1 /* ****************************************************************** 2 * huff0 huffman decoder, 3 * part of Finite State Entropy library 4 * Copyright (c) Yann Collet, Facebook, Inc. 5 * 6 * You can contact the author at : 7 * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy 8 * 9 * This source code is licensed under both the BSD-style license (found in the 10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 11 * in the COPYING file in the root directory of this source tree). 12 * You may select, at your option, one of the above-listed licenses. 13 ****************************************************************** */ 14 15 /* ************************************************************** 16 * Dependencies 17 ****************************************************************/ 18 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ 19 #include "../common/compiler.h" 20 #include "../common/bitstream.h" /* BIT_* */ 21 #include "../common/fse.h" /* to compress headers */ 22 #define HUF_STATIC_LINKING_ONLY 23 #include "../common/huf.h" 24 #include "../common/error_private.h" 25 #include "../common/zstd_internal.h" 26 27 /* ************************************************************** 28 * Constants 29 ****************************************************************/ 30 31 #define HUF_DECODER_FAST_TABLELOG 11 32 33 /* ************************************************************** 34 * Macros 35 ****************************************************************/ 36 37 /* These two optional macros force the use one way or another of the two 38 * Huffman decompression implementations. You can't force in both directions 39 * at the same time. 40 */ 41 #if defined(HUF_FORCE_DECOMPRESS_X1) && \ 42 defined(HUF_FORCE_DECOMPRESS_X2) 43 #error "Cannot force the use of the X1 and X2 decoders at the same time!" 44 #endif 45 46 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2 47 # define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE 48 #else 49 # define HUF_ASM_X86_64_BMI2_ATTRS 50 #endif 51 52 #define HUF_EXTERN_C 53 #define HUF_ASM_DECL HUF_EXTERN_C 54 55 #if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)) 56 # define HUF_NEED_BMI2_FUNCTION 1 57 #else 58 # define HUF_NEED_BMI2_FUNCTION 0 59 #endif 60 61 #if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)) 62 # define HUF_NEED_DEFAULT_FUNCTION 1 63 #else 64 # define HUF_NEED_DEFAULT_FUNCTION 0 65 #endif 66 67 /* ************************************************************** 68 * Error Management 69 ****************************************************************/ 70 #define HUF_isError ERR_isError 71 72 73 /* ************************************************************** 74 * Byte alignment for workSpace management 75 ****************************************************************/ 76 #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) 77 #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) 78 79 80 /* ************************************************************** 81 * BMI2 Variant Wrappers 82 ****************************************************************/ 83 #if DYNAMIC_BMI2 84 85 #define HUF_DGEN(fn) \ 86 \ 87 static size_t fn##_default( \ 88 void* dst, size_t dstSize, \ 89 const void* cSrc, size_t cSrcSize, \ 90 const HUF_DTable* DTable) \ 91 { \ 92 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ 93 } \ 94 \ 95 static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ 96 void* dst, size_t dstSize, \ 97 const void* cSrc, size_t cSrcSize, \ 98 const HUF_DTable* DTable) \ 99 { \ 100 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ 101 } \ 102 \ 103 static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ 104 size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ 105 { \ 106 if (bmi2) { \ 107 return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ 108 } \ 109 return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ 110 } 111 112 #else 113 114 #define HUF_DGEN(fn) \ 115 static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ 116 size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ 117 { \ 118 (void)bmi2; \ 119 return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ 120 } 121 122 #endif 123 124 125 /*-***************************/ 126 /* generic DTableDesc */ 127 /*-***************************/ 128 typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; 129 130 static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) 131 { 132 DTableDesc dtd; 133 ZSTD_memcpy(&dtd, table, sizeof(dtd)); 134 return dtd; 135 } 136 137 #if ZSTD_ENABLE_ASM_X86_64_BMI2 138 139 static size_t HUF_initDStream(BYTE const* ip) { 140 BYTE const lastByte = ip[7]; 141 size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; 142 size_t const value = MEM_readLEST(ip) | 1; 143 assert(bitsConsumed <= 8); 144 return value << bitsConsumed; 145 } 146 typedef struct { 147 BYTE const* ip[4]; 148 BYTE* op[4]; 149 U64 bits[4]; 150 void const* dt; 151 BYTE const* ilimit; 152 BYTE* oend; 153 BYTE const* iend[4]; 154 } HUF_DecompressAsmArgs; 155 156 /* 157 * Initializes args for the asm decoding loop. 158 * @returns 0 on success 159 * 1 if the fallback implementation should be used. 160 * Or an error code on failure. 161 */ 162 static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) 163 { 164 void const* dt = DTable + 1; 165 U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; 166 167 const BYTE* const ilimit = (const BYTE*)src + 6 + 8; 168 169 BYTE* const oend = (BYTE*)dst + dstSize; 170 171 /* The following condition is false on x32 platform, 172 * but HUF_asm is not compatible with this ABI */ 173 if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1; 174 175 /* strict minimum : jump table + 1 byte per stream */ 176 if (srcSize < 10) 177 return ERROR(corruption_detected); 178 179 /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. 180 * If table log is not correct at this point, fallback to the old decoder. 181 * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. 182 */ 183 if (dtLog != HUF_DECODER_FAST_TABLELOG) 184 return 1; 185 186 /* Read the jump table. */ 187 { 188 const BYTE* const istart = (const BYTE*)src; 189 size_t const length1 = MEM_readLE16(istart); 190 size_t const length2 = MEM_readLE16(istart+2); 191 size_t const length3 = MEM_readLE16(istart+4); 192 size_t const length4 = srcSize - (length1 + length2 + length3 + 6); 193 args->iend[0] = istart + 6; /* jumpTable */ 194 args->iend[1] = args->iend[0] + length1; 195 args->iend[2] = args->iend[1] + length2; 196 args->iend[3] = args->iend[2] + length3; 197 198 /* HUF_initDStream() requires this, and this small of an input 199 * won't benefit from the ASM loop anyways. 200 * length1 must be >= 16 so that ip[0] >= ilimit before the loop 201 * starts. 202 */ 203 if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8) 204 return 1; 205 if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ 206 } 207 /* ip[] contains the position that is currently loaded into bits[]. */ 208 args->ip[0] = args->iend[1] - sizeof(U64); 209 args->ip[1] = args->iend[2] - sizeof(U64); 210 args->ip[2] = args->iend[3] - sizeof(U64); 211 args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); 212 213 /* op[] contains the output pointers. */ 214 args->op[0] = (BYTE*)dst; 215 args->op[1] = args->op[0] + (dstSize+3)/4; 216 args->op[2] = args->op[1] + (dstSize+3)/4; 217 args->op[3] = args->op[2] + (dstSize+3)/4; 218 219 /* No point to call the ASM loop for tiny outputs. */ 220 if (args->op[3] >= oend) 221 return 1; 222 223 /* bits[] is the bit container. 