~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/filemap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *      linux/mm/filemap.c
  4  *
  5  * Copyright (C) 1994-1999  Linus Torvalds
  6  */
  7 
  8 /*
  9  * This file handles the generic file mmap semantics used by
 10  * most "normal" filesystems (but you don't /have/ to use this:
 11  * the NFS filesystem used to do this differently, for example)
 12  */
 13 #include <linux/export.h>
 14 #include <linux/compiler.h>
 15 #include <linux/dax.h>
 16 #include <linux/fs.h>
 17 #include <linux/sched/signal.h>
 18 #include <linux/uaccess.h>
 19 #include <linux/capability.h>
 20 #include <linux/kernel_stat.h>
 21 #include <linux/gfp.h>
 22 #include <linux/mm.h>
 23 #include <linux/swap.h>
 24 #include <linux/swapops.h>
 25 #include <linux/syscalls.h>
 26 #include <linux/mman.h>
 27 #include <linux/pagemap.h>
 28 #include <linux/file.h>
 29 #include <linux/uio.h>
 30 #include <linux/error-injection.h>
 31 #include <linux/hash.h>
 32 #include <linux/writeback.h>
 33 #include <linux/backing-dev.h>
 34 #include <linux/pagevec.h>
 35 #include <linux/security.h>
 36 #include <linux/cpuset.h>
 37 #include <linux/hugetlb.h>
 38 #include <linux/memcontrol.h>
 39 #include <linux/shmem_fs.h>
 40 #include <linux/rmap.h>
 41 #include <linux/delayacct.h>
 42 #include <linux/psi.h>
 43 #include <linux/ramfs.h>
 44 #include <linux/page_idle.h>
 45 #include <linux/migrate.h>
 46 #include <linux/pipe_fs_i.h>
 47 #include <linux/splice.h>
 48 #include <linux/rcupdate_wait.h>
 49 #include <asm/pgalloc.h>
 50 #include <asm/tlbflush.h>
 51 #include "internal.h"
 52 
 53 #define CREATE_TRACE_POINTS
 54 #include <trace/events/filemap.h>
 55 
 56 /*
 57  * FIXME: remove all knowledge of the buffer layer from the core VM
 58  */
 59 #include <linux/buffer_head.h> /* for try_to_free_buffers */
 60 
 61 #include <asm/mman.h>
 62 
 63 #include "swap.h"
 64 
 65 /*
 66  * Shared mappings implemented 30.11.1994. It's not fully working yet,
 67  * though.
 68  *
 69  * Shared mappings now work. 15.8.1995  Bruno.
 70  *
 71  * finished 'unifying' the page and buffer cache and SMP-threaded the
 72  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 73  *
 74  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 75  */
 76 
 77 /*
 78  * Lock ordering:
 79  *
 80  *  ->i_mmap_rwsem              (truncate_pagecache)
 81  *    ->private_lock            (__free_pte->block_dirty_folio)
 82  *      ->swap_lock             (exclusive_swap_page, others)
 83  *        ->i_pages lock
 84  *
 85  *  ->i_rwsem
 86  *    ->invalidate_lock         (acquired by fs in truncate path)
 87  *      ->i_mmap_rwsem          (truncate->unmap_mapping_range)
 88  *
 89  *  ->mmap_lock
 90  *    ->i_mmap_rwsem
 91  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
 92  *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
 93  *
 94  *  ->mmap_lock
 95  *    ->invalidate_lock         (filemap_fault)
 96  *      ->lock_page             (filemap_fault, access_process_vm)
 97  *
 98  *  ->i_rwsem                   (generic_perform_write)
 99  *    ->mmap_lock               (fault_in_readable->do_page_fault)
100  *
101  *  bdi->wb.list_lock
102  *    sb_lock                   (fs/fs-writeback.c)
103  *    ->i_pages lock            (__sync_single_inode)
104  *
105  *  ->i_mmap_rwsem
106  *    ->anon_vma.lock           (vma_merge)
107  *
108  *  ->anon_vma.lock
109  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
110  *
111  *  ->page_table_lock or pte_lock
112  *    ->swap_lock               (try_to_unmap_one)
113  *    ->private_lock            (try_to_unmap_one)
114  *    ->i_pages lock            (try_to_unmap_one)
115  *    ->lruvec->lru_lock        (follow_page->mark_page_accessed)
116  *    ->lruvec->lru_lock        (check_pte_range->isolate_lru_page)
117  *    ->private_lock            (folio_remove_rmap_pte->set_page_dirty)
118  *    ->i_pages lock            (folio_remove_rmap_pte->set_page_dirty)
119  *    bdi.wb->list_lock         (folio_remove_rmap_pte->set_page_dirty)
120  *    ->inode->i_lock           (folio_remove_rmap_pte->set_page_dirty)
121  *    ->memcg->move_lock        (folio_remove_rmap_pte->folio_memcg_lock)
122  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
123  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
124  *    ->private_lock            (zap_pte_range->block_dirty_folio)
125  */
126 
127 static void mapping_set_update(struct xa_state *xas,
128                 struct address_space *mapping)
129 {
130         if (dax_mapping(mapping) || shmem_mapping(mapping))
131                 return;
132         xas_set_update(xas, workingset_update_node);
133         xas_set_lru(xas, &shadow_nodes);
134 }
135 
136 static void page_cache_delete(struct address_space *mapping,
137                                    struct folio *folio, void *shadow)
138 {
139         XA_STATE(xas, &mapping->i_pages, folio->index);
140         long nr = 1;
141 
142         mapping_set_update(&xas, mapping);
143 
144         xas_set_order(&xas, folio->index, folio_order(folio));
145         nr = folio_nr_pages(folio);
146 
147         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148 
149         xas_store(&xas, shadow);
150         xas_init_marks(&xas);
151 
152         folio->mapping = NULL;
153         /* Leave page->index set: truncation lookup relies upon it */
154         mapping->nrpages -= nr;
155 }
156 
157 static void filemap_unaccount_folio(struct address_space *mapping,
158                 struct folio *folio)
159 {
160         long nr;
161 
162         VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
165                          current->comm, folio_pfn(folio));
166                 dump_page(&folio->page, "still mapped when deleted");
167                 dump_stack();
168                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169 
170                 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171                         int mapcount = folio_mapcount(folio);
172 
173                         if (folio_ref_count(folio) >= mapcount + 2) {
174                                 /*
175                                  * All vmas have already been torn down, so it's
176                                  * a good bet that actually the page is unmapped
177                                  * and we'd rather not leak it: if we're wrong,
178                                  * another bad page check should catch it later.
179                                  */
180                                 atomic_set(&folio->_mapcount, -1);
181                                 folio_ref_sub(folio, mapcount);
182                         }
183                 }
184         }
185 
186         /* hugetlb folios do not participate in page cache accounting. */
187         if (folio_test_hugetlb(folio))
188                 return;
189 
190         nr = folio_nr_pages(folio);
191 
192         __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193         if (folio_test_swapbacked(folio)) {
194                 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195                 if (folio_test_pmd_mappable(folio))
196                         __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197         } else if (folio_test_pmd_mappable(folio)) {
198                 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199                 filemap_nr_thps_dec(mapping);
200         }
201 
202         /*
203          * At this point folio must be either written or cleaned by
204          * truncate.  Dirty folio here signals a bug and loss of
205          * unwritten data - on ordinary filesystems.
206          *
207          * But it's harmless on in-memory filesystems like tmpfs; and can
208          * occur when a driver which did get_user_pages() sets page dirty
209          * before putting it, while the inode is being finally evicted.
210          *
211          * Below fixes dirty accounting after removing the folio entirely
212          * but leaves the dirty flag set: it has no effect for truncated
213          * folio and anyway will be cleared before returning folio to
214          * buddy allocator.
215          */
216         if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217                          mapping_can_writeback(mapping)))
218                 folio_account_cleaned(folio, inode_to_wb(mapping->host));
219 }
220 
221 /*
222  * Delete a page from the page cache and free it. Caller has to make
223  * sure the page is locked and that nobody else uses it - or that usage
224  * is safe.  The caller must hold the i_pages lock.
225  */
226 void __filemap_remove_folio(struct folio *folio, void *shadow)
227 {
228         struct address_space *mapping = folio->mapping;
229 
230         trace_mm_filemap_delete_from_page_cache(folio);
231         filemap_unaccount_folio(mapping, folio);
232         page_cache_delete(mapping, folio, shadow);
233 }
234 
235 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236 {
237         void (*free_folio)(struct folio *);
238         int refs = 1;
239 
240         free_folio = mapping->a_ops->free_folio;
241         if (free_folio)
242                 free_folio(folio);
243 
244         if (folio_test_large(folio))
245                 refs = folio_nr_pages(folio);
246         folio_put_refs(folio, refs);
247 }
248 
249 /**
250  * filemap_remove_folio - Remove folio from page cache.
251  * @folio: The folio.
252  *
253  * This must be called only on folios that are locked and have been
254  * verified to be in the page cache.  It will never put the folio into
255  * the free list because the caller has a reference on the page.
256  */
257 void filemap_remove_folio(struct folio *folio)
258 {
259         struct address_space *mapping = folio->mapping;
260 
261         BUG_ON(!folio_test_locked(folio));
262         spin_lock(&mapping->host->i_lock);
263         xa_lock_irq(&mapping->i_pages);
264         __filemap_remove_folio(folio, NULL);
265         xa_unlock_irq(&mapping->i_pages);
266         if (mapping_shrinkable(mapping))
267                 inode_add_lru(mapping->host);
268         spin_unlock(&mapping->host->i_lock);
269 
270         filemap_free_folio(mapping, folio);
271 }
272 
273 /*
274  * page_cache_delete_batch - delete several folios from page cache
275  * @mapping: the mapping to which folios belong
276  * @fbatch: batch of folios to delete
277  *
278  * The function walks over mapping->i_pages and removes folios passed in
279  * @fbatch from the mapping. The function expects @fbatch to be sorted
280  * by page index and is optimised for it to be dense.
281  * It tolerates holes in @fbatch (mapping entries at those indices are not
282  * modified).
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287                              struct folio_batch *fbatch)
288 {
289         XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290         long total_pages = 0;
291         int i = 0;
292         struct folio *folio;
293 
294         mapping_set_update(&xas, mapping);
295         xas_for_each(&xas, folio, ULONG_MAX) {
296                 if (i >= folio_batch_count(fbatch))
297                         break;
298 
299                 /* A swap/dax/shadow entry got inserted? Skip it. */
300                 if (xa_is_value(folio))
301                         continue;
302                 /*
303                  * A page got inserted in our range? Skip it. We have our
304                  * pages locked so they are protected from being removed.
305                  * If we see a page whose index is higher than ours, it
306                  * means our page has been removed, which shouldn't be
307                  * possible because we're holding the PageLock.
308                  */
309                 if (folio != fbatch->folios[i]) {
310                         VM_BUG_ON_FOLIO(folio->index >
311                                         fbatch->folios[i]->index, folio);
312                         continue;
313                 }
314 
315                 WARN_ON_ONCE(!folio_test_locked(folio));
316 
317                 folio->mapping = NULL;
318                 /* Leave folio->index set: truncation lookup relies on it */
319 
320                 i++;
321                 xas_store(&xas, NULL);
322                 total_pages += folio_nr_pages(folio);
323         }
324         mapping->nrpages -= total_pages;
325 }
326 
327 void delete_from_page_cache_batch(struct address_space *mapping,
328                                   struct folio_batch *fbatch)
329 {
330         int i;
331 
332         if (!folio_batch_count(fbatch))
333                 return;
334 
335         spin_lock(&mapping->host->i_lock);
336         xa_lock_irq(&mapping->i_pages);
337         for (i = 0; i < folio_batch_count(fbatch); i++) {
338                 struct folio *folio = fbatch->folios[i];
339 
340                 trace_mm_filemap_delete_from_page_cache(folio);
341                 filemap_unaccount_folio(mapping, folio);
342         }
343         page_cache_delete_batch(mapping, fbatch);
344         xa_unlock_irq(&mapping->i_pages);
345         if (mapping_shrinkable(mapping))
346                 inode_add_lru(mapping->host);
347         spin_unlock(&mapping->host->i_lock);
348 
349         for (i = 0; i < folio_batch_count(fbatch); i++)
350                 filemap_free_folio(mapping, fbatch->folios[i]);
351 }
352 
353 int filemap_check_errors(struct address_space *mapping)
354 {
355         int ret = 0;
356         /* Check for outstanding write errors */
357         if (test_bit(AS_ENOSPC, &mapping->flags) &&
358             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359                 ret = -ENOSPC;
360         if (test_bit(AS_EIO, &mapping->flags) &&
361             test_and_clear_bit(AS_EIO, &mapping->flags))
362                 ret = -EIO;
363         return ret;
364 }
365 EXPORT_SYMBOL(filemap_check_errors);
366 
367 static int filemap_check_and_keep_errors(struct address_space *mapping)
368 {
369         /* Check for outstanding write errors */
370         if (test_bit(AS_EIO, &mapping->flags))
371                 return -EIO;
372         if (test_bit(AS_ENOSPC, &mapping->flags))
373                 return -ENOSPC;
374         return 0;
375 }
376 
377 /**
378  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379  * @mapping:    address space structure to write
380  * @wbc:        the writeback_control controlling the writeout
381  *
382  * Call writepages on the mapping using the provided wbc to control the
383  * writeout.
384  *
385  * Return: %0 on success, negative error code otherwise.
386  */
387 int filemap_fdatawrite_wbc(struct address_space *mapping,
388                            struct writeback_control *wbc)
389 {
390         int ret;
391 
392         if (!mapping_can_writeback(mapping) ||
393             !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394                 return 0;
395 
396         wbc_attach_fdatawrite_inode(wbc, mapping->host);
397         ret = do_writepages(mapping, wbc);
398         wbc_detach_inode(wbc);
399         return ret;
400 }
401 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402 
403 /**
404  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405  * @mapping:    address space structure to write
406  * @start:      offset in bytes where the range starts
407  * @end:        offset in bytes where the range ends (inclusive)
408  * @sync_mode:  enable synchronous operation
409  *
410  * Start writeback against all of a mapping's dirty pages that lie
411  * within the byte offsets <start, end> inclusive.
412  *
413  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414  * opposed to a regular memory cleansing writeback.  The difference between
415  * these two operations is that if a dirty page/buffer is encountered, it must
416  * be waited upon, and not just skipped over.
417  *
418  * Return: %0 on success, negative error code otherwise.
419  */
420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421                                 loff_t end, int sync_mode)
422 {
423         struct writeback_control wbc = {
424                 .sync_mode = sync_mode,
425                 .nr_to_write = LONG_MAX,
426                 .range_start = start,
427                 .range_end = end,
428         };
429 
430         return filemap_fdatawrite_wbc(mapping, &wbc);
431 }
432 
433 static inline int __filemap_fdatawrite(struct address_space *mapping,
434         int sync_mode)
435 {
436         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437 }
438 
439 int filemap_fdatawrite(struct address_space *mapping)
440 {
441         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite);
444 
445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446                                 loff_t end)
447 {
448         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite_range);
451 
452 /**
453  * filemap_flush - mostly a non-blocking flush
454  * @mapping:    target address_space
455  *
456  * This is a mostly non-blocking flush.  Not suitable for data-integrity
457  * purposes - I/O may not be started against all dirty pages.
458  *
459  * Return: %0 on success, negative error code otherwise.
460  */
461 int filemap_flush(struct address_space *mapping)
462 {
463         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464 }
465 EXPORT_SYMBOL(filemap_flush);
466 
467 /**
468  * filemap_range_has_page - check if a page exists in range.
469  * @mapping:           address space within which to check
470  * @start_byte:        offset in bytes where the range starts
471  * @end_byte:          offset in bytes where the range ends (inclusive)
472  *
473  * Find at least one page in the range supplied, usually used to check if
474  * direct writing in this range will trigger a writeback.
475  *
476  * Return: %true if at least one page exists in the specified range,
477  * %false otherwise.
478  */
479 bool filemap_range_has_page(struct address_space *mapping,
480                            loff_t start_byte, loff_t end_byte)
481 {
482         struct folio *folio;
483         XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484         pgoff_t max = end_byte >> PAGE_SHIFT;
485 
486         if (end_byte < start_byte)
487                 return false;
488 
489         rcu_read_lock();
490         for (;;) {
491                 folio = xas_find(&xas, max);
492                 if (xas_retry(&xas, folio))
493                         continue;
494                 /* Shadow entries don't count */
495                 if (xa_is_value(folio))
496                         continue;
497                 /*
498                  * We don't need to try to pin this page; we're about to
499                  * release the RCU lock anyway.  It is enough to know that
500                  * there was a page here recently.
501                  */
502                 break;
503         }
504         rcu_read_unlock();
505 
506         return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511                                      loff_t start_byte, loff_t end_byte)
512 {
513         pgoff_t index = start_byte >> PAGE_SHIFT;
514         pgoff_t end = end_byte >> PAGE_SHIFT;
515         struct folio_batch fbatch;
516         unsigned nr_folios;
517 
518         folio_batch_init(&fbatch);
519 
520         while (index <= end) {
521                 unsigned i;
522 
523                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
524                                 PAGECACHE_TAG_WRITEBACK, &fbatch);
525 
526                 if (!nr_folios)
527                         break;
528 
529                 for (i = 0; i < nr_folios; i++) {
530                         struct folio *folio = fbatch.folios[i];
531 
532                         folio_wait_writeback(folio);
533                         folio_clear_error(folio);
534                 }
535                 folio_batch_release(&fbatch);
536                 cond_resched();
537         }
538 }
539 
540 /**
541  * filemap_fdatawait_range - wait for writeback to complete
542  * @mapping:            address space structure to wait for
543  * @start_byte:         offset in bytes where the range starts
544  * @end_byte:           offset in bytes where the range ends (inclusive)
545  *
546  * Walk the list of under-writeback pages of the given address space
547  * in the given range and wait for all of them.  Check error status of
548  * the address space and return it.
549  *
550  * Since the error status of the address space is cleared by this function,
551  * callers are responsible for checking the return value and handling and/or
552  * reporting the error.
