~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/compaction.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * linux/mm/compaction.c
  4  *
  5  * Memory compaction for the reduction of external fragmentation. Note that
  6  * this heavily depends upon page migration to do all the real heavy
  7  * lifting
  8  *
  9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 10  */
 11 #include <linux/cpu.h>
 12 #include <linux/swap.h>
 13 #include <linux/migrate.h>
 14 #include <linux/compaction.h>
 15 #include <linux/mm_inline.h>
 16 #include <linux/sched/signal.h>
 17 #include <linux/backing-dev.h>
 18 #include <linux/sysctl.h>
 19 #include <linux/sysfs.h>
 20 #include <linux/page-isolation.h>
 21 #include <linux/kasan.h>
 22 #include <linux/kthread.h>
 23 #include <linux/freezer.h>
 24 #include <linux/page_owner.h>
 25 #include <linux/psi.h>
 26 #include "internal.h"
 27 
 28 #ifdef CONFIG_COMPACTION
 29 /*
 30  * Fragmentation score check interval for proactive compaction purposes.
 31  */
 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
 33 
 34 static inline void count_compact_event(enum vm_event_item item)
 35 {
 36         count_vm_event(item);
 37 }
 38 
 39 static inline void count_compact_events(enum vm_event_item item, long delta)
 40 {
 41         count_vm_events(item, delta);
 42 }
 43 
 44 /*
 45  * order == -1 is expected when compacting proactively via
 46  * 1. /proc/sys/vm/compact_memory
 47  * 2. /sys/devices/system/node/nodex/compact
 48  * 3. /proc/sys/vm/compaction_proactiveness
 49  */
 50 static inline bool is_via_compact_memory(int order)
 51 {
 52         return order == -1;
 53 }
 54 
 55 #else
 56 #define count_compact_event(item) do { } while (0)
 57 #define count_compact_events(item, delta) do { } while (0)
 58 static inline bool is_via_compact_memory(int order) { return false; }
 59 #endif
 60 
 61 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
 62 
 63 #define CREATE_TRACE_POINTS
 64 #include <trace/events/compaction.h>
 65 
 66 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
 67 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
 68 
 69 /*
 70  * Page order with-respect-to which proactive compaction
 71  * calculates external fragmentation, which is used as
 72  * the "fragmentation score" of a node/zone.
 73  */
 74 #if defined CONFIG_TRANSPARENT_HUGEPAGE
 75 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
 76 #elif defined CONFIG_HUGETLBFS
 77 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
 78 #else
 79 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
 80 #endif
 81 
 82 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
 83 {
 84         post_alloc_hook(page, order, __GFP_MOVABLE);
 85         return page;
 86 }
 87 #define mark_allocated(...)     alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
 88 
 89 static void split_map_pages(struct list_head *freepages)
 90 {
 91         unsigned int i, order;
 92         struct page *page, *next;
 93         LIST_HEAD(tmp_list);
 94 
 95         for (order = 0; order < NR_PAGE_ORDERS; order++) {
 96                 list_for_each_entry_safe(page, next, &freepages[order], lru) {
 97                         unsigned int nr_pages;
 98 
 99                         list_del(&page->lru);
100 
101                         nr_pages = 1 << order;
102 
103                         mark_allocated(page, order, __GFP_MOVABLE);
104                         if (order)
105                                 split_page(page, order);
106 
107                         for (i = 0; i < nr_pages; i++) {
108                                 list_add(&page->lru, &tmp_list);
109                                 page++;
110                         }
111                 }
112                 list_splice_init(&tmp_list, &freepages[0]);
113         }
114 }
115 
116 static unsigned long release_free_list(struct list_head *freepages)
117 {
118         int order;
119         unsigned long high_pfn = 0;
120 
121         for (order = 0; order < NR_PAGE_ORDERS; order++) {
122                 struct page *page, *next;
123 
124                 list_for_each_entry_safe(page, next, &freepages[order], lru) {
125                         unsigned long pfn = page_to_pfn(page);
126 
127                         list_del(&page->lru);
128                         /*
129                          * Convert free pages into post allocation pages, so
130                          * that we can free them via __free_page.
131                          */
132                         mark_allocated(page, order, __GFP_MOVABLE);
133                         __free_pages(page, order);
134                         if (pfn > high_pfn)
135                                 high_pfn = pfn;
136                 }
137         }
138         return high_pfn;
139 }
140 
141 #ifdef CONFIG_COMPACTION
142 bool PageMovable(struct page *page)
143 {
144         const struct movable_operations *mops;
145 
146         VM_BUG_ON_PAGE(!PageLocked(page), page);
147         if (!__PageMovable(page))
148                 return false;
149 
150         mops = page_movable_ops(page);
151         if (mops)
152                 return true;
153 
154         return false;
155 }
156 
157 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
158 {
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
161         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
162 }
163 EXPORT_SYMBOL(__SetPageMovable);
164 
165 void __ClearPageMovable(struct page *page)
166 {
167         VM_BUG_ON_PAGE(!PageMovable(page), page);
168         /*
169          * This page still has the type of a movable page, but it's
170          * actually not movable any more.
171          */
172         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
173 }
174 EXPORT_SYMBOL(__ClearPageMovable);
175 
176 /* Do not skip compaction more than 64 times */
177 #define COMPACT_MAX_DEFER_SHIFT 6
178 
179 /*
180  * Compaction is deferred when compaction fails to result in a page
181  * allocation success. 1 << compact_defer_shift, compactions are skipped up
182  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
183  */
184 static void defer_compaction(struct zone *zone, int order)
185 {
186         zone->compact_considered = 0;
187         zone->compact_defer_shift++;
188 
189         if (order < zone->compact_order_failed)
190                 zone->compact_order_failed = order;
191 
192         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
193                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
194 
195         trace_mm_compaction_defer_compaction(zone, order);
196 }
197 
198 /* Returns true if compaction should be skipped this time */
199 static bool compaction_deferred(struct zone *zone, int order)
200 {
201         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
202 
203         if (order < zone->compact_order_failed)
204                 return false;
205 
206         /* Avoid possible overflow */
207         if (++zone->compact_considered >= defer_limit) {
208                 zone->compact_considered = defer_limit;
209                 return false;
210         }
211 
212         trace_mm_compaction_deferred(zone, order);
213 
214         return true;
215 }
216 
217 /*
218  * Update defer tracking counters after successful compaction of given order,
219  * which means an allocation either succeeded (alloc_success == true) or is
220  * expected to succeed.
221  */
222 void compaction_defer_reset(struct zone *zone, int order,
223                 bool alloc_success)
224 {
225         if (alloc_success) {
226                 zone->compact_considered = 0;
227                 zone->compact_defer_shift = 0;
228         }
229         if (order >= zone->compact_order_failed)
230                 zone->compact_order_failed = order + 1;
231 
232         trace_mm_compaction_defer_reset(zone, order);
233 }
234 
235 /* Returns true if restarting compaction after many failures */
236 static bool compaction_restarting(struct zone *zone, int order)
237 {
238         if (order < zone->compact_order_failed)
239                 return false;
240 
241         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
242                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
243 }
244 
245 /* Returns true if the pageblock should be scanned for pages to isolate. */
246 static inline bool isolation_suitable(struct compact_control *cc,
247                                         struct page *page)
248 {
249         if (cc->ignore_skip_hint)
250                 return true;
251 
252         return !get_pageblock_skip(page);
253 }
254 
255 static void reset_cached_positions(struct zone *zone)
256 {
257         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
258         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
259         zone->compact_cached_free_pfn =
260                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
261 }
262 
263 #ifdef CONFIG_SPARSEMEM
264 /*
265  * If the PFN falls into an offline section, return the start PFN of the
266  * next online section. If the PFN falls into an online section or if
267  * there is no next online section, return 0.
268  */
269 static unsigned long skip_offline_sections(unsigned long start_pfn)
270 {
271         unsigned long start_nr = pfn_to_section_nr(start_pfn);
272 
273         if (online_section_nr(start_nr))
274                 return 0;
275 
276         while (++start_nr <= __highest_present_section_nr) {
277                 if (online_section_nr(start_nr))
278                         return section_nr_to_pfn(start_nr);
279         }
280 
281         return 0;
282 }
283 
284 /*
285  * If the PFN falls into an offline section, return the end PFN of the
286  * next online section in reverse. If the PFN falls into an online section
287  * or if there is no next online section in reverse, return 0.
288  */
289 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
290 {
291         unsigned long start_nr = pfn_to_section_nr(start_pfn);
292 
293         if (!start_nr || online_section_nr(start_nr))
294                 return 0;
295 
296         while (start_nr-- > 0) {
297                 if (online_section_nr(start_nr))
298                         return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
299         }
300 
301         return 0;
302 }
303 #else
304 static unsigned long skip_offline_sections(unsigned long start_pfn)
305 {
306         return 0;
307 }
308 
309 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
310 {
311         return 0;
312 }
313 #endif
314 
315 /*
316  * Compound pages of >= pageblock_order should consistently be skipped until
317  * released. It is always pointless to compact pages of such order (if they are
318  * migratable), and the pageblocks they occupy cannot contain any free pages.
319  */
320 static bool pageblock_skip_persistent(struct page *page)
321 {
322         if (!PageCompound(page))
323                 return false;
324 
325         page = compound_head(page);
326 
327         if (compound_order(page) >= pageblock_order)
328                 return true;
329 
330         return false;
331 }
332 
333 static bool
334 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
335                                                         bool check_target)
336 {
337         struct page *page = pfn_to_online_page(pfn);
338         struct page *block_page;
339         struct page *end_page;
340         unsigned long block_pfn;
341 
342         if (!page)
343                 return false;
344         if (zone != page_zone(page))
345                 return false;
346         if (pageblock_skip_persistent(page))
347                 return false;
348 
349         /*
350          * If skip is already cleared do no further checking once the
351          * restart points have been set.
352          */
353         if (check_source && check_target && !get_pageblock_skip(page))
354                 return true;
355 
356         /*
357          * If clearing skip for the target scanner, do not select a
358          * non-movable pageblock as the starting point.
359          */
360         if (!check_source && check_target &&
361             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
362                 return false;
363 
364         /* Ensure the start of the pageblock or zone is online and valid */
365         block_pfn = pageblock_start_pfn(pfn);
366         block_pfn = max(block_pfn, zone->zone_start_pfn);
367         block_page = pfn_to_online_page(block_pfn);
368         if (block_page) {
369                 page = block_page;
370                 pfn = block_pfn;
371         }
372 
373         /* Ensure the end of the pageblock or zone is online and valid */
374         block_pfn = pageblock_end_pfn(pfn) - 1;
375         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
376         end_page = pfn_to_online_page(block_pfn);
377         if (!end_page)
378                 return false;
379 
380         /*
381          * Only clear the hint if a sample indicates there is either a
382          * free page or an LRU page in the block. One or other condition
383          * is necessary for the block to be a migration source/target.
384          */
385         do {
386                 if (check_source && PageLRU(page)) {
387                         clear_pageblock_skip(page);
388                         return true;
389                 }
390 
391                 if (check_target && PageBuddy(page)) {
392                         clear_pageblock_skip(page);
393                         return true;
394                 }
395 
396                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
397         } while (page <= end_page);
398 
399         return false;
400 }
401 
402 /*
403  * This function is called to clear all cached information on pageblocks that
404  * should be skipped for page isolation when the migrate and free page scanner
405  * meet.
406  */
407 static void __reset_isolation_suitable(struct zone *zone)
408 {
409         unsigned long migrate_pfn = zone->zone_start_pfn;
410         unsigned long free_pfn = zone_end_pfn(zone) - 1;
411         unsigned long reset_migrate = free_pfn;
412         unsigned long reset_free = migrate_pfn;
413         bool source_set = false;
414         bool free_set = false;
415 
416         /* Only flush if a full compaction finished recently */
417         if (!zone->compact_blockskip_flush)
418                 return;
419 
420         zone->compact_blockskip_flush = false;
421 
422         /*
423          * Walk the zone and update pageblock skip information. Source looks
424          * for PageLRU while target looks for PageBuddy. When the scanner
425          * is found, both PageBuddy and PageLRU are checked as the pageblock
426          * is suitable as both source and target.
427          */
428         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
429                                         free_pfn -= pageblock_nr_pages) {
430                 cond_resched();
431 
432                 /* Update the migrate PFN */
433                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
434                     migrate_pfn < reset_migrate) {
435                         source_set = true;
436                         reset_migrate = migrate_pfn;
437                         zone->compact_init_migrate_pfn = reset_migrate;
438                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
439                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
440                 }
441 
442                 /* Update the free PFN */
443                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
444                     free_pfn > reset_free) {
445                         free_set = true;
446                         reset_free = free_pfn;
447                         zone->compact_init_free_pfn = reset_free;
448                         zone->compact_cached_free_pfn = reset_free;
449                 }
450         }
451 
452         /* Leave no distance if no suitable block was reset */
453         if (reset_migrate >= reset_free) {
454                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
455                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
456                 zone->compact_cached_free_pfn = free_pfn;
457         }
458 }
459 
460 void reset_isolation_suitable(pg_data_t *pgdat)
461 {
462         int zoneid;
463 
464         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
465                 struct zone *zone = &pgdat->node_zones[zoneid];
466                 if (!populated_zone(zone))
467                         continue;
468 
469                 __reset_isolation_suitable(zone);
470         }
471 }
472 
473 /*
474  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
475  * locks are not required for read/writers. Returns true if it was already set.
