1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <asm/pgalloc.h> 50 #include <asm/tlbflush.h> 51 #include "internal.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/filemap.h> 55 56 /* 57 * FIXME: remove all knowledge of the buffer layer from the core VM 58 */ 59 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 60 61 #include <asm/mman.h> 62 63 #include "swap.h" 64 65 /* 66 * Shared mappings implemented 30.11.1994. It's not fully working yet, 67 * though. 68 * 69 * Shared mappings now work. 15.8.1995 Bruno. 70 * 71 * finished 'unifying' the page and buffer cache and SMP-threaded the 72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 73 * 74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 75 */ 76 77 /* 78 * Lock ordering: 79 * 80 * ->i_mmap_rwsem (truncate_pagecache) 81 * ->private_lock (__free_pte->block_dirty_folio) 82 * ->swap_lock (exclusive_swap_page, others) 83 * ->i_pages lock 84 * 85 * ->i_rwsem 86 * ->invalidate_lock (acquired by fs in truncate path) 87 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * 89 * ->mmap_lock 90 * ->i_mmap_rwsem 91 * ->page_table_lock or pte_lock (various, mainly in memory.c) 92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 93 * 94 * ->mmap_lock 95 * ->invalidate_lock (filemap_fault) 96 * ->lock_page (filemap_fault, access_process_vm) 97 * 98 * ->i_rwsem (generic_perform_write) 99 * ->mmap_lock (fault_in_readable->do_page_fault) 100 * 101 * bdi->wb.list_lock 102 * sb_lock (fs/fs-writeback.c) 103 * ->i_pages lock (__sync_single_inode) 104 * 105 * ->i_mmap_rwsem 106 * ->anon_vma.lock (vma_merge) 107 * 108 * ->anon_vma.lock 109 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 110 * 111 * ->page_table_lock or pte_lock 112 * ->swap_lock (try_to_unmap_one) 113 * ->private_lock (try_to_unmap_one) 114 * ->i_pages lock (try_to_unmap_one) 115 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock) 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 123 * ->inode->i_lock (zap_pte_range->set_page_dirty) 124 * ->private_lock (zap_pte_range->block_dirty_folio) 125 */ 126 127 static void mapping_set_update(struct xa_state *xas, 128 struct address_space *mapping) 129 { 130 if (dax_mapping(mapping) || shmem_mapping(mapping)) 131 return; 132 xas_set_update(xas, workingset_update_node); 133 xas_set_lru(xas, &shadow_nodes); 134 } 135 136 static void page_cache_delete(struct address_space *mapping, 137 struct folio *folio, void *shadow) 138 { 139 XA_STATE(xas, &mapping->i_pages, folio->index); 140 long nr = 1; 141 142 mapping_set_update(&xas, mapping); 143 144 xas_set_order(&xas, folio->index, folio_order(folio)); 145 nr = folio_nr_pages(folio); 146 147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 148 149 xas_store(&xas, shadow); 150 xas_init_marks(&xas); 151 152 folio->mapping = NULL; 153 /* Leave page->index set: truncation lookup relies upon it */ 154 mapping->nrpages -= nr; 155 } 156 157 static void filemap_unaccount_folio(struct address_space *mapping, 158 struct folio *folio) 159 { 160 long nr; 161 162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 165 current->comm, folio_pfn(folio)); 166 dump_page(&folio->page, "still mapped when deleted"); 167 dump_stack(); 168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 169 170 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 171 int mapcount = folio_mapcount(folio); 172 173 if (folio_ref_count(folio) >= mapcount + 2) { 174 /* 175 * All vmas have already been torn down, so it's 176 * a good bet that actually the page is unmapped 177 * and we'd rather not leak it: if we're wrong, 178 * another bad page check should catch it later. 179 */ 180 atomic_set(&folio->_mapcount, -1); 181 folio_ref_sub(folio, mapcount); 182 } 183 } 184 } 185 186 /* hugetlb folios do not participate in page cache accounting. */ 187 if (folio_test_hugetlb(folio)) 188 return; 189 190 nr = folio_nr_pages(folio); 191 192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 193 if (folio_test_swapbacked(folio)) { 194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 195 if (folio_test_pmd_mappable(folio)) 196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 197 } else if (folio_test_pmd_mappable(folio)) { 198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 199 filemap_nr_thps_dec(mapping); 200 } 201 202 /* 203 * At this point folio must be either written or cleaned by 204 * truncate. Dirty folio here signals a bug and loss of 205 * unwritten data - on ordinary filesystems. 206 * 207 * But it's harmless on in-memory filesystems like tmpfs; and can 208 * occur when a driver which did get_user_pages() sets page dirty 209 * before putting it, while the inode is being finally evicted. 210 * 211 * Below fixes dirty accounting after removing the folio entirely 212 * but leaves the dirty flag set: it has no effect for truncated 213 * folio and anyway will be cleared before returning folio to 214 * buddy allocator. 215 */ 216 if (WARN_ON_ONCE(folio_test_dirty(folio) && 217 mapping_can_writeback(mapping))) 218 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 219 } 220 221 /* 222 * Delete a page from the page cache and free it. Caller has to make 223 * sure the page is locked and that nobody else uses it - or that usage 224 * is safe. The caller must hold the i_pages lock. 225 */ 226 void __filemap_remove_folio(struct folio *folio, void *shadow) 227 { 228 struct address_space *mapping = folio->mapping; 229 230 trace_mm_filemap_delete_from_page_cache(folio); 231 filemap_unaccount_folio(mapping, folio); 232 page_cache_delete(mapping, folio, shadow); 233 } 234 235 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 236 { 237 void (*free_folio)(struct folio *); 238 int refs = 1; 239 240 free_folio = mapping->a_ops->free_folio; 241 if (free_folio) 242 free_folio(folio); 243 244 if (folio_test_large(folio)) 245 refs = folio_nr_pages(folio); 246 folio_put_refs(folio, refs); 247 } 248 249 /** 250 * filemap_remove_folio - Remove folio from page cache. 251 * @folio: The folio. 252 * 253 * This must be called only on folios that are locked and have been 254 * verified to be in the page cache. It will never put the folio into 255 * the free list because the caller has a reference on the page. 256 */ 257 void filemap_remove_folio(struct folio *folio) 258 { 259 struct address_space *mapping = folio->mapping; 260 261 BUG_ON(!folio_test_locked(folio)); 262 spin_lock(&mapping->host->i_lock); 263 xa_lock_irq(&mapping->i_pages); 264 __filemap_remove_folio(folio, NULL); 265 xa_unlock_irq(&mapping->i_pages); 266 if (mapping_shrinkable(mapping)) 267 inode_add_lru(mapping->host); 268 spin_unlock(&mapping->host->i_lock); 269 270 filemap_free_folio(mapping, folio); 271 } 272 273 /* 274 * page_cache_delete_batch - delete several folios from page cache 275 * @mapping: the mapping to which folios belong 276 * @fbatch: batch of folios to delete 277 * 278 * The function walks over mapping->i_pages and removes folios passed in 279 * @fbatch from the mapping. The function expects @fbatch to be sorted 280 * by page index and is optimised for it to be dense. 281 * It tolerates holes in @fbatch (mapping entries at those indices are not 282 * modified). 283 * 284 * The function expects the i_pages lock to be held. 285 */ 286 static void page_cache_delete_batch(struct address_space *mapping, 287 struct folio_batch *fbatch) 288 { 289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 290 long total_pages = 0; 291 int i = 0; 292 struct folio *folio; 293 294 mapping_set_update(&xas, mapping); 295 xas_for_each(&xas, folio, ULONG_MAX) { 296 if (i >= folio_batch_count(fbatch)) 297 break; 298 299 /* A swap/dax/shadow entry got inserted? Skip it. */ 300 if (xa_is_value(folio)) 301 continue; 302 /* 303 * A page got inserted in our range? Skip it. We have our 304 * pages locked so they are protected from being removed. 305 * If we see a page whose index is higher than ours, it 306 * means our page has been removed, which shouldn't be 307 * possible because we're holding the PageLock. 308 */ 309 if (folio != fbatch->folios[i]) { 310 VM_BUG_ON_FOLIO(folio->index > 311 fbatch->folios[i]->index, folio); 312 continue; 313 } 314 315 WARN_ON_ONCE(!folio_test_locked(folio)); 316 317 folio->mapping = NULL; 318 /* Leave folio->index set: truncation lookup relies on it */ 319 320 i++; 321 xas_store(&xas, NULL); 322 total_pages += folio_nr_pages(folio); 323 } 324 mapping->nrpages -= total_pages; 325 } 326 327 void delete_from_page_cache_batch(struct address_space *mapping, 328 struct folio_batch *fbatch) 329 { 330 int i; 331 332 if (!folio_batch_count(fbatch)) 333 return; 334 335 spin_lock(&mapping->host->i_lock); 336 xa_lock_irq(&mapping->i_pages); 337 for (i = 0; i < folio_batch_count(fbatch); i++) { 338 struct folio *folio = fbatch->folios[i]; 339 340 trace_mm_filemap_delete_from_page_cache(folio); 341 filemap_unaccount_folio(mapping, folio); 342 } 343 page_cache_delete_batch(mapping, fbatch); 344 xa_unlock_irq(&mapping->i_pages); 345 if (mapping_shrinkable(mapping)) 346 inode_add_lru(mapping->host); 347 spin_unlock(&mapping->host->i_lock); 348 349 for (i = 0; i < folio_batch_count(fbatch); i++) 350 filemap_free_folio(mapping, fbatch->folios[i]); 351 } 352 353 int filemap_check_errors(struct address_space *mapping) 354 { 355 int ret = 0; 356 /* Check for outstanding write errors */ 357 if (test_bit(AS_ENOSPC, &mapping->flags) && 358 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 359 ret = -ENOSPC; 360 if (test_bit(AS_EIO, &mapping->flags) && 361 test_and_clear_bit(AS_EIO, &mapping->flags)) 362 ret = -EIO; 363 return ret; 364 } 365 EXPORT_SYMBOL(filemap_check_errors); 366 367 static int filemap_check_and_keep_errors(struct address_space *mapping) 368 { 369 /* Check for outstanding write errors */ 370 if (test_bit(AS_EIO, &mapping->flags)) 371 return -EIO; 372 if (test_bit(AS_ENOSPC, &mapping->flags)) 373 return -ENOSPC; 374 return 0; 375 } 376 377 /** 378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 379 * @mapping: address space structure to write 380 * @wbc: the writeback_control controlling the writeout 381 * 382 * Call writepages on the mapping using the provided wbc to control the 383 * writeout. 384 * 385 * Return: %0 on success, negative error code otherwise. 386 */ 387 int filemap_fdatawrite_wbc(struct address_space *mapping, 388 struct writeback_control *wbc) 389 { 390 int ret; 391 392 if (!mapping_can_writeback(mapping) || 393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 394 return 0; 395 396 wbc_attach_fdatawrite_inode(wbc, mapping->host); 397 ret = do_writepages(mapping, wbc); 398 wbc_detach_inode(wbc); 399 return ret; 400 } 401 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 402 403 /** 404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 405 * @mapping: address space structure to write 406 * @start: offset in bytes where the range starts 407 * @end: offset in bytes where the range ends (inclusive) 408 * @sync_mode: enable synchronous operation 409 * 410 * Start writeback against all of a mapping's dirty pages that lie 411 * within the byte offsets <start, end> inclusive. 412 * 413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 414 * opposed to a regular memory cleansing writeback. The difference between 415 * these two operations is that if a dirty page/buffer is encountered, it must 416 * be waited upon, and not just skipped over. 417 * 418 * Return: %0 on success, negative error code otherwise. 419 */ 420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 421 loff_t end, int sync_mode) 422 { 423 struct writeback_control wbc = { 424 .sync_mode = sync_mode, 425 .nr_to_write = LONG_MAX, 426 .range_start = start, 427 .range_end = end, 428 }; 429 430 return filemap_fdatawrite_wbc(mapping, &wbc); 431 } 432 433 static inline int __filemap_fdatawrite(struct address_space *mapping, 434 int sync_mode) 435 { 436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 437 } 438 439 int filemap_fdatawrite(struct address_space *mapping) 440 { 441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite); 444 445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 446 loff_t end) 447 { 448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 449 } 450 EXPORT_SYMBOL(filemap_fdatawrite_range); 451 452 /** 453 * filemap_flush - mostly a non-blocking flush 454 * @mapping: target address_space 455 * 456 * This is a mostly non-blocking flush. Not suitable for data-integrity 457 * purposes - I/O may not be started against all dirty pages. 458 * 459 * Return: %0 on success, negative error code otherwise. 460 */ 461 int filemap_flush(struct address_space *mapping) 462 { 463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 464 } 465 EXPORT_SYMBOL(filemap_flush); 466 467 /** 468 * filemap_range_has_page - check if a page exists in range. 469 * @mapping: address space within which to check 470 * @start_byte: offset in bytes where the range starts 471 * @end_byte: offset in bytes where the range ends (inclusive) 472 * 473 * Find at least one page in the range supplied, usually used to check if 474 * direct writing in this range will trigger a writeback. 475 * 476 * Return: %true if at least one page exists in the specified range, 477 * %false otherwise. 478 */ 479 bool filemap_range_has_page(struct address_space *mapping, 480 loff_t start_byte, loff_t end_byte) 481 { 482 struct folio *folio; 483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 484 pgoff_t max = end_byte >> PAGE_SHIFT; 485 486 if (end_byte < start_byte) 487 return false; 488 489 rcu_read_lock(); 490 for (;;) { 491 folio = xas_find(&xas, max); 492 if (xas_retry(&xas, folio)) 493 continue; 494 /* Shadow entries don't count */ 495 if (xa_is_value(folio)) 496 continue; 497 /* 498 * We don't need to try to pin this page; we're about to 499 * release the RCU lock anyway. It is enough to know that 500 * there was a page here recently. 501 */ 502 break; 503 } 504 rcu_read_unlock(); 505 506 return folio != NULL; 507 } 508 EXPORT_SYMBOL(filemap_range_has_page); 509 510 static void __filemap_fdatawait_range(struct address_space *mapping, 511 loff_t start_byte, loff_t end_byte) 512 { 513 pgoff_t index = start_byte >> PAGE_SHIFT; 514 pgoff_t end = end_byte >> PAGE_SHIFT; 515 struct folio_batch fbatch; 516 unsigned nr_folios; 517 518 folio_batch_init(&fbatch); 519 520 while (index <= end) { 521 unsigned i; 522 523 nr_folios = filemap_get_folios_tag(mapping, &index, end, 524 PAGECACHE_TAG_WRITEBACK, &fbatch); 525 526 if (!nr_folios) 527 break; 528 529 for (i = 0; i < nr_folios; i++) { 530 struct folio *folio = fbatch.folios[i]; 531 532 folio_wait_writeback(folio); 533 folio_clear_error(folio); 534 } 535 folio_batch_release(&fbatch); 536 cond_resched(); 537 } 538 } 539 540 /** 541 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 546 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 549 * 550 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 553 * 554 * Return: error status of the address space. 