553  *
554  * Return: error status of the address space.
555  */
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557                             loff_t end_byte)
558 {
559         __filemap_fdatawait_range(mapping, start_byte, end_byte);
560         return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566  * @mapping:            address space structure to wait for
567  * @start_byte:         offset in bytes where the range starts
568  * @end_byte:           offset in bytes where the range ends (inclusive)
569  *
570  * Walk the list of under-writeback pages of the given address space in the
571  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
572  * this function does not clear error status of the address space.
573  *
574  * Use this function if callers don't handle errors themselves.  Expected
575  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576  * fsfreeze(8)
577  */
578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579                 loff_t start_byte, loff_t end_byte)
580 {
581         __filemap_fdatawait_range(mapping, start_byte, end_byte);
582         return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585 
586 /**
587  * file_fdatawait_range - wait for writeback to complete
588  * @file:               file pointing to address space structure to wait for
589  * @start_byte:         offset in bytes where the range starts
590  * @end_byte:           offset in bytes where the range ends (inclusive)
591  *
592  * Walk the list of under-writeback pages of the address space that file
593  * refers to, in the given range and wait for all of them.  Check error
594  * status of the address space vs. the file->f_wb_err cursor and return it.
595  *
596  * Since the error status of the file is advanced by this function,
597  * callers are responsible for checking the return value and handling and/or
598  * reporting the error.
599  *
600  * Return: error status of the address space vs. the file->f_wb_err cursor.
601  */
602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603 {
604         struct address_space *mapping = file->f_mapping;
605 
606         __filemap_fdatawait_range(mapping, start_byte, end_byte);
607         return file_check_and_advance_wb_err(file);
608 }
609 EXPORT_SYMBOL(file_fdatawait_range);
610 
611 /**
612  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613  * @mapping: address space structure to wait for
614  *
615  * Walk the list of under-writeback pages of the given address space
616  * and wait for all of them.  Unlike filemap_fdatawait(), this function
617  * does not clear error status of the address space.
618  *
619  * Use this function if callers don't handle errors themselves.  Expected
620  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621  * fsfreeze(8)
622  *
623  * Return: error status of the address space.
624  */
625 int filemap_fdatawait_keep_errors(struct address_space *mapping)
626 {
627         __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628         return filemap_check_and_keep_errors(mapping);
629 }
630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631 
632 /* Returns true if writeback might be needed or already in progress. */
633 static bool mapping_needs_writeback(struct address_space *mapping)
634 {
635         return mapping->nrpages;
636 }
637 
638 bool filemap_range_has_writeback(struct address_space *mapping,
639                                  loff_t start_byte, loff_t end_byte)
640 {
641         XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642         pgoff_t max = end_byte >> PAGE_SHIFT;
643         struct folio *folio;
644 
645         if (end_byte < start_byte)
646                 return false;
647 
648         rcu_read_lock();
649         xas_for_each(&xas, folio, max) {
650                 if (xas_retry(&xas, folio))
651                         continue;
652                 if (xa_is_value(folio))
653                         continue;
654                 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655                                 folio_test_writeback(folio))
656                         break;
657         }
658         rcu_read_unlock();
659         return folio != NULL;
660 }
661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662 
663 /**
664  * filemap_write_and_wait_range - write out & wait on a file range
665  * @mapping:    the address_space for the pages
666  * @lstart:     offset in bytes where the range starts
667  * @lend:       offset in bytes where the range ends (inclusive)
668  *
669  * Write out and wait upon file offsets lstart->lend, inclusive.
670  *
671  * Note that @lend is inclusive (describes the last byte to be written) so
672  * that this function can be used to write to the very end-of-file (end = -1).
673  *
674  * Return: error status of the address space.
675  */
676 int filemap_write_and_wait_range(struct address_space *mapping,
677                                  loff_t lstart, loff_t lend)
678 {
679         int err = 0, err2;
680 
681         if (lend < lstart)
682                 return 0;
683 
684         if (mapping_needs_writeback(mapping)) {
685                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
686                                                  WB_SYNC_ALL);
687                 /*
688                  * Even if the above returned error, the pages may be
689                  * written partially (e.g. -ENOSPC), so we wait for it.
690                  * But the -EIO is special case, it may indicate the worst
691                  * thing (e.g. bug) happened, so we avoid waiting for it.
692                  */
693                 if (err != -EIO)
694                         __filemap_fdatawait_range(mapping, lstart, lend);
695         }
696         err2 = filemap_check_errors(mapping);
697         if (!err)
698                 err = err2;
699         return err;
700 }
701 EXPORT_SYMBOL(filemap_write_and_wait_range);
702 
703 void __filemap_set_wb_err(struct address_space *mapping, int err)
704 {
705         errseq_t eseq = errseq_set(&mapping->wb_err, err);
706 
707         trace_filemap_set_wb_err(mapping, eseq);
708 }
709 EXPORT_SYMBOL(__filemap_set_wb_err);
710 
711 /**
712  * file_check_and_advance_wb_err - report wb error (if any) that was previously
713  *                                 and advance wb_err to current one
714  * @file: struct file on which the error is being reported
715  *
716  * When userland calls fsync (or something like nfsd does the equivalent), we
717  * want to report any writeback errors that occurred since the last fsync (or
718  * since the file was opened if there haven't been any).
719  *
720  * Grab the wb_err from the mapping. If it matches what we have in the file,
721  * then just quickly return 0. The file is all caught up.
722  *
723  * If it doesn't match, then take the mapping value, set the "seen" flag in
724  * it and try to swap it into place. If it works, or another task beat us
725  * to it with the new value, then update the f_wb_err and return the error
726  * portion. The error at this point must be reported via proper channels
727  * (a'la fsync, or NFS COMMIT operation, etc.).
728  *
729  * While we handle mapping->wb_err with atomic operations, the f_wb_err
730  * value is protected by the f_lock since we must ensure that it reflects
731  * the latest value swapped in for this file descriptor.
732  *
733  * Return: %0 on success, negative error code otherwise.
734  */
735 int file_check_and_advance_wb_err(struct file *file)
736 {
737         int err = 0;
738         errseq_t old = READ_ONCE(file->f_wb_err);
739         struct address_space *mapping = file->f_mapping;
740 
741         /* Locklessly handle the common case where nothing has changed */
742         if (errseq_check(&mapping->wb_err, old)) {
743                 /* Something changed, must use slow path */
744                 spin_lock(&file->f_lock);
745                 old = file->f_wb_err;
746                 err = errseq_check_and_advance(&mapping->wb_err,
747                                                 &file->f_wb_err);
748                 trace_file_check_and_advance_wb_err(file, old);
749                 spin_unlock(&file->f_lock);
750         }
751 
752         /*
753          * We're mostly using this function as a drop in replacement for
754          * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755          * that the legacy code would have had on these flags.
756          */
757         clear_bit(AS_EIO, &mapping->flags);
758         clear_bit(AS_ENOSPC, &mapping->flags);
759         return err;
760 }
761 EXPORT_SYMBOL(file_check_and_advance_wb_err);
762 
763 /**
764  * file_write_and_wait_range - write out & wait on a file range
765  * @file:       file pointing to address_space with pages
766  * @lstart:     offset in bytes where the range starts
767  * @lend:       offset in bytes where the range ends (inclusive)
768  *
769  * Write out and wait upon file offsets lstart->lend, inclusive.
770  *
771  * Note that @lend is inclusive (describes the last byte to be written) so
772  * that this function can be used to write to the very end-of-file (end = -1).
773  *
774  * After writing out and waiting on the data, we check and advance the
775  * f_wb_err cursor to the latest value, and return any errors detected there.
776  *
777  * Return: %0 on success, negative error code otherwise.
778  */
779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780 {
781         int err = 0, err2;
782         struct address_space *mapping = file->f_mapping;
783 
784         if (lend < lstart)
785                 return 0;
786 
787         if (mapping_needs_writeback(mapping)) {
788                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
789                                                  WB_SYNC_ALL);
790                 /* See comment of filemap_write_and_wait() */
791                 if (err != -EIO)
792                         __filemap_fdatawait_range(mapping, lstart, lend);
793         }
794         err2 = file_check_and_advance_wb_err(file);
795         if (!err)
796                 err = err2;
797         return err;
798 }
799 EXPORT_SYMBOL(file_write_and_wait_range);
800 
801 /**
802  * replace_page_cache_folio - replace a pagecache folio with a new one
803  * @old:        folio to be replaced
804  * @new:        folio to replace with
805  *
806  * This function replaces a folio in the pagecache with a new one.  On
807  * success it acquires the pagecache reference for the new folio and
808  * drops it for the old folio.  Both the old and new folios must be
809  * locked.  This function does not add the new folio to the LRU, the
810  * caller must do that.
811  *
812  * The remove + add is atomic.  This function cannot fail.
813  */
814 void replace_page_cache_folio(struct folio *old, struct folio *new)
815 {
816         struct address_space *mapping = old->mapping;
817         void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818         pgoff_t offset = old->index;
819         XA_STATE(xas, &mapping->i_pages, offset);
820 
821         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823         VM_BUG_ON_FOLIO(new->mapping, new);
824 
825         folio_get(new);
826         new->mapping = mapping;
827         new->index = offset;
828 
829         mem_cgroup_replace_folio(old, new);
830 
831         xas_lock_irq(&xas);
832         xas_store(&xas, new);
833 
834         old->mapping = NULL;
835         /* hugetlb pages do not participate in page cache accounting. */
836         if (!folio_test_hugetlb(old))
837                 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838         if (!folio_test_hugetlb(new))
839                 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
840         if (folio_test_swapbacked(old))
841                 __lruvec_stat_sub_folio(old, NR_SHMEM);
842         if (folio_test_swapbacked(new))
843                 __lruvec_stat_add_folio(new, NR_SHMEM);
844         xas_unlock_irq(&xas);
845         if (free_folio)
846                 free_folio(old);
847         folio_put(old);
848 }
849 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850 
851 noinline int __filemap_add_folio(struct address_space *mapping,
852                 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853 {
854         XA_STATE(xas, &mapping->i_pages, index);
855         void *alloced_shadow = NULL;
856         int alloced_order = 0;
857         bool huge;
858         long nr;
859 
860         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
861         VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
862         mapping_set_update(&xas, mapping);
863 
864         VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
865         xas_set_order(&xas, index, folio_order(folio));
866         huge = folio_test_hugetlb(folio);
867         nr = folio_nr_pages(folio);
868 
869         gfp &= GFP_RECLAIM_MASK;
870         folio_ref_add(folio, nr);
871         folio->mapping = mapping;
872         folio->index = xas.xa_index;
873 
874         for (;;) {
875                 int order = -1, split_order = 0;
876                 void *entry, *old = NULL;
877 
878                 xas_lock_irq(&xas);
879                 xas_for_each_conflict(&xas, entry) {
880                         old = entry;
881                         if (!xa_is_value(entry)) {
882                                 xas_set_err(&xas, -EEXIST);
883                                 goto unlock;
884                         }
885                         /*
886                          * If a larger entry exists,
887                          * it will be the first and only entry iterated.
888                          */
889                         if (order == -1)
890                                 order = xas_get_order(&xas);
891                 }
892 
893                 /* entry may have changed before we re-acquire the lock */
894                 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
895                         xas_destroy(&xas);
896                         alloced_order = 0;
897                 }
898 
899                 if (old) {
900                         if (order > 0 && order > folio_order(folio)) {
901                                 /* How to handle large swap entries? */
902                                 BUG_ON(shmem_mapping(mapping));
903                                 if (!alloced_order) {
904                                         split_order = order;
905                                         goto unlock;
906                                 }
907                                 xas_split(&xas, old, order);
908                                 xas_reset(&xas);
909                         }
910                         if (shadowp)
911                                 *shadowp = old;
912                 }
913 
914                 xas_store(&xas, folio);
915                 if (xas_error(&xas))
916                         goto unlock;
917 
918                 mapping->nrpages += nr;
919 
920                 /* hugetlb pages do not participate in page cache accounting */
921                 if (!huge) {
922                         __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
923                         if (folio_test_pmd_mappable(folio))
924                                 __lruvec_stat_mod_folio(folio,
925                                                 NR_FILE_THPS, nr);
926                 }
927 
928 unlock:
929                 xas_unlock_irq(&xas);
930 
931                 /* split needed, alloc here and retry. */
932                 if (split_order) {
933                         xas_split_alloc(&xas, old, split_order, gfp);
934                         if (xas_error(&xas))
935                                 goto error;
936                         alloced_shadow = old;
937                         alloced_order = split_order;
938                         xas_reset(&xas);
939                         continue;
940                 }
941 
942                 if (!xas_nomem(&xas, gfp))
943                         break;
944         }
945 
946         if (xas_error(&xas))
947                 goto error;
948 
949         trace_mm_filemap_add_to_page_cache(folio);
950         return 0;
951 error:
952         folio->mapping = NULL;
953         /* Leave page->index set: truncation relies upon it */
954         folio_put_refs(folio, nr);
955         return xas_error(&xas);
956 }
957 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
958 
959 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
960                                 pgoff_t index, gfp_t gfp)
961 {
962         void *shadow = NULL;
963         int ret;
964 
965         ret = mem_cgroup_charge(folio, NULL, gfp);
966         if (ret)
967                 return ret;
968 
969         __folio_set_locked(folio);
970         ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
971         if (unlikely(ret)) {
972                 mem_cgroup_uncharge(folio);
973                 __folio_clear_locked(folio);
974         } else {
975                 /*
976                  * The folio might have been evicted from cache only
977                  * recently, in which case it should be activated like
978                  * any other repeatedly accessed folio.
979                  * The exception is folios getting rewritten; evicting other
980                  * data from the working set, only to cache data that will
981                  * get overwritten with something else, is a waste of memory.
982                  */
983                 WARN_ON_ONCE(folio_test_active(folio));
984                 if (!(gfp & __GFP_WRITE) && shadow)
985                         workingset_refault(folio, shadow);
986                 folio_add_lru(folio);
987         }
988         return ret;
989 }
990 EXPORT_SYMBOL_GPL(filemap_add_folio);
991 
992 #ifdef CONFIG_NUMA
993 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
994 {
995         int n;
996         struct folio *folio;
997 
998         if (cpuset_do_page_mem_spread()) {
999                 unsigned int cpuset_mems_cookie;
1000                 do {
1001                         cpuset_mems_cookie = read_mems_allowed_begin();
1002                         n = cpuset_mem_spread_node();
1003                         folio = __folio_alloc_node_noprof(gfp, order, n);
1004                 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1005 
1006                 return folio;
1007         }
1008         return folio_alloc_noprof(gfp, order);
1009 }
1010 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1011 #endif
1012 
1013 /*
1014  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1015  *
1016  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1017  *
1018  * @mapping1: the first mapping to lock
1019  * @mapping2: the second mapping to lock
1020  */
1021 void filemap_invalidate_lock_two(struct address_space *mapping1,
1022                                  struct address_space *mapping2)
1023 {
1024         if (mapping1 > mapping2)
1025                 swap(mapping1, mapping2);
1026         if (mapping1)
1027                 down_write(&mapping1->invalidate_lock);
1028         if (mapping2 && mapping1 != mapping2)
1029                 down_write_nested(&mapping2->invalidate_lock, 1);
1030 }
1031 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1032 
1033 /*
1034  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1035  *
1036  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1037  *
1038  * @mapping1: the first mapping to unlock
1039  * @mapping2: the second mapping to unlock
1040  */
1041 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1042                                    struct address_space *mapping2)
1043 {
1044         if (mapping1)
1045                 up_write(&mapping1->invalidate_lock);
1046         if (mapping2 && mapping1 != mapping2)
1047                 up_write(&mapping2->invalidate_lock);
1048 }
1049 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1050 
1051 /*
1052  * In order to wait for pages to become available there must be
1053  * waitqueues associated with pages. By using a hash table of
1054  * waitqueues where the bucket discipline is to maintain all
1055  * waiters on the same queue and wake all when any of the pages
1056  * become available, and for the woken contexts to check to be
1057  * sure the appropriate page became available, this saves space
1058  * at a cost of "thundering herd" phenomena during rare hash
1059  * collisions.
1060  */
1061 #define PAGE_WAIT_TABLE_BITS 8
1062 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1063 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1064 
1065 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1066 {
1067         return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1068 }
1069 
1070 void __init pagecache_init(void)
1071 {
1072         int i;
1073 
1074         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1075                 init_waitqueue_head(&folio_wait_table[i]);
1076 
1077         page_writeback_init();
1078 }
1079 
1080 /*
1081  * The page wait code treats the "wait->flags" somewhat unusually, because
1082  * we have multiple different kinds of waits, not just the usual "exclusive"
1083  * one.
1084  *
1085  * We have:
1086  *
1087  *  (a) no special bits set:
1088  *
1089  *      We're just waiting for the bit to be released, and when a waker
1090  *      calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1091  *      and remove it from the wait queue.
1092  *
1093  *      Simple and straightforward.
1094  *
1095  *  (b) WQ_FLAG_EXCLUSIVE:
1096  *
1097  *      The waiter is waiting to get the lock, and only one waiter should
1098  *      be woken up to avoid any thundering herd behavior. We'll set the
1099  *      WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1100  *
1101  *      This is the traditional exclusive wait.
1102  *
1103  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1104  *
1105  *      The waiter is waiting to get the bit, and additionally wants the
1106  *      lock to be transferred to it for fair lock behavior. If the lock
1107  *      cannot be taken, we stop walking the wait queue without waking
1108  *      the waiter.
1109  *
1110  *      This is the "fair lock handoff" case, and in addition to setting
1111  *      WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1112  *      that it now has the lock.
1113  */
1114 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1115 {
1116         unsigned int flags;
1117         struct wait_page_key *key = arg;
1118         struct wait_page_queue *wait_page
1119                 = container_of(wait, struct wait_page_queue, wait);
1120 
1121         if (!wake_page_match(wait_page, key))
1122                 return 0;
1123 
1124         /*
1125          * If it's a lock handoff wait, we get the bit for it, and
1126          * stop walking (and do not wake it up) if we can't.