224 * It is read from the MSB down to the LSB. 225 * It is shifted left as it is read, and zeros are 226 * shifted in. After the lowest valid bit a 1 is 227 * set, so that CountTrailingZeros(bits[]) can be used 228 * to count how many bits we've consumed. 229 */ 230 args->bits[0] = HUF_initDStream(args->ip[0]); 231 args->bits[1] = HUF_initDStream(args->ip[1]); 232 args->bits[2] = HUF_initDStream(args->ip[2]); 233 args->bits[3] = HUF_initDStream(args->ip[3]); 234 235 /* If ip[] >= ilimit, it is guaranteed to be safe to 236 * reload bits[]. It may be beyond its section, but is 237 * guaranteed to be valid (>= istart). 238 */ 239 args->ilimit = ilimit; 240 241 args->oend = oend; 242 args->dt = dt; 243 244 return 0; 245 } 246 247 static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd) 248 { 249 /* Validate that we haven't overwritten. */ 250 if (args->op[stream] > segmentEnd) 251 return ERROR(corruption_detected); 252 /* Validate that we haven't read beyond iend[]. 253 * Note that ip[] may be < iend[] because the MSB is 254 * the next bit to read, and we may have consumed 100% 255 * of the stream, so down to iend[i] - 8 is valid. 256 */ 257 if (args->ip[stream] < args->iend[stream] - 8) 258 return ERROR(corruption_detected); 259 260 /* Construct the BIT_DStream_t. */ 261 bit->bitContainer = MEM_readLE64(args->ip[stream]); 262 bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]); 263 bit->start = (const char*)args->iend[0]; 264 bit->limitPtr = bit->start + sizeof(size_t); 265 bit->ptr = (const char*)args->ip[stream]; 266 267 return 0; 268 } 269 #endif 270 271 272 #ifndef HUF_FORCE_DECOMPRESS_X2 273 274 /*-***************************/ 275 /* single-symbol decoding */ 276 /*-***************************/ 277 typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ 278 279 /* 280 * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at 281 * a time. 282 */ 283 static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { 284 U64 D4; 285 if (MEM_isLittleEndian()) { 286 D4 = (symbol << 8) + nbBits; 287 } else { 288 D4 = symbol + (nbBits << 8); 289 } 290 D4 *= 0x0001000100010001ULL; 291 return D4; 292 } 293 294 /* 295 * Increase the tableLog to targetTableLog and rescales the stats. 296 * If tableLog > targetTableLog this is a no-op. 297 * @returns New tableLog 298 */ 299 static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) 300 { 301 if (tableLog > targetTableLog) 302 return tableLog; 303 if (tableLog < targetTableLog) { 304 U32 const scale = targetTableLog - tableLog; 305 U32 s; 306 /* Increase the weight for all non-zero probability symbols by scale. */ 307 for (s = 0; s < nbSymbols; ++s) { 308 huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); 309 } 310 /* Update rankVal to reflect the new weights. 311 * All weights except 0 get moved to weight + scale. 312 * Weights [1, scale] are empty. 313 */ 314 for (s = targetTableLog; s > scale; --s) { 315 rankVal[s] = rankVal[s - scale]; 316 } 317 for (s = scale; s > 0; --s) { 318 rankVal[s] = 0; 319 } 320 } 321 return targetTableLog; 322 } 323 324 typedef struct { 325 U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; 326 U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; 327 U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; 328 BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; 329 BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; 330 } HUF_ReadDTableX1_Workspace; 331 332 333 size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize) 334 { 335 return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0); 336 } 337 338 size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2) 339 { 340 U32 tableLog = 0; 341 U32 nbSymbols = 0; 342 size_t iSize; 343 void* const dtPtr = DTable + 1; 344 HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; 345 HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; 346 347 DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); 348 if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); 349 350 DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); 351 /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ 352 353 iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2); 354 if (HUF_isError(iSize)) return iSize; 355 356 357 /* Table header */ 358 { DTableDesc dtd = HUF_getDTableDesc(DTable); 359 U32 const maxTableLog = dtd.maxTableLog + 1; 360 U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); 361 tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); 362 if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ 363 dtd.tableType = 0; 364 dtd.tableLog = (BYTE)tableLog; 365 ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); 366 } 367 368 /* Compute symbols and rankStart given rankVal: 369 * 370 * rankVal already contains the number of values of each weight. 371 * 372 * symbols contains the symbols ordered by weight. First are the rankVal[0] 373 * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. 374 * symbols[0] is filled (but unused) to avoid a branch. 375 * 376 * rankStart contains the offset where each rank belongs in the DTable. 377 * rankStart[0] is not filled because there are no entries in the table for 378 * weight 0. 379 */ 380 { 381 int n; 382 int nextRankStart = 0; 383 int const unroll = 4; 384 int const nLimit = (int)nbSymbols - unroll + 1; 385 for (n=0; n<(int)tableLog+1; n++) { 386 U32 const curr = nextRankStart; 387 nextRankStart += wksp->rankVal[n]; 388 wksp->rankStart[n] = curr; 389 } 390 for (n=0; n < nLimit; n += unroll) { 391 int u; 392 for (u=0; u < unroll; ++u) { 393 size_t const w = wksp->huffWeight[n+u]; 394 wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); 395 } 396 } 397 for (; n < (int)nbSymbols; ++n) { 398 size_t const w = wksp->huffWeight[n]; 399 wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; 400 } 401 } 402 403 /* fill DTable 404 * We fill all entries of each weight in order. 405 * That way length is a constant for each iteration of the outer loop. 406 * We can switch based on the length to a different inner loop which is 407 * optimized for that particular case. 408 */ 409 { 410 U32 w; 411 int symbol=wksp->rankVal[0]; 412 int rankStart=0; 413 for (w=1; w<tableLog+1; ++w) { 414 int const symbolCount = wksp->rankVal[w]; 415 int const length = (1 << w) >> 1; 416 int uStart = rankStart; 417 BYTE const nbBits = (BYTE)(tableLog + 1 - w); 418 int s; 419 int u; 420 switch (length) { 421 case 1: 422 for (s=0; s<symbolCount; ++s) { 423 HUF_DEltX1 D; 424 D.byte = wksp->symbols[symbol + s]; 425 D.nbBits = nbBits; 426 dt[uStart] = D; 427 uStart += 1; 428 } 429 break; 430 case 2: 431 for (s=0; s<symbolCount; ++s) { 432 HUF_DEltX1 D; 433 D.byte = wksp->symbols[symbol + s]; 434 D.nbBits = nbBits; 435 dt[uStart+0] = D; 436 dt[uStart+1] = D; 437 uStart += 2; 438 } 439 break; 440 case 4: 441 for (s=0; s<symbolCount; ++s) { 442 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); 443 MEM_write64(dt + uStart, D4); 444 uStart += 4; 445 } 446 break; 447 case 8: 448 for (s=0; s<symbolCount; ++s) { 449 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); 450 MEM_write64(dt + uStart, D4); 451 MEM_write64(dt + uStart + 4, D4); 452 uStart += 8; 453 } 