~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/lib/xarray.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 /*
  3  * XArray implementation
  4  * Copyright (c) 2017-2018 Microsoft Corporation
  5  * Copyright (c) 2018-2020 Oracle
  6  * Author: Matthew Wilcox <willy@infradead.org>
  7  */
  8 
  9 #include <linux/bitmap.h>
 10 #include <linux/export.h>
 11 #include <linux/list.h>
 12 #include <linux/slab.h>
 13 #include <linux/xarray.h>
 14 
 15 #include "radix-tree.h"
 16 
 17 /*
 18  * Coding conventions in this file:
 19  *
 20  * @xa is used to refer to the entire xarray.
 21  * @xas is the 'xarray operation state'.  It may be either a pointer to
 22  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
 23  * ambiguity.
 24  * @index is the index of the entry being operated on
 25  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
 26  * @node refers to an xa_node; usually the primary one being operated on by
 27  * this function.
 28  * @offset is the index into the slots array inside an xa_node.
 29  * @parent refers to the @xa_node closer to the head than @node.
 30  * @entry refers to something stored in a slot in the xarray
 31  */
 32 
 33 static inline unsigned int xa_lock_type(const struct xarray *xa)
 34 {
 35         return (__force unsigned int)xa->xa_flags & 3;
 36 }
 37 
 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
 39 {
 40         if (lock_type == XA_LOCK_IRQ)
 41                 xas_lock_irq(xas);
 42         else if (lock_type == XA_LOCK_BH)
 43                 xas_lock_bh(xas);
 44         else
 45                 xas_lock(xas);
 46 }
 47 
 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
 49 {
 50         if (lock_type == XA_LOCK_IRQ)
 51                 xas_unlock_irq(xas);
 52         else if (lock_type == XA_LOCK_BH)
 53                 xas_unlock_bh(xas);
 54         else
 55                 xas_unlock(xas);
 56 }
 57 
 58 static inline bool xa_track_free(const struct xarray *xa)
 59 {
 60         return xa->xa_flags & XA_FLAGS_TRACK_FREE;
 61 }
 62 
 63 static inline bool xa_zero_busy(const struct xarray *xa)
 64 {
 65         return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
 66 }
 67 
 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
 69 {
 70         if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
 71                 xa->xa_flags |= XA_FLAGS_MARK(mark);
 72 }
 73 
 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
 75 {
 76         if (xa->xa_flags & XA_FLAGS_MARK(mark))
 77                 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
 78 }
 79 
 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
 81 {
 82         return node->marks[(__force unsigned)mark];
 83 }
 84 
 85 static inline bool node_get_mark(struct xa_node *node,
 86                 unsigned int offset, xa_mark_t mark)
 87 {
 88         return test_bit(offset, node_marks(node, mark));
 89 }
 90 
 91 /* returns true if the bit was set */
 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
 93                                 xa_mark_t mark)
 94 {
 95         return __test_and_set_bit(offset, node_marks(node, mark));
 96 }
 97 
 98 /* returns true if the bit was set */
 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100                                 xa_mark_t mark)
101 {
102         return __test_and_clear_bit(offset, node_marks(node, mark));
103 }
104 
105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106 {
107         return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108 }
109 
110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111 {
112         bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113 }
114 
115 #define mark_inc(mark) do { \
116         mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117 } while (0)
118 
119 /*
120  * xas_squash_marks() - Merge all marks to the first entry
121  * @xas: Array operation state.
122  *
123  * Set a mark on the first entry if any entry has it set.  Clear marks on
124  * all sibling entries.
125  */
126 static void xas_squash_marks(const struct xa_state *xas)
127 {
128         unsigned int mark = 0;
129         unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130 
131         if (!xas->xa_sibs)
132                 return;
133 
134         do {
135                 unsigned long *marks = xas->xa_node->marks[mark];
136                 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137                         continue;
138                 __set_bit(xas->xa_offset, marks);
139                 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140         } while (mark++ != (__force unsigned)XA_MARK_MAX);
141 }
142 
143 /* extracts the offset within this node from the index */
144 static unsigned int get_offset(unsigned long index, struct xa_node *node)
145 {
146         return (index >> node->shift) & XA_CHUNK_MASK;
147 }
148 
149 static void xas_set_offset(struct xa_state *xas)
150 {
151         xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152 }
153 
154 /* move the index either forwards (find) or backwards (sibling slot) */
155 static void xas_move_index(struct xa_state *xas, unsigned long offset)
156 {
157         unsigned int shift = xas->xa_node->shift;
158         xas->xa_index &= ~XA_CHUNK_MASK << shift;
159         xas->xa_index += offset << shift;
160 }
161 
162 static void xas_next_offset(struct xa_state *xas)
163 {
164         xas->xa_offset++;
165         xas_move_index(xas, xas->xa_offset);
166 }
167 
168 static void *set_bounds(struct xa_state *xas)
169 {
170         xas->xa_node = XAS_BOUNDS;
171         return NULL;
172 }
173 
174 /*
175  * Starts a walk.  If the @xas is already valid, we assume that it's on
176  * the right path and just return where we've got to.  If we're in an
177  * error state, return NULL.  If the index is outside the current scope
178  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
179  * set @xas->xa_node to NULL and return the current head of the array.
180  */
181 static void *xas_start(struct xa_state *xas)
182 {
183         void *entry;
184 
185         if (xas_valid(xas))
186                 return xas_reload(xas);
187         if (xas_error(xas))
188                 return NULL;
189 
190         entry = xa_head(xas->xa);
191         if (!xa_is_node(entry)) {
192                 if (xas->xa_index)
193                         return set_bounds(xas);
194         } else {
195                 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196                         return set_bounds(xas);
197         }
198 
199         xas->xa_node = NULL;
200         return entry;
201 }
202 
203 static __always_inline void *xas_descend(struct xa_state *xas,
204                                         struct xa_node *node)
205 {
206         unsigned int offset = get_offset(xas->xa_index, node);
207         void *entry = xa_entry(xas->xa, node, offset);
208 
209         xas->xa_node = node;
210         while (xa_is_sibling(entry)) {
211                 offset = xa_to_sibling(entry);
212                 entry = xa_entry(xas->xa, node, offset);
213                 if (node->shift && xa_is_node(entry))
214                         entry = XA_RETRY_ENTRY;
215         }
216 
217         xas->xa_offset = offset;
218         return entry;
219 }
220 
221 /**
222  * xas_load() - Load an entry from the XArray (advanced).
223  * @xas: XArray operation state.
224  *
225  * Usually walks the @xas to the appropriate state to load the entry
226  * stored at xa_index.  However, it will do nothing and return %NULL if
227  * @xas is in an error state.  xas_load() will never expand the tree.
228  *
229  * If the xa_state is set up to operate on a multi-index entry, xas_load()
230  * may return %NULL or an internal entry, even if there are entries
231  * present within the range specified by @xas.
232  *
233  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
234  * Return: Usually an entry in the XArray, but see description for exceptions.
235  */
236 void *xas_load(struct xa_state *xas)
237 {
238         void *entry = xas_start(xas);
239 
240         while (xa_is_node(entry)) {
241                 struct xa_node *node = xa_to_node(entry);
242 
243                 if (xas->xa_shift > node->shift)
244                         break;
245                 entry = xas_descend(xas, node);
246                 if (node->shift == 0)
247                         break;
248         }
249         return entry;
250 }
251 EXPORT_SYMBOL_GPL(xas_load);
252 
253 #define XA_RCU_FREE     ((struct xarray *)1)
254 
255 static void xa_node_free(struct xa_node *node)
256 {
257         XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
258         node->array = XA_RCU_FREE;
259         call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
260 }
261 
262 /*
263  * xas_destroy() - Free any resources allocated during the XArray operation.
264  * @xas: XArray operation state.
265  *
266  * Most users will not need to call this function; it is called for you
267  * by xas_nomem().
268  */
269 void xas_destroy(struct xa_state *xas)
270 {
271         struct xa_node *next, *node = xas->xa_alloc;
272 
273         while (node) {
274                 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
275                 next = rcu_dereference_raw(node->parent);
276                 radix_tree_node_rcu_free(&node->rcu_head);
277                 xas->xa_alloc = node = next;
278         }
279 }
280 
281 /**
282  * xas_nomem() - Allocate memory if needed.
283  * @xas: XArray operation state.
284  * @gfp: Memory allocation flags.
285  *
286  * If we need to add new nodes to the XArray, we try to allocate memory
287  * with GFP_NOWAIT while holding the lock, which will usually succeed.
288  * If it fails, @xas is flagged as needing memory to continue.  The caller
289  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
290  * the caller should retry the operation.
291  *
292  * Forward progress is guaranteed as one node is allocated here and
293  * stored in the xa_state where it will be found by xas_alloc().  More
294  * nodes will likely be found in the slab allocator, but we do not tie
295  * them up here.
296  *
297  * Return: true if memory was needed, and was successfully allocated.
298  */
299 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
300 {
301         if (xas->xa_node != XA_ERROR(-ENOMEM)) {
302                 xas_destroy(xas);
303                 return false;
304         }
305         if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
306                 gfp |= __GFP_ACCOUNT;
307         xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
308         if (!xas->xa_alloc)
309                 return false;
310         xas->xa_alloc->parent = NULL;
311         XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
312         xas->xa_node = XAS_RESTART;
313         return true;
314 }
315 EXPORT_SYMBOL_GPL(xas_nomem);
316 
317 /*
318  * __xas_nomem() - Drop locks and allocate memory if needed.
