354 * be allocated. 6355 */ 6356 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6357 unsigned long last, void *entry, gfp_t gfp) 6358 { 6359 MA_STATE(mas, mt, index, last); 6360 MA_WR_STATE(wr_mas, &mas, entry); 6361 6362 trace_ma_write(__func__, &mas, 0, entry); 6363 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6364 return -EINVAL; 6365 6366 if (index > last) 6367 return -EINVAL; 6368 6369 mtree_lock(mt); 6370 retry: 6371 mas_wr_store_entry(&wr_mas); 6372 if (mas_nomem(&mas, gfp)) 6373 goto retry; 6374 6375 mtree_unlock(mt); 6376 if (mas_is_err(&mas)) 6377 return xa_err(mas.node); 6378 6379 return 0; 6380 } 6381 EXPORT_SYMBOL(mtree_store_range); 6382 6383 /** 6384 * mtree_store() - Store an entry at a given index. 6385 * @mt: The maple tree 6386 * @index: The index to store the value 6387 * @entry: The entry to store 6388 * @gfp: The GFP_FLAGS to use for allocations 6389 * 6390 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6391 * be allocated. 6392 */ 6393 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6394 gfp_t gfp) 6395 { 6396 return mtree_store_range(mt, index, index, entry, gfp); 6397 } 6398 EXPORT_SYMBOL(mtree_store); 6399 6400 /** 6401 * mtree_insert_range() - Insert an entry at a given range if there is no value. 6402 * @mt: The maple tree 6403 * @first: The start of the range 6404 * @last: The end of the range 6405 * @entry: The entry to store 6406 * @gfp: The GFP_FLAGS to use for allocations. 6407 * 6408 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6409 * request, -ENOMEM if memory could not be allocated. 6410 */ 6411 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6412 unsigned long last, void *entry, gfp_t gfp) 6413 { 6414 MA_STATE(ms, mt, first, last); 6415 6416 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6417 return -EINVAL; 6418 6419 if (first > last) 6420 return -EINVAL; 6421 6422 mtree_lock(mt); 6423 retry: 6424 mas_insert(&ms, entry); 6425 if (mas_nomem(&ms, gfp)) 6426 goto retry; 6427 6428 mtree_unlock(mt); 6429 if (mas_is_err(&ms)) 6430 return xa_err(ms.node); 6431 6432 return 0; 6433 } 6434 EXPORT_SYMBOL(mtree_insert_range); 6435 6436 /** 6437 * mtree_insert() - Insert an entry at a given index if there is no value. 6438 * @mt: The maple tree 6439 * @index : The index to store the value 6440 * @entry: The entry to store 6441 * @gfp: The GFP_FLAGS to use for allocations. 6442 * 6443 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6444 * request, -ENOMEM if memory could not be allocated. 6445 */ 6446 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6447 gfp_t gfp) 6448 { 6449 return mtree_insert_range(mt, index, index, entry, gfp); 6450 } 6451 EXPORT_SYMBOL(mtree_insert); 6452 6453 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6454 void *entry, unsigned long size, unsigned long min, 6455 unsigned long max, gfp_t gfp) 6456 { 6457 int ret = 0; 6458 6459 MA_STATE(mas, mt, 0, 0); 6460 if (!mt_is_alloc(mt)) 6461 return -EINVAL; 6462 6463 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6464 return -EINVAL; 6465 6466 mtree_lock(mt); 6467 retry: 6468 ret = mas_empty_area(&mas, min, max, size); 6469 if (ret) 6470 goto unlock; 6471 6472 mas_insert(&mas, entry); 6473 /* 6474 * mas_nomem() may release the lock, causing the allocated area 6475 * to be unavailable, so try to allocate a free area again. 6476 */ 6477 if (mas_nomem(&mas, gfp)) 6478 goto retry; 6479 6480 if (mas_is_err(&mas)) 6481 ret = xa_err(mas.node); 6482 else 6483 *startp = mas.index; 6484 6485 unlock: 6486 mtree_unlock(mt); 6487 return ret; 6488 } 6489 EXPORT_SYMBOL(mtree_alloc_range); 6490 6491 /** 6492 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree. 6493 * @mt: The maple tree. 6494 * @startp: Pointer to ID. 6495 * @range_lo: Lower bound of range to search. 6496 * @range_hi: Upper bound of range to search. 6497 * @entry: The entry to store. 6498 * @next: Pointer to next ID to allocate. 6499 * @gfp: The GFP_FLAGS to use for allocations. 6500 * 6501 * Finds an empty entry in @mt after @next, stores the new index into 6502 * the @id pointer, stores the entry at that index, then updates @next. 6503 * 6504 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag. 6505 * 6506 * Context: Any context. Takes and releases the mt.lock. May sleep if 6507 * the @gfp flags permit. 6508 * 6509 * Return: 0 if the allocation succeeded without wrapping, 1 if the 6510 * allocation succeeded after wrapping, -ENOMEM if memory could not be 6511 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no 6512 * free entries. 