~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/sbitmap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2016 Facebook
  4  * Copyright (C) 2013-2014 Jens Axboe
  5  */
  6 
  7 #include <linux/sched.h>
  8 #include <linux/random.h>
  9 #include <linux/sbitmap.h>
 10 #include <linux/seq_file.h>
 11 
 12 static int init_alloc_hint(struct sbitmap *sb, gfp_t flags)
 13 {
 14         unsigned depth = sb->depth;
 15 
 16         sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
 17         if (!sb->alloc_hint)
 18                 return -ENOMEM;
 19 
 20         if (depth && !sb->round_robin) {
 21                 int i;
 22 
 23                 for_each_possible_cpu(i)
 24                         *per_cpu_ptr(sb->alloc_hint, i) = get_random_u32_below(depth);
 25         }
 26         return 0;
 27 }
 28 
 29 static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb,
 30                                                     unsigned int depth)
 31 {
 32         unsigned hint;
 33 
 34         hint = this_cpu_read(*sb->alloc_hint);
 35         if (unlikely(hint >= depth)) {
 36                 hint = depth ? get_random_u32_below(depth) : 0;
 37                 this_cpu_write(*sb->alloc_hint, hint);
 38         }
 39 
 40         return hint;
 41 }
 42 
 43 static inline void update_alloc_hint_after_get(struct sbitmap *sb,
 44                                                unsigned int depth,
 45                                                unsigned int hint,
 46                                                unsigned int nr)
 47 {
 48         if (nr == -1) {
 49                 /* If the map is full, a hint won't do us much good. */
 50                 this_cpu_write(*sb->alloc_hint, 0);
 51         } else if (nr == hint || unlikely(sb->round_robin)) {
 52                 /* Only update the hint if we used it. */
 53                 hint = nr + 1;
 54                 if (hint >= depth - 1)
 55                         hint = 0;
 56                 this_cpu_write(*sb->alloc_hint, hint);
 57         }
 58 }
 59 
 60 /*
 61  * See if we have deferred clears that we can batch move
 62  */
 63 static inline bool sbitmap_deferred_clear(struct sbitmap_word *map,
 64                 unsigned int depth, unsigned int alloc_hint, bool wrap)
 65 {
 66         unsigned long mask, word_mask;
 67 
 68         guard(raw_spinlock_irqsave)(&map->swap_lock);
 69 
 70         if (!map->cleared) {
 71                 if (depth == 0)
 72                         return false;
 73 
 74                 word_mask = (~0UL) >> (BITS_PER_LONG - depth);
 75                 /*
 76                  * The current behavior is to always retry after moving
 77                  * ->cleared to word, and we change it to retry in case
 78                  * of any free bits. To avoid an infinite loop, we need
 79                  * to take wrap & alloc_hint into account, otherwise a
 80                  * soft lockup may occur.
 81                  */
 82                 if (!wrap && alloc_hint)
 83                         word_mask &= ~((1UL << alloc_hint) - 1);
 84 
 85                 return (READ_ONCE(map->word) & word_mask) != word_mask;
 86         }
 87 
 88         /*
 89          * First get a stable cleared mask, setting the old mask to 0.