555 */ 556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 558 { 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 561 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 563 564 /** 565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 570 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status of the address space. 573 * 574 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 577 */ 578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_byte) 580 { 581 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(mapping); 583 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 586 /** 587 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 592 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 596 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 599 * 600 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 604 struct address_space *mapping = file->f_mapping; 605 606 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(file); 608 } 609 EXPORT_SYMBOL(file_fdatawait_range); 610 611 /** 612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait for 614 * 615 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address space. 618 * 619 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 622 * 623 * Return: error status of the address space. 624 */ 625 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(mapping); 629 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 632 /* Returns true if writeback might be needed or already in progress. */ 633 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 635 return mapping->nrpages; 636 } 637 638 bool filemap_range_has_writeback(struct address_space *mapping, 639 loff_t start_byte, loff_t end_byte) 640 { 641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 642 pgoff_t max = end_byte >> PAGE_SHIFT; 643 struct folio *folio; 644 645 if (end_byte < start_byte) 646 return false; 647 648 rcu_read_lock(); 649 xas_for_each(&xas, folio, max) { 650 if (xas_retry(&xas, folio)) 651 continue; 652 if (xa_is_value(folio)) 653 continue; 654 if (folio_test_dirty(folio) || folio_test_locked(folio) || 655 folio_test_writeback(folio)) 656 break; 657 } 658 rcu_read_unlock(); 659 return folio != NULL; 660 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 662 663 /** 664 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the range ends (inclusive) 668 * 669 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 671 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to the very end-of-file (end = -1). 673 * 674 * Return: error status of the address space. 675 */ 676 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart, loff_t lend) 678 { 679 int err = 0, err2; 680 681 if (lend < lstart) 682 return 0; 683 684 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 WB_SYNC_ALL); 687 /* 688 * Even if the above returned error, the pages may be 689 * written partially (e.g. -ENOSPC), so we wait for it. 690 * But the -EIO is special case, it may indicate the worst 691 * thing (e.g. bug) happened, so we avoid waiting for it. 692 */ 693 if (err != -EIO) 694 __filemap_fdatawait_range(mapping, lstart, lend); 695 } 696 err2 = filemap_check_errors(mapping); 697 if (!err) 698 err = err2; 699 return err; 700 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 703 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 705 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 707 trace_filemap_set_wb_err(mapping, eseq); 708 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 710 711 /** 712 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance wb_err to current one 714 * @file: struct file on which the error is being reported 715 * 716 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't been any). 719 * 720 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all caught up. 722 * 723 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 729 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file descriptor. 732 * 733 * Return: %0 on success, negative error code otherwise. 734 */ 735 int file_check_and_advance_wb_err(struct file *file) 736 { 737 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file->f_mapping; 740 741 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 746 err = errseq_check_and_advance(&mapping->wb_err, 747 &file->f_wb_err); 748 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 750 } 751 752 /* 753 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had on these flags. 756 */ 757 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 760 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 763 /** 764 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the range ends (inclusive) 768 * 769 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 771 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to the very end-of-file (end = -1). 773 * 774 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 777 * Return: %0 on success, negative error code otherwise. 778 */ 779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 781 int err = 0, err2; 782 struct address_space *mapping = file->f_mapping; 783 784 if (lend < lstart) 785 return 0; 786 787 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 WB_SYNC_ALL); 790 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 792 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 794 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 796 err = err2; 797 return err; 798 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 800 801 /** 802 * replace_page_cache_folio - replace a pagecache folio with a new one 803 * @old: folio to be replaced 804 * @new: folio to replace with 805 * 806 * This function replaces a folio in the pagecache with a new one. On 807 * success it acquires the pagecache reference for the new folio and 808 * drops it for the old folio. Both the old and new folios must be 809 * locked. This function does not add the new folio to the LRU, the 810 * caller must do that. 811 * 812 * The remove + add is atomic. This function cannot fail. 813 */ 814 void replace_page_cache_folio(struct folio *old, struct folio *new) 815 { 816 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 818 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offset); 820 821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); 824 825 folio_get(new); 826 new->mapping = mapping; 827 new->index = offset; 828 829 mem_cgroup_replace_folio(old, new); 830 831 xas_lock_irq(&xas); 832 xas_store(&xas, new); 833 834 old->mapping = NULL; 835 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) 837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) 839 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) 841 __lruvec_stat_sub_folio(old, NR_SHMEM); 842 if (folio_test_swapbacked(new)) 843 __lruvec_stat_add_folio(new, NR_SHMEM); 844 xas_unlock_irq(&xas); 845 if (free_folio) 846 free_folio(old); 847 folio_put(old); 848 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 850 851 noinline int __filemap_add_folio(struct address_space *mapping, 852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 853 { 854 XA_STATE(xas, &mapping->i_pages, index); 855 void *alloced_shadow = NULL; 856 int alloced_order = 0; 857 bool huge; 858 long nr; 859 860 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 861 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 862 mapping_set_update(&xas, mapping); 863 864 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 865 xas_set_order(&xas, index, folio_order(folio)); 866 huge = folio_test_hugetlb(folio); 867 nr = folio_nr_pages(folio); 868 869 gfp &= GFP_RECLAIM_MASK; 870 folio_ref_add(folio, nr); 871 folio->mapping = mapping; 872 folio->index = xas.xa_index; 873 874 for (;;) { 875 int order = -1, split_order = 0; 876 void *entry, *old = NULL; 877 878 xas_lock_irq(&xas); 879 xas_for_each_conflict(&xas, entry) { 880 old = entry; 881 if (!xa_is_value(entry)) { 882 xas_set_err(&xas, -EEXIST); 883 goto unlock; 884 } 885 /* 886 * If a larger entry exists, 887 * it will be the first and only entry iterated. 888 */ 889 if (order == -1) 890 order = xas_get_order(&xas); 891 } 892 893 /* entry may have changed before we re-acquire the lock */ 894 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 895 xas_destroy(&xas); 896 alloced_order = 0; 897 } 898 899 if (old) { 900 if (order > 0 && order > folio_order(folio)) { 901 /* How to handle large swap entries? */ 902 BUG_ON(shmem_mapping(mapping)); 903 if (!alloced_order) { 904 split_order = order; 905 goto unlock; 906 } 907 xas_split(&xas, old, order); 908 xas_reset(&xas); 909 } 910 if (shadowp) 911 *shadowp = old; 912 } 913 914 xas_store(&xas, folio); 915 if (xas_error(&xas)) 916 goto unlock; 917 918 mapping->nrpages += nr; 919 920 /* hugetlb pages do not participate in page cache accounting */ 921 if (!huge) { 922 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 923 if (folio_test_pmd_mappable(folio)) 924 __lruvec_stat_mod_folio(folio, 925 NR_FILE_THPS, nr); 926 } 927 928 unlock: 929 xas_unlock_irq(&xas); 930 931 /* split needed, alloc here and retry. */ 932 if (split_order) { 933 xas_split_alloc(&xas, old, split_order, gfp); 934 if (xas_error(&xas)) 935 goto error; 936 alloced_shadow = old; 937 alloced_order = split_order; 938 xas_reset(&xas); 939 continue; 940 } 941 942 if (!xas_nomem(&xas, gfp)) 943 break; 944 } 945 946 if (xas_error(&xas)) 947 goto error; 948 949 trace_mm_filemap_add_to_page_cache(folio); 950 return 0; 951 error: 952 folio->mapping = NULL; 953 /* Leave page->index set: truncation relies upon it */ 954 folio_put_refs(folio, nr); 955 return xas_error(&xas); 956 } 957 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 958 959 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 960 pgoff_t index, gfp_t gfp) 961 { 962 void *shadow = NULL; 963 int ret; 964 965 ret = mem_cgroup_charge(folio, NULL, gfp); 966 if (ret) 967 return ret; 968 969 __folio_set_locked(folio); 970 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 971 if (unlikely(ret)) { 972 mem_cgroup_uncharge(folio); 973 __folio_clear_locked(folio); 974 } else { 975 /* 976 * The folio might have been evicted from cache only 977 * recently, in which case it should be activated like 978 * any other repeatedly accessed folio. 979 * The exception is folios getting rewritten; evicting other 980 * data from the working set, only to cache data that will 981 * get overwritten with something else, is a waste of memory. 982 */ 983 WARN_ON_ONCE(folio_test_active(folio)); 984 if (!(gfp & __GFP_WRITE) && shadow) 985 workingset_refault(folio, shadow); 986 folio_add_lru(folio); 987 } 988 return ret; 989 } 990 EXPORT_SYMBOL_GPL(filemap_add_folio); 991 992 #ifdef CONFIG_NUMA 993 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 994 { 995 int n; 996 struct folio *folio; 997 998 if (cpuset_do_page_mem_spread()) { 999 unsigned int cpuset_mems_cookie; 1000 do { 1001 cpuset_mems_cookie = read_mems_allowed_begin(); 1002 n = cpuset_mem_spread_node(); 1003 folio = __folio_alloc_node_noprof(gfp, order, n); 1004 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1005 1006 return folio; 1007 } 1008 return folio_alloc_noprof(gfp, order); 1009 } 1010 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1011 #endif 1012 1013 /* 1014 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1015 * 1016 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1017 * 1018 * @mapping1: the first mapping to lock 1019 * @mapping2: the second mapping to lock 1020 */ 1021 void filemap_invalidate_lock_two(struct address_space *mapping1, 1022 struct address_space *mapping2) 1023 { 1024 if (mapping1 > mapping2) 1025 swap(mapping1, mapping2); 1026 if (mapping1) 1027 down_write(&mapping1->invalidate_lock); 1028 if (mapping2 && mapping1 != mapping2) 1029 down_write_nested(&mapping2->invalidate_lock, 1); 1030 } 1031 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1032 1033 /* 1034 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1035 * 1036 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1037 * 1038 * @mapping1: the first mapping to unlock 1039 * @mapping2: the second mapping to unlock 1040 */ 1041 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1042 struct address_space *mapping2) 1043 { 1044 if (mapping1) 1045 up_write(&mapping1->invalidate_lock); 1046 if (mapping2 && mapping1 != mapping2) 1047 up_write(&mapping2->invalidate_lock); 1048 } 1049 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1050 1051 /* 1052 * In order to wait for pages to become available there must be 1053 * waitqueues associated with pages. By using a hash table of 1054 * waitqueues where the bucket discipline is to maintain all 1055 * waiters on the same queue and wake all when any of the pages 1056 * become available, and for the woken contexts to check to be 1057 * sure the appropriate page became available, this saves space 1058 * at a cost of "thundering herd" phenomena during rare hash 1059 * collisions. 1060 */ 1061 #define PAGE_WAIT_TABLE_BITS 8 1062 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1063 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1064 1065 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1066 { 1067 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1068 } 1069 1070 void __init pagecache_init(void) 1071 { 1072 int i; 1073 1074 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1075 init_waitqueue_head(&folio_wait_table[i]); 1076 1077 page_writeback_init(); 1078 } 1079 1080 /* 1081 * The page wait code treats the "wait->flags" somewhat unusually, because 1082 * we have multiple different kinds of waits, not just the usual "exclusive" 1083 * one. 1084 * 1085 * We have: 1086 * 1087 * (a) no special bits set: 1088 * 1089 * We're just waiting for the bit to be released, and when a waker 1090 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1091 * and remove it from the wait queue. 1092 * 1093 * Simple and straightforward. 1094 * 1095 * (b) WQ_FLAG_EXCLUSIVE: 1096 * 1097 * The waiter is waiting to get the lock, and only one waiter should 1098 * be woken up to avoid any thundering herd behavior. We'll set the 1099 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1100 * 1101 * This is the traditional exclusive wait. 1102 * 1103 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1104 * 1105 * The waiter is waiting to get the bit, and additionally wants the 1106 * lock to be transferred to it for fair lock behavior. If the lock 1107 * cannot be taken, we stop walking the wait queue without waking 1108 * the waiter. 1109 * 1110 * This is the "fair lock handoff" case, and in addition to setting 1111 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1112 * that it now has the lock. 1113 */ 1114 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1115 { 1116 unsigned int flags; 1117 struct wait_page_key *key = arg; 1118 struct wait_page_queue *wait_page 1119 = container_of(wait, struct wait_page_queue, wait); 1120 1121 if (!wake_page_match(wait_page, key)) 1122 return 0; 1123 1124 /* 1125 * If it's a lock handoff wait, we get the bit for it, and 1126 * stop walking (and do not wake it up) if we can't. 1127 */ 1128 flags = wait->flags; 1129 if (flags & WQ_FLAG_EXCLUSIVE) { 1130 if (test_bit(key->bit_nr, &key->folio->flags)) 1131 return -1; 1132 if (flags & WQ_FLAG_CUSTOM) { 1133 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1134 return -1; 1135 flags |= WQ_FLAG_DONE; 1136 } 1137 } 1138 1139 /* 1140 * We are holding the wait-queue lock, but the waiter that 1141 * is waiting for this will be checking the flags without 1142 * any locking. 