319  * @xas: XArray operation state.
320  * @gfp: Memory allocation flags.
321  *
322  * Internal variant of xas_nomem().
323  *
324  * Return: true if memory was needed, and was successfully allocated.
325  */
326 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
327         __must_hold(xas->xa->xa_lock)
328 {
329         unsigned int lock_type = xa_lock_type(xas->xa);
330 
331         if (xas->xa_node != XA_ERROR(-ENOMEM)) {
332                 xas_destroy(xas);
333                 return false;
334         }
335         if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
336                 gfp |= __GFP_ACCOUNT;
337         if (gfpflags_allow_blocking(gfp)) {
338                 xas_unlock_type(xas, lock_type);
339                 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
340                 xas_lock_type(xas, lock_type);
341         } else {
342                 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
343         }
344         if (!xas->xa_alloc)
345                 return false;
346         xas->xa_alloc->parent = NULL;
347         XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
348         xas->xa_node = XAS_RESTART;
349         return true;
350 }
351 
352 static void xas_update(struct xa_state *xas, struct xa_node *node)
353 {
354         if (xas->xa_update)
355                 xas->xa_update(node);
356         else
357                 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
358 }
359 
360 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
361 {
362         struct xa_node *parent = xas->xa_node;
363         struct xa_node *node = xas->xa_alloc;
364 
365         if (xas_invalid(xas))
366                 return NULL;
367 
368         if (node) {
369                 xas->xa_alloc = NULL;
370         } else {
371                 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
372 
373                 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
374                         gfp |= __GFP_ACCOUNT;
375 
376                 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
377                 if (!node) {
378                         xas_set_err(xas, -ENOMEM);
379                         return NULL;
380                 }
381         }
382 
383         if (parent) {
384                 node->offset = xas->xa_offset;
385                 parent->count++;
386                 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
387                 xas_update(xas, parent);
388         }
389         XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
390         XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
391         node->shift = shift;
392         node->count = 0;
393         node->nr_values = 0;
394         RCU_INIT_POINTER(node->parent, xas->xa_node);
395         node->array = xas->xa;
396 
397         return node;
398 }
399 
400 #ifdef CONFIG_XARRAY_MULTI
401 /* Returns the number of indices covered by a given xa_state */
402 static unsigned long xas_size(const struct xa_state *xas)
403 {
404         return (xas->xa_sibs + 1UL) << xas->xa_shift;
405 }
406 #endif
407 
408 /*
409  * Use this to calculate the maximum index that will need to be created
410  * in order to add the entry described by @xas.  Because we cannot store a
411  * multi-index entry at index 0, the calculation is a little more complex
412  * than you might expect.
413  */
414 static unsigned long xas_max(struct xa_state *xas)
415 {
416         unsigned long max = xas->xa_index;
417 
418 #ifdef CONFIG_XARRAY_MULTI
419         if (xas->xa_shift || xas->xa_sibs) {
420                 unsigned long mask = xas_size(xas) - 1;
421                 max |= mask;
422                 if (mask == max)
423                         max++;
424         }
425 #endif
426 
427         return max;
428 }
429 
430 /* The maximum index that can be contained in the array without expanding it */
431 static unsigned long max_index(void *entry)
432 {
433         if (!xa_is_node(entry))
434                 return 0;
435         return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
436 }
437 
438 static void xas_shrink(struct xa_state *xas)
439 {
440         struct xarray *xa = xas->xa;
441         struct xa_node *node = xas->xa_node;
442 
443         for (;;) {
444                 void *entry;
445 
446                 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
447                 if (node->count != 1)
448                         break;
449                 entry = xa_entry_locked(xa, node, 0);
450                 if (!entry)
451                         break;
452                 if (!xa_is_node(entry) && node->shift)
453                         break;
454                 if (xa_is_zero(entry) && xa_zero_busy(xa))
455                         entry = NULL;
456                 xas->xa_node = XAS_BOUNDS;
457 
458                 RCU_INIT_POINTER(xa->xa_head, entry);
459                 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
460                         xa_mark_clear(xa, XA_FREE_MARK);
461 
462                 node->count = 0;
463                 node->nr_values = 0;
464                 if (!xa_is_node(entry))
465                         RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
466                 xas_update(xas, node);
467                 xa_node_free(node);
468                 if (!xa_is_node(entry))
469                         break;
470                 node = xa_to_node(entry);
471                 node->parent = NULL;
472         }
473 }
474 
475 /*
476  * xas_delete_node() - Attempt to delete an xa_node
477  * @xas: Array operation state.
478  *
479  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
480  * a non-zero reference count.
481  */
482 static void xas_delete_node(struct xa_state *xas)
483 {
484         struct xa_node *node = xas->xa_node;
485 
486         for (;;) {
487                 struct xa_node *parent;
488 
489                 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
490                 if (node->count)
491                         break;
492 
493                 parent = xa_parent_locked(xas->xa, node);
494                 xas->xa_node = parent;
495                 xas->xa_offset = node->offset;
496                 xa_node_free(node);
497 
498                 if (!parent) {
499                         xas->xa->xa_head = NULL;
500                         xas->xa_node = XAS_BOUNDS;
501                         return;
502                 }
503 
504                 parent->slots[xas->xa_offset] = NULL;
505                 parent->count--;
506                 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
507                 node = parent;
508                 xas_update(xas, node);
509         }
510 
511         if (!node->parent)
512                 xas_shrink(xas);
513 }
514 
515 /**
516  * xas_free_nodes() - Free this node and all nodes that it references
517  * @xas: Array operation state.
518  * @top: Node to free
519  *
520  * This node has been removed from the tree.  We must now free it and all
521  * of its subnodes.  There may be RCU walkers with references into the tree,
522  * so we must replace all entries with retry markers.
523  */
524 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
525 {
526         unsigned int offset = 0;
527         struct xa_node *node = top;
528 
529         for (;;) {
530                 void *entry = xa_entry_locked(xas->xa, node, offset);
531 
532                 if (node->shift && xa_is_node(entry)) {
533                         node = xa_to_node(entry);
534                         offset = 0;
535                         continue;
536                 }
537                 if (entry)
538                         RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
539                 offset++;
540                 while (offset == XA_CHUNK_SIZE) {
541                         struct xa_node *parent;
542 
543                         parent = xa_parent_locked(xas->xa, node);
544                         offset = node->offset + 1;
545                         node->count = 0;
546                         node->nr_values = 0;
547                         xas_update(xas, node);
548                         xa_node_free(node);
549                         if (node == top)
550                                 return;
551                         node = parent;
552                 }
553         }
554 }
555 
556 /*
557  * xas_expand adds nodes to the head of the tree until it has reached
558  * sufficient height to be able to contain @xas->xa_index
559  */
560 static int xas_expand(struct xa_state *xas, void *head)
561 {
562         struct xarray *xa = xas->xa;
563         struct xa_node *node = NULL;
564         unsigned int shift = 0;
565         unsigned long max = xas_max(xas);
566 
567         if (!head) {
568                 if (max == 0)
569                         return 0;
570                 while ((max >> shift) >= XA_CHUNK_SIZE)
571                         shift += XA_CHUNK_SHIFT;
572                 return shift + XA_CHUNK_SHIFT;
573         } else if (xa_is_node(head)) {
574                 node = xa_to_node(head);
575                 shift = node->shift + XA_CHUNK_SHIFT;
576         }
577         xas->xa_node = NULL;
578 
579         while (max > max_index(head)) {
580                 xa_mark_t mark = 0;
581 
582                 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
583                 node = xas_alloc(xas, shift);
584                 if (!node)
585                         return -ENOMEM;
586 
587                 node->count = 1;
588                 if (xa_is_value(head))
589                         node->nr_values = 1;
590                 RCU_INIT_POINTER(node->slots[0], head);
591 
592                 /* Propagate the aggregated mark info to the new child */
593                 for (;;) {
594                         if (xa_track_free(xa) && mark == XA_FREE_MARK) {
595                                 node_mark_all(node, XA_FREE_MARK);
596                                 if (!xa_marked(xa, XA_FREE_MARK)) {
597                                         node_clear_mark(node, 0, XA_FREE_MARK);
598                                         xa_mark_set(xa, XA_FREE_MARK);
599                                 }
600                         } else if (xa_marked(xa, mark)) {
601                                 node_set_mark(node, 0, mark);
602                         }
603                         if (mark == XA_MARK_MAX)
604                                 break;
605                         mark_inc(mark);
606                 }
607 
608                 /*
609                  * Now that the new node is fully initialised, we can add
610                  * it to the tree
611                  */
612                 if (xa_is_node(head)) {
613                         xa_to_node(head)->offset = 0;
614                         rcu_assign_pointer(xa_to_node(head)->parent, node);
615                 }
616                 head = xa_mk_node(node);
617                 rcu_assign_pointer(xa->xa_head, head);
618                 xas_update(xas, node);
619 
620                 shift += XA_CHUNK_SHIFT;
621         }
622 
623         xas->xa_node = node;
624         return shift;
625 }
626 
627 /*
628  * xas_create() - Create a slot to store an entry in.
629  * @xas: XArray operation state.
630  * @allow_root: %true if we can store the entry in the root directly
631  *
632  * Most users will not need to call this function directly, as it is called
633  * by xas_store().  It is useful for doing conditional store operations
634  * (see the xa_cmpxchg() implementation for an example).
635  *
636  * Return: If the slot already existed, returns the contents of this slot.
637  * If the slot was newly created, returns %NULL.  If it failed to create the
638  * slot, returns %NULL and indicates the error in @xas.
