1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sj@kernel.org> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <linux/highmem.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "ops-common.h" 19 20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 /* 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 30 { 31 return get_pid_task(t->pid, PIDTYPE_PID); 32 } 33 34 /* 35 * Get the mm_struct of the given target 36 * 37 * Caller _must_ put the mm_struct after use, unless it is NULL. 38 * 39 * Returns the mm_struct of the target on success, NULL on failure 40 */ 41 static struct mm_struct *damon_get_mm(struct damon_target *t) 42 { 43 struct task_struct *task; 44 struct mm_struct *mm; 45 46 task = damon_get_task_struct(t); 47 if (!task) 48 return NULL; 49 50 mm = get_task_mm(task); 51 put_task_struct(task); 52 return mm; 53 } 54 55 /* 56 * Functions for the initial monitoring target regions construction 57 */ 58 59 /* 60 * Size-evenly split a region into 'nr_pieces' small regions 61 * 62 * Returns 0 on success, or negative error code otherwise. 63 */ 64 static int damon_va_evenly_split_region(struct damon_target *t, 65 struct damon_region *r, unsigned int nr_pieces) 66 { 67 unsigned long sz_orig, sz_piece, orig_end; 68 struct damon_region *n = NULL, *next; 69 unsigned long start; 70 71 if (!r || !nr_pieces) 72 return -EINVAL; 73 74 orig_end = r->ar.end; 75 sz_orig = damon_sz_region(r); 76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 77 78 if (!sz_piece) 79 return -EINVAL; 80 81 r->ar.end = r->ar.start + sz_piece; 82 next = damon_next_region(r); 83 for (start = r->ar.end; start + sz_piece <= orig_end; 84 start += sz_piece) { 85 n = damon_new_region(start, start + sz_piece); 86 if (!n) 87 return -ENOMEM; 88 damon_insert_region(n, r, next, t); 89 r = n; 90 } 91 /* complement last region for possible rounding error */ 92 if (n) 93 n->ar.end = orig_end; 94 95 return 0; 96 } 97 98 static unsigned long sz_range(struct damon_addr_range *r) 99 { 100 return r->end - r->start; 101 } 102 103 /* 104 * Find three regions separated by two biggest unmapped regions 105 * 106 * vma the head vma of the target address space 107 * regions an array of three address ranges that results will be saved 108 * 109 * This function receives an address space and finds three regions in it which 110 * separated by the two biggest unmapped regions in the space. Please refer to 111 * below comments of '__damon_va_init_regions()' function to know why this is 112 * necessary. 113 * 114 * Returns 0 if success, or negative error code otherwise. 115 */ 116 static int __damon_va_three_regions(struct mm_struct *mm, 117 struct damon_addr_range regions[3]) 118 { 119 struct damon_addr_range first_gap = {0}, second_gap = {0}; 120 VMA_ITERATOR(vmi, mm, 0); 121 struct vm_area_struct *vma, *prev = NULL; 122 unsigned long start; 123 124 /* 125 * Find the two biggest gaps so that first_gap > second_gap > others. 126 * If this is too slow, it can be optimised to examine the maple 127 * tree gaps. 128 */ 129 rcu_read_lock(); 130 for_each_vma(vmi, vma) { 131 unsigned long gap; 132 133 if (!prev) { 134 start = vma->vm_start; 135 goto next; 136 } 137 gap = vma->vm_start - prev->vm_end; 138 139 if (gap > sz_range(&first_gap)) { 140 second_gap = first_gap; 141 first_gap.start = prev->vm_end; 142 first_gap.end = vma->vm_start; 143 } else if (gap > sz_range(&second_gap)) { 144 second_gap.start = prev->vm_end; 145 second_gap.end = vma->vm_start; 146 } 147 next: 148 prev = vma; 149 } 150 rcu_read_unlock(); 151 152 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 153 return -EINVAL; 154 155 /* Sort the two biggest gaps by address */ 156 if (first_gap.start > second_gap.start) 157 swap(first_gap, second_gap); 158 159 /* Store the result */ 160 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 161 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 162 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 163 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 164 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 165 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION); 166 167 return 0; 168 } 169 170 /* 171 * Get the three regions in the given target (task) 172 * 173 * Returns 0 on success, negative error code otherwise. 