6513 */ 6514 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 6515 void *entry, unsigned long range_lo, unsigned long range_hi, 6516 unsigned long *next, gfp_t gfp) 6517 { 6518 int ret; 6519 6520 MA_STATE(mas, mt, 0, 0); 6521 6522 if (!mt_is_alloc(mt)) 6523 return -EINVAL; 6524 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6525 return -EINVAL; 6526 mtree_lock(mt); 6527 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi, 6528 next, gfp); 6529 mtree_unlock(mt); 6530 return ret; 6531 } 6532 EXPORT_SYMBOL(mtree_alloc_cyclic); 6533 6534 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6535 void *entry, unsigned long size, unsigned long min, 6536 unsigned long max, gfp_t gfp) 6537 { 6538 int ret = 0; 6539 6540 MA_STATE(mas, mt, 0, 0); 6541 if (!mt_is_alloc(mt)) 6542 return -EINVAL; 6543 6544 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6545 return -EINVAL; 6546 6547 mtree_lock(mt); 6548 retry: 6549 ret = mas_empty_area_rev(&mas, min, max, size); 6550 if (ret) 6551 goto unlock; 6552 6553 mas_insert(&mas, entry); 6554 /* 6555 * mas_nomem() may release the lock, causing the allocated area 6556 * to be unavailable, so try to allocate a free area again. 6557 */ 6558 if (mas_nomem(&mas, gfp)) 6559 goto retry; 6560 6561 if (mas_is_err(&mas)) 6562 ret = xa_err(mas.node); 6563 else 6564 *startp = mas.index; 6565 6566 unlock: 6567 mtree_unlock(mt); 6568 return ret; 6569 } 6570 EXPORT_SYMBOL(mtree_alloc_rrange); 6571 6572 /** 6573 * mtree_erase() - Find an index and erase the entire range. 6574 * @mt: The maple tree 6575 * @index: The index to erase 6576 * 6577 * Erasing is the same as a walk to an entry then a store of a NULL to that 6578 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6579 * 6580 * Return: The entry stored at the @index or %NULL 6581 */ 6582 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6583 { 6584 void *entry = NULL; 6585 6586 MA_STATE(mas, mt, index, index); 6587 trace_ma_op(__func__, &mas); 6588 6589 mtree_lock(mt); 6590 entry = mas_erase(&mas); 6591 mtree_unlock(mt); 6592 6593 return entry; 6594 } 6595 EXPORT_SYMBOL(mtree_erase); 6596 6597 /* 6598 * mas_dup_free() - Free an incomplete duplication of a tree. 6599 * @mas: The maple state of a incomplete tree. 6600 * 6601 * The parameter @mas->node passed in indicates that the allocation failed on 6602 * this node. This function frees all nodes starting from @mas->node in the 6603 * reverse order of mas_dup_build(). There is no need to hold the source tree 6604 * lock at this time. 6605 */ 6606 static void mas_dup_free(struct ma_state *mas) 6607 { 6608 struct maple_node *node; 6609 enum maple_type type; 6610 void __rcu **slots; 6611 unsigned char count, i; 6612 6613 /* Maybe the first node allocation failed. */ 6614 if (mas_is_none(mas)) 6615 return; 6616 6617 while (!mte_is_root(mas->node)) { 6618 mas_ascend(mas); 6619 if (mas->offset) { 6620 mas->offset--; 6621 do { 6622 mas_descend(mas); 6623 mas->offset = mas_data_end(mas); 6624 } while (!mte_is_leaf(mas->node)); 6625 6626 mas_ascend(mas); 6627 } 6628 6629 node = mte_to_node(mas->node); 6630 type = mte_node_type(mas->node); 6631 slots = ma_slots(node, type); 6632 count = mas_data_end(mas) + 1; 6633 for (i = 0; i < count; i++) 6634 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; 6635 mt_free_bulk(count, slots); 6636 } 6637 6638 node = mte_to_node(mas->node); 6639 mt_free_one(node); 6640 } 6641 6642 /* 6643 * mas_copy_node() - Copy a maple node and replace the parent. 6644 * @mas: The maple state of source tree. 6645 * @new_mas: The maple state of new tree. 6646 * @parent: The parent of the new node. 6647 * 6648 * Copy @mas->node to @new_mas->node, set @parent to be the parent of 6649 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. 6650 */ 6651 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, 6652 struct maple_pnode *parent) 6653 { 6654 struct maple_node *node = mte_to_node(mas->node); 6655 struct maple_node *new_node = mte_to_node(new_mas->node); 6656 unsigned long val; 6657 6658 /* Copy the node completely. */ 6659 memcpy(new_node, node, sizeof(struct maple_node)); 6660 /* Update the parent node pointer. */ 6661 val = (unsigned long)node->parent & MAPLE_NODE_MASK; 6662 new_node->parent = ma_parent_ptr(val | (unsigned long)parent); 6663 } 6664 6665 /* 6666 * mas_dup_alloc() - Allocate child nodes for a maple node. 6667 * @mas: The maple state of source tree. 6668 * @new_mas: The maple state of new tree. 6669 * @gfp: The GFP_FLAGS to use for allocations. 6670 * 6671 * This function allocates child nodes for @new_mas->node during the duplication 6672 * process. If memory allocation fails, @mas is set to -ENOMEM. 