1127          */
1128         flags = wait->flags;
1129         if (flags & WQ_FLAG_EXCLUSIVE) {
1130                 if (test_bit(key->bit_nr, &key->folio->flags))
1131                         return -1;
1132                 if (flags & WQ_FLAG_CUSTOM) {
1133                         if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1134                                 return -1;
1135                         flags |= WQ_FLAG_DONE;
1136                 }
1137         }
1138 
1139         /*
1140          * We are holding the wait-queue lock, but the waiter that
1141          * is waiting for this will be checking the flags without
1142          * any locking.
1143          *
1144          * So update the flags atomically, and wake up the waiter
1145          * afterwards to avoid any races. This store-release pairs
1146          * with the load-acquire in folio_wait_bit_common().
1147          */
1148         smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1149         wake_up_state(wait->private, mode);
1150 
1151         /*
1152          * Ok, we have successfully done what we're waiting for,
1153          * and we can unconditionally remove the wait entry.
1154          *
1155          * Note that this pairs with the "finish_wait()" in the
1156          * waiter, and has to be the absolute last thing we do.
1157          * After this list_del_init(&wait->entry) the wait entry
1158          * might be de-allocated and the process might even have
1159          * exited.
1160          */
1161         list_del_init_careful(&wait->entry);
1162         return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1163 }
1164 
1165 static void folio_wake_bit(struct folio *folio, int bit_nr)
1166 {
1167         wait_queue_head_t *q = folio_waitqueue(folio);
1168         struct wait_page_key key;
1169         unsigned long flags;
1170 
1171         key.folio = folio;
1172         key.bit_nr = bit_nr;
1173         key.page_match = 0;
1174 
1175         spin_lock_irqsave(&q->lock, flags);
1176         __wake_up_locked_key(q, TASK_NORMAL, &key);
1177 
1178         /*
1179          * It's possible to miss clearing waiters here, when we woke our page
1180          * waiters, but the hashed waitqueue has waiters for other pages on it.
1181          * That's okay, it's a rare case. The next waker will clear it.
1182          *
1183          * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1184          * other), the flag may be cleared in the course of freeing the page;
1185          * but that is not required for correctness.
1186          */
1187         if (!waitqueue_active(q) || !key.page_match)
1188                 folio_clear_waiters(folio);
1189 
1190         spin_unlock_irqrestore(&q->lock, flags);
1191 }
1192 
1193 /*
1194  * A choice of three behaviors for folio_wait_bit_common():
1195  */
1196 enum behavior {
1197         EXCLUSIVE,      /* Hold ref to page and take the bit when woken, like
1198                          * __folio_lock() waiting on then setting PG_locked.
1199                          */
1200         SHARED,         /* Hold ref to page and check the bit when woken, like
1201                          * folio_wait_writeback() waiting on PG_writeback.
1202                          */
1203         DROP,           /* Drop ref to page before wait, no check when woken,
1204                          * like folio_put_wait_locked() on PG_locked.
1205                          */
1206 };
1207 
1208 /*
1209  * Attempt to check (or get) the folio flag, and mark us done
1210  * if successful.
1211  */
1212 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1213                                         struct wait_queue_entry *wait)
1214 {
1215         if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1216                 if (test_and_set_bit(bit_nr, &folio->flags))
1217                         return false;
1218         } else if (test_bit(bit_nr, &folio->flags))
1219                 return false;
1220 
1221         wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1222         return true;
1223 }
1224 
1225 /* How many times do we accept lock stealing from under a waiter? */
1226 int sysctl_page_lock_unfairness = 5;
1227 
1228 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1229                 int state, enum behavior behavior)
1230 {
1231         wait_queue_head_t *q = folio_waitqueue(folio);
1232         int unfairness = sysctl_page_lock_unfairness;
1233         struct wait_page_queue wait_page;
1234         wait_queue_entry_t *wait = &wait_page.wait;
1235         bool thrashing = false;
1236         unsigned long pflags;
1237         bool in_thrashing;
1238 
1239         if (bit_nr == PG_locked &&
1240             !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1241                 delayacct_thrashing_start(&in_thrashing);
1242                 psi_memstall_enter(&pflags);
1243                 thrashing = true;
1244         }
1245 
1246         init_wait(wait);
1247         wait->func = wake_page_function;
1248         wait_page.folio = folio;
1249         wait_page.bit_nr = bit_nr;
1250 
1251 repeat:
1252         wait->flags = 0;
1253         if (behavior == EXCLUSIVE) {
1254                 wait->flags = WQ_FLAG_EXCLUSIVE;
1255                 if (--unfairness < 0)
1256                         wait->flags |= WQ_FLAG_CUSTOM;
1257         }
1258 
1259         /*
1260          * Do one last check whether we can get the
1261          * page bit synchronously.
1262          *
1263          * Do the folio_set_waiters() marking before that
1264          * to let any waker we _just_ missed know they
1265          * need to wake us up (otherwise they'll never
1266          * even go to the slow case that looks at the
1267          * page queue), and add ourselves to the wait
1268          * queue if we need to sleep.
1269          *
1270          * This part needs to be done under the queue
1271          * lock to avoid races.
1272          */
1273         spin_lock_irq(&q->lock);
1274         folio_set_waiters(folio);
1275         if (!folio_trylock_flag(folio, bit_nr, wait))
1276                 __add_wait_queue_entry_tail(q, wait);
1277         spin_unlock_irq(&q->lock);
1278 
1279         /*
1280          * From now on, all the logic will be based on
1281          * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1282          * see whether the page bit testing has already
1283          * been done by the wake function.
1284          *
1285          * We can drop our reference to the folio.
1286          */
1287         if (behavior == DROP)
1288                 folio_put(folio);
1289 
1290         /*
1291          * Note that until the "finish_wait()", or until
1292          * we see the WQ_FLAG_WOKEN flag, we need to
1293          * be very careful with the 'wait->flags', because
1294          * we may race with a waker that sets them.
1295          */
1296         for (;;) {
1297                 unsigned int flags;
1298 
1299                 set_current_state(state);
1300 
1301                 /* Loop until we've been woken or interrupted */
1302                 flags = smp_load_acquire(&wait->flags);
1303                 if (!(flags & WQ_FLAG_WOKEN)) {
1304                         if (signal_pending_state(state, current))
1305                                 break;
1306 
1307                         io_schedule();
1308                         continue;
1309                 }
1310 
1311                 /* If we were non-exclusive, we're done */
1312                 if (behavior != EXCLUSIVE)
1313                         break;
1314 
1315                 /* If the waker got the lock for us, we're done */
1316                 if (flags & WQ_FLAG_DONE)
1317                         break;
1318 
1319                 /*
1320                  * Otherwise, if we're getting the lock, we need to
1321                  * try to get it ourselves.
1322                  *
1323                  * And if that fails, we'll have to retry this all.
1324                  */
1325                 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1326                         goto repeat;
1327 
1328                 wait->flags |= WQ_FLAG_DONE;
1329                 break;
1330         }
1331 
1332         /*
1333          * If a signal happened, this 'finish_wait()' may remove the last
1334          * waiter from the wait-queues, but the folio waiters bit will remain
1335          * set. That's ok. The next wakeup will take care of it, and trying
1336          * to do it here would be difficult and prone to races.
1337          */
1338         finish_wait(q, wait);
1339 
1340         if (thrashing) {
1341                 delayacct_thrashing_end(&in_thrashing);
1342                 psi_memstall_leave(&pflags);
1343         }
1344 
1345         /*
1346          * NOTE! The wait->flags weren't stable until we've done the
1347          * 'finish_wait()', and we could have exited the loop above due
1348          * to a signal, and had a wakeup event happen after the signal
1349          * test but before the 'finish_wait()'.
1350          *
1351          * So only after the finish_wait() can we reliably determine
1352          * if we got woken up or not, so we can now figure out the final
1353          * return value based on that state without races.
1354          *
1355          * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1356          * waiter, but an exclusive one requires WQ_FLAG_DONE.
1357          */
1358         if (behavior == EXCLUSIVE)
1359                 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1360 
1361         return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1362 }
1363 
1364 #ifdef CONFIG_MIGRATION
1365 /**
1366  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1367  * @entry: migration swap entry.
1368  * @ptl: already locked ptl. This function will drop the lock.
1369  *
1370  * Wait for a migration entry referencing the given page to be removed. This is
1371  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1372  * this can be called without taking a reference on the page. Instead this
1373  * should be called while holding the ptl for the migration entry referencing
1374  * the page.
1375  *
1376  * Returns after unlocking the ptl.
1377  *
1378  * This follows the same logic as folio_wait_bit_common() so see the comments
1379  * there.
1380  */
1381 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1382         __releases(ptl)
1383 {
1384         struct wait_page_queue wait_page;
1385         wait_queue_entry_t *wait = &wait_page.wait;
1386         bool thrashing = false;
1387         unsigned long pflags;
1388         bool in_thrashing;
1389         wait_queue_head_t *q;
1390         struct folio *folio = pfn_swap_entry_folio(entry);
1391 
1392         q = folio_waitqueue(folio);
1393         if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1394                 delayacct_thrashing_start(&in_thrashing);
1395                 psi_memstall_enter(&pflags);
1396                 thrashing = true;
1397         }
1398 
1399         init_wait(wait);
1400         wait->func = wake_page_function;
1401         wait_page.folio = folio;
1402         wait_page.bit_nr = PG_locked;
1403         wait->flags = 0;
1404 
1405         spin_lock_irq(&q->lock);
1406         folio_set_waiters(folio);
1407         if (!folio_trylock_flag(folio, PG_locked, wait))
1408                 __add_wait_queue_entry_tail(q, wait);
1409         spin_unlock_irq(&q->lock);
1410 
1411         /*
1412          * If a migration entry exists for the page the migration path must hold
1413          * a valid reference to the page, and it must take the ptl to remove the
1414          * migration entry. So the page is valid until the ptl is dropped.
1415          */
1416         spin_unlock(ptl);
1417 
1418         for (;;) {
1419                 unsigned int flags;
1420 
1421                 set_current_state(TASK_UNINTERRUPTIBLE);
1422 
1423                 /* Loop until we've been woken or interrupted */
1424                 flags = smp_load_acquire(&wait->flags);
1425                 if (!(flags & WQ_FLAG_WOKEN)) {
1426                         if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1427                                 break;
1428 
1429                         io_schedule();
1430                         continue;
1431                 }
1432                 break;
1433         }
1434 
1435         finish_wait(q, wait);
1436 
1437         if (thrashing) {
1438                 delayacct_thrashing_end(&in_thrashing);
1439                 psi_memstall_leave(&pflags);
1440         }
1441 }
1442 #endif
1443 
1444 void folio_wait_bit(struct folio *folio, int bit_nr)
1445 {
1446         folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1447 }
1448 EXPORT_SYMBOL(folio_wait_bit);
1449 
1450 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1451 {
1452         return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1453 }
1454 EXPORT_SYMBOL(folio_wait_bit_killable);
1455 
1456 /**
1457  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1458  * @folio: The folio to wait for.
1459  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1460  *
1461  * The caller should hold a reference on @folio.  They expect the page to
1462  * become unlocked relatively soon, but do not wish to hold up migration
1463  * (for example) by holding the reference while waiting for the folio to
1464  * come unlocked.  After this function returns, the caller should not
1465  * dereference @folio.
1466  *
1467  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1468  */
1469 static int folio_put_wait_locked(struct folio *folio, int state)
1470 {
1471         return folio_wait_bit_common(folio, PG_locked, state, DROP);
1472 }
1473 
1474 /**
1475  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1476  * @folio: Folio defining the wait queue of interest
1477  * @waiter: Waiter to add to the queue
1478  *
1479  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1480  */
1481 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1482 {
1483         wait_queue_head_t *q = folio_waitqueue(folio);
1484         unsigned long flags;
1485 
1486         spin_lock_irqsave(&q->lock, flags);
1487         __add_wait_queue_entry_tail(q, waiter);
1488         folio_set_waiters(folio);
1489         spin_unlock_irqrestore(&q->lock, flags);
1490 }
1491 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1492 
1493 /**
1494  * folio_unlock - Unlock a locked folio.
1495  * @folio: The folio.
1496  *
1497  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1498  *
1499  * Context: May be called from interrupt or process context.  May not be
1500  * called from NMI context.
1501  */
1502 void folio_unlock(struct folio *folio)
1503 {
1504         /* Bit 7 allows x86 to check the byte's sign bit */
1505         BUILD_BUG_ON(PG_waiters != 7);
1506         BUILD_BUG_ON(PG_locked > 7);
1507         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1508         if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1509                 folio_wake_bit(folio, PG_locked);
1510 }
1511 EXPORT_SYMBOL(folio_unlock);
1512 
1513 /**
1514  * folio_end_read - End read on a folio.
1515  * @folio: The folio.
1516  * @success: True if all reads completed successfully.
1517  *
1518  * When all reads against a folio have completed, filesystems should
1519  * call this function to let the pagecache know that no more reads
1520  * are outstanding.  This will unlock the folio and wake up any thread
1521  * sleeping on the lock.  The folio will also be marked uptodate if all
1522  * reads succeeded.
1523  *
1524  * Context: May be called from interrupt or process context.  May not be
1525  * called from NMI context.
1526  */
1527 void folio_end_read(struct folio *folio, bool success)
1528 {
1529         unsigned long mask = 1 << PG_locked;
1530 
1531         /* Must be in bottom byte for x86 to work */
1532         BUILD_BUG_ON(PG_uptodate > 7);
1533         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1534         VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1535 
1536         if (likely(success))
1537                 mask |= 1 << PG_uptodate;
1538         if (folio_xor_flags_has_waiters(folio, mask))
1539                 folio_wake_bit(folio, PG_locked);
1540 }
1541 EXPORT_SYMBOL(folio_end_read);
1542 
1543 /**
1544  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1545  * @folio: The folio.
1546  *
1547  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1548  * it.  The folio reference held for PG_private_2 being set is released.
1549  *
1550  * This is, for example, used when a netfs folio is being written to a local
1551  * disk cache, thereby allowing writes to the cache for the same folio to be
1552  * serialised.
1553  */
1554 void folio_end_private_2(struct folio *folio)
1555 {
1556         VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1557         clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1558         folio_wake_bit(folio, PG_private_2);
1559         folio_put(folio);
1560 }
1561 EXPORT_SYMBOL(folio_end_private_2);
1562 
1563 /**
1564  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1565  * @folio: The folio to wait on.
1566  *
1567  * Wait for PG_private_2 to be cleared on a folio.
1568  */
1569 void folio_wait_private_2(struct folio *folio)
1570 {
1571         while (folio_test_private_2(folio))
1572                 folio_wait_bit(folio, PG_private_2);
1573 }
1574 EXPORT_SYMBOL(folio_wait_private_2);
1575 
1576 /**
1577  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1578  * @folio: The folio to wait on.
1579  *
1580  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1581  * received by the calling task.
1582  *
1583  * Return:
1584  * - 0 if successful.
1585  * - -EINTR if a fatal signal was encountered.
1586  */
1587 int folio_wait_private_2_killable(struct folio *folio)
1588 {
1589         int ret = 0;
1590 
1591         while (folio_test_private_2(folio)) {
1592                 ret = folio_wait_bit_killable(folio, PG_private_2);
1593                 if (ret < 0)
1594                         break;
1595         }
1596 
1597         return ret;
1598 }
1599 EXPORT_SYMBOL(folio_wait_private_2_killable);
1600 
1601 /**
1602  * folio_end_writeback - End writeback against a folio.
1603  * @folio: The folio.
1604  *
1605  * The folio must actually be under writeback.
1606  *
1607  * Context: May be called from process or interrupt context.
1608  */
1609 void folio_end_writeback(struct folio *folio)
1610 {
1611         VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1612 
1613         /*
1614          * folio_test_clear_reclaim() could be used here but it is an
1615          * atomic operation and overkill in this particular case. Failing
1616          * to shuffle a folio marked for immediate reclaim is too mild
1617          * a gain to justify taking an atomic operation penalty at the
1618          * end of every folio writeback.
1619          */
1620         if (folio_test_reclaim(folio)) {
1621                 folio_clear_reclaim(folio);
1622                 folio_rotate_reclaimable(folio);
1623         }
1624 
1625         /*
1626          * Writeback does not hold a folio reference of its own, relying
1627          * on truncation to wait for the clearing of PG_writeback.
1628          * But here we must make sure that the folio is not freed and
1629          * reused before the folio_wake_bit().
1630          */
1631         folio_get(folio);
1632         if (__folio_end_writeback(folio))
1633                 folio_wake_bit(folio, PG_writeback);
1634         acct_reclaim_writeback(folio);
1635         folio_put(folio);
1636 }
1637 EXPORT_SYMBOL(folio_end_writeback);
1638 
1639 /**
1640  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1641  * @folio: The folio to lock
1642  */
1643 void __folio_lock(struct folio *folio)
1644 {
1645         folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1646                                 EXCLUSIVE);
1647 }
1648 EXPORT_SYMBOL(__folio_lock);
1649 
1650 int __folio_lock_killable(struct folio *folio)
1651 {
1652         return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1653                                         EXCLUSIVE);
1654 }
1655 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1656 
1657 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1658 {
1659         struct wait_queue_head *q = folio_waitqueue(folio);
1660         int ret;
1661 
1662         wait->folio = folio;
1663         wait->bit_nr = PG_locked;
1664 
1665         spin_lock_irq(&q->lock);
1666         __add_wait_queue_entry_tail(q, &wait->wait);
1667         folio_set_waiters(folio);
1668         ret = !folio_trylock(folio);
1669         /*
1670          * If we were successful now, we know we're still on the
1671          * waitqueue as we're still under the lock. This means it's
1672          * safe to remove and return success, we know the callback
1673          * isn't going to trigger.
1674          */
1675         if (!ret)
1676                 __remove_wait_queue(q, &wait->wait);
1677         else
1678                 ret = -EIOCBQUEUED;
1679         spin_unlock_irq(&q->lock);
1680         return ret;
1681 }
1682 
1683 /*
1684  * Return values:
1685  * 0 - folio is locked.
1686  * non-zero - folio is not locked.