454 break; 455 default: 456 for (s=0; s<symbolCount; ++s) { 457 U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); 458 for (u=0; u < length; u += 16) { 459 MEM_write64(dt + uStart + u + 0, D4); 460 MEM_write64(dt + uStart + u + 4, D4); 461 MEM_write64(dt + uStart + u + 8, D4); 462 MEM_write64(dt + uStart + u + 12, D4); 463 } 464 assert(u == length); 465 uStart += length; 466 } 467 break; 468 } 469 symbol += symbolCount; 470 rankStart += symbolCount * length; 471 } 472 } 473 return iSize; 474 } 475 476 FORCE_INLINE_TEMPLATE BYTE 477 HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) 478 { 479 size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ 480 BYTE const c = dt[val].byte; 481 BIT_skipBits(Dstream, dt[val].nbBits); 482 return c; 483 } 484 485 #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ 486 *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) 487 488 #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ 489 if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ 490 HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) 491 492 #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ 493 if (MEM_64bits()) \ 494 HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) 495 496 HINT_INLINE size_t 497 HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) 498 { 499 BYTE* const pStart = p; 500 501 /* up to 4 symbols at a time */ 502 if ((pEnd - p) > 3) { 503 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { 504 HUF_DECODE_SYMBOLX1_2(p, bitDPtr); 505 HUF_DECODE_SYMBOLX1_1(p, bitDPtr); 506 HUF_DECODE_SYMBOLX1_2(p, bitDPtr); 507 HUF_DECODE_SYMBOLX1_0(p, bitDPtr); 508 } 509 } else { 510 BIT_reloadDStream(bitDPtr); 511 } 512 513 /* [0-3] symbols remaining */ 514 if (MEM_32bits()) 515 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) 516 HUF_DECODE_SYMBOLX1_0(p, bitDPtr); 517 518 /* no more data to retrieve from bitstream, no need to reload */ 519 while (p < pEnd) 520 HUF_DECODE_SYMBOLX1_0(p, bitDPtr); 521 522 return pEnd-pStart; 523 } 524 525 FORCE_INLINE_TEMPLATE size_t 526 HUF_decompress1X1_usingDTable_internal_body( 527 void* dst, size_t dstSize, 528 const void* cSrc, size_t cSrcSize, 529 const HUF_DTable* DTable) 530 { 531 BYTE* op = (BYTE*)dst; 532 BYTE* const oend = op + dstSize; 533 const void* dtPtr = DTable + 1; 534 const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; 535 BIT_DStream_t bitD; 536 DTableDesc const dtd = HUF_getDTableDesc(DTable); 537 U32 const dtLog = dtd.tableLog; 538 539 CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); 540 541 HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); 542 543 if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); 544 545 return dstSize; 546 } 547 548 FORCE_INLINE_TEMPLATE size_t 549 HUF_decompress4X1_usingDTable_internal_body( 550 void* dst, size_t dstSize, 551 const void* cSrc, size_t cSrcSize, 552 const HUF_DTable* DTable) 553 { 554 /* Check */ 555 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ 556 557 { const BYTE* const istart = (const BYTE*) cSrc; 558 BYTE* const ostart = (BYTE*) dst; 559 BYTE* const oend = ostart + dstSize; 560 BYTE* const olimit = oend - 3; 561 const void* const dtPtr = DTable + 1; 562 const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; 563 564 /* Init */ 565 BIT_DStream_t bitD1; 566 BIT_DStream_t bitD2; 567 BIT_DStream_t bitD3; 568 BIT_DStream_t bitD4; 569 size_t const length1 = MEM_readLE16(istart); 570 size_t const length2 = MEM_readLE16(istart+2); 571 size_t const length3 = MEM_readLE16(istart+4); 572 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); 573 const BYTE* const istart1 = istart + 6; /* jumpTable */ 574 const BYTE* const istart2 = istart1 + length1; 575 const BYTE* const istart3 = istart2 + length2; 576 const BYTE* const istart4 = istart3 + length3; 577 const size_t segmentSize = (dstSize+3) / 4; 578 BYTE* const opStart2 = ostart + segmentSize; 579 BYTE* const opStart3 = opStart2 + segmentSize; 580 BYTE* const opStart4 = opStart3 + segmentSize; 581 BYTE* op1 = ostart; 582 BYTE* op2 = opStart2; 583 BYTE* op3 = opStart3; 584 BYTE* op4 = opStart4; 585 DTableDesc const dtd = HUF_getDTableDesc(DTable); 586 U32 const dtLog = dtd.tableLog; 587 U32 endSignal = 1; 588 589 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ 590 if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ 591 CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); 592 CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); 593 CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); 594 CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); 595 596 /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ 597 if ((size_t)(oend - op4) >= sizeof(size_t)) { 598 for ( ; (endSignal) & (op4 < olimit) ; ) { 599 HUF_DECODE_SYMBOLX1_2(op1, &bitD1); 600 HUF_DECODE_SYMBOLX1_2(op2, &bitD2); 601 HUF_DECODE_SYMBOLX1_2(op3, &bitD3); 602 HUF_DECODE_SYMBOLX1_2(op4, &bitD4); 603 HUF_DECODE_SYMBOLX1_1(op1, &bitD1); 604 HUF_DECODE_SYMBOLX1_1(op2, &bitD2); 605 HUF_DECODE_SYMBOLX1_1(op3, &bitD3); 606 HUF_DECODE_SYMBOLX1_1(op4, &bitD4); 607 HUF_DECODE_SYMBOLX1_2(op1, &bitD1); 608 HUF_DECODE_SYMBOLX1_2(op2, &bitD2); 609 HUF_DECODE_SYMBOLX1_2(op3, &bitD3); 610 HUF_DECODE_SYMBOLX1_2(op4, &bitD4); 611 HUF_DECODE_SYMBOLX1_0(op1, &bitD1); 612 HUF_DECODE_SYMBOLX1_0(op2, &bitD2); 613 HUF_DECODE_SYMBOLX1_0(op3, &bitD3); 614 HUF_DECODE_SYMBOLX1_0(op4, &bitD4); 615 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; 616 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; 617 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; 618 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; 619 } 620 } 621 622 /* check corruption */ 623 /* note : should not be necessary : op# advance in lock step, and we control op4. 624 * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ 625 if (op1 > opStart2) return ERROR(corruption_detected); 626 if (op2 > opStart3) return ERROR(corruption_detected); 627 if (op3 > opStart4) return ERROR(corruption_detected); 628 /* note : op4 supposed already verified within main loop */ 629 630 /* finish bitStreams one by one */ 631 HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); 632 HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); 633 HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); 634 HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); 635 636 /* check */ 637 { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); 638 if (!endCheck) return ERROR(corruption_detected); } 639 640 /* decoded size */ 641 return dstSize; 642 } 643 } 644 645 #if HUF_NEED_BMI2_FUNCTION 646 static BMI2_TARGET_ATTRIBUTE 647 size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, 648 size_t cSrcSize, HUF_DTable const* DTable) { 649 return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); 650 } 651 #endif 652 653 #if HUF_NEED_DEFAULT_FUNCTION 654 static 655 size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, 656 size_t cSrcSize, HUF_DTable const* DTable) { 657 return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); 658 } 659 #endif 660 661 #if ZSTD_ENABLE_ASM_X86_64_BMI2 662 663 HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN; 664 665 static HUF_ASM_X86_64_BMI2_ATTRS 666 size_t 667 HUF_decompress4X1_usingDTable_internal_bmi2_asm( 668 void* dst, size_t dstSize, 669 const void* cSrc, size_t cSrcSize, 670 const HUF_DTable* DTable) 671 { 672 void const* dt = DTable + 1; 673 const BYTE* const iend = (const BYTE*)cSrc + 6; 674 BYTE* const oend = (BYTE*)dst + dstSize; 675 HUF_DecompressAsmArgs args; 676 { 677 size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); 678 FORWARD_IF_ERROR(ret, "Failed to init asm args"); 679 if (ret != 0) 680 return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); 681 } 682 683 assert(args.ip[0] >= args.ilimit); 684 HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args); 685 686 /* Our loop guarantees that ip[] >= ilimit and that we haven't 687 * overwritten any op[]. 