~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/test_vmalloc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 /*
  4  * Test module for stress and analyze performance of vmalloc allocator.
  5  * (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com>
  6  */
  7 #include <linux/init.h>
  8 #include <linux/kernel.h>
  9 #include <linux/module.h>
 10 #include <linux/vmalloc.h>
 11 #include <linux/random.h>
 12 #include <linux/kthread.h>
 13 #include <linux/moduleparam.h>
 14 #include <linux/completion.h>
 15 #include <linux/delay.h>
 16 #include <linux/rwsem.h>
 17 #include <linux/mm.h>
 18 #include <linux/rcupdate.h>
 19 #include <linux/slab.h>
 20 
 21 #define __param(type, name, init, msg)          \
 22         static type name = init;                                \
 23         module_param(name, type, 0444);                 \
 24         MODULE_PARM_DESC(name, msg)                             \
 25 
 26 __param(int, nr_threads, 0,
 27         "Number of workers to perform tests(min: 1 max: USHRT_MAX)");
 28 
 29 __param(bool, sequential_test_order, false,
 30         "Use sequential stress tests order");
 31 
 32 __param(int, test_repeat_count, 1,
 33         "Set test repeat counter");
 34 
 35 __param(int, test_loop_count, 1000000,
 36         "Set test loop counter");
 37 
 38 __param(int, nr_pages, 0,
 39         "Set number of pages for fix_size_alloc_test(default: 1)");
 40 
 41 __param(bool, use_huge, false,
 42         "Use vmalloc_huge in fix_size_alloc_test");
 43 
 44 __param(int, run_test_mask, INT_MAX,
 45         "Set tests specified in the mask.\n\n"
 46                 "\t\tid: 1,    name: fix_size_alloc_test\n"
 47                 "\t\tid: 2,    name: full_fit_alloc_test\n"
 48                 "\t\tid: 4,    name: long_busy_list_alloc_test\n"
 49                 "\t\tid: 8,    name: random_size_alloc_test\n"
 50                 "\t\tid: 16,   name: fix_align_alloc_test\n"
 51                 "\t\tid: 32,   name: random_size_align_alloc_test\n"
 52                 "\t\tid: 64,   name: align_shift_alloc_test\n"
 53                 "\t\tid: 128,  name: pcpu_alloc_test\n"
 54                 "\t\tid: 256,  name: kvfree_rcu_1_arg_vmalloc_test\n"
 55                 "\t\tid: 512,  name: kvfree_rcu_2_arg_vmalloc_test\n"
 56                 "\t\tid: 1024, name: vm_map_ram_test\n"
 57                 /* Add a new test case description here. */
 58 );
 59 
 60 /*
 61  * Read write semaphore for synchronization of setup
 62  * phase that is done in main thread and workers.
 63  */
 64 static DECLARE_RWSEM(prepare_for_test_rwsem);
 65 
 66 /*
 67  * Completion tracking for worker threads.
 68  */
 69 static DECLARE_COMPLETION(test_all_done_comp);
 70 static atomic_t test_n_undone = ATOMIC_INIT(0);
 71 
 72 static inline void
 73 test_report_one_done(void)
 74 {
 75         if (atomic_dec_and_test(&test_n_undone))
 76                 complete(&test_all_done_comp);
 77 }
 78 
 79 static int random_size_align_alloc_test(void)
 80 {
 81         unsigned long size, align;
 82         unsigned int rnd;
 83         void *ptr;
 84         int i;
 85 
 86         for (i = 0; i < test_loop_count; i++) {
 87                 rnd = get_random_u8();
 88 
 89                 /*
 90                  * Maximum 1024 pages, if PAGE_SIZE is 4096.
 91                  */
 92                 align = 1 << (rnd % 23);
 93 
 94                 /*
 95                  * Maximum 10 pages.
 96                  */
 97                 size = ((rnd % 10) + 1) * PAGE_SIZE;
 98 
 99                 ptr = __vmalloc_node(size, align, GFP_KERNEL | __GFP_ZERO, 0,
100                                 __builtin_return_address(0));
101                 if (!ptr)
102                         return -1;
103 
104                 vfree(ptr);
105         }
106 
107         return 0;
108 }
109 
110 /*
111  * This test case is supposed to be failed.