1687  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1688  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1689  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1690  *
1691  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1692  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1693  */
1694 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1695 {
1696         unsigned int flags = vmf->flags;
1697 
1698         if (fault_flag_allow_retry_first(flags)) {
1699                 /*
1700                  * CAUTION! In this case, mmap_lock/per-VMA lock is not
1701                  * released even though returning VM_FAULT_RETRY.
1702                  */
1703                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1704                         return VM_FAULT_RETRY;
1705 
1706                 release_fault_lock(vmf);
1707                 if (flags & FAULT_FLAG_KILLABLE)
1708                         folio_wait_locked_killable(folio);
1709                 else
1710                         folio_wait_locked(folio);
1711                 return VM_FAULT_RETRY;
1712         }
1713         if (flags & FAULT_FLAG_KILLABLE) {
1714                 bool ret;
1715 
1716                 ret = __folio_lock_killable(folio);
1717                 if (ret) {
1718                         release_fault_lock(vmf);
1719                         return VM_FAULT_RETRY;
1720                 }
1721         } else {
1722                 __folio_lock(folio);
1723         }
1724 
1725         return 0;
1726 }
1727 
1728 /**
1729  * page_cache_next_miss() - Find the next gap in the page cache.
1730  * @mapping: Mapping.
1731  * @index: Index.
1732  * @max_scan: Maximum range to search.
1733  *
1734  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1735  * gap with the lowest index.
1736  *
1737  * This function may be called under the rcu_read_lock.  However, this will
1738  * not atomically search a snapshot of the cache at a single point in time.
1739  * For example, if a gap is created at index 5, then subsequently a gap is
1740  * created at index 10, page_cache_next_miss covering both indices may
1741  * return 10 if called under the rcu_read_lock.
1742  *
1743  * Return: The index of the gap if found, otherwise an index outside the
1744  * range specified (in which case 'return - index >= max_scan' will be true).
1745  * In the rare case of index wrap-around, 0 will be returned.
1746  */
1747 pgoff_t page_cache_next_miss(struct address_space *mapping,
1748                              pgoff_t index, unsigned long max_scan)
1749 {
1750         XA_STATE(xas, &mapping->i_pages, index);
1751 
1752         while (max_scan--) {
1753                 void *entry = xas_next(&xas);
1754                 if (!entry || xa_is_value(entry))
1755                         return xas.xa_index;
1756                 if (xas.xa_index == 0)
1757                         return 0;
1758         }
1759 
1760         return index + max_scan;
1761 }
1762 EXPORT_SYMBOL(page_cache_next_miss);
1763 
1764 /**
1765  * page_cache_prev_miss() - Find the previous gap in the page cache.
1766  * @mapping: Mapping.
1767  * @index: Index.
1768  * @max_scan: Maximum range to search.
1769  *
1770  * Search the range [max(index - max_scan + 1, 0), index] for the
1771  * gap with the highest index.
1772  *
1773  * This function may be called under the rcu_read_lock.  However, this will
1774  * not atomically search a snapshot of the cache at a single point in time.
1775  * For example, if a gap is created at index 10, then subsequently a gap is
1776  * created at index 5, page_cache_prev_miss() covering both indices may
1777  * return 5 if called under the rcu_read_lock.
1778  *
1779  * Return: The index of the gap if found, otherwise an index outside the
1780  * range specified (in which case 'index - return >= max_scan' will be true).
1781  * In the rare case of wrap-around, ULONG_MAX will be returned.
1782  */
1783 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1784                              pgoff_t index, unsigned long max_scan)
1785 {
1786         XA_STATE(xas, &mapping->i_pages, index);
1787 
1788         while (max_scan--) {
1789                 void *entry = xas_prev(&xas);
1790                 if (!entry || xa_is_value(entry))
1791                         break;
1792                 if (xas.xa_index == ULONG_MAX)
1793                         break;
1794         }
1795 
1796         return xas.xa_index;
1797 }
1798 EXPORT_SYMBOL(page_cache_prev_miss);
1799 
1800 /*
1801  * Lockless page cache protocol:
1802  * On the lookup side:
1803  * 1. Load the folio from i_pages
1804  * 2. Increment the refcount if it's not zero
1805  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1806  *
1807  * On the removal side:
1808  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1809  * B. Remove the page from i_pages
1810  * C. Return the page to the page allocator
1811  *
1812  * This means that any page may have its reference count temporarily
1813  * increased by a speculative page cache (or GUP-fast) lookup as it can
1814  * be allocated by another user before the RCU grace period expires.
1815  * Because the refcount temporarily acquired here may end up being the
1816  * last refcount on the page, any page allocation must be freeable by
1817  * folio_put().
1818  */
1819 
1820 /*
1821  * filemap_get_entry - Get a page cache entry.
1822  * @mapping: the address_space to search
1823  * @index: The page cache index.
1824  *
1825  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1826  * it is returned with an increased refcount.  If it is a shadow entry
1827  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1828  * it is returned without further action.
1829  *
1830  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1831  */
1832 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1833 {
1834         XA_STATE(xas, &mapping->i_pages, index);
1835         struct folio *folio;
1836 
1837         rcu_read_lock();
1838 repeat:
1839         xas_reset(&xas);
1840         folio = xas_load(&xas);
1841         if (xas_retry(&xas, folio))
1842                 goto repeat;
1843         /*
1844          * A shadow entry of a recently evicted page, or a swap entry from
1845          * shmem/tmpfs.  Return it without attempting to raise page count.
1846          */
1847         if (!folio || xa_is_value(folio))
1848                 goto out;
1849 
1850         if (!folio_try_get(folio))
1851                 goto repeat;
1852 
1853         if (unlikely(folio != xas_reload(&xas))) {
1854                 folio_put(folio);
1855                 goto repeat;
1856         }
1857 out:
1858         rcu_read_unlock();
1859 
1860         return folio;
1861 }
1862 
1863 /**
1864  * __filemap_get_folio - Find and get a reference to a folio.
1865  * @mapping: The address_space to search.
1866  * @index: The page index.
1867  * @fgp_flags: %FGP flags modify how the folio is returned.
1868  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1869  *
1870  * Looks up the page cache entry at @mapping & @index.
1871  *
1872  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1873  * if the %GFP flags specified for %FGP_CREAT are atomic.
1874  *
1875  * If this function returns a folio, it is returned with an increased refcount.
1876  *
1877  * Return: The found folio or an ERR_PTR() otherwise.
1878  */
1879 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1880                 fgf_t fgp_flags, gfp_t gfp)
1881 {
1882         struct folio *folio;
1883 
1884 repeat:
1885         folio = filemap_get_entry(mapping, index);
1886         if (xa_is_value(folio))
1887                 folio = NULL;
1888         if (!folio)
1889                 goto no_page;
1890 
1891         if (fgp_flags & FGP_LOCK) {
1892                 if (fgp_flags & FGP_NOWAIT) {
1893                         if (!folio_trylock(folio)) {
1894                                 folio_put(folio);
1895                                 return ERR_PTR(-EAGAIN);
1896                         }
1897                 } else {
1898                         folio_lock(folio);
1899                 }
1900 
1901                 /* Has the page been truncated? */
1902                 if (unlikely(folio->mapping != mapping)) {
1903                         folio_unlock(folio);
1904                         folio_put(folio);
1905                         goto repeat;
1906                 }
1907                 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1908         }
1909 
1910         if (fgp_flags & FGP_ACCESSED)
1911                 folio_mark_accessed(folio);
1912         else if (fgp_flags & FGP_WRITE) {
1913                 /* Clear idle flag for buffer write */
1914                 if (folio_test_idle(folio))
1915                         folio_clear_idle(folio);
1916         }
1917 
1918         if (fgp_flags & FGP_STABLE)
1919                 folio_wait_stable(folio);
1920 no_page:
1921         if (!folio && (fgp_flags & FGP_CREAT)) {
1922                 unsigned order = FGF_GET_ORDER(fgp_flags);
1923                 int err;
1924 
1925                 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1926                         gfp |= __GFP_WRITE;
1927                 if (fgp_flags & FGP_NOFS)
1928                         gfp &= ~__GFP_FS;
1929                 if (fgp_flags & FGP_NOWAIT) {
1930                         gfp &= ~GFP_KERNEL;
1931                         gfp |= GFP_NOWAIT | __GFP_NOWARN;
1932                 }
1933                 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1934                         fgp_flags |= FGP_LOCK;
1935 
1936                 if (!mapping_large_folio_support(mapping))
1937                         order = 0;
1938                 if (order > MAX_PAGECACHE_ORDER)
1939                         order = MAX_PAGECACHE_ORDER;
1940                 /* If we're not aligned, allocate a smaller folio */
1941                 if (index & ((1UL << order) - 1))
1942                         order = __ffs(index);
1943 
1944                 do {
1945                         gfp_t alloc_gfp = gfp;
1946 
1947                         err = -ENOMEM;
1948                         if (order > 0)
1949                                 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1950                         folio = filemap_alloc_folio(alloc_gfp, order);
1951                         if (!folio)
1952                                 continue;
1953 
1954                         /* Init accessed so avoid atomic mark_page_accessed later */
1955                         if (fgp_flags & FGP_ACCESSED)
1956                                 __folio_set_referenced(folio);
1957 
1958                         err = filemap_add_folio(mapping, folio, index, gfp);
1959                         if (!err)
1960                                 break;
1961                         folio_put(folio);
1962                         folio = NULL;
1963                 } while (order-- > 0);
1964 
1965                 if (err == -EEXIST)
1966                         goto repeat;
1967                 if (err)
1968                         return ERR_PTR(err);
1969                 /*
1970                  * filemap_add_folio locks the page, and for mmap
1971                  * we expect an unlocked page.
1972                  */
1973                 if (folio && (fgp_flags & FGP_FOR_MMAP))
1974                         folio_unlock(folio);
1975         }
1976 
1977         if (!folio)
1978                 return ERR_PTR(-ENOENT);
1979         return folio;
1980 }
1981 EXPORT_SYMBOL(__filemap_get_folio);
1982 
1983 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1984                 xa_mark_t mark)
1985 {
1986         struct folio *folio;
1987 
1988 retry:
1989         if (mark == XA_PRESENT)
1990                 folio = xas_find(xas, max);
1991         else
1992                 folio = xas_find_marked(xas, max, mark);
1993 
1994         if (xas_retry(xas, folio))
1995                 goto retry;
1996         /*
1997          * A shadow entry of a recently evicted page, a swap
1998          * entry from shmem/tmpfs or a DAX entry.  Return it
1999          * without attempting to raise page count.
2000          */
2001         if (!folio || xa_is_value(folio))
2002                 return folio;
2003 
2004         if (!folio_try_get(folio))
2005                 goto reset;
2006 
2007         if (unlikely(folio != xas_reload(xas))) {
2008                 folio_put(folio);
2009                 goto reset;
2010         }
2011 
2012         return folio;
2013 reset:
2014         xas_reset(xas);
2015         goto retry;
2016 }
2017 
2018 /**
2019  * find_get_entries - gang pagecache lookup
2020  * @mapping:    The address_space to search
2021  * @start:      The starting page cache index
2022  * @end:        The final page index (inclusive).
2023  * @fbatch:     Where the resulting entries are placed.
2024  * @indices:    The cache indices corresponding to the entries in @entries
2025  *
2026  * find_get_entries() will search for and return a batch of entries in
2027  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2028  * takes a reference on any actual folios it returns.
2029  *
2030  * The entries have ascending indexes.  The indices may not be consecutive
2031  * due to not-present entries or large folios.
2032  *
2033  * Any shadow entries of evicted folios, or swap entries from
2034  * shmem/tmpfs, are included in the returned array.
2035  *
2036  * Return: The number of entries which were found.
2037  */
2038 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2039                 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2040 {
2041         XA_STATE(xas, &mapping->i_pages, *start);
2042         struct folio *folio;
2043 
2044         rcu_read_lock();
2045         while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2046                 indices[fbatch->nr] = xas.xa_index;
2047                 if (!folio_batch_add(fbatch, folio))
2048                         break;
2049         }
2050         rcu_read_unlock();
2051 
2052         if (folio_batch_count(fbatch)) {
2053                 unsigned long nr = 1;
2054                 int idx = folio_batch_count(fbatch) - 1;
2055 
2056                 folio = fbatch->folios[idx];
2057                 if (!xa_is_value(folio))
2058                         nr = folio_nr_pages(folio);
2059                 *start = indices[idx] + nr;
2060         }
2061         return folio_batch_count(fbatch);
2062 }
2063 
2064 /**
2065  * find_lock_entries - Find a batch of pagecache entries.
2066  * @mapping:    The address_space to search.
2067  * @start:      The starting page cache index.
2068  * @end:        The final page index (inclusive).
2069  * @fbatch:     Where the resulting entries are placed.
2070  * @indices:    The cache indices of the entries in @fbatch.
2071  *
2072  * find_lock_entries() will return a batch of entries from @mapping.
2073  * Swap, shadow and DAX entries are included.  Folios are returned
2074  * locked and with an incremented refcount.  Folios which are locked
2075  * by somebody else or under writeback are skipped.  Folios which are
2076  * partially outside the range are not returned.
2077  *
2078  * The entries have ascending indexes.  The indices may not be consecutive
2079  * due to not-present entries, large folios, folios which could not be
2080  * locked or folios under writeback.
2081  *
2082  * Return: The number of entries which were found.
2083  */
2084 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2085                 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2086 {
2087         XA_STATE(xas, &mapping->i_pages, *start);
2088         struct folio *folio;
2089 
2090         rcu_read_lock();
2091         while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2092                 if (!xa_is_value(folio)) {
2093                         if (folio->index < *start)
2094                                 goto put;
2095                         if (folio_next_index(folio) - 1 > end)
2096                                 goto put;
2097                         if (!folio_trylock(folio))
2098                                 goto put;
2099                         if (folio->mapping != mapping ||
2100                             folio_test_writeback(folio))
2101                                 goto unlock;
2102                         VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2103                                         folio);
2104                 }
2105                 indices[fbatch->nr] = xas.xa_index;
2106                 if (!folio_batch_add(fbatch, folio))
2107                         break;
2108                 continue;
2109 unlock:
2110                 folio_unlock(folio);
2111 put:
2112                 folio_put(folio);
2113         }
2114         rcu_read_unlock();
2115 
2116         if (folio_batch_count(fbatch)) {
2117                 unsigned long nr = 1;
2118                 int idx = folio_batch_count(fbatch) - 1;
2119 
2120                 folio = fbatch->folios[idx];
2121                 if (!xa_is_value(folio))
2122                         nr = folio_nr_pages(folio);
2123                 *start = indices[idx] + nr;
2124         }
2125         return folio_batch_count(fbatch);
2126 }
2127 
2128 /**
2129  * filemap_get_folios - Get a batch of folios
2130  * @mapping:    The address_space to search
2131  * @start:      The starting page index
2132  * @end:        The final page index (inclusive)
2133  * @fbatch:     The batch to fill.
2134  *
2135  * Search for and return a batch of folios in the mapping starting at
2136  * index @start and up to index @end (inclusive).  The folios are returned
2137  * in @fbatch with an elevated reference count.
2138  *
2139  * Return: The number of folios which were found.
2140  * We also update @start to index the next folio for the traversal.
2141  */
2142 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2143                 pgoff_t end, struct folio_batch *fbatch)
2144 {
2145         return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2146 }
2147 EXPORT_SYMBOL(filemap_get_folios);
2148 
2149 /**
2150  * filemap_get_folios_contig - Get a batch of contiguous folios
2151  * @mapping:    The address_space to search
2152  * @start:      The starting page index
2153  * @end:        The final page index (inclusive)
2154  * @fbatch:     The batch to fill
2155  *
2156  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2157  * except the returned folios are guaranteed to be contiguous. This may
2158  * not return all contiguous folios if the batch gets filled up.
2159  *
2160  * Return: The number of folios found.
2161  * Also update @start to be positioned for traversal of the next folio.
2162  */
2163 
2164 unsigned filemap_get_folios_contig(struct address_space *mapping,
2165                 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2166 {
2167         XA_STATE(xas, &mapping->i_pages, *start);
2168         unsigned long nr;
2169         struct folio *folio;
2170 
2171         rcu_read_lock();
2172 
2173         for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2174                         folio = xas_next(&xas)) {
2175                 if (xas_retry(&xas, folio))
2176                         continue;
2177                 /*
2178                  * If the entry has been swapped out, we can stop looking.
2179                  * No current caller is looking for DAX entries.
2180                  */
2181                 if (xa_is_value(folio))
2182                         goto update_start;
2183 
2184                 /* If we landed in the middle of a THP, continue at its end. */
2185                 if (xa_is_sibling(folio))
2186                         goto update_start;
2187 
2188                 if (!folio_try_get(folio))
2189                         goto retry;
2190 
2191                 if (unlikely(folio != xas_reload(&xas)))
2192                         goto put_folio;
2193 
2194                 if (!folio_batch_add(fbatch, folio)) {
2195                         nr = folio_nr_pages(folio);
2196                         *start = folio->index + nr;
2197                         goto out;
2198                 }
2199                 continue;
2200 put_folio:
2201                 folio_put(folio);
2202 
2203 retry:
2204                 xas_reset(&xas);
2205         }
2206 
2207 update_start:
2208         nr = folio_batch_count(fbatch);
2209 
2210         if (nr) {
2211                 folio = fbatch->folios[nr - 1];
2212                 *start = folio_next_index(folio);
2213         }
2214 out:
2215         rcu_read_unlock();
2216         return folio_batch_count(fbatch);
2217 }
2218 EXPORT_SYMBOL(filemap_get_folios_contig);
2219 
2220 /**
2221  * filemap_get_folios_tag - Get a batch of folios matching @tag
2222  * @mapping:    The address_space to search
2223  * @start:      The starting page index
2224  * @end:        The final page index (inclusive)
2225  * @tag:        The tag index
2226  * @fbatch:     The batch to fill
2227  *
2228  * The first folio may start before @start; if it does, it will contain
2229  * @start.  The final folio may extend beyond @end; if it does, it will
2230  * contain @end.  The folios have ascending indices.  There may be gaps
2231  * between the folios if there are indices which have no folio in the
2232  * page cache.  If folios are added to or removed from the page cache
2233  * while this is running, they may or may not be found by this call.