688 */ 689 assert(args.ip[0] >= iend); 690 assert(args.ip[1] >= iend); 691 assert(args.ip[2] >= iend); 692 assert(args.ip[3] >= iend); 693 assert(args.op[3] <= oend); 694 (void)iend; 695 696 /* finish bit streams one by one. */ 697 { 698 size_t const segmentSize = (dstSize+3) / 4; 699 BYTE* segmentEnd = (BYTE*)dst; 700 int i; 701 for (i = 0; i < 4; ++i) { 702 BIT_DStream_t bit; 703 if (segmentSize <= (size_t)(oend - segmentEnd)) 704 segmentEnd += segmentSize; 705 else 706 segmentEnd = oend; 707 FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); 708 /* Decompress and validate that we've produced exactly the expected length. */ 709 args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); 710 if (args.op[i] != segmentEnd) return ERROR(corruption_detected); 711 } 712 } 713 714 /* decoded size */ 715 return dstSize; 716 } 717 #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */ 718 719 typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize, 720 const void *cSrc, 721 size_t cSrcSize, 722 const HUF_DTable *DTable); 723 724 HUF_DGEN(HUF_decompress1X1_usingDTable_internal) 725 726 static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, 727 size_t cSrcSize, HUF_DTable const* DTable, int bmi2) 728 { 729 #if DYNAMIC_BMI2 730 if (bmi2) { 731 # if ZSTD_ENABLE_ASM_X86_64_BMI2 732 return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); 733 # else 734 return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); 735 # endif 736 } 737 #else 738 (void)bmi2; 739 #endif 740 741 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) 742 return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); 743 #else 744 return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable); 745 #endif 746 } 747 748 749 size_t HUF_decompress1X1_usingDTable( 750 void* dst, size_t dstSize, 751 const void* cSrc, size_t cSrcSize, 752 const HUF_DTable* DTable) 753 { 754 DTableDesc dtd = HUF_getDTableDesc(DTable); 755 if (dtd.tableType != 0) return ERROR(GENERIC); 756 return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 757 } 758 759 size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, 760 const void* cSrc, size_t cSrcSize, 761 void* workSpace, size_t wkspSize) 762 { 763 const BYTE* ip = (const BYTE*) cSrc; 764 765 size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize); 766 if (HUF_isError(hSize)) return hSize; 767 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 768 ip += hSize; cSrcSize -= hSize; 769 770 return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); 771 } 772 773 774 size_t HUF_decompress4X1_usingDTable( 775 void* dst, size_t dstSize, 776 const void* cSrc, size_t cSrcSize, 777 const HUF_DTable* DTable) 778 { 779 DTableDesc dtd = HUF_getDTableDesc(DTable); 780 if (dtd.tableType != 0) return ERROR(GENERIC); 781 return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 782 } 783 784 static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, 785 const void* cSrc, size_t cSrcSize, 786 void* workSpace, size_t wkspSize, int bmi2) 787 { 788 const BYTE* ip = (const BYTE*) cSrc; 789 790 size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); 791 if (HUF_isError(hSize)) return hSize; 792 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 793 ip += hSize; cSrcSize -= hSize; 794 795 return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); 796 } 797 798 size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, 799 const void* cSrc, size_t cSrcSize, 800 void* workSpace, size_t wkspSize) 801 { 802 return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0); 803 } 804 805 806 #endif /* HUF_FORCE_DECOMPRESS_X2 */ 807 808 809 #ifndef HUF_FORCE_DECOMPRESS_X1 810 811 /* *************************/ 812 /* double-symbols decoding */ 813 /* *************************/ 814 815 typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ 816 typedef struct { BYTE symbol; } sortedSymbol_t; 817 typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; 818 typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; 819 820 /* 821 * Constructs a HUF_DEltX2 in a U32. 822 */ 823 static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) 824 { 825 U32 seq; 826 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); 827 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); 828 DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); 829 DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); 830 if (MEM_isLittleEndian()) { 831 seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); 832 return seq + (nbBits << 16) + ((U32)level << 24); 833 } else { 834 seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); 835 return (seq << 16) + (nbBits << 8) + (U32)level; 836 } 837 } 838 839 /* 840 * Constructs a HUF_DEltX2. 841 */ 842 static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) 843 { 844 HUF_DEltX2 DElt; 845 U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); 846 DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); 847 ZSTD_memcpy(&DElt, &val, sizeof(val)); 848 return DElt; 849 } 850 851 /* 852 * Constructs 2 HUF_DEltX2s and packs them into a U64. 853 */ 854 static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) 855 { 856 U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); 857 return (U64)DElt + ((U64)DElt << 32); 858 } 859 860 /* 861 * Fills the DTable rank with all the symbols from [begin, end) that are each 862 * nbBits long. 863 * 864 * @param DTableRank The start of the rank in the DTable. 865 * @param begin The first symbol to fill (inclusive). 866 * @param end The last symbol to fill (exclusive). 867 * @param nbBits Each symbol is nbBits long. 868 * @param tableLog The table log. 869 * @param baseSeq If level == 1 { 0 } else { the first level symbol } 870 * @param level The level in the table. Must be 1 or 2. 