639  */
640 static void *xas_create(struct xa_state *xas, bool allow_root)
641 {
642         struct xarray *xa = xas->xa;
643         void *entry;
644         void __rcu **slot;
645         struct xa_node *node = xas->xa_node;
646         int shift;
647         unsigned int order = xas->xa_shift;
648 
649         if (xas_top(node)) {
650                 entry = xa_head_locked(xa);
651                 xas->xa_node = NULL;
652                 if (!entry && xa_zero_busy(xa))
653                         entry = XA_ZERO_ENTRY;
654                 shift = xas_expand(xas, entry);
655                 if (shift < 0)
656                         return NULL;
657                 if (!shift && !allow_root)
658                         shift = XA_CHUNK_SHIFT;
659                 entry = xa_head_locked(xa);
660                 slot = &xa->xa_head;
661         } else if (xas_error(xas)) {
662                 return NULL;
663         } else if (node) {
664                 unsigned int offset = xas->xa_offset;
665 
666                 shift = node->shift;
667                 entry = xa_entry_locked(xa, node, offset);
668                 slot = &node->slots[offset];
669         } else {
670                 shift = 0;
671                 entry = xa_head_locked(xa);
672                 slot = &xa->xa_head;
673         }
674 
675         while (shift > order) {
676                 shift -= XA_CHUNK_SHIFT;
677                 if (!entry) {
678                         node = xas_alloc(xas, shift);
679                         if (!node)
680                                 break;
681                         if (xa_track_free(xa))
682                                 node_mark_all(node, XA_FREE_MARK);
683                         rcu_assign_pointer(*slot, xa_mk_node(node));
684                 } else if (xa_is_node(entry)) {
685                         node = xa_to_node(entry);
686                 } else {
687                         break;
688                 }
689                 entry = xas_descend(xas, node);
690                 slot = &node->slots[xas->xa_offset];
691         }
692 
693         return entry;
694 }
695 
696 /**
697  * xas_create_range() - Ensure that stores to this range will succeed
698  * @xas: XArray operation state.
699  *
700  * Creates all of the slots in the range covered by @xas.  Sets @xas to
701  * create single-index entries and positions it at the beginning of the
702  * range.  This is for the benefit of users which have not yet been
703  * converted to use multi-index entries.
704  */
705 void xas_create_range(struct xa_state *xas)
706 {
707         unsigned long index = xas->xa_index;
708         unsigned char shift = xas->xa_shift;
709         unsigned char sibs = xas->xa_sibs;
710 
711         xas->xa_index |= ((sibs + 1UL) << shift) - 1;
712         if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
713                 xas->xa_offset |= sibs;
714         xas->xa_shift = 0;
715         xas->xa_sibs = 0;
716 
717         for (;;) {
718                 xas_create(xas, true);
719                 if (xas_error(xas))
720                         goto restore;
721                 if (xas->xa_index <= (index | XA_CHUNK_MASK))
722                         goto success;
723                 xas->xa_index -= XA_CHUNK_SIZE;
724 
725                 for (;;) {
726                         struct xa_node *node = xas->xa_node;
727                         if (node->shift >= shift)
728                                 break;
729                         xas->xa_node = xa_parent_locked(xas->xa, node);
730                         xas->xa_offset = node->offset - 1;
731                         if (node->offset != 0)
732                                 break;
733                 }
734         }
735 
736 restore:
737         xas->xa_shift = shift;
738         xas->xa_sibs = sibs;
739         xas->xa_index = index;
740         return;
741 success:
742         xas->xa_index = index;
743         if (xas->xa_node)
744                 xas_set_offset(xas);
745 }
746 EXPORT_SYMBOL_GPL(xas_create_range);
747 
748 static void update_node(struct xa_state *xas, struct xa_node *node,
749                 int count, int values)
750 {
751         if (!node || (!count && !values))
752                 return;
753 
754         node->count += count;
755         node->nr_values += values;
756         XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
757         XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
758         xas_update(xas, node);
759         if (count < 0)
760                 xas_delete_node(xas);
761 }
762 
763 /**
764  * xas_store() - Store this entry in the XArray.
765  * @xas: XArray operation state.
766  * @entry: New entry.
767  *
768  * If @xas is operating on a multi-index entry, the entry returned by this
769  * function is essentially meaningless (it may be an internal entry or it
770  * may be %NULL, even if there are non-NULL entries at some of the indices
771  * covered by the range).  This is not a problem for any current users,
772  * and can be changed if needed.
773  *
774  * Return: The old entry at this index.
775  */
776 void *xas_store(struct xa_state *xas, void *entry)
777 {
778         struct xa_node *node;
779         void __rcu **slot = &xas->xa->xa_head;
780         unsigned int offset, max;
781         int count = 0;
782         int values = 0;
783         void *first, *next;
784         bool value = xa_is_value(entry);
785 
786         if (entry) {
787                 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
788                 first = xas_create(xas, allow_root);
789         } else {
790                 first = xas_load(xas);
791         }
792 
793         if (xas_invalid(xas))
794                 return first;
795         node = xas->xa_node;
796         if (node && (xas->xa_shift < node->shift))
797                 xas->xa_sibs = 0;
798         if ((first == entry) && !xas->xa_sibs)
799                 return first;
800 
801         next = first;
802         offset = xas->xa_offset;
803         max = xas->xa_offset + xas->xa_sibs;
804         if (node) {
805                 slot = &node->slots[offset];
806                 if (xas->xa_sibs)
807                         xas_squash_marks(xas);
808         }
809         if (!entry)
810                 xas_init_marks(xas);
811 
812         for (;;) {
813                 /*
814                  * Must clear the marks before setting the entry to NULL,
815                  * otherwise xas_for_each_marked may find a NULL entry and
816                  * stop early.  rcu_assign_pointer contains a release barrier
817                  * so the mark clearing will appear to happen before the
818                  * entry is set to NULL.
819                  */
820                 rcu_assign_pointer(*slot, entry);
821                 if (xa_is_node(next) && (!node || node->shift))
822                         xas_free_nodes(xas, xa_to_node(next));
823                 if (!node)
824                         break;
825                 count += !next - !entry;
826                 values += !xa_is_value(first) - !value;
827                 if (entry) {
828                         if (offset == max)
829                                 break;
830                         if (!xa_is_sibling(entry))
831                                 entry = xa_mk_sibling(xas->xa_offset);
832                 } else {
833                         if (offset == XA_CHUNK_MASK)
834                                 break;
835                 }
836                 next = xa_entry_locked(xas->xa, node, ++offset);
837                 if (!xa_is_sibling(next)) {
838                         if (!entry && (offset > max))
839                                 break;
840                         first = next;
841                 }
842                 slot++;
843         }
844 
845         update_node(xas, node, count, values);
846         return first;
847 }
848 EXPORT_SYMBOL_GPL(xas_store);
849 
850 /**
851  * xas_get_mark() - Returns the state of this mark.
852  * @xas: XArray operation state.
853  * @mark: Mark number.
854  *
855  * Return: true if the mark is set, false if the mark is clear or @xas
856  * is in an error state.
857  */
858 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
859 {
860         if (xas_invalid(xas))
861                 return false;
862         if (!xas->xa_node)
863                 return xa_marked(xas->xa, mark);
864         return node_get_mark(xas->xa_node, xas->xa_offset, mark);
865 }
866 EXPORT_SYMBOL_GPL(xas_get_mark);
867 
868 /**
869  * xas_set_mark() - Sets the mark on this entry and its parents.
870  * @xas: XArray operation state.
871  * @mark: Mark number.
872  *
873  * Sets the specified mark on this entry, and walks up the tree setting it
874  * on all the ancestor entries.  Does nothing if @xas has not been walked to
875  * an entry, or is in an error state.
876  */
877 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
878 {
879         struct xa_node *node = xas->xa_node;
880         unsigned int offset = xas->xa_offset;
881 
882         if (xas_invalid(xas))
883                 return;
884 
885         while (node) {
886                 if (node_set_mark(node, offset, mark))
887                         return;
888                 offset = node->offset;
889                 node = xa_parent_locked(xas->xa, node);
890         }
891 
892         if (!xa_marked(xas->xa, mark))
893                 xa_mark_set(xas->xa, mark);
894 }
895 EXPORT_SYMBOL_GPL(xas_set_mark);
896 
897 /**
898  * xas_clear_mark() - Clears the mark on this entry and its parents.
899  * @xas: XArray operation state.
900  * @mark: Mark number.
901  *
902  * Clears the specified mark on this entry, and walks back to the head
903  * attempting to clear it on all the ancestor entries.  Does nothing if
904  * @xas has not been walked to an entry, or is in an error state.
905  */
906 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
907 {
908         struct xa_node *node = xas->xa_node;
909         unsigned int offset = xas->xa_offset;
910 
911         if (xas_invalid(xas))
912                 return;
913 
914         while (node) {
915                 if (!node_clear_mark(node, offset, mark))
916                         return;
917                 if (node_any_mark(node, mark))
918                         return;
919 
920                 offset = node->offset;
921                 node = xa_parent_locked(xas->xa, node);
922         }
923 
924         if (xa_marked(xas->xa, mark))
925                 xa_mark_clear(xas->xa, mark);
926 }
927 EXPORT_SYMBOL_GPL(xas_clear_mark);
928 
929 /**
930  * xas_init_marks() - Initialise all marks for the entry
931  * @xas: Array operations state.
932  *
933  * Initialise all marks for the entry specified by @xas.  If we're tracking
934  * free entries with a mark, we need to set it on all entries.  All other
935  * marks are cleared.