476  */
477 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
478 {
479         bool skip;
480 
481         /* Do not update if skip hint is being ignored */
482         if (cc->ignore_skip_hint)
483                 return false;
484 
485         skip = get_pageblock_skip(page);
486         if (!skip && !cc->no_set_skip_hint)
487                 set_pageblock_skip(page);
488 
489         return skip;
490 }
491 
492 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
493 {
494         struct zone *zone = cc->zone;
495 
496         /* Set for isolation rather than compaction */
497         if (cc->no_set_skip_hint)
498                 return;
499 
500         pfn = pageblock_end_pfn(pfn);
501 
502         /* Update where async and sync compaction should restart */
503         if (pfn > zone->compact_cached_migrate_pfn[0])
504                 zone->compact_cached_migrate_pfn[0] = pfn;
505         if (cc->mode != MIGRATE_ASYNC &&
506             pfn > zone->compact_cached_migrate_pfn[1])
507                 zone->compact_cached_migrate_pfn[1] = pfn;
508 }
509 
510 /*
511  * If no pages were isolated then mark this pageblock to be skipped in the
512  * future. The information is later cleared by __reset_isolation_suitable().
513  */
514 static void update_pageblock_skip(struct compact_control *cc,
515                         struct page *page, unsigned long pfn)
516 {
517         struct zone *zone = cc->zone;
518 
519         if (cc->no_set_skip_hint)
520                 return;
521 
522         set_pageblock_skip(page);
523 
524         if (pfn < zone->compact_cached_free_pfn)
525                 zone->compact_cached_free_pfn = pfn;
526 }
527 #else
528 static inline bool isolation_suitable(struct compact_control *cc,
529                                         struct page *page)
530 {
531         return true;
532 }
533 
534 static inline bool pageblock_skip_persistent(struct page *page)
535 {
536         return false;
537 }
538 
539 static inline void update_pageblock_skip(struct compact_control *cc,
540                         struct page *page, unsigned long pfn)
541 {
542 }
543 
544 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
545 {
546 }
547 
548 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
549 {
550         return false;
551 }
552 #endif /* CONFIG_COMPACTION */
553 
554 /*
555  * Compaction requires the taking of some coarse locks that are potentially
556  * very heavily contended. For async compaction, trylock and record if the
557  * lock is contended. The lock will still be acquired but compaction will
558  * abort when the current block is finished regardless of success rate.
559  * Sync compaction acquires the lock.
560  *
561  * Always returns true which makes it easier to track lock state in callers.
562  */
563 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
564                                                 struct compact_control *cc)
565         __acquires(lock)
566 {
567         /* Track if the lock is contended in async mode */
568         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
569                 if (spin_trylock_irqsave(lock, *flags))
570                         return true;
571 
572                 cc->contended = true;
573         }
574 
575         spin_lock_irqsave(lock, *flags);
576         return true;
577 }
578 
579 /*
580  * Compaction requires the taking of some coarse locks that are potentially
581  * very heavily contended. The lock should be periodically unlocked to avoid
582  * having disabled IRQs for a long time, even when there is nobody waiting on
583  * the lock. It might also be that allowing the IRQs will result in
584  * need_resched() becoming true. If scheduling is needed, compaction schedules.
585  * Either compaction type will also abort if a fatal signal is pending.
586  * In either case if the lock was locked, it is dropped and not regained.
587  *
588  * Returns true if compaction should abort due to fatal signal pending.
589  * Returns false when compaction can continue.
590  */
591 static bool compact_unlock_should_abort(spinlock_t *lock,
592                 unsigned long flags, bool *locked, struct compact_control *cc)
593 {
594         if (*locked) {
595                 spin_unlock_irqrestore(lock, flags);
596                 *locked = false;
597         }
598 
599         if (fatal_signal_pending(current)) {
600                 cc->contended = true;
601                 return true;
602         }
603 
604         cond_resched();
605 
606         return false;
607 }
608 
609 /*
610  * Isolate free pages onto a private freelist. If @strict is true, will abort
611  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
612  * (even though it may still end up isolating some pages).
613  */
614 static unsigned long isolate_freepages_block(struct compact_control *cc,
615                                 unsigned long *start_pfn,
616                                 unsigned long end_pfn,
617                                 struct list_head *freelist,
618                                 unsigned int stride,
619                                 bool strict)
620 {
621         int nr_scanned = 0, total_isolated = 0;
622         struct page *page;
623         unsigned long flags = 0;
624         bool locked = false;
625         unsigned long blockpfn = *start_pfn;
626         unsigned int order;
627 
628         /* Strict mode is for isolation, speed is secondary */
629         if (strict)
630                 stride = 1;
631 
632         page = pfn_to_page(blockpfn);
633 
634         /* Isolate free pages. */
635         for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
636                 int isolated;
637 
638                 /*
639                  * Periodically drop the lock (if held) regardless of its
640                  * contention, to give chance to IRQs. Abort if fatal signal
641                  * pending.
642                  */
643                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
644                     && compact_unlock_should_abort(&cc->zone->lock, flags,
645                                                                 &locked, cc))
646                         break;
647 
648                 nr_scanned++;
649 
650                 /*
651                  * For compound pages such as THP and hugetlbfs, we can save
652                  * potentially a lot of iterations if we skip them at once.
653                  * The check is racy, but we can consider only valid values
654                  * and the only danger is skipping too much.
655                  */
656                 if (PageCompound(page)) {
657                         const unsigned int order = compound_order(page);
658 
659                         if (blockpfn + (1UL << order) <= end_pfn) {
660                                 blockpfn += (1UL << order) - 1;
661                                 page += (1UL << order) - 1;
662                                 nr_scanned += (1UL << order) - 1;
663                         }
664 
665                         goto isolate_fail;
666                 }
667 
668                 if (!PageBuddy(page))
669                         goto isolate_fail;
670 
671                 /* If we already hold the lock, we can skip some rechecking. */
672                 if (!locked) {
673                         locked = compact_lock_irqsave(&cc->zone->lock,
674                                                                 &flags, cc);
675 
676                         /* Recheck this is a buddy page under lock */
677                         if (!PageBuddy(page))
678                                 goto isolate_fail;
679                 }
680 
681                 /* Found a free page, will break it into order-0 pages */
682                 order = buddy_order(page);
683                 isolated = __isolate_free_page(page, order);
684                 if (!isolated)
685                         break;
686                 set_page_private(page, order);
687 
688                 nr_scanned += isolated - 1;
689                 total_isolated += isolated;
690                 cc->nr_freepages += isolated;
691                 list_add_tail(&page->lru, &freelist[order]);
692 
693                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
694                         blockpfn += isolated;
695                         break;
696                 }
697                 /* Advance to the end of split page */
698                 blockpfn += isolated - 1;
699                 page += isolated - 1;
700                 continue;
701 
702 isolate_fail:
703                 if (strict)
704                         break;
705 
706         }
707 
708         if (locked)
709                 spin_unlock_irqrestore(&cc->zone->lock, flags);
710 
711         /*
712          * Be careful to not go outside of the pageblock.
713          */
714         if (unlikely(blockpfn > end_pfn))
715                 blockpfn = end_pfn;
716 
717         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
718                                         nr_scanned, total_isolated);
719 
720         /* Record how far we have got within the block */
721         *start_pfn = blockpfn;
722 
723         /*
724          * If strict isolation is requested by CMA then check that all the
725          * pages requested were isolated. If there were any failures, 0 is
726          * returned and CMA will fail.
727          */
728         if (strict && blockpfn < end_pfn)
729                 total_isolated = 0;
730 
731         cc->total_free_scanned += nr_scanned;
732         if (total_isolated)
733                 count_compact_events(COMPACTISOLATED, total_isolated);
734         return total_isolated;
735 }
736 
737 /**
738  * isolate_freepages_range() - isolate free pages.
739  * @cc:        Compaction control structure.
740  * @start_pfn: The first PFN to start isolating.
741  * @end_pfn:   The one-past-last PFN.
742  *
743  * Non-free pages, invalid PFNs, or zone boundaries within the
744  * [start_pfn, end_pfn) range are considered errors, cause function to
745  * undo its actions and return zero.
746  *
747  * Otherwise, function returns one-past-the-last PFN of isolated page
748  * (which may be greater then end_pfn if end fell in a middle of
749  * a free page).
750  */
751 unsigned long
752 isolate_freepages_range(struct compact_control *cc,
753                         unsigned long start_pfn, unsigned long end_pfn)
754 {
755         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
756         int order;
757         struct list_head tmp_freepages[NR_PAGE_ORDERS];
758 
759         for (order = 0; order < NR_PAGE_ORDERS; order++)
760                 INIT_LIST_HEAD(&tmp_freepages[order]);
761 
762         pfn = start_pfn;
763         block_start_pfn = pageblock_start_pfn(pfn);
764         if (block_start_pfn < cc->zone->zone_start_pfn)
765                 block_start_pfn = cc->zone->zone_start_pfn;
766         block_end_pfn = pageblock_end_pfn(pfn);
767 
768         for (; pfn < end_pfn; pfn += isolated,
769                                 block_start_pfn = block_end_pfn,
770                                 block_end_pfn += pageblock_nr_pages) {
771                 /* Protect pfn from changing by isolate_freepages_block */
772                 unsigned long isolate_start_pfn = pfn;
773 
774                 /*
775                  * pfn could pass the block_end_pfn if isolated freepage
776                  * is more than pageblock order. In this case, we adjust
777                  * scanning range to right one.
778                  */
779                 if (pfn >= block_end_pfn) {
780                         block_start_pfn = pageblock_start_pfn(pfn);
781                         block_end_pfn = pageblock_end_pfn(pfn);
782                 }
783 
784                 block_end_pfn = min(block_end_pfn, end_pfn);
785 
786                 if (!pageblock_pfn_to_page(block_start_pfn,
787                                         block_end_pfn, cc->zone))
788                         break;
789 
790                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
791                                         block_end_pfn, tmp_freepages, 0, true);
792 
793                 /*
794                  * In strict mode, isolate_freepages_block() returns 0 if
795                  * there are any holes in the block (ie. invalid PFNs or
796                  * non-free pages).
797                  */
798                 if (!isolated)
799                         break;
800 
801                 /*
802                  * If we managed to isolate pages, it is always (1 << n) *
803                  * pageblock_nr_pages for some non-negative n.  (Max order
804                  * page may span two pageblocks).
805                  */
806         }
807 
808         if (pfn < end_pfn) {
809                 /* Loop terminated early, cleanup. */
810                 release_free_list(tmp_freepages);
811                 return 0;
812         }
813 
814         /* __isolate_free_page() does not map the pages */
815         split_map_pages(tmp_freepages);
816 
817         /* We don't use freelists for anything. */
818         return pfn;
819 }
820 
821 /* Similar to reclaim, but different enough that they don't share logic */
822 static bool too_many_isolated(struct compact_control *cc)
823 {
824         pg_data_t *pgdat = cc->zone->zone_pgdat;
825         bool too_many;
826 
827         unsigned long active, inactive, isolated;
828 
829         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
830                         node_page_state(pgdat, NR_INACTIVE_ANON);
831         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
832                         node_page_state(pgdat, NR_ACTIVE_ANON);
833         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
834                         node_page_state(pgdat, NR_ISOLATED_ANON);
835 
836         /*
837          * Allow GFP_NOFS to isolate past the limit set for regular
838          * compaction runs. This prevents an ABBA deadlock when other
839          * compactors have already isolated to the limit, but are
840          * blocked on filesystem locks held by the GFP_NOFS thread.
841          */
842         if (cc->gfp_mask & __GFP_FS) {
843                 inactive >>= 3;
844                 active >>= 3;
845         }
846 
847         too_many = isolated > (inactive + active) / 2;
848         if (!too_many)
849                 wake_throttle_isolated(pgdat);
850 
851         return too_many;
852 }
853 
854 /**
855  * skip_isolation_on_order() - determine when to skip folio isolation based on
856  *                             folio order and compaction target order
857  * @order:              to-be-isolated folio order
858  * @target_order:       compaction target order
859  *
860  * This avoids unnecessary folio isolations during compaction.
861  */
862 static bool skip_isolation_on_order(int order, int target_order)
863 {
864         /*
865          * Unless we are performing global compaction (i.e.,
866          * is_via_compact_memory), skip any folios that are larger than the
867          * target order: we wouldn't be here if we'd have a free folio with
868          * the desired target_order, so migrating this folio would likely fail
869          * later.
870          */
871         if (!is_via_compact_memory(target_order) && order >= target_order)
872                 return true;
873         /*
874          * We limit memory compaction to pageblocks and won't try
875          * creating free blocks of memory that are larger than that.
876          */
877         return order >= pageblock_order;
878 }
879 
880 /**
881  * isolate_migratepages_block() - isolate all migrate-able pages within
882  *                                a single pageblock
883  * @cc:         Compaction control structure.
884  * @low_pfn:    The first PFN to isolate
885  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
886  * @mode:       Isolation mode to be used.
887  *
888  * Isolate all pages that can be migrated from the range specified by
889  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
890  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
891  * -ENOMEM in case we could not allocate a page, or 0.
892  * cc->migrate_pfn will contain the next pfn to scan.
893  *
894  * The pages are isolated on cc->migratepages list (not required to be empty),
895  * and cc->nr_migratepages is updated accordingly.
