1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Facebook 4 * Copyright (C) 2013-2014 Jens Axboe 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/random.h> 9 #include <linux/sbitmap.h> 10 #include <linux/seq_file.h> 11 12 static int init_alloc_hint(struct sbitmap *sb, gfp_t flags) 13 { 14 unsigned depth = sb->depth; 15 16 sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags); 17 if (!sb->alloc_hint) 18 return -ENOMEM; 19 20 if (depth && !sb->round_robin) { 21 int i; 22 23 for_each_possible_cpu(i) 24 *per_cpu_ptr(sb->alloc_hint, i) = get_random_u32_below(depth); 25 } 26 return 0; 27 } 28 29 static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb, 30 unsigned int depth) 31 { 32 unsigned hint; 33 34 hint = this_cpu_read(*sb->alloc_hint); 35 if (unlikely(hint >= depth)) { 36 hint = depth ? get_random_u32_below(depth) : 0; 37 this_cpu_write(*sb->alloc_hint, hint); 38 } 39 40 return hint; 41 } 42 43 static inline void update_alloc_hint_after_get(struct sbitmap *sb, 44 unsigned int depth, 45 unsigned int hint, 46 unsigned int nr) 47 { 48 if (nr == -1) { 49 /* If the map is full, a hint won't do us much good. */ 50 this_cpu_write(*sb->alloc_hint, 0); 51 } else if (nr == hint || unlikely(sb->round_robin)) { 52 /* Only update the hint if we used it. */ 53 hint = nr + 1; 54 if (hint >= depth - 1) 55 hint = 0; 56 this_cpu_write(*sb->alloc_hint, hint); 57 } 58 } 59 60 /* 61 * See if we have deferred clears that we can batch move 62 */ 63 static inline bool sbitmap_deferred_clear(struct sbitmap_word *map, 64 unsigned int depth, unsigned int alloc_hint, bool wrap) 65 { 66 unsigned long mask, word_mask; 67 68 guard(raw_spinlock_irqsave)(&map->swap_lock); 69 70 if (!map->cleared) { 71 if (depth == 0) 72 return false; 73 74 word_mask = (~0UL) >> (BITS_PER_LONG - depth); 75 /* 76 * The current behavior is to always retry after moving 77 * ->cleared to word, and we change it to retry in case 78 * of any free bits. To avoid an infinite loop, we need 79 * to take wrap & alloc_hint into account, otherwise a 80 * soft lockup may occur. 81 */ 82 if (!wrap && alloc_hint) 83 word_mask &= ~((1UL << alloc_hint) - 1); 84 85 return (READ_ONCE(map->word) & word_mask) != word_mask; 86 } 87 88 /* 89 * First get a stable cleared mask, setting the old mask to 0. 90 */ 91 mask = xchg(&map->cleared, 0); 92 93 /* 94 * Now clear the masked bits in our free word 95 */ 96 atomic_long_andnot(mask, (atomic_long_t *)&map->word); 97 BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word)); 98 return true; 99 } 100 101 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, 102 gfp_t flags, int node, bool round_robin, 103 bool alloc_hint) 104 { 105 unsigned int bits_per_word; 106 int i; 107 108 if (shift < 0) 109 shift = sbitmap_calculate_shift(depth); 110 111 bits_per_word = 1U << shift; 112 if (bits_per_word > BITS_PER_LONG) 113 return -EINVAL; 114 115 sb->shift = shift; 116 sb->depth = depth; 117 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 118 sb->round_robin = round_robin; 119 120 if (depth == 0) { 121 sb->map = NULL; 122 return 0; 123 } 124 125 if (alloc_hint) { 126 if (init_alloc_hint(sb, flags)) 127 return -ENOMEM; 128 } else { 129 sb->alloc_hint = NULL; 130 } 131 132 sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node); 133 if (!sb->map) { 134 free_percpu(sb->alloc_hint); 135 return -ENOMEM; 136 } 137 138 for (i = 0; i < sb->map_nr; i++) 139 raw_spin_lock_init(&sb->map[i].swap_lock); 140 141 return 0; 142 } 143 EXPORT_SYMBOL_GPL(sbitmap_init_node); 144 145 void sbitmap_resize(struct sbitmap *sb, unsigned int depth) 146 { 147 unsigned int bits_per_word = 1U << sb->shift; 148 unsigned int i; 149 150 for (i = 0; i < sb->map_nr; i++) 151 sbitmap_deferred_clear(&sb->map[i], 0, 0, 0); 152 153 sb->depth = depth; 154 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 155 } 156 EXPORT_SYMBOL_GPL(sbitmap_resize); 157 158 static int __sbitmap_get_word(unsigned long *word, unsigned long depth, 159 unsigned int hint, bool wrap) 160 { 161 int nr; 162 163 /* don't wrap if starting from 0 */ 164 wrap = wrap && hint; 165 166 while (1) { 167 nr = find_next_zero_bit(word, depth, hint); 168 if (unlikely(nr >= depth)) { 169 /* 170 * We started with an offset, and we didn't reset the 171 * offset to 0 in a failure case, so start from 0 to 172 * exhaust the map. 173 */ 174 if (hint && wrap) { 175 hint = 0; 176 continue; 177 } 178 return -1; 179 } 180 181 if (!test_and_set_bit_lock(nr, word)) 182 break; 183 184 hint = nr + 1; 185 if (hint >= depth - 1) 186 hint = 0; 187 } 188 189 return nr; 190 } 191 192 static int sbitmap_find_bit_in_word(struct sbitmap_word *map, 193 unsigned int depth, 194 unsigned int alloc_hint, 195 bool wrap) 196 { 197 int nr; 198 199 do { 200 nr = __sbitmap_get_word(&map->word, depth, 201 alloc_hint, wrap); 202 if (nr != -1) 203 break; 204 if (!sbitmap_deferred_clear(map, depth, alloc_hint, wrap)) 205 break; 206 } while (1); 207 208 return nr; 209 } 210 211 static int sbitmap_find_bit(struct sbitmap *sb, 212 unsigned int depth, 213 unsigned int index, 214 unsigned int alloc_hint, 215 bool wrap) 216 { 217 unsigned int i; 218 int nr = -1; 219 220 for (i = 0; i < sb->map_nr; i++) { 221 nr = sbitmap_find_bit_in_word(&sb->map[index], 222 min_t(unsigned int, 223 __map_depth(sb, index), 224 depth), 225 alloc_hint, wrap); 226 227 if (nr != -1) { 228 nr += index << sb->shift; 229 break; 230 } 231 232 /* Jump to next index. */ 233 alloc_hint = 0; 234 if (++index >= sb->map_nr) 235 index = 0; 236 } 237 238 return nr; 239 } 240 241 static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint) 242 { 243 unsigned int index; 244 245 index = SB_NR_TO_INDEX(sb, alloc_hint); 246 247 /* 248 * Unless we're doing round robin tag allocation, just use the 249 * alloc_hint to find the right word index. No point in looping 250 * twice in find_next_zero_bit() for that case. 251 */ 252 if (sb->round_robin) 253 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 254 else 255 alloc_hint = 0; 256 257 return sbitmap_find_bit(sb, UINT_MAX, index, alloc_hint, 258 !sb->round_robin); 259 } 260 261 int sbitmap_get(struct sbitmap *sb) 262 { 263 int nr; 264 unsigned int hint, depth; 265 266 if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) 267 return -1; 268 269 depth = READ_ONCE(sb->depth); 270 hint = update_alloc_hint_before_get(sb, depth); 271 nr = __sbitmap_get(sb, hint); 272 update_alloc_hint_after_get(sb, depth, hint, nr); 273 274 return nr; 275 } 276 EXPORT_SYMBOL_GPL(sbitmap_get); 277 278 static int __sbitmap_get_shallow(struct sbitmap *sb, 279 unsigned int alloc_hint, 280 unsigned long shallow_depth) 281 { 282 unsigned int index; 283 284 index = SB_NR_TO_INDEX(sb, alloc_hint); 285 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 286 287 return sbitmap_find_bit(sb, shallow_depth, index, alloc_hint, true); 288 } 289 290 int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth) 291 { 292 int nr; 293 unsigned int hint, depth; 294 295 if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) 296 return -1; 297 298 depth = READ_ONCE(sb->depth); 299 hint = update_alloc_hint_before_get(sb, depth); 300 nr = __sbitmap_get_shallow(sb, hint, shallow_depth); 301 update_alloc_hint_after_get(sb, depth, hint, nr); 302 303 return nr; 304 } 305 EXPORT_SYMBOL_GPL(sbitmap_get_shallow); 306 307 bool sbitmap_any_bit_set(const struct sbitmap *sb) 308 { 309 unsigned int i; 310 311 for (i = 0; i < sb->map_nr; i++) { 312 if (sb->map[i].word & ~sb->map[i].cleared) 313 return true; 314 } 315 return false; 316 } 317 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); 318 319 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) 320 { 321 unsigned int i, weight = 0; 322 323 for (i = 0; i < sb->map_nr; i++) { 324 const struct sbitmap_word *word = &sb->map[i]; 325 unsigned int word_depth = __map_depth(sb, i); 326 327 if (set) 328 weight += bitmap_weight(&word->word, word_depth); 329 else 330 weight += bitmap_weight(&word->cleared, word_depth); 331 } 332 return weight; 333 } 334 335 static unsigned int sbitmap_cleared(const struct sbitmap *sb) 336 { 337 return __sbitmap_weight(sb, false); 338 } 339 340 unsigned int sbitmap_weight(const struct sbitmap *sb) 341 { 342 return __sbitmap_weight(sb, true) - sbitmap_cleared(sb); 343 } 344 EXPORT_SYMBOL_GPL(sbitmap_weight); 345 346 void sbitmap_show(struct sbitmap *sb, struct seq_file *m) 347 { 348 