1143 * 1144 * So update the flags atomically, and wake up the waiter 1145 * afterwards to avoid any races. This store-release pairs 1146 * with the load-acquire in folio_wait_bit_common(). 1147 */ 1148 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1149 wake_up_state(wait->private, mode); 1150 1151 /* 1152 * Ok, we have successfully done what we're waiting for, 1153 * and we can unconditionally remove the wait entry. 1154 * 1155 * Note that this pairs with the "finish_wait()" in the 1156 * waiter, and has to be the absolute last thing we do. 1157 * After this list_del_init(&wait->entry) the wait entry 1158 * might be de-allocated and the process might even have 1159 * exited. 1160 */ 1161 list_del_init_careful(&wait->entry); 1162 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1163 } 1164 1165 static void folio_wake_bit(struct folio *folio, int bit_nr) 1166 { 1167 wait_queue_head_t *q = folio_waitqueue(folio); 1168 struct wait_page_key key; 1169 unsigned long flags; 1170 1171 key.folio = folio; 1172 key.bit_nr = bit_nr; 1173 key.page_match = 0; 1174 1175 spin_lock_irqsave(&q->lock, flags); 1176 __wake_up_locked_key(q, TASK_NORMAL, &key); 1177 1178 /* 1179 * It's possible to miss clearing waiters here, when we woke our page 1180 * waiters, but the hashed waitqueue has waiters for other pages on it. 1181 * That's okay, it's a rare case. The next waker will clear it. 1182 * 1183 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1184 * other), the flag may be cleared in the course of freeing the page; 1185 * but that is not required for correctness. 1186 */ 1187 if (!waitqueue_active(q) || !key.page_match) 1188 folio_clear_waiters(folio); 1189 1190 spin_unlock_irqrestore(&q->lock, flags); 1191 } 1192 1193 /* 1194 * A choice of three behaviors for folio_wait_bit_common(): 1195 */ 1196 enum behavior { 1197 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1198 * __folio_lock() waiting on then setting PG_locked. 1199 */ 1200 SHARED, /* Hold ref to page and check the bit when woken, like 1201 * folio_wait_writeback() waiting on PG_writeback. 1202 */ 1203 DROP, /* Drop ref to page before wait, no check when woken, 1204 * like folio_put_wait_locked() on PG_locked. 1205 */ 1206 }; 1207 1208 /* 1209 * Attempt to check (or get) the folio flag, and mark us done 1210 * if successful. 1211 */ 1212 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1213 struct wait_queue_entry *wait) 1214 { 1215 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1216 if (test_and_set_bit(bit_nr, &folio->flags)) 1217 return false; 1218 } else if (test_bit(bit_nr, &folio->flags)) 1219 return false; 1220 1221 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1222 return true; 1223 } 1224 1225 /* How many times do we accept lock stealing from under a waiter? */ 1226 int sysctl_page_lock_unfairness = 5; 1227 1228 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1229 int state, enum behavior behavior) 1230 { 1231 wait_queue_head_t *q = folio_waitqueue(folio); 1232 int unfairness = sysctl_page_lock_unfairness; 1233 struct wait_page_queue wait_page; 1234 wait_queue_entry_t *wait = &wait_page.wait; 1235 bool thrashing = false; 1236 unsigned long pflags; 1237 bool in_thrashing; 1238 1239 if (bit_nr == PG_locked && 1240 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1241 delayacct_thrashing_start(&in_thrashing); 1242 psi_memstall_enter(&pflags); 1243 thrashing = true; 1244 } 1245 1246 init_wait(wait); 1247 wait->func = wake_page_function; 1248 wait_page.folio = folio; 1249 wait_page.bit_nr = bit_nr; 1250 1251 repeat: 1252 wait->flags = 0; 1253 if (behavior == EXCLUSIVE) { 1254 wait->flags = WQ_FLAG_EXCLUSIVE; 1255 if (--unfairness < 0) 1256 wait->flags |= WQ_FLAG_CUSTOM; 1257 } 1258 1259 /* 1260 * Do one last check whether we can get the 1261 * page bit synchronously. 1262 * 1263 * Do the folio_set_waiters() marking before that 1264 * to let any waker we _just_ missed know they 1265 * need to wake us up (otherwise they'll never 1266 * even go to the slow case that looks at the 1267 * page queue), and add ourselves to the wait 1268 * queue if we need to sleep. 1269 * 1270 * This part needs to be done under the queue 1271 * lock to avoid races. 1272 */ 1273 spin_lock_irq(&q->lock); 1274 folio_set_waiters(folio); 1275 if (!folio_trylock_flag(folio, bit_nr, wait)) 1276 __add_wait_queue_entry_tail(q, wait); 1277 spin_unlock_irq(&q->lock); 1278 1279 /* 1280 * From now on, all the logic will be based on 1281 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1282 * see whether the page bit testing has already 1283 * been done by the wake function. 1284 * 1285 * We can drop our reference to the folio. 1286 */ 1287 if (behavior == DROP) 1288 folio_put(folio); 1289 1290 /* 1291 * Note that until the "finish_wait()", or until 1292 * we see the WQ_FLAG_WOKEN flag, we need to 1293 * be very careful with the 'wait->flags', because 1294 * we may race with a waker that sets them. 1295 */ 1296 for (;;) { 1297 unsigned int flags; 1298 1299 set_current_state(state); 1300 1301 /* Loop until we've been woken or interrupted */ 1302 flags = smp_load_acquire(&wait->flags); 1303 if (!(flags & WQ_FLAG_WOKEN)) { 1304 if (signal_pending_state(state, current)) 1305 break; 1306 1307 io_schedule(); 1308 continue; 1309 } 1310 1311 /* If we were non-exclusive, we're done */ 1312 if (behavior != EXCLUSIVE) 1313 break; 1314 1315 /* If the waker got the lock for us, we're done */ 1316 if (flags & WQ_FLAG_DONE) 1317 break; 1318 1319 /* 1320 * Otherwise, if we're getting the lock, we need to 1321 * try to get it ourselves. 1322 * 1323 * And if that fails, we'll have to retry this all. 1324 */ 1325 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1326 goto repeat; 1327 1328 wait->flags |= WQ_FLAG_DONE; 1329 break; 1330 } 1331 1332 /* 1333 * If a signal happened, this 'finish_wait()' may remove the last 1334 * waiter from the wait-queues, but the folio waiters bit will remain 1335 * set. That's ok. The next wakeup will take care of it, and trying 1336 * to do it here would be difficult and prone to races. 1337 */ 1338 finish_wait(q, wait); 1339 1340 if (thrashing) { 1341 delayacct_thrashing_end(&in_thrashing); 1342 psi_memstall_leave(&pflags); 1343 } 1344 1345 /* 1346 * NOTE! The wait->flags weren't stable until we've done the 1347 * 'finish_wait()', and we could have exited the loop above due 1348 * to a signal, and had a wakeup event happen after the signal 1349 * test but before the 'finish_wait()'. 1350 * 1351 * So only after the finish_wait() can we reliably determine 1352 * if we got woken up or not, so we can now figure out the final 1353 * return value based on that state without races. 1354 * 1355 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1356 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1357 */ 1358 if (behavior == EXCLUSIVE) 1359 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1360 1361 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1362 } 1363 1364 #ifdef CONFIG_MIGRATION 1365 /** 1366 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1367 * @entry: migration swap entry. 1368 * @ptl: already locked ptl. This function will drop the lock. 1369 * 1370 * Wait for a migration entry referencing the given page to be removed. This is 1371 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1372 * this can be called without taking a reference on the page. Instead this 1373 * should be called while holding the ptl for the migration entry referencing 1374 * the page. 1375 * 1376 * Returns after unlocking the ptl. 1377 * 1378 * This follows the same logic as folio_wait_bit_common() so see the comments 1379 * there. 1380 */ 1381 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1382 __releases(ptl) 1383 { 1384 struct wait_page_queue wait_page; 1385 wait_queue_entry_t *wait = &wait_page.wait; 1386 bool thrashing = false; 1387 unsigned long pflags; 1388 bool in_thrashing; 1389 wait_queue_head_t *q; 1390 struct folio *folio = pfn_swap_entry_folio(entry); 1391 1392 q = folio_waitqueue(folio); 1393 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1394 delayacct_thrashing_start(&in_thrashing); 1395 psi_memstall_enter(&pflags); 1396 thrashing = true; 1397 } 1398 1399 init_wait(wait); 1400 wait->func = wake_page_function; 1401 wait_page.folio = folio; 1402 wait_page.bit_nr = PG_locked; 1403 wait->flags = 0; 1404 1405 spin_lock_irq(&q->lock); 1406 folio_set_waiters(folio); 1407 if (!folio_trylock_flag(folio, PG_locked, wait)) 1408 __add_wait_queue_entry_tail(q, wait); 1409 spin_unlock_irq(&q->lock); 1410 1411 /* 1412 * If a migration entry exists for the page the migration path must hold 1413 * a valid reference to the page, and it must take the ptl to remove the 1414 * migration entry. So the page is valid until the ptl is dropped. 1415 */ 1416 spin_unlock(ptl); 1417 1418 for (;;) { 1419 unsigned int flags; 1420 1421 set_current_state(TASK_UNINTERRUPTIBLE); 1422 1423 /* Loop until we've been woken or interrupted */ 1424 flags = smp_load_acquire(&wait->flags); 1425 if (!(flags & WQ_FLAG_WOKEN)) { 1426 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1427 break; 1428 1429 io_schedule(); 1430 continue; 1431 } 1432 break; 1433 } 1434 1435 finish_wait(q, wait); 1436 1437 if (thrashing) { 1438 delayacct_thrashing_end(&in_thrashing); 1439 psi_memstall_leave(&pflags); 1440 } 1441 } 1442 #endif 1443 1444 void folio_wait_bit(struct folio *folio, int bit_nr) 1445 { 1446 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1447 } 1448 EXPORT_SYMBOL(folio_wait_bit); 1449 1450 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1451 { 1452 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1453 } 1454 EXPORT_SYMBOL(folio_wait_bit_killable); 1455 1456 /** 1457 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1458 * @folio: The folio to wait for. 1459 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1460 * 1461 * The caller should hold a reference on @folio. They expect the page to 1462 * become unlocked relatively soon, but do not wish to hold up migration 1463 * (for example) by holding the reference while waiting for the folio to 1464 * come unlocked. After this function returns, the caller should not 1465 * dereference @folio. 1466 * 1467 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1468 */ 1469 static int folio_put_wait_locked(struct folio *folio, int state) 1470 { 1471 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1472 } 1473 1474 /** 1475 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1476 * @folio: Folio defining the wait queue of interest 1477 * @waiter: Waiter to add to the queue 1478 * 1479 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1480 */ 1481 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1482 { 1483 wait_queue_head_t *q = folio_waitqueue(folio); 1484 unsigned long flags; 1485 1486 spin_lock_irqsave(&q->lock, flags); 1487 __add_wait_queue_entry_tail(q, waiter); 1488 folio_set_waiters(folio); 1489 spin_unlock_irqrestore(&q->lock, flags); 1490 } 1491 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1492 1493 /** 1494 * folio_unlock - Unlock a locked folio. 1495 * @folio: The folio. 1496 * 1497 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1498 * 1499 * Context: May be called from interrupt or process context. May not be 1500 * called from NMI context. 1501 */ 1502 void folio_unlock(struct folio *folio) 1503 { 1504 /* Bit 7 allows x86 to check the byte's sign bit */ 1505 BUILD_BUG_ON(PG_waiters != 7); 1506 BUILD_BUG_ON(PG_locked > 7); 1507 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1508 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1509 folio_wake_bit(folio, PG_locked); 1510 } 1511 EXPORT_SYMBOL(folio_unlock); 1512 1513 /** 1514 * folio_end_read - End read on a folio. 1515 * @folio: The folio. 1516 * @success: True if all reads completed successfully. 1517 * 1518 * When all reads against a folio have completed, filesystems should 1519 * call this function to let the pagecache know that no more reads 1520 * are outstanding. This will unlock the folio and wake up any thread 1521 * sleeping on the lock. The folio will also be marked uptodate if all 1522 * reads succeeded. 1523 * 1524 * Context: May be called from interrupt or process context. May not be 1525 * called from NMI context. 1526 */ 1527 void folio_end_read(struct folio *folio, bool success) 1528 { 1529 unsigned long mask = 1 << PG_locked; 1530 1531 /* Must be in bottom byte for x86 to work */ 1532 BUILD_BUG_ON(PG_uptodate > 7); 1533 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1534 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 1535 1536 if (likely(success)) 1537 mask |= 1 << PG_uptodate; 1538 if (folio_xor_flags_has_waiters(folio, mask)) 1539 folio_wake_bit(folio, PG_locked); 1540 } 1541 EXPORT_SYMBOL(folio_end_read); 1542 1543 /** 1544 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1545 * @folio: The folio. 1546 * 1547 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1548 * it. The folio reference held for PG_private_2 being set is released. 1549 * 1550 * This is, for example, used when a netfs folio is being written to a local 1551 * disk cache, thereby allowing writes to the cache for the same folio to be 1552 * serialised. 1553 */ 1554 void folio_end_private_2(struct folio *folio) 1555 { 1556 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1557 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1558 folio_wake_bit(folio, PG_private_2); 1559 folio_put(folio); 1560 } 1561 EXPORT_SYMBOL(folio_end_private_2); 1562 1563 /** 1564 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1565 * @folio: The folio to wait on. 1566 * 1567 * Wait for PG_private_2 to be cleared on a folio. 1568 */ 1569 void folio_wait_private_2(struct folio *folio) 1570 { 1571 while (folio_test_private_2(folio)) 1572 folio_wait_bit(folio, PG_private_2); 1573 } 1574 EXPORT_SYMBOL(folio_wait_private_2); 1575 1576 /** 1577 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1578 * @folio: The folio to wait on. 1579 * 1580 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1581 * received by the calling task. 1582 * 1583 * Return: 1584 * - 0 if successful. 1585 * - -EINTR if a fatal signal was encountered. 1586 */ 1587 int folio_wait_private_2_killable(struct folio *folio) 1588 { 1589 int ret = 0; 1590 1591 while (folio_test_private_2(folio)) { 1592 ret = folio_wait_bit_killable(folio, PG_private_2); 1593 if (ret < 0) 1594 break; 1595 } 1596 1597 return ret; 1598 } 1599 EXPORT_SYMBOL(folio_wait_private_2_killable); 1600 1601 /** 1602 * folio_end_writeback - End writeback against a folio. 1603 * @folio: The folio. 1604 * 1605 * The folio must actually be under writeback. 1606 * 1607 * Context: May be called from process or interrupt context. 