6673 */ 6674 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, 6675 gfp_t gfp) 6676 { 6677 struct maple_node *node = mte_to_node(mas->node); 6678 struct maple_node *new_node = mte_to_node(new_mas->node); 6679 enum maple_type type; 6680 unsigned char request, count, i; 6681 void __rcu **slots; 6682 void __rcu **new_slots; 6683 unsigned long val; 6684 6685 /* Allocate memory for child nodes. */ 6686 type = mte_node_type(mas->node); 6687 new_slots = ma_slots(new_node, type); 6688 request = mas_data_end(mas) + 1; 6689 count = mt_alloc_bulk(gfp, request, (void **)new_slots); 6690 if (unlikely(count < request)) { 6691 memset(new_slots, 0, request * sizeof(void *)); 6692 mas_set_err(mas, -ENOMEM); 6693 return; 6694 } 6695 6696 /* Restore node type information in slots. */ 6697 slots = ma_slots(node, type); 6698 for (i = 0; i < count; i++) { 6699 val = (unsigned long)mt_slot_locked(mas->tree, slots, i); 6700 val &= MAPLE_NODE_MASK; 6701 ((unsigned long *)new_slots)[i] |= val; 6702 } 6703 } 6704 6705 /* 6706 * mas_dup_build() - Build a new maple tree from a source tree 6707 * @mas: The maple state of source tree, need to be in MAS_START state. 6708 * @new_mas: The maple state of new tree, need to be in MAS_START state. 6709 * @gfp: The GFP_FLAGS to use for allocations. 6710 * 6711 * This function builds a new tree in DFS preorder. If the memory allocation 6712 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the 6713 * last node. mas_dup_free() will free the incomplete duplication of a tree. 6714 * 6715 * Note that the attributes of the two trees need to be exactly the same, and the 6716 * new tree needs to be empty, otherwise -EINVAL will be set in @mas. 6717 */ 6718 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, 6719 gfp_t gfp) 6720 { 6721 struct maple_node *node; 6722 struct maple_pnode *parent = NULL; 6723 struct maple_enode *root; 6724 enum maple_type type; 6725 6726 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || 6727 unlikely(!mtree_empty(new_mas->tree))) { 6728 mas_set_err(mas, -EINVAL); 6729 return; 6730 } 6731 6732 root = mas_start(mas); 6733 if (mas_is_ptr(mas) || mas_is_none(mas)) 6734 goto set_new_tree; 6735 6736 node = mt_alloc_one(gfp); 6737 if (!node) { 6738 new_mas->status = ma_none; 6739 mas_set_err(mas, -ENOMEM); 6740 return; 6741 } 6742 6743 type = mte_node_type(mas->node); 6744 root = mt_mk_node(node, type); 6745 new_mas->node = root; 6746 new_mas->min = 0; 6747 new_mas->max = ULONG_MAX; 6748 root = mte_mk_root(root); 6749 while (1) { 6750 mas_copy_node(mas, new_mas, parent); 6751 if (!mte_is_leaf(mas->node)) { 6752 /* Only allocate child nodes for non-leaf nodes. */ 6753 mas_dup_alloc(mas, new_mas, gfp); 6754 if (unlikely(mas_is_err(mas))) 6755 return; 6756 } else { 6757 /* 6758 * This is the last leaf node and duplication is 6759 * completed. 6760 */ 6761 if (mas->max == ULONG_MAX) 6762 goto done; 6763 6764 /* This is not the last leaf node and needs to go up. */ 6765 do { 6766 mas_ascend(mas); 6767 mas_ascend(new_mas); 6768 } while (mas->offset == mas_data_end(mas)); 6769 6770 /* Move to the next subtree. */ 6771 mas->offset++; 6772 new_mas->offset++; 6773 } 6774 6775 mas_descend(mas); 6776 parent = ma_parent_ptr(mte_to_node(new_mas->node)); 6777 mas_descend(new_mas); 6778 mas->offset = 0; 6779 new_mas->offset = 0; 6780 } 6781 done: 6782 /* Specially handle the parent of the root node. */ 6783 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); 6784 set_new_tree: 6785 /* Make them the same height */ 6786 new_mas->tree->ma_flags = mas->tree->ma_flags; 6787 rcu_assign_pointer(new_mas->tree->ma_root, root); 6788 } 6789 6790 /** 6791 * __mt_dup(): Duplicate an entire maple tree 6792 * @mt: The source maple tree 6793 * @new: The new maple tree 6794 * @gfp: The GFP_FLAGS to use for allocations 6795 * 6796 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6797 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6798 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6799 * source node except for all the addresses stored in it. It will be faster than 6800 * traversing all elements in the source tree and inserting them one by one into 6801 * the new tree. 6802 * The user needs to ensure that the attributes of the source tree and the new 6803 * tree are the same, and the new tree needs to be an empty tree, otherwise 6804 * -EINVAL will be returned. 