896  */
897 static int
898 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
899                         unsigned long end_pfn, isolate_mode_t mode)
900 {
901         pg_data_t *pgdat = cc->zone->zone_pgdat;
902         unsigned long nr_scanned = 0, nr_isolated = 0;
903         struct lruvec *lruvec;
904         unsigned long flags = 0;
905         struct lruvec *locked = NULL;
906         struct folio *folio = NULL;
907         struct page *page = NULL, *valid_page = NULL;
908         struct address_space *mapping;
909         unsigned long start_pfn = low_pfn;
910         bool skip_on_failure = false;
911         unsigned long next_skip_pfn = 0;
912         bool skip_updated = false;
913         int ret = 0;
914 
915         cc->migrate_pfn = low_pfn;
916 
917         /*
918          * Ensure that there are not too many pages isolated from the LRU
919          * list by either parallel reclaimers or compaction. If there are,
920          * delay for some time until fewer pages are isolated
921          */
922         while (unlikely(too_many_isolated(cc))) {
923                 /* stop isolation if there are still pages not migrated */
924                 if (cc->nr_migratepages)
925                         return -EAGAIN;
926 
927                 /* async migration should just abort */
928                 if (cc->mode == MIGRATE_ASYNC)
929                         return -EAGAIN;
930 
931                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
932 
933                 if (fatal_signal_pending(current))
934                         return -EINTR;
935         }
936 
937         cond_resched();
938 
939         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
940                 skip_on_failure = true;
941                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
942         }
943 
944         /* Time to isolate some pages for migration */
945         for (; low_pfn < end_pfn; low_pfn++) {
946                 bool is_dirty, is_unevictable;
947 
948                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
949                         /*
950                          * We have isolated all migration candidates in the
951                          * previous order-aligned block, and did not skip it due
952                          * to failure. We should migrate the pages now and
953                          * hopefully succeed compaction.
954                          */
955                         if (nr_isolated)
956                                 break;
957 
958                         /*
959                          * We failed to isolate in the previous order-aligned
960                          * block. Set the new boundary to the end of the
961                          * current block. Note we can't simply increase
962                          * next_skip_pfn by 1 << order, as low_pfn might have
963                          * been incremented by a higher number due to skipping
964                          * a compound or a high-order buddy page in the
965                          * previous loop iteration.
966                          */
967                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
968                 }
969 
970                 /*
971                  * Periodically drop the lock (if held) regardless of its
972                  * contention, to give chance to IRQs. Abort completely if
973                  * a fatal signal is pending.
974                  */
975                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
976                         if (locked) {
977                                 unlock_page_lruvec_irqrestore(locked, flags);
978                                 locked = NULL;
979                         }
980 
981                         if (fatal_signal_pending(current)) {
982                                 cc->contended = true;
983                                 ret = -EINTR;
984 
985                                 goto fatal_pending;
986                         }
987 
988                         cond_resched();
989                 }
990 
991                 nr_scanned++;
992 
993                 page = pfn_to_page(low_pfn);
994 
995                 /*
996                  * Check if the pageblock has already been marked skipped.
997                  * Only the first PFN is checked as the caller isolates
998                  * COMPACT_CLUSTER_MAX at a time so the second call must
999                  * not falsely conclude that the block should be skipped.
1000                  */
1001                 if (!valid_page && (pageblock_aligned(low_pfn) ||
1002                                     low_pfn == cc->zone->zone_start_pfn)) {
1003                         if (!isolation_suitable(cc, page)) {
1004                                 low_pfn = end_pfn;
1005                                 folio = NULL;
1006                                 goto isolate_abort;
1007                         }
1008                         valid_page = page;
1009                 }
1010 
1011                 if (PageHuge(page)) {
1012                         /*
1013                          * skip hugetlbfs if we are not compacting for pages
1014                          * bigger than its order. THPs and other compound pages
1015                          * are handled below.
1016                          */
1017                         if (!cc->alloc_contig) {
1018                                 const unsigned int order = compound_order(page);
1019 
1020                                 if (order <= MAX_PAGE_ORDER) {
1021                                         low_pfn += (1UL << order) - 1;
1022                                         nr_scanned += (1UL << order) - 1;
1023                                 }
1024                                 goto isolate_fail;
1025                         }
1026                         /* for alloc_contig case */
1027                         if (locked) {
1028                                 unlock_page_lruvec_irqrestore(locked, flags);
1029                                 locked = NULL;
1030                         }
1031 
1032                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1033 
1034                         /*
1035                          * Fail isolation in case isolate_or_dissolve_huge_page()
1036                          * reports an error. In case of -ENOMEM, abort right away.
1037                          */
1038                         if (ret < 0) {
1039                                  /* Do not report -EBUSY down the chain */
1040                                 if (ret == -EBUSY)
1041                                         ret = 0;
1042                                 low_pfn += compound_nr(page) - 1;
1043                                 nr_scanned += compound_nr(page) - 1;
1044                                 goto isolate_fail;
1045                         }
1046 
1047                         if (PageHuge(page)) {
1048                                 /*
1049                                  * Hugepage was successfully isolated and placed
1050                                  * on the cc->migratepages list.
1051                                  */
1052                                 folio = page_folio(page);
1053                                 low_pfn += folio_nr_pages(folio) - 1;
1054                                 goto isolate_success_no_list;
1055                         }
1056 
1057                         /*
1058                          * Ok, the hugepage was dissolved. Now these pages are
1059                          * Buddy and cannot be re-allocated because they are
1060                          * isolated. Fall-through as the check below handles
1061                          * Buddy pages.
1062                          */
1063                 }
1064 
1065                 /*
1066                  * Skip if free. We read page order here without zone lock
1067                  * which is generally unsafe, but the race window is small and
1068                  * the worst thing that can happen is that we skip some
1069                  * potential isolation targets.
1070                  */
1071                 if (PageBuddy(page)) {
1072                         unsigned long freepage_order = buddy_order_unsafe(page);
1073 
1074                         /*
1075                          * Without lock, we cannot be sure that what we got is
1076                          * a valid page order. Consider only values in the
1077                          * valid order range to prevent low_pfn overflow.
1078                          */
1079                         if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1080                                 low_pfn += (1UL << freepage_order) - 1;
1081                                 nr_scanned += (1UL << freepage_order) - 1;
1082                         }
1083                         continue;
1084                 }
1085 
1086                 /*
1087                  * Regardless of being on LRU, compound pages such as THP
1088                  * (hugetlbfs is handled above) are not to be compacted unless
1089                  * we are attempting an allocation larger than the compound
1090                  * page size. We can potentially save a lot of iterations if we
1091                  * skip them at once. The check is racy, but we can consider
1092                  * only valid values and the only danger is skipping too much.
1093                  */
1094                 if (PageCompound(page) && !cc->alloc_contig) {
1095                         const unsigned int order = compound_order(page);
1096 
1097                         /* Skip based on page order and compaction target order. */
1098                         if (skip_isolation_on_order(order, cc->order)) {
1099                                 if (order <= MAX_PAGE_ORDER) {
1100                                         low_pfn += (1UL << order) - 1;
1101                                         nr_scanned += (1UL << order) - 1;
1102                                 }
1103                                 goto isolate_fail;
1104                         }
1105                 }
1106 
1107                 /*
1108                  * Check may be lockless but that's ok as we recheck later.
1109                  * It's possible to migrate LRU and non-lru movable pages.
1110                  * Skip any other type of page
1111                  */
1112                 if (!PageLRU(page)) {
1113                         /*
1114                          * __PageMovable can return false positive so we need
1115                          * to verify it under page_lock.
1116                          */
1117                         if (unlikely(__PageMovable(page)) &&
1118                                         !PageIsolated(page)) {
1119                                 if (locked) {
1120                                         unlock_page_lruvec_irqrestore(locked, flags);
1121                                         locked = NULL;
1122                                 }
1123 
1124                                 if (isolate_movable_page(page, mode)) {
1125                                         folio = page_folio(page);
1126                                         goto isolate_success;
1127                                 }
1128                         }
1129 
1130                         goto isolate_fail;
1131                 }
1132 
1133                 /*
1134                  * Be careful not to clear PageLRU until after we're
1135                  * sure the page is not being freed elsewhere -- the
1136                  * page release code relies on it.
1137                  */
1138                 folio = folio_get_nontail_page(page);
1139                 if (unlikely(!folio))
1140                         goto isolate_fail;
1141 
1142                 /*
1143                  * Migration will fail if an anonymous page is pinned in memory,
1144                  * so avoid taking lru_lock and isolating it unnecessarily in an
1145                  * admittedly racy check.
1146                  */
1147                 mapping = folio_mapping(folio);
1148                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1149                         goto isolate_fail_put;
1150 
1151                 /*
1152                  * Only allow to migrate anonymous pages in GFP_NOFS context
1153                  * because those do not depend on fs locks.
1154                  */
1155                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1156                         goto isolate_fail_put;
1157 
1158                 /* Only take pages on LRU: a check now makes later tests safe */
1159                 if (!folio_test_lru(folio))
1160                         goto isolate_fail_put;
1161 
1162                 is_unevictable = folio_test_unevictable(folio);
1163 
1164                 /* Compaction might skip unevictable pages but CMA takes them */
1165                 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1166                         goto isolate_fail_put;
1167 
1168                 /*
1169                  * To minimise LRU disruption, the caller can indicate with
1170                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1171                  * it will be able to migrate without blocking - clean pages
1172                  * for the most part.  PageWriteback would require blocking.
1173                  */
1174                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1175                         goto isolate_fail_put;
1176 
1177                 is_dirty = folio_test_dirty(folio);
1178 
1179                 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1180                     (mapping && is_unevictable)) {
1181                         bool migrate_dirty = true;
1182                         bool is_inaccessible;
1183 
1184                         /*
1185                          * Only folios without mappings or that have
1186                          * a ->migrate_folio callback are possible to migrate
1187                          * without blocking.
1188                          *
1189                          * Folios from inaccessible mappings are not migratable.
1190                          *
1191                          * However, we can be racing with truncation, which can
1192                          * free the mapping that we need to check. Truncation
1193                          * holds the folio lock until after the folio is removed
1194                          * from the page so holding it ourselves is sufficient.
1195                          *
1196                          * To avoid locking the folio just to check inaccessible,
1197                          * assume every inaccessible folio is also unevictable,
1198                          * which is a cheaper test.  If our assumption goes
1199                          * wrong, it's not a correctness bug, just potentially
1200                          * wasted cycles.
1201                          */
1202                         if (!folio_trylock(folio))
1203                                 goto isolate_fail_put;
1204 
1205                         mapping = folio_mapping(folio);
1206                         if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1207                                 migrate_dirty = !mapping ||
1208                                                 mapping->a_ops->migrate_folio;
1209                         }
1210                         is_inaccessible = mapping && mapping_inaccessible(mapping);
1211                         folio_unlock(folio);
1212                         if (!migrate_dirty || is_inaccessible)
1213                                 goto isolate_fail_put;
1214                 }
1215 
1216                 /* Try isolate the folio */
1217                 if (!folio_test_clear_lru(folio))
1218                         goto isolate_fail_put;
1219 
1220                 lruvec = folio_lruvec(folio);
1221 
1222                 /* If we already hold the lock, we can skip some rechecking */
1223                 if (lruvec != locked) {
1224                         if (locked)
1225                                 unlock_page_lruvec_irqrestore(locked, flags);
1226 
1227                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1228                         locked = lruvec;
1229 
1230                         lruvec_memcg_debug(lruvec, folio);
1231 
1232                         /*
1233                          * Try get exclusive access under lock. If marked for
1234                          * skip, the scan is aborted unless the current context
1235                          * is a rescan to reach the end of the pageblock.
1236                          */
1237                         if (!skip_updated && valid_page) {
1238                                 skip_updated = true;
1239                                 if (test_and_set_skip(cc, valid_page) &&
1240                                     !cc->finish_pageblock) {
1241                                         low_pfn = end_pfn;
1242                                         goto isolate_abort;
1243                                 }
1244                         }
1245 
1246                         /*
1247                          * Check LRU folio order under the lock
1248                          */
1249                         if (unlikely(skip_isolation_on_order(folio_order(folio),
1250                                                              cc->order) &&
1251                                      !cc->alloc_contig)) {
1252                                 low_pfn += folio_nr_pages(folio) - 1;
1253                                 nr_scanned += folio_nr_pages(folio) - 1;
1254                                 folio_set_lru(folio);
1255                                 goto isolate_fail_put;
1256                         }
1257                 }
1258 
1259                 /* The folio is taken off the LRU */
1260                 if (folio_test_large(folio))
1261                         low_pfn += folio_nr_pages(folio) - 1;
1262 
1263                 /* Successfully isolated */
1264                 lruvec_del_folio(lruvec, folio);
1265                 node_stat_mod_folio(folio,
1266                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1267                                 folio_nr_pages(folio));
1268 
1269 isolate_success:
1270                 list_add(&folio->lru, &cc->migratepages);
1271 isolate_success_no_list:
1272                 cc->nr_migratepages += folio_nr_pages(folio);
1273                 nr_isolated += folio_nr_pages(folio);
1274                 nr_scanned += folio_nr_pages(folio) - 1;
1275 
1276                 /*
1277                  * Avoid isolating too much unless this block is being
1278                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1279                  * or a lock is contended. For contention, isolate quickly to
1280                  * potentially remove one source of contention.