174 */ 175 static int damon_va_three_regions(struct damon_target *t, 176 struct damon_addr_range regions[3]) 177 { 178 struct mm_struct *mm; 179 int rc; 180 181 mm = damon_get_mm(t); 182 if (!mm) 183 return -EINVAL; 184 185 mmap_read_lock(mm); 186 rc = __damon_va_three_regions(mm, regions); 187 mmap_read_unlock(mm); 188 189 mmput(mm); 190 return rc; 191 } 192 193 /* 194 * Initialize the monitoring target regions for the given target (task) 195 * 196 * t the given target 197 * 198 * Because only a number of small portions of the entire address space 199 * is actually mapped to the memory and accessed, monitoring the unmapped 200 * regions is wasteful. That said, because we can deal with small noises, 201 * tracking every mapping is not strictly required but could even incur a high 202 * overhead if the mapping frequently changes or the number of mappings is 203 * high. The adaptive regions adjustment mechanism will further help to deal 204 * with the noise by simply identifying the unmapped areas as a region that 205 * has no access. Moreover, applying the real mappings that would have many 206 * unmapped areas inside will make the adaptive mechanism quite complex. That 207 * said, too huge unmapped areas inside the monitoring target should be removed 208 * to not take the time for the adaptive mechanism. 209 * 210 * For the reason, we convert the complex mappings to three distinct regions 211 * that cover every mapped area of the address space. Also the two gaps 212 * between the three regions are the two biggest unmapped areas in the given 213 * address space. In detail, this function first identifies the start and the 214 * end of the mappings and the two biggest unmapped areas of the address space. 215 * Then, it constructs the three regions as below: 216 * 217 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 218 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 219 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 220 * 221 * As usual memory map of processes is as below, the gap between the heap and 222 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 223 * region and the stack will be two biggest unmapped regions. Because these 224 * gaps are exceptionally huge areas in usual address space, excluding these 225 * two biggest unmapped regions will be sufficient to make a trade-off. 226 * 227 * <heap> 228 * <BIG UNMAPPED REGION 1> 229 * <uppermost mmap()-ed region> 230 * (other mmap()-ed regions and small unmapped regions) 231 * <lowermost mmap()-ed region> 232 * <BIG UNMAPPED REGION 2> 233 * <stack> 234 */ 235 static void __damon_va_init_regions(struct damon_ctx *ctx, 236 struct damon_target *t) 237 { 238 struct damon_target *ti; 239 struct damon_region *r; 240 struct damon_addr_range regions[3]; 241 unsigned long sz = 0, nr_pieces; 242 int i, tidx = 0; 243 244 if (damon_va_three_regions(t, regions)) { 245 damon_for_each_target(ti, ctx) { 246 if (ti == t) 247 break; 248 tidx++; 249 } 250 pr_debug("Failed to get three regions of %dth target\n", tidx); 251 return; 252 } 253 254 for (i = 0; i < 3; i++) 255 sz += regions[i].end - regions[i].start; 256 if (ctx->attrs.min_nr_regions) 257 sz /= ctx->attrs.min_nr_regions; 258 if (sz < DAMON_MIN_REGION) 259 sz = DAMON_MIN_REGION; 260 261 /* Set the initial three regions of the target */ 262 for (i = 0; i < 3; i++) { 263 r = damon_new_region(regions[i].start, regions[i].end); 264 if (!r) { 265 pr_err("%d'th init region creation failed\n", i); 266 return; 267 } 268 damon_add_region(r, t); 