871 */ 872 static void HUF_fillDTableX2ForWeight( 873 HUF_DEltX2* DTableRank, 874 sortedSymbol_t const* begin, sortedSymbol_t const* end, 875 U32 nbBits, U32 tableLog, 876 U16 baseSeq, int const level) 877 { 878 U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); 879 const sortedSymbol_t* ptr; 880 assert(level >= 1 && level <= 2); 881 switch (length) { 882 case 1: 883 for (ptr = begin; ptr != end; ++ptr) { 884 HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); 885 *DTableRank++ = DElt; 886 } 887 break; 888 case 2: 889 for (ptr = begin; ptr != end; ++ptr) { 890 HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); 891 DTableRank[0] = DElt; 892 DTableRank[1] = DElt; 893 DTableRank += 2; 894 } 895 break; 896 case 4: 897 for (ptr = begin; ptr != end; ++ptr) { 898 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); 899 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); 900 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); 901 DTableRank += 4; 902 } 903 break; 904 case 8: 905 for (ptr = begin; ptr != end; ++ptr) { 906 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); 907 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); 908 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); 909 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); 910 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); 911 DTableRank += 8; 912 } 913 break; 914 default: 915 for (ptr = begin; ptr != end; ++ptr) { 916 U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); 917 HUF_DEltX2* const DTableRankEnd = DTableRank + length; 918 for (; DTableRank != DTableRankEnd; DTableRank += 8) { 919 ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); 920 ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); 921 ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); 922 ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); 923 } 924 } 925 break; 926 } 927 } 928 929 /* HUF_fillDTableX2Level2() : 930 * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ 931 static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, 932 const U32* rankVal, const int minWeight, const int maxWeight1, 933 const sortedSymbol_t* sortedSymbols, U32 const* rankStart, 934 U32 nbBitsBaseline, U16 baseSeq) 935 { 936 /* Fill skipped values (all positions up to rankVal[minWeight]). 937 * These are positions only get a single symbol because the combined weight 938 * is too large. 939 */ 940 if (minWeight>1) { 941 U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); 942 U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); 943 int const skipSize = rankVal[minWeight]; 944 assert(length > 1); 945 assert((U32)skipSize < length); 946 switch (length) { 947 case 2: 948 assert(skipSize == 1); 949 ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); 950 break; 951 case 4: 952 assert(skipSize <= 4); 953 ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); 954 ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); 955 break; 956 default: 957 { 958 int i; 959 for (i = 0; i < skipSize; i += 8) { 960 ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); 961 ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); 962 ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); 963 ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); 964 } 965 } 966 } 967 } 968 969 /* Fill each of the second level symbols by weight. */ 970 { 971 int w; 972 for (w = minWeight; w < maxWeight1; ++w) { 973 int const begin = rankStart[w]; 974 int const end = rankStart[w+1]; 975 U32 const nbBits = nbBitsBaseline - w; 976 U32 const totalBits = nbBits + consumedBits; 977 HUF_fillDTableX2ForWeight( 978 DTable + rankVal[w], 979 sortedSymbols + begin, sortedSymbols + end, 980 totalBits, targetLog, 981 baseSeq, /* level */ 2); 982 } 983 } 984 } 985 986 static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, 987 const sortedSymbol_t* sortedList, 988 const U32* rankStart, rankValCol_t *rankValOrigin, const U32 maxWeight, 989 const U32 nbBitsBaseline) 990 { 991 U32* const rankVal = rankValOrigin[0]; 992 const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ 993 const U32 minBits = nbBitsBaseline - maxWeight; 994 int w; 995 int const wEnd = (int)maxWeight + 1; 996 997 /* Fill DTable in order of weight. */ 998 for (w = 1; w < wEnd; ++w) { 999 int const begin = (int)rankStart[w]; 1000 int const end = (int)rankStart[w+1]; 1001 U32 const nbBits = nbBitsBaseline - w; 1002 1003 if (targetLog-nbBits >= minBits) { 1004 /* Enough room for a second symbol. */ 1005 int start = rankVal[w]; 1006 U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); 1007 int minWeight = nbBits + scaleLog; 1008 int s; 1009 if (minWeight < 1) minWeight = 1; 1010 /* Fill the DTable for every symbol of weight w. 1011 * These symbols get at least 1 second symbol. 1012 */ 1013 for (s = begin; s != end; ++s) { 1014 HUF_fillDTableX2Level2( 1015 DTable + start, targetLog, nbBits, 1016 rankValOrigin[nbBits], minWeight, wEnd, 1017 sortedList, rankStart, 1018 nbBitsBaseline, sortedList[s].symbol); 1019 start += length; 1020 } 1021 } else { 1022 /* Only a single symbol. */ 1023 HUF_fillDTableX2ForWeight( 1024 DTable + rankVal[w], 1025 sortedList + begin, sortedList + end, 1026 nbBits, targetLog, 1027 /* baseSeq */ 0, /* level */ 1); 1028 } 1029 } 1030 } 1031 1032 typedef struct { 1033 rankValCol_t rankVal[HUF_TABLELOG_MAX]; 1034 U32 rankStats[HUF_TABLELOG_MAX + 1]; 1035 U32 rankStart0[HUF_TABLELOG_MAX + 3]; 1036 sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; 1037 BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; 1038 U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; 1039 } HUF_ReadDTableX2_Workspace; 1040 1041 size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, 1042 const void* src, size_t srcSize, 1043 void* workSpace, size_t wkspSize) 1044 { 1045 return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0); 1046 } 1047 1048 size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable, 1049 const void* src, size_t srcSize, 1050 void* workSpace, size_t wkspSize, int bmi2) 1051 { 1052 U32 tableLog, maxW, nbSymbols; 1053 DTableDesc dtd = HUF_getDTableDesc(DTable); 1054 U32 maxTableLog = dtd.maxTableLog; 1055 size_t iSize; 1056 void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ 1057 HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; 1058 U32 *rankStart; 1059 1060 HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; 1061 1062 if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); 1063 1064 rankStart = wksp->rankStart0 + 1; 1065 ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); 1066 ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); 1067 1068 DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ 1069 if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); 1070 /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ 1071 1072 iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2); 1073 if (HUF_isError(iSize)) return iSize; 1074 1075 /* check result */ 1076 if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ 1077 if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; 1078 1079 /* find maxWeight */ 1080 for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ 1081 1082 /* Get start index of each weight */ 1083 { U32 w, nextRankStart = 0; 1084 for (w=1; w<maxW+1; w++) { 1085 U32 curr = nextRankStart; 1086 nextRankStart += wksp->rankStats[w]; 1087 rankStart[w] = curr; 1088 } 1089 rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ 1090 rankStart[maxW+1] = nextRankStart; 1091 } 1092 1093 /* sort symbols by weight */ 1094 { U32 s; 1095 for (s=0; s<nbSymbols; s++) { 1096 U32 const w = wksp->weightList[s]; 1097 U32 const r = rankStart[w]++; 1098 wksp->sortedSymbol[r].symbol = (BYTE)s; 1099 } 1100 rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ 1101 } 1102 1103 /* Build rankVal */ 1104 { U32* const rankVal0 = wksp->rankVal[0]; 1105 { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ 1106 U32 nextRankVal = 0; 1107 U32 w; 1108 for (w=1; w<maxW+1; w++) { 1109 U32 curr = nextRankVal; 1110 nextRankVal += wksp->rankStats[w] << (w+rescale); 1111 rankVal0[w] = curr; 1112 } } 1113 { U32 const minBits = tableLog+1 - maxW; 1114 U32 consumed; 1115 for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { 1116 U32* const rankValPtr = wksp->rankVal[consumed]; 1117 U32 w; 1118 for (w = 1; w < maxW+1; w++) { 