1281                  */
1282                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1283                     !cc->finish_pageblock && !cc->contended) {
1284                         ++low_pfn;
1285                         break;
1286                 }
1287 
1288                 continue;
1289 
1290 isolate_fail_put:
1291                 /* Avoid potential deadlock in freeing page under lru_lock */
1292                 if (locked) {
1293                         unlock_page_lruvec_irqrestore(locked, flags);
1294                         locked = NULL;
1295                 }
1296                 folio_put(folio);
1297 
1298 isolate_fail:
1299                 if (!skip_on_failure && ret != -ENOMEM)
1300                         continue;
1301 
1302                 /*
1303                  * We have isolated some pages, but then failed. Release them
1304                  * instead of migrating, as we cannot form the cc->order buddy
1305                  * page anyway.
1306                  */
1307                 if (nr_isolated) {
1308                         if (locked) {
1309                                 unlock_page_lruvec_irqrestore(locked, flags);
1310                                 locked = NULL;
1311                         }
1312                         putback_movable_pages(&cc->migratepages);
1313                         cc->nr_migratepages = 0;
1314                         nr_isolated = 0;
1315                 }
1316 
1317                 if (low_pfn < next_skip_pfn) {
1318                         low_pfn = next_skip_pfn - 1;
1319                         /*
1320                          * The check near the loop beginning would have updated
1321                          * next_skip_pfn too, but this is a bit simpler.
1322                          */
1323                         next_skip_pfn += 1UL << cc->order;
1324                 }
1325 
1326                 if (ret == -ENOMEM)
1327                         break;
1328         }
1329 
1330         /*
1331          * The PageBuddy() check could have potentially brought us outside
1332          * the range to be scanned.
1333          */
1334         if (unlikely(low_pfn > end_pfn))
1335                 low_pfn = end_pfn;
1336 
1337         folio = NULL;
1338 
1339 isolate_abort:
1340         if (locked)
1341                 unlock_page_lruvec_irqrestore(locked, flags);
1342         if (folio) {
1343                 folio_set_lru(folio);
1344                 folio_put(folio);
1345         }
1346 
1347         /*
1348          * Update the cached scanner pfn once the pageblock has been scanned.
1349          * Pages will either be migrated in which case there is no point
1350          * scanning in the near future or migration failed in which case the
1351          * failure reason may persist. The block is marked for skipping if
1352          * there were no pages isolated in the block or if the block is
1353          * rescanned twice in a row.
1354          */
1355         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1356                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1357                         set_pageblock_skip(valid_page);
1358                 update_cached_migrate(cc, low_pfn);
1359         }
1360 
1361         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1362                                                 nr_scanned, nr_isolated);
1363 
1364 fatal_pending:
1365         cc->total_migrate_scanned += nr_scanned;
1366         if (nr_isolated)
1367                 count_compact_events(COMPACTISOLATED, nr_isolated);
1368 
1369         cc->migrate_pfn = low_pfn;
1370 
1371         return ret;
1372 }
1373 
1374 /**
1375  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1376  * @cc:        Compaction control structure.
1377  * @start_pfn: The first PFN to start isolating.
1378  * @end_pfn:   The one-past-last PFN.
1379  *
1380  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1381  * in case we could not allocate a page, or 0.
1382  */
1383 int
1384 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1385                                                         unsigned long end_pfn)
1386 {
1387         unsigned long pfn, block_start_pfn, block_end_pfn;
1388         int ret = 0;
1389 
1390         /* Scan block by block. First and last block may be incomplete */
1391         pfn = start_pfn;
1392         block_start_pfn = pageblock_start_pfn(pfn);
1393         if (block_start_pfn < cc->zone->zone_start_pfn)
1394                 block_start_pfn = cc->zone->zone_start_pfn;
1395         block_end_pfn = pageblock_end_pfn(pfn);
1396 
1397         for (; pfn < end_pfn; pfn = block_end_pfn,
1398                                 block_start_pfn = block_end_pfn,
1399                                 block_end_pfn += pageblock_nr_pages) {
1400 
1401                 block_end_pfn = min(block_end_pfn, end_pfn);
1402 
1403                 if (!pageblock_pfn_to_page(block_start_pfn,
1404                                         block_end_pfn, cc->zone))
1405                         continue;
1406 
1407                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1408                                                  ISOLATE_UNEVICTABLE);
1409 
1410                 if (ret)
1411                         break;
1412 
1413                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1414                         break;
1415         }
1416 
1417         return ret;
1418 }
1419 
1420 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1421 #ifdef CONFIG_COMPACTION
1422 
1423 static bool suitable_migration_source(struct compact_control *cc,
1424                                                         struct page *page)
1425 {
1426         int block_mt;
1427 
1428         if (pageblock_skip_persistent(page))
1429                 return false;
1430 
1431         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1432                 return true;
1433 
1434         block_mt = get_pageblock_migratetype(page);
1435 
1436         if (cc->migratetype == MIGRATE_MOVABLE)
1437                 return is_migrate_movable(block_mt);
1438         else
1439                 return block_mt == cc->migratetype;
1440 }
1441 
1442 /* Returns true if the page is within a block suitable for migration to */
1443 static bool suitable_migration_target(struct compact_control *cc,
1444                                                         struct page *page)
1445 {
1446         /* If the page is a large free page, then disallow migration */
1447         if (PageBuddy(page)) {
1448                 int order = cc->order > 0 ? cc->order : pageblock_order;
1449 
1450                 /*
1451                  * We are checking page_order without zone->lock taken. But
1452                  * the only small danger is that we skip a potentially suitable
1453                  * pageblock, so it's not worth to check order for valid range.
1454                  */
1455                 if (buddy_order_unsafe(page) >= order)
1456                         return false;
1457         }
1458 
1459         if (cc->ignore_block_suitable)
1460                 return true;
1461 
1462         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1463         if (is_migrate_movable(get_pageblock_migratetype(page)))
1464                 return true;
1465 
1466         /* Otherwise skip the block */
1467         return false;
1468 }
1469 
1470 static inline unsigned int
1471 freelist_scan_limit(struct compact_control *cc)
1472 {
1473         unsigned short shift = BITS_PER_LONG - 1;
1474 
1475         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1476 }
1477 
1478 /*
1479  * Test whether the free scanner has reached the same or lower pageblock than
1480  * the migration scanner, and compaction should thus terminate.
1481  */
1482 static inline bool compact_scanners_met(struct compact_control *cc)
1483 {
1484         return (cc->free_pfn >> pageblock_order)
1485                 <= (cc->migrate_pfn >> pageblock_order);
1486 }
1487 
1488 /*
1489  * Used when scanning for a suitable migration target which scans freelists
1490  * in reverse. Reorders the list such as the unscanned pages are scanned
1491  * first on the next iteration of the free scanner
1492  */
1493 static void
1494 move_freelist_head(struct list_head *freelist, struct page *freepage)
1495 {
1496         LIST_HEAD(sublist);
1497 
1498         if (!list_is_first(&freepage->buddy_list, freelist)) {
1499                 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1500                 list_splice_tail(&sublist, freelist);
1501         }
1502 }
1503 
1504 /*
1505  * Similar to move_freelist_head except used by the migration scanner
1506  * when scanning forward. It's possible for these list operations to
1507  * move against each other if they search the free list exactly in
1508  * lockstep.
1509  */
1510 static void
1511 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1512 {
1513         LIST_HEAD(sublist);
1514 
1515         if (!list_is_last(&freepage->buddy_list, freelist)) {
1516                 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1517                 list_splice_tail(&sublist, freelist);
1518         }
1519 }
1520 
1521 static void
1522 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1523 {
1524         unsigned long start_pfn, end_pfn;
1525         struct page *page;
1526 
1527         /* Do not search around if there are enough pages already */
1528         if (cc->nr_freepages >= cc->nr_migratepages)
1529                 return;
1530 
1531         /* Minimise scanning during async compaction */
1532         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1533                 return;
1534 
1535         /* Pageblock boundaries */
1536         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1537         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1538 
1539         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1540         if (!page)
1541                 return;
1542 
1543         isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1544 
1545         /* Skip this pageblock in the future as it's full or nearly full */
1546         if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1547                 set_pageblock_skip(page);
1548 }
1549 
1550 /* Search orders in round-robin fashion */
1551 static int next_search_order(struct compact_control *cc, int order)
1552 {
1553         order--;
1554         if (order < 0)
1555                 order = cc->order - 1;
1556 
1557         /* Search wrapped around? */
1558         if (order == cc->search_order) {
1559                 cc->search_order--;
1560                 if (cc->search_order < 0)
1561                         cc->search_order = cc->order - 1;
1562                 return -1;
1563         }
1564 
1565         return order;
1566 }
1567 
1568 static void fast_isolate_freepages(struct compact_control *cc)
1569 {
1570         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1571         unsigned int nr_scanned = 0, total_isolated = 0;
1572         unsigned long low_pfn, min_pfn, highest = 0;
1573         unsigned long nr_isolated = 0;
1574         unsigned long distance;
1575         struct page *page = NULL;
1576         bool scan_start = false;
1577         int order;
1578 
1579         /* Full compaction passes in a negative order */
1580         if (cc->order <= 0)
1581                 return;
1582 
1583         /*
1584          * If starting the scan, use a deeper search and use the highest
1585          * PFN found if a suitable one is not found.
1586          */
1587         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1588                 limit = pageblock_nr_pages >> 1;
1589                 scan_start = true;
1590         }
1591 
1592         /*
1593          * Preferred point is in the top quarter of the scan space but take
1594          * a pfn from the top half if the search is problematic.
1595          */
1596         distance = (cc->free_pfn - cc->migrate_pfn);
1597         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1598         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1599 
1600         if (WARN_ON_ONCE(min_pfn > low_pfn))
1601                 low_pfn = min_pfn;
1602 
1603         /*
1604          * Search starts from the last successful isolation order or the next
1605          * order to search after a previous failure
1606          */
1607         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1608 
1609         for (order = cc->search_order;
1610              !page && order >= 0;
1611              order = next_search_order(cc, order)) {
1612                 struct free_area *area = &cc->zone->free_area[order];
1613                 struct list_head *freelist;
1614                 struct page *freepage;
1615                 unsigned long flags;
1616                 unsigned int order_scanned = 0;
1617                 unsigned long high_pfn = 0;
1618 
1619                 if (!area->nr_free)
1620                         continue;
1621 
1622                 spin_lock_irqsave(&cc->zone->lock, flags);
1623                 freelist = &area->free_list[MIGRATE_MOVABLE];
1624                 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1625                         unsigned long pfn;
1626 
1627                         order_scanned++;
1628                         nr_scanned++;
1629                         pfn = page_to_pfn(freepage);
1630 
1631                         if (pfn >= highest)
1632                                 highest = max(pageblock_start_pfn(pfn),
1633                                               cc->zone->zone_start_pfn);
1634 
1635                         if (pfn >= low_pfn) {
1636                                 cc->fast_search_fail = 0;
1637                                 cc->search_order = order;
1638                                 page = freepage;
1639                                 break;
1640                         }
1641 
1642                         if (pfn >= min_pfn && pfn > high_pfn) {
1643                                 high_pfn = pfn;
1644 
1645                                 /* Shorten the scan if a candidate is found */
1646                                 limit >>= 1;
1647                         }
1648 
1649                         if (order_scanned >= limit)
1650                                 break;
1651                 }
1652 
1653                 /* Use a maximum candidate pfn if a preferred one was not found */
1654                 if (!page && high_pfn) {
1655                         page = pfn_to_page(high_pfn);
1656 
1657                         /* Update freepage for the list reorder below */
1658                         freepage = page;
1659                 }
1660 
1661                 /* Reorder to so a future search skips recent pages */
1662                 move_freelist_head(freelist, freepage);
1663 
1664                 /* Isolate the page if available */
1665                 if (page) {
1666                         if (__isolate_free_page(page, order)) {
1667                                 set_page_private(page, order);
1668                                 nr_isolated = 1 << order;
1669                                 nr_scanned += nr_isolated - 1;
1670                                 total_isolated += nr_isolated;
1671                                 cc->nr_freepages += nr_isolated;
1672                                 list_add_tail(&page->lru, &cc->freepages[order]);
1673                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1674                         } else {
1675                                 /* If isolation fails, abort the search */
1676                                 order = cc->search_order + 1;
1677                                 page = NULL;
1678                         }
1679                 }
1680 
1681                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1682 
1683                 /* Skip fast search if enough freepages isolated */
1684                 if (cc->nr_freepages >= cc->nr_migratepages)
1685                         break;
1686 
1687                 /*
1688                  * Smaller scan on next order so the total scan is related
1689                  * to freelist_scan_limit.
1690                  */
1691                 if (order_scanned >= limit)
1692                         limit = max(1U, limit >> 1);
1693         }
1694 
1695         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1696                                                    nr_scanned, total_isolated);
1697 
1698         if (!page) {
1699                 cc->fast_search_fail++;
1700                 if (scan_start) {
1701                         /*
1702                          * Use the highest PFN found above min. If one was
1703                          * not found, be pessimistic for direct compaction
1704                          * and use the min mark.