112  */
113 static int align_shift_alloc_test(void)
114 {
115         unsigned long align;
116         void *ptr;
117         int i;
118 
119         for (i = 0; i < BITS_PER_LONG; i++) {
120                 align = 1UL << i;
121 
122                 ptr = __vmalloc_node(PAGE_SIZE, align, GFP_KERNEL|__GFP_ZERO, 0,
123                                 __builtin_return_address(0));
124                 if (!ptr)
125                         return -1;
126 
127                 vfree(ptr);
128         }
129 
130         return 0;
131 }
132 
133 static int fix_align_alloc_test(void)
134 {
135         void *ptr;
136         int i;
137 
138         for (i = 0; i < test_loop_count; i++) {
139                 ptr = __vmalloc_node(5 * PAGE_SIZE, THREAD_ALIGN << 1,
140                                 GFP_KERNEL | __GFP_ZERO, 0,
141                                 __builtin_return_address(0));
142                 if (!ptr)
143                         return -1;
144 
145                 vfree(ptr);
146         }
147 
148         return 0;
149 }
150 
151 static int random_size_alloc_test(void)
152 {
153         unsigned int n;
154         void *p;
155         int i;
156 
157         for (i = 0; i < test_loop_count; i++) {
158                 n = get_random_u32_inclusive(1, 100);
159                 p = vmalloc(n * PAGE_SIZE);
160 
161                 if (!p)
162                         return -1;
163 
164                 *((__u8 *)p) = 1;
165                 vfree(p);
166         }
167 
168         return 0;
169 }
170 
171 static int long_busy_list_alloc_test(void)
172 {
173         void *ptr_1, *ptr_2;
174         void **ptr;
175         int rv = -1;
176         int i;
177 
178         ptr = vmalloc(sizeof(void *) * 15000);
179         if (!ptr)
180                 return rv;
181 
182         for (i = 0; i < 15000; i++)
183                 ptr[i] = vmalloc(1 * PAGE_SIZE);
184 
185         for (i = 0; i < test_loop_count; i++) {
186                 ptr_1 = vmalloc(100 * PAGE_SIZE);
187                 if (!ptr_1)
188                         goto leave;
189 
190                 ptr_2 = vmalloc(1 * PAGE_SIZE);
191                 if (!ptr_2) {
192                         vfree(ptr_1);
193                         goto leave;
194                 }
195 
196                 *((__u8 *)ptr_1) = 0;
197                 *((__u8 *)ptr_2) = 1;
198 
199                 vfree(ptr_1);
200                 vfree(ptr_2);
201         }
202 
203         /*  Success */
204         rv = 0;
205 
206 leave:
207         for (i = 0; i < 15000; i++)
208                 vfree(ptr[i]);
209 
210         vfree(ptr);
211         return rv;
212 }
213 
214 static int full_fit_alloc_test(void)
215 {
216         void **ptr, **junk_ptr, *tmp;
217         int junk_length;
218         int rv = -1;
219         int i;
220 
221         junk_length = fls(num_online_cpus());
222         junk_length *= (32 * 1024 * 1024 / PAGE_SIZE);
223 
224         ptr = vmalloc(sizeof(void *) * junk_length);
225         if (!ptr)
226                 return rv;
227 
228         junk_ptr = vmalloc(sizeof(void *) * junk_length);
229         if (!junk_ptr) {
230                 vfree(ptr);
231                 return rv;
232         }
233 
234         for (i = 0; i < junk_length; i++) {
235                 ptr[i] = vmalloc(1 * PAGE_SIZE);
236                 junk_ptr[i] = vmalloc(1 * PAGE_SIZE);
237         }
238 
239         for (i = 0; i < junk_length; i++)
240                 vfree(junk_ptr[i]);
241 
242         for (i = 0; i < test_loop_count; i++) {
243                 tmp = vmalloc(1 * PAGE_SIZE);
244 
245                 if (!tmp)
246                         goto error;
247 
248                 *((__u8 *)tmp) = 1;
249                 vfree(tmp);
250         }
251 
252         /* Success */
253         rv = 0;
254 
255 error:
256         for (i = 0; i < junk_length; i++)
257                 vfree(ptr[i]);
258 
259         vfree(ptr);
260         vfree(junk_ptr);
261 
262         return rv;
263 }
264 
265 static int fix_size_alloc_test(void)
266 {
267         void *ptr;
268         int i;
269 
270         for (i = 0; i < test_loop_count; i++) {
271                 if (use_huge)
272                         ptr = vmalloc_huge((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE, GFP_KERNEL);
273                 else
274                         ptr = vmalloc((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE);
275 
276                 if (!ptr)
277                         return -1;
278 
279                 *((__u8 *)ptr) = 0;
280 
281                 vfree(ptr);
282         }
283 
284         return 0;
285 }
286 
287 static int
288 pcpu_alloc_test(void)
289 {
290         int rv = 0;
291 #ifndef CONFIG_NEED_PER_CPU_KM
292         void __percpu **pcpu;
293         size_t size, align;
294         int i;
295 
296         pcpu = vmalloc(sizeof(void __percpu *) * 35000);