seq_printf(m, "depth=%u\n", sb->depth); 349 seq_printf(m, "busy=%u\n", sbitmap_weight(sb)); 350 seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); 351 seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); 352 seq_printf(m, "map_nr=%u\n", sb->map_nr); 353 } 354 EXPORT_SYMBOL_GPL(sbitmap_show); 355 356 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) 357 { 358 if ((offset & 0xf) == 0) { 359 if (offset != 0) 360 seq_putc(m, '\n'); 361 seq_printf(m, "%08x:", offset); 362 } 363 if ((offset & 0x1) == 0) 364 seq_putc(m, ' '); 365 seq_printf(m, "%02x", byte); 366 } 367 368 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) 369 { 370 u8 byte = 0; 371 unsigned int byte_bits = 0; 372 unsigned int offset = 0; 373 int i; 374 375 for (i = 0; i < sb->map_nr; i++) { 376 unsigned long word = READ_ONCE(sb->map[i].word); 377 unsigned long cleared = READ_ONCE(sb->map[i].cleared); 378 unsigned int word_bits = __map_depth(sb, i); 379 380 word &= ~cleared; 381 382 while (word_bits > 0) { 383 unsigned int bits = min(8 - byte_bits, word_bits); 384 385 byte |= (word & (BIT(bits) - 1)) << byte_bits; 386 byte_bits += bits; 387 if (byte_bits == 8) { 388 emit_byte(m, offset, byte); 389 byte = 0; 390 byte_bits = 0; 391 offset++; 392 } 393 word >>= bits; 394 word_bits -= bits; 395 } 396 } 397 if (byte_bits) { 398 emit_byte(m, offset, byte); 399 offset++; 400 } 401 if (offset) 402 seq_putc(m, '\n'); 403 } 404 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); 405 406 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, 407 unsigned int depth) 408 { 409 unsigned int wake_batch; 410 unsigned int shallow_depth; 411 412 /* 413 * Each full word of the bitmap has bits_per_word bits, and there might 414 * be a partial word. There are depth / bits_per_word full words and 415 * depth % bits_per_word bits left over. In bitwise arithmetic: 416 * 417 * bits_per_word = 1 << shift 418 * depth / bits_per_word = depth >> shift 419 * depth % bits_per_word = depth & ((1 << shift) - 1) 420 * 421 * Each word can be limited to sbq->min_shallow_depth bits. 422 */ 423 shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); 424 depth = ((depth >> sbq->sb.shift) * shallow_depth + 425 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); 426 wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, 427 SBQ_WAKE_BATCH); 428 429 return wake_batch; 430 } 431 432 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, 433 int shift, bool round_robin, gfp_t flags, int node) 434 { 435 int ret; 436 int i; 437 438 ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node, 439 round_robin, true); 440 if (ret) 441 return ret; 442 443 sbq->min_shallow_depth = UINT_MAX; 444 sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); 445 atomic_set(&sbq->wake_index, 0); 446 atomic_set(&sbq->ws_active, 0); 447 atomic_set(&sbq->completion_cnt, 0); 448 atomic_set(&sbq->wakeup_cnt, 0); 449 450 sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); 451 if (!sbq->ws) { 452 sbitmap_free(&sbq->sb); 453 return -ENOMEM; 454 } 455 456 for (i = 0; i < SBQ_WAIT_QUEUES; i++) 457 init_waitqueue_head(&sbq->ws[i].wait); 458 459 return 0; 460 } 461 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); 462 463 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, 464 unsigned int depth) 465 { 466 unsigned int wake_batch; 467 468 wake_batch = sbq_calc_wake_batch(sbq, depth); 469 if (sbq->wake_batch != wake_batch) 470 WRITE_ONCE(sbq->wake_batch, wake_batch); 471 } 472 473 void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq, 474 unsigned int users) 475 { 476 unsigned int wake_batch; 477 unsigned int depth = (sbq->sb.depth + users - 1) / users; 478 479 wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES, 480 1, SBQ_WAKE_BATCH); 481 482 WRITE_ONCE(sbq->wake_batch, wake_batch); 483 } 484 EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch); 485 486 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) 487 { 488 sbitmap_queue_update_wake_batch(sbq, depth); 489 sbitmap_resize(&sbq->sb, depth); 490 } 491 EXPORT_SYMBOL_GPL(sbitmap_queue_resize); 492 493 int __sbitmap_queue_get(struct sbitmap_queue *sbq) 494 { 495 return sbitmap_get(&sbq->sb); 496 } 497 