 90          */
 91         mask = xchg(&map->cleared, 0);
 92 
 93         /*
 94          * Now clear the masked bits in our free word
 95          */
 96         atomic_long_andnot(mask, (atomic_long_t *)&map->word);
 97         BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word));
 98         return true;
 99 }
100 
101 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
102                       gfp_t flags, int node, bool round_robin,
103                       bool alloc_hint)
104 {
105         unsigned int bits_per_word;
106         int i;
107 
108         if (shift < 0)
109                 shift = sbitmap_calculate_shift(depth);
110 
111         bits_per_word = 1U << shift;
112         if (bits_per_word > BITS_PER_LONG)
113                 return -EINVAL;
114 
115         sb->shift = shift;
116         sb->depth = depth;
117         sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
118         sb->round_robin = round_robin;
119 
120         if (depth == 0) {
121                 sb->map = NULL;
122                 return 0;
123         }
124 
125         if (alloc_hint) {
126                 if (init_alloc_hint(sb, flags))
127                         return -ENOMEM;
128         } else {
129                 sb->alloc_hint = NULL;
130         }
131 
132         sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node);
133         if (!sb->map) {
134                 free_percpu(sb->alloc_hint);
135                 return -ENOMEM;
136         }
137 
138         for (i = 0; i < sb->map_nr; i++)
139                 raw_spin_lock_init(&sb->map[i].swap_lock);
140 
141         return 0;
142 }
143 EXPORT_SYMBOL_GPL(sbitmap_init_node);
144 
145 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
146 {
147         unsigned int bits_per_word = 1U << sb->shift;
148         unsigned int i;
149 
150         for (i = 0; i < sb->map_nr; i++)
151                 sbitmap_deferred_clear(&sb->map[i], 0, 0, 0);
152 
153         sb->depth = depth;
154         sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
155 }
156 EXPORT_SYMBOL_GPL(sbitmap_resize);
157 
158 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
159                               unsigned int hint, bool wrap)
160 {
161         int nr;
162 
163         /* don't wrap if starting from 0 */
164         wrap = wrap && hint;
165 
166         while (1) {
167                 nr = find_next_zero_bit(word, depth, hint);
168                 if (unlikely(nr >= depth)) {
169                         /*
170                          * We started with an offset, and we didn't reset the
171                          * offset to 0 in a failure case, so start from 0 to
172                          * exhaust the map.
173                          */
174                         if (hint && wrap) {
175                                 hint = 0;
176                                 continue;
177                         }
178                         return -1;
179                 }
180 
181                 if (!test_and_set_bit_lock(nr, word))
182                         break;
183 
184                 hint = nr + 1;
185                 if (hint >= depth - 1)
186                         hint = 0;
187         }
188 
189         return nr;
190 }
191 
192 static int sbitmap_find_bit_in_word(struct sbitmap_word *map,
193                                     unsigned int depth,
194                                     unsigned int alloc_hint,
195                                     bool wrap)
196 {
197         int nr;
198 
199         do {
200                 nr = __sbitmap_get_word(&map->word, depth,
201                                         alloc_hint, wrap);
202                 if (nr != -1)
203                         break;
204                 if (!sbitmap_deferred_clear(map, depth, alloc_hint, wrap))
205                         break;
206         } while (1);
207 
208         return nr;
209 }
210 
211 static int sbitmap_find_bit(struct sbitmap *sb,
212                             unsigned int depth,
213                             unsigned int index,
214                             unsigned int alloc_hint,
215                             bool wrap)
216 {
217         unsigned int i;
218         int nr = -1;
219 
220         for (i = 0; i < sb->map_nr; i++) {
221                 nr = sbitmap_find_bit_in_word(&sb->map[index],
222                                               min_t(unsigned int,
223                                                     __map_depth(sb, index),
224                                                     depth),
225                                               alloc_hint, wrap);
226 
227                 if (nr != -1) {
228                         nr += index << sb->shift;
229                         break;
230                 }
231 
232                 /* Jump to next index. */
233                 alloc_hint = 0;
234                 if (++index >= sb->map_nr)
235                         index = 0;
236         }
237 
238         return nr;
239 }
240 
241 static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint)
242 {
243         unsigned int index;
244 
245         index = SB_NR_TO_INDEX(sb, alloc_hint);
246 
247         /*
248          * Unless we're doing round robin tag allocation, just use the
249          * alloc_hint to find the right word index. No point in looping
250          * twice in find_next_zero_bit() for that case.