297         if (!pcpu)
298                 return -1;
299 
300         for (i = 0; i < 35000; i++) {
301                 size = get_random_u32_inclusive(1, PAGE_SIZE / 4);
302 
303                 /*
304                  * Maximum PAGE_SIZE
305                  */
306                 align = 1 << get_random_u32_inclusive(1, 11);
307 
308                 pcpu[i] = __alloc_percpu(size, align);
309                 if (!pcpu[i])
310                         rv = -1;
311         }
312 
313         for (i = 0; i < 35000; i++)
314                 free_percpu(pcpu[i]);
315 
316         vfree(pcpu);
317 #endif
318         return rv;
319 }
320 
321 struct test_kvfree_rcu {
322         struct rcu_head rcu;
323         unsigned char array[20];
324 };
325 
326 static int
327 kvfree_rcu_1_arg_vmalloc_test(void)
328 {
329         struct test_kvfree_rcu *p;
330         int i;
331 
332         for (i = 0; i < test_loop_count; i++) {
333                 p = vmalloc(1 * PAGE_SIZE);
334                 if (!p)
335                         return -1;
336 
337                 p->array[0] = 'a';
338                 kvfree_rcu_mightsleep(p);
339         }
340 
341         return 0;
342 }
343 
344 static int
345 kvfree_rcu_2_arg_vmalloc_test(void)
346 {
347         struct test_kvfree_rcu *p;
348         int i;
349 
350         for (i = 0; i < test_loop_count; i++) {
351                 p = vmalloc(1 * PAGE_SIZE);
352                 if (!p)
353                         return -1;
354 
355                 p->array[0] = 'a';
356                 kvfree_rcu(p, rcu);
357         }
358 
359         return 0;
360 }
361 
362 static int
363 vm_map_ram_test(void)
364 {
365         unsigned long nr_allocated;
366         unsigned int map_nr_pages;
367         unsigned char *v_ptr;
368         struct page **pages;
369         int i;
370 
371         map_nr_pages = nr_pages > 0 ? nr_pages:1;
372         pages = kcalloc(map_nr_pages, sizeof(struct page *), GFP_KERNEL);
373         if (!pages)
374                 return -1;
375 
376         nr_allocated = alloc_pages_bulk_array(GFP_KERNEL, map_nr_pages, pages);
377         if (nr_allocated != map_nr_pages)
378                 goto cleanup;
379 
380         /* Run the test loop. */
381         for (i = 0; i < test_loop_count; i++) {
382                 v_ptr = vm_map_ram(pages, map_nr_pages, NUMA_NO_NODE);
383                 *v_ptr = 'a';
384                 vm_unmap_ram(v_ptr, map_nr_pages);
385         }
386 
387 cleanup:
388         for (i = 0; i < nr_allocated; i++)
389                 __free_page(pages[i]);
390 
391         kfree(pages);
392 
393         /* 0 indicates success. */
394         return nr_allocated != map_nr_pages;
395 }
396 
397 struct test_case_desc {
398         const char *test_name;
399         int (*test_func)(void);
400 };
401 
402 static struct test_case_desc test_case_array[] = {
403         { "fix_size_alloc_test", fix_size_alloc_test },
404         { "full_fit_alloc_test", full_fit_alloc_test },
405         { "long_busy_list_alloc_test", long_busy_list_alloc_test },
406         { "random_size_alloc_test", random_size_alloc_test },
407         { "fix_align_alloc_test", fix_align_alloc_test },
408         { "random_size_align_alloc_test", random_size_align_alloc_test },
409         { "align_shift_alloc_test", align_shift_alloc_test },
410         { "pcpu_alloc_test", pcpu_alloc_test },
411         { "kvfree_rcu_1_arg_vmalloc_test", kvfree_rcu_1_arg_vmalloc_test },
412         { "kvfree_rcu_2_arg_vmalloc_test", kvfree_rcu_2_arg_vmalloc_test },
413         { "vm_map_ram_test", vm_map_ram_test },
414         /* Add a new test case here. */
415 };
416 
417 struct test_case_data {
418         int test_failed;
419         int test_passed;
420         u64 time;
421 };
422 
423 static struct test_driver {
424         struct task_struct *task;
425         struct test_case_data data[ARRAY_SIZE(test_case_array)];
426 
427         unsigned long start;
428         unsigned long stop;
429 } *tdriver;
430 
431 static void shuffle_array(int *arr, int n)
432 {
433         int i, j;
434 
435         for (i = n - 1; i > 0; i--)  {
436                 /* Cut the range. */
437                 j = get_random_u32_below(i);
438 
439                 /* Swap indexes. */
440                 swap(arr[i], arr[j]);
441         }
442 }
443 
444 static int test_func(void *private)
445 {
446         struct test_driver *t = private;
447         int random_array[ARRAY_SIZE(test_case_array)];
448         int index, i, j;
449         ktime_t kt;
450         u64 delta;
451 
452         for (i = 0; i < ARRAY_SIZE(test_case_array); i++)
453                 random_array[i] = i;
454 
455         if (!sequential_test_order)
456                 shuffle_array(random_array, ARRAY_SIZE(test_case_array));
457 
458         /*
459          * Block until initialization is done.