1705                          */
1706                         if (highest >= min_pfn) {
1707                                 page = pfn_to_page(highest);
1708                                 cc->free_pfn = highest;
1709                         } else {
1710                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1711                                         page = pageblock_pfn_to_page(min_pfn,
1712                                                 min(pageblock_end_pfn(min_pfn),
1713                                                     zone_end_pfn(cc->zone)),
1714                                                 cc->zone);
1715                                         if (page && !suitable_migration_target(cc, page))
1716                                                 page = NULL;
1717 
1718                                         cc->free_pfn = min_pfn;
1719                                 }
1720                         }
1721                 }
1722         }
1723 
1724         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1725                 highest -= pageblock_nr_pages;
1726                 cc->zone->compact_cached_free_pfn = highest;
1727         }
1728 
1729         cc->total_free_scanned += nr_scanned;
1730         if (!page)
1731                 return;
1732 
1733         low_pfn = page_to_pfn(page);
1734         fast_isolate_around(cc, low_pfn);
1735 }
1736 
1737 /*
1738  * Based on information in the current compact_control, find blocks
1739  * suitable for isolating free pages from and then isolate them.
1740  */
1741 static void isolate_freepages(struct compact_control *cc)
1742 {
1743         struct zone *zone = cc->zone;
1744         struct page *page;
1745         unsigned long block_start_pfn;  /* start of current pageblock */
1746         unsigned long isolate_start_pfn; /* exact pfn we start at */
1747         unsigned long block_end_pfn;    /* end of current pageblock */
1748         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1749         unsigned int stride;
1750 
1751         /* Try a small search of the free lists for a candidate */
1752         fast_isolate_freepages(cc);
1753         if (cc->nr_freepages)
1754                 return;
1755 
1756         /*
1757          * Initialise the free scanner. The starting point is where we last
1758          * successfully isolated from, zone-cached value, or the end of the
1759          * zone when isolating for the first time. For looping we also need
1760          * this pfn aligned down to the pageblock boundary, because we do
1761          * block_start_pfn -= pageblock_nr_pages in the for loop.
1762          * For ending point, take care when isolating in last pageblock of a
1763          * zone which ends in the middle of a pageblock.
1764          * The low boundary is the end of the pageblock the migration scanner
1765          * is using.
1766          */
1767         isolate_start_pfn = cc->free_pfn;
1768         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1769         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1770                                                 zone_end_pfn(zone));
1771         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1772         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1773 
1774         /*
1775          * Isolate free pages until enough are available to migrate the
1776          * pages on cc->migratepages. We stop searching if the migrate
1777          * and free page scanners meet or enough free pages are isolated.
1778          */
1779         for (; block_start_pfn >= low_pfn;
1780                                 block_end_pfn = block_start_pfn,
1781                                 block_start_pfn -= pageblock_nr_pages,
1782                                 isolate_start_pfn = block_start_pfn) {
1783                 unsigned long nr_isolated;
1784 
1785                 /*
1786                  * This can iterate a massively long zone without finding any
1787                  * suitable migration targets, so periodically check resched.
1788                  */
1789                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1790                         cond_resched();
1791 
1792                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1793                                                                         zone);
1794                 if (!page) {
1795                         unsigned long next_pfn;
1796 
1797                         next_pfn = skip_offline_sections_reverse(block_start_pfn);
1798                         if (next_pfn)
1799                                 block_start_pfn = max(next_pfn, low_pfn);
1800 
1801                         continue;
1802                 }
1803 
1804                 /* Check the block is suitable for migration */
1805                 if (!suitable_migration_target(cc, page))
1806                         continue;
1807 
1808                 /* If isolation recently failed, do not retry */
1809                 if (!isolation_suitable(cc, page))
1810                         continue;
1811 
1812                 /* Found a block suitable for isolating free pages from. */
1813                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1814                                         block_end_pfn, cc->freepages, stride, false);
1815 
1816                 /* Update the skip hint if the full pageblock was scanned */
1817                 if (isolate_start_pfn == block_end_pfn)
1818                         update_pageblock_skip(cc, page, block_start_pfn -
1819                                               pageblock_nr_pages);
1820 
1821                 /* Are enough freepages isolated? */
1822                 if (cc->nr_freepages >= cc->nr_migratepages) {
1823                         if (isolate_start_pfn >= block_end_pfn) {
1824                                 /*
1825                                  * Restart at previous pageblock if more
1826                                  * freepages can be isolated next time.
1827                                  */
1828                                 isolate_start_pfn =
1829                                         block_start_pfn - pageblock_nr_pages;
1830                         }
1831                         break;
1832                 } else if (isolate_start_pfn < block_end_pfn) {
1833                         /*
1834                          * If isolation failed early, do not continue
1835                          * needlessly.
1836                          */
1837                         break;
1838                 }
1839 
1840                 /* Adjust stride depending on isolation */
1841                 if (nr_isolated) {
1842                         stride = 1;
1843                         continue;
1844                 }
1845                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1846         }
1847 
1848         /*
1849          * Record where the free scanner will restart next time. Either we
1850          * broke from the loop and set isolate_start_pfn based on the last
1851          * call to isolate_freepages_block(), or we met the migration scanner
1852          * and the loop terminated due to isolate_start_pfn < low_pfn
1853          */
1854         cc->free_pfn = isolate_start_pfn;
1855 }
1856 
1857 /*
1858  * This is a migrate-callback that "allocates" freepages by taking pages
1859  * from the isolated freelists in the block we are migrating to.
1860  */
1861 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1862 {
1863         struct compact_control *cc = (struct compact_control *)data;
1864         struct folio *dst;
1865         int order = folio_order(src);
1866         bool has_isolated_pages = false;
1867         int start_order;
1868         struct page *freepage;
1869         unsigned long size;
1870 
1871 again:
1872         for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1873                 if (!list_empty(&cc->freepages[start_order]))
1874                         break;
1875 
1876         /* no free pages in the list */
1877         if (start_order == NR_PAGE_ORDERS) {
1878                 if (has_isolated_pages)
1879                         return NULL;
1880                 isolate_freepages(cc);
1881                 has_isolated_pages = true;
1882                 goto again;
1883         }
1884 
1885         freepage = list_first_entry(&cc->freepages[start_order], struct page,
1886                                 lru);
1887         size = 1 << start_order;
1888 
1889         list_del(&freepage->lru);
1890 
1891         while (start_order > order) {
1892                 start_order--;
1893                 size >>= 1;
1894 
1895                 list_add(&freepage[size].lru, &cc->freepages[start_order]);
1896                 set_page_private(&freepage[size], start_order);
1897         }
1898         dst = (struct folio *)freepage;
1899 
1900         post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1901         if (order)
1902                 prep_compound_page(&dst->page, order);
1903         cc->nr_freepages -= 1 << order;
1904         cc->nr_migratepages -= 1 << order;
1905         return page_rmappable_folio(&dst->page);
1906 }
1907 
1908 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1909 {
1910         return alloc_hooks(compaction_alloc_noprof(src, data));
1911 }
1912 
1913 /*
1914  * This is a migrate-callback that "frees" freepages back to the isolated
1915  * freelist.  All pages on the freelist are from the same zone, so there is no
1916  * special handling needed for NUMA.
1917  */
1918 static void compaction_free(struct folio *dst, unsigned long data)
1919 {
1920         struct compact_control *cc = (struct compact_control *)data;
1921         int order = folio_order(dst);
1922         struct page *page = &dst->page;
1923 
1924         if (folio_put_testzero(dst)) {
1925                 free_pages_prepare(page, order);
1926                 list_add(&dst->lru, &cc->freepages[order]);
1927                 cc->nr_freepages += 1 << order;
1928         }
1929         cc->nr_migratepages += 1 << order;
1930         /*
1931          * someone else has referenced the page, we cannot take it back to our
1932          * free list.
1933          */
1934 }
1935 
1936 /* possible outcome of isolate_migratepages */
1937 typedef enum {
1938         ISOLATE_ABORT,          /* Abort compaction now */
1939         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1940         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1941 } isolate_migrate_t;
1942 
1943 /*
1944  * Allow userspace to control policy on scanning the unevictable LRU for
1945  * compactable pages.
1946  */
1947 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1948 /*
1949  * Tunable for proactive compaction. It determines how
1950  * aggressively the kernel should compact memory in the
1951  * background. It takes values in the range [0, 100].
1952  */
1953 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1954 static int sysctl_extfrag_threshold = 500;
1955 static int __read_mostly sysctl_compact_memory;
1956 
1957 static inline void
1958 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1959 {
1960         if (cc->fast_start_pfn == ULONG_MAX)
1961                 return;
1962 
1963         if (!cc->fast_start_pfn)
1964                 cc->fast_start_pfn = pfn;
1965 
1966         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1967 }
1968 
1969 static inline unsigned long
1970 reinit_migrate_pfn(struct compact_control *cc)
1971 {
1972         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1973                 return cc->migrate_pfn;
1974 
1975         cc->migrate_pfn = cc->fast_start_pfn;
1976         cc->fast_start_pfn = ULONG_MAX;
1977 
1978         return cc->migrate_pfn;
1979 }
1980 
1981 /*
1982  * Briefly search the free lists for a migration source that already has
1983  * some free pages to reduce the number of pages that need migration
1984  * before a pageblock is free.
1985  */
1986 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1987 {
1988         unsigned int limit = freelist_scan_limit(cc);
1989         unsigned int nr_scanned = 0;
1990         unsigned long distance;
1991         unsigned long pfn = cc->migrate_pfn;
1992         unsigned long high_pfn;
1993         int order;
1994         bool found_block = false;
1995 
1996         /* Skip hints are relied on to avoid repeats on the fast search */
1997         if (cc->ignore_skip_hint)
1998                 return pfn;
1999 
2000         /*
2001          * If the pageblock should be finished then do not select a different
2002          * pageblock.
2003          */
2004         if (cc->finish_pageblock)
2005                 return pfn;
2006 
2007         /*
2008          * If the migrate_pfn is not at the start of a zone or the start
2009          * of a pageblock then assume this is a continuation of a previous
2010          * scan restarted due to COMPACT_CLUSTER_MAX.
2011          */
2012         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
2013                 return pfn;
2014 
2015         /*
2016          * For smaller orders, just linearly scan as the number of pages
2017          * to migrate should be relatively small and does not necessarily
2018          * justify freeing up a large block for a small allocation.
2019          */
2020         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
2021                 return pfn;
2022 
2023         /*
2024          * Only allow kcompactd and direct requests for movable pages to
2025          * quickly clear out a MOVABLE pageblock for allocation. This
2026          * reduces the risk that a large movable pageblock is freed for
2027          * an unmovable/reclaimable small allocation.
2028          */
2029         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2030                 return pfn;
2031 
2032         /*
2033          * When starting the migration scanner, pick any pageblock within the
2034          * first half of the search space. Otherwise try and pick a pageblock
2035          * within the first eighth to reduce the chances that a migration
2036          * target later becomes a source.
2037          */
2038         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2039         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2040                 distance >>= 2;
2041         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2042 
2043         for (order = cc->order - 1;
2044              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2045              order--) {
2046                 struct free_area *area = &cc->zone->free_area[order];
2047                 struct list_head *freelist;
2048                 unsigned long flags;
2049                 struct page *freepage;
2050 
2051                 if (!area->nr_free)
2052                         continue;
2053 
2054                 spin_lock_irqsave(&cc->zone->lock, flags);
2055                 freelist = &area->free_list[MIGRATE_MOVABLE];
2056                 list_for_each_entry(freepage, freelist, buddy_list) {
2057                         unsigned long free_pfn;
2058 
2059                         if (nr_scanned++ >= limit) {
2060                                 move_freelist_tail(freelist, freepage);
2061                                 break;
2062                         }
2063 
2064                         free_pfn = page_to_pfn(freepage);
2065                         if (free_pfn < high_pfn) {
2066                                 /*
2067                                  * Avoid if skipped recently. Ideally it would
2068                                  * move to the tail but even safe iteration of
2069                                  * the list assumes an entry is deleted, not
2070                                  * reordered.
2071                                  */
2072                                 if (get_pageblock_skip(freepage))
2073                                         continue;
2074 
2075                                 /* Reorder to so a future search skips recent pages */
2076                                 move_freelist_tail(freelist, freepage);
2077 
2078                                 update_fast_start_pfn(cc, free_pfn);
2079                                 pfn = pageblock_start_pfn(free_pfn);
2080                                 if (pfn < cc->zone->zone_start_pfn)
2081                                         pfn = cc->zone->zone_start_pfn;
2082                                 cc->fast_search_fail = 0;
2083                                 found_block = true;
2084                                 break;
2085                         }
2086                 }
2087                 spin_unlock_irqrestore(&cc->zone->lock, flags);
2088         }
2089 
2090         cc->total_migrate_scanned += nr_scanned;
2091 
2092         /*
2093          * If fast scanning failed then use a cached entry for a page block
2094          * that had free pages as the basis for starting a linear scan.
2095          */
2096         if (!found_block) {
2097                 cc->fast_search_fail++;
2098                 pfn = reinit_migrate_pfn(cc);
2099         }
2100         return pfn;
2101 }
2102 
2103 /*
2104  * Isolate all pages that can be migrated from the first suitable block,
2105  * starting at the block pointed to by the migrate scanner pfn within
2106  * compact_control.
2107  */
2108 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2109 {
2110         unsigned long block_start_pfn;
2111         unsigned long block_end_pfn;
2112         unsigned long low_pfn;
2113         struct page *page;
2114         const isolate_mode_t isolate_mode =
2115                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2116                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2117         bool fast_find_block;
2118 
2119         /*
2120          * Start at where we last stopped, or beginning of the zone as
2121          * initialized by compact_zone(). The first failure will use
2122          * the lowest PFN as the starting point for linear scanning.