1119 rankValPtr[w] = rankVal0[w] >> consumed; 1120 } } } } 1121 1122 HUF_fillDTableX2(dt, maxTableLog, 1123 wksp->sortedSymbol, 1124 wksp->rankStart0, wksp->rankVal, maxW, 1125 tableLog+1); 1126 1127 dtd.tableLog = (BYTE)maxTableLog; 1128 dtd.tableType = 1; 1129 ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); 1130 return iSize; 1131 } 1132 1133 1134 FORCE_INLINE_TEMPLATE U32 1135 HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) 1136 { 1137 size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ 1138 ZSTD_memcpy(op, &dt[val].sequence, 2); 1139 BIT_skipBits(DStream, dt[val].nbBits); 1140 return dt[val].length; 1141 } 1142 1143 FORCE_INLINE_TEMPLATE U32 1144 HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) 1145 { 1146 size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ 1147 ZSTD_memcpy(op, &dt[val].sequence, 1); 1148 if (dt[val].length==1) { 1149 BIT_skipBits(DStream, dt[val].nbBits); 1150 } else { 1151 if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { 1152 BIT_skipBits(DStream, dt[val].nbBits); 1153 if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) 1154 /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ 1155 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); 1156 } 1157 } 1158 return 1; 1159 } 1160 1161 #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ 1162 ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) 1163 1164 #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ 1165 if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ 1166 ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) 1167 1168 #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ 1169 if (MEM_64bits()) \ 1170 ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) 1171 1172 HINT_INLINE size_t 1173 HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, 1174 const HUF_DEltX2* const dt, const U32 dtLog) 1175 { 1176 BYTE* const pStart = p; 1177 1178 /* up to 8 symbols at a time */ 1179 if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { 1180 if (dtLog <= 11 && MEM_64bits()) { 1181 /* up to 10 symbols at a time */ 1182 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { 1183 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); 1184 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); 1185 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); 1186 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); 1187 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); 1188 } 1189 } else { 1190 /* up to 8 symbols at a time */ 1191 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { 1192 HUF_DECODE_SYMBOLX2_2(p, bitDPtr); 1193 HUF_DECODE_SYMBOLX2_1(p, bitDPtr); 1194 HUF_DECODE_SYMBOLX2_2(p, bitDPtr); 1195 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); 1196 } 1197 } 1198 } else { 1199 BIT_reloadDStream(bitDPtr); 1200 } 1201 1202 /* closer to end : up to 2 symbols at a time */ 1203 if ((size_t)(pEnd - p) >= 2) { 1204 while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) 1205 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); 1206 1207 while (p <= pEnd-2) 1208 HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ 1209 } 1210 1211 if (p < pEnd) 1212 p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); 1213 1214 return p-pStart; 1215 } 1216 1217 FORCE_INLINE_TEMPLATE size_t 1218 HUF_decompress1X2_usingDTable_internal_body( 1219 void* dst, size_t dstSize, 1220 const void* cSrc, size_t cSrcSize, 1221 const HUF_DTable* DTable) 1222 { 1223 BIT_DStream_t bitD; 1224 1225 /* Init */ 1226 CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); 1227 1228 /* decode */ 1229 { BYTE* const ostart = (BYTE*) dst; 1230 BYTE* const oend = ostart + dstSize; 1231 const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ 1232 const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; 1233 DTableDesc const dtd = HUF_getDTableDesc(DTable); 1234 HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); 1235 } 1236 1237 /* check */ 1238 if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); 1239 1240 /* decoded size */ 1241 return dstSize; 1242 } 1243 FORCE_INLINE_TEMPLATE size_t 1244 HUF_decompress4X2_usingDTable_internal_body( 1245 void* dst, size_t dstSize, 1246 const void* cSrc, size_t cSrcSize, 1247 const HUF_DTable* DTable) 1248 { 1249 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ 1250 1251 { const BYTE* const istart = (const BYTE*) cSrc; 1252 BYTE* const ostart = (BYTE*) dst; 1253 BYTE* const oend = ostart + dstSize; 1254 BYTE* const olimit = oend - (sizeof(size_t)-1); 1255 const void* const dtPtr = DTable+1; 1256 const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; 1257 1258 /* Init */ 1259 BIT_DStream_t bitD1; 1260 BIT_DStream_t bitD2; 1261 BIT_DStream_t bitD3; 1262 BIT_DStream_t bitD4; 1263 size_t const length1 = MEM_readLE16(istart); 1264 size_t const length2 = MEM_readLE16(istart+2); 1265 size_t const length3 = MEM_readLE16(istart+4); 1266 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); 1267 const BYTE* const istart1 = istart + 6; /* jumpTable */ 1268 const BYTE* const istart2 = istart1 + length1; 1269 const BYTE* const istart3 = istart2 + length2; 1270 const BYTE* const istart4 = istart3 + length3; 1271 size_t const segmentSize = (dstSize+3) / 4; 1272 BYTE* const opStart2 = ostart + segmentSize; 1273 BYTE* const opStart3 = opStart2 + segmentSize; 1274 BYTE* const opStart4 = opStart3 + segmentSize; 1275 BYTE* op1 = ostart; 1276 BYTE* op2 = opStart2; 1277 BYTE* op3 = opStart3; 1278 BYTE* op4 = opStart4; 1279 U32 endSignal = 1; 1280 DTableDesc const dtd = HUF_getDTableDesc(DTable); 1281 U32 const dtLog = dtd.tableLog; 1282 1283 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ 1284 if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ 1285 CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); 1286 CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); 1287 CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); 1288 CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); 1289 1290 /* 16-32 symbols per loop (4-8 symbols per stream) */ 1291 if ((size_t)(oend - op4) >= sizeof(size_t)) { 1292 for ( ; (endSignal) & (op4 < olimit); ) { 1293 #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) 1294 HUF_DECODE_SYMBOLX2_2(op1, &bitD1); 1295 HUF_DECODE_SYMBOLX2_1(op1, &bitD1); 1296 HUF_DECODE_SYMBOLX2_2(op1, &bitD1); 1297 HUF_DECODE_SYMBOLX2_0(op1, &bitD1); 1298 HUF_DECODE_SYMBOLX2_2(op2, &bitD2); 1299 HUF_DECODE_SYMBOLX2_1(op2, &bitD2); 1300 HUF_DECODE_SYMBOLX2_2(op2, &bitD2); 1301 HUF_DECODE_SYMBOLX2_0(op2, &bitD2); 1302 endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; 1303 endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; 1304 HUF_DECODE_SYMBOLX2_2(op3, &bitD3); 1305 HUF_DECODE_SYMBOLX2_1(op3, &bitD3); 1306 HUF_DECODE_SYMBOLX2_2(op3, &bitD3); 1307 HUF_DECODE_SYMBOLX2_0(op3, &bitD3); 1308 HUF_DECODE_SYMBOLX2_2(op4, &bitD4); 1309 HUF_DECODE_SYMBOLX2_1(op4, &bitD4); 1310 HUF_DECODE_SYMBOLX2_2(op4, &bitD4); 1311 HUF_DECODE_SYMBOLX2_0(op4, &bitD4); 1312 endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; 1313 endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; 1314 #else 1315 HUF_DECODE_SYMBOLX2_2(op1, &bitD1); 1316 HUF_DECODE_SYMBOLX2_2(op2, &bitD2); 1317 HUF_DECODE_SYMBOLX2_2(op3, &bitD3); 1318 HUF_DECODE_SYMBOLX2_2(op4, &bitD4); 1319 HUF_DECODE_SYMBOLX2_1(op1, &bitD1); 1320 HUF_DECODE_SYMBOLX2_1(op2, &bitD2); 