936  *
937  * This implementation is not as efficient as it could be; we may walk
938  * up the tree multiple times.
939  */
940 void xas_init_marks(const struct xa_state *xas)
941 {
942         xa_mark_t mark = 0;
943 
944         for (;;) {
945                 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
946                         xas_set_mark(xas, mark);
947                 else
948                         xas_clear_mark(xas, mark);
949                 if (mark == XA_MARK_MAX)
950                         break;
951                 mark_inc(mark);
952         }
953 }
954 EXPORT_SYMBOL_GPL(xas_init_marks);
955 
956 #ifdef CONFIG_XARRAY_MULTI
957 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
958 {
959         unsigned int marks = 0;
960         xa_mark_t mark = XA_MARK_0;
961 
962         for (;;) {
963                 if (node_get_mark(node, offset, mark))
964                         marks |= 1 << (__force unsigned int)mark;
965                 if (mark == XA_MARK_MAX)
966                         break;
967                 mark_inc(mark);
968         }
969 
970         return marks;
971 }
972 
973 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs,
974                 xa_mark_t mark)
975 {
976         int i;
977 
978         if (sibs == 0)
979                 node_mark_all(node, mark);
980         else {
981                 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1)
982                         node_set_mark(node, i, mark);
983         }
984 }
985 
986 static void node_set_marks(struct xa_node *node, unsigned int offset,
987                         struct xa_node *child, unsigned int sibs,
988                         unsigned int marks)
989 {
990         xa_mark_t mark = XA_MARK_0;
991 
992         for (;;) {
993                 if (marks & (1 << (__force unsigned int)mark)) {
994                         node_set_mark(node, offset, mark);
995                         if (child)
996                                 node_mark_slots(child, sibs, mark);
997                 }
998                 if (mark == XA_MARK_MAX)
999                         break;
1000                 mark_inc(mark);
1001         }
1002 }
1003 
1004 /**
1005  * xas_split_alloc() - Allocate memory for splitting an entry.
1006  * @xas: XArray operation state.
1007  * @entry: New entry which will be stored in the array.
1008  * @order: Current entry order.
1009  * @gfp: Memory allocation flags.
1010  *
1011  * This function should be called before calling xas_split().
1012  * If necessary, it will allocate new nodes (and fill them with @entry)
1013  * to prepare for the upcoming split of an entry of @order size into
1014  * entries of the order stored in the @xas.
1015  *
1016  * Context: May sleep if @gfp flags permit.
1017  */
1018 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1019                 gfp_t gfp)
1020 {
1021         unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1022         unsigned int mask = xas->xa_sibs;
1023 
1024         /* XXX: no support for splitting really large entries yet */
1025         if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1026                 goto nomem;
1027         if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1028                 return;
1029 
1030         do {
1031                 unsigned int i;
1032                 void *sibling = NULL;
1033                 struct xa_node *node;
1034 
1035                 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1036                 if (!node)
1037                         goto nomem;
1038                 node->array = xas->xa;
1039                 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1040                         if ((i & mask) == 0) {
1041                                 RCU_INIT_POINTER(node->slots[i], entry);
1042                                 sibling = xa_mk_sibling(i);
1043                         } else {
1044                                 RCU_INIT_POINTER(node->slots[i], sibling);
1045                         }
1046                 }
1047                 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1048                 xas->xa_alloc = node;
1049         } while (sibs-- > 0);
1050 
1051         return;
1052 nomem:
1053         xas_destroy(xas);
1054         xas_set_err(xas, -ENOMEM);
1055 }
1056 EXPORT_SYMBOL_GPL(xas_split_alloc);
1057 
1058 /**
1059  * xas_split() - Split a multi-index entry into smaller entries.
1060  * @xas: XArray operation state.
1061  * @entry: New entry to store in the array.
1062  * @order: Current entry order.
1063  *
1064  * The size of the new entries is set in @xas.  The value in @entry is
1065  * copied to all the replacement entries.
1066  *
1067  * Context: Any context.  The caller should hold the xa_lock.
1068  */
1069 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1070 {
1071         unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1072         unsigned int offset, marks;
1073         struct xa_node *node;
1074         void *curr = xas_load(xas);
1075         int values = 0;
1076 
1077         node = xas->xa_node;
1078         if (xas_top(node))
1079                 return;
1080 
1081         marks = node_get_marks(node, xas->xa_offset);
1082 
1083         offset = xas->xa_offset + sibs;
1084         do {
1085                 if (xas->xa_shift < node->shift) {
1086                         struct xa_node *child = xas->xa_alloc;
1087 
1088                         xas->xa_alloc = rcu_dereference_raw(child->parent);
1089                         child->shift = node->shift - XA_CHUNK_SHIFT;
1090                         child->offset = offset;
1091                         child->count = XA_CHUNK_SIZE;
1092                         child->nr_values = xa_is_value(entry) ?
1093                                         XA_CHUNK_SIZE : 0;
1094                         RCU_INIT_POINTER(child->parent, node);
1095                         node_set_marks(node, offset, child, xas->xa_sibs,
1096                                         marks);
1097                         rcu_assign_pointer(node->slots[offset],
1098                                         xa_mk_node(child));
1099                         if (xa_is_value(curr))
1100                                 values--;
1101                         xas_update(xas, child);
1102                 } else {
1103                         unsigned int canon = offset - xas->xa_sibs;
1104 
1105                         node_set_marks(node, canon, NULL, 0, marks);
1106                         rcu_assign_pointer(node->slots[canon], entry);
1107                         while (offset > canon)
1108                                 rcu_assign_pointer(node->slots[offset--],
1109                                                 xa_mk_sibling(canon));
1110                         values += (xa_is_value(entry) - xa_is_value(curr)) *
1111                                         (xas->xa_sibs + 1);
1112                 }
1113         } while (offset-- > xas->xa_offset);
1114 
1115         node->nr_values += values;
1116         xas_update(xas, node);
1117 }
1118 EXPORT_SYMBOL_GPL(xas_split);
1119 #endif
1120 
1121 /**
1122  * xas_pause() - Pause a walk to drop a lock.
1123  * @xas: XArray operation state.
1124  *
1125  * Some users need to pause a walk and drop the lock they're holding in
1126  * order to yield to a higher priority thread or carry out an operation
1127  * on an entry.  Those users should call this function before they drop
1128  * the lock.  It resets the @xas to be suitable for the next iteration
1129  * of the loop after the user has reacquired the lock.  If most entries
1130  * found during a walk require you to call xas_pause(), the xa_for_each()
1131  * iterator may be more appropriate.
1132  *
1133  * Note that xas_pause() only works for forward iteration.  If a user needs
1134  * to pause a reverse iteration, we will need a xas_pause_rev().
1135  */
1136 void xas_pause(struct xa_state *xas)
1137 {
1138         struct xa_node *node = xas->xa_node;
1139 
1140         if (xas_invalid(xas))
1141                 return;
1142 
1143         xas->xa_node = XAS_RESTART;
1144         if (node) {
1145                 unsigned long offset = xas->xa_offset;
1146                 while (++offset < XA_CHUNK_SIZE) {
1147                         if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1148                                 break;
1149                 }
1150                 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1151                 if (xas->xa_index == 0)
1152                         xas->xa_node = XAS_BOUNDS;
1153         } else {
1154                 xas->xa_index++;
1155         }
1156 }
1157 EXPORT_SYMBOL_GPL(xas_pause);
1158 
1159 /*
1160  * __xas_prev() - Find the previous entry in the XArray.
1161  * @xas: XArray operation state.
1162  *
1163  * Helper function for xas_prev() which handles all the complex cases
1164  * out of line.
1165  */
1166 void *__xas_prev(struct xa_state *xas)
1167 {
1168         void *entry;
1169 
1170         if (!xas_frozen(xas->xa_node))
1171                 xas->xa_index--;
1172         if (!xas->xa_node)
1173                 return set_bounds(xas);
1174         if (xas_not_node(xas->xa_node))
1175                 return xas_load(xas);
1176 
1177         if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1178                 xas->xa_offset--;
1179 
1180         while (xas->xa_offset == 255) {
1181                 xas->xa_offset = xas->xa_node->offset - 1;
1182                 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1183                 if (!xas->xa_node)
1184                         return set_bounds(xas);
1185         }
1186 
1187         for (;;) {
1188                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1189                 if (!xa_is_node(entry))
1190                         return entry;
1191 
1192                 xas->xa_node = xa_to_node(entry);
1193                 xas_set_offset(xas);
1194         }
1195 }
1196 EXPORT_SYMBOL_GPL(__xas_prev);
1197 
1198 /*
1199  * __xas_next() - Find the next entry in the XArray.
1200  * @xas: XArray operation state.
1201  *
1202  * Helper function for xas_next() which handles all the complex cases
1203  * out of line.
1204  */
1205 void *__xas_next(struct xa_state *xas)
1206 {
1207         void *entry;
1208 
1209         if (!xas_frozen(xas->xa_node))
1210                 xas->xa_index++;
1211         if (!xas->xa_node)
1212                 return set_bounds(xas);
1213         if (xas_not_node(xas->xa_node))
1214                 return xas_load(xas);
1215 
1216         if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1217                 xas->xa_offset++;
1218 
1219         while (xas->xa_offset == XA_CHUNK_SIZE) {
1220                 xas->xa_offset = xas->xa_node->offset + 1;
1221                 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1222                 if (!xas->xa_node)
1223                         return set_bounds(xas);
1224         }
1225 
1226         for (;;) {
1227                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1228                 if (!xa_is_node(entry))
1229                         return entry;
1230 
1231                 xas->xa_node = xa_to_node(entry);
1232                 xas_set_offset(xas);
1233         }
1234 }
1235 EXPORT_SYMBOL_GPL(__xas_next);
1236 
1237 /**
1238  * xas_find() - Find the next present entry in the XArray.