2234  * Only returns folios that are tagged with @tag.
2235  *
2236  * Return: The number of folios found.
2237  * Also update @start to index the next folio for traversal.
2238  */
2239 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2240                         pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2241 {
2242         XA_STATE(xas, &mapping->i_pages, *start);
2243         struct folio *folio;
2244 
2245         rcu_read_lock();
2246         while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2247                 /*
2248                  * Shadow entries should never be tagged, but this iteration
2249                  * is lockless so there is a window for page reclaim to evict
2250                  * a page we saw tagged. Skip over it.
2251                  */
2252                 if (xa_is_value(folio))
2253                         continue;
2254                 if (!folio_batch_add(fbatch, folio)) {
2255                         unsigned long nr = folio_nr_pages(folio);
2256                         *start = folio->index + nr;
2257                         goto out;
2258                 }
2259         }
2260         /*
2261          * We come here when there is no page beyond @end. We take care to not
2262          * overflow the index @start as it confuses some of the callers. This
2263          * breaks the iteration when there is a page at index -1 but that is
2264          * already broke anyway.
2265          */
2266         if (end == (pgoff_t)-1)
2267                 *start = (pgoff_t)-1;
2268         else
2269                 *start = end + 1;
2270 out:
2271         rcu_read_unlock();
2272 
2273         return folio_batch_count(fbatch);
2274 }
2275 EXPORT_SYMBOL(filemap_get_folios_tag);
2276 
2277 /*
2278  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2279  * a _large_ part of the i/o request. Imagine the worst scenario:
2280  *
2281  *      ---R__________________________________________B__________
2282  *         ^ reading here                             ^ bad block(assume 4k)
2283  *
2284  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2285  * => failing the whole request => read(R) => read(R+1) =>
2286  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2287  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2288  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2289  *
2290  * It is going insane. Fix it by quickly scaling down the readahead size.
2291  */
2292 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2293 {
2294         ra->ra_pages /= 4;
2295 }
2296 
2297 /*
2298  * filemap_get_read_batch - Get a batch of folios for read
2299  *
2300  * Get a batch of folios which represent a contiguous range of bytes in
2301  * the file.  No exceptional entries will be returned.  If @index is in
2302  * the middle of a folio, the entire folio will be returned.  The last
2303  * folio in the batch may have the readahead flag set or the uptodate flag
2304  * clear so that the caller can take the appropriate action.
2305  */
2306 static void filemap_get_read_batch(struct address_space *mapping,
2307                 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2308 {
2309         XA_STATE(xas, &mapping->i_pages, index);
2310         struct folio *folio;
2311 
2312         rcu_read_lock();
2313         for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2314                 if (xas_retry(&xas, folio))
2315                         continue;
2316                 if (xas.xa_index > max || xa_is_value(folio))
2317                         break;
2318                 if (xa_is_sibling(folio))
2319                         break;
2320                 if (!folio_try_get(folio))
2321                         goto retry;
2322 
2323                 if (unlikely(folio != xas_reload(&xas)))
2324                         goto put_folio;
2325 
2326                 if (!folio_batch_add(fbatch, folio))
2327                         break;
2328                 if (!folio_test_uptodate(folio))
2329                         break;
2330                 if (folio_test_readahead(folio))
2331                         break;
2332                 xas_advance(&xas, folio_next_index(folio) - 1);
2333                 continue;
2334 put_folio:
2335                 folio_put(folio);
2336 retry:
2337                 xas_reset(&xas);
2338         }
2339         rcu_read_unlock();
2340 }
2341 
2342 static int filemap_read_folio(struct file *file, filler_t filler,
2343                 struct folio *folio)
2344 {
2345         bool workingset = folio_test_workingset(folio);
2346         unsigned long pflags;
2347         int error;
2348 
2349         /*
2350          * A previous I/O error may have been due to temporary failures,
2351          * eg. multipath errors.  PG_error will be set again if read_folio
2352          * fails.
2353          */
2354         folio_clear_error(folio);
2355 
2356         /* Start the actual read. The read will unlock the page. */
2357         if (unlikely(workingset))
2358                 psi_memstall_enter(&pflags);
2359         error = filler(file, folio);
2360         if (unlikely(workingset))
2361                 psi_memstall_leave(&pflags);
2362         if (error)
2363                 return error;
2364 
2365         error = folio_wait_locked_killable(folio);
2366         if (error)
2367                 return error;
2368         if (folio_test_uptodate(folio))
2369                 return 0;
2370         if (file)
2371                 shrink_readahead_size_eio(&file->f_ra);
2372         return -EIO;
2373 }
2374 
2375 static bool filemap_range_uptodate(struct address_space *mapping,
2376                 loff_t pos, size_t count, struct folio *folio,
2377                 bool need_uptodate)
2378 {
2379         if (folio_test_uptodate(folio))
2380                 return true;
2381         /* pipes can't handle partially uptodate pages */
2382         if (need_uptodate)
2383                 return false;
2384         if (!mapping->a_ops->is_partially_uptodate)
2385                 return false;
2386         if (mapping->host->i_blkbits >= folio_shift(folio))
2387                 return false;
2388 
2389         if (folio_pos(folio) > pos) {
2390                 count -= folio_pos(folio) - pos;
2391                 pos = 0;
2392         } else {
2393                 pos -= folio_pos(folio);
2394         }
2395 
2396         return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2397 }
2398 
2399 static int filemap_update_page(struct kiocb *iocb,
2400                 struct address_space *mapping, size_t count,
2401                 struct folio *folio, bool need_uptodate)
2402 {
2403         int error;
2404 
2405         if (iocb->ki_flags & IOCB_NOWAIT) {
2406                 if (!filemap_invalidate_trylock_shared(mapping))
2407                         return -EAGAIN;
2408         } else {
2409                 filemap_invalidate_lock_shared(mapping);
2410         }
2411 
2412         if (!folio_trylock(folio)) {
2413                 error = -EAGAIN;
2414                 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2415                         goto unlock_mapping;
2416                 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2417                         filemap_invalidate_unlock_shared(mapping);
2418                         /*
2419                          * This is where we usually end up waiting for a
2420                          * previously submitted readahead to finish.
2421                          */
2422                         folio_put_wait_locked(folio, TASK_KILLABLE);
2423                         return AOP_TRUNCATED_PAGE;
2424                 }
2425                 error = __folio_lock_async(folio, iocb->ki_waitq);
2426                 if (error)
2427                         goto unlock_mapping;
2428         }
2429 
2430         error = AOP_TRUNCATED_PAGE;
2431         if (!folio->mapping)
2432                 goto unlock;
2433 
2434         error = 0;
2435         if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2436                                    need_uptodate))
2437                 goto unlock;
2438 
2439         error = -EAGAIN;
2440         if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2441                 goto unlock;
2442 
2443         error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2444                         folio);
2445         goto unlock_mapping;
2446 unlock:
2447         folio_unlock(folio);
2448 unlock_mapping:
2449         filemap_invalidate_unlock_shared(mapping);
2450         if (error == AOP_TRUNCATED_PAGE)
2451                 folio_put(folio);
2452         return error;
2453 }
2454 
2455 static int filemap_create_folio(struct file *file,
2456                 struct address_space *mapping, pgoff_t index,
2457                 struct folio_batch *fbatch)
2458 {
2459         struct folio *folio;
2460         int error;
2461 
2462         folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2463         if (!folio)
2464                 return -ENOMEM;
2465 
2466         /*
2467          * Protect against truncate / hole punch. Grabbing invalidate_lock
2468          * here assures we cannot instantiate and bring uptodate new
2469          * pagecache folios after evicting page cache during truncate
2470          * and before actually freeing blocks.  Note that we could
2471          * release invalidate_lock after inserting the folio into
2472          * the page cache as the locked folio would then be enough to
2473          * synchronize with hole punching. But there are code paths
2474          * such as filemap_update_page() filling in partially uptodate
2475          * pages or ->readahead() that need to hold invalidate_lock
2476          * while mapping blocks for IO so let's hold the lock here as
2477          * well to keep locking rules simple.
2478          */
2479         filemap_invalidate_lock_shared(mapping);
2480         error = filemap_add_folio(mapping, folio, index,
2481                         mapping_gfp_constraint(mapping, GFP_KERNEL));
2482         if (error == -EEXIST)
2483                 error = AOP_TRUNCATED_PAGE;
2484         if (error)
2485                 goto error;
2486 
2487         error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2488         if (error)
2489                 goto error;
2490 
2491         filemap_invalidate_unlock_shared(mapping);
2492         folio_batch_add(fbatch, folio);
2493         return 0;
2494 error:
2495         filemap_invalidate_unlock_shared(mapping);
2496         folio_put(folio);
2497         return error;
2498 }
2499 
2500 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2501                 struct address_space *mapping, struct folio *folio,
2502                 pgoff_t last_index)
2503 {
2504         DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2505 
2506         if (iocb->ki_flags & IOCB_NOIO)
2507                 return -EAGAIN;
2508         page_cache_async_ra(&ractl, folio, last_index - folio->index);
2509         return 0;
2510 }
2511 
2512 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2513                 struct folio_batch *fbatch, bool need_uptodate)
2514 {
2515         struct file *filp = iocb->ki_filp;
2516         struct address_space *mapping = filp->f_mapping;
2517         struct file_ra_state *ra = &filp->f_ra;
2518         pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2519         pgoff_t last_index;
2520         struct folio *folio;
2521         int err = 0;
2522 
2523         /* "last_index" is the index of the page beyond the end of the read */
2524         last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2525 retry:
2526         if (fatal_signal_pending(current))
2527                 return -EINTR;
2528 
2529         filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2530         if (!folio_batch_count(fbatch)) {
2531                 if (iocb->ki_flags & IOCB_NOIO)
2532                         return -EAGAIN;
2533                 page_cache_sync_readahead(mapping, ra, filp, index,
2534                                 last_index - index);
2535                 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2536         }
2537         if (!folio_batch_count(fbatch)) {
2538                 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2539                         return -EAGAIN;
2540                 err = filemap_create_folio(filp, mapping,
2541                                 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2542                 if (err == AOP_TRUNCATED_PAGE)
2543                         goto retry;
2544                 return err;
2545         }
2546 
2547         folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2548         if (folio_test_readahead(folio)) {
2549                 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2550                 if (err)
2551                         goto err;
2552         }
2553         if (!folio_test_uptodate(folio)) {
2554                 if ((iocb->ki_flags & IOCB_WAITQ) &&
2555                     folio_batch_count(fbatch) > 1)
2556                         iocb->ki_flags |= IOCB_NOWAIT;
2557                 err = filemap_update_page(iocb, mapping, count, folio,
2558                                           need_uptodate);
2559                 if (err)
2560                         goto err;
2561         }
2562 
2563         return 0;
2564 err:
2565         if (err < 0)
2566                 folio_put(folio);
2567         if (likely(--fbatch->nr))
2568                 return 0;
2569         if (err == AOP_TRUNCATED_PAGE)
2570                 goto retry;
2571         return err;
2572 }
2573 
2574 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2575 {
2576         unsigned int shift = folio_shift(folio);
2577 
2578         return (pos1 >> shift == pos2 >> shift);
2579 }
2580 
2581 /**
2582  * filemap_read - Read data from the page cache.
2583  * @iocb: The iocb to read.
2584  * @iter: Destination for the data.
2585  * @already_read: Number of bytes already read by the caller.
2586  *
2587  * Copies data from the page cache.  If the data is not currently present,
2588  * uses the readahead and read_folio address_space operations to fetch it.
2589  *
2590  * Return: Total number of bytes copied, including those already read by
2591  * the caller.  If an error happens before any bytes are copied, returns
2592  * a negative error number.
2593  */
2594 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2595                 ssize_t already_read)
2596 {
2597         struct file *filp = iocb->ki_filp;
2598         struct file_ra_state *ra = &filp->f_ra;
2599         struct address_space *mapping = filp->f_mapping;
2600         struct inode *inode = mapping->host;
2601         struct folio_batch fbatch;
2602         int i, error = 0;
2603         bool writably_mapped;
2604         loff_t isize, end_offset;
2605         loff_t last_pos = ra->prev_pos;
2606 
2607         if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2608                 return 0;
2609         if (unlikely(!iov_iter_count(iter)))
2610                 return 0;
2611 
2612         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2613         folio_batch_init(&fbatch);
2614 
2615         do {
2616                 cond_resched();
2617 
2618                 /*
2619                  * If we've already successfully copied some data, then we
2620                  * can no longer safely return -EIOCBQUEUED. Hence mark
2621                  * an async read NOWAIT at that point.
2622                  */
2623                 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2624                         iocb->ki_flags |= IOCB_NOWAIT;
2625 
2626                 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2627                         break;
2628 
2629                 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2630                 if (error < 0)
2631                         break;
2632 
2633                 /*
2634                  * i_size must be checked after we know the pages are Uptodate.
2635                  *
2636                  * Checking i_size after the check allows us to calculate
2637                  * the correct value for "nr", which means the zero-filled
2638                  * part of the page is not copied back to userspace (unless
2639                  * another truncate extends the file - this is desired though).
2640                  */
2641                 isize = i_size_read(inode);
2642                 if (unlikely(iocb->ki_pos >= isize))
2643                         goto put_folios;
2644                 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2645 
2646                 /*
2647                  * Once we start copying data, we don't want to be touching any
2648                  * cachelines that might be contended:
2649                  */
2650                 writably_mapped = mapping_writably_mapped(mapping);
2651 
2652                 /*
2653                  * When a read accesses the same folio several times, only
2654                  * mark it as accessed the first time.
2655                  */
2656                 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2657                                     fbatch.folios[0]))
2658                         folio_mark_accessed(fbatch.folios[0]);
2659 
2660                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2661                         struct folio *folio = fbatch.folios[i];
2662                         size_t fsize = folio_size(folio);
2663                         size_t offset = iocb->ki_pos & (fsize - 1);
2664                         size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2665                                              fsize - offset);
2666                         size_t copied;
2667 
2668                         if (end_offset < folio_pos(folio))
2669                                 break;
2670                         if (i > 0)
2671                                 folio_mark_accessed(folio);
2672                         /*
2673                          * If users can be writing to this folio using arbitrary
2674                          * virtual addresses, take care of potential aliasing
2675                          * before reading the folio on the kernel side.
2676                          */
2677                         if (writably_mapped)
2678                                 flush_dcache_folio(folio);
2679 
2680                         copied = copy_folio_to_iter(folio, offset, bytes, iter);
2681 
2682                         already_read += copied;
2683                         iocb->ki_pos += copied;
2684                         last_pos = iocb->ki_pos;
2685 
2686                         if (copied < bytes) {
2687                                 error = -EFAULT;
2688                                 break;
2689                         }
2690                 }
2691 put_folios:
2692                 for (i = 0; i < folio_batch_count(&fbatch); i++)
2693                         folio_put(fbatch.folios[i]);
2694                 folio_batch_init(&fbatch);
2695         } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2696 
2697         file_accessed(filp);
2698         ra->prev_pos = last_pos;
2699         return already_read ? already_read : error;
2700 }
2701 EXPORT_SYMBOL_GPL(filemap_read);
2702 
2703 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2704 {
2705         struct address_space *mapping = iocb->ki_filp->f_mapping;
2706         loff_t pos = iocb->ki_pos;
2707         loff_t end = pos + count - 1;
2708 
2709         if (iocb->ki_flags & IOCB_NOWAIT) {
2710                 if (filemap_range_needs_writeback(mapping, pos, end))
2711                         return -EAGAIN;
2712                 return 0;
2713         }
2714 
2715         return filemap_write_and_wait_range(mapping, pos, end);
2716 }
2717 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2718 
2719 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2720 {
2721         struct address_space *mapping = iocb->ki_filp->f_mapping;
2722         loff_t pos = iocb->ki_pos;
2723         loff_t end = pos + count - 1;
2724         int ret;
2725 
2726         if (iocb->ki_flags & IOCB_NOWAIT) {
2727                 /* we could block if there are any pages in the range */
2728                 if (filemap_range_has_page(mapping, pos, end))
2729                         return -EAGAIN;
2730         } else {
2731                 ret = filemap_write_and_wait_range(mapping, pos, end);
2732                 if (ret)
2733                         return ret;
2734         }
2735 
2736         /*
2737          * After a write we want buffered reads to be sure to go to disk to get
2738          * the new data.  We invalidate clean cached page from the region we're
2739          * about to write.  We do this *before* the write so that we can return
2740          * without clobbering -EIOCBQUEUED from ->direct_IO().
2741          */
2742         return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2743                                              end >> PAGE_SHIFT);
2744 }
2745 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2746 
2747 /**
2748  * generic_file_read_iter - generic filesystem read routine
2749  * @iocb:       kernel I/O control block
2750  * @iter:       destination for the data read
2751  *
2752  * This is the "read_iter()" routine for all filesystems
2753  * that can use the page cache directly.
2754  *
2755  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2756  * be returned when no data can be read without waiting for I/O requests
2757  * to complete; it doesn't prevent readahead.
2758  *
2759  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2760  * requests shall be made for the read or for readahead.  When no data
2761  * can be read, -EAGAIN shall be returned.  When readahead would be
2762  * triggered, a partial, possibly empty read shall be returned.