269 270 nr_pieces = (regions[i].end - regions[i].start) / sz; 271 damon_va_evenly_split_region(t, r, nr_pieces); 272 } 273 } 274 275 /* Initialize '->regions_list' of every target (task) */ 276 static void damon_va_init(struct damon_ctx *ctx) 277 { 278 struct damon_target *t; 279 280 damon_for_each_target(t, ctx) { 281 /* the user may set the target regions as they want */ 282 if (!damon_nr_regions(t)) 283 __damon_va_init_regions(ctx, t); 284 } 285 } 286 287 /* 288 * Update regions for current memory mappings 289 */ 290 static void damon_va_update(struct damon_ctx *ctx) 291 { 292 struct damon_addr_range three_regions[3]; 293 struct damon_target *t; 294 295 damon_for_each_target(t, ctx) { 296 if (damon_va_three_regions(t, three_regions)) 297 continue; 298 damon_set_regions(t, three_regions, 3); 299 } 300 } 301 302 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 303 unsigned long next, struct mm_walk *walk) 304 { 305 pte_t *pte; 306 pmd_t pmde; 307 spinlock_t *ptl; 308 309 if (pmd_trans_huge(pmdp_get(pmd))) { 310 ptl = pmd_lock(walk->mm, pmd); 311 pmde = pmdp_get(pmd); 312 313 if (!pmd_present(pmde)) { 314 spin_unlock(ptl); 315 return 0; 316 } 317 318 if (pmd_trans_huge(pmde)) { 319 damon_pmdp_mkold(pmd, walk->vma, addr); 320 spin_unlock(ptl); 321 return 0; 322 } 323 spin_unlock(ptl); 324 } 325 326 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 327 if (!pte) { 328 walk->action = ACTION_AGAIN; 329 return 0; 330 } 331 if (!pte_present(ptep_get(pte))) 332 goto out; 333 damon_ptep_mkold(pte, walk->vma, addr); 334 out: 335 pte_unmap_unlock(pte, ptl); 336 return 0; 337 } 338 339 #ifdef CONFIG_HUGETLB_PAGE 340 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 341 struct vm_area_struct *vma, unsigned long addr) 342 { 343 bool referenced = false; 344 pte_t entry = huge_ptep_get(mm, addr, pte); 345 struct folio *folio = pfn_folio(pte_pfn(entry)); 346 unsigned long psize = huge_page_size(hstate_vma(vma)); 347 348 folio_get(folio); 349 350 if (pte_young(entry)) { 351 referenced = true; 352 entry = pte_mkold(entry); 353 set_huge_pte_at(mm, addr, pte, entry, psize); 354 } 355 356 #ifdef CONFIG_MMU_NOTIFIER 357 if (mmu_notifier_clear_young(mm, addr, 358 addr + huge_page_size(hstate_vma(vma)))) 359 referenced = true; 360 #endif /* CONFIG_MMU_NOTIFIER */ 361 362 if (referenced) 363 folio_set_young(folio); 364 365 folio_set_idle(folio); 366 folio_put(folio); 367 } 368 369 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 370 unsigned long addr, unsigned long end, 371 struct mm_walk *walk) 372 { 373 struct hstate *h = hstate_vma(walk->vma); 374 spinlock_t *ptl; 375 pte_t entry; 376 377 ptl = huge_pte_lock(h, walk->mm, pte); 378 entry = huge_ptep_get(walk->mm, addr, pte); 379 if (!pte_present(entry)) 380 goto out; 381 382 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 383 384 out: 385 spin_unlock(ptl); 386 return 0; 387 } 388 #else 389 #define damon_mkold_hugetlb_entry NULL 390 #endif /* CONFIG_HUGETLB_PAGE */ 391 392 static const struct mm_walk_ops damon_mkold_ops = { 393 .pmd_entry = damon_mkold_pmd_entry, 394 .hugetlb_entry = damon_mkold_hugetlb_entry, 395 .walk_lock = PGWALK_RDLOCK, 396 }; 397 398 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 399 { 400 mmap_read_lock(mm); 401 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 402 mmap_read_unlock(mm); 403 } 404 405 /* 406 * Functions for the access checking of the regions 407 */ 408 409 static void __damon_va_prepare_access_check(struct mm_struct *mm, 410 struct damon_region *r) 411 { 412 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 413 414 damon_va_mkold(mm, r->sampling_addr); 415 } 416 417 static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 418 { 419 struct damon_target *t; 420 struct mm_struct *mm; 421 struct damon_region *r; 422 423 damon_for_each_target(t, ctx) { 424 mm = damon_get_mm(t); 425 if (!mm) 426 continue; 427 