6805 * Note that the user needs to manually lock the source tree and the new tree. 6806 * 6807 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6808 * the attributes of the two trees are different or the new tree is not an empty 6809 * tree. 6810 */ 6811 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6812 { 6813 int ret = 0; 6814 MA_STATE(mas, mt, 0, 0); 6815 MA_STATE(new_mas, new, 0, 0); 6816 6817 mas_dup_build(&mas, &new_mas, gfp); 6818 if (unlikely(mas_is_err(&mas))) { 6819 ret = xa_err(mas.node); 6820 if (ret == -ENOMEM) 6821 mas_dup_free(&new_mas); 6822 } 6823 6824 return ret; 6825 } 6826 EXPORT_SYMBOL(__mt_dup); 6827 6828 /** 6829 * mtree_dup(): Duplicate an entire maple tree 6830 * @mt: The source maple tree 6831 * @new: The new maple tree 6832 * @gfp: The GFP_FLAGS to use for allocations 6833 * 6834 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6835 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6836 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6837 * source node except for all the addresses stored in it. It will be faster than 6838 * traversing all elements in the source tree and inserting them one by one into 6839 * the new tree. 6840 * The user needs to ensure that the attributes of the source tree and the new 6841 * tree are the same, and the new tree needs to be an empty tree, otherwise 6842 * -EINVAL will be returned. 6843 * 6844 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6845 * the attributes of the two trees are different or the new tree is not an empty 6846 * tree. 6847 */ 6848 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6849 { 6850 int ret = 0; 6851 MA_STATE(mas, mt, 0, 0); 6852 MA_STATE(new_mas, new, 0, 0); 6853 6854 mas_lock(&new_mas); 6855 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); 6856 mas_dup_build(&mas, &new_mas, gfp); 6857 mas_unlock(&mas); 6858 if (unlikely(mas_is_err(&mas))) { 6859 ret = xa_err(mas.node); 6860 if (ret == -ENOMEM) 6861 mas_dup_free(&new_mas); 6862 } 6863 6864 mas_unlock(&new_mas); 6865 return ret; 6866 } 6867 EXPORT_SYMBOL(mtree_dup); 6868 6869 /** 6870 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6871 * @mt: The maple tree 6872 * 6873 * Note: Does not handle locking. 6874 */ 6875 void __mt_destroy(struct maple_tree *mt) 6876 { 6877 void *root = mt_root_locked(mt); 6878 6879 rcu_assign_pointer(mt->ma_root, NULL); 6880 if (xa_is_node(root)) 6881 mte_destroy_walk(root, mt); 6882 6883 mt->ma_flags = mt_attr(mt); 6884 } 6885 EXPORT_SYMBOL_GPL(__mt_destroy); 6886 6887 /** 6888 * mtree_destroy() - Destroy a maple tree 6889 * @mt: The maple tree 6890 * 6891 * Frees all resources used by the tree. Handles locking. 6892 */ 6893 void mtree_destroy(struct maple_tree *mt) 6894 { 6895 mtree_lock(mt); 6896 __mt_destroy(mt); 6897 mtree_unlock(mt); 6898 } 6899 EXPORT_SYMBOL(mtree_destroy); 6900 6901 /** 6902 * mt_find() - Search from the start up until an entry is found. 6903 * @mt: The maple tree 6904 * @index: Pointer which contains the start location of the search 6905 * @max: The maximum value of the search range 6906 * 6907 * Takes RCU read lock internally to protect the search, which does not 6908 * protect the returned pointer after dropping RCU read lock. 6909 * See also: Documentation/core-api/maple_tree.rst 6910 * 6911 * In case that an entry is found @index is updated to point to the next 6912 * possible entry independent whether the found entry is occupying a 6913 * single index or a range if indices. 6914 * 6915 * Return: The entry at or after the @index or %NULL 6916 */ 6917 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6918 { 6919 MA_STATE(mas, mt, *index, *index); 6920 void *entry; 6921 #ifdef CONFIG_DEBUG_MAPLE_TREE 6922 unsigned long copy = *index; 6923 #endif 6924 6925 trace_ma_read(__func__, &mas); 6926 6927 if ((*index) > max) 6928 return NULL; 6929 6930 rcu_read_lock(); 6931 retry: 6932 entry = mas_state_walk(&mas); 6933 if (mas_is_start(&mas)) 6934 goto retry; 6935 6936 if (unlikely(xa_is_zero(entry))) 6937 entry = NULL; 6938 6939 if (entry) 6940 goto unlock; 6941 6942 while (mas_is_active(&mas) && (mas.last < max)) { 6943 entry = mas_next_entry(&mas, max); 6944 if (likely(entry && !xa_is_zero(entry))) 6945 break; 6946 } 6947 6948 if (unlikely(xa_is_zero(entry))) 6949 entry = NULL; 6950 unlock: 6951 rcu_read_unlock(); 6952 if (likely(entry)) { 6953 *index = mas.last + 1; 6954 #ifdef CONFIG_DEBUG_MAPLE_TREE 6955 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6956 pr_err("index not increased! %lx <= %lx\n", 6957 *index, copy); 6958 #endif 6959 } 6960 6961 return entry; 6962 } 6963 EXPORT_SYMBOL(mt_find); 6964 6965 /** 6966 * mt_find_after() - Search from the start up until an entry is found. 6967 * @mt: The maple tree 6968 * @index: Pointer which contains the start location of the search 6969 * @max: The maximum value to check 6970 * 6971 * Same as mt_find() except that it checks @index for 0 before 6972 * searching. If @index == 0, the search is aborted. This covers a wrap 6973 * around of @index to 0 in an iterator loop. 6974 * 6975 * Return: The entry at or after the @index or %NULL 6976 */ 6977 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6978 unsigned long max) 6979 { 6980 if (!