2763  *
2764  * Return:
2765  * * number of bytes copied, even for partial reads
2766  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2767  */
2768 ssize_t
2769 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2770 {
2771         size_t count = iov_iter_count(iter);
2772         ssize_t retval = 0;
2773 
2774         if (!count)
2775                 return 0; /* skip atime */
2776 
2777         if (iocb->ki_flags & IOCB_DIRECT) {
2778                 struct file *file = iocb->ki_filp;
2779                 struct address_space *mapping = file->f_mapping;
2780                 struct inode *inode = mapping->host;
2781 
2782                 retval = kiocb_write_and_wait(iocb, count);
2783                 if (retval < 0)
2784                         return retval;
2785                 file_accessed(file);
2786 
2787                 retval = mapping->a_ops->direct_IO(iocb, iter);
2788                 if (retval >= 0) {
2789                         iocb->ki_pos += retval;
2790                         count -= retval;
2791                 }
2792                 if (retval != -EIOCBQUEUED)
2793                         iov_iter_revert(iter, count - iov_iter_count(iter));
2794 
2795                 /*
2796                  * Btrfs can have a short DIO read if we encounter
2797                  * compressed extents, so if there was an error, or if
2798                  * we've already read everything we wanted to, or if
2799                  * there was a short read because we hit EOF, go ahead
2800                  * and return.  Otherwise fallthrough to buffered io for
2801                  * the rest of the read.  Buffered reads will not work for
2802                  * DAX files, so don't bother trying.
2803                  */
2804                 if (retval < 0 || !count || IS_DAX(inode))
2805                         return retval;
2806                 if (iocb->ki_pos >= i_size_read(inode))
2807                         return retval;
2808         }
2809 
2810         return filemap_read(iocb, iter, retval);
2811 }
2812 EXPORT_SYMBOL(generic_file_read_iter);
2813 
2814 /*
2815  * Splice subpages from a folio into a pipe.
2816  */
2817 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2818                               struct folio *folio, loff_t fpos, size_t size)
2819 {
2820         struct page *page;
2821         size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2822 
2823         page = folio_page(folio, offset / PAGE_SIZE);
2824         size = min(size, folio_size(folio) - offset);
2825         offset %= PAGE_SIZE;
2826 
2827         while (spliced < size &&
2828                !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2829                 struct pipe_buffer *buf = pipe_head_buf(pipe);
2830                 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2831 
2832                 *buf = (struct pipe_buffer) {
2833                         .ops    = &page_cache_pipe_buf_ops,
2834                         .page   = page,
2835                         .offset = offset,
2836                         .len    = part,
2837                 };
2838                 folio_get(folio);
2839                 pipe->head++;
2840                 page++;
2841                 spliced += part;
2842                 offset = 0;
2843         }
2844 
2845         return spliced;
2846 }
2847 
2848 /**
2849  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2850  * @in: The file to read from
2851  * @ppos: Pointer to the file position to read from
2852  * @pipe: The pipe to splice into
2853  * @len: The amount to splice
2854  * @flags: The SPLICE_F_* flags
2855  *
2856  * This function gets folios from a file's pagecache and splices them into the
2857  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2858  * be used for blockdevs also.
2859  *
2860  * Return: On success, the number of bytes read will be returned and *@ppos
2861  * will be updated if appropriate; 0 will be returned if there is no more data
2862  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2863  * other negative error code will be returned on error.  A short read may occur
2864  * if the pipe has insufficient space, we reach the end of the data or we hit a
2865  * hole.
2866  */
2867 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2868                             struct pipe_inode_info *pipe,
2869                             size_t len, unsigned int flags)
2870 {
2871         struct folio_batch fbatch;
2872         struct kiocb iocb;
2873         size_t total_spliced = 0, used, npages;
2874         loff_t isize, end_offset;
2875         bool writably_mapped;
2876         int i, error = 0;
2877 
2878         if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2879                 return 0;
2880 
2881         init_sync_kiocb(&iocb, in);
2882         iocb.ki_pos = *ppos;
2883 
2884         /* Work out how much data we can actually add into the pipe */
2885         used = pipe_occupancy(pipe->head, pipe->tail);
2886         npages = max_t(ssize_t, pipe->max_usage - used, 0);
2887         len = min_t(size_t, len, npages * PAGE_SIZE);
2888 
2889         folio_batch_init(&fbatch);
2890 
2891         do {
2892                 cond_resched();
2893 
2894                 if (*ppos >= i_size_read(in->f_mapping->host))
2895                         break;
2896 
2897                 iocb.ki_pos = *ppos;
2898                 error = filemap_get_pages(&iocb, len, &fbatch, true);
2899                 if (error < 0)
2900                         break;
2901 
2902                 /*
2903                  * i_size must be checked after we know the pages are Uptodate.
2904                  *
2905                  * Checking i_size after the check allows us to calculate
2906                  * the correct value for "nr", which means the zero-filled
2907                  * part of the page is not copied back to userspace (unless
2908                  * another truncate extends the file - this is desired though).
2909                  */
2910                 isize = i_size_read(in->f_mapping->host);
2911                 if (unlikely(*ppos >= isize))
2912                         break;
2913                 end_offset = min_t(loff_t, isize, *ppos + len);
2914 
2915                 /*
2916                  * Once we start copying data, we don't want to be touching any
2917                  * cachelines that might be contended:
2918                  */
2919                 writably_mapped = mapping_writably_mapped(in->f_mapping);
2920 
2921                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2922                         struct folio *folio = fbatch.folios[i];
2923                         size_t n;
2924 
2925                         if (folio_pos(folio) >= end_offset)
2926                                 goto out;
2927                         folio_mark_accessed(folio);
2928 
2929                         /*
2930                          * If users can be writing to this folio using arbitrary
2931                          * virtual addresses, take care of potential aliasing
2932                          * before reading the folio on the kernel side.
2933                          */
2934                         if (writably_mapped)
2935                                 flush_dcache_folio(folio);
2936 
2937                         n = min_t(loff_t, len, isize - *ppos);
2938                         n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2939                         if (!n)
2940                                 goto out;
2941                         len -= n;
2942                         total_spliced += n;
2943                         *ppos += n;
2944                         in->f_ra.prev_pos = *ppos;
2945                         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2946                                 goto out;
2947                 }
2948 
2949                 folio_batch_release(&fbatch);
2950         } while (len);
2951 
2952 out:
2953         folio_batch_release(&fbatch);
2954         file_accessed(in);
2955 
2956         return total_spliced ? total_spliced : error;
2957 }
2958 EXPORT_SYMBOL(filemap_splice_read);
2959 
2960 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2961                 struct address_space *mapping, struct folio *folio,
2962                 loff_t start, loff_t end, bool seek_data)
2963 {
2964         const struct address_space_operations *ops = mapping->a_ops;
2965         size_t offset, bsz = i_blocksize(mapping->host);
2966 
2967         if (xa_is_value(folio) || folio_test_uptodate(folio))
2968                 return seek_data ? start : end;
2969         if (!ops->is_partially_uptodate)
2970                 return seek_data ? end : start;
2971 
2972         xas_pause(xas);
2973         rcu_read_unlock();
2974         folio_lock(folio);
2975         if (unlikely(folio->mapping != mapping))
2976                 goto unlock;
2977 
2978         offset = offset_in_folio(folio, start) & ~(bsz - 1);
2979 
2980         do {
2981                 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2982                                                         seek_data)
2983                         break;
2984                 start = (start + bsz) & ~(bsz - 1);
2985                 offset += bsz;
2986         } while (offset < folio_size(folio));
2987 unlock:
2988         folio_unlock(folio);
2989         rcu_read_lock();
2990         return start;
2991 }
2992 
2993 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2994 {
2995         if (xa_is_value(folio))
2996                 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2997         return folio_size(folio);
2998 }
2999 
3000 /**
3001  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3002  * @mapping: Address space to search.
3003  * @start: First byte to consider.
3004  * @end: Limit of search (exclusive).
3005  * @whence: Either SEEK_HOLE or SEEK_DATA.
3006  *
3007  * If the page cache knows which blocks contain holes and which blocks
3008  * contain data, your filesystem can use this function to implement
3009  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3010  * entirely memory-based such as tmpfs, and filesystems which support
3011  * unwritten extents.
3012  *
3013  * Return: The requested offset on success, or -ENXIO if @whence specifies
3014  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3015  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3016  * and @end contain data.
3017  */
3018 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3019                 loff_t end, int whence)
3020 {
3021         XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3022         pgoff_t max = (end - 1) >> PAGE_SHIFT;
3023         bool seek_data = (whence == SEEK_DATA);
3024         struct folio *folio;
3025 
3026         if (end <= start)
3027                 return -ENXIO;
3028 
3029         rcu_read_lock();
3030         while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3031                 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3032                 size_t seek_size;
3033 
3034                 if (start < pos) {
3035                         if (!seek_data)
3036                                 goto unlock;
3037                         start = pos;
3038                 }
3039 
3040                 seek_size = seek_folio_size(&xas, folio);
3041                 pos = round_up((u64)pos + 1, seek_size);
3042                 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3043                                 seek_data);
3044                 if (start < pos)
3045                         goto unlock;
3046                 if (start >= end)
3047                         break;
3048                 if (seek_size > PAGE_SIZE)
3049                         xas_set(&xas, pos >> PAGE_SHIFT);
3050                 if (!xa_is_value(folio))
3051                         folio_put(folio);
3052         }
3053         if (seek_data)
3054                 start = -ENXIO;
3055 unlock:
3056         rcu_read_unlock();
3057         if (folio && !xa_is_value(folio))
3058                 folio_put(folio);
3059         if (start > end)
3060                 return end;
3061         return start;
3062 }
3063 
3064 #ifdef CONFIG_MMU
3065 #define MMAP_LOTSAMISS  (100)
3066 /*
3067  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3068  * @vmf - the vm_fault for this fault.
3069  * @folio - the folio to lock.
3070  * @fpin - the pointer to the file we may pin (or is already pinned).
3071  *
3072  * This works similar to lock_folio_or_retry in that it can drop the
3073  * mmap_lock.  It differs in that it actually returns the folio locked
3074  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3075  * to drop the mmap_lock then fpin will point to the pinned file and
3076  * needs to be fput()'ed at a later point.
3077  */
3078 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3079                                      struct file **fpin)
3080 {
3081         if (folio_trylock(folio))
3082                 return 1;
3083 
3084         /*
3085          * NOTE! This will make us return with VM_FAULT_RETRY, but with
3086          * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3087          * is supposed to work. We have way too many special cases..
3088          */
3089         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3090                 return 0;
3091 
3092         *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3093         if (vmf->flags & FAULT_FLAG_KILLABLE) {
3094                 if (__folio_lock_killable(folio)) {
3095                         /*
3096                          * We didn't have the right flags to drop the
3097                          * fault lock, but all fault_handlers only check
3098                          * for fatal signals if we return VM_FAULT_RETRY,
3099                          * so we need to drop the fault lock here and
3100                          * return 0 if we don't have a fpin.
3101                          */
3102                         if (*fpin == NULL)
3103                                 release_fault_lock(vmf);
3104                         return 0;
3105                 }
3106         } else
3107                 __folio_lock(folio);
3108 
3109         return 1;
3110 }
3111 
3112 /*
3113  * Synchronous readahead happens when we don't even find a page in the page
3114  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3115  * to drop the mmap sem we return the file that was pinned in order for us to do
3116  * that.  If we didn't pin a file then we return NULL.  The file that is
3117  * returned needs to be fput()'ed when we're done with it.
3118  */
3119 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3120 {
3121         struct file *file = vmf->vma->vm_file;
3122         struct file_ra_state *ra = &file->f_ra;
3123         struct address_space *mapping = file->f_mapping;
3124         DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3125         struct file *fpin = NULL;
3126         unsigned long vm_flags = vmf->vma->vm_flags;
3127         unsigned int mmap_miss;
3128 
3129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3130         /* Use the readahead code, even if readahead is disabled */
3131         if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3132                 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3133                 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3134                 ra->size = HPAGE_PMD_NR;
3135                 /*
3136                  * Fetch two PMD folios, so we get the chance to actually
3137                  * readahead, unless we've been told not to.
3138                  */
3139                 if (!(vm_flags & VM_RAND_READ))
3140                         ra->size *= 2;
3141                 ra->async_size = HPAGE_PMD_NR;
3142                 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3143                 return fpin;
3144         }
3145 #endif
3146 
3147         /* If we don't want any read-ahead, don't bother */
3148         if (vm_flags & VM_RAND_READ)
3149                 return fpin;
3150         if (!ra->ra_pages)
3151                 return fpin;
3152 
3153         if (vm_flags & VM_SEQ_READ) {
3154                 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3155                 page_cache_sync_ra(&ractl, ra->ra_pages);
3156                 return fpin;
3157         }
3158 
3159         /* Avoid banging the cache line if not needed */
3160         mmap_miss = READ_ONCE(ra->mmap_miss);
3161         if (mmap_miss < MMAP_LOTSAMISS * 10)
3162                 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3163 
3164         /*
3165          * Do we miss much more than hit in this file? If so,
3166          * stop bothering with read-ahead. It will only hurt.
3167          */
3168         if (mmap_miss > MMAP_LOTSAMISS)
3169                 return fpin;
3170 
3171         /*
3172          * mmap read-around
3173          */
3174         fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3175         ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3176         ra->size = ra->ra_pages;
3177         ra->async_size = ra->ra_pages / 4;
3178         ractl._index = ra->start;
3179         page_cache_ra_order(&ractl, ra, 0);
3180         return fpin;
3181 }
3182 
3183 /*
3184  * Asynchronous readahead happens when we find the page and PG_readahead,
3185  * so we want to possibly extend the readahead further.  We return the file that
3186  * was pinned if we have to drop the mmap_lock in order to do IO.
3187  */
3188 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3189                                             struct folio *folio)
3190 {
3191         struct file *file = vmf->vma->vm_file;
3192         struct file_ra_state *ra = &file->f_ra;
3193         DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3194         struct file *fpin = NULL;
3195         unsigned int mmap_miss;
3196 
3197         /* If we don't want any read-ahead, don't bother */
3198         if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3199                 return fpin;
3200 
3201         mmap_miss = READ_ONCE(ra->mmap_miss);
3202         if (mmap_miss)
3203                 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3204 
3205         if (folio_test_readahead(folio)) {
3206                 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3207                 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3208         }
3209         return fpin;
3210 }
3211 
3212 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3213 {
3214         struct vm_area_struct *vma = vmf->vma;
3215         vm_fault_t ret = 0;
3216         pte_t *ptep;
3217 
3218         /*
3219          * We might have COW'ed a pagecache folio and might now have an mlocked
3220          * anon folio mapped. The original pagecache folio is not mlocked and
3221          * might have been evicted. During a read+clear/modify/write update of
3222          * the PTE, such as done in do_numa_page()/change_pte_range(), we
3223          * temporarily clear the PTE under PT lock and might detect it here as
3224          * "none" when not holding the PT lock.
3225          *
3226          * Not rechecking the PTE under PT lock could result in an unexpected
3227          * major fault in an mlock'ed region. Recheck only for this special
3228          * scenario while holding the PT lock, to not degrade non-mlocked
3229          * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3230          * the number of times we hold PT lock.
3231          */
3232         if (!(vma->vm_flags & VM_LOCKED))
3233                 return 0;
3234 
3235         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3236                 return 0;
3237 
3238         ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3239                                      &vmf->ptl);
3240         if (unlikely(!ptep))
3241                 return VM_FAULT_NOPAGE;
3242 
3243         if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3244                 ret = VM_FAULT_NOPAGE;
3245         } else {
3246                 spin_lock(vmf->ptl);
3247                 if (unlikely(!pte_none(ptep_get(ptep))))
3248                         ret = VM_FAULT_NOPAGE;
3249                 spin_unlock(vmf->ptl);
3250         }
3251         pte_unmap(ptep);
3252         return ret;
3253 }
3254 
3255 /**
3256  * filemap_fault - read in file data for page fault handling
3257  * @vmf:        struct vm_fault containing details of the fault
3258  *
3259  * filemap_fault() is invoked via the vma operations vector for a
3260  * mapped memory region to read in file data during a page fault.
3261  *
3262  * The goto's are kind of ugly, but this streamlines the normal case of having
3263  * it in the page cache, and handles the special cases reasonably without
3264  * having a lot of duplicated code.
3265  *
3266  * vma->vm_mm->mmap_lock must be held on entry.
3267  *
3268  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3269  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3270  *
3271  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3272  * has not been released.
3273  *
3274  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3275  *
3276  * Return: bitwise-OR of %VM_FAULT_ codes.
3277  */
3278 vm_fault_t filemap_fault(struct vm_fault *vmf)
3279 {
3280         int error;
3281         struct file *file = vmf->vma->vm_file;
3282         struct file *fpin = NULL;
3283         struct address_space *mapping = file->f_mapping;
3284         struct inode *inode = mapping->host;
3285         pgoff_t max_idx, index = vmf->pgoff;
3286         struct folio *folio;
3287         vm_fault_t ret = 0;
3288         bool mapping_locked = false;
3289 
3290         max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3291         if (unlikely(index >= max_idx))
3292                 return VM_FAULT_SIGBUS;
3293 
3294         /*
3295          * Do we have something in the page cache already?
3296          */
3297         folio = filemap_get_folio(mapping, index);
3298         if (likely(!IS_ERR(folio))) {
3299                 /*
3300                  * We found the page, so try async readahead before waiting for
3301                  * the lock.
3302                  */
3303                 if (!(vmf->flags & FAULT_FLAG_TRIED))
3304                         fpin = do_async_mmap_readahead(vmf, folio);
3305                 if (unlikely(!folio_test_uptodate(folio))) {
3306                         filemap_invalidate_lock_shared(mapping);
3307                         mapping_locked = true;
3308                 }
3309         } else {
3310                 ret = filemap_fault_recheck_pte_none(vmf);
3311                 if (unlikely(ret))
3312                         return ret;
3313 
3314                 /* No page in the page cache at all */
3315                 count_vm_event(PGMAJFAULT);
3316                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3317                 ret = VM_FAULT_MAJOR;
3318                 fpin = do_sync_mmap_readahead(vmf);
3319 retry_find:
3320                 /*
3321                  * See comment in filemap_create_folio() why we need
3322                  * invalidate_lock
3323                  */
3324                 if (!mapping_locked) {
3325                         filemap_invalidate_lock_shared(mapping);
3326                         mapping_locked = true;
3327                 }
3328                 folio = __filemap_get_folio(mapping, index,
3329                                           FGP_CREAT|FGP_FOR_MMAP,
3330                                           vmf->gfp_mask);
3331                 if (IS_ERR(folio)) {
3332                         if (fpin)
3333                                 goto out_retry;
3334                         filemap_invalidate_unlock_shared(mapping);
3335                         return VM_FAULT_OOM;
3336                 }
3337         }
3338 
3339         if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3340                 goto out_retry;
3341 
3342         /* Did it get truncated? */
3343         if (unlikely(folio->mapping != mapping)) {
3344                 folio_unlock(folio);
3345                 folio_put(folio);
3346                 goto retry_find;
3347         }
3348         VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3349 
3350         /*
3351          * We have a locked folio in the page cache, now we need to check
3352          * that it's up-to-date. If not, it is going to be due to an error,
3353          * or because readahead was otherwise unable to retrieve it.