1608 */ 1609 void folio_end_writeback(struct folio *folio) 1610 { 1611 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1612 1613 /* 1614 * folio_test_clear_reclaim() could be used here but it is an 1615 * atomic operation and overkill in this particular case. Failing 1616 * to shuffle a folio marked for immediate reclaim is too mild 1617 * a gain to justify taking an atomic operation penalty at the 1618 * end of every folio writeback. 1619 */ 1620 if (folio_test_reclaim(folio)) { 1621 folio_clear_reclaim(folio); 1622 folio_rotate_reclaimable(folio); 1623 } 1624 1625 /* 1626 * Writeback does not hold a folio reference of its own, relying 1627 * on truncation to wait for the clearing of PG_writeback. 1628 * But here we must make sure that the folio is not freed and 1629 * reused before the folio_wake_bit(). 1630 */ 1631 folio_get(folio); 1632 if (__folio_end_writeback(folio)) 1633 folio_wake_bit(folio, PG_writeback); 1634 acct_reclaim_writeback(folio); 1635 folio_put(folio); 1636 } 1637 EXPORT_SYMBOL(folio_end_writeback); 1638 1639 /** 1640 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1641 * @folio: The folio to lock 1642 */ 1643 void __folio_lock(struct folio *folio) 1644 { 1645 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1646 EXCLUSIVE); 1647 } 1648 EXPORT_SYMBOL(__folio_lock); 1649 1650 int __folio_lock_killable(struct folio *folio) 1651 { 1652 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1653 EXCLUSIVE); 1654 } 1655 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1656 1657 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1658 { 1659 struct wait_queue_head *q = folio_waitqueue(folio); 1660 int ret; 1661 1662 wait->folio = folio; 1663 wait->bit_nr = PG_locked; 1664 1665 spin_lock_irq(&q->lock); 1666 __add_wait_queue_entry_tail(q, &wait->wait); 1667 folio_set_waiters(folio); 1668 ret = !folio_trylock(folio); 1669 /* 1670 * If we were successful now, we know we're still on the 1671 * waitqueue as we're still under the lock. This means it's 1672 * safe to remove and return success, we know the callback 1673 * isn't going to trigger. 1674 */ 1675 if (!ret) 1676 __remove_wait_queue(q, &wait->wait); 1677 else 1678 ret = -EIOCBQUEUED; 1679 spin_unlock_irq(&q->lock); 1680 return ret; 1681 } 1682 1683 /* 1684 * Return values: 1685 * 0 - folio is locked. 1686 * non-zero - folio is not locked. 1687 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1688 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1689 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1690 * 1691 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1692 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1693 */ 1694 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1695 { 1696 unsigned int flags = vmf->flags; 1697 1698 if (fault_flag_allow_retry_first(flags)) { 1699 /* 1700 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1701 * released even though returning VM_FAULT_RETRY. 1702 */ 1703 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1704 return VM_FAULT_RETRY; 1705 1706 release_fault_lock(vmf); 1707 if (flags & FAULT_FLAG_KILLABLE) 1708 folio_wait_locked_killable(folio); 1709 else 1710 folio_wait_locked(folio); 1711 return VM_FAULT_RETRY; 1712 } 1713 if (flags & FAULT_FLAG_KILLABLE) { 1714 bool ret; 1715 1716 ret = __folio_lock_killable(folio); 1717 if (ret) { 1718 release_fault_lock(vmf); 1719 return VM_FAULT_RETRY; 1720 } 1721 } else { 1722 __folio_lock(folio); 1723 } 1724 1725 return 0; 1726 } 1727 1728 /** 1729 * page_cache_next_miss() - Find the next gap in the page cache. 1730 * @mapping: Mapping. 1731 * @index: Index. 1732 * @max_scan: Maximum range to search. 1733 * 1734 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1735 * gap with the lowest index. 1736 * 1737 * This function may be called under the rcu_read_lock. However, this will 1738 * not atomically search a snapshot of the cache at a single point in time. 1739 * For example, if a gap is created at index 5, then subsequently a gap is 1740 * created at index 10, page_cache_next_miss covering both indices may 1741 * return 10 if called under the rcu_read_lock. 1742 * 1743 * Return: The index of the gap if found, otherwise an index outside the 1744 * range specified (in which case 'return - index >= max_scan' will be true). 1745 * In the rare case of index wrap-around, 0 will be returned. 1746 */ 1747 pgoff_t page_cache_next_miss(struct address_space *mapping, 1748 pgoff_t index, unsigned long max_scan) 1749 { 1750 XA_STATE(xas, &mapping->i_pages, index); 1751 1752 while (max_scan--) { 1753 void *entry = xas_next(&xas); 1754 if (!entry || xa_is_value(entry)) 1755 return xas.xa_index; 1756 if (xas.xa_index == 0) 1757 return 0; 1758 } 1759 1760 return index + max_scan; 1761 } 1762 EXPORT_SYMBOL(page_cache_next_miss); 1763 1764 /** 1765 * page_cache_prev_miss() - Find the previous gap in the page cache. 1766 * @mapping: Mapping. 1767 * @index: Index. 1768 * @max_scan: Maximum range to search. 1769 * 1770 * Search the range [max(index - max_scan + 1, 0), index] for the 1771 * gap with the highest index. 1772 * 1773 * This function may be called under the rcu_read_lock. However, this will 1774 * not atomically search a snapshot of the cache at a single point in time. 1775 * For example, if a gap is created at index 10, then subsequently a gap is 1776 * created at index 5, page_cache_prev_miss() covering both indices may 1777 * return 5 if called under the rcu_read_lock. 1778 * 1779 * Return: The index of the gap if found, otherwise an index outside the 1780 * range specified (in which case 'index - return >= max_scan' will be true). 1781 * In the rare case of wrap-around, ULONG_MAX will be returned. 1782 */ 1783 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1784 pgoff_t index, unsigned long max_scan) 1785 { 1786 XA_STATE(xas, &mapping->i_pages, index); 1787 1788 while (max_scan--) { 1789 void *entry = xas_prev(&xas); 1790 if (!entry || xa_is_value(entry)) 1791 break; 1792 if (xas.xa_index == ULONG_MAX) 1793 break; 1794 } 1795 1796 return xas.xa_index; 1797 } 1798 EXPORT_SYMBOL(page_cache_prev_miss); 1799 1800 /* 1801 * Lockless page cache protocol: 1802 * On the lookup side: 1803 * 1. Load the folio from i_pages 1804 * 2. Increment the refcount if it's not zero 1805 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1806 * 1807 * On the removal side: 1808 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1809 * B. Remove the page from i_pages 1810 * C. Return the page to the page allocator 1811 * 1812 * This means that any page may have its reference count temporarily 1813 * increased by a speculative page cache (or GUP-fast) lookup as it can 1814 * be allocated by another user before the RCU grace period expires. 1815 * Because the refcount temporarily acquired here may end up being the 1816 * last refcount on the page, any page allocation must be freeable by 1817 * folio_put(). 1818 */ 1819 1820 /* 1821 * filemap_get_entry - Get a page cache entry. 1822 * @mapping: the address_space to search 1823 * @index: The page cache index. 1824 * 1825 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1826 * it is returned with an increased refcount. If it is a shadow entry 1827 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1828 * it is returned without further action. 1829 * 1830 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1831 */ 1832 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1833 { 1834 XA_STATE(xas, &mapping->i_pages, index); 1835 struct folio *folio; 1836 1837 rcu_read_lock(); 1838 repeat: 1839 xas_reset(&xas); 1840 folio = xas_load(&xas); 1841 if (xas_retry(&xas, folio)) 1842 goto repeat; 1843 /* 1844 * A shadow entry of a recently evicted page, or a swap entry from 1845 * shmem/tmpfs. Return it without attempting to raise page count. 1846 */ 1847 if (!folio || xa_is_value(folio)) 1848 goto out; 1849 1850 if (!folio_try_get(folio)) 1851 goto repeat; 1852 1853 if (unlikely(folio != xas_reload(&xas))) { 1854 folio_put(folio); 1855 goto repeat; 1856 } 1857 out: 1858 rcu_read_unlock(); 1859 1860 return folio; 1861 } 1862 1863 /** 1864 * __filemap_get_folio - Find and get a reference to a folio. 1865 * @mapping: The address_space to search. 1866 * @index: The page index. 1867 * @fgp_flags: %FGP flags modify how the folio is returned. 1868 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1869 * 1870 * Looks up the page cache entry at @mapping & @index. 1871 * 1872 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1873 * if the %GFP flags specified for %FGP_CREAT are atomic. 1874 * 1875 * If this function returns a folio, it is returned with an increased refcount. 1876 * 1877 * Return: The found folio or an ERR_PTR() otherwise. 1878 */ 1879 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1880 fgf_t fgp_flags, gfp_t gfp) 1881 { 1882 struct folio *folio; 1883 1884 repeat: 1885 folio = filemap_get_entry(mapping, index); 1886 if (xa_is_value(folio)) 1887 folio = NULL; 1888 if (!folio) 1889 goto no_page; 1890 1891 if (fgp_flags & FGP_LOCK) { 1892 if (fgp_flags & FGP_NOWAIT) { 1893 if (!folio_trylock(folio)) { 1894 folio_put(folio); 1895 return ERR_PTR(-EAGAIN); 1896 } 1897 } else { 1898 folio_lock(folio); 1899 } 1900 1901 /* Has the page been truncated? */ 1902 if (unlikely(folio->mapping != mapping)) { 1903 folio_unlock(folio); 1904 folio_put(folio); 1905 goto repeat; 1906 } 1907 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1908 } 1909 1910 if (fgp_flags & FGP_ACCESSED) 1911 folio_mark_accessed(folio); 1912 else if (fgp_flags & FGP_WRITE) { 1913 /* Clear idle flag for buffer write */ 1914 if (folio_test_idle(folio)) 1915 folio_clear_idle(folio); 1916 } 1917 1918 if (fgp_flags & FGP_STABLE) 1919 folio_wait_stable(folio); 1920 no_page: 1921 if (!folio && (fgp_flags & FGP_CREAT)) { 1922 unsigned order = FGF_GET_ORDER(fgp_flags); 1923 int err; 1924 1925 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1926 gfp |= __GFP_WRITE; 1927 if (fgp_flags & FGP_NOFS) 1928 gfp &= ~__GFP_FS; 1929 if (fgp_flags & FGP_NOWAIT) { 1930 gfp &= ~GFP_KERNEL; 1931 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1932 } 1933 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1934 fgp_flags |= FGP_LOCK; 1935 1936 if (!mapping_large_folio_support(mapping)) 1937 order = 0; 1938 if (order > MAX_PAGECACHE_ORDER) 1939 order = MAX_PAGECACHE_ORDER; 1940 /* If we're not aligned, allocate a smaller folio */ 1941 if (index & ((1UL << order) - 1)) 1942 order = __ffs(index); 1943 1944 do { 1945 gfp_t alloc_gfp = gfp; 1946 1947 err = -ENOMEM; 1948 if (order > 0) 1949 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1950 folio = filemap_alloc_folio(alloc_gfp, order); 1951 if (!folio) 1952 continue; 1953 1954 /* Init accessed so avoid atomic mark_page_accessed later */ 1955 if (fgp_flags & FGP_ACCESSED) 1956 __folio_set_referenced(folio); 1957 1958 err = filemap_add_folio(mapping, folio, index, gfp); 1959 if (!err) 1960 break; 1961 folio_put(folio); 1962 folio = NULL; 1963 } while (order-- > 0); 1964 1965 if (err == -EEXIST) 1966 goto repeat; 1967 if (err) 1968 return ERR_PTR(err); 1969 /* 1970 * filemap_add_folio locks the page, and for mmap 1971 * we expect an unlocked page. 1972 */ 1973 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1974 folio_unlock(folio); 1975 } 1976 1977 if (!folio) 1978 return ERR_PTR(-ENOENT); 1979 return folio; 1980 } 1981 EXPORT_SYMBOL(__filemap_get_folio); 1982 1983 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1984 xa_mark_t mark) 1985 { 1986 struct folio *folio; 1987 1988 retry: 1989 if (mark == XA_PRESENT) 1990 folio = xas_find(xas, max); 1991 else 1992 folio = xas_find_marked(xas, max, mark); 1993 1994 if (xas_retry(xas, folio)) 1995 goto retry; 1996 /* 1997 * A shadow entry of a recently evicted page, a swap 1998 * entry from shmem/tmpfs or a DAX entry. Return it 1999 * without attempting to raise page count. 2000 */ 2001 if (!folio || xa_is_value(folio)) 2002 return folio; 2003 2004 if (!folio_try_get(folio)) 2005 goto reset; 2006 2007 if (unlikely(folio != xas_reload(xas))) { 2008 folio_put(folio); 2009 goto reset; 2010 } 2011 2012 return folio; 2013 reset: 2014 xas_reset(xas); 2015 goto retry; 2016 } 2017 2018 /** 2019 * find_get_entries - gang pagecache lookup 2020 * @mapping: The address_space to search 2021 * @start: The starting page cache index 2022 * @end: The final page index (inclusive). 2023 * @fbatch: Where the resulting entries are placed. 2024 * @indices: The cache indices corresponding to the entries in @entries 2025 * 2026 * find_get_entries() will search for and return a batch of entries in 2027 * the mapping. The entries are placed in @fbatch. find_get_entries() 2028 * takes a reference on any actual folios it returns. 2029 * 2030 * The entries have ascending indexes. The indices may not be consecutive 2031 * due to not-present entries or large folios. 2032 * 2033 * Any shadow entries of evicted folios, or swap entries from 2034 * shmem/tmpfs, are included in the returned array. 2035 * 2036 * Return: The number of entries which were found. 2037 */ 2038 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2039 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2040 { 2041 XA_STATE(xas, &mapping->i_pages, *start); 2042 struct folio *folio; 2043 2044 rcu_read_lock(); 2045 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2046 indices[fbatch->nr] = xas.xa_index; 2047 if (!folio_batch_add(fbatch, folio)) 2048 break; 2049 } 2050 rcu_read_unlock(); 2051 2052 if (folio_batch_count(fbatch)) { 2053 unsigned long nr = 1; 2054 int idx = folio_batch_count(fbatch) - 1; 2055 2056 folio = fbatch->folios[idx]; 2057 if (!xa_is_value(folio)) 2058 nr = folio_nr_pages(folio); 2059 *start = indices[idx] + nr; 2060 } 2061 return folio_batch_count(fbatch); 2062 } 2063 2064 /** 2065 * find_lock_entries - Find a batch of pagecache entries. 2066 * @mapping: The address_space to search. 2067 * @start: The starting page cache index. 2068 * @end: The final page index (inclusive). 2069 * @fbatch: Where the resulting entries are placed. 2070 * @indices: The cache indices of the entries in @fbatch. 2071 * 2072 * find_lock_entries() will return a batch of entries from @mapping. 2073 * Swap, shadow and DAX entries are included. Folios are returned 2074 * locked and with an incremented refcount. Folios which are locked 2075 * by somebody else or under writeback are skipped. Folios which are 2076 * partially outside the range are not returned. 2077 * 2078 * The entries have ascending indexes. The indices may not be consecutive 2079 * due to not-present entries, large folios, folios which could not be 2080 * locked or folios under writeback. 2081 * 2082 * Return: The number of entries which were found. 