EXPORT_SYMBOL_GPL(__sbitmap_queue_get); 498 499 unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags, 500 unsigned int *offset) 501 { 502 struct sbitmap *sb = &sbq->sb; 503 unsigned int hint, depth; 504 unsigned long index, nr; 505 int i; 506 507 if (unlikely(sb->round_robin)) 508 return 0; 509 510 depth = READ_ONCE(sb->depth); 511 hint = update_alloc_hint_before_get(sb, depth); 512 513 index = SB_NR_TO_INDEX(sb, hint); 514 515 for (i = 0; i < sb->map_nr; i++) { 516 struct sbitmap_word *map = &sb->map[index]; 517 unsigned long get_mask; 518 unsigned int map_depth = __map_depth(sb, index); 519 unsigned long val; 520 521 sbitmap_deferred_clear(map, 0, 0, 0); 522 val = READ_ONCE(map->word); 523 if (val == (1UL << (map_depth - 1)) - 1) 524 goto next; 525 526 nr = find_first_zero_bit(&val, map_depth); 527 if (nr + nr_tags <= map_depth) { 528 atomic_long_t *ptr = (atomic_long_t *) &map->word; 529 530 get_mask = ((1UL << nr_tags) - 1) << nr; 531 while (!atomic_long_try_cmpxchg(ptr, &val, 532 get_mask | val)) 533 ; 534 get_mask = (get_mask & ~val) >> nr; 535 if (get_mask) { 536 *offset = nr + (index << sb->shift); 537 update_alloc_hint_after_get(sb, depth, hint, 538 *offset + nr_tags - 1); 539 return get_mask; 540 } 541 } 542 next: 543 /* Jump to next index. */ 544 if (++index >= sb->map_nr) 545 index = 0; 546 } 547 548 return 0; 549 } 550 551 int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, 552 unsigned int shallow_depth) 553 { 554 WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); 555 556 return sbitmap_get_shallow(&sbq->sb, shallow_depth); 557 } 558 EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow); 559 560 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, 561 unsigned int min_shallow_depth) 562 { 563 sbq->min_shallow_depth = min_shallow_depth; 564 sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); 565 } 566 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); 567 568 static void __sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr) 569 { 570 int i, wake_index, woken; 571 572 if (!atomic_read(&sbq->ws_active)) 573 return; 574 575 wake_index = atomic_read(&sbq->wake_index); 576 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 577 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 578 579 /* 580 * Advance the index before checking the current queue. 581 * It improves fairness, by ensuring the queue doesn't 582 * need to be fully emptied before trying to wake up 583 * from the next one. 584 */ 585 wake_index = sbq_index_inc(wake_index); 586 587 if (waitqueue_active(&ws->wait)) { 588 woken = wake_up_nr(&ws->wait, nr); 589 if (woken == nr) 590 break; 591 nr -= woken; 592 } 593 } 594 595 if (wake_index != atomic_read(&sbq->wake_index)) 596 atomic_set(&sbq->wake_index, wake_index); 597 } 598 599 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr) 600 { 601 unsigned int wake_batch = READ_ONCE(sbq->wake_batch); 602 unsigned int wakeups; 603 604 if (!atomic_read(&sbq->ws_active)) 605 return; 606 607 atomic_add(nr, &sbq->completion_cnt); 608 wakeups = atomic_read(&sbq->wakeup_cnt); 609 610 do { 611 if (atomic_read(&sbq->completion_cnt) - wakeups < wake_batch) 612 return; 613 } while (!atomic_try_cmpxchg(&sbq->wakeup_cnt, 614 &wakeups, wakeups + wake_batch)); 615 616 __sbitmap_queue_wake_up(sbq, wake_batch); 617 } 618 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); 619 620 static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag) 621 { 622 if (likely(!sb->round_robin && tag < sb->depth)) 623 data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag); 624 } 625 626 void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset, 627 int *tags, int nr_tags) 628 { 629 struct sbitmap *sb = &sbq->sb; 630 unsigned long *addr = NULL; 631 unsigned long mask = 0; 632 int i; 633 634 smp_mb__before_atomic(); 635 for (i = 0; i < nr_tags; i++) { 636 const int tag = tags[i] - offset; 637 unsigned long *this_addr; 638 639 /* since we're clearing a batch, skip the deferred map */ 640 this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word; 641 if (!addr) { 642 addr = this_addr; 643 } else if (addr != this_addr) { 644 atomic_long_andnot(mask, (atomic_long_t *) addr); 645 mask = 