3354          */
3355         if (unlikely(!folio_test_uptodate(folio))) {
3356                 /*
3357                  * If the invalidate lock is not held, the folio was in cache
3358                  * and uptodate and now it is not. Strange but possible since we
3359                  * didn't hold the page lock all the time. Let's drop
3360                  * everything, get the invalidate lock and try again.
3361                  */
3362                 if (!mapping_locked) {
3363                         folio_unlock(folio);
3364                         folio_put(folio);
3365                         goto retry_find;
3366                 }
3367 
3368                 /*
3369                  * OK, the folio is really not uptodate. This can be because the
3370                  * VMA has the VM_RAND_READ flag set, or because an error
3371                  * arose. Let's read it in directly.
3372                  */
3373                 goto page_not_uptodate;
3374         }
3375 
3376         /*
3377          * We've made it this far and we had to drop our mmap_lock, now is the
3378          * time to return to the upper layer and have it re-find the vma and
3379          * redo the fault.
3380          */
3381         if (fpin) {
3382                 folio_unlock(folio);
3383                 goto out_retry;
3384         }
3385         if (mapping_locked)
3386                 filemap_invalidate_unlock_shared(mapping);
3387 
3388         /*
3389          * Found the page and have a reference on it.
3390          * We must recheck i_size under page lock.
3391          */
3392         max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3393         if (unlikely(index >= max_idx)) {
3394                 folio_unlock(folio);
3395                 folio_put(folio);
3396                 return VM_FAULT_SIGBUS;
3397         }
3398 
3399         vmf->page = folio_file_page(folio, index);
3400         return ret | VM_FAULT_LOCKED;
3401 
3402 page_not_uptodate:
3403         /*
3404          * Umm, take care of errors if the page isn't up-to-date.
3405          * Try to re-read it _once_. We do this synchronously,
3406          * because there really aren't any performance issues here
3407          * and we need to check for errors.
3408          */
3409         fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3410         error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3411         if (fpin)
3412                 goto out_retry;
3413         folio_put(folio);
3414 
3415         if (!error || error == AOP_TRUNCATED_PAGE)
3416                 goto retry_find;
3417         filemap_invalidate_unlock_shared(mapping);
3418 
3419         return VM_FAULT_SIGBUS;
3420 
3421 out_retry:
3422         /*
3423          * We dropped the mmap_lock, we need to return to the fault handler to
3424          * re-find the vma and come back and find our hopefully still populated
3425          * page.
3426          */
3427         if (!IS_ERR(folio))
3428                 folio_put(folio);
3429         if (mapping_locked)
3430                 filemap_invalidate_unlock_shared(mapping);
3431         if (fpin)
3432                 fput(fpin);
3433         return ret | VM_FAULT_RETRY;
3434 }
3435 EXPORT_SYMBOL(filemap_fault);
3436 
3437 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3438                 pgoff_t start)
3439 {
3440         struct mm_struct *mm = vmf->vma->vm_mm;
3441 
3442         /* Huge page is mapped? No need to proceed. */
3443         if (pmd_trans_huge(*vmf->pmd)) {
3444                 folio_unlock(folio);
3445                 folio_put(folio);
3446                 return true;
3447         }
3448 
3449         if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3450                 struct page *page = folio_file_page(folio, start);
3451                 vm_fault_t ret = do_set_pmd(vmf, page);
3452                 if (!ret) {
3453                         /* The page is mapped successfully, reference consumed. */
3454                         folio_unlock(folio);
3455                         return true;
3456                 }
3457         }
3458 
3459         if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3460                 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3461 
3462         return false;
3463 }
3464 
3465 static struct folio *next_uptodate_folio(struct xa_state *xas,
3466                 struct address_space *mapping, pgoff_t end_pgoff)
3467 {
3468         struct folio *folio = xas_next_entry(xas, end_pgoff);
3469         unsigned long max_idx;
3470 
3471         do {
3472                 if (!folio)
3473                         return NULL;
3474                 if (xas_retry(xas, folio))
3475                         continue;
3476                 if (xa_is_value(folio))
3477                         continue;
3478                 if (folio_test_locked(folio))
3479                         continue;
3480                 if (!folio_try_get(folio))
3481                         continue;
3482                 /* Has the page moved or been split? */
3483                 if (unlikely(folio != xas_reload(xas)))
3484                         goto skip;
3485                 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3486                         goto skip;
3487                 if (!folio_trylock(folio))
3488                         goto skip;
3489                 if (folio->mapping != mapping)
3490                         goto unlock;
3491                 if (!folio_test_uptodate(folio))
3492                         goto unlock;
3493                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3494                 if (xas->xa_index >= max_idx)
3495                         goto unlock;
3496                 return folio;
3497 unlock:
3498                 folio_unlock(folio);
3499 skip:
3500                 folio_put(folio);
3501         } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3502 
3503         return NULL;
3504 }
3505 
3506 /*
3507  * Map page range [start_page, start_page + nr_pages) of folio.
3508  * start_page is gotten from start by folio_page(folio, start)
3509  */
3510 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3511                         struct folio *folio, unsigned long start,
3512                         unsigned long addr, unsigned int nr_pages,
3513                         unsigned long *rss, unsigned int *mmap_miss)
3514 {
3515         vm_fault_t ret = 0;
3516         struct page *page = folio_page(folio, start);
3517         unsigned int count = 0;
3518         pte_t *old_ptep = vmf->pte;
3519 
3520         do {
3521                 if (PageHWPoison(page + count))
3522                         goto skip;
3523 
3524                 /*
3525                  * If there are too many folios that are recently evicted
3526                  * in a file, they will probably continue to be evicted.
3527                  * In such situation, read-ahead is only a waste of IO.
3528                  * Don't decrease mmap_miss in this scenario to make sure
3529                  * we can stop read-ahead.
3530                  */
3531                 if (!folio_test_workingset(folio))
3532                         (*mmap_miss)++;
3533 
3534                 /*
3535                  * NOTE: If there're PTE markers, we'll leave them to be
3536                  * handled in the specific fault path, and it'll prohibit the
3537                  * fault-around logic.
3538                  */
3539                 if (!pte_none(ptep_get(&vmf->pte[count])))
3540                         goto skip;
3541 
3542                 count++;
3543                 continue;
3544 skip:
3545                 if (count) {
3546                         set_pte_range(vmf, folio, page, count, addr);
3547                         *rss += count;
3548                         folio_ref_add(folio, count);
3549                         if (in_range(vmf->address, addr, count * PAGE_SIZE))
3550                                 ret = VM_FAULT_NOPAGE;
3551                 }
3552 
3553                 count++;
3554                 page += count;
3555                 vmf->pte += count;
3556                 addr += count * PAGE_SIZE;
3557                 count = 0;
3558         } while (--nr_pages > 0);
3559 
3560         if (count) {
3561                 set_pte_range(vmf, folio, page, count, addr);
3562                 *rss += count;
3563                 folio_ref_add(folio, count);
3564                 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3565                         ret = VM_FAULT_NOPAGE;
3566         }
3567 
3568         vmf->pte = old_ptep;
3569 
3570         return ret;
3571 }
3572 
3573 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3574                 struct folio *folio, unsigned long addr,
3575                 unsigned long *rss, unsigned int *mmap_miss)
3576 {
3577         vm_fault_t ret = 0;
3578         struct page *page = &folio->page;
3579 
3580         if (PageHWPoison(page))
3581                 return ret;
3582 
3583         /* See comment of filemap_map_folio_range() */
3584         if (!folio_test_workingset(folio))
3585                 (*mmap_miss)++;
3586 
3587         /*
3588          * NOTE: If there're PTE markers, we'll leave them to be
3589          * handled in the specific fault path, and it'll prohibit
3590          * the fault-around logic.
3591          */
3592         if (!pte_none(ptep_get(vmf->pte)))
3593                 return ret;
3594 
3595         if (vmf->address == addr)
3596                 ret = VM_FAULT_NOPAGE;
3597 
3598         set_pte_range(vmf, folio, page, 1, addr);
3599         (*rss)++;
3600         folio_ref_inc(folio);
3601 
3602         return ret;
3603 }
3604 
3605 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3606                              pgoff_t start_pgoff, pgoff_t end_pgoff)
3607 {
3608         struct vm_area_struct *vma = vmf->vma;
3609         struct file *file = vma->vm_file;
3610         struct address_space *mapping = file->f_mapping;
3611         pgoff_t last_pgoff = start_pgoff;
3612         unsigned long addr;
3613         XA_STATE(xas, &mapping->i_pages, start_pgoff);
3614         struct folio *folio;
3615         vm_fault_t ret = 0;
3616         unsigned long rss = 0;
3617         unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3618 
3619         rcu_read_lock();
3620         folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3621         if (!folio)
3622                 goto out;
3623 
3624         if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3625                 ret = VM_FAULT_NOPAGE;
3626                 goto out;
3627         }
3628 
3629         addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3630         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3631         if (!vmf->pte) {
3632                 folio_unlock(folio);
3633                 folio_put(folio);
3634                 goto out;
3635         }
3636 
3637         folio_type = mm_counter_file(folio);
3638         do {
3639                 unsigned long end;
3640 
3641                 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3642                 vmf->pte += xas.xa_index - last_pgoff;
3643                 last_pgoff = xas.xa_index;
3644                 end = folio_next_index(folio) - 1;
3645                 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3646 
3647                 if (!folio_test_large(folio))
3648                         ret |= filemap_map_order0_folio(vmf,
3649                                         folio, addr, &rss, &mmap_miss);
3650                 else
3651                         ret |= filemap_map_folio_range(vmf, folio,
3652                                         xas.xa_index - folio->index, addr,
3653                                         nr_pages, &rss, &mmap_miss);
3654 
3655                 folio_unlock(folio);
3656                 folio_put(folio);
3657         } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3658         add_mm_counter(vma->vm_mm, folio_type, rss);
3659         pte_unmap_unlock(vmf->pte, vmf->ptl);
3660 out:
3661         rcu_read_unlock();
3662 
3663         mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3664         if (mmap_miss >= mmap_miss_saved)
3665                 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3666         else
3667                 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3668 
3669         return ret;
3670 }
3671 EXPORT_SYMBOL(filemap_map_pages);
3672 
3673 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3674 {
3675         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3676         struct folio *folio = page_folio(vmf->page);
3677         vm_fault_t ret = VM_FAULT_LOCKED;
3678 
3679         sb_start_pagefault(mapping->host->i_sb);
3680         file_update_time(vmf->vma->vm_file);
3681         folio_lock(folio);
3682         if (folio->mapping != mapping) {
3683                 folio_unlock(folio);
3684                 ret = VM_FAULT_NOPAGE;
3685                 goto out;
3686         }
3687         /*
3688          * We mark the folio dirty already here so that when freeze is in
3689          * progress, we are guaranteed that writeback during freezing will
3690          * see the dirty folio and writeprotect it again.
3691          */
3692         folio_mark_dirty(folio);
3693         folio_wait_stable(folio);
3694 out:
3695         sb_end_pagefault(mapping->host->i_sb);
3696         return ret;
3697 }
3698 
3699 const struct vm_operations_struct generic_file_vm_ops = {
3700         .fault          = filemap_fault,
3701         .map_pages      = filemap_map_pages,
3702         .page_mkwrite   = filemap_page_mkwrite,
3703 };
3704 
3705 /* This is used for a general mmap of a disk file */
3706 
3707 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3708 {
3709         struct address_space *mapping = file->f_mapping;
3710 
3711         if (!mapping->a_ops->read_folio)
3712                 return -ENOEXEC;
3713         file_accessed(file);
3714         vma->vm_ops = &generic_file_vm_ops;
3715         return 0;
3716 }
3717 
3718 /*
3719  * This is for filesystems which do not implement ->writepage.
3720  */
3721 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3722 {
3723         if (vma_is_shared_maywrite(vma))
3724                 return -EINVAL;
3725         return generic_file_mmap(file, vma);
3726 }
3727 #else
3728 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3729 {
3730         return VM_FAULT_SIGBUS;
3731 }
3732 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3733 {
3734         return -ENOSYS;
3735 }
3736 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3737 {
3738         return -ENOSYS;
3739 }
3740 #endif /* CONFIG_MMU */
3741 
3742 EXPORT_SYMBOL(filemap_page_mkwrite);
3743 EXPORT_SYMBOL(generic_file_mmap);
3744 EXPORT_SYMBOL(generic_file_readonly_mmap);
3745 
3746 static struct folio *do_read_cache_folio(struct address_space *mapping,
3747                 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3748 {
3749         struct folio *folio;
3750         int err;
3751 
3752         if (!filler)
3753                 filler = mapping->a_ops->read_folio;
3754 repeat:
3755         folio = filemap_get_folio(mapping, index);
3756         if (IS_ERR(folio)) {
3757                 folio = filemap_alloc_folio(gfp, 0);
3758                 if (!folio)
3759                         return ERR_PTR(-ENOMEM);
3760                 err = filemap_add_folio(mapping, folio, index, gfp);
3761                 if (unlikely(err)) {
3762                         folio_put(folio);
3763                         if (err == -EEXIST)
3764                                 goto repeat;
3765                         /* Presumably ENOMEM for xarray node */
3766                         return ERR_PTR(err);
3767                 }
3768 
3769                 goto filler;
3770         }
3771         if (folio_test_uptodate(folio))
3772                 goto out;
3773 
3774         if (!folio_trylock(folio)) {
3775                 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3776                 goto repeat;
3777         }
3778 
3779         /* Folio was truncated from mapping */
3780         if (!folio->mapping) {
3781                 folio_unlock(folio);
3782                 folio_put(folio);
3783                 goto repeat;
3784         }
3785 
3786         /* Someone else locked and filled the page in a very small window */
3787         if (folio_test_uptodate(folio)) {
3788                 folio_unlock(folio);
3789                 goto out;
3790         }
3791 
3792 filler:
3793         err = filemap_read_folio(file, filler, folio);
3794         if (err) {
3795                 folio_put(folio);
3796                 if (err == AOP_TRUNCATED_PAGE)
3797                         goto repeat;
3798                 return ERR_PTR(err);
3799         }
3800 
3801 out:
3802         folio_mark_accessed(folio);
3803         return folio;
3804 }
3805 
3806 /**
3807  * read_cache_folio - Read into page cache, fill it if needed.
3808  * @mapping: The address_space to read from.
3809  * @index: The index to read.
3810  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3811  * @file: Passed to filler function, may be NULL if not required.
3812  *
3813  * Read one page into the page cache.  If it succeeds, the folio returned
3814  * will contain @index, but it may not be the first page of the folio.
3815  *
3816  * If the filler function returns an error, it will be returned to the
3817  * caller.
3818  *
3819  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3820  * Return: An uptodate folio on success, ERR_PTR() on failure.
3821  */
3822 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3823                 filler_t filler, struct file *file)
3824 {
3825         return do_read_cache_folio(mapping, index, filler, file,
3826                         mapping_gfp_mask(mapping));
3827 }
3828 EXPORT_SYMBOL(read_cache_folio);
3829 
3830 /**
3831  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3832  * @mapping:    The address_space for the folio.
3833  * @index:      The index that the allocated folio will contain.
3834  * @gfp:        The page allocator flags to use if allocating.
3835  *
3836  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3837  * any new memory allocations done using the specified allocation flags.
3838  *
3839  * The most likely error from this function is EIO, but ENOMEM is
3840  * possible and so is EINTR.  If ->read_folio returns another error,
3841  * that will be returned to the caller.
3842  *
3843  * The function expects mapping->invalidate_lock to be already held.
3844  *
3845  * Return: Uptodate folio on success, ERR_PTR() on failure.
3846  */
3847 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3848                 pgoff_t index, gfp_t gfp)
3849 {
3850         return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3851 }
3852 EXPORT_SYMBOL(mapping_read_folio_gfp);
3853 
3854 static struct page *do_read_cache_page(struct address_space *mapping,
3855                 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3856 {
3857         struct folio *folio;
3858 
3859         folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3860         if (IS_ERR(folio))
3861                 return &folio->page;
3862         return folio_file_page(folio, index);
3863 }
3864 
3865 struct page *read_cache_page(struct address_space *mapping,
3866                         pgoff_t index, filler_t *filler, struct file *file)
3867 {
3868         return do_read_cache_page(mapping, index, filler, file,
3869                         mapping_gfp_mask(mapping));
3870 }
3871 EXPORT_SYMBOL(read_cache_page);
3872 
3873 /**
3874  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3875  * @mapping:    the page's address_space
3876  * @index:      the page index
3877  * @gfp:        the page allocator flags to use if allocating
3878  *
3879  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3880  * any new page allocations done using the specified allocation flags.
3881  *
3882  * If the page does not get brought uptodate, return -EIO.
3883  *
3884  * The function expects mapping->invalidate_lock to be already held.
3885  *
3886  * Return: up to date page on success, ERR_PTR() on failure.
3887  */
3888 struct page *read_cache_page_gfp(struct address_space *mapping,
3889                                 pgoff_t index,
3890                                 gfp_t gfp)
3891 {
3892         return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3893 }
3894 EXPORT_SYMBOL(read_cache_page_gfp);
3895 
3896 /*
3897  * Warn about a page cache invalidation failure during a direct I/O write.