2083 */ 2084 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2085 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2086 { 2087 XA_STATE(xas, &mapping->i_pages, *start); 2088 struct folio *folio; 2089 2090 rcu_read_lock(); 2091 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2092 if (!xa_is_value(folio)) { 2093 if (folio->index < *start) 2094 goto put; 2095 if (folio_next_index(folio) - 1 > end) 2096 goto put; 2097 if (!folio_trylock(folio)) 2098 goto put; 2099 if (folio->mapping != mapping || 2100 folio_test_writeback(folio)) 2101 goto unlock; 2102 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2103 folio); 2104 } 2105 indices[fbatch->nr] = xas.xa_index; 2106 if (!folio_batch_add(fbatch, folio)) 2107 break; 2108 continue; 2109 unlock: 2110 folio_unlock(folio); 2111 put: 2112 folio_put(folio); 2113 } 2114 rcu_read_unlock(); 2115 2116 if (folio_batch_count(fbatch)) { 2117 unsigned long nr = 1; 2118 int idx = folio_batch_count(fbatch) - 1; 2119 2120 folio = fbatch->folios[idx]; 2121 if (!xa_is_value(folio)) 2122 nr = folio_nr_pages(folio); 2123 *start = indices[idx] + nr; 2124 } 2125 return folio_batch_count(fbatch); 2126 } 2127 2128 /** 2129 * filemap_get_folios - Get a batch of folios 2130 * @mapping: The address_space to search 2131 * @start: The starting page index 2132 * @end: The final page index (inclusive) 2133 * @fbatch: The batch to fill. 2134 * 2135 * Search for and return a batch of folios in the mapping starting at 2136 * index @start and up to index @end (inclusive). The folios are returned 2137 * in @fbatch with an elevated reference count. 2138 * 2139 * Return: The number of folios which were found. 2140 * We also update @start to index the next folio for the traversal. 2141 */ 2142 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2143 pgoff_t end, struct folio_batch *fbatch) 2144 { 2145 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2146 } 2147 EXPORT_SYMBOL(filemap_get_folios); 2148 2149 /** 2150 * filemap_get_folios_contig - Get a batch of contiguous folios 2151 * @mapping: The address_space to search 2152 * @start: The starting page index 2153 * @end: The final page index (inclusive) 2154 * @fbatch: The batch to fill 2155 * 2156 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2157 * except the returned folios are guaranteed to be contiguous. This may 2158 * not return all contiguous folios if the batch gets filled up. 2159 * 2160 * Return: The number of folios found. 2161 * Also update @start to be positioned for traversal of the next folio. 2162 */ 2163 2164 unsigned filemap_get_folios_contig(struct address_space *mapping, 2165 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2166 { 2167 XA_STATE(xas, &mapping->i_pages, *start); 2168 unsigned long nr; 2169 struct folio *folio; 2170 2171 rcu_read_lock(); 2172 2173 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2174 folio = xas_next(&xas)) { 2175 if (xas_retry(&xas, folio)) 2176 continue; 2177 /* 2178 * If the entry has been swapped out, we can stop looking. 2179 * No current caller is looking for DAX entries. 2180 */ 2181 if (xa_is_value(folio)) 2182 goto update_start; 2183 2184 /* If we landed in the middle of a THP, continue at its end. */ 2185 if (xa_is_sibling(folio)) 2186 goto update_start; 2187 2188 if (!folio_try_get(folio)) 2189 goto retry; 2190 2191 if (unlikely(folio != xas_reload(&xas))) 2192 goto put_folio; 2193 2194 if (!folio_batch_add(fbatch, folio)) { 2195 nr = folio_nr_pages(folio); 2196 *start = folio->index + nr; 2197 goto out; 2198 } 2199 continue; 2200 put_folio: 2201 folio_put(folio); 2202 2203 retry: 2204 xas_reset(&xas); 2205 } 2206 2207 update_start: 2208 nr = folio_batch_count(fbatch); 2209 2210 if (nr) { 2211 folio = fbatch->folios[nr - 1]; 2212 *start = folio_next_index(folio); 2213 } 2214 out: 2215 rcu_read_unlock(); 2216 return folio_batch_count(fbatch); 2217 } 2218 EXPORT_SYMBOL(filemap_get_folios_contig); 2219 2220 /** 2221 * filemap_get_folios_tag - Get a batch of folios matching @tag 2222 * @mapping: The address_space to search 2223 * @start: The starting page index 2224 * @end: The final page index (inclusive) 2225 * @tag: The tag index 2226 * @fbatch: The batch to fill 2227 * 2228 * The first folio may start before @start; if it does, it will contain 2229 * @start. The final folio may extend beyond @end; if it does, it will 2230 * contain @end. The folios have ascending indices. There may be gaps 2231 * between the folios if there are indices which have no folio in the 2232 * page cache. If folios are added to or removed from the page cache 2233 * while this is running, they may or may not be found by this call. 2234 * Only returns folios that are tagged with @tag. 2235 * 2236 * Return: The number of folios found. 2237 * Also update @start to index the next folio for traversal. 2238 */ 2239 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2240 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2241 { 2242 XA_STATE(xas, &mapping->i_pages, *start); 2243 struct folio *folio; 2244 2245 rcu_read_lock(); 2246 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2247 /* 2248 * Shadow entries should never be tagged, but this iteration 2249 * is lockless so there is a window for page reclaim to evict 2250 * a page we saw tagged. Skip over it. 2251 */ 2252 if (xa_is_value(folio)) 2253 continue; 2254 if (!folio_batch_add(fbatch, folio)) { 2255 unsigned long nr = folio_nr_pages(folio); 2256 *start = folio->index + nr; 2257 goto out; 2258 } 2259 } 2260 /* 2261 * We come here when there is no page beyond @end. We take care to not 2262 * overflow the index @start as it confuses some of the callers. This 2263 * breaks the iteration when there is a page at index -1 but that is 2264 * already broke anyway. 2265 */ 2266 if (end == (pgoff_t)-1) 2267 *start = (pgoff_t)-1; 2268 else 2269 *start = end + 1; 2270 out: 2271 rcu_read_unlock(); 2272 2273 return folio_batch_count(fbatch); 2274 } 2275 EXPORT_SYMBOL(filemap_get_folios_tag); 2276 2277 /* 2278 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2279 * a _large_ part of the i/o request. Imagine the worst scenario: 2280 * 2281 * ---R__________________________________________B__________ 2282 * ^ reading here ^ bad block(assume 4k) 2283 * 2284 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2285 * => failing the whole request => read(R) => read(R+1) => 2286 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2287 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2288 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2289 * 2290 * It is going insane. Fix it by quickly scaling down the readahead size. 2291 */ 2292 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2293 { 2294 ra->ra_pages /= 4; 2295 } 2296 2297 /* 2298 * filemap_get_read_batch - Get a batch of folios for read 2299 * 2300 * Get a batch of folios which represent a contiguous range of bytes in 2301 * the file. No exceptional entries will be returned. If @index is in 2302 * the middle of a folio, the entire folio will be returned. The last 2303 * folio in the batch may have the readahead flag set or the uptodate flag 2304 * clear so that the caller can take the appropriate action. 2305 */ 2306 static void filemap_get_read_batch(struct address_space *mapping, 2307 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2308 { 2309 XA_STATE(xas, &mapping->i_pages, index); 2310 struct folio *folio; 2311 2312 rcu_read_lock(); 2313 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2314 if (xas_retry(&xas, folio)) 2315 continue; 2316 if (xas.xa_index > max || xa_is_value(folio)) 2317 break; 2318 if (xa_is_sibling(folio)) 2319 break; 2320 if (!folio_try_get(folio)) 2321 goto retry; 2322 2323 if (unlikely(folio != xas_reload(&xas))) 2324 goto put_folio; 2325 2326 if (!folio_batch_add(fbatch, folio)) 2327 break; 2328 if (!folio_test_uptodate(folio)) 2329 break; 2330 if (folio_test_readahead(folio)) 2331 break; 2332 xas_advance(&xas, folio_next_index(folio) - 1); 2333 continue; 2334 put_folio: 2335 folio_put(folio); 2336 retry: 2337 xas_reset(&xas); 2338 } 2339 rcu_read_unlock(); 2340 } 2341 2342 static int filemap_read_folio(struct file *file, filler_t filler, 2343 struct folio *folio) 2344 { 2345 bool workingset = folio_test_workingset(folio); 2346 unsigned long pflags; 2347 int error; 2348 2349 /* 2350 * A previous I/O error may have been due to temporary failures, 2351 * eg. multipath errors. PG_error will be set again if read_folio 2352 * fails. 2353 */ 2354 folio_clear_error(folio); 2355 2356 /* Start the actual read. The read will unlock the page. */ 2357 if (unlikely(workingset)) 2358 psi_memstall_enter(&pflags); 2359 error = filler(file, folio); 2360 if (unlikely(workingset)) 2361 psi_memstall_leave(&pflags); 2362 if (error) 2363 return error; 2364 2365 error = folio_wait_locked_killable(folio); 2366 if (error) 2367 return error; 2368 if (folio_test_uptodate(folio)) 2369 return 0; 2370 if (file) 2371 shrink_readahead_size_eio(&file->f_ra); 2372 return -EIO; 2373 } 2374 2375 static bool filemap_range_uptodate(struct address_space *mapping, 2376 loff_t pos, size_t count, struct folio *folio, 2377 bool need_uptodate) 2378 { 2379 if (folio_test_uptodate(folio)) 2380 return true; 2381 /* pipes can't handle partially uptodate pages */ 2382 if (need_uptodate) 2383 return false; 2384 if (!mapping->a_ops->is_partially_uptodate) 2385 return false; 2386 if (mapping->host->i_blkbits >= folio_shift(folio)) 2387 return false; 2388 2389 if (folio_pos(folio) > pos) { 2390 count -= folio_pos(folio) - pos; 2391 pos = 0; 2392 } else { 2393 pos -= folio_pos(folio); 2394 } 2395 2396 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2397 } 2398 2399 static int filemap_update_page(struct kiocb *iocb, 2400 struct address_space *mapping, size_t count, 2401 struct folio *folio, bool need_uptodate) 2402 { 2403 int error; 2404 2405 if (iocb->ki_flags & IOCB_NOWAIT) { 2406 if (!filemap_invalidate_trylock_shared(mapping)) 2407 return -EAGAIN; 2408 } else { 2409 filemap_invalidate_lock_shared(mapping); 2410 } 2411 2412 if (!folio_trylock(folio)) { 2413 error = -EAGAIN; 2414 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2415 goto unlock_mapping; 2416 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2417 filemap_invalidate_unlock_shared(mapping); 2418 /* 2419 * This is where we usually end up waiting for a 2420 * previously submitted readahead to finish. 2421 */ 2422 folio_put_wait_locked(folio, TASK_KILLABLE); 2423 return AOP_TRUNCATED_PAGE; 2424 } 2425 error = __folio_lock_async(folio, iocb->ki_waitq); 2426 if (error) 2427 goto unlock_mapping; 2428 } 2429 2430 error = AOP_TRUNCATED_PAGE; 2431 if (!folio->mapping) 2432 goto unlock; 2433 2434 error = 0; 2435 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2436 need_uptodate)) 2437 goto unlock; 2438 2439 error = -EAGAIN; 2440 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2441 goto unlock; 2442 2443 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2444 folio); 2445 goto unlock_mapping; 2446 unlock: 2447 folio_unlock(folio); 2448 unlock_mapping: 2449 filemap_invalidate_unlock_shared(mapping); 2450 if (error == AOP_TRUNCATED_PAGE) 2451 folio_put(folio); 2452 return error; 2453 } 2454 2455 static int filemap_create_folio(struct file *file, 2456 struct address_space *mapping, pgoff_t index, 2457 struct folio_batch *fbatch) 2458 { 2459 struct folio *folio; 2460 int error; 2461 2462 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2463 if (!folio) 2464 return -ENOMEM; 2465 2466 /* 2467 * Protect against truncate / hole punch. Grabbing invalidate_lock 2468 * here assures we cannot instantiate and bring uptodate new 2469 * pagecache folios after evicting page cache during truncate 2470 * and before actually freeing blocks. Note that we could 2471 * release invalidate_lock after inserting the folio into 2472 * the page cache as the locked folio would then be enough to 2473 * synchronize with hole punching. But there are code paths 2474 * such as filemap_update_page() filling in partially uptodate 2475 * pages or ->readahead() that need to hold invalidate_lock 2476 * while mapping blocks for IO so let's hold the lock here as 2477 * well to keep locking rules simple. 2478 */ 2479 filemap_invalidate_lock_shared(mapping); 2480 error = filemap_add_folio(mapping, folio, index, 2481 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2482 if (error == -EEXIST) 2483 error = AOP_TRUNCATED_PAGE; 2484 if (error) 2485 goto error; 2486 2487 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2488 if (error) 2489 goto error; 2490 2491 filemap_invalidate_unlock_shared(mapping); 2492 folio_batch_add(fbatch, folio); 2493 return 0; 2494 error: 2495 filemap_invalidate_unlock_shared(mapping); 2496 folio_put(folio); 2497 return error; 2498 } 2499 2500 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2501 struct address_space *mapping, struct folio *folio, 2502 pgoff_t last_index) 2503 { 2504 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2505 2506 if (iocb->ki_flags & IOCB_NOIO) 2507 return -EAGAIN; 2508 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2509 return 0; 2510 } 2511 2512 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2513 struct folio_batch *fbatch, bool need_uptodate) 2514 { 2515 struct file *filp = iocb->ki_filp; 2516 struct address_space *mapping = filp->f_mapping; 2517 struct file_ra_state *ra = &filp->f_ra; 2518 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2519 pgoff_t last_index; 2520 struct folio *folio; 2521 int err = 0; 2522 2523 /* "last_index" is the index of the page beyond the end of the read */ 2524 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2525 retry: 2526 if (fatal_signal_pending(current)) 2527 return -EINTR; 2528 2529 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2530 if (!folio_batch_count(fbatch)) { 2531 if (iocb->ki_flags & IOCB_NOIO) 2532 return -EAGAIN; 2533 page_cache_sync_readahead(mapping, ra, filp, index, 2534 last_index - index); 2535 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2536 } 2537 if (!folio_batch_count(fbatch)) { 2538 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2539 return -EAGAIN; 2540 err = filemap_create_folio(filp, mapping, 2541 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2542 if (err == AOP_TRUNCATED_PAGE) 2543 goto retry; 2544 return err; 2545 } 2546 2547 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2548 if (folio_test_readahead(folio)) { 2549 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2550 if (err) 2551 goto err; 2552 } 2553 if (!folio_test_uptodate(folio)) { 2554 if ((iocb->ki_flags & IOCB_WAITQ) && 2555 folio_batch_count(fbatch) > 1) 2556 iocb->ki_flags |= IOCB_NOWAIT; 2557 err = filemap_update_page(iocb, mapping, count, folio, 2558 need_uptodate); 2559 if (err) 2560 goto err; 2561 } 2562 2563 return 0; 2564 err: 2565 if (err < 0) 2566 folio_put(folio); 2567 if (likely(--fbatch->nr)) 2568 return 0; 2569 if (err == AOP_TRUNCATED_PAGE) 2570 goto retry; 2571 return err; 2572 } 2573 2574 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2575 { 2576 unsigned int shift = folio_shift(folio); 2577 2578 return (pos1 >> shift == pos2 >> shift); 2579 } 2580 2581 /** 2582 * filemap_read - Read data from the page cache. 2583 * @iocb: The iocb to read. 2584 * @iter: Destination for the data. 2585 * @already_read: Number of bytes already read by the caller. 