2123          */
2124         low_pfn = fast_find_migrateblock(cc);
2125         block_start_pfn = pageblock_start_pfn(low_pfn);
2126         if (block_start_pfn < cc->zone->zone_start_pfn)
2127                 block_start_pfn = cc->zone->zone_start_pfn;
2128 
2129         /*
2130          * fast_find_migrateblock() has already ensured the pageblock is not
2131          * set with a skipped flag, so to avoid the isolation_suitable check
2132          * below again, check whether the fast search was successful.
2133          */
2134         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2135 
2136         /* Only scan within a pageblock boundary */
2137         block_end_pfn = pageblock_end_pfn(low_pfn);
2138 
2139         /*
2140          * Iterate over whole pageblocks until we find the first suitable.
2141          * Do not cross the free scanner.
2142          */
2143         for (; block_end_pfn <= cc->free_pfn;
2144                         fast_find_block = false,
2145                         cc->migrate_pfn = low_pfn = block_end_pfn,
2146                         block_start_pfn = block_end_pfn,
2147                         block_end_pfn += pageblock_nr_pages) {
2148 
2149                 /*
2150                  * This can potentially iterate a massively long zone with
2151                  * many pageblocks unsuitable, so periodically check if we
2152                  * need to schedule.
2153                  */
2154                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2155                         cond_resched();
2156 
2157                 page = pageblock_pfn_to_page(block_start_pfn,
2158                                                 block_end_pfn, cc->zone);
2159                 if (!page) {
2160                         unsigned long next_pfn;
2161 
2162                         next_pfn = skip_offline_sections(block_start_pfn);
2163                         if (next_pfn)
2164                                 block_end_pfn = min(next_pfn, cc->free_pfn);
2165                         continue;
2166                 }
2167 
2168                 /*
2169                  * If isolation recently failed, do not retry. Only check the
2170                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2171                  * to be visited multiple times. Assume skip was checked
2172                  * before making it "skip" so other compaction instances do
2173                  * not scan the same block.
2174                  */
2175                 if ((pageblock_aligned(low_pfn) ||
2176                      low_pfn == cc->zone->zone_start_pfn) &&
2177                     !fast_find_block && !isolation_suitable(cc, page))
2178                         continue;
2179 
2180                 /*
2181                  * For async direct compaction, only scan the pageblocks of the
2182                  * same migratetype without huge pages. Async direct compaction
2183                  * is optimistic to see if the minimum amount of work satisfies
2184                  * the allocation. The cached PFN is updated as it's possible
2185                  * that all remaining blocks between source and target are
2186                  * unsuitable and the compaction scanners fail to meet.
2187                  */
2188                 if (!suitable_migration_source(cc, page)) {
2189                         update_cached_migrate(cc, block_end_pfn);
2190                         continue;
2191                 }
2192 
2193                 /* Perform the isolation */
2194                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2195                                                 isolate_mode))
2196                         return ISOLATE_ABORT;
2197 
2198                 /*
2199                  * Either we isolated something and proceed with migration. Or
2200                  * we failed and compact_zone should decide if we should
2201                  * continue or not.
2202                  */
2203                 break;
2204         }
2205 
2206         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2207 }
2208 
2209 /*
2210  * Determine whether kswapd is (or recently was!) running on this node.
2211  *
2212  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2213  * zero it.
2214  */
2215 static bool kswapd_is_running(pg_data_t *pgdat)
2216 {
2217         bool running;
2218 
2219         pgdat_kswapd_lock(pgdat);
2220         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2221         pgdat_kswapd_unlock(pgdat);
2222 
2223         return running;
2224 }
2225 
2226 /*
2227  * A zone's fragmentation score is the external fragmentation wrt to the
2228  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2229  */
2230 static unsigned int fragmentation_score_zone(struct zone *zone)
2231 {
2232         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2233 }
2234 
2235 /*
2236  * A weighted zone's fragmentation score is the external fragmentation
2237  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2238  * returns a value in the range [0, 100].
2239  *
2240  * The scaling factor ensures that proactive compaction focuses on larger
2241  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2242  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2243  * and thus never exceeds the high threshold for proactive compaction.
2244  */
2245 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2246 {
2247         unsigned long score;
2248 
2249         score = zone->present_pages * fragmentation_score_zone(zone);
2250         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2251 }
2252 
2253 /*
2254  * The per-node proactive (background) compaction process is started by its
2255  * corresponding kcompactd thread when the node's fragmentation score
2256  * exceeds the high threshold. The compaction process remains active till
2257  * the node's score falls below the low threshold, or one of the back-off
2258  * conditions is met.
2259  */
2260 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2261 {
2262         unsigned int score = 0;
2263         int zoneid;
2264 
2265         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2266                 struct zone *zone;
2267 
2268                 zone = &pgdat->node_zones[zoneid];
2269                 if (!populated_zone(zone))
2270                         continue;
2271                 score += fragmentation_score_zone_weighted(zone);
2272         }
2273 
2274         return score;
2275 }
2276 
2277 static unsigned int fragmentation_score_wmark(bool low)
2278 {
2279         unsigned int wmark_low;
2280 
2281         /*
2282          * Cap the low watermark to avoid excessive compaction
2283          * activity in case a user sets the proactiveness tunable
2284          * close to 100 (maximum).
2285          */
2286         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2287         return low ? wmark_low : min(wmark_low + 10, 100U);
2288 }
2289 
2290 static bool should_proactive_compact_node(pg_data_t *pgdat)
2291 {
2292         int wmark_high;
2293 
2294         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2295                 return false;
2296 
2297         wmark_high = fragmentation_score_wmark(false);
2298         return fragmentation_score_node(pgdat) > wmark_high;
2299 }
2300 
2301 static enum compact_result __compact_finished(struct compact_control *cc)
2302 {
2303         unsigned int order;
2304         const int migratetype = cc->migratetype;
2305         int ret;
2306 
2307         /* Compaction run completes if the migrate and free scanner meet */
2308         if (compact_scanners_met(cc)) {
2309                 /* Let the next compaction start anew. */
2310                 reset_cached_positions(cc->zone);
2311 
2312                 /*
2313                  * Mark that the PG_migrate_skip information should be cleared
2314                  * by kswapd when it goes to sleep. kcompactd does not set the
2315                  * flag itself as the decision to be clear should be directly
2316                  * based on an allocation request.
2317                  */
2318                 if (cc->direct_compaction)
2319                         cc->zone->compact_blockskip_flush = true;
2320 
2321                 if (cc->whole_zone)
2322                         return COMPACT_COMPLETE;
2323                 else
2324                         return COMPACT_PARTIAL_SKIPPED;
2325         }
2326 
2327         if (cc->proactive_compaction) {
2328                 int score, wmark_low;
2329                 pg_data_t *pgdat;
2330 
2331                 pgdat = cc->zone->zone_pgdat;
2332                 if (kswapd_is_running(pgdat))
2333                         return COMPACT_PARTIAL_SKIPPED;
2334 
2335                 score = fragmentation_score_zone(cc->zone);
2336                 wmark_low = fragmentation_score_wmark(true);
2337 
2338                 if (score > wmark_low)
2339                         ret = COMPACT_CONTINUE;
2340                 else
2341                         ret = COMPACT_SUCCESS;
2342 
2343                 goto out;
2344         }
2345 
2346         if (is_via_compact_memory(cc->order))
2347                 return COMPACT_CONTINUE;
2348 
2349         /*
2350          * Always finish scanning a pageblock to reduce the possibility of
2351          * fallbacks in the future. This is particularly important when
2352          * migration source is unmovable/reclaimable but it's not worth
2353          * special casing.
2354          */
2355         if (!pageblock_aligned(cc->migrate_pfn))
2356                 return COMPACT_CONTINUE;
2357 
2358         /* Direct compactor: Is a suitable page free? */
2359         ret = COMPACT_NO_SUITABLE_PAGE;
2360         for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2361                 struct free_area *area = &cc->zone->free_area[order];
2362                 bool can_steal;
2363 
2364                 /* Job done if page is free of the right migratetype */
2365                 if (!free_area_empty(area, migratetype))
2366                         return COMPACT_SUCCESS;
2367 
2368 #ifdef CONFIG_CMA
2369                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2370                 if (migratetype == MIGRATE_MOVABLE &&
2371                         !free_area_empty(area, MIGRATE_CMA))
2372                         return COMPACT_SUCCESS;
2373 #endif
2374                 /*
2375                  * Job done if allocation would steal freepages from
2376                  * other migratetype buddy lists.
2377                  */
2378                 if (find_suitable_fallback(area, order, migratetype,
2379                                                 true, &can_steal) != -1)
2380                         /*
2381                          * Movable pages are OK in any pageblock. If we are
2382                          * stealing for a non-movable allocation, make sure
2383                          * we finish compacting the current pageblock first
2384                          * (which is assured by the above migrate_pfn align
2385                          * check) so it is as free as possible and we won't
2386                          * have to steal another one soon.
2387                          */
2388                         return COMPACT_SUCCESS;
2389         }
2390 
2391 out:
2392         if (cc->contended || fatal_signal_pending(current))
2393                 ret = COMPACT_CONTENDED;
2394 
2395         return ret;
2396 }
2397 
2398 static enum compact_result compact_finished(struct compact_control *cc)
2399 {
2400         int ret;
2401 
2402         ret = __compact_finished(cc);
2403         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2404         if (ret == COMPACT_NO_SUITABLE_PAGE)
2405                 ret = COMPACT_CONTINUE;
2406 
2407         return ret;
2408 }
2409 
2410 static bool __compaction_suitable(struct zone *zone, int order,
2411                                   int highest_zoneidx,
2412                                   unsigned long wmark_target)
2413 {
2414         unsigned long watermark;
2415         /*
2416          * Watermarks for order-0 must be met for compaction to be able to
2417          * isolate free pages for migration targets. This means that the
2418          * watermark and alloc_flags have to match, or be more pessimistic than
2419          * the check in __isolate_free_page(). We don't use the direct
2420          * compactor's alloc_flags, as they are not relevant for freepage
2421          * isolation. We however do use the direct compactor's highest_zoneidx
2422          * to skip over zones where lowmem reserves would prevent allocation
2423          * even if compaction succeeds.
2424          * For costly orders, we require low watermark instead of min for
2425          * compaction to proceed to increase its chances.
2426          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2427          * suitable migration targets
2428          */
2429         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2430                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2431         watermark += compact_gap(order);
2432         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2433                                    ALLOC_CMA, wmark_target);
2434 }
2435 
2436 /*
2437  * compaction_suitable: Is this suitable to run compaction on this zone now?
2438  */
2439 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2440 {
2441         enum compact_result compact_result;
2442         bool suitable;
2443 
2444         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2445                                          zone_page_state(zone, NR_FREE_PAGES));
2446         /*
2447          * fragmentation index determines if allocation failures are due to
2448          * low memory or external fragmentation
2449          *
2450          * index of -1000 would imply allocations might succeed depending on
2451          * watermarks, but we already failed the high-order watermark check
2452          * index towards 0 implies failure is due to lack of memory
2453          * index towards 1000 implies failure is due to fragmentation
2454          *
2455          * Only compact if a failure would be due to fragmentation. Also
2456          * ignore fragindex for non-costly orders where the alternative to
2457          * a successful reclaim/compaction is OOM. Fragindex and the
2458          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2459          * excessive compaction for costly orders, but it should not be at the
2460          * expense of system stability.
2461          */
2462         if (suitable) {
2463                 compact_result = COMPACT_CONTINUE;
2464                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2465                         int fragindex = fragmentation_index(zone, order);
2466 
2467                         if (fragindex >= 0 &&
2468                             fragindex <= sysctl_extfrag_threshold) {
2469                                 suitable = false;
2470                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2471                         }
2472                 }
2473         } else {
2474                 compact_result = COMPACT_SKIPPED;
2475         }
2476 
2477         trace_mm_compaction_suitable(zone, order, compact_result);
2478 
2479         return suitable;
2480 }
2481 
2482 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2483                 int alloc_flags)
2484 {
2485         struct zone *zone;
2486         struct zoneref *z;
2487 
2488         /*
2489          * Make sure at least one zone would pass __compaction_suitable if we continue
2490          * retrying the reclaim.
2491          */
2492         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2493                                 ac->highest_zoneidx, ac->nodemask) {
2494                 unsigned long available;
2495 
2496                 /*
2497                  * Do not consider all the reclaimable memory because we do not
2498                  * want to trash just for a single high order allocation which
2499                  * is even not guaranteed to appear even if __compaction_suitable
2500                  * is happy about the watermark check.
2501                  */
2502                 available = zone_reclaimable_pages(zone) / order;
2503                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2504                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2505                                           available))
2506                         return true;
2507         }
2508 
2509         return false;
2510 }
2511 
2512 /*
2513  * Should we do compaction for target allocation order.
2514  * Return COMPACT_SUCCESS if allocation for target order can be already
2515  * satisfied
2516  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2517  * Return COMPACT_CONTINUE if compaction for target order should be ran
2518  */
2519 static enum compact_result
2520 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2521                                  int highest_zoneidx, unsigned int alloc_flags)
2522 {
2523         unsigned long watermark;
2524 
2525         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2526         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2527                               alloc_flags))
2528                 return COMPACT_SUCCESS;
2529 
2530         if (!compaction_suitable(zone, order, highest_zoneidx))
2531                 return COMPACT_SKIPPED;
2532 
2533         return COMPACT_CONTINUE;
2534 }
2535 
2536 static enum compact_result
2537 compact_zone(struct compact_control *cc, struct capture_control *capc)
2538 {
2539         enum compact_result ret;
2540         unsigned long start_pfn = cc->zone->zone_start_pfn;
2541         unsigned long end_pfn = zone_end_pfn(cc->zone);
2542         unsigned long last_migrated_pfn;
2543         const bool sync = cc->mode != MIGRATE_ASYNC;
2544         bool update_cached;
2545         unsigned int nr_succeeded = 0, nr_migratepages;
2546         int order;
2547 
2548         /*
2549          * These counters track activities during zone compaction.  Initialize
2550          * them before compacting a new zone.
2551          */
2552         cc->total_migrate_scanned = 0;
2553         cc->total_free_scanned = 0;
2554         cc->nr_migratepages = 0;
2555         cc->nr_freepages = 0;
2556         for (order = 0; order < NR_PAGE_ORDERS; order++)
2557                 INIT_LIST_HEAD(&cc->freepages[order]);
2558         INIT_LIST_HEAD(&cc->migratepages);
2559 
2560         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2561 
2562         if (!is_via_compact_memory(cc->order)) {
2563                 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2564                                                        cc->highest_zoneidx,
2565                                                        cc->alloc_flags);
2566                 if (ret != COMPACT_CONTINUE)
2567                         return ret;
2568         }
2569 
2570         /*
2571          * Clear pageblock skip if there were failures recently and compaction
2572          * is about to be retried after being deferred.
2573          */
2574         if (compaction_restarting(cc->zone, cc->order))
2575                 __reset_isolation_suitable(cc->zone);
2576 
2577         /*
2578          * Setup to move all movable pages to the end of the zone. Used cached
2579          * information on where the scanners should start (unless we explicitly
2580          * want to compact the whole zone), but check that it is initialised
2581          * by ensuring the values are within zone boundaries.
2582          */
2583         cc->fast_start_pfn = 0;
2584         if (cc->whole_zone) {
2585                 cc->migrate_pfn = start_pfn;
2586                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2587         } else {
2588                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2589                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2590                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2591                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2592                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2593                 }
2594                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2595                         cc->migrate_pfn = start_pfn;
2596                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2597                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2598                 }
2599 
2600                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2601                         cc->whole_zone = true;
2602         }
2603 
2604         last_migrated_pfn = 0;
2605 
2606         /*
2607          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2608          * the basis that some migrations will fail in ASYNC mode. However,
2609          * if the cached PFNs match and pageblocks are skipped due to having
2610          * no isolation candidates, then the sync state does not matter.
2611          * Until a pageblock with isolation candidates is found, keep the
2612          * cached PFNs in sync to avoid revisiting the same blocks.
2613          */
2614         update_cached = !sync &&
2615                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2616 
2617         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2618 
2619         /* lru_add_drain_all could be expensive with involving other CPUs */
2620         lru_add_drain();
2621 
2622         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2623                 int err;
2624                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2625 
2626                 /*
2627                  * Avoid multiple rescans of the same pageblock which can
2628                  * happen if a page cannot be isolated (dirty/writeback in
2629                  * async mode) or if the migrated pages are being allocated
2630                  * before the pageblock is cleared.  The first rescan will
2631                  * capture the entire pageblock for migration. If it fails,
2632                  * it'll be marked skip and scanning will proceed as normal.
2633                  */
2634                 cc->finish_pageblock = false;
2635                 if (pageblock_start_pfn(last_migrated_pfn) ==
2636                     pageblock_start_pfn(iteration_start_pfn)) {
2637                         cc->finish_pageblock = true;
2638                 }
2639 
2640 rescan:
2641                 switch (isolate_migratepages(cc)) {
2642                 case ISOLATE_ABORT:
2643                         ret = COMPACT_CONTENDED;
2644                         putback_movable_pages(&cc->migratepages);
2645                         cc->nr_migratepages = 0;
2646                         goto out;
2647                 case ISOLATE_NONE:
2648                         if (update_cached) {
2649                                 cc->zone->compact_cached_migrate_pfn[1] =
2650                                         cc->zone->compact_cached_migrate_pfn[0];
2651                         }
2652 
2653                         /*
2654                          * We haven't isolated and migrated anything, but
2655                          * there might still be unflushed migrations from
2656                          * previous cc->order aligned block.
2657                          */
2658                         goto check_drain;
2659                 case ISOLATE_SUCCESS:
2660                         update_cached = false;
2661                         last_migrated_pfn = max(cc->zone->zone_start_pfn,
2662                                 pageblock_start_pfn(cc->migrate_pfn - 1));
2663                 }
2664 
2665                 /*
2666                  * Record the number of pages to migrate since the
2667                  * compaction_alloc/free() will update cc->nr_migratepages
2668                  * properly.
2669                  */
2670                 nr_migratepages = cc->nr_migratepages;
2671                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2672                                 compaction_free, (unsigned long)cc, cc->mode,
2673                                 MR_COMPACTION, &nr_succeeded);
2674 
2675                 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2676 
2677                 /* All pages were either migrated or will be released */
2678                 cc->nr_migratepages = 0;
2679                 if (err) {
2680                         putback_movable_pages(&cc->migratepages);
2681                         /*
2682                          * migrate_pages() may return -ENOMEM when scanners meet
2683                          * and we want compact_finished() to detect it
2684                          */
2685                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2686                                 ret = COMPACT_CONTENDED;
2687                                 goto out;
2688                         }
2689                         /*
2690                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2691                          * within the pageblock_order-aligned block and
2692                          * fast_find_migrateblock may be used then scan the
2693                          * remainder of the pageblock. This will mark the
2694                          * pageblock "skip" to avoid rescanning in the near
2695                          * future. This will isolate more pages than necessary
2696                          * for the request but avoid loops due to
2697                          * fast_find_migrateblock revisiting blocks that were
2698                          * recently partially scanned.
2699                          */
2700                         if (!pageblock_aligned(cc->migrate_pfn) &&
2701                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2702                             (cc->mode < MIGRATE_SYNC)) {
2703                                 cc->finish_pageblock = true;
2704 
2705                                 /*
2706                                  * Draining pcplists does not help THP if
2707                                  * any page failed to migrate. Even after
2708                                  * drain, the pageblock will not be free.
2709                                  */
2710                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2711                                         last_migrated_pfn = 0;
2712 
2713                                 goto rescan;
2714                         }
2715                 }
2716 
2717                 /* Stop if a page has been captured */
2718                 if (capc && capc->page) {
2719                         ret = COMPACT_SUCCESS;
2720                         break;
2721                 }
2722 
2723 check_drain:
2724                 /*
2725                  * Has the migration scanner moved away from the previous
2726                  * cc->order aligned block where we migrated from? If yes,
2727                  * flush the pages that were freed, so that they can merge and
2728                  * compact_finished() can detect immediately if allocation
2729                  * would succeed.
2730                  */
2731                 if (cc->order > 0 && last_migrated_pfn) {
2732                         unsigned long current_block_start =
2733                                 block_start_pfn(cc->migrate_pfn, cc->order);
2734 
2735                         if (last_migrated_pfn < current_block_start) {
2736                                 lru_add_drain_cpu_zone(cc->zone);
2737                                 /* No more flushing until we migrate again */
2738                                 last_migrated_pfn = 0;
2739                         }
2740                 }
2741         }
2742 
2743 out:
2744         /*
2745          * Release free pages and update where the free scanner should restart,
2746          * so we don't leave any returned pages behind in the next attempt.
2747          */
2748         if (cc->nr_freepages > 0) {
2749                 unsigned long free_pfn = release_free_list(cc->freepages);
2750 
2751                 cc->nr_freepages = 0;
2752                 VM_BUG_ON(free_pfn == 0);
2753                 /* The cached pfn is always the first in a pageblock */
2754                 free_pfn = pageblock_start_pfn(free_pfn);
2755                 /*
2756                  * Only go back, not forward. The cached pfn might have been
2757                  * already reset to zone end in compact_finished()
2758                  */
2759                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2760                         cc->zone->compact_cached_free_pfn = free_pfn;
2761         }
2762 
2763         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2764         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2765 
2766         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2767 
2768         VM_BUG_ON(!list_empty(&cc->migratepages));
2769 
2770         return ret;
2771 }
2772 
2773 static enum compact_result compact_zone_order(struct zone *zone, int order,
2774                 gfp_t gfp_mask, enum compact_priority prio,
2775                 unsigned int alloc_flags, int highest_zoneidx,
2776                 struct page **capture)
2777 {
2778         enum compact_result ret;
2779         struct compact_control cc = {
2780                 .order = order,
2781                 .search_order = order,
2782                 .gfp_mask = gfp_mask,
2783                 .zone = zone,
2784                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2785                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2786                 .alloc_flags = alloc_flags,
2787                 .highest_zoneidx = highest_zoneidx,
2788                 .direct_compaction = true,
2789                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2790                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2791                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2792         };
2793         struct capture_control capc = {
2794                 .cc = &cc,
2795                 .page = NULL,
2796         };
2797 
2798         /*
2799          * Make sure the structs are really initialized before we expose the
2800          * capture control, in case we are interrupted and the interrupt handler
2801          * frees a page.
2802          */
2803         barrier();
2804         WRITE_ONCE(current->capture_control, &capc);
2805 
2806         ret = compact_zone(&cc, &capc);
2807 
2808         /*
2809          * Make sure we hide capture control first before we read the captured
2810          * page pointer, otherwise an interrupt could free and capture a page
2811          * and we would leak it.
2812          */
2813         WRITE_ONCE(current->capture_control, NULL);
2814         *capture = READ_ONCE(capc.page);
2815         /*
2816          * Technically, it is also possible that compaction is skipped but
2817          * the page is still captured out of luck(IRQ came and freed the page).
2818          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2819          * the COMPACT[STALL|FAIL] when compaction is skipped.
2820          */
2821         if (*capture)
2822                 ret = COMPACT_SUCCESS;
2823 
2824         return ret;
2825 }
2826 
2827 /**
2828  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2829  * @gfp_mask: The GFP mask of the current allocation
2830  * @order: The order of the current allocation
2831  * @alloc_flags: The allocation flags of the current allocation
2832  * @ac: The context of current allocation
2833  * @prio: Determines how hard direct compaction should try to succeed
2834  * @capture: Pointer to free page created by compaction will be stored here
2835  *
2836  * This is the main entry point for direct page compaction.
2837  */
2838 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2839                 unsigned int alloc_flags, const struct alloc_context *ac,
2840                 enum compact_priority prio, struct page **capture)
2841 {
2842         struct zoneref *z;
2843         struct zone *zone;
2844         enum compact_result rc = COMPACT_SKIPPED;
2845 
2846         if (!gfp_compaction_allowed(gfp_mask))
2847                 return COMPACT_SKIPPED;
2848 
2849         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2850 
2851         /* Compact each zone in the list */
2852         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2853                                         ac->highest_zoneidx, ac->nodemask) {
2854                 enum compact_result status;
2855 
2856                 if (prio > MIN_COMPACT_PRIORITY
2857                                         && compaction_deferred(zone, order)) {
2858                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2859                         continue;
2860                 }
2861 
2862                 status = compact_zone_order(zone, order, gfp_mask, prio,
2863                                 alloc_flags, ac->highest_zoneidx, capture);
2864                 rc = max(status, rc);
2865 
2866                 /* The allocation should succeed, stop compacting */
2867                 if (status == COMPACT_SUCCESS) {
2868                         /*
2869                          * We think the allocation will succeed in this zone,
2870                          * but it is not certain, hence the false. The caller
2871                          * will repeat this with true if allocation indeed
2872                          * succeeds in this zone.
2873                          */
2874                         compaction_defer_reset(zone, order, false);
2875 
2876                         break;
2877                 }
2878 
2879                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2880                                         status == COMPACT_PARTIAL_SKIPPED))
2881                         /*
2882                          * We think that allocation won't succeed in this zone
2883                          * so we defer compaction there. If it ends up
2884                          * succeeding after all, it will be reset.
2885                          */
2886                         defer_compaction(zone, order);
2887 
2888                 /*
2889                  * We might have stopped compacting due to need_resched() in
2890                  * async compaction, or due to a fatal signal detected. In that
2891                  * case do not try further zones
2892                  */
2893                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2894                                         || fatal_signal_pending(current))
2895                         break;
2896         }
2897 
2898         return rc;
2899 }
2900 
2901 /*
2902  * compact_node() - compact all zones within a node
2903  * @pgdat: The node page data
2904  * @proactive: Whether the compaction is proactive
2905  *
2906  * For proactive compaction, compact till each zone's fragmentation score
2907  * reaches within proactive compaction thresholds (as determined by the
2908  * proactiveness tunable), it is possible that the function returns before
2909  * reaching score targets due to various back-off conditions, such as,
2910  * contention on per-node or per-zone locks.