3898  */
3899 static void dio_warn_stale_pagecache(struct file *filp)
3900 {
3901         static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3902         char pathname[128];
3903         char *path;
3904 
3905         errseq_set(&filp->f_mapping->wb_err, -EIO);
3906         if (__ratelimit(&_rs)) {
3907                 path = file_path(filp, pathname, sizeof(pathname));
3908                 if (IS_ERR(path))
3909                         path = "(unknown)";
3910                 pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3911                 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3912                         current->comm);
3913         }
3914 }
3915 
3916 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3917 {
3918         struct address_space *mapping = iocb->ki_filp->f_mapping;
3919 
3920         if (mapping->nrpages &&
3921             invalidate_inode_pages2_range(mapping,
3922                         iocb->ki_pos >> PAGE_SHIFT,
3923                         (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3924                 dio_warn_stale_pagecache(iocb->ki_filp);
3925 }
3926 
3927 ssize_t
3928 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3929 {
3930         struct address_space *mapping = iocb->ki_filp->f_mapping;
3931         size_t write_len = iov_iter_count(from);
3932         ssize_t written;
3933 
3934         /*
3935          * If a page can not be invalidated, return 0 to fall back
3936          * to buffered write.
3937          */
3938         written = kiocb_invalidate_pages(iocb, write_len);
3939         if (written) {
3940                 if (written == -EBUSY)
3941                         return 0;
3942                 return written;
3943         }
3944 
3945         written = mapping->a_ops->direct_IO(iocb, from);
3946 
3947         /*
3948          * Finally, try again to invalidate clean pages which might have been
3949          * cached by non-direct readahead, or faulted in by get_user_pages()
3950          * if the source of the write was an mmap'ed region of the file
3951          * we're writing.  Either one is a pretty crazy thing to do,
3952          * so we don't support it 100%.  If this invalidation
3953          * fails, tough, the write still worked...
3954          *
3955          * Most of the time we do not need this since dio_complete() will do
3956          * the invalidation for us. However there are some file systems that
3957          * do not end up with dio_complete() being called, so let's not break
3958          * them by removing it completely.
3959          *
3960          * Noticeable example is a blkdev_direct_IO().
3961          *
3962          * Skip invalidation for async writes or if mapping has no pages.
3963          */
3964         if (written > 0) {
3965                 struct inode *inode = mapping->host;
3966                 loff_t pos = iocb->ki_pos;
3967 
3968                 kiocb_invalidate_post_direct_write(iocb, written);
3969                 pos += written;
3970                 write_len -= written;
3971                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3972                         i_size_write(inode, pos);
3973                         mark_inode_dirty(inode);
3974                 }
3975                 iocb->ki_pos = pos;
3976         }
3977         if (written != -EIOCBQUEUED)
3978                 iov_iter_revert(from, write_len - iov_iter_count(from));
3979         return written;
3980 }
3981 EXPORT_SYMBOL(generic_file_direct_write);
3982 
3983 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3984 {
3985         struct file *file = iocb->ki_filp;
3986         loff_t pos = iocb->ki_pos;
3987         struct address_space *mapping = file->f_mapping;
3988         const struct address_space_operations *a_ops = mapping->a_ops;
3989         size_t chunk = mapping_max_folio_size(mapping);
3990         long status = 0;
3991         ssize_t written = 0;
3992 
3993         do {
3994                 struct page *page;
3995                 struct folio *folio;
3996                 size_t offset;          /* Offset into folio */
3997                 size_t bytes;           /* Bytes to write to folio */
3998                 size_t copied;          /* Bytes copied from user */
3999                 void *fsdata = NULL;
4000 
4001                 bytes = iov_iter_count(i);
4002 retry:
4003                 offset = pos & (chunk - 1);
4004                 bytes = min(chunk - offset, bytes);
4005                 balance_dirty_pages_ratelimited(mapping);
4006 
4007                 /*
4008                  * Bring in the user page that we will copy from _first_.
4009                  * Otherwise there's a nasty deadlock on copying from the
4010                  * same page as we're writing to, without it being marked
4011                  * up-to-date.
4012                  */
4013                 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4014                         status = -EFAULT;
4015                         break;
4016                 }
4017 
4018                 if (fatal_signal_pending(current)) {
4019                         status = -EINTR;
4020                         break;
4021                 }
4022 
4023                 status = a_ops->write_begin(file, mapping, pos, bytes,
4024                                                 &page, &fsdata);
4025                 if (unlikely(status < 0))
4026                         break;
4027 
4028                 folio = page_folio(page);
4029                 offset = offset_in_folio(folio, pos);
4030                 if (bytes > folio_size(folio) - offset)
4031                         bytes = folio_size(folio) - offset;
4032 
4033                 if (mapping_writably_mapped(mapping))
4034                         flush_dcache_folio(folio);
4035 
4036                 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4037                 flush_dcache_folio(folio);
4038 
4039                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4040                                                 page, fsdata);
4041                 if (unlikely(status != copied)) {
4042                         iov_iter_revert(i, copied - max(status, 0L));
4043                         if (unlikely(status < 0))
4044                                 break;
4045                 }
4046                 cond_resched();
4047 
4048                 if (unlikely(status == 0)) {
4049                         /*
4050                          * A short copy made ->write_end() reject the
4051                          * thing entirely.  Might be memory poisoning
4052                          * halfway through, might be a race with munmap,
4053                          * might be severe memory pressure.
4054                          */
4055                         if (chunk > PAGE_SIZE)
4056                                 chunk /= 2;
4057                         if (copied) {
4058                                 bytes = copied;
4059                                 goto retry;
4060                         }
4061                 } else {
4062                         pos += status;
4063                         written += status;
4064                 }
4065         } while (iov_iter_count(i));
4066 
4067         if (!written)
4068                 return status;
4069         iocb->ki_pos += written;
4070         return written;
4071 }
4072 EXPORT_SYMBOL(generic_perform_write);
4073 
4074 /**
4075  * __generic_file_write_iter - write data to a file
4076  * @iocb:       IO state structure (file, offset, etc.)
4077  * @from:       iov_iter with data to write
4078  *
4079  * This function does all the work needed for actually writing data to a
4080  * file. It does all basic checks, removes SUID from the file, updates
4081  * modification times and calls proper subroutines depending on whether we
4082  * do direct IO or a standard buffered write.
4083  *
4084  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4085  * object which does not need locking at all.
4086  *
4087  * This function does *not* take care of syncing data in case of O_SYNC write.
4088  * A caller has to handle it. This is mainly due to the fact that we want to
4089  * avoid syncing under i_rwsem.
4090  *
4091  * Return:
4092  * * number of bytes written, even for truncated writes
4093  * * negative error code if no data has been written at all
4094  */
4095 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4096 {
4097         struct file *file = iocb->ki_filp;
4098         struct address_space *mapping = file->f_mapping;
4099         struct inode *inode = mapping->host;
4100         ssize_t ret;
4101 
4102         ret = file_remove_privs(file);
4103         if (ret)
4104                 return ret;
4105 
4106         ret = file_update_time(file);
4107         if (ret)
4108                 return ret;
4109 
4110         if (iocb->ki_flags & IOCB_DIRECT) {
4111                 ret = generic_file_direct_write(iocb, from);
4112                 /*
4113                  * If the write stopped short of completing, fall back to
4114                  * buffered writes.  Some filesystems do this for writes to
4115                  * holes, for example.  For DAX files, a buffered write will
4116                  * not succeed (even if it did, DAX does not handle dirty
4117                  * page-cache pages correctly).
4118                  */
4119                 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4120                         return ret;
4121                 return direct_write_fallback(iocb, from, ret,
4122                                 generic_perform_write(iocb, from));
4123         }
4124 
4125         return generic_perform_write(iocb, from);
4126 }
4127 EXPORT_SYMBOL(__generic_file_write_iter);
4128 
4129 /**
4130  * generic_file_write_iter - write data to a file
4131  * @iocb:       IO state structure
4132  * @from:       iov_iter with data to write
4133  *
4134  * This is a wrapper around __generic_file_write_iter() to be used by most
4135  * filesystems. It takes care of syncing the file in case of O_SYNC file
4136  * and acquires i_rwsem as needed.
4137  * Return:
4138  * * negative error code if no data has been written at all of
4139  *   vfs_fsync_range() failed for a synchronous write
4140  * * number of bytes written, even for truncated writes
4141  */
4142 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4143 {
4144         struct file *file = iocb->ki_filp;
4145         struct inode *inode = file->f_mapping->host;
4146         ssize_t ret;
4147 
4148         inode_lock(inode);
4149         ret = generic_write_checks(iocb, from);
4150         if (ret > 0)
4151                 ret = __generic_file_write_iter(iocb, from);
4152         inode_unlock(inode);
4153 
4154         if (ret > 0)
4155                 ret = generic_write_sync(iocb, ret);
4156         return ret;
4157 }
4158 EXPORT_SYMBOL(generic_file_write_iter);
4159 
4160 /**
4161  * filemap_release_folio() - Release fs-specific metadata on a folio.
4162  * @folio: The folio which the kernel is trying to free.
4163  * @gfp: Memory allocation flags (and I/O mode).
4164  *
4165  * The address_space is trying to release any data attached to a folio
4166  * (presumably at folio->private).
4167  *
4168  * This will also be called if the private_2 flag is set on a page,
4169  * indicating that the folio has other metadata associated with it.
4170  *
4171  * The @gfp argument specifies whether I/O may be performed to release
4172  * this page (__GFP_IO), and whether the call may block
4173  * (__GFP_RECLAIM & __GFP_FS).
4174  *
4175  * Return: %true if the release was successful, otherwise %false.
4176  */
4177 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4178 {
4179         struct address_space * const mapping = folio->mapping;
4180 
4181         BUG_ON(!folio_test_locked(folio));
4182         if (!folio_needs_release(folio))
4183                 return true;
4184         if (folio_test_writeback(folio))
4185                 return false;
4186 
4187         if (mapping && mapping->a_ops->release_folio)
4188                 return mapping->a_ops->release_folio(folio, gfp);
4189         return try_to_free_buffers(folio);
4190 }
4191 EXPORT_SYMBOL(filemap_release_folio);
4192 
4193 /**
4194  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4195  * @inode: The inode to flush
4196  * @flush: Set to write back rather than simply invalidate.
4197  * @start: First byte to in range.
4198  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4199  *       onwards.
4200  *
4201  * Invalidate all the folios on an inode that contribute to the specified
4202  * range, possibly writing them back first.  Whilst the operation is
4203  * undertaken, the invalidate lock is held to prevent new folios from being
4204  * installed.
4205  */
4206 int filemap_invalidate_inode(struct inode *inode, bool flush,
4207                              loff_t start, loff_t end)
4208 {
4209         struct address_space *mapping = inode->i_mapping;
4210         pgoff_t first = start >> PAGE_SHIFT;
4211         pgoff_t last = end >> PAGE_SHIFT;
4212         pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4213 
4214         if (!mapping || !mapping->nrpages || end < start)
4215                 goto out;
4216 
4217         /* Prevent new folios from being added to the inode. */
4218         filemap_invalidate_lock(mapping);
4219 
4220         if (!mapping->nrpages)
4221                 goto unlock;
4222 
4223         unmap_mapping_pages(mapping, first, nr, false);
4224 
4225         /* Write back the data if we're asked to. */
4226         if (flush) {
4227                 struct writeback_control wbc = {
4228                         .sync_mode      = WB_SYNC_ALL,
4229                         .nr_to_write    = LONG_MAX,
4230                         .range_start    = start,
4231                         .range_end      = end,
4232                 };
4233 
4234                 filemap_fdatawrite_wbc(mapping, &wbc);
4235         }
4236 
4237         /* Wait for writeback to complete on all folios and discard. */
4238         invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4239 
4240 unlock:
4241         filemap_invalidate_unlock(mapping);
4242 out:
4243         return filemap_check_errors(mapping);
4244 }
4245 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4246 
4247 #ifdef CONFIG_CACHESTAT_SYSCALL
4248 /**
4249  * filemap_cachestat() - compute the page cache statistics of a mapping
4250  * @mapping:    The mapping to compute the statistics for.
4251  * @first_index:        The starting page cache index.
4252  * @last_index: The final page index (inclusive).
4253  * @cs: the cachestat struct to write the result to.
4254  *
4255  * This will query the page cache statistics of a mapping in the
4256  * page range of [first_index, last_index] (inclusive). The statistics
4257  * queried include: number of dirty pages, number of pages marked for
4258  * writeback, and the number of (recently) evicted pages.
4259  */
4260 static void filemap_cachestat(struct address_space *mapping,
4261                 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4262 {
4263         XA_STATE(xas, &mapping->i_pages, first_index);
4264         struct folio *folio;
4265 
4266         /* Flush stats (and potentially sleep) outside the RCU read section. */
4267         mem_cgroup_flush_stats_ratelimited(NULL);
4268 
4269         rcu_read_lock();
4270         xas_for_each(&xas, folio, last_index) {
4271                 int order;
4272                 unsigned long nr_pages;
4273                 pgoff_t folio_first_index, folio_last_index;
4274 
4275                 /*
4276                  * Don't deref the folio. It is not pinned, and might
4277                  * get freed (and reused) underneath us.
4278                  *
4279                  * We *could* pin it, but that would be expensive for
4280                  * what should be a fast and lightweight syscall.
4281                  *
4282                  * Instead, derive all information of interest from
4283                  * the rcu-protected xarray.
4284                  */
4285 
4286                 if (xas_retry(&xas, folio))
4287                         continue;
4288 
4289                 order = xa_get_order(xas.xa, xas.xa_index);
4290                 nr_pages = 1 << order;
4291                 folio_first_index = round_down(xas.xa_index, 1 << order);
4292                 folio_last_index = folio_first_index + nr_pages - 1;
4293 
4294                 /* Folios might straddle the range boundaries, only count covered pages */
4295                 if (folio_first_index < first_index)
4296                         nr_pages -= first_index - folio_first_index;
4297 
4298                 if (folio_last_index > last_index)
4299                         nr_pages -= folio_last_index - last_index;
4300 
4301                 if (xa_is_value(folio)) {
4302                         /* page is evicted */
4303                         void *shadow = (void *)folio;
4304                         bool workingset; /* not used */
4305 
4306                         cs->nr_evicted += nr_pages;
4307 
4308 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4309                         if (shmem_mapping(mapping)) {
4310                                 /* shmem file - in swap cache */
4311                                 swp_entry_t swp = radix_to_swp_entry(folio);
4312 
4313                                 /* swapin error results in poisoned entry */
4314                                 if (non_swap_entry(swp))
4315                                         goto resched;
4316 
4317                                 /*
4318                                  * Getting a swap entry from the shmem
4319                                  * inode means we beat
4320                                  * shmem_unuse(). rcu_read_lock()
4321                                  * ensures swapoff waits for us before
4322                                  * freeing the swapper space. However,
4323                                  * we can race with swapping and
4324                                  * invalidation, so there might not be
4325                                  * a shadow in the swapcache (yet).
4326                                  */
4327                                 shadow = get_shadow_from_swap_cache(swp);
4328                                 if (!shadow)
4329                                         goto resched;
4330                         }
4331 #endif
4332                         if (workingset_test_recent(shadow, true, &workingset, false))
4333                                 cs->nr_recently_evicted += nr_pages;
4334 
4335                         goto resched;
4336                 }
4337 
4338                 /* page is in cache */
4339                 cs->nr_cache += nr_pages;
4340 
4341                 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4342                         cs->nr_dirty += nr_pages;
4343 
4344                 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4345                         cs->nr_writeback += nr_pages;
4346 
4347 resched:
4348                 if (need_resched()) {
4349                         xas_pause(&xas);
4350                         cond_resched_rcu();
4351                 }
4352         }
4353         rcu_read_unlock();
4354 }
4355 
4356 /*
4357  * The cachestat(2) system call.
4358  *
4359  * cachestat() returns the page cache statistics of a file in the
4360  * bytes range specified by `off` and `len`: number of cached pages,
4361  * number of dirty pages, number of pages marked for writeback,
4362  * number of evicted pages, and number of recently evicted pages.
4363  *
4364  * An evicted page is a page that is previously in the page cache
4365  * but has been evicted since. A page is recently evicted if its last
4366  * eviction was recent enough that its reentry to the cache would
4367  * indicate that it is actively being used by the system, and that
4368  * there is memory pressure on the system.
4369  *
4370  * `off` and `len` must be non-negative integers. If `len` > 0,
4371  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4372  * we will query in the range from `off` to the end of the file.
4373  *
4374  * The `flags` argument is unused for now, but is included for future
4375  * extensibility. User should pass 0 (i.e no flag specified).
4376  *
4377  * Currently, hugetlbfs is not supported.
4378  *
4379  * Because the status of a page can change after cachestat() checks it
4380  * but before it returns to the application, the returned values may
4381  * contain stale information.
4382  *
4383  * return values:
4384  *  zero        - success
4385  *  -EFAULT     - cstat or cstat_range points to an illegal address
4386  *  -EINVAL     - invalid flags
4387  *  -EBADF      - invalid file descriptor
4388  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4389  */
4390 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4391                 struct cachestat_range __user *, cstat_range,
4392                 struct cachestat __user *, cstat, unsigned int, flags)
4393 {
4394         struct fd f = fdget(fd);
4395         struct address_space *mapping;
4396         struct cachestat_range csr;
4397         struct cachestat cs;
4398         pgoff_t first_index, last_index;
4399 
4400         if (!f.file)
4401                 return -EBADF;
4402 
4403         if (copy_from_user(&csr, cstat_range,
4404                         sizeof(struct cachestat_range))) {
4405                 fdput(f);
4406                 return -EFAULT;
4407         }
4408 
4409         /* hugetlbfs is not supported */
4410         if (is_file_hugepages(f.file)) {
4411                 fdput(f);
4412                 return -EOPNOTSUPP;
4413         }
4414 
4415         if (flags != 0) {
4416                 fdput(f);
4417                 return -EINVAL;
4418         }
4419 
4420         first_index = csr.off >> PAGE_SHIFT;
4421         last_index =
4422                 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4423         memset(&cs, 0, sizeof(struct cachestat));
4424         mapping = f.file->f_mapping;
4425         filemap_cachestat(mapping, first_index, last_index, &cs);
4426         fdput(f);
4427 
4428         if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4429                 return -EFAULT;
4430 
4431         return 0;
4432 }
4433 #endif /* CONFIG_CACHESTAT_SYSCALL */
4434 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php