2586 * 2587 * Copies data from the page cache. If the data is not currently present, 2588 * uses the readahead and read_folio address_space operations to fetch it. 2589 * 2590 * Return: Total number of bytes copied, including those already read by 2591 * the caller. If an error happens before any bytes are copied, returns 2592 * a negative error number. 2593 */ 2594 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2595 ssize_t already_read) 2596 { 2597 struct file *filp = iocb->ki_filp; 2598 struct file_ra_state *ra = &filp->f_ra; 2599 struct address_space *mapping = filp->f_mapping; 2600 struct inode *inode = mapping->host; 2601 struct folio_batch fbatch; 2602 int i, error = 0; 2603 bool writably_mapped; 2604 loff_t isize, end_offset; 2605 loff_t last_pos = ra->prev_pos; 2606 2607 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2608 return 0; 2609 if (unlikely(!iov_iter_count(iter))) 2610 return 0; 2611 2612 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2613 folio_batch_init(&fbatch); 2614 2615 do { 2616 cond_resched(); 2617 2618 /* 2619 * If we've already successfully copied some data, then we 2620 * can no longer safely return -EIOCBQUEUED. Hence mark 2621 * an async read NOWAIT at that point. 2622 */ 2623 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2624 iocb->ki_flags |= IOCB_NOWAIT; 2625 2626 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2627 break; 2628 2629 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2630 if (error < 0) 2631 break; 2632 2633 /* 2634 * i_size must be checked after we know the pages are Uptodate. 2635 * 2636 * Checking i_size after the check allows us to calculate 2637 * the correct value for "nr", which means the zero-filled 2638 * part of the page is not copied back to userspace (unless 2639 * another truncate extends the file - this is desired though). 2640 */ 2641 isize = i_size_read(inode); 2642 if (unlikely(iocb->ki_pos >= isize)) 2643 goto put_folios; 2644 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2645 2646 /* 2647 * Once we start copying data, we don't want to be touching any 2648 * cachelines that might be contended: 2649 */ 2650 writably_mapped = mapping_writably_mapped(mapping); 2651 2652 /* 2653 * When a read accesses the same folio several times, only 2654 * mark it as accessed the first time. 2655 */ 2656 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2657 fbatch.folios[0])) 2658 folio_mark_accessed(fbatch.folios[0]); 2659 2660 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2661 struct folio *folio = fbatch.folios[i]; 2662 size_t fsize = folio_size(folio); 2663 size_t offset = iocb->ki_pos & (fsize - 1); 2664 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2665 fsize - offset); 2666 size_t copied; 2667 2668 if (end_offset < folio_pos(folio)) 2669 break; 2670 if (i > 0) 2671 folio_mark_accessed(folio); 2672 /* 2673 * If users can be writing to this folio using arbitrary 2674 * virtual addresses, take care of potential aliasing 2675 * before reading the folio on the kernel side. 2676 */ 2677 if (writably_mapped) 2678 flush_dcache_folio(folio); 2679 2680 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2681 2682 already_read += copied; 2683 iocb->ki_pos += copied; 2684 last_pos = iocb->ki_pos; 2685 2686 if (copied < bytes) { 2687 error = -EFAULT; 2688 break; 2689 } 2690 } 2691 put_folios: 2692 for (i = 0; i < folio_batch_count(&fbatch); i++) 2693 folio_put(fbatch.folios[i]); 2694 folio_batch_init(&fbatch); 2695 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2696 2697 file_accessed(filp); 2698 ra->prev_pos = last_pos; 2699 return already_read ? already_read : error; 2700 } 2701 EXPORT_SYMBOL_GPL(filemap_read); 2702 2703 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2704 { 2705 struct address_space *mapping = iocb->ki_filp->f_mapping; 2706 loff_t pos = iocb->ki_pos; 2707 loff_t end = pos + count - 1; 2708 2709 if (iocb->ki_flags & IOCB_NOWAIT) { 2710 if (filemap_range_needs_writeback(mapping, pos, end)) 2711 return -EAGAIN; 2712 return 0; 2713 } 2714 2715 return filemap_write_and_wait_range(mapping, pos, end); 2716 } 2717 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2718 2719 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2720 { 2721 struct address_space *mapping = iocb->ki_filp->f_mapping; 2722 loff_t pos = iocb->ki_pos; 2723 loff_t end = pos + count - 1; 2724 int ret; 2725 2726 if (iocb->ki_flags & IOCB_NOWAIT) { 2727 /* we could block if there are any pages in the range */ 2728 if (filemap_range_has_page(mapping, pos, end)) 2729 return -EAGAIN; 2730 } else { 2731 ret = filemap_write_and_wait_range(mapping, pos, end); 2732 if (ret) 2733 return ret; 2734 } 2735 2736 /* 2737 * After a write we want buffered reads to be sure to go to disk to get 2738 * the new data. We invalidate clean cached page from the region we're 2739 * about to write. We do this *before* the write so that we can return 2740 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2741 */ 2742 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2743 end >> PAGE_SHIFT); 2744 } 2745 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2746 2747 /** 2748 * generic_file_read_iter - generic filesystem read routine 2749 * @iocb: kernel I/O control block 2750 * @iter: destination for the data read 2751 * 2752 * This is the "read_iter()" routine for all filesystems 2753 * that can use the page cache directly. 2754 * 2755 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2756 * be returned when no data can be read without waiting for I/O requests 2757 * to complete; it doesn't prevent readahead. 2758 * 2759 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2760 * requests shall be made for the read or for readahead. When no data 2761 * can be read, -EAGAIN shall be returned. When readahead would be 2762 * triggered, a partial, possibly empty read shall be returned. 2763 * 2764 * Return: 2765 * * number of bytes copied, even for partial reads 2766 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2767 */ 2768 ssize_t 2769 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2770 { 2771 size_t count = iov_iter_count(iter); 2772 ssize_t retval = 0; 2773 2774 if (!count) 2775 return 0; /* skip atime */ 2776 2777 if (iocb->ki_flags & IOCB_DIRECT) { 2778 struct file *file = iocb->ki_filp; 2779 struct address_space *mapping = file->f_mapping; 2780 struct inode *inode = mapping->host; 2781 2782 retval = kiocb_write_and_wait(iocb, count); 2783 if (retval < 0) 2784 return retval; 2785 file_accessed(file); 2786 2787 retval = mapping->a_ops->direct_IO(iocb, iter); 2788 if (retval >= 0) { 2789 iocb->ki_pos += retval; 2790 count -= retval; 2791 } 2792 if (retval != -EIOCBQUEUED) 2793 iov_iter_revert(iter, count - iov_iter_count(iter)); 2794 2795 /* 2796 * Btrfs can have a short DIO read if we encounter 2797 * compressed extents, so if there was an error, or if 2798 * we've already read everything we wanted to, or if 2799 * there was a short read because we hit EOF, go ahead 2800 * and return. Otherwise fallthrough to buffered io for 2801 * the rest of the read. Buffered reads will not work for 2802 * DAX files, so don't bother trying. 2803 */ 2804 if (retval < 0 || !count || IS_DAX(inode)) 2805 return retval; 2806 if (iocb->ki_pos >= i_size_read(inode)) 2807 return retval; 2808 } 2809 2810 return filemap_read(iocb, iter, retval); 2811 } 2812 EXPORT_SYMBOL(generic_file_read_iter); 2813 2814 /* 2815 * Splice subpages from a folio into a pipe. 2816 */ 2817 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2818 struct folio *folio, loff_t fpos, size_t size) 2819 { 2820 struct page *page; 2821 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2822 2823 page = folio_page(folio, offset / PAGE_SIZE); 2824 size = min(size, folio_size(folio) - offset); 2825 offset %= PAGE_SIZE; 2826 2827 while (spliced < size && 2828 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2829 struct pipe_buffer *buf = pipe_head_buf(pipe); 2830 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2831 2832 *buf = (struct pipe_buffer) { 2833 .ops = &page_cache_pipe_buf_ops, 2834 .page = page, 2835 .offset = offset, 2836 .len = part, 2837 }; 2838 folio_get(folio); 2839 pipe->head++; 2840 page++; 2841 spliced += part; 2842 offset = 0; 2843 } 2844 2845 return spliced; 2846 } 2847 2848 /** 2849 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2850 * @in: The file to read from 2851 * @ppos: Pointer to the file position to read from 2852 * @pipe: The pipe to splice into 2853 * @len: The amount to splice 2854 * @flags: The SPLICE_F_* flags 2855 * 2856 * This function gets folios from a file's pagecache and splices them into the 2857 * pipe. Readahead will be called as necessary to fill more folios. This may 2858 * be used for blockdevs also. 2859 * 2860 * Return: On success, the number of bytes read will be returned and *@ppos 2861 * will be updated if appropriate; 0 will be returned if there is no more data 2862 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2863 * other negative error code will be returned on error. A short read may occur 2864 * if the pipe has insufficient space, we reach the end of the data or we hit a 2865 * hole. 2866 */ 2867 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2868 struct pipe_inode_info *pipe, 2869 size_t len, unsigned int flags) 2870 { 2871 struct folio_batch fbatch; 2872 struct kiocb iocb; 2873 size_t total_spliced = 0, used, npages; 2874 loff_t isize, end_offset; 2875 bool writably_mapped; 2876 int i, error = 0; 2877 2878 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2879 return 0; 2880 2881 init_sync_kiocb(&iocb, in); 2882 iocb.ki_pos = *ppos; 2883 2884 /* Work out how much data we can actually add into the pipe */ 2885 used = pipe_occupancy(pipe->head, pipe->tail); 2886 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2887 len = min_t(size_t, len, npages * PAGE_SIZE); 2888 2889 folio_batch_init(&fbatch); 2890 2891 do { 2892 cond_resched(); 2893 2894 if (*ppos >= i_size_read(in->f_mapping->host)) 2895 break; 2896 2897 iocb.ki_pos = *ppos; 2898 error = filemap_get_pages(&iocb, len, &fbatch, true); 2899 if (error < 0) 2900 break; 2901 2902 /* 2903 * i_size must be checked after we know the pages are Uptodate. 2904 * 2905 * Checking i_size after the check allows us to calculate 2906 * the correct value for "nr", which means the zero-filled 2907 * part of the page is not copied back to userspace (unless 2908 * another truncate extends the file - this is desired though). 2909 */ 2910 isize = i_size_read(in->f_mapping->host); 2911 if (unlikely(*ppos >= isize)) 2912 break; 2913 end_offset = min_t(loff_t, isize, *ppos + len); 2914 2915 /* 2916 * Once we start copying data, we don't want to be touching any 2917 * cachelines that might be contended: 2918 */ 2919 writably_mapped = mapping_writably_mapped(in->f_mapping); 2920 2921 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2922 struct folio *folio = fbatch.folios[i]; 2923 size_t n; 2924 2925 if (folio_pos(folio) >= end_offset) 2926 goto out; 2927 folio_mark_accessed(folio); 2928 2929 /* 2930 * If users can be writing to this folio using arbitrary 2931 * virtual addresses, take care of potential aliasing 2932 * before reading the folio on the kernel side. 2933 */ 2934 if (writably_mapped) 2935 flush_dcache_folio(folio); 2936 2937 n = min_t(loff_t, len, isize - *ppos); 2938 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2939 if (!n) 2940 goto out; 2941 len -= n; 2942 total_spliced += n; 2943 *ppos += n; 2944 in->f_ra.prev_pos = *ppos; 2945 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2946 goto out; 2947 } 2948 2949 folio_batch_release(&fbatch); 2950 } while (len); 2951 2952 out: 2953 folio_batch_release(&fbatch); 2954 file_accessed(in); 2955 2956 return total_spliced ? total_spliced : error; 2957 } 2958 EXPORT_SYMBOL(filemap_splice_read); 2959 2960 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2961 struct address_space *mapping, struct folio *folio, 2962 loff_t start, loff_t end, bool seek_data) 2963 { 2964 const struct address_space_operations *ops = mapping->a_ops; 2965 size_t offset, bsz = i_blocksize(mapping->host); 2966 2967 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2968 return seek_data ? start : end; 2969 if (!ops->is_partially_uptodate) 2970 return seek_data ? end : start; 2971 2972 xas_pause(xas); 2973 rcu_read_unlock(); 2974 folio_lock(folio); 2975 if (unlikely(folio->mapping != mapping)) 2976 goto unlock; 2977 2978 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2979 2980 do { 2981 if (ops->is_partially_uptodate(folio, offset, bsz) == 2982 seek_data) 2983 break; 2984 start = (start + bsz) & ~(bsz - 1); 2985 offset += bsz; 2986 } while (offset < folio_size(folio)); 2987 unlock: 2988 folio_unlock(folio); 2989 rcu_read_lock(); 2990 return start; 2991 } 2992 2993 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2994 { 2995 if (xa_is_value(folio)) 2996 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2997 return folio_size(folio); 2998 } 2999 3000 /** 3001 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3002 * @mapping: Address space to search. 3003 * @start: First byte to consider. 3004 * @end: Limit of search (exclusive). 3005 * @whence: Either SEEK_HOLE or SEEK_DATA. 3006 * 3007 * If the page cache knows which blocks contain holes and which blocks 3008 * contain data, your filesystem can use this function to implement 3009 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3010 * entirely memory-based such as tmpfs, and filesystems which support 3011 * unwritten extents. 3012 * 3013 * Return: The requested offset on success, or -ENXIO if @whence specifies 3014 * SEEK_DATA and there is no data after @start. There is an implicit hole 3015 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3016 * and @end contain data. 3017 */ 3018 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3019 loff_t end, int whence) 3020 { 3021 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3022 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3023 bool seek_data = (whence == SEEK_DATA); 3024 struct folio *folio; 3025 3026 if (end <= start) 3027 return -ENXIO; 3028 3029 rcu_read_lock(); 3030 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3031 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3032 size_t seek_size; 3033 3034 if (start < pos) { 3035 if (!seek_data) 3036 goto unlock; 3037 start = pos; 3038 } 3039 3040 seek_size = seek_folio_size(&xas, folio); 3041 pos = round_up((u64)pos + 1, seek_size); 3042 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3043 seek_data); 3044 if (start < pos) 3045 goto unlock; 3046 if (start >= end) 3047 break; 3048 if (seek_size > PAGE_SIZE) 3049 xas_set(&xas, pos >> PAGE_SHIFT); 3050 if (!xa_is_value(folio)) 3051 folio_put(folio); 3052 } 3053 if (seek_data) 3054 start = -ENXIO; 3055 unlock: 3056 rcu_read_unlock(); 3057 if (folio && !xa_is_value(folio)) 3058 folio_put(folio); 3059 if (start > end) 3060 return end; 3061 return start; 3062 } 3063 3064 #ifdef CONFIG_MMU 3065 #define MMAP_LOTSAMISS (100) 3066 /* 3067 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3068 * @vmf - the vm_fault for this fault. 3069 * @folio - the folio to lock. 3070 * @fpin - the pointer to the file we may pin (or is already pinned). 