460          */
461         down_read(&prepare_for_test_rwsem);
462 
463         t->start = get_cycles();
464         for (i = 0; i < ARRAY_SIZE(test_case_array); i++) {
465                 index = random_array[i];
466 
467                 /*
468                  * Skip tests if run_test_mask has been specified.
469                  */
470                 if (!((run_test_mask & (1 << index)) >> index))
471                         continue;
472 
473                 kt = ktime_get();
474                 for (j = 0; j < test_repeat_count; j++) {
475                         if (!test_case_array[index].test_func())
476                                 t->data[index].test_passed++;
477                         else
478                                 t->data[index].test_failed++;
479                 }
480 
481                 /*
482                  * Take an average time that test took.
483                  */
484                 delta = (u64) ktime_us_delta(ktime_get(), kt);
485                 do_div(delta, (u32) test_repeat_count);
486 
487                 t->data[index].time = delta;
488         }
489         t->stop = get_cycles();
490 
491         up_read(&prepare_for_test_rwsem);
492         test_report_one_done();
493 
494         /*
495          * Wait for the kthread_stop() call.
496          */
497         while (!kthread_should_stop())
498                 msleep(10);
499 
500         return 0;
501 }
502 
503 static int
504 init_test_configuration(void)
505 {
506         /*
507          * A maximum number of workers is defined as hard-coded
508          * value and set to USHRT_MAX. We add such gap just in
509          * case and for potential heavy stressing.
510          */
511         nr_threads = clamp(nr_threads, 1, (int) USHRT_MAX);
512 
513         /* Allocate the space for test instances. */
514         tdriver = kvcalloc(nr_threads, sizeof(*tdriver), GFP_KERNEL);
515         if (tdriver == NULL)
516                 return -1;
517 
518         if (test_repeat_count <= 0)
519                 test_repeat_count = 1;
520 
521         if (test_loop_count <= 0)
522                 test_loop_count = 1;
523 
524         return 0;
525 }
526 
527 static void do_concurrent_test(void)
528 {
529         int i, ret;
530 
531         /*
532          * Set some basic configurations plus sanity check.
533          */
534         ret = init_test_configuration();
535         if (ret < 0)
536                 return;
537 
538         /*
539          * Put on hold all workers.
540          */
541         down_write(&prepare_for_test_rwsem);
542 
543         for (i = 0; i < nr_threads; i++) {
544                 struct test_driver *t = &tdriver[i];
545 
546                 t->task = kthread_run(test_func, t, "vmalloc_test/%d", i);
547 
548                 if (!IS_ERR(t->task))
549                         /* Success. */
550                         atomic_inc(&test_n_undone);
551                 else
552                         pr_err("Failed to start %d kthread\n", i);
553         }
554 
555         /*
556          * Now let the workers do their job.
557          */
558         up_write(&prepare_for_test_rwsem);
559 
560         /*
561          * Sleep quiet until all workers are done with 1 second
562          * interval. Since the test can take a lot of time we
563          * can run into a stack trace of the hung task. That is
564          * why we go with completion_timeout and HZ value.
565          */
566         do {
567                 ret = wait_for_completion_timeout(&test_all_done_comp, HZ);
568         } while (!ret);
569 
570         for (i = 0; i < nr_threads; i++) {
571                 struct test_driver *t = &tdriver[i];
572                 int j;
573 
574                 if (!IS_ERR(t->task))
575                         kthread_stop(t->task);
576 
577                 for (j = 0; j < ARRAY_SIZE(test_case_array); j++) {
578                         if (!((run_test_mask & (1 << j)) >> j))
579                                 continue;
580 
581                         pr_info(
582                                 "Summary: %s passed: %d failed: %d repeat: %d loops: %d avg: %llu usec\n",
583                                 test_case_array[j].test_name,
584                                 t->data[j].test_passed,
585                                 t->data[j].test_failed,
586                                 test_repeat_count, test_loop_count,
587                                 t->data[j].time);
588                 }
589 
590                 pr_info("All test took worker%d=%lu cycles\n",
591                         i, t->stop - t->start);
592         }
593 
594         kvfree(tdriver);
595 }
596 
597 static int vmalloc_test_init(void)
598 {
599         do_concurrent_test();
600         return -EAGAIN; /* Fail will directly unload the module */
601 }
602 
603 module_init(vmalloc_test_init)
604 
605 MODULE_LICENSE("GPL");
606 MODULE_AUTHOR("Uladzislau Rezki");
607 MODULE_DESCRIPTION("vmalloc test module");
608 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php