1239  * @xas: XArray operation state.
1240  * @max: Highest index to return.
1241  *
1242  * If the @xas has not yet been walked to an entry, return the entry
1243  * which has an index >= xas.xa_index.  If it has been walked, the entry
1244  * currently being pointed at has been processed, and so we move to the
1245  * next entry.
1246  *
1247  * If no entry is found and the array is smaller than @max, the iterator
1248  * is set to the smallest index not yet in the array.  This allows @xas
1249  * to be immediately passed to xas_store().
1250  *
1251  * Return: The entry, if found, otherwise %NULL.
1252  */
1253 void *xas_find(struct xa_state *xas, unsigned long max)
1254 {
1255         void *entry;
1256 
1257         if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1258                 return NULL;
1259         if (xas->xa_index > max)
1260                 return set_bounds(xas);
1261 
1262         if (!xas->xa_node) {
1263                 xas->xa_index = 1;
1264                 return set_bounds(xas);
1265         } else if (xas->xa_node == XAS_RESTART) {
1266                 entry = xas_load(xas);
1267                 if (entry || xas_not_node(xas->xa_node))
1268                         return entry;
1269         } else if (!xas->xa_node->shift &&
1270                     xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1271                 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1272         }
1273 
1274         xas_next_offset(xas);
1275 
1276         while (xas->xa_node && (xas->xa_index <= max)) {
1277                 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1278                         xas->xa_offset = xas->xa_node->offset + 1;
1279                         xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1280                         continue;
1281                 }
1282 
1283                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1284                 if (xa_is_node(entry)) {
1285                         xas->xa_node = xa_to_node(entry);
1286                         xas->xa_offset = 0;
1287                         continue;
1288                 }
1289                 if (entry && !xa_is_sibling(entry))
1290                         return entry;
1291 
1292                 xas_next_offset(xas);
1293         }
1294 
1295         if (!xas->xa_node)
1296                 xas->xa_node = XAS_BOUNDS;
1297         return NULL;
1298 }
1299 EXPORT_SYMBOL_GPL(xas_find);
1300 
1301 /**
1302  * xas_find_marked() - Find the next marked entry in the XArray.
1303  * @xas: XArray operation state.
1304  * @max: Highest index to return.
1305  * @mark: Mark number to search for.
1306  *
1307  * If the @xas has not yet been walked to an entry, return the marked entry
1308  * which has an index >= xas.xa_index.  If it has been walked, the entry
1309  * currently being pointed at has been processed, and so we return the
1310  * first marked entry with an index > xas.xa_index.
1311  *
1312  * If no marked entry is found and the array is smaller than @max, @xas is
1313  * set to the bounds state and xas->xa_index is set to the smallest index
1314  * not yet in the array.  This allows @xas to be immediately passed to
1315  * xas_store().
1316  *
1317  * If no entry is found before @max is reached, @xas is set to the restart
1318  * state.
1319  *
1320  * Return: The entry, if found, otherwise %NULL.
1321  */
1322 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1323 {
1324         bool advance = true;
1325         unsigned int offset;
1326         void *entry;
1327 
1328         if (xas_error(xas))
1329                 return NULL;
1330         if (xas->xa_index > max)
1331                 goto max;
1332 
1333         if (!xas->xa_node) {
1334                 xas->xa_index = 1;
1335                 goto out;
1336         } else if (xas_top(xas->xa_node)) {
1337                 advance = false;
1338                 entry = xa_head(xas->xa);
1339                 xas->xa_node = NULL;
1340                 if (xas->xa_index > max_index(entry))
1341                         goto out;
1342                 if (!xa_is_node(entry)) {
1343                         if (xa_marked(xas->xa, mark))
1344                                 return entry;
1345                         xas->xa_index = 1;
1346                         goto out;
1347                 }
1348                 xas->xa_node = xa_to_node(entry);
1349                 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1350         }
1351 
1352         while (xas->xa_index <= max) {
1353                 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1354                         xas->xa_offset = xas->xa_node->offset + 1;
1355                         xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1356                         if (!xas->xa_node)
1357                                 break;
1358                         advance = false;
1359                         continue;
1360                 }
1361 
1362                 if (!advance) {
1363                         entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1364                         if (xa_is_sibling(entry)) {
1365                                 xas->xa_offset = xa_to_sibling(entry);
1366                                 xas_move_index(xas, xas->xa_offset);
1367                         }
1368                 }
1369 
1370                 offset = xas_find_chunk(xas, advance, mark);
1371                 if (offset > xas->xa_offset) {
1372                         advance = false;
1373                         xas_move_index(xas, offset);
1374                         /* Mind the wrap */
1375                         if ((xas->xa_index - 1) >= max)
1376                                 goto max;
1377                         xas->xa_offset = offset;
1378                         if (offset == XA_CHUNK_SIZE)
1379                                 continue;
1380                 }
1381 
1382                 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1383                 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1384                         continue;
1385                 if (!xa_is_node(entry))
1386                         return entry;
1387                 xas->xa_node = xa_to_node(entry);
1388                 xas_set_offset(xas);
1389         }
1390 
1391 out:
1392         if (xas->xa_index > max)
1393                 goto max;
1394         return set_bounds(xas);
1395 max:
1396         xas->xa_node = XAS_RESTART;
1397         return NULL;
1398 }
1399 EXPORT_SYMBOL_GPL(xas_find_marked);
1400 
1401 /**
1402  * xas_find_conflict() - Find the next present entry in a range.
1403  * @xas: XArray operation state.
1404  *
1405  * The @xas describes both a range and a position within that range.
1406  *
1407  * Context: Any context.  Expects xa_lock to be held.
1408  * Return: The next entry in the range covered by @xas or %NULL.
1409  */
1410 void *xas_find_conflict(struct xa_state *xas)
1411 {
1412         void *curr;
1413 
1414         if (xas_error(xas))
1415                 return NULL;
1416 
1417         if (!xas->xa_node)
1418                 return NULL;
1419 
1420         if (xas_top(xas->xa_node)) {
1421                 curr = xas_start(xas);
1422                 if (!curr)
1423                         return NULL;
1424                 while (xa_is_node(curr)) {
1425                         struct xa_node *node = xa_to_node(curr);
1426                         curr = xas_descend(xas, node);
1427                 }
1428                 if (curr)
1429                         return curr;
1430         }
1431 
1432         if (xas->xa_node->shift > xas->xa_shift)
1433                 return NULL;
1434 
1435         for (;;) {
1436                 if (xas->xa_node->shift == xas->xa_shift) {
1437                         if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1438                                 break;
1439                 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1440                         xas->xa_offset = xas->xa_node->offset;
1441                         xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1442                         if (!xas->xa_node)
1443                                 break;
1444                         continue;
1445                 }
1446                 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1447                 if (xa_is_sibling(curr))
1448                         continue;
1449                 while (xa_is_node(curr)) {
1450                         xas->xa_node = xa_to_node(curr);
1451                         xas->xa_offset = 0;
1452                         curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1453                 }
1454                 if (curr)
1455                         return curr;
1456         }
1457         xas->xa_offset -= xas->xa_sibs;
1458         return NULL;
1459 }
1460 EXPORT_SYMBOL_GPL(xas_find_conflict);
1461 
1462 /**
1463  * xa_load() - Load an entry from an XArray.
1464  * @xa: XArray.
1465  * @index: index into array.
1466  *
1467  * Context: Any context.  Takes and releases the RCU lock.
1468  * Return: The entry at @index in @xa.
1469  */
1470 void *xa_load(struct xarray *xa, unsigned long index)
1471 {
1472         XA_STATE(xas, xa, index);
1473         void *entry;
1474 
1475         rcu_read_lock();
1476         do {
1477                 entry = xas_load(&xas);
1478                 if (xa_is_zero(entry))
1479                         entry = NULL;
1480         } while (xas_retry(&xas, entry));
1481         rcu_read_unlock();
1482 
1483         return entry;
1484 }
1485 EXPORT_SYMBOL(xa_load);
1486 
1487 static void *xas_result(struct xa_state *xas, void *curr)
1488 {
1489         if (xa_is_zero(curr))
1490                 return NULL;
1491         if (xas_error(xas))
1492                 curr = xas->xa_node;
1493         return curr;
1494 }
1495 
1496 /**
1497  * __xa_erase() - Erase this entry from the XArray while locked.
1498  * @xa: XArray.
1499  * @index: Index into array.
1500  *
1501  * After this function returns, loading from @index will return %NULL.
1502  * If the index is part of a multi-index entry, all indices will be erased
1503  * and none of the entries will be part of a multi-index entry.
1504  *
1505  * Context: Any context.  Expects xa_lock to be held on entry.
1506  * Return: The entry which used to be at this index.
1507  */
1508 void *__xa_erase(struct xarray *xa, unsigned long index)
1509 {
1510         XA_STATE(xas, xa, index);
1511         return xas_result(&xas, xas_store(&xas, NULL));
1512 }
1513 EXPORT_SYMBOL(__xa_erase);
1514 
1515 /**
1516  * xa_erase() - Erase this entry from the XArray.
1517  * @xa: XArray.