3071 * 3072 * This works similar to lock_folio_or_retry in that it can drop the 3073 * mmap_lock. It differs in that it actually returns the folio locked 3074 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3075 * to drop the mmap_lock then fpin will point to the pinned file and 3076 * needs to be fput()'ed at a later point. 3077 */ 3078 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3079 struct file **fpin) 3080 { 3081 if (folio_trylock(folio)) 3082 return 1; 3083 3084 /* 3085 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3086 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3087 * is supposed to work. We have way too many special cases.. 3088 */ 3089 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3090 return 0; 3091 3092 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3093 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3094 if (__folio_lock_killable(folio)) { 3095 /* 3096 * We didn't have the right flags to drop the 3097 * fault lock, but all fault_handlers only check 3098 * for fatal signals if we return VM_FAULT_RETRY, 3099 * so we need to drop the fault lock here and 3100 * return 0 if we don't have a fpin. 3101 */ 3102 if (*fpin == NULL) 3103 release_fault_lock(vmf); 3104 return 0; 3105 } 3106 } else 3107 __folio_lock(folio); 3108 3109 return 1; 3110 } 3111 3112 /* 3113 * Synchronous readahead happens when we don't even find a page in the page 3114 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3115 * to drop the mmap sem we return the file that was pinned in order for us to do 3116 * that. If we didn't pin a file then we return NULL. The file that is 3117 * returned needs to be fput()'ed when we're done with it. 3118 */ 3119 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3120 { 3121 struct file *file = vmf->vma->vm_file; 3122 struct file_ra_state *ra = &file->f_ra; 3123 struct address_space *mapping = file->f_mapping; 3124 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3125 struct file *fpin = NULL; 3126 unsigned long vm_flags = vmf->vma->vm_flags; 3127 unsigned int mmap_miss; 3128 3129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3130 /* Use the readahead code, even if readahead is disabled */ 3131 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3132 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3133 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3134 ra->size = HPAGE_PMD_NR; 3135 /* 3136 * Fetch two PMD folios, so we get the chance to actually 3137 * readahead, unless we've been told not to. 3138 */ 3139 if (!(vm_flags & VM_RAND_READ)) 3140 ra->size *= 2; 3141 ra->async_size = HPAGE_PMD_NR; 3142 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3143 return fpin; 3144 } 3145 #endif 3146 3147 /* If we don't want any read-ahead, don't bother */ 3148 if (vm_flags & VM_RAND_READ) 3149 return fpin; 3150 if (!ra->ra_pages) 3151 return fpin; 3152 3153 if (vm_flags & VM_SEQ_READ) { 3154 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3155 page_cache_sync_ra(&ractl, ra->ra_pages); 3156 return fpin; 3157 } 3158 3159 /* Avoid banging the cache line if not needed */ 3160 mmap_miss = READ_ONCE(ra->mmap_miss); 3161 if (mmap_miss < MMAP_LOTSAMISS * 10) 3162 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3163 3164 /* 3165 * Do we miss much more than hit in this file? If so, 3166 * stop bothering with read-ahead. It will only hurt. 3167 */ 3168 if (mmap_miss > MMAP_LOTSAMISS) 3169 return fpin; 3170 3171 /* 3172 * mmap read-around 3173 */ 3174 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3175 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3176 ra->size = ra->ra_pages; 3177 ra->async_size = ra->ra_pages / 4; 3178 ractl._index = ra->start; 3179 page_cache_ra_order(&ractl, ra, 0); 3180 return fpin; 3181 } 3182 3183 /* 3184 * Asynchronous readahead happens when we find the page and PG_readahead, 3185 * so we want to possibly extend the readahead further. We return the file that 3186 * was pinned if we have to drop the mmap_lock in order to do IO. 3187 */ 3188 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3189 struct folio *folio) 3190 { 3191 struct file *file = vmf->vma->vm_file; 3192 struct file_ra_state *ra = &file->f_ra; 3193 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3194 struct file *fpin = NULL; 3195 unsigned int mmap_miss; 3196 3197 /* If we don't want any read-ahead, don't bother */ 3198 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3199 return fpin; 3200 3201 mmap_miss = READ_ONCE(ra->mmap_miss); 3202 if (mmap_miss) 3203 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3204 3205 if (folio_test_readahead(folio)) { 3206 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3207 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3208 } 3209 return fpin; 3210 } 3211 3212 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3213 { 3214 struct vm_area_struct *vma = vmf->vma; 3215 vm_fault_t ret = 0; 3216 pte_t *ptep; 3217 3218 /* 3219 * We might have COW'ed a pagecache folio and might now have an mlocked 3220 * anon folio mapped. The original pagecache folio is not mlocked and 3221 * might have been evicted. During a read+clear/modify/write update of 3222 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3223 * temporarily clear the PTE under PT lock and might detect it here as 3224 * "none" when not holding the PT lock. 3225 * 3226 * Not rechecking the PTE under PT lock could result in an unexpected 3227 * major fault in an mlock'ed region. Recheck only for this special 3228 * scenario while holding the PT lock, to not degrade non-mlocked 3229 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3230 * the number of times we hold PT lock. 3231 */ 3232 if (!(vma->vm_flags & VM_LOCKED)) 3233 return 0; 3234 3235 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3236 return 0; 3237 3238 ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3239 &vmf->ptl); 3240 if (unlikely(!ptep)) 3241 return VM_FAULT_NOPAGE; 3242 3243 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3244 ret = VM_FAULT_NOPAGE; 3245 } else { 3246 spin_lock(vmf->ptl); 3247 if (unlikely(!pte_none(ptep_get(ptep)))) 3248 ret = VM_FAULT_NOPAGE; 3249 spin_unlock(vmf->ptl); 3250 } 3251 pte_unmap(ptep); 3252 return ret; 3253 } 3254 3255 /** 3256 * filemap_fault - read in file data for page fault handling 3257 * @vmf: struct vm_fault containing details of the fault 3258 * 3259 * filemap_fault() is invoked via the vma operations vector for a 3260 * mapped memory region to read in file data during a page fault. 3261 * 3262 * The goto's are kind of ugly, but this streamlines the normal case of having 3263 * it in the page cache, and handles the special cases reasonably without 3264 * having a lot of duplicated code. 3265 * 3266 * vma->vm_mm->mmap_lock must be held on entry. 3267 * 3268 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3269 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3270 * 3271 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3272 * has not been released. 3273 * 3274 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3275 * 3276 * Return: bitwise-OR of %VM_FAULT_ codes. 3277 */ 3278 vm_fault_t filemap_fault(struct vm_fault *vmf) 3279 { 3280 int error; 3281 struct file *file = vmf->vma->vm_file; 3282 struct file *fpin = NULL; 3283 struct address_space *mapping = file->f_mapping; 3284 struct inode *inode = mapping->host; 3285 pgoff_t max_idx, index = vmf->pgoff; 3286 struct folio *folio; 3287 vm_fault_t ret = 0; 3288 bool mapping_locked = false; 3289 3290 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3291 if (unlikely(index >= max_idx)) 3292 return VM_FAULT_SIGBUS; 3293 3294 /* 3295 * Do we have something in the page cache already? 3296 */ 3297 folio = filemap_get_folio(mapping, index); 3298 if (likely(!IS_ERR(folio))) { 3299 /* 3300 * We found the page, so try async readahead before waiting for 3301 * the lock. 3302 */ 3303 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3304 fpin = do_async_mmap_readahead(vmf, folio); 3305 if (unlikely(!folio_test_uptodate(folio))) { 3306 filemap_invalidate_lock_shared(mapping); 3307 mapping_locked = true; 3308 } 3309 } else { 3310 ret = filemap_fault_recheck_pte_none(vmf); 3311 if (unlikely(ret)) 3312 return ret; 3313 3314 /* No page in the page cache at all */ 3315 count_vm_event(PGMAJFAULT); 3316 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3317 ret = VM_FAULT_MAJOR; 3318 fpin = do_sync_mmap_readahead(vmf); 3319 retry_find: 3320 /* 3321 * See comment in filemap_create_folio() why we need 3322 * invalidate_lock 3323 */ 3324 if (!mapping_locked) { 3325 filemap_invalidate_lock_shared(mapping); 3326 mapping_locked = true; 3327 } 3328 folio = __filemap_get_folio(mapping, index, 3329 FGP_CREAT|FGP_FOR_MMAP, 3330 vmf->gfp_mask); 3331 if (IS_ERR(folio)) { 3332 if (fpin) 3333 goto out_retry; 3334 filemap_invalidate_unlock_shared(mapping); 3335 return VM_FAULT_OOM; 3336 } 3337 } 3338 3339 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3340 goto out_retry; 3341 3342 /* Did it get truncated? */ 3343 if (unlikely(folio->mapping != mapping)) { 3344 folio_unlock(folio); 3345 folio_put(folio); 3346 goto retry_find; 3347 } 3348 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3349 3350 /* 3351 * We have a locked folio in the page cache, now we need to check 3352 * that it's up-to-date. If not, it is going to be due to an error, 3353 * or because readahead was otherwise unable to retrieve it. 3354 */ 3355 if (unlikely(!folio_test_uptodate(folio))) { 3356 /* 3357 * If the invalidate lock is not held, the folio was in cache 3358 * and uptodate and now it is not. Strange but possible since we 3359 * didn't hold the page lock all the time. Let's drop 3360 * everything, get the invalidate lock and try again. 3361 */ 3362 if (!mapping_locked) { 3363 folio_unlock(folio); 3364 folio_put(folio); 3365 goto retry_find; 3366 } 3367 3368 /* 3369 * OK, the folio is really not uptodate. This can be because the 3370 * VMA has the VM_RAND_READ flag set, or because an error 3371 * arose. Let's read it in directly. 3372 */ 3373 goto page_not_uptodate; 3374 } 3375 3376 /* 3377 * We've made it this far and we had to drop our mmap_lock, now is the 3378 * time to return to the upper layer and have it re-find the vma and 3379 * redo the fault. 3380 */ 3381 if (fpin) { 3382 folio_unlock(folio); 3383 goto out_retry; 3384 } 3385 if (mapping_locked) 3386 filemap_invalidate_unlock_shared(mapping); 3387 3388 /* 3389 * Found the page and have a reference on it. 3390 * We must recheck i_size under page lock. 3391 */ 3392 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3393 if (unlikely(index >= max_idx)) { 3394 folio_unlock(folio); 3395 folio_put(folio); 3396 return VM_FAULT_SIGBUS; 3397 } 3398 3399 vmf->page = folio_file_page(folio, index); 3400 return ret | VM_FAULT_LOCKED; 3401 3402 page_not_uptodate: 3403 /* 3404 * Umm, take care of errors if the page isn't up-to-date. 3405 * Try to re-read it _once_. We do this synchronously, 3406 * because there really aren't any performance issues here 3407 * and we need to check for errors. 3408 */ 3409 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3410 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3411 if (fpin) 3412 goto out_retry; 3413 folio_put(folio); 3414 3415 if (!error || error == AOP_TRUNCATED_PAGE) 3416 goto retry_find; 3417 filemap_invalidate_unlock_shared(mapping); 3418 3419 return VM_FAULT_SIGBUS; 3420 3421 out_retry: 3422 /* 3423 * We dropped the mmap_lock, we need to return to the fault handler to 3424 * re-find the vma and come back and find our hopefully still populated 3425 * page. 3426 */ 3427 if (!IS_ERR(folio)) 3428 folio_put(folio); 3429 if (mapping_locked) 3430 filemap_invalidate_unlock_shared(mapping); 3431 if (fpin) 3432 fput(fpin); 3433 return ret | VM_FAULT_RETRY; 3434 } 3435 EXPORT_SYMBOL(filemap_fault); 3436 3437 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3438 pgoff_t start) 3439 { 3440 struct mm_struct *mm = vmf->vma->vm_mm; 3441 3442 /* Huge page is mapped? No need to proceed. */ 3443 if (pmd_trans_huge(*vmf->pmd)) { 3444 folio_unlock(folio); 3445 folio_put(folio); 3446 return true; 3447 } 3448 3449 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3450 struct page *page = folio_file_page(folio, start); 3451 vm_fault_t ret = do_set_pmd(vmf, page); 3452 if (!ret) { 3453 /* The page is mapped successfully, reference consumed. */ 3454 folio_unlock(folio); 3455 return true; 3456 } 3457 } 3458 3459 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3460 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3461 3462 return false; 3463 } 3464 3465 static struct folio *next_uptodate_folio(struct xa_state *xas, 3466 struct address_space *mapping, pgoff_t end_pgoff) 3467 { 3468 struct folio *folio = xas_next_entry(xas, end_pgoff); 3469 unsigned long max_idx; 3470 3471 do { 3472 if (!folio) 3473 return NULL; 3474 if (xas_retry(xas, folio)) 3475 continue; 3476 if (xa_is_value(folio)) 3477 continue; 3478 if (folio_test_locked(folio)) 3479 continue; 3480 if (!folio_try_get(folio)) 3481 continue; 3482 /* Has the page moved or been split? */ 3483 if (unlikely(folio != xas_reload(xas))) 3484 goto skip; 3485 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3486 goto skip; 3487 if (!folio_trylock(folio)) 3488 goto skip; 3489 if (folio->mapping != mapping) 3490 goto unlock; 3491 if (!folio_test_uptodate(folio)) 3492 goto unlock; 3493 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3494 if (xas->xa_index >= max_idx) 3495 goto unlock; 3496 return folio; 3497 unlock: 3498 folio_unlock(folio); 3499 skip: 3500 folio_put(folio); 3501 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3502 3503 return NULL; 3504 } 3505 3506 /* 3507 * Map page range [start_page, start_page + nr_pages) of folio. 3508 * start_page is gotten from start by folio_page(folio, start) 3509 */ 3510 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3511 struct folio *folio, unsigned long start, 3512 unsigned long addr, unsigned int nr_pages, 3513 unsigned long *rss, unsigned int *mmap_miss) 3514 { 3515 vm_fault_t ret = 0; 3516 struct page *page = folio_page(folio, start); 3517 unsigned int count = 0; 3518 pte_t *old_ptep = vmf->pte; 3519 3520 do { 3521 if (PageHWPoison(page + count)) 3522 goto skip; 3523 3524 /* 3525 * If there are too many folios that are recently evicted 3526 * in a file, they will probably continue to be evicted. 3527 * In such situation, read-ahead is only a waste of IO. 3528 * Don't decrease mmap_miss in this scenario to make sure 3529 * we can stop read-ahead. 3530 */ 3531 if (!folio_test_workingset(folio)) 3532 (*mmap_miss)++; 3533 3534 /* 3535 * NOTE: If there're PTE markers, we'll leave them to be 3536 * handled in the specific fault path, and it'll prohibit the 3537 * fault-around logic. 