damon_for_each_region(r, t) 428 __damon_va_prepare_access_check(mm, r); 429 mmput(mm); 430 } 431 } 432 433 struct damon_young_walk_private { 434 /* size of the folio for the access checked virtual memory address */ 435 unsigned long *folio_sz; 436 bool young; 437 }; 438 439 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 440 unsigned long next, struct mm_walk *walk) 441 { 442 pte_t *pte; 443 pte_t ptent; 444 spinlock_t *ptl; 445 struct folio *folio; 446 struct damon_young_walk_private *priv = walk->private; 447 448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 449 if (pmd_trans_huge(pmdp_get(pmd))) { 450 pmd_t pmde; 451 452 ptl = pmd_lock(walk->mm, pmd); 453 pmde = pmdp_get(pmd); 454 455 if (!pmd_present(pmde)) { 456 spin_unlock(ptl); 457 return 0; 458 } 459 460 if (!pmd_trans_huge(pmde)) { 461 spin_unlock(ptl); 462 goto regular_page; 463 } 464 folio = damon_get_folio(pmd_pfn(pmde)); 465 if (!folio) 466 goto huge_out; 467 if (pmd_young(pmde) || !folio_test_idle(folio) || 468 mmu_notifier_test_young(walk->mm, 469 addr)) 470 priv->young = true; 471 *priv->folio_sz = HPAGE_PMD_SIZE; 472 folio_put(folio); 473 huge_out: 474 spin_unlock(ptl); 475 return 0; 476 } 477 478 regular_page: 479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 480 481 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 482 if (!pte) { 483 walk->action = ACTION_AGAIN; 484 return 0; 485 } 486 ptent = ptep_get(pte); 487 if (!pte_present(ptent)) 488 goto out; 489 folio = damon_get_folio(pte_pfn(ptent)); 490 if (!folio) 491 goto out; 492 if (pte_young(ptent) || !folio_test_idle(folio) || 493 mmu_notifier_test_young(walk->mm, addr)) 494 priv->young = true; 495 *priv->folio_sz = folio_size(folio); 496 folio_put(folio); 497 out: 498 pte_unmap_unlock(pte, ptl); 499 return 0; 500 } 501 502 #ifdef CONFIG_HUGETLB_PAGE 503 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 504 unsigned long addr, unsigned long end, 505 struct mm_walk *walk) 506 { 507 struct damon_young_walk_private *priv = walk->private; 508 struct hstate *h = hstate_vma(walk->vma); 509 struct folio *folio; 510 spinlock_t *ptl; 511 pte_t entry; 512 513 ptl = huge_pte_lock(h, walk->mm, pte); 514 entry = huge_ptep_get(walk->mm, addr, pte); 515 if (!pte_present(entry)) 516 goto out; 517 518 folio = pfn_folio(pte_pfn(entry)); 519 folio_get(folio); 520 521 if (pte_young(entry) || !folio_test_idle(folio) || 522 mmu_notifier_test_young(walk->mm, addr)) 523 priv->young = true; 524 *priv->folio_sz = huge_page_size(h); 525 526 folio_put(folio); 527 528 out: 529 spin_unlock(ptl); 530 return 0; 531 } 532 #else 533 #define damon_young_hugetlb_entry NULL 534 #endif /* CONFIG_HUGETLB_PAGE */ 535 536 static const struct mm_walk_ops damon_young_ops = { 537 .pmd_entry = damon_young_pmd_entry, 538 .hugetlb_entry = damon_young_hugetlb_entry, 539 .walk_lock = PGWALK_RDLOCK, 540 }; 541 542 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 543 unsigned long *folio_sz) 544 { 545 struct damon_young_walk_private arg = { 546 .folio_sz = folio_sz, 547 .young = false, 548 }; 549 550 mmap_read_lock(mm); 551 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 552 mmap_read_unlock(mm); 553 return arg.young; 554 } 555 556 /* 557 * Check whether the region was accessed after the last preparation 558 * 559 * mm 'mm_struct' for the given virtual address space 560 * r the region to be checked 561 */ 562 static void __damon_va_check_access(struct mm_struct *mm, 563 struct damon_region *r, bool same_target, 564 struct damon_attrs *attrs) 565 { 566 static unsigned long last_addr; 567 static unsigned long last_folio_sz = PAGE_SIZE; 568 static bool last_accessed; 569 570 if (!mm) { 571 damon_update_region_access_rate(r, false, attrs); 572 return; 573 } 574 575 /* If the region is in the last checked page, reuse the result */ 576 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) == 577 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) { 