1518  * @index: Index of entry.
1519  *
1520  * After this function returns, loading from @index will return %NULL.
1521  * If the index is part of a multi-index entry, all indices will be erased
1522  * and none of the entries will be part of a multi-index entry.
1523  *
1524  * Context: Any context.  Takes and releases the xa_lock.
1525  * Return: The entry which used to be at this index.
1526  */
1527 void *xa_erase(struct xarray *xa, unsigned long index)
1528 {
1529         void *entry;
1530 
1531         xa_lock(xa);
1532         entry = __xa_erase(xa, index);
1533         xa_unlock(xa);
1534 
1535         return entry;
1536 }
1537 EXPORT_SYMBOL(xa_erase);
1538 
1539 /**
1540  * __xa_store() - Store this entry in the XArray.
1541  * @xa: XArray.
1542  * @index: Index into array.
1543  * @entry: New entry.
1544  * @gfp: Memory allocation flags.
1545  *
1546  * You must already be holding the xa_lock when calling this function.
1547  * It will drop the lock if needed to allocate memory, and then reacquire
1548  * it afterwards.
1549  *
1550  * Context: Any context.  Expects xa_lock to be held on entry.  May
1551  * release and reacquire xa_lock if @gfp flags permit.
1552  * Return: The old entry at this index or xa_err() if an error happened.
1553  */
1554 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1555 {
1556         XA_STATE(xas, xa, index);
1557         void *curr;
1558 
1559         if (WARN_ON_ONCE(xa_is_advanced(entry)))
1560                 return XA_ERROR(-EINVAL);
1561         if (xa_track_free(xa) && !entry)
1562                 entry = XA_ZERO_ENTRY;
1563 
1564         do {
1565                 curr = xas_store(&xas, entry);
1566                 if (xa_track_free(xa))
1567                         xas_clear_mark(&xas, XA_FREE_MARK);
1568         } while (__xas_nomem(&xas, gfp));
1569 
1570         return xas_result(&xas, curr);
1571 }
1572 EXPORT_SYMBOL(__xa_store);
1573 
1574 /**
1575  * xa_store() - Store this entry in the XArray.
1576  * @xa: XArray.
1577  * @index: Index into array.
1578  * @entry: New entry.
1579  * @gfp: Memory allocation flags.
1580  *
1581  * After this function returns, loads from this index will return @entry.
1582  * Storing into an existing multi-index entry updates the entry of every index.
1583  * The marks associated with @index are unaffected unless @entry is %NULL.
1584  *
1585  * Context: Any context.  Takes and releases the xa_lock.
1586  * May sleep if the @gfp flags permit.
1587  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1588  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1589  * failed.
1590  */
1591 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1592 {
1593         void *curr;
1594 
1595         xa_lock(xa);
1596         curr = __xa_store(xa, index, entry, gfp);
1597         xa_unlock(xa);
1598 
1599         return curr;
1600 }
1601 EXPORT_SYMBOL(xa_store);
1602 
1603 /**
1604  * __xa_cmpxchg() - Store this entry in the XArray.
1605  * @xa: XArray.
1606  * @index: Index into array.
1607  * @old: Old value to test against.
1608  * @entry: New entry.
1609  * @gfp: Memory allocation flags.
1610  *
1611  * You must already be holding the xa_lock when calling this function.
1612  * It will drop the lock if needed to allocate memory, and then reacquire
1613  * it afterwards.
1614  *
1615  * Context: Any context.  Expects xa_lock to be held on entry.  May
1616  * release and reacquire xa_lock if @gfp flags permit.
1617  * Return: The old entry at this index or xa_err() if an error happened.
1618  */
1619 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1620                         void *old, void *entry, gfp_t gfp)
1621 {
1622         XA_STATE(xas, xa, index);
1623         void *curr;
1624 
1625         if (WARN_ON_ONCE(xa_is_advanced(entry)))
1626                 return XA_ERROR(-EINVAL);
1627 
1628         do {
1629                 curr = xas_load(&xas);
1630                 if (curr == old) {
1631                         xas_store(&xas, entry);
1632                         if (xa_track_free(xa) && entry && !curr)
1633                                 xas_clear_mark(&xas, XA_FREE_MARK);
1634                 }
1635         } while (__xas_nomem(&xas, gfp));
1636 
1637         return xas_result(&xas, curr);
1638 }
1639 EXPORT_SYMBOL(__xa_cmpxchg);
1640 
1641 /**
1642  * __xa_insert() - Store this entry in the XArray if no entry is present.
1643  * @xa: XArray.
1644  * @index: Index into array.
1645  * @entry: New entry.
1646  * @gfp: Memory allocation flags.
1647  *
1648  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1649  * if no entry is present.  Inserting will fail if a reserved entry is
1650  * present, even though loading from this index will return NULL.
1651  *
1652  * Context: Any context.  Expects xa_lock to be held on entry.  May
1653  * release and reacquire xa_lock if @gfp flags permit.
1654  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1655  * -ENOMEM if memory could not be allocated.
1656  */
1657 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1658 {
1659         XA_STATE(xas, xa, index);
1660         void *curr;
1661 
1662         if (WARN_ON_ONCE(xa_is_advanced(entry)))
1663                 return -EINVAL;
1664         if (!entry)
1665                 entry = XA_ZERO_ENTRY;
1666 
1667         do {
1668                 curr = xas_load(&xas);
1669                 if (!curr) {
1670                         xas_store(&xas, entry);
1671                         if (xa_track_free(xa))
1672                                 xas_clear_mark(&xas, XA_FREE_MARK);
1673                 } else {
1674                         xas_set_err(&xas, -EBUSY);
1675                 }
1676         } while (__xas_nomem(&xas, gfp));
1677 
1678         return xas_error(&xas);
1679 }
1680 EXPORT_SYMBOL(__xa_insert);
1681 
1682 #ifdef CONFIG_XARRAY_MULTI
1683 static void xas_set_range(struct xa_state *xas, unsigned long first,
1684                 unsigned long last)
1685 {
1686         unsigned int shift = 0;
1687         unsigned long sibs = last - first;
1688         unsigned int offset = XA_CHUNK_MASK;
1689 
1690         xas_set(xas, first);
1691 
1692         while ((first & XA_CHUNK_MASK) == 0) {
1693                 if (sibs < XA_CHUNK_MASK)
1694                         break;
1695                 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1696                         break;
1697                 shift += XA_CHUNK_SHIFT;
1698                 if (offset == XA_CHUNK_MASK)
1699                         offset = sibs & XA_CHUNK_MASK;
1700                 sibs >>= XA_CHUNK_SHIFT;
1701                 first >>= XA_CHUNK_SHIFT;
1702         }
1703 
1704         offset = first & XA_CHUNK_MASK;
1705         if (offset + sibs > XA_CHUNK_MASK)
1706                 sibs = XA_CHUNK_MASK - offset;
1707         if ((((first + sibs + 1) << shift) - 1) > last)
1708                 sibs -= 1;
1709 
1710         xas->xa_shift = shift;
1711         xas->xa_sibs = sibs;
1712 }
1713 
1714 /**
1715  * xa_store_range() - Store this entry at a range of indices in the XArray.
1716  * @xa: XArray.
1717  * @first: First index to affect.
1718  * @last: Last index to affect.
1719  * @entry: New entry.
1720  * @gfp: Memory allocation flags.
1721  *
1722  * After this function returns, loads from any index between @first and @last,
1723  * inclusive will return @entry.
1724  * Storing into an existing multi-index entry updates the entry of every index.
1725  * The marks associated with @index are unaffected unless @entry is %NULL.
1726  *
1727  * Context: Process context.  Takes and releases the xa_lock.  May sleep
1728  * if the @gfp flags permit.
1729  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1730  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1731  */
1732 void *xa_store_range(struct xarray *xa, unsigned long first,
1733                 unsigned long last, void *entry, gfp_t gfp)
1734 {
1735         XA_STATE(xas, xa, 0);
1736 
1737         if (WARN_ON_ONCE(xa_is_internal(entry)))
1738                 return XA_ERROR(-EINVAL);
1739         if (last < first)
1740                 return XA_ERROR(-EINVAL);
1741 
1742         do {
1743                 xas_lock(&xas);
1744                 if (entry) {
1745                         unsigned int order = BITS_PER_LONG;
1746                         if (last + 1)
1747                                 order = __ffs(last + 1);
1748                         xas_set_order(&xas, last, order);
1749                         xas_create(&xas, true);
1750                         if (xas_error(&xas))
1751                                 goto unlock;
1752                 }
1753                 do {
1754                         xas_set_range(&xas, first, last);
1755                         xas_store(&xas, entry);
1756                         if (xas_error(&xas))
1757                                 goto unlock;
1758                         first += xas_size(&xas);
1759                 } while (first <= last);
1760 unlock:
1761                 xas_unlock(&xas);
1762         } while (xas_nomem(&xas, gfp));
1763 
1764         return xas_result(&xas, NULL);
1765 }
1766 EXPORT_SYMBOL(xa_store_range);
1767 
1768 /**
1769  * xas_get_order() - Get the order of an entry.
1770  * @xas: XArray operation state.
1771  *
1772  * Called after xas_load, the xas should not be in an error state.
1773  *
1774  * Return: A number between 0 and 63 indicating the order of the entry.