3538 */ 3539 if (!pte_none(ptep_get(&vmf->pte[count]))) 3540 goto skip; 3541 3542 count++; 3543 continue; 3544 skip: 3545 if (count) { 3546 set_pte_range(vmf, folio, page, count, addr); 3547 *rss += count; 3548 folio_ref_add(folio, count); 3549 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3550 ret = VM_FAULT_NOPAGE; 3551 } 3552 3553 count++; 3554 page += count; 3555 vmf->pte += count; 3556 addr += count * PAGE_SIZE; 3557 count = 0; 3558 } while (--nr_pages > 0); 3559 3560 if (count) { 3561 set_pte_range(vmf, folio, page, count, addr); 3562 *rss += count; 3563 folio_ref_add(folio, count); 3564 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3565 ret = VM_FAULT_NOPAGE; 3566 } 3567 3568 vmf->pte = old_ptep; 3569 3570 return ret; 3571 } 3572 3573 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3574 struct folio *folio, unsigned long addr, 3575 unsigned long *rss, unsigned int *mmap_miss) 3576 { 3577 vm_fault_t ret = 0; 3578 struct page *page = &folio->page; 3579 3580 if (PageHWPoison(page)) 3581 return ret; 3582 3583 /* See comment of filemap_map_folio_range() */ 3584 if (!folio_test_workingset(folio)) 3585 (*mmap_miss)++; 3586 3587 /* 3588 * NOTE: If there're PTE markers, we'll leave them to be 3589 * handled in the specific fault path, and it'll prohibit 3590 * the fault-around logic. 3591 */ 3592 if (!pte_none(ptep_get(vmf->pte))) 3593 return ret; 3594 3595 if (vmf->address == addr) 3596 ret = VM_FAULT_NOPAGE; 3597 3598 set_pte_range(vmf, folio, page, 1, addr); 3599 (*rss)++; 3600 folio_ref_inc(folio); 3601 3602 return ret; 3603 } 3604 3605 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3606 pgoff_t start_pgoff, pgoff_t end_pgoff) 3607 { 3608 struct vm_area_struct *vma = vmf->vma; 3609 struct file *file = vma->vm_file; 3610 struct address_space *mapping = file->f_mapping; 3611 pgoff_t last_pgoff = start_pgoff; 3612 unsigned long addr; 3613 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3614 struct folio *folio; 3615 vm_fault_t ret = 0; 3616 unsigned long rss = 0; 3617 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3618 3619 rcu_read_lock(); 3620 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3621 if (!folio) 3622 goto out; 3623 3624 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3625 ret = VM_FAULT_NOPAGE; 3626 goto out; 3627 } 3628 3629 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3630 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3631 if (!vmf->pte) { 3632 folio_unlock(folio); 3633 folio_put(folio); 3634 goto out; 3635 } 3636 3637 folio_type = mm_counter_file(folio); 3638 do { 3639 unsigned long end; 3640 3641 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3642 vmf->pte += xas.xa_index - last_pgoff; 3643 last_pgoff = xas.xa_index; 3644 end = folio_next_index(folio) - 1; 3645 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3646 3647 if (!folio_test_large(folio)) 3648 ret |= filemap_map_order0_folio(vmf, 3649 folio, addr, &rss, &mmap_miss); 3650 else 3651 ret |= filemap_map_folio_range(vmf, folio, 3652 xas.xa_index - folio->index, addr, 3653 nr_pages, &rss, &mmap_miss); 3654 3655 folio_unlock(folio); 3656 folio_put(folio); 3657 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3658 add_mm_counter(vma->vm_mm, folio_type, rss); 3659 pte_unmap_unlock(vmf->pte, vmf->ptl); 3660 out: 3661 rcu_read_unlock(); 3662 3663 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3664 if (mmap_miss >= mmap_miss_saved) 3665 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3666 else 3667 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3668 3669 return ret; 3670 } 3671 EXPORT_SYMBOL(filemap_map_pages); 3672 3673 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3674 { 3675 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3676 struct folio *folio = page_folio(vmf->page); 3677 vm_fault_t ret = VM_FAULT_LOCKED; 3678 3679 sb_start_pagefault(mapping->host->i_sb); 3680 file_update_time(vmf->vma->vm_file); 3681 folio_lock(folio); 3682 if (folio->mapping != mapping) { 3683 folio_unlock(folio); 3684 ret = VM_FAULT_NOPAGE; 3685 goto out; 3686 } 3687 /* 3688 * We mark the folio dirty already here so that when freeze is in 3689 * progress, we are guaranteed that writeback during freezing will 3690 * see the dirty folio and writeprotect it again. 3691 */ 3692 folio_mark_dirty(folio); 3693 folio_wait_stable(folio); 3694 out: 3695 sb_end_pagefault(mapping->host->i_sb); 3696 return ret; 3697 } 3698 3699 const struct vm_operations_struct generic_file_vm_ops = { 3700 .fault = filemap_fault, 3701 .map_pages = filemap_map_pages, 3702 .page_mkwrite = filemap_page_mkwrite, 3703 }; 3704 3705 /* This is used for a general mmap of a disk file */ 3706 3707 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3708 { 3709 struct address_space *mapping = file->f_mapping; 3710 3711 if (!mapping->a_ops->read_folio) 3712 return -ENOEXEC; 3713 file_accessed(file); 3714 vma->vm_ops = &generic_file_vm_ops; 3715 return 0; 3716 } 3717 3718 /* 3719 * This is for filesystems which do not implement ->writepage. 3720 */ 3721 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3722 { 3723 if (vma_is_shared_maywrite(vma)) 3724 return -EINVAL; 3725 return generic_file_mmap(file, vma); 3726 } 3727 #else 3728 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3729 { 3730 return VM_FAULT_SIGBUS; 3731 } 3732 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3733 { 3734 return -ENOSYS; 3735 } 3736 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3737 { 3738 return -ENOSYS; 3739 } 3740 #endif /* CONFIG_MMU */ 3741 3742 EXPORT_SYMBOL(filemap_page_mkwrite); 3743 EXPORT_SYMBOL(generic_file_mmap); 3744 EXPORT_SYMBOL(generic_file_readonly_mmap); 3745 3746 static struct folio *do_read_cache_folio(struct address_space *mapping, 3747 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3748 { 3749 struct folio *folio; 3750 int err; 3751 3752 if (!filler) 3753 filler = mapping->a_ops->read_folio; 3754 repeat: 3755 folio = filemap_get_folio(mapping, index); 3756 if (IS_ERR(folio)) { 3757 folio = filemap_alloc_folio(gfp, 0); 3758 if (!folio) 3759 return ERR_PTR(-ENOMEM); 3760 err = filemap_add_folio(mapping, folio, index, gfp); 3761 if (unlikely(err)) { 3762 folio_put(folio); 3763 if (err == -EEXIST) 3764 goto repeat; 3765 /* Presumably ENOMEM for xarray node */ 3766 return ERR_PTR(err); 3767 } 3768 3769 goto filler; 3770 } 3771 if (folio_test_uptodate(folio)) 3772 goto out; 3773 3774 if (!folio_trylock(folio)) { 3775 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3776 goto repeat; 3777 } 3778 3779 /* Folio was truncated from mapping */ 3780 if (!folio->mapping) { 3781 folio_unlock(folio); 3782 folio_put(folio); 3783 goto repeat; 3784 } 3785 3786 /* Someone else locked and filled the page in a very small window */ 3787 if (folio_test_uptodate(folio)) { 3788 folio_unlock(folio); 3789 goto out; 3790 } 3791 3792 filler: 3793 err = filemap_read_folio(file, filler, folio); 3794 if (err) { 3795 folio_put(folio); 3796 if (err == AOP_TRUNCATED_PAGE) 3797 goto repeat; 3798 return ERR_PTR(err); 3799 } 3800 3801 out: 3802 folio_mark_accessed(folio); 3803 return folio; 3804 } 3805 3806 /** 3807 * read_cache_folio - Read into page cache, fill it if needed. 3808 * @mapping: The address_space to read from. 3809 * @index: The index to read. 3810 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3811 * @file: Passed to filler function, may be NULL if not required. 3812 * 3813 * Read one page into the page cache. If it succeeds, the folio returned 3814 * will contain @index, but it may not be the first page of the folio. 3815 * 3816 * If the filler function returns an error, it will be returned to the 3817 * caller. 3818 * 3819 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3820 * Return: An uptodate folio on success, ERR_PTR() on failure. 3821 */ 3822 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3823 filler_t filler, struct file *file) 3824 { 3825 return do_read_cache_folio(mapping, index, filler, file, 3826 mapping_gfp_mask(mapping)); 3827 } 3828 EXPORT_SYMBOL(read_cache_folio); 3829 3830 /** 3831 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3832 * @mapping: The address_space for the folio. 3833 * @index: The index that the allocated folio will contain. 3834 * @gfp: The page allocator flags to use if allocating. 3835 * 3836 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3837 * any new memory allocations done using the specified allocation flags. 3838 * 3839 * The most likely error from this function is EIO, but ENOMEM is 3840 * possible and so is EINTR. If ->read_folio returns another error, 3841 * that will be returned to the caller. 3842 * 3843 * The function expects mapping->invalidate_lock to be already held. 3844 * 3845 * Return: Uptodate folio on success, ERR_PTR() on failure. 3846 */ 3847 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3848 pgoff_t index, gfp_t gfp) 3849 { 3850 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3851 } 3852 EXPORT_SYMBOL(mapping_read_folio_gfp); 3853 3854 static struct page *do_read_cache_page(struct address_space *mapping, 3855 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3856 { 3857 struct folio *folio; 3858 3859 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3860 if (IS_ERR(folio)) 3861 return &folio->page; 3862 return folio_file_page(folio, index); 3863 } 3864 3865 struct page *read_cache_page(struct address_space *mapping, 3866 pgoff_t index, filler_t *filler, struct file *file) 3867 { 3868 return do_read_cache_page(mapping, index, filler, file, 3869 mapping_gfp_mask(mapping)); 3870 } 3871 EXPORT_SYMBOL(read_cache_page); 3872 3873 /** 3874 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3875 * @mapping: the page's address_space 3876 * @index: the page index 3877 * @gfp: the page allocator flags to use if allocating 3878 * 3879 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3880 * any new page allocations done using the specified allocation flags. 3881 * 3882 * If the page does not get brought uptodate, return -EIO. 3883 * 3884 * The function expects mapping->invalidate_lock to be already held. 3885 * 3886 * Return: up to date page on success, ERR_PTR() on failure. 3887 */ 3888 struct page *read_cache_page_gfp(struct address_space *mapping, 3889 pgoff_t index, 3890 gfp_t gfp) 3891 { 3892 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3893 } 3894 EXPORT_SYMBOL(read_cache_page_gfp); 3895 3896 /* 3897 * Warn about a page cache invalidation failure during a direct I/O write. 3898 */ 3899 static void dio_warn_stale_pagecache(struct file *filp) 3900 { 3901 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3902 char pathname[128]; 3903 char *path; 3904 3905 errseq_set(&filp->f_mapping->wb_err, -EIO); 3906 if (__ratelimit(&_rs)) { 3907 path = file_path(filp, pathname, sizeof(pathname)); 3908 if (IS_ERR(path)) 3909 path = "(unknown)"; 3910 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3911 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3912 current->comm); 3913 } 3914 } 3915 3916 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3917 { 3918 struct address_space *mapping = iocb->ki_filp->f_mapping; 3919 3920 if (mapping->nrpages && 3921 invalidate_inode_pages2_range(mapping, 3922 iocb->ki_pos >> PAGE_SHIFT, 3923 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3924 dio_warn_stale_pagecache(iocb->ki_filp); 3925 } 3926 3927 ssize_t 3928 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3929 { 3930 struct address_space *mapping = iocb->ki_filp->f_mapping; 3931 size_t write_len = iov_iter_count(from); 3932 ssize_t written; 3933 3934 /* 3935 * If a page can not be invalidated, return 0 to fall back 3936 * to buffered write. 3937 */ 3938 written = kiocb_invalidate_pages(iocb, write_len); 3939 if (written) { 3940 if (written == -EBUSY) 3941 return 0; 3942 return written; 3943 } 3944 3945 written = mapping->a_ops->direct_IO(iocb, from); 3946 3947 /* 3948 * Finally, try again to invalidate clean pages which might have been 3949 * cached by non-direct readahead, or faulted in by get_user_pages() 3950 * if the source of the write was an mmap'ed region of the file 3951 * we're writing. Either one is a pretty crazy thing to do, 3952 * so we don't support it 100%. If this invalidation 3953 * fails, tough, the write still worked... 3954 * 3955 * Most of the time we do not need this since dio_complete() will do 3956 * the invalidation for us. However there are some file systems that 3957 * do not end up with dio_complete() being called, so let's not break 3958 * them by removing it completely. 3959 * 3960 * Noticeable example is a blkdev_direct_IO(). 3961 * 3962 * Skip invalidation for async writes or if mapping has no pages. 3963 */ 3964 if (written > 0) { 3965 struct inode *inode = mapping->host; 3966 loff_t pos = iocb->ki_pos; 3967 3968 kiocb_invalidate_post_direct_write(iocb, written); 3969 pos += written; 3970 write_len -= written; 3971 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3972 i_size_write(inode, pos); 3973 mark_inode_dirty(inode); 3974 } 3975 iocb->ki_pos = pos; 3976 } 3977 if (written != -EIOCBQUEUED) 3978 iov_iter_revert(from, write_len - iov_iter_count(from)); 3979 return written; 3980 } 3981 EXPORT_SYMBOL(generic_file_direct_write); 3982 3983 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3984 { 3985 struct file *file = iocb->ki_filp; 3986 loff_t pos = iocb->ki_pos; 3987 struct address_space *mapping = file->f_mapping; 3988 const struct address_space_operations *a_ops = mapping->a_ops; 3989 size_t chunk = mapping_max_folio_size(mapping); 3990 long status = 0; 3991 ssize_t written = 0; 3992 3993 do { 3994 struct page *page; 3995 struct folio *folio; 3996 size_t offset; /* Offset into folio */ 3997 size_t bytes; /* Bytes to write to folio */ 3998 size_t copied; /* Bytes copied from user */ 3999 void *fsdata = NULL; 4000 4001 bytes = iov_iter_count(i); 4002 retry: 4003 offset = pos & (chunk - 1); 4004 bytes = min(chunk - offset, bytes); 4005 balance_dirty_pages_ratelimited(mapping); 4006 4007 /* 4008 * Bring in the user page that we will copy from _first_. 4009 * Otherwise there's a nasty deadlock on copying from the 4010 * same page as we're writing to, without it being marked 4011 * up-to-date. 4012 */ 4013 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4014 status = -EFAULT; 4015 break; 4016 } 4017 4018 if (fatal_signal_pending(current)) { 4019 status = -EINTR; 4020 break; 4021 } 4022 4023 status = a_ops->write_begin(file, mapping, pos, bytes, 4024 &page, &fsdata); 4025 if (unlikely(status < 0)) 4026 break; 4027 4028 folio = page_folio(page); 4029 offset = offset_in_folio(folio, pos); 4030 if (bytes > folio_size(folio) - offset) 4031 bytes = folio_size(folio) - offset; 4032 4033 if (mapping_writably_mapped(mapping)) 4034 flush_dcache_folio(folio); 4035 4036 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4037 flush_dcache_folio(folio); 4038 4039 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4040 page, fsdata); 4041 if (unlikely(status != copied)) { 4042 iov_iter_revert(i, copied - max(status, 0L)); 4043 if (unlikely(status < 0)) 4044 break; 4045 } 4046 cond_resched(); 4047 4048 if (unlikely(status == 0)) { 4049 /* 4050 * A short copy made ->write_end() reject the 4051 * thing entirely. Might be memory poisoning 4052 * halfway through, might be a race with munmap, 4053 * might be severe memory pressