~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/math/prime_numbers.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 #define pr_fmt(fmt) "prime numbers: " fmt
  3 
  4 #include <linux/module.h>
  5 #include <linux/mutex.h>
  6 #include <linux/prime_numbers.h>
  7 #include <linux/slab.h>
  8 
  9 struct primes {
 10         struct rcu_head rcu;
 11         unsigned long last, sz;
 12         unsigned long primes[];
 13 };
 14 
 15 #if BITS_PER_LONG == 64
 16 static const struct primes small_primes = {
 17         .last = 61,
 18         .sz = 64,
 19         .primes = {
 20                 BIT(2) |
 21                 BIT(3) |
 22                 BIT(5) |
 23                 BIT(7) |
 24                 BIT(11) |
 25                 BIT(13) |
 26                 BIT(17) |
 27                 BIT(19) |
 28                 BIT(23) |
 29                 BIT(29) |
 30                 BIT(31) |
 31                 BIT(37) |
 32                 BIT(41) |
 33                 BIT(43) |
 34                 BIT(47) |
 35                 BIT(53) |
 36                 BIT(59) |
 37                 BIT(61)
 38         }
 39 };
 40 #elif BITS_PER_LONG == 32
 41 static const struct primes small_primes = {
 42         .last = 31,
 43         .sz = 32,
 44         .primes = {
 45                 BIT(2) |
 46                 BIT(3) |
 47                 BIT(5) |
 48                 BIT(7) |
 49                 BIT(11) |
 50                 BIT(13) |
 51                 BIT(17) |
 52                 BIT(19) |
 53                 BIT(23) |
 54                 BIT(29) |
 55                 BIT(31)
 56         }
 57 };
 58 #else
 59 #error "unhandled BITS_PER_LONG"
 60 #endif
 61 
 62 static DEFINE_MUTEX(lock);
 63 static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
 64 
 65 static unsigned long selftest_max;
 66 
 67 static bool slow_is_prime_number(unsigned long x)
 68 {
 69         unsigned long y = int_sqrt(x);
 70 
 71         while (y > 1) {
 72                 if ((x % y) == 0)
 73                         break;
 74                 y--;
 75         }
 76 
 77         return y == 1;
 78 }
 79 
 80 static unsigned long slow_next_prime_number(unsigned long x)
 81 {
 82         while (x < ULONG_MAX && !slow_is_prime_number(++x))
 83                 ;
 84 
 85         return x;
 86 }
 87 
 88 static unsigned long clear_multiples(unsigned long x,
 89                                      unsigned long *p,
 90                                      unsigned long start,
 91                                      unsigned long end)
 92 {
 93         unsigned long m;
 94 
 95         m = 2 * x;
 96         if (m < start)
 97                 m = roundup(start, x);
 98 
 99         while (m < end) {
100                 __clear_bit(m, p);
101                 m += x;
102         }
103 
104         return x;
105 }
106 
107 static bool expand_to_next_prime(unsigned long x)
108 {
109         const struct primes *p;
110         struct primes *new;
111         unsigned long sz, y;
112 
113         /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
114          * there is always at least one prime p between n and 2n - 2.
115          * Equivalently, if n > 1, then there is always at least one prime p
116          * such that n < p < 2n.
117          *
118          * http://mathworld.wolfram.com/BertrandsPostulate.html
119          * https://en.wikipedia.org/wiki/Bertrand's_postulate
120          */
121         sz = 2 * x;
122         if (sz < x)
123                 return false;
124 
125         sz = round_up(sz, BITS_PER_LONG);
126         new = kmalloc(sizeof(*new) + bitmap_size(sz),
127                       GFP_KERNEL | __GFP_NOWARN);
128         if (!new)
129                 return false;
130 
131         mutex_lock(&lock);
132         p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
133         if (x < p->last) {
134                 kfree(new);
135                 goto unlock;
136         }
137 
138         /* Where memory permits, track the primes using the
139          * Sieve of Eratosthenes. The sieve is to remove all multiples of known
140          * primes from the set, what remains in the set is therefore prime.