(*index)) 6981 return NULL; 6982 6983 return mt_find(mt, index, max); 6984 } 6985 EXPORT_SYMBOL(mt_find_after); 6986 6987 #ifdef CONFIG_DEBUG_MAPLE_TREE 6988 atomic_t maple_tree_tests_run; 6989 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6990 atomic_t maple_tree_tests_passed; 6991 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6992 6993 #ifndef __KERNEL__ 6994 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6995 void mt_set_non_kernel(unsigned int val) 6996 { 6997 kmem_cache_set_non_kernel(maple_node_cache, val); 6998 } 6999 7000 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 7001 unsigned long mt_get_alloc_size(void) 7002 { 7003 return kmem_cache_get_alloc(maple_node_cache); 7004 } 7005 7006 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 7007 void mt_zero_nr_tallocated(void) 7008 { 7009 kmem_cache_zero_nr_tallocated(maple_node_cache); 7010 } 7011 7012 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 7013 unsigned int mt_nr_tallocated(void) 7014 { 7015 return kmem_cache_nr_tallocated(maple_node_cache); 7016 } 7017 7018 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 7019 unsigned int mt_nr_allocated(void) 7020 { 7021 return kmem_cache_nr_allocated(maple_node_cache); 7022 } 7023 7024 void mt_cache_shrink(void) 7025 { 7026 } 7027 #else 7028 /* 7029 * mt_cache_shrink() - For testing, don't use this. 7030 * 7031 * Certain testcases can trigger an OOM when combined with other memory 7032 * debugging configuration options. This function is used to reduce the 7033 * possibility of an out of memory even due to kmem_cache objects remaining 7034 * around for longer than usual. 7035 */ 7036 void mt_cache_shrink(void) 7037 { 7038 kmem_cache_shrink(maple_node_cache); 7039 7040 } 7041 EXPORT_SYMBOL_GPL(mt_cache_shrink); 7042 7043 #endif /* not defined __KERNEL__ */ 7044 /* 7045 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 7046 * @mas: The maple state 7047 * @offset: The offset into the slot array to fetch. 7048 * 7049 * Return: The entry stored at @offset. 7050 */ 7051 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 7052 unsigned char offset) 7053 { 7054 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 7055 offset); 7056 } 7057 7058 /* Depth first search, post-order */ 7059 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 7060 { 7061 7062 struct maple_enode *p, *mn = mas->node; 7063 unsigned long p_min, p_max; 7064 7065 mas_next_node(mas, mas_mn(mas), max); 7066 if (!mas_is_overflow(mas)) 7067 return; 7068 7069 if (mte_is_root(mn)) 7070 return; 7071 7072 mas->node = mn; 7073 mas_ascend(mas); 7074 do { 7075 p = mas->node; 7076 p_min = mas->min; 7077 p_max = mas->max; 7078 mas_prev_node(mas, 0); 7079 } while (!mas_is_underflow(mas)); 7080 7081 mas->node = p; 7082 mas->max = p_max; 7083 mas->min = p_min; 7084 } 7085 7086 /* Tree validations */ 7087 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7088 unsigned long min, unsigned long max, unsigned int depth, 7089 enum mt_dump_format format); 7090 static void mt_dump_range(unsigned long min, unsigned long max, 7091 unsigned int depth, enum mt_dump_format format) 7092 { 7093 static const char spaces[] = " "; 7094 7095 switch(format) { 7096 case mt_dump_hex: 7097 if (min == max) 7098 pr_info("%.*s%lx: ", depth * 2, spaces, min); 7099 else 7100 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 7101 break; 7102 case mt_dump_dec: 7103 if (min == max) 7104 pr_info("%.*s%lu: ", depth * 2, spaces, min); 7105 else 7106 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 7107 } 7108 } 7109 7110 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 7111 unsigned int depth, enum mt_dump_format format) 7112 { 7113 mt_dump_range(min, max, depth, format); 7114 7115 if (xa_is_value(entry)) 7116 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 7117 xa_to_value(entry), entry); 7118 else if (xa_is_zero(entry)) 7119 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 7120 else if (mt_is_reserved(entry)) 7121 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 7122 else 7123 pr_cont("%p\n", entry); 7124 } 7125 7126 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 7127 unsigned long min, unsigned long max, unsigned int depth, 7128 enum mt_dump_format format) 7129 { 7130 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 7131 bool leaf = mte_is_leaf(entry); 7132 unsigned long first = min; 7133 int i; 7134 7135 pr_cont(" contents: "); 7136 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 7137 switch(format) { 7138 case mt_dump_hex: 7139 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7140 break; 7141 case mt_dump_dec: 7142 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7143 } 7144 } 7145 pr_cont("%p\n", node->slot[i]); 7146 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 7147 unsigned long last = max; 7148 7149 if (i < (MAPLE_RANGE64_SLOTS - 1)) 7150 last = node->pivot[i]; 7151 else if (!node->slot[i] && max != mt_node_max(entry)) 7152 break; 7153 if (last == 0 && i > 0) 7154 break; 7155 if (leaf) 7156 mt_dump_entry(mt_slot(mt, node->slot, i), 7157 first, last, depth + 1, format); 7158 else if (node->slot[i]) 7159 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7160 first, last, depth + 1, format); 7161 7162 if (last == max) 7163 break; 7164 if (last > max) { 7165 switch(format) { 7166 case mt_dump_hex: 7167 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 7168 node, last, max, i); 7169 break; 7170 case mt_dump_dec: 7171 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7172 node, last, max, i); 7173 } 7174 } 7175 first = last + 1; 7176 } 7177 } 7178 7179 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 7180 unsigned long min, unsigned long max, unsigned int depth, 7181 enum mt_dump_format format) 7182 { 7183 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 7184 bool leaf = mte_is_leaf(entry); 7185 unsigned long first = min; 7186 int i; 7187 7188 pr_cont(" contents: "); 7189 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7190 switch (format) { 7191 case mt_dump_hex: 7192 pr_cont("%lx ", node->gap[i]); 7193 break; 7194 case mt_dump_dec: 7195 pr_cont("%lu ", node->gap[i]); 7196 } 7197 } 7198 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 7199 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { 7200 switch (format) { 7201 case mt_dump_hex: 7202 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7203 break; 7204 case mt_dump_dec: 7205 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7206 } 7207 } 7208 pr_cont("%p\n", node->slot[i]); 7209 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7210 unsigned long last = max; 7211 7212 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 7213 last = node->pivot[i]; 7214 else if (!node->slot[i]) 7215 break; 7216 if (last == 0 && i > 0) 7217 break; 7218 if (leaf) 7219 mt_dump_entry(mt_slot(mt, node->slot, i), 7220 first, last, depth + 1, format); 7221 else if (node->slot[i]) 7222 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7223 first, last, depth + 1, format); 7224 7225 if (last == max) 7226 break; 7227 if (last > max) { 7228 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7229 node, last, max, i); 7230 break; 7231 } 7232 first = last + 1; 7233 } 7234 } 7235 7236 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7237 unsigned long min, unsigned long max, unsigned int depth, 7238 enum mt_dump_format format) 7239 { 7240 struct maple_node *node = mte_to_node(entry); 7241 unsigned int type = mte_node_type(entry); 7242 unsigned int i; 7243 7244 mt_dump_range(min, max, depth, format); 7245 7246 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 7247 node ? node->parent : NULL); 7248 switch (type) { 7249 case maple_dense: 7250 pr_cont("\n"); 7251 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 7252 if (min + i > max) 7253 pr_cont("OUT OF RANGE: "); 7254 mt_dump_entry(mt_slot(mt, node->slot, i), 7255 min + i, min + i, depth, format); 7256 } 7257 break; 7258 case maple_leaf_64: 7259 case maple_range_64: 7260 mt_dump_range64(mt, entry, min, max, depth, format); 7261 break; 7262 case maple_arange_64: 7263 mt_dump_arange64(mt, entry, min, max, depth, format); 7264 break; 7265 7266 default: 7267 pr_cont(" UNKNOWN TYPE\n"); 7268 } 7269 } 7270 7271 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 7272 { 7273 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 7274 7275 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 7276 mt, mt->ma_flags, mt_height(mt), entry); 7277 if (!xa_is_node(entry)) 7278 mt_dump_entry(entry, 0, 0, 0, format); 7279 else if (entry) 7280 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 7281 } 7282 EXPORT_SYMBOL_GPL(mt_dump); 7283 7284 /* 7285 * Calculate the maximum gap in a node and check if that's what is reported in 7286 * the parent (unless root). 