0; 646 addr = this_addr; 647 } 648 mask |= (1UL << SB_NR_TO_BIT(sb, tag)); 649 } 650 651 if (mask) 652 atomic_long_andnot(mask, (atomic_long_t *) addr); 653 654 smp_mb__after_atomic(); 655 sbitmap_queue_wake_up(sbq, nr_tags); 656 sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(), 657 tags[nr_tags - 1] - offset); 658 } 659 660 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, 661 unsigned int cpu) 662 { 663 /* 664 * Once the clear bit is set, the bit may be allocated out. 665 * 666 * Orders READ/WRITE on the associated instance(such as request 667 * of blk_mq) by this bit for avoiding race with re-allocation, 668 * and its pair is the memory barrier implied in __sbitmap_get_word. 669 * 670 * One invariant is that the clear bit has to be zero when the bit 671 * is in use. 672 */ 673 smp_mb__before_atomic(); 674 sbitmap_deferred_clear_bit(&sbq->sb, nr); 675 676 /* 677 * Pairs with the memory barrier in set_current_state() to ensure the 678 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker 679 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the 680 * waiter. See the comment on waitqueue_active(). 681 */ 682 smp_mb__after_atomic(); 683 sbitmap_queue_wake_up(sbq, 1); 684 sbitmap_update_cpu_hint(&sbq->sb, cpu, nr); 685 } 686 EXPORT_SYMBOL_GPL(sbitmap_queue_clear); 687 688 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) 689 { 690 int i, wake_index; 691 692 /* 693 * Pairs with the memory barrier in set_current_state() like in 694 * sbitmap_queue_wake_up(). 695 */ 696 smp_mb(); 697 wake_index = atomic_read(&sbq->wake_index); 698 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 699 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 700 701 if (waitqueue_active(&ws->wait)) 702 wake_up(&ws->wait); 703 704 wake_index = sbq_index_inc(wake_index); 705 } 706 } 707 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); 708 709 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) 710 { 711 bool first; 712 int i; 713 714 sbitmap_show(&sbq->sb, m); 715 716 seq_puts(m, "alloc_hint={"); 717 first = true; 718 for_each_possible_cpu(i) { 719 if (!first) 720 seq_puts(m, ", "); 721 first = false; 722 seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i)); 723 } 724 seq_puts(m, "}\n"); 725 726 seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); 727 seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); 728 seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); 729 730 seq_puts(m, "ws={\n"); 731 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 732 struct sbq_wait_state *ws = &sbq->ws[i]; 733 seq_printf(m, "\t{.wait=%s},\n", 734 waitqueue_active(&ws->wait) ? "active" : "inactive"); 735 } 736 seq_puts(m, "}\n"); 737 738 seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin); 739 seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); 740 } 741 EXPORT_SYMBOL_GPL(sbitmap_queue_show); 742 743 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, 744 struct sbq_wait_state *ws, 745 struct sbq_wait *sbq_wait) 746 { 747 if (!sbq_wait->sbq) { 748 sbq_wait->sbq = sbq; 749 atomic_inc(&sbq->ws_active); 750 add_wait_queue(&ws->wait, &sbq_wait->wait); 751 } 752 } 753 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); 754 755 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) 756 { 757 list_del_init(&sbq_wait->wait.entry); 758 if (sbq_wait->sbq) { 759 atomic_dec(&sbq_wait->sbq->ws_active); 760 sbq_wait->sbq = NULL; 761 } 762 } 763 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); 764 765 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, 766 struct sbq_wait_state *ws, 767 struct sbq_wait *sbq_wait, int state) 768 { 769 if (!sbq_wait->sbq) { 770 atomic_inc(&sbq->ws_active); 771 sbq_wait->sbq = sbq; 772 } 773 prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); 774 } 775 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); 776 777 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, 778 struct sbq_wait *sbq_wait) 779 { 780 finish_wait(&ws->wait, &sbq_wait->wait); 781 if (sbq_wait->sbq) { 782 atomic_dec(&sbq->ws_active); 783 sbq_wait->sbq = NULL; 784 } 785 } 786 EXPORT_SYMBOL_GPL(sbitmap_finish_wait); 787
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.