1775  */
1776 int xas_get_order(struct xa_state *xas)
1777 {
1778         int order = 0;
1779 
1780         if (!xas->xa_node)
1781                 return 0;
1782 
1783         for (;;) {
1784                 unsigned int slot = xas->xa_offset + (1 << order);
1785 
1786                 if (slot >= XA_CHUNK_SIZE)
1787                         break;
1788                 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot)))
1789                         break;
1790                 order++;
1791         }
1792 
1793         order += xas->xa_node->shift;
1794         return order;
1795 }
1796 EXPORT_SYMBOL_GPL(xas_get_order);
1797 
1798 /**
1799  * xa_get_order() - Get the order of an entry.
1800  * @xa: XArray.
1801  * @index: Index of the entry.
1802  *
1803  * Return: A number between 0 and 63 indicating the order of the entry.
1804  */
1805 int xa_get_order(struct xarray *xa, unsigned long index)
1806 {
1807         XA_STATE(xas, xa, index);
1808         int order = 0;
1809         void *entry;
1810 
1811         rcu_read_lock();
1812         entry = xas_load(&xas);
1813         if (entry)
1814                 order = xas_get_order(&xas);
1815         rcu_read_unlock();
1816 
1817         return order;
1818 }
1819 EXPORT_SYMBOL(xa_get_order);
1820 #endif /* CONFIG_XARRAY_MULTI */
1821 
1822 /**
1823  * __xa_alloc() - Find somewhere to store this entry in the XArray.
1824  * @xa: XArray.
1825  * @id: Pointer to ID.
1826  * @limit: Range for allocated ID.
1827  * @entry: New entry.
1828  * @gfp: Memory allocation flags.
1829  *
1830  * Finds an empty entry in @xa between @limit.min and @limit.max,
1831  * stores the index into the @id pointer, then stores the entry at
1832  * that index.  A concurrent lookup will not see an uninitialised @id.
1833  *
1834  * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1835  * in xa_init_flags().
1836  *
1837  * Context: Any context.  Expects xa_lock to be held on entry.  May
1838  * release and reacquire xa_lock if @gfp flags permit.
1839  * Return: 0 on success, -ENOMEM if memory could not be allocated or
1840  * -EBUSY if there are no free entries in @limit.
1841  */
1842 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1843                 struct xa_limit limit, gfp_t gfp)
1844 {
1845         XA_STATE(xas, xa, 0);
1846 
1847         if (WARN_ON_ONCE(xa_is_advanced(entry)))
1848                 return -EINVAL;
1849         if (WARN_ON_ONCE(!xa_track_free(xa)))
1850                 return -EINVAL;
1851 
1852         if (!entry)
1853                 entry = XA_ZERO_ENTRY;
1854 
1855         do {
1856                 xas.xa_index = limit.min;
1857                 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1858                 if (xas.xa_node == XAS_RESTART)
1859                         xas_set_err(&xas, -EBUSY);
1860                 else
1861                         *id = xas.xa_index;
1862                 xas_store(&xas, entry);
1863                 xas_clear_mark(&xas, XA_FREE_MARK);
1864         } while (__xas_nomem(&xas, gfp));
1865 
1866         return xas_error(&xas);
1867 }
1868 EXPORT_SYMBOL(__xa_alloc);
1869 
1870 /**
1871  * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1872  * @xa: XArray.
1873  * @id: Pointer to ID.
1874  * @entry: New entry.
1875  * @limit: Range of allocated ID.
1876  * @next: Pointer to next ID to allocate.
1877  * @gfp: Memory allocation flags.
1878  *
1879  * Finds an empty entry in @xa between @limit.min and @limit.max,
1880  * stores the index into the @id pointer, then stores the entry at
1881  * that index.  A concurrent lookup will not see an uninitialised @id.
1882  * The search for an empty entry will start at @next and will wrap
1883  * around if necessary.
1884  *
1885  * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1886  * in xa_init_flags().
1887  *
1888  * Context: Any context.  Expects xa_lock to be held on entry.  May
1889  * release and reacquire xa_lock if @gfp flags permit.
1890  * Return: 0 if the allocation succeeded without wrapping.  1 if the
1891  * allocation succeeded after wrapping, -ENOMEM if memory could not be
1892  * allocated or -EBUSY if there are no free entries in @limit.
1893  */
1894 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1895                 struct xa_limit limit, u32 *next, gfp_t gfp)
1896 {
1897         u32 min = limit.min;
1898         int ret;
1899 
1900         limit.min = max(min, *next);
1901         ret = __xa_alloc(xa, id, entry, limit, gfp);
1902         if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1903                 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1904                 ret = 1;
1905         }
1906 
1907         if (ret < 0 && limit.min > min) {
1908                 limit.min = min;
1909                 ret = __xa_alloc(xa, id, entry, limit, gfp);
1910                 if (ret == 0)
1911                         ret = 1;
1912         }
1913 
1914         if (ret >= 0) {
1915                 *next = *id + 1;
1916                 if (*next == 0)
1917                         xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1918         }
1919         return ret;
1920 }
1921 EXPORT_SYMBOL(__xa_alloc_cyclic);
1922 
1923 /**
1924  * __xa_set_mark() - Set this mark on this entry while locked.
1925  * @xa: XArray.
1926  * @index: Index of entry.
1927  * @mark: Mark number.
1928  *
1929  * Attempting to set a mark on a %NULL entry does not succeed.
1930  *
1931  * Context: Any context.  Expects xa_lock to be held on entry.
1932  */
1933 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1934 {
1935         XA_STATE(xas, xa, index);
1936         void *entry = xas_load(&xas);
1937 
1938         if (entry)
1939                 xas_set_mark(&xas, mark);
1940 }
1941 EXPORT_SYMBOL(__xa_set_mark);
1942 
1943 /**
1944  * __xa_clear_mark() - Clear this mark on this entry while locked.
1945  * @xa: XArray.
1946  * @index: Index of entry.
1947  * @mark: Mark number.
1948  *
1949  * Context: Any context.  Expects xa_lock to be held on entry.
1950  */
1951 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1952 {
1953         XA_STATE(xas, xa, index);
1954         void *entry = xas_load(&xas);
1955 
1956         if (entry)
1957                 xas_clear_mark(&xas, mark);
1958 }
1959 EXPORT_SYMBOL(__xa_clear_mark);
1960 
1961 /**
1962  * xa_get_mark() - Inquire whether this mark is set on this entry.
1963  * @xa: XArray.
1964  * @index: Index of entry.
1965  * @mark: Mark number.
1966  *
1967  * This function uses the RCU read lock, so the result may be out of date
1968  * by the time it returns.  If you need the result to be stable, use a lock.
1969  *
1970  * Context: Any context.  Takes and releases the RCU lock.
1971  * Return: True if the entry at @index has this mark set, false if it doesn't.
1972  */
1973 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1974 {
1975         XA_STATE(xas, xa, index);
1976         void *entry;
1977 
1978         rcu_read_lock();
1979         entry = xas_start(&xas);
1980         while (xas_get_mark(&xas, mark)) {
1981                 if (!xa_is_node(entry))
1982                         goto found;
1983                 entry = xas_descend(&xas, xa_to_node(entry));
1984         }
1985         rcu_read_unlock();
1986         return false;
1987  found:
1988         rcu_read_unlock();
1989         return true;
1990 }
1991 EXPORT_SYMBOL(xa_get_mark);
1992 
1993 /**
1994  * xa_set_mark() - Set this mark on this entry.
1995  * @xa: XArray.
1996  * @index: Index of entry.
1997  * @mark: Mark number.
1998  *
1999  * Attempting to set a mark on a %NULL entry does not succeed.
2000  *
2001  * Context: Process context.  Takes and releases the xa_lock.
2002  */
2003 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2004 {
2005         xa_lock(xa);
2006         __xa_set_mark(xa, index, mark);
2007         xa_unlock(xa);
2008 }
2009 EXPORT_SYMBOL(xa_set_mark);
2010 
2011 /**
2012  * xa_clear_mark() - Clear this mark on this entry.
2013  * @xa: XArray.
2014  * @index: Index of entry.
2015  * @mark: Mark number.
2016  *
2017  * Clearing a mark always succeeds.
2018  *
2019  * Context: Process context.  Takes and releases the xa_lock.
2020  */
2021 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2022 {
2023         xa_lock(xa);
2024         __xa_clear_mark(xa, index, mark);
2025         xa_unlock(xa);
2026 }
2027 EXPORT_SYMBOL(xa_clear_mark);
2028 
2029 /**
2030  * xa_find() - Search the XArray for an entry.
2031  * @xa: XArray.
2032  * @indexp: Pointer to an index.
2033  * @max: Maximum index to search to.
2034  * @filter: Selection criterion.
2035  *
2036  * Finds the entry in @xa which matches the @filter, and has the lowest
2037  * index that is at least @indexp and no more than @max.
2038  * If an entry is found, @indexp is updated to be the index of the entry.
2039  * This function is protected by the RCU read lock, so it may not find
2040  * entries which are being simultaneously added.  It will not return an
2041  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2042  *
2043  * Context: Any context.  Takes and releases the RCU lock.
2044  * Return: The entry, if found, otherwise %NULL.