7287 */ 7288 static void mas_validate_gaps(struct ma_state *mas) 7289 { 7290 struct maple_enode *mte = mas->node; 7291 struct maple_node *p_mn, *node = mte_to_node(mte); 7292 enum maple_type mt = mte_node_type(mas->node); 7293 unsigned long gap = 0, max_gap = 0; 7294 unsigned long p_end, p_start = mas->min; 7295 unsigned char p_slot, offset; 7296 unsigned long *gaps = NULL; 7297 unsigned long *pivots = ma_pivots(node, mt); 7298 unsigned int i; 7299 7300 if (ma_is_dense(mt)) { 7301 for (i = 0; i < mt_slot_count(mte); i++) { 7302 if (mas_get_slot(mas, i)) { 7303 if (gap > max_gap) 7304 max_gap = gap; 7305 gap = 0; 7306 continue; 7307 } 7308 gap++; 7309 } 7310 goto counted; 7311 } 7312 7313 gaps = ma_gaps(node, mt); 7314 for (i = 0; i < mt_slot_count(mte); i++) { 7315 p_end = mas_safe_pivot(mas, pivots, i, mt); 7316 7317 if (!gaps) { 7318 if (!mas_get_slot(mas, i)) 7319 gap = p_end - p_start + 1; 7320 } else { 7321 void *entry = mas_get_slot(mas, i); 7322 7323 gap = gaps[i]; 7324 MT_BUG_ON(mas->tree, !entry); 7325 7326 if (gap > p_end - p_start + 1) { 7327 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7328 mas_mn(mas), i, gap, p_end, p_start, 7329 p_end - p_start + 1); 7330 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 7331 } 7332 } 7333 7334 if (gap > max_gap) 7335 max_gap = gap; 7336 7337 p_start = p_end + 1; 7338 if (p_end >= mas->max) 7339 break; 7340 } 7341 7342 counted: 7343 if (mt == maple_arange_64) { 7344 MT_BUG_ON(mas->tree, !gaps); 7345 offset = ma_meta_gap(node); 7346 if (offset > i) { 7347 pr_err("gap offset %p[%u] is invalid\n", node, offset); 7348 MT_BUG_ON(mas->tree, 1); 7349 } 7350 7351 if (gaps[offset] != max_gap) { 7352 pr_err("gap %p[%u] is not the largest gap %lu\n", 7353 node, offset, max_gap); 7354 MT_BUG_ON(mas->tree, 1); 7355 } 7356 7357 for (i++ ; i < mt_slot_count(mte); i++) { 7358 if (gaps[i] != 0) { 7359 pr_err("gap %p[%u] beyond node limit != 0\n", 7360 node, i); 7361 MT_BUG_ON(mas->tree, 1); 7362 } 7363 } 7364 } 7365 7366 if (mte_is_root(mte)) 7367 return; 7368 7369 p_slot = mte_parent_slot(mas->node); 7370 p_mn = mte_parent(mte); 7371 MT_BUG_ON(mas->tree, max_gap > mas->max); 7372 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7373 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7374 mt_dump(mas->tree, mt_dump_hex); 7375 MT_BUG_ON(mas->tree, 1); 7376 } 7377 } 7378 7379 static void mas_validate_parent_slot(struct ma_state *mas) 7380 { 7381 struct maple_node *parent; 7382 struct maple_enode *node; 7383 enum maple_type p_type; 7384 unsigned char p_slot; 7385 void __rcu **slots; 7386 int i; 7387 7388 if (mte_is_root(mas->node)) 7389 return; 7390 7391 p_slot = mte_parent_slot(mas->node); 7392 p_type = mas_parent_type(mas, mas->node); 7393 parent = mte_parent(mas->node); 7394 slots = ma_slots(parent, p_type); 7395 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7396 7397 /* Check prev/next parent slot for duplicate node entry */ 7398 7399 for (i = 0; i < mt_slots[p_type]; i++) { 7400 node = mas_slot(mas, slots, i); 7401 if (i == p_slot) { 7402 if (node != mas->node) 7403 pr_err("parent %p[%u] does not have %p\n", 7404 parent, i, mas_mn(mas)); 7405 MT_BUG_ON(mas->tree, node != mas->node); 7406 } else if (node == mas->node) { 7407 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7408 mas_mn(mas), parent, i, p_slot); 7409 MT_BUG_ON(mas->tree, node == mas->node); 7410 } 7411 } 7412 } 7413 7414 static void mas_validate_child_slot(struct ma_state *mas) 7415 { 7416 enum maple_type type = mte_node_type(mas->node); 7417 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7418 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7419 struct maple_enode *child; 7420 unsigned char i; 7421 7422 if (mte_is_leaf(mas->node)) 7423 return; 7424 7425 for (i = 0; i < mt_slots[type]; i++) { 7426 child = mas_slot(mas, slots, i); 7427 7428 if (!child) { 7429 pr_err("Non-leaf node lacks child at %p[%u]\n", 7430 mas_mn(mas), i); 7431 MT_BUG_ON(mas->tree, 1); 7432 } 7433 7434 if (mte_parent_slot(child) != i) { 7435 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7436 mas_mn(mas), i, mte_to_node(child), 7437 mte_parent_slot(child)); 7438 MT_BUG_ON(mas->tree, 1); 7439 } 7440 7441 if (mte_parent(child) != mte_to_node(mas->node)) { 7442 pr_err("child %p has parent %p not %p\n", 7443 mte_to_node(child), mte_parent(child), 7444 mte_to_node(mas->node)); 7445 MT_BUG_ON(mas->tree, 1); 7446 } 7447 7448 if (i < mt_pivots[type] && pivots[i] == mas->max) 7449 break; 7450 } 7451 } 7452 7453 /* 7454 * Validate all pivots are within mas->min and mas->max, check metadata ends 7455 * where the maximum ends and ensure there is no slots or pivots set outside of 7456 * the end of the data. 7457 */ 7458 static void mas_validate_limits(struct ma_state *mas) 7459 { 7460 int i; 7461 unsigned long prev_piv = 0; 7462 enum maple_type type = mte_node_type(mas->node); 7463 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7464 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7465 7466 for (i = 0; i < mt_slots[type]; i++) { 7467 unsigned long piv; 7468 7469 piv = mas_safe_pivot(mas, pivots, i, type); 7470 7471 if (!piv && (i != 0)) { 7472 pr_err("Missing node limit pivot at %p[%u]", 7473 mas_mn(mas), i); 7474 MAS_WARN_ON(mas, 1); 7475 } 7476 7477 if (prev_piv > piv) { 7478 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7479 mas_mn(mas), i, piv, prev_piv); 7480 MAS_WARN_ON(mas, piv < prev_piv); 7481 } 7482 7483 if (piv < mas->min) { 7484 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7485 piv, mas->min); 7486 MAS_WARN_ON(mas, piv < mas->min); 7487 } 7488 if (piv > mas->max) { 7489 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7490 piv, mas->max); 7491 MAS_WARN_ON(mas, piv > mas->max); 7492 } 7493 prev_piv = piv; 7494 if (piv == mas->max) 7495 break; 7496 } 7497 7498 if (mas_data_end(mas) != i) { 7499 pr_err("node%p: data_end %u != the last slot offset %u\n", 7500 mas_mn(mas), mas_data_end(mas), i); 7501 MT_BUG_ON(mas->tree, 1); 7502 } 7503 7504 for (i += 1; i < mt_slots[type]; i++) { 7505 void *entry = mas_slot(mas, slots, i); 7506 7507 if (entry && (i != mt_slots[type] - 1)) { 7508 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7509 i, entry); 7510 MT_BUG_ON(mas->tree, entry != NULL); 7511 } 7512 7513 if (i < mt_pivots[type]) { 7514 unsigned long piv = pivots[i]; 7515 7516 if (!piv) 7517 continue; 7518 7519 pr_err("%p[%u] should not have piv %lu\n", 7520 mas_mn(mas), i, piv); 7521 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7522 } 7523 } 7524 } 7525 7526 static void mt_validate_nulls(struct maple_tree *mt) 7527 { 7528 void *entry, *last = (void *)1; 7529 unsigned char offset = 0; 7530 void __rcu **slots; 7531 MA_STATE(mas, mt, 0, 0); 7532 7533 mas_start(&mas); 7534 if (mas_is_none(&mas) || (mas_is_ptr(&mas))) 7535 return; 7536 7537 while (!mte_is_leaf(mas.node)) 7538 mas_descend(&mas); 7539 7540 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7541 do { 7542 entry = mas_slot(&mas, slots, offset); 7543 if (!last && !entry) { 7544 pr_err("Sequential nulls end at %p[%u]\n", 7545 mas_mn(&mas), offset); 7546 } 7547 MT_BUG_ON(mt, !last && !entry); 7548 last = entry; 7549 if (offset == mas_data_end(&mas)) { 7550 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7551 if (mas_is_overflow(&mas)) 7552 return; 7553 offset = 0; 7554 slots = ma_slots(mte_to_node(mas.node), 7555 mte_node_type(mas.node)); 7556 } else { 7557 offset++; 7558 } 7559 7560 } while (!mas_is_overflow(&mas)); 7561 } 7562 7563 /* 7564 * validate a maple tree by checking: 7565 * 1. The limits (pivots are within mas->min to mas->max) 7566 * 2. The gap is correctly set in the parents 7567 */ 7568 void mt_validate(struct maple_tree *mt) 7569 __must_hold(mas->tree->ma_lock) 7570 { 7571 unsigned char end; 7572 7573 MA_STATE(mas, mt, 0, 0); 7574 mas_start(&mas); 7575 if (!mas_is_active(&mas)) 7576 return; 7577 7578 while (!mte_is_leaf(mas.node)) 7579 mas_descend(&mas); 7580 7581 while (!mas_is_overflow(&mas)) { 7582 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7583 end = mas_data_end(&mas); 7584 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7585 (mas.max != ULONG_MAX))) { 7586 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7587 } 7588 7589 mas_validate_parent_slot(&mas); 7590 mas_validate_limits(&mas); 7591 mas_validate_child_slot(&mas); 7592 if (mt_is_alloc(mt)) 7593 mas_validate_gaps(&mas); 7594 mas_dfs_postorder(&mas, ULONG_MAX); 7595 } 7596 mt_validate_nulls(mt); 7597 } 7598 EXPORT_SYMBOL_GPL(mt_validate); 7599 7600 void mas_dump(const struct ma_state *mas) 7601 { 7602 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7603 switch (mas->status) { 7604 case ma_active: 7605 pr_err("(ma_active)"); 7606 break; 7607 case ma_none: 7608 pr_err("(ma_none)"); 7609 break; 7610 case ma_root: 7611 pr_err("(ma_root)"); 7612 break; 7613 case ma_start: 7614 pr_err("(ma_start) "); 7615 break; 7616 case ma_pause: 7617 pr_err("(ma_pause) "); 7618 break; 7619 case ma_overflow: 7620 pr_err("(ma_overflow) "); 7621 break; 7622 case ma_underflow: 7623 pr_err("(ma_underflow) "); 7624 break; 7625 case ma_error: 7626 pr_err("(ma_error) "); 7627 break; 7628 } 7629 7630 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end, 7631 mas->index, mas->last); 7632 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7633 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7634 if (mas->index > mas->last) 7635 pr_err("Check index & last\n"); 7636 } 7637 EXPORT_SYMBOL_GPL(mas_dump); 7638 7639 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7640 { 7641 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7642 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7643 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7644 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, 7645 wr_mas->end_piv); 7646 } 7647 EXPORT_SYMBOL_GPL(mas_wr_dump); 7648 7649 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7650
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.