251          */
252         if (sb->round_robin)
253                 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
254         else
255                 alloc_hint = 0;
256 
257         return sbitmap_find_bit(sb, UINT_MAX, index, alloc_hint,
258                                 !sb->round_robin);
259 }
260 
261 int sbitmap_get(struct sbitmap *sb)
262 {
263         int nr;
264         unsigned int hint, depth;
265 
266         if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
267                 return -1;
268 
269         depth = READ_ONCE(sb->depth);
270         hint = update_alloc_hint_before_get(sb, depth);
271         nr = __sbitmap_get(sb, hint);
272         update_alloc_hint_after_get(sb, depth, hint, nr);
273 
274         return nr;
275 }
276 EXPORT_SYMBOL_GPL(sbitmap_get);
277 
278 static int __sbitmap_get_shallow(struct sbitmap *sb,
279                                  unsigned int alloc_hint,
280                                  unsigned long shallow_depth)
281 {
282         unsigned int index;
283 
284         index = SB_NR_TO_INDEX(sb, alloc_hint);
285         alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
286 
287         return sbitmap_find_bit(sb, shallow_depth, index, alloc_hint, true);
288 }
289 
290 int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth)
291 {
292         int nr;
293         unsigned int hint, depth;
294 
295         if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
296                 return -1;
297 
298         depth = READ_ONCE(sb->depth);
299         hint = update_alloc_hint_before_get(sb, depth);
300         nr = __sbitmap_get_shallow(sb, hint, shallow_depth);
301         update_alloc_hint_after_get(sb, depth, hint, nr);
302 
303         return nr;
304 }
305 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
306 
307 bool sbitmap_any_bit_set(const struct sbitmap *sb)
308 {
309         unsigned int i;
310 
311         for (i = 0; i < sb->map_nr; i++) {
312                 if (sb->map[i].word & ~sb->map[i].cleared)
313                         return true;
314         }
315         return false;
316 }
317 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
318 
319 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
320 {
321         unsigned int i, weight = 0;
322 
323         for (i = 0; i < sb->map_nr; i++) {
324                 const struct sbitmap_word *word = &sb->map[i];
325                 unsigned int word_depth = __map_depth(sb, i);
326 
327                 if (set)
328                         weight += bitmap_weight(&word->word, word_depth);
329                 else
330                         weight += bitmap_weight(&word->cleared, word_depth);
331         }
332         return weight;
333 }
334 
335 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
336 {
337         return __sbitmap_weight(sb, false);
338 }
339 
340 unsigned int sbitmap_weight(const struct sbitmap *sb)
341 {
342         return __sbitmap_weight(sb, true) - sbitmap_cleared(sb);
343 }
344 EXPORT_SYMBOL_GPL(sbitmap_weight);
345 
346 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
347 {
348         seq_printf(m, "depth=%u\n", sb->depth);
349         seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
350         seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
351         seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
352         seq_printf(m, "map_nr=%u\n", sb->map_nr);
353 }
354 EXPORT_SYMBOL_GPL(sbitmap_show);
355 
356 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
357 {
358         if ((offset & 0xf) == 0) {
359                 if (offset != 0)
360                         seq_putc(m, '\n');
361                 seq_printf(m, "%08x:", offset);
362         }
363         if ((offset & 0x1) == 0)
364                 seq_putc(m, ' ');
365         seq_printf(m, "%02x", byte);
366 }
367 
368 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
369 {
370         u8 byte = 0;
371         unsigned int byte_bits = 0;
372         unsigned int offset = 0;
373         int i;
374 
375         for (i = 0; i < sb->map_nr; i++) {
376                 unsigned long word = READ_ONCE(sb->map[i].word);
377                 unsigned long cleared = READ_ONCE(sb->map[i].cleared);
378                 unsigned int word_bits = __map_depth(sb, i);
379 
380                 word &= ~cleared;
381 
382                 while (word_bits > 0) {
383                         unsigned int bits = min(8 - byte_bits, word_bits);
384 
385                         byte |= (word & (BIT(bits) - 1)) << byte_bits;
386                         byte_bits += bits;
387                         if (byte_bits == 8) {
388                                 emit_byte(m, offset, byte);
389                                 byte = 0;
390                                 byte_bits = 0;
391                                 offset++;
392                         }
393                         word >>= bits;
394                         word_bits -= bits;
395                 }
396         }
397         if (byte_bits) {
398                 emit_byte(m, offset, byte);
399                 offset++;
400         }
401         if (offset)
402                 seq_putc(m, '\n');
403 }
404 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
405 
406 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
407                                         unsigned int depth)
408 {
409         unsigned int wake_batch;
410         unsigned int shallow_depth;
411 
412         /*
413          * Each full word of the bitmap has bits_per_word bits, and there might
414          * be a partial word. There are depth / bits_per_word full words and
415          * depth % bits_per_word bits left over. In bitwise arithmetic:
416          *
417          * bits_per_word = 1 << shift
418          * depth / bits_per_word = depth >> shift
419          * depth % bits_per_word = depth & ((1 << shift) - 1)
420          *
421          * Each word can be limited to sbq->min_shallow_depth bits.