2045  */
2046 void *xa_find(struct xarray *xa, unsigned long *indexp,
2047                         unsigned long max, xa_mark_t filter)
2048 {
2049         XA_STATE(xas, xa, *indexp);
2050         void *entry;
2051 
2052         rcu_read_lock();
2053         do {
2054                 if ((__force unsigned int)filter < XA_MAX_MARKS)
2055                         entry = xas_find_marked(&xas, max, filter);
2056                 else
2057                         entry = xas_find(&xas, max);
2058         } while (xas_retry(&xas, entry));
2059         rcu_read_unlock();
2060 
2061         if (entry)
2062                 *indexp = xas.xa_index;
2063         return entry;
2064 }
2065 EXPORT_SYMBOL(xa_find);
2066 
2067 static bool xas_sibling(struct xa_state *xas)
2068 {
2069         struct xa_node *node = xas->xa_node;
2070         unsigned long mask;
2071 
2072         if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2073                 return false;
2074         mask = (XA_CHUNK_SIZE << node->shift) - 1;
2075         return (xas->xa_index & mask) >
2076                 ((unsigned long)xas->xa_offset << node->shift);
2077 }
2078 
2079 /**
2080  * xa_find_after() - Search the XArray for a present entry.
2081  * @xa: XArray.
2082  * @indexp: Pointer to an index.
2083  * @max: Maximum index to search to.
2084  * @filter: Selection criterion.
2085  *
2086  * Finds the entry in @xa which matches the @filter and has the lowest
2087  * index that is above @indexp and no more than @max.
2088  * If an entry is found, @indexp is updated to be the index of the entry.
2089  * This function is protected by the RCU read lock, so it may miss entries
2090  * which are being simultaneously added.  It will not return an
2091  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2092  *
2093  * Context: Any context.  Takes and releases the RCU lock.
2094  * Return: The pointer, if found, otherwise %NULL.
2095  */
2096 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2097                         unsigned long max, xa_mark_t filter)
2098 {
2099         XA_STATE(xas, xa, *indexp + 1);
2100         void *entry;
2101 
2102         if (xas.xa_index == 0)
2103                 return NULL;
2104 
2105         rcu_read_lock();
2106         for (;;) {
2107                 if ((__force unsigned int)filter < XA_MAX_MARKS)
2108                         entry = xas_find_marked(&xas, max, filter);
2109                 else
2110                         entry = xas_find(&xas, max);
2111 
2112                 if (xas_invalid(&xas))
2113                         break;
2114                 if (xas_sibling(&xas))
2115                         continue;
2116                 if (!xas_retry(&xas, entry))
2117                         break;
2118         }
2119         rcu_read_unlock();
2120 
2121         if (entry)
2122                 *indexp = xas.xa_index;
2123         return entry;
2124 }
2125 EXPORT_SYMBOL(xa_find_after);
2126 
2127 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2128                         unsigned long max, unsigned int n)
2129 {
2130         void *entry;
2131         unsigned int i = 0;
2132 
2133         rcu_read_lock();
2134         xas_for_each(xas, entry, max) {
2135                 if (xas_retry(xas, entry))
2136                         continue;
2137                 dst[i++] = entry;
2138                 if (i == n)
2139                         break;
2140         }
2141         rcu_read_unlock();
2142 
2143         return i;
2144 }
2145 
2146 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2147                         unsigned long max, unsigned int n, xa_mark_t mark)
2148 {
2149         void *entry;
2150         unsigned int i = 0;
2151 
2152         rcu_read_lock();
2153         xas_for_each_marked(xas, entry, max, mark) {
2154                 if (xas_retry(xas, entry))
2155                         continue;
2156                 dst[i++] = entry;
2157                 if (i == n)
2158                         break;
2159         }
2160         rcu_read_unlock();
2161 
2162         return i;
2163 }
2164 
2165 /**
2166  * xa_extract() - Copy selected entries from the XArray into a normal array.
2167  * @xa: The source XArray to copy from.
2168  * @dst: The buffer to copy entries into.
2169  * @start: The first index in the XArray eligible to be selected.
2170  * @max: The last index in the XArray eligible to be selected.
2171  * @n: The maximum number of entries to copy.
2172  * @filter: Selection criterion.
2173  *
2174  * Copies up to @n entries that match @filter from the XArray.  The
2175  * copied entries will have indices between @start and @max, inclusive.
2176  *
2177  * The @filter may be an XArray mark value, in which case entries which are
2178  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
2179  * which case all entries which are not %NULL will be copied.
2180  *
2181  * The entries returned may not represent a snapshot of the XArray at a
2182  * moment in time.  For example, if another thread stores to index 5, then
2183  * index 10, calling xa_extract() may return the old contents of index 5
2184  * and the new contents of index 10.  Indices not modified while this
2185  * function is running will not be skipped.
2186  *
2187  * If you need stronger guarantees, holding the xa_lock across calls to this
2188  * function will prevent concurrent modification.
2189  *
2190  * Context: Any context.  Takes and releases the RCU lock.
2191  * Return: The number of entries copied.
2192  */
2193 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2194                         unsigned long max, unsigned int n, xa_mark_t filter)
2195 {
2196         XA_STATE(xas, xa, start);
2197 
2198         if (!n)
2199                 return 0;
2200 
2201         if ((__force unsigned int)filter < XA_MAX_MARKS)
2202                 return xas_extract_marked(&xas, dst, max, n, filter);
2203         return xas_extract_present(&xas, dst, max, n);
2204 }
2205 EXPORT_SYMBOL(xa_extract);
2206 
2207 /**
2208  * xa_delete_node() - Private interface for workingset code.
2209  * @node: Node to be removed from the tree.
2210  * @update: Function to call to update ancestor nodes.
2211  *
2212  * Context: xa_lock must be held on entry and will not be released.
2213  */
2214 void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2215 {
2216         struct xa_state xas = {
2217                 .xa = node->array,
2218                 .xa_index = (unsigned long)node->offset <<
2219                                 (node->shift + XA_CHUNK_SHIFT),
2220                 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2221                 .xa_offset = node->offset,
2222                 .xa_node = xa_parent_locked(node->array, node),
2223                 .xa_update = update,
2224         };
2225 
2226         xas_store(&xas, NULL);
2227 }
2228 EXPORT_SYMBOL_GPL(xa_delete_node);      /* For the benefit of the test suite */
2229 
2230 /**
2231  * xa_destroy() - Free all internal data structures.
2232  * @xa: XArray.
2233  *
2234  * After calling this function, the XArray is empty and has freed all memory
2235  * allocated for its internal data structures.  You are responsible for
2236  * freeing the objects referenced by the XArray.
2237  *
2238  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
2239  */
2240 void xa_destroy(struct xarray *xa)
2241 {
2242         XA_STATE(xas, xa, 0);
2243         unsigned long flags;
2244         void *entry;
2245 
2246         xas.xa_node = NULL;
2247         xas_lock_irqsave(&xas, flags);
2248         entry = xa_head_locked(xa);
2249         RCU_INIT_POINTER(xa->xa_head, NULL);
2250         xas_init_marks(&xas);
2251         if (xa_zero_busy(xa))
2252                 xa_mark_clear(xa, XA_FREE_MARK);
2253         /* lockdep checks we're still holding the lock in xas_free_nodes() */
2254         if (xa_is_node(entry))
2255                 xas_free_nodes(&xas, xa_to_node(entry));
2256         xas_unlock_irqrestore(&xas, flags);
2257 }
2258 EXPORT_SYMBOL(xa_destroy);
2259 
2260 #ifdef XA_DEBUG
2261 void xa_dump_node(const struct xa_node *node)
2262 {
2263         unsigned i, j;
2264 
2265         if (!node)
2266                 return;
2267         if ((unsigned long)node & 3) {
2268                 pr_cont("node %px\n", node);
2269                 return;
2270         }
2271 
2272         pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2273                 "array %px list %px %px marks",
2274                 node, node->parent ? "offset" : "max", node->offset,
2275                 node->parent, node->shift, node->count, node->nr_values,
2276                 node->array, node->private_list.prev, node->private_list.next);
2277         for (i = 0; i < XA_MAX_MARKS; i++)
2278                 for (j = 0; j < XA_MARK_LONGS; j++)
2279                         pr_cont(" %lx", node->marks[i][j]);
2280         pr_cont("\n");
2281 }
2282 
2283 void xa_dump_index(unsigned long index, unsigned int shift)
2284 {
2285         if (!shift)
2286                 pr_info("%lu: ", index);
2287         else if (shift >= BITS_PER_LONG)
2288                 pr_info("0-%lu: ", ~0UL);
2289         else
2290                 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2291 }
2292 
2293 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2294 {
2295         if (!entry)
2296                 return;
2297 
2298         xa_dump_index(index, shift);
2299 
2300         if (xa_is_node(entry)) {
2301                 if (shift == 0) {
2302                         pr_cont("%px\n", entry);
2303                 } else {
2304                         unsigned long i;
2305                         struct xa_node *node = xa_to_node(entry);
2306                         xa_dump_node(node);
2307                         for (i = 0; i < XA_CHUNK_SIZE; i++)
2308                                 xa_dump_entry(node->slots[i],
2309                                       index + (i << node->shift), node->shift);
2310                 }
2311         } else if (xa_is_value(entry))
2312                 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2313                                                 xa_to_value(entry), entry);
2314         else if (!xa_is_internal(entry))
2315                 pr_cont("%px\n", entry);
2316         else if (xa_is_retry(entry))
2317                 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2318         else if (xa_is_sibling(entry))
2319                 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2320         else if (xa_is_zero(entry))
2321                 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2322         else
2323                 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2324 }
2325 
2326 void xa_dump(const struct xarray *xa)
2327 {
2328         void *entry = xa->xa_head;
2329         unsigned int shift = 0;
2330 
2331         pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2332                         xa->xa_flags, xa_marked(xa, XA_MARK_0),
2333                         xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2334         if (xa_is_node(entry))
2335                 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2336         xa_dump_entry(entry, 0, shift);
2337 }
2338 #endif
2339 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php