~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/math/div64.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
  4  *
  5  * Based on former do_div() implementation from asm-parisc/div64.h:
  6  *      Copyright (C) 1999 Hewlett-Packard Co
  7  *      Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
  8  *
  9  *
 10  * Generic C version of 64bit/32bit division and modulo, with
 11  * 64bit result and 32bit remainder.
 12  *
 13  * The fast case for (n>>32 == 0) is handled inline by do_div().
 14  *
 15  * Code generated for this function might be very inefficient
 16  * for some CPUs. __div64_32() can be overridden by linking arch-specific
 17  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
 18  * or by defining a preprocessor macro in arch/include/asm/div64.h.
 19  */
 20 
 21 #include <linux/bitops.h>
 22 #include <linux/export.h>
 23 #include <linux/math.h>
 24 #include <linux/math64.h>
 25 #include <linux/minmax.h>
 26 #include <linux/log2.h>
 27 
 28 /* Not needed on 64bit architectures */
 29 #if BITS_PER_LONG == 32
 30 
 31 #ifndef __div64_32
 32 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
 33 {
 34         uint64_t rem = *n;
 35         uint64_t b = base;
 36         uint64_t res, d = 1;
 37         uint32_t high = rem >> 32;
 38 
 39         /* Reduce the thing a bit first */
 40         res = 0;
 41         if (high >= base) {
 42                 high /= base;
 43                 res = (uint64_t) high << 32;
 44                 rem -= (uint64_t) (high*base) << 32;
 45         }
 46 
 47         while ((int64_t)b > 0 && b < rem) {
 48                 b = b+b;
 49                 d = d+d;
 50         }
 51 
 52         do {
 53                 if (rem >= b) {
 54                         rem -= b;
 55                         res += d;
 56                 }
 57                 b >>= 1;
 58                 d >>= 1;
 59         } while (d);
 60 
 61         *n = res;
 62         return rem;
 63 }
 64 EXPORT_SYMBOL(__div64_32);
 65 #endif
 66 
 67 #ifndef div_s64_rem
 68 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 69 {
 70         u64 quotient;
 71 
 72         if (dividend < 0) {
 73                 quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
 74                 *remainder = -*remainder;
 75                 if (divisor > 0)
 76                         quotient = -quotient;
 77         } else {
 78                 quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
 79                 if (divisor < 0)
 80                         quotient = -quotient;
 81         }
 82         return quotient;
 83 }
 84 EXPORT_SYMBOL(div_s64_rem);
 85 #endif
 86 
 87 /*
 88  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
 89  * @dividend:   64bit dividend
 90  * @divisor:    64bit divisor
 91  * @remainder:  64bit remainder
 92  *
 93  * This implementation is a comparable to algorithm used by div64_u64.
 94  * But this operation, which includes math for calculating the remainder,
 95  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
 96  * systems.
 97  */
 98 #ifndef div64_u64_rem
 99 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
100 {
101         u32 high = divisor >> 32;
102         u64 quot;
103 
104         if (high == 0) {
105                 u32 rem32;
106                 quot = div_u64_rem(dividend, divisor, &rem32);
107                 *remainder = rem32;
108         } else {
109                 int n = fls(high);
110                 quot = div_u64(dividend >> n, divisor >> n);
111 
112                 if (quot != 0)
113                         quot--;
114 
115                 *remainder = dividend - quot * divisor;
116                 if (*remainder >= divisor) {
117                         quot++;
118                         *remainder -= divisor;
119                 }
120         }
121 
122         return quot;
123 }
124 EXPORT_SYMBOL(div64_u64_rem);
125 #endif
126 
127 /*
128  * div64_u64 - unsigned 64bit divide with 64bit divisor
129  * @dividend:   64bit dividend
130  * @divisor:    64bit divisor
131  *
132  * This implementation is a modified version of the algorithm proposed
133  * by the book 'Hacker's Delight'.  The original source and full proof
134  * can be found here and is available for use without restriction.
135  *
136  * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
137  */
138 #ifndef div64_u64
139 u64 div64_u64(u64 dividend, u64 divisor)
140 {
141         u32 high = divisor >> 32;
142         u64 quot;
143 
144         if (high == 0) {
145                 quot = div_u64(dividend, divisor);
146         } else {
147                 int n = fls(high);
148                 quot = div_u64(dividend >> n, divisor >> n);
149 
150                 if (quot != 0)
151                         quot--;
152                 if ((dividend - quot * divisor) >= divisor)
153                         quot++;
154         }
155 
156         return quot;
157 }
158 EXPORT_SYMBOL(div64_u64);
159 #endif
160 
161 #ifndef div64_s64
162 s64 div64_s64(s64 dividend, s64 divisor)
163 {
164         s64 quot, t;
165 
166         quot = div64_u64(abs(dividend), abs(divisor));
167         t = (dividend ^ divisor) >> 63;
168 
169         return (quot ^ t) - t;
170 }
171 EXPORT_SYMBOL(div64_s64);
172 #endif
173 
174 #endif /* BITS_PER_LONG == 32 */
175 
176 /*
177  * Iterative div/mod for use when dividend is not expected to be much
178  * bigger than divisor.
179  */
180 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
181 {
182         return __iter_div_u64_rem(dividend, divisor, remainder);
183 }
184 EXPORT_SYMBOL(iter_div_u64_rem);
185 
186 #ifndef mul_u64_u64_div_u64
187 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
188 {
189         u64 res = 0, div, rem;
190         int shift;
191 
192         /* can a * b overflow ? */
193         if (ilog2(a) + ilog2(b) > 62) {
194                 /*
195                  * Note that the algorithm after the if block below might lose
196                  * some precision and the result is more exact for b > a. So
197                  * exchange a and b if a is bigger than b.
198                  *
199                  * For example with a = 43980465100800, b = 100000000, c = 1000000000
200                  * the below calculation doesn't modify b at all because div == 0
201                  * and then shift becomes 45 + 26 - 62 = 9 and so the result
202                  * becomes 4398035251080. However with a and b swapped the exact
203                  * result is calculated (i.e. 4398046510080).
204                  */
205                 if (a > b)
206                         swap(a, b);
207 
208                 /*
209                  * (b * a) / c is equal to
210                  *
211                  *      (b / c) * a +
212                  *      (b % c) * a / c
213                  *
214                  * if nothing overflows. Can the 1st multiplication
215                  * overflow? Yes, but we do not care: this can only
216                  * happen if the end result can't fit in u64 anyway.
217                  *
218                  * So the code below does
219                  *
220                  *      res = (b / c) * a;
221                  *      b = b % c;
222                  */
223                 div = div64_u64_rem(b, c, &rem);
224                 res = div * a;
225                 b = rem;
226 
227                 shift = ilog2(a) + ilog2(b) - 62;
228                 if (shift > 0) {
229                         /* drop precision */
230                         b >>= shift;
231                         c >>= shift;
232                         if (!c)
233                                 return res;
234                 }
235         }
236 
237         return res + div64_u64(a * b, c);
238 }
239 EXPORT_SYMBOL(mul_u64_u64_div_u64);
240 #endif
241 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php