422          */
423         shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
424         depth = ((depth >> sbq->sb.shift) * shallow_depth +
425                  min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
426         wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
427                              SBQ_WAKE_BATCH);
428 
429         return wake_batch;
430 }
431 
432 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
433                             int shift, bool round_robin, gfp_t flags, int node)
434 {
435         int ret;
436         int i;
437 
438         ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node,
439                                 round_robin, true);
440         if (ret)
441                 return ret;
442 
443         sbq->min_shallow_depth = UINT_MAX;
444         sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
445         atomic_set(&sbq->wake_index, 0);
446         atomic_set(&sbq->ws_active, 0);
447         atomic_set(&sbq->completion_cnt, 0);
448         atomic_set(&sbq->wakeup_cnt, 0);
449 
450         sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
451         if (!sbq->ws) {
452                 sbitmap_free(&sbq->sb);
453                 return -ENOMEM;
454         }
455 
456         for (i = 0; i < SBQ_WAIT_QUEUES; i++)
457                 init_waitqueue_head(&sbq->ws[i].wait);
458 
459         return 0;
460 }
461 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
462 
463 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
464                                             unsigned int depth)
465 {
466         unsigned int wake_batch;
467 
468         wake_batch = sbq_calc_wake_batch(sbq, depth);
469         if (sbq->wake_batch != wake_batch)
470                 WRITE_ONCE(sbq->wake_batch, wake_batch);
471 }
472 
473 void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq,
474                                             unsigned int users)
475 {
476         unsigned int wake_batch;
477         unsigned int depth = (sbq->sb.depth + users - 1) / users;
478 
479         wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES,
480                         1, SBQ_WAKE_BATCH);
481 
482         WRITE_ONCE(sbq->wake_batch, wake_batch);
483 }
484 EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch);
485 
486 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
487 {
488         sbitmap_queue_update_wake_batch(sbq, depth);
489         sbitmap_resize(&sbq->sb, depth);
490 }
491 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
492 
493 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
494 {
495         return sbitmap_get(&sbq->sb);
496 }
497 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
498 
499 unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags,
500                                         unsigned int *offset)
501 {
502         struct sbitmap *sb = &sbq->sb;
503         unsigned int hint, depth;
504         unsigned long index, nr;
505         int i;
506 
507         if (unlikely(sb->round_robin))
508                 return 0;
509 
510         depth = READ_ONCE(sb->depth);
511         hint = update_alloc_hint_before_get(sb, depth);
512 
513         index = SB_NR_TO_INDEX(sb, hint);
514 
515         for (i = 0; i < sb->map_nr; i++) {
516                 struct sbitmap_word *map = &sb->map[index];
517                 unsigned long get_mask;
518                 unsigned int map_depth = __map_depth(sb, index);
519                 unsigned long val;
520 
521                 sbitmap_deferred_clear(map, 0, 0, 0);
522                 val = READ_ONCE(map->word);
523                 if (val == (1UL << (map_depth - 1)) - 1)
524                         goto next;
525 
526                 nr = find_first_zero_bit(&val, map_depth);
527                 if (nr + nr_tags <= map_depth) {
528                         atomic_long_t *ptr = (atomic_long_t *) &map->word;
529 
530                         get_mask = ((1UL << nr_tags) - 1) << nr;
531                         while (!atomic_long_try_cmpxchg(ptr, &val,
532                                                           get_mask | val))
533                                 ;
534                         get_mask = (get_mask & ~val) >> nr;
535                         if (get_mask) {
536                                 *offset = nr + (index << sb->shift);
537                                 update_alloc_hint_after_get(sb, depth, hint,
538                                                         *offset + nr_tags - 1);
539                                 return get_mask;
540                         }
541                 }
542 next:
543                 /* Jump to next index. */
544                 if (++index >= sb->map_nr)
545                         index = 0;
546         }
547 
548         return 0;
549 }
550 
551 int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
552                               unsigned int shallow_depth)
553 {
554         WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
555 
556         return sbitmap_get_shallow(&sbq->sb, shallow_depth);
557 }
558 EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow);
559 
560 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
561                                      unsigned int min_shallow_depth)
562 {
563         sbq->min_shallow_depth = min_shallow_depth;
564         sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
565 }
566 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
567 
568 static void __sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr)
569 {
570         int i, wake_index, woken;
571 
572         if (!atomic_read(&sbq->ws_active))
573                 return;
574 
575         wake_index = atomic_read(&sbq->wake_index);
576         for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
577                 struct sbq_wait_state *ws = &sbq->ws[wake_index];
578 
579                 /*
580                  * Advance the index before checking the current queue.
581                  * It improves fairness, by ensuring the queue doesn't
582                  * need to be fully emptied before trying to wake up
583                  * from the next one.
584                  */
585                 wake_index = sbq_index_inc(wake_index);
586 
587                 if (waitqueue_active(&ws->wait)) {
588                         woken = wake_up_nr(&ws->wait, nr);
589                         if (woken == nr)
590                                 break;
591                         nr -= woken;
592                 }
593         }
594 
595         if (wake_index != atomic_read(&sbq->wake_index))
596                 atomic_set(&sbq->wake_index, wake_index);
597 }
598 
599 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr)
600 {
601         unsigned int wake_batch = READ_ONCE(sbq->wake_batch);
602         unsigned int wakeups;
603 
604         if (!atomic_read(&sbq->ws_active))
605                 return;
606 
607         atomic_add(nr, &sbq->completion_cnt);
608         wakeups = atomic_read(&sbq->wakeup_cnt);
609 
610         do {
611                 if (atomic_read(&sbq->completion_cnt) - wakeups < wake_batch)
612                         return;
613         } while (!atomic_try_cmpxchg(&sbq->wakeup_cnt,
614                                      &wakeups, wakeups + wake_batch));
615 
616         __sbitmap_queue_wake_up(sbq, wake_batch);
617 }
618 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
619 
620 static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag)
621 {
622         if (likely(!sb->round_robin && tag < sb->depth))
623                 data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag);
624 }
625 
626 void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset,
627                                 int *tags, int nr_tags)
628 {
629         struct sbitmap *sb = &sbq->sb;
630         unsigned long *addr = NULL;
631         unsigned long mask = 0;
632         int i;
633 
634         smp_mb__before_atomic();
635         for (i = 0; i < nr_tags; i++) {
636                 const int tag = tags[i] - offset;
637                 unsigned long *this_addr;
638 
639                 /* since we're clearing a batch, skip the deferred map */
640                 this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word;
641                 if (!addr) {
642                         addr = this_addr;
643                 } else if (addr != this_addr) {
644                         atomic_long_andnot(mask, (atomic_long_t *) addr);
645                         mask = 0;
646                         addr = this_addr;
647                 }
648                 mask |= (1UL << SB_NR_TO_BIT(sb, tag));
649         }
650 
651         if (mask)
652                 atomic_long_andnot(mask, (atomic_long_t *) addr);
653 
654         smp_mb__after_atomic();
655         sbitmap_queue_wake_up(sbq, nr_tags);
656         sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(),
657                                         tags[nr_tags - 1] - offset);
658 }
659 
660 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
661                          unsigned int cpu)
662 {
663         /*
664          * Once the clear bit is set, the bit may be allocated out.
665          *
666          * Orders READ/WRITE on the associated instance(such as request
667          * of blk_mq) by this bit for avoiding race with re-allocation,
668          * and its pair is the memory barrier implied in __sbitmap_get_word.
669          *
670          * One invariant is that the clear bit has to be zero when the bit
671          * is in use.
672          */
673         smp_mb__before_atomic();
674         sbitmap_deferred_clear_bit(&sbq->sb, nr);
675 
676         /*
677          * Pairs with the memory barrier in set_current_state() to ensure the
678          * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
679          * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
680          * waiter. See the comment on waitqueue_active().
681          */
682         smp_mb__after_atomic();
683         sbitmap_queue_wake_up(sbq, 1);
684         sbitmap_update_cpu_hint(&sbq->sb, cpu, nr);
685 }
686 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
687 
688 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
689 {
690         int i, wake_index;
691 
692         /*
693          * Pairs with the memory barrier in set_current_state() like in
694          * sbitmap_queue_wake_up().
695          */
696         smp_mb();
697         wake_index = atomic_read(&sbq->wake_index);
698         for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
699                 struct sbq_wait_state *ws = &sbq->ws[wake_index];
700 
701                 if (waitqueue_active(&ws->wait))
702                         wake_up(&ws->wait);
703 
704                 wake_index = sbq_index_inc(wake_index);
705         }
706 }
707 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
708 
709 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
710 {
711         bool first;
712         int i;
713 
714         sbitmap_show(&sbq->sb, m);
715 
716         seq_puts(m, "alloc_hint={");
717         first = true;
718         for_each_possible_cpu(i) {
719                 if (!first)
720                         seq_puts(m, ", ");
721                 first = false;
722                 seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i));
723         }
724         seq_puts(m, "}\n");
725 
726         seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
727         seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
728         seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
729 
730         seq_puts(m, "ws={\n");
731         for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
732                 struct sbq_wait_state *ws = &sbq->ws[i];
733                 seq_printf(m, "\t{.wait=%s},\n",
734                            waitqueue_active(&ws->wait) ? "active" : "inactive");
735         }
736         seq_puts(m, "}\n");
737 
738         seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin);
739         seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
740 }
741 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
742 
743 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
744                             struct sbq_wait_state *ws,
745                             struct sbq_wait *sbq_wait)
746 {
747         if (!sbq_wait->sbq) {
748                 sbq_wait->sbq = sbq;
749                 atomic_inc(&sbq->ws_active);
750                 add_wait_queue(&ws->wait, &sbq_wait->wait);
751         }
752 }
753 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
754 
755 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
756 {
757         list_del_init(&sbq_wait->wait.entry);
758         if (sbq_wait->sbq) {
759                 atomic_dec(&sbq_wait->sbq->ws_active);
760                 sbq_wait->sbq = NULL;
761         }
762 }
763 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
764 
765 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
766                              struct sbq_wait_state *ws,
767                              struct sbq_wait *sbq_wait, int state)
768 {
769         if (!sbq_wait->sbq) {
770                 atomic_inc(&sbq->ws_active);
771                 sbq_wait->sbq = sbq;
772         }
773         prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
774 }
775 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
776 
777 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
778                          struct sbq_wait *sbq_wait)
779 {
780         finish_wait(&ws->wait, &sbq_wait->wait);
781         if (sbq_wait->sbq) {
782                 atomic_dec(&sbq->ws_active);
783                 sbq_wait->sbq = NULL;
784         }
785 }
786 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
787 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php