141          */
142         bitmap_fill(new->primes, sz);
143         bitmap_copy(new->primes, p->primes, p->sz);
144         for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
145                 new->last = clear_multiples(y, new->primes, p->sz, sz);
146         new->sz = sz;
147 
148         BUG_ON(new->last <= x);
149 
150         rcu_assign_pointer(primes, new);
151         if (p != &small_primes)
152                 kfree_rcu((struct primes *)p, rcu);
153 
154 unlock:
155         mutex_unlock(&lock);
156         return true;
157 }
158 
159 static void free_primes(void)
160 {
161         const struct primes *p;
162 
163         mutex_lock(&lock);
164         p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
165         if (p != &small_primes) {
166                 rcu_assign_pointer(primes, &small_primes);
167                 kfree_rcu((struct primes *)p, rcu);
168         }
169         mutex_unlock(&lock);
170 }
171 
172 /**
173  * next_prime_number - return the next prime number
174  * @x: the starting point for searching to test
175  *
176  * A prime number is an integer greater than 1 that is only divisible by
177  * itself and 1.  The set of prime numbers is computed using the Sieve of
178  * Eratoshenes (on finding a prime, all multiples of that prime are removed
179  * from the set) enabling a fast lookup of the next prime number larger than
180  * @x. If the sieve fails (memory limitation), the search falls back to using
181  * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
182  * final prime as a sentinel).
183  *
184  * Returns: the next prime number larger than @x
185  */
186 unsigned long next_prime_number(unsigned long x)
187 {
188         const struct primes *p;
189 
190         rcu_read_lock();
191         p = rcu_dereference(primes);
192         while (x >= p->last) {
193                 rcu_read_unlock();
194 
195                 if (!expand_to_next_prime(x))
196                         return slow_next_prime_number(x);
197 
198                 rcu_read_lock();
199                 p = rcu_dereference(primes);
200         }
201         x = find_next_bit(p->primes, p->last, x + 1);
202         rcu_read_unlock();
203 
204         return x;
205 }
206 EXPORT_SYMBOL(next_prime_number);
207 
208 /**
209  * is_prime_number - test whether the given number is prime
210  * @x: the number to test
211  *
212  * A prime number is an integer greater than 1 that is only divisible by
213  * itself and 1. Internally a cache of prime numbers is kept (to speed up
214  * searching for sequential primes, see next_prime_number()), but if the number
215  * falls outside of that cache, its primality is tested using trial-divison.
216  *
217  * Returns: true if @x is prime, false for composite numbers.
218  */
219 bool is_prime_number(unsigned long x)
220 {
221         const struct primes *p;
222         bool result;
223 
224         rcu_read_lock();
225         p = rcu_dereference(primes);
226         while (x >= p->sz) {
227                 rcu_read_unlock();
228 
229                 if (!expand_to_next_prime(x))
230                         return slow_is_prime_number(x);
231 
232                 rcu_read_lock();
233                 p = rcu_dereference(primes);
234         }
235         result = test_bit(x, p->primes);
236         rcu_read_unlock();
237 
238         return result;
239 }
240 EXPORT_SYMBOL(is_prime_number);
241 
242 static void dump_primes(void)
243 {
244         const struct primes *p;
245         char *buf;
246 
247         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
248 
249         rcu_read_lock();
250         p = rcu_dereference(primes);
251 
252         if (buf)
253                 bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
254         pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
255                 p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
256 
257         rcu_read_unlock();
258 
259         kfree(buf);
260 }
261 
262 static int selftest(unsigned long max)
263 {
264         unsigned long x, last;
265 
266         if (!max)
267                 return 0;
268 
269         for (last = 0, x = 2; x < max; x++) {
270                 bool slow = slow_is_prime_number(x);
271                 bool fast = is_prime_number(x);
272 
273                 if (slow != fast) {
274                         pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
275                                x, slow ? "yes" : "no", fast ? "yes" : "no");
276                         goto err;
277                 }
278 
279                 if (!slow)
280                         continue;
281 
282                 if (next_prime_number(last) != x) {
283                         pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
284                                last, x, next_prime_number(last));
285                         goto err;
286                 }
287                 last = x;
288         }
289 
290         pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
291         return 0;
292 
293 err:
294         dump_primes();
295         return -EINVAL;
296 }
297 
298 static int __init primes_init(void)
299 {
300         return selftest(selftest_max);
301 }
302 
303 static void __exit primes_exit(void)
304 {
305         free_primes();
306 }
307 
308 module_init(primes_init);
309 module_exit(primes_exit);
310 
311 module_param_named(selftest, selftest_max, ulong, 0400);
312 
313 MODULE_AUTHOR("Intel Corporation");
314 MODULE_DESCRIPTION("Prime number library");
315 MODULE_LICENSE("GPL");
316 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php