1321 HUF_DECODE_SYMBOLX2_1(op3, &bitD3); 1322 HUF_DECODE_SYMBOLX2_1(op4, &bitD4); 1323 HUF_DECODE_SYMBOLX2_2(op1, &bitD1); 1324 HUF_DECODE_SYMBOLX2_2(op2, &bitD2); 1325 HUF_DECODE_SYMBOLX2_2(op3, &bitD3); 1326 HUF_DECODE_SYMBOLX2_2(op4, &bitD4); 1327 HUF_DECODE_SYMBOLX2_0(op1, &bitD1); 1328 HUF_DECODE_SYMBOLX2_0(op2, &bitD2); 1329 HUF_DECODE_SYMBOLX2_0(op3, &bitD3); 1330 HUF_DECODE_SYMBOLX2_0(op4, &bitD4); 1331 endSignal = (U32)LIKELY((U32) 1332 (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) 1333 & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) 1334 & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) 1335 & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); 1336 #endif 1337 } 1338 } 1339 1340 /* check corruption */ 1341 if (op1 > opStart2) return ERROR(corruption_detected); 1342 if (op2 > opStart3) return ERROR(corruption_detected); 1343 if (op3 > opStart4) return ERROR(corruption_detected); 1344 /* note : op4 already verified within main loop */ 1345 1346 /* finish bitStreams one by one */ 1347 HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); 1348 HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); 1349 HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); 1350 HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); 1351 1352 /* check */ 1353 { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); 1354 if (!endCheck) return ERROR(corruption_detected); } 1355 1356 /* decoded size */ 1357 return dstSize; 1358 } 1359 } 1360 1361 #if HUF_NEED_BMI2_FUNCTION 1362 static BMI2_TARGET_ATTRIBUTE 1363 size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, 1364 size_t cSrcSize, HUF_DTable const* DTable) { 1365 return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); 1366 } 1367 #endif 1368 1369 #if HUF_NEED_DEFAULT_FUNCTION 1370 static 1371 size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, 1372 size_t cSrcSize, HUF_DTable const* DTable) { 1373 return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); 1374 } 1375 #endif 1376 1377 #if ZSTD_ENABLE_ASM_X86_64_BMI2 1378 1379 HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN; 1380 1381 static HUF_ASM_X86_64_BMI2_ATTRS size_t 1382 HUF_decompress4X2_usingDTable_internal_bmi2_asm( 1383 void* dst, size_t dstSize, 1384 const void* cSrc, size_t cSrcSize, 1385 const HUF_DTable* DTable) { 1386 void const* dt = DTable + 1; 1387 const BYTE* const iend = (const BYTE*)cSrc + 6; 1388 BYTE* const oend = (BYTE*)dst + dstSize; 1389 HUF_DecompressAsmArgs args; 1390 { 1391 size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); 1392 FORWARD_IF_ERROR(ret, "Failed to init asm args"); 1393 if (ret != 0) 1394 return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); 1395 } 1396 1397 assert(args.ip[0] >= args.ilimit); 1398 HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args); 1399 1400 /* note : op4 already verified within main loop */ 1401 assert(args.ip[0] >= iend); 1402 assert(args.ip[1] >= iend); 1403 assert(args.ip[2] >= iend); 1404 assert(args.ip[3] >= iend); 1405 assert(args.op[3] <= oend); 1406 (void)iend; 1407 1408 /* finish bitStreams one by one */ 1409 { 1410 size_t const segmentSize = (dstSize+3) / 4; 1411 BYTE* segmentEnd = (BYTE*)dst; 1412 int i; 1413 for (i = 0; i < 4; ++i) { 1414 BIT_DStream_t bit; 1415 if (segmentSize <= (size_t)(oend - segmentEnd)) 1416 segmentEnd += segmentSize; 1417 else 1418 segmentEnd = oend; 1419 FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); 1420 args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); 1421 if (args.op[i] != segmentEnd) 1422 return ERROR(corruption_detected); 1423 } 1424 } 1425 1426 /* decoded size */ 1427 return dstSize; 1428 } 1429 #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */ 1430 1431 static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, 1432 size_t cSrcSize, HUF_DTable const* DTable, int bmi2) 1433 { 1434 #if DYNAMIC_BMI2 1435 if (bmi2) { 1436 # if ZSTD_ENABLE_ASM_X86_64_BMI2 1437 return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); 1438 # else 1439 return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); 1440 # endif 1441 } 1442 #else 1443 (void)bmi2; 1444 #endif 1445 1446 #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) 1447 return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); 1448 #else 1449 return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable); 1450 #endif 1451 } 1452 1453 HUF_DGEN(HUF_decompress1X2_usingDTable_internal) 1454 1455 size_t HUF_decompress1X2_usingDTable( 1456 void* dst, size_t dstSize, 1457 const void* cSrc, size_t cSrcSize, 1458 const HUF_DTable* DTable) 1459 { 1460 DTableDesc dtd = HUF_getDTableDesc(DTable); 1461 if (dtd.tableType != 1) return ERROR(GENERIC); 1462 return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1463 } 1464 1465 size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, 1466 const void* cSrc, size_t cSrcSize, 1467 void* workSpace, size_t wkspSize) 1468 { 1469 const BYTE* ip = (const BYTE*) cSrc; 1470 1471 size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, 1472 workSpace, wkspSize); 1473 if (HUF_isError(hSize)) return hSize; 1474 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 1475 ip += hSize; cSrcSize -= hSize; 1476 1477 return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); 1478 } 1479 1480 1481 size_t HUF_decompress4X2_usingDTable( 1482 void* dst, size_t dstSize, 1483 const void* cSrc, size_t cSrcSize, 1484 const HUF_DTable* DTable) 1485 { 1486 DTableDesc dtd = HUF_getDTableDesc(DTable); 1487 if (dtd.tableType != 1) return ERROR(GENERIC); 1488 return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1489 } 1490 1491 static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, 1492 const void* cSrc, size_t cSrcSize, 1493 void* workSpace, size_t wkspSize, int bmi2) 1494 { 1495 const BYTE* ip = (const BYTE*) cSrc; 1496 1497 size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, 1498 workSpace, wkspSize); 1499 if (HUF_isError(hSize)) return hSize; 1500 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 1501 ip += hSize; cSrcSize -= hSize; 1502 1503 return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); 1504 } 1505 1506 size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, 1507 const void* cSrc, size_t cSrcSize, 1508 void* workSpace, size_t wkspSize) 1509 { 1510 return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0); 1511 } 1512 1513 1514 #endif /* HUF_FORCE_DECOMPRESS_X1 */ 1515 1516 1517 /* ***********************************/ 1518 /* Universal decompression selectors */ 1519 /* ***********************************/ 1520 1521 size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, 1522 const void* cSrc, size_t cSrcSize, 1523 const HUF_DTable* DTable) 1524 { 1525 DTableDesc const dtd = HUF_getDTableDesc(DTable); 1526 #if defined(HUF_FORCE_DECOMPRESS_X1) 1527 (void)dtd; 1528 assert(dtd.tableType == 0); 1529 return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1530 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1531 (void)dtd; 1532 assert(dtd.tableType == 1); 1533 return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1534 #else 1535 return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : 1536 HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1537 #endif 1538 } 1539 1540 size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, 1541 const