578 damon_update_region_access_rate(r, last_accessed, attrs); 579 return; 580 } 581 582 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz); 583 damon_update_region_access_rate(r, last_accessed, attrs); 584 585 last_addr = r->sampling_addr; 586 } 587 588 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 589 { 590 struct damon_target *t; 591 struct mm_struct *mm; 592 struct damon_region *r; 593 unsigned int max_nr_accesses = 0; 594 bool same_target; 595 596 damon_for_each_target(t, ctx) { 597 mm = damon_get_mm(t); 598 same_target = false; 599 damon_for_each_region(r, t) { 600 __damon_va_check_access(mm, r, same_target, 601 &ctx->attrs); 602 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 603 same_target = true; 604 } 605 if (mm) 606 mmput(mm); 607 } 608 609 return max_nr_accesses; 610 } 611 612 /* 613 * Functions for the target validity check and cleanup 614 */ 615 616 static bool damon_va_target_valid(struct damon_target *t) 617 { 618 struct task_struct *task; 619 620 task = damon_get_task_struct(t); 621 if (task) { 622 put_task_struct(task); 623 return true; 624 } 625 626 return false; 627 } 628 629 #ifndef CONFIG_ADVISE_SYSCALLS 630 static unsigned long damos_madvise(struct damon_target *target, 631 struct damon_region *r, int behavior) 632 { 633 return 0; 634 } 635 #else 636 static unsigned long damos_madvise(struct damon_target *target, 637 struct damon_region *r, int behavior) 638 { 639 struct mm_struct *mm; 640 unsigned long start = PAGE_ALIGN(r->ar.start); 641 unsigned long len = PAGE_ALIGN(damon_sz_region(r)); 642 unsigned long applied; 643 644 mm = damon_get_mm(target); 645 if (!mm) 646 return 0; 647 648 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 649 mmput(mm); 650 651 return applied; 652 } 653 #endif /* CONFIG_ADVISE_SYSCALLS */ 654 655 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 656 struct damon_target *t, struct damon_region *r, 657 struct damos *scheme) 658 { 659 int madv_action; 660 661 switch (scheme->action) { 662 case DAMOS_WILLNEED: 663 madv_action = MADV_WILLNEED; 664 break; 665 case DAMOS_COLD: 666 madv_action = MADV_COLD; 667 break; 668 case DAMOS_PAGEOUT: 669 madv_action = MADV_PAGEOUT; 670 break; 671 case DAMOS_HUGEPAGE: 672 madv_action = MADV_HUGEPAGE; 673 break; 674 case DAMOS_NOHUGEPAGE: 675 madv_action = MADV_NOHUGEPAGE; 676 break; 677 case DAMOS_STAT: 678 return 0; 679 default: 680 /* 681 * DAMOS actions that are not yet supported by 'vaddr'. 682 */ 683 return 0; 684 } 685 686 return damos_madvise(t, r, madv_action); 687 } 688 689 static int damon_va_scheme_score(struct damon_ctx *context, 690 struct damon_target *t, struct damon_region *r, 691 struct damos *scheme) 692 { 693 694 switch (scheme->action) { 695 case DAMOS_PAGEOUT: 696 return damon_cold_score(context, r, scheme); 697 default: 698 break; 699 } 700 701 return DAMOS_MAX_SCORE; 702 } 703 704 static int __init damon_va_initcall(void) 705 { 706 struct damon_operations ops = { 707 .id = DAMON_OPS_VADDR, 708 .init = damon_va_init, 709 .update = damon_va_update, 710 .prepare_access_checks = damon_va_prepare_access_checks, 711 .check_accesses = damon_va_check_accesses, 712 .reset_aggregated = NULL, 713 .target_valid = damon_va_target_valid, 714 .cleanup = NULL, 715 .apply_scheme = damon_va_apply_scheme, 716 .get_scheme_score = damon_va_scheme_score, 717 }; 718 /* ops for fixed virtual address ranges */ 719 struct damon_operations ops_fvaddr = ops; 720 int err; 721 722 /* Don't set the monitoring target regions for the entire mapping */ 723 ops_fvaddr.id = DAMON_OPS_FVADDR; 724 ops_fvaddr.init = NULL; 725 ops_fvaddr.update = NULL; 726 727 err = damon_register_ops(&ops); 728 if (err) 729 return err; 730 return damon_register_ops(&ops_fvaddr); 731 }; 732 733 subsys_initcall(damon_va_initcall); 734 735 #include "vaddr-test.h" 736
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.