2911  */
2912 static int compact_node(pg_data_t *pgdat, bool proactive)
2913 {
2914         int zoneid;
2915         struct zone *zone;
2916         struct compact_control cc = {
2917                 .order = -1,
2918                 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2919                 .ignore_skip_hint = true,
2920                 .whole_zone = true,
2921                 .gfp_mask = GFP_KERNEL,
2922                 .proactive_compaction = proactive,
2923         };
2924 
2925         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2926                 zone = &pgdat->node_zones[zoneid];
2927                 if (!populated_zone(zone))
2928                         continue;
2929 
2930                 if (fatal_signal_pending(current))
2931                         return -EINTR;
2932 
2933                 cc.zone = zone;
2934 
2935                 compact_zone(&cc, NULL);
2936 
2937                 if (proactive) {
2938                         count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2939                                              cc.total_migrate_scanned);
2940                         count_compact_events(KCOMPACTD_FREE_SCANNED,
2941                                              cc.total_free_scanned);
2942                 }
2943         }
2944 
2945         return 0;
2946 }
2947 
2948 /* Compact all zones of all nodes in the system */
2949 static int compact_nodes(void)
2950 {
2951         int ret, nid;
2952 
2953         /* Flush pending updates to the LRU lists */
2954         lru_add_drain_all();
2955 
2956         for_each_online_node(nid) {
2957                 ret = compact_node(NODE_DATA(nid), false);
2958                 if (ret)
2959                         return ret;
2960         }
2961 
2962         return 0;
2963 }
2964 
2965 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2966                 void *buffer, size_t *length, loff_t *ppos)
2967 {
2968         int rc, nid;
2969 
2970         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2971         if (rc)
2972                 return rc;
2973 
2974         if (write && sysctl_compaction_proactiveness) {
2975                 for_each_online_node(nid) {
2976                         pg_data_t *pgdat = NODE_DATA(nid);
2977 
2978                         if (pgdat->proactive_compact_trigger)
2979                                 continue;
2980 
2981                         pgdat->proactive_compact_trigger = true;
2982                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2983                                                              pgdat->nr_zones - 1);
2984                         wake_up_interruptible(&pgdat->kcompactd_wait);
2985                 }
2986         }
2987 
2988         return 0;
2989 }
2990 
2991 /*
2992  * This is the entry point for compacting all nodes via
2993  * /proc/sys/vm/compact_memory
2994  */
2995 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2996                         void *buffer, size_t *length, loff_t *ppos)
2997 {
2998         int ret;
2999 
3000         ret = proc_dointvec(table, write, buffer, length, ppos);
3001         if (ret)
3002                 return ret;
3003 
3004         if (sysctl_compact_memory != 1)
3005                 return -EINVAL;
3006 
3007         if (write)
3008                 ret = compact_nodes();
3009 
3010         return ret;
3011 }
3012 
3013 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
3014 static ssize_t compact_store(struct device *dev,
3015                              struct device_attribute *attr,
3016                              const char *buf, size_t count)
3017 {
3018         int nid = dev->id;
3019 
3020         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3021                 /* Flush pending updates to the LRU lists */
3022                 lru_add_drain_all();
3023 
3024                 compact_node(NODE_DATA(nid), false);
3025         }
3026 
3027         return count;
3028 }
3029 static DEVICE_ATTR_WO(compact);
3030 
3031 int compaction_register_node(struct node *node)
3032 {
3033         return device_create_file(&node->dev, &dev_attr_compact);
3034 }
3035 
3036 void compaction_unregister_node(struct node *node)
3037 {
3038         device_remove_file(&node->dev, &dev_attr_compact);
3039 }
3040 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3041 
3042 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3043 {
3044         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3045                 pgdat->proactive_compact_trigger;
3046 }
3047 
3048 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3049 {
3050         int zoneid;
3051         struct zone *zone;
3052         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3053         enum compact_result ret;
3054 
3055         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3056                 zone = &pgdat->node_zones[zoneid];
3057 
3058                 if (!populated_zone(zone))
3059                         continue;
3060 
3061                 ret = compaction_suit_allocation_order(zone,
3062                                 pgdat->kcompactd_max_order,
3063                                 highest_zoneidx, ALLOC_WMARK_MIN);
3064                 if (ret == COMPACT_CONTINUE)
3065                         return true;
3066         }
3067 
3068         return false;
3069 }
3070 
3071 static void kcompactd_do_work(pg_data_t *pgdat)
3072 {
3073         /*
3074          * With no special task, compact all zones so that a page of requested
3075          * order is allocatable.
3076          */
3077         int zoneid;
3078         struct zone *zone;
3079         struct compact_control cc = {
3080                 .order = pgdat->kcompactd_max_order,
3081                 .search_order = pgdat->kcompactd_max_order,
3082                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3083                 .mode = MIGRATE_SYNC_LIGHT,
3084                 .ignore_skip_hint = false,
3085                 .gfp_mask = GFP_KERNEL,
3086         };
3087         enum compact_result ret;
3088 
3089         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3090                                                         cc.highest_zoneidx);
3091         count_compact_event(KCOMPACTD_WAKE);
3092 
3093         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3094                 int status;
3095 
3096                 zone = &pgdat->node_zones[zoneid];
3097                 if (!populated_zone(zone))
3098                         continue;
3099 
3100                 if (compaction_deferred(zone, cc.order))
3101                         continue;
3102 
3103                 ret = compaction_suit_allocation_order(zone,
3104                                 cc.order, zoneid, ALLOC_WMARK_MIN);
3105                 if (ret != COMPACT_CONTINUE)
3106                         continue;
3107 
3108                 if (kthread_should_stop())
3109                         return;
3110 
3111                 cc.zone = zone;
3112                 status = compact_zone(&cc, NULL);
3113 
3114                 if (status == COMPACT_SUCCESS) {
3115                         compaction_defer_reset(zone, cc.order, false);
3116                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3117                         /*
3118                          * Buddy pages may become stranded on pcps that could
3119                          * otherwise coalesce on the zone's free area for
3120                          * order >= cc.order.  This is ratelimited by the
3121                          * upcoming deferral.
3122                          */
3123                         drain_all_pages(zone);
3124 
3125                         /*
3126                          * We use sync migration mode here, so we defer like
3127                          * sync direct compaction does.
3128                          */
3129                         defer_compaction(zone, cc.order);
3130                 }
3131 
3132                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3133                                      cc.total_migrate_scanned);
3134                 count_compact_events(KCOMPACTD_FREE_SCANNED,
3135                                      cc.total_free_scanned);
3136         }
3137 
3138         /*
3139          * Regardless of success, we are done until woken up next. But remember
3140          * the requested order/highest_zoneidx in case it was higher/tighter
3141          * than our current ones
3142          */
3143         if (pgdat->kcompactd_max_order <= cc.order)
3144                 pgdat->kcompactd_max_order = 0;
3145         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3146                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3147 }
3148 
3149 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3150 {
3151         if (!order)
3152                 return;
3153 
3154         if (pgdat->kcompactd_max_order < order)
3155                 pgdat->kcompactd_max_order = order;
3156 
3157         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3158                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3159 
3160         /*
3161          * Pairs with implicit barrier in wait_event_freezable()
3162          * such that wakeups are not missed.
3163          */
3164         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3165                 return;
3166 
3167         if (!kcompactd_node_suitable(pgdat))
3168                 return;
3169 
3170         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3171                                                         highest_zoneidx);
3172         wake_up_interruptible(&pgdat->kcompactd_wait);
3173 }
3174 
3175 /*
3176  * The background compaction daemon, started as a kernel thread
3177  * from the init process.
3178  */
3179 static int kcompactd(void *p)
3180 {
3181         pg_data_t *pgdat = (pg_data_t *)p;
3182         struct task_struct *tsk = current;
3183         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3184         long timeout = default_timeout;
3185 
3186         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3187 
3188         if (!cpumask_empty(cpumask))
3189                 set_cpus_allowed_ptr(tsk, cpumask);
3190 
3191         set_freezable();
3192 
3193         pgdat->kcompactd_max_order = 0;
3194         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3195 
3196         while (!kthread_should_stop()) {
3197                 unsigned long pflags;
3198 
3199                 /*
3200                  * Avoid the unnecessary wakeup for proactive compaction
3201                  * when it is disabled.
3202                  */
3203                 if (!sysctl_compaction_proactiveness)
3204                         timeout = MAX_SCHEDULE_TIMEOUT;
3205                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3206                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3207                         kcompactd_work_requested(pgdat), timeout) &&
3208                         !pgdat->proactive_compact_trigger) {
3209 
3210                         psi_memstall_enter(&pflags);
3211                         kcompactd_do_work(pgdat);
3212                         psi_memstall_leave(&pflags);
3213                         /*
3214                          * Reset the timeout value. The defer timeout from
3215                          * proactive compaction is lost here but that is fine
3216                          * as the condition of the zone changing substantionally
3217                          * then carrying on with the previous defer interval is
3218                          * not useful.
3219                          */
3220                         timeout = default_timeout;
3221                         continue;
3222                 }
3223 
3224                 /*
3225                  * Start the proactive work with default timeout. Based
3226                  * on the fragmentation score, this timeout is updated.
3227                  */
3228                 timeout = default_timeout;
3229                 if (should_proactive_compact_node(pgdat)) {
3230                         unsigned int prev_score, score;
3231 
3232                         prev_score = fragmentation_score_node(pgdat);
3233                         compact_node(pgdat, true);
3234                         score = fragmentation_score_node(pgdat);
3235                         /*
3236                          * Defer proactive compaction if the fragmentation
3237                          * score did not go down i.e. no progress made.
3238                          */
3239                         if (unlikely(score >= prev_score))
3240                                 timeout =
3241                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3242                 }
3243                 if (unlikely(pgdat->proactive_compact_trigger))
3244                         pgdat->proactive_compact_trigger = false;
3245         }
3246 
3247         return 0;
3248 }
3249 
3250 /*
3251  * This kcompactd start function will be called by init and node-hot-add.
3252  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3253  */
3254 void __meminit kcompactd_run(int nid)
3255 {
3256         pg_data_t *pgdat = NODE_DATA(nid);
3257 
3258         if (pgdat->kcompactd)
3259                 return;
3260 
3261         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3262         if (IS_ERR(pgdat->kcompactd)) {
3263                 pr_err("Failed to start kcompactd on node %d\n", nid);
3264                 pgdat->kcompactd = NULL;
3265         }
3266 }
3267 
3268 /*
3269  * Called by memory hotplug when all memory in a node is offlined. Caller must
3270  * be holding mem_hotplug_begin/done().
3271  */
3272 void __meminit kcompactd_stop(int nid)
3273 {
3274         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3275 
3276         if (kcompactd) {
3277                 kthread_stop(kcompactd);
3278                 NODE_DATA(nid)->kcompactd = NULL;
3279         }
3280 }
3281 
3282 /*
3283  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3284  * not required for correctness. So if the last cpu in a node goes
3285  * away, we get changed to run anywhere: as the first one comes back,
3286  * restore their cpu bindings.
3287  */
3288 static int kcompactd_cpu_online(unsigned int cpu)
3289 {
3290         int nid;
3291 
3292         for_each_node_state(nid, N_MEMORY) {
3293                 pg_data_t *pgdat = NODE_DATA(nid);
3294                 const struct cpumask *mask;
3295 
3296                 mask = cpumask_of_node(pgdat->node_id);
3297 
3298                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3299                         /* One of our CPUs online: restore mask */
3300                         if (pgdat->kcompactd)
3301                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3302         }
3303         return 0;
3304 }
3305 
3306 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3307                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3308 {
3309         int ret, old;
3310 
3311         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3312                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3313 
3314         old = *(int *)table->data;
3315         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3316         if (ret)
3317                 return ret;
3318         if (old != *(int *)table->data)
3319                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3320                              table->procname, current->comm,
3321                              task_pid_nr(current));
3322         return ret;
3323 }
3324 
3325 static struct ctl_table vm_compaction[] = {
3326         {
3327                 .procname       = "compact_memory",
3328                 .data           = &sysctl_compact_memory,
3329                 .maxlen         = sizeof(int),
3330                 .mode           = 0200,
3331                 .proc_handler   = sysctl_compaction_handler,
3332         },
3333         {
3334                 .procname       = "compaction_proactiveness",
3335                 .data           = &sysctl_compaction_proactiveness,
3336                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3337                 .mode           = 0644,
3338                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3339                 .extra1         = SYSCTL_ZERO,
3340                 .extra2         = SYSCTL_ONE_HUNDRED,
3341         },
3342         {
3343                 .procname       = "extfrag_threshold",
3344                 .data           = &sysctl_extfrag_threshold,
3345                 .maxlen         = sizeof(int),
3346                 .mode           = 0644,
3347                 .proc_handler   = proc_dointvec_minmax,
3348                 .extra1         = SYSCTL_ZERO,
3349                 .extra2         = SYSCTL_ONE_THOUSAND,
3350         },
3351         {
3352                 .procname       = "compact_unevictable_allowed",
3353                 .data           = &sysctl_compact_unevictable_allowed,
3354                 .maxlen         = sizeof(int),
3355                 .mode           = 0644,
3356                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3357                 .extra1         = SYSCTL_ZERO,
3358                 .extra2         = SYSCTL_ONE,
3359         },
3360 };
3361 
3362 static int __init kcompactd_init(void)
3363 {
3364         int nid;
3365         int ret;
3366 
3367         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3368                                         "mm/compaction:online",
3369                                         kcompactd_cpu_online, NULL);
3370         if (ret < 0) {
3371                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3372                 return ret;
3373         }
3374 
3375         for_each_node_state(nid, N_MEMORY)
3376                 kcompactd_run(nid);
3377         register_sysctl_init("vm", vm_compaction);
3378         return 0;
3379 }
3380 subsys_initcall(kcompactd_init)
3381 
3382 #endif /* CONFIG_COMPACTION */
3383 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php