void* cSrc, size_t cSrcSize, 1542 const HUF_DTable* DTable) 1543 { 1544 DTableDesc const dtd = HUF_getDTableDesc(DTable); 1545 #if defined(HUF_FORCE_DECOMPRESS_X1) 1546 (void)dtd; 1547 assert(dtd.tableType == 0); 1548 return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1549 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1550 (void)dtd; 1551 assert(dtd.tableType == 1); 1552 return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1553 #else 1554 return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : 1555 HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); 1556 #endif 1557 } 1558 1559 1560 #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) 1561 typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; 1562 static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = 1563 { 1564 /* single, double, quad */ 1565 {{0,0}, {1,1}}, /* Q==0 : impossible */ 1566 {{0,0}, {1,1}}, /* Q==1 : impossible */ 1567 {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ 1568 {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ 1569 {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ 1570 {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ 1571 {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ 1572 {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ 1573 {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ 1574 {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ 1575 {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ 1576 {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ 1577 {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ 1578 {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ 1579 {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ 1580 {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ 1581 }; 1582 #endif 1583 1584 /* HUF_selectDecoder() : 1585 * Tells which decoder is likely to decode faster, 1586 * based on a set of pre-computed metrics. 1587 * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . 1588 * Assumption : 0 < dstSize <= 128 KB */ 1589 U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) 1590 { 1591 assert(dstSize > 0); 1592 assert(dstSize <= 128*1024); 1593 #if defined(HUF_FORCE_DECOMPRESS_X1) 1594 (void)dstSize; 1595 (void)cSrcSize; 1596 return 0; 1597 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1598 (void)dstSize; 1599 (void)cSrcSize; 1600 return 1; 1601 #else 1602 /* decoder timing evaluation */ 1603 { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ 1604 U32 const D256 = (U32)(dstSize >> 8); 1605 U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); 1606 U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); 1607 DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ 1608 return DTime1 < DTime0; 1609 } 1610 #endif 1611 } 1612 1613 1614 size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, 1615 size_t dstSize, const void* cSrc, 1616 size_t cSrcSize, void* workSpace, 1617 size_t wkspSize) 1618 { 1619 /* validation checks */ 1620 if (dstSize == 0) return ERROR(dstSize_tooSmall); 1621 if (cSrcSize == 0) return ERROR(corruption_detected); 1622 1623 { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); 1624 #if defined(HUF_FORCE_DECOMPRESS_X1) 1625 (void)algoNb; 1626 assert(algoNb == 0); 1627 return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); 1628 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1629 (void)algoNb; 1630 assert(algoNb == 1); 1631 return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); 1632 #else 1633 return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, 1634 cSrcSize, workSpace, wkspSize): 1635 HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); 1636 #endif 1637 } 1638 } 1639 1640 size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, 1641 const void* cSrc, size_t cSrcSize, 1642 void* workSpace, size_t wkspSize) 1643 { 1644 /* validation checks */ 1645 if (dstSize == 0) return ERROR(dstSize_tooSmall); 1646 if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ 1647 if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ 1648 if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ 1649 1650 { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); 1651 #if defined(HUF_FORCE_DECOMPRESS_X1) 1652 (void)algoNb; 1653 assert(algoNb == 0); 1654 return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, 1655 cSrcSize, workSpace, wkspSize); 1656 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1657 (void)algoNb; 1658 assert(algoNb == 1); 1659 return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, 1660 cSrcSize, workSpace, wkspSize); 1661 #else 1662 return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, 1663 cSrcSize, workSpace, wkspSize): 1664 HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, 1665 cSrcSize, workSpace, wkspSize); 1666 #endif 1667 } 1668 } 1669 1670 1671 size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) 1672 { 1673 DTableDesc const dtd = HUF_getDTableDesc(DTable); 1674 #if defined(HUF_FORCE_DECOMPRESS_X1) 1675 (void)dtd; 1676 assert(dtd.tableType == 0); 1677 return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); 1678 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1679 (void)dtd; 1680 assert(dtd.tableType == 1); 1681 return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); 1682 #else 1683 return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : 1684 HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); 1685 #endif 1686 } 1687 1688 #ifndef HUF_FORCE_DECOMPRESS_X2 1689 size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) 1690 { 1691 const BYTE* ip = (const BYTE*) cSrc; 1692 1693 size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); 1694 if (HUF_isError(hSize)) return hSize; 1695 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 1696 ip += hSize; cSrcSize -= hSize; 1697 1698 return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); 1699 } 1700 #endif 1701 1702 size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) 1703 { 1704 DTableDesc const dtd = HUF_getDTableDesc(DTable); 1705 #if defined(HUF_FORCE_DECOMPRESS_X1) 1706 (void)dtd; 1707 assert(dtd.tableType == 0); 1708 return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); 1709 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1710 (void)dtd; 1711 assert(dtd.tableType == 1); 1712 return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); 1713 #else 1714 return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : 1715 HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); 1716 #endif 1717 } 1718 1719 size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) 1720 { 1721 /* validation checks */ 1722 if (dstSize == 0) return ERROR(dstSize_tooSmall); 1723 if (cSrcSize == 0) return ERROR(corruption_detected); 1724 1725 { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); 1726 #if defined(HUF_FORCE_DECOMPRESS_X1) 1727 (void)algoNb; 1728 assert(algoNb == 0); 1729 return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); 1730 #elif defined(HUF_FORCE_DECOMPRESS_X2) 1731 (void)algoNb; 1732 assert(algoNb == 1); 1733 return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); 1734 #else 1735 return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) : 1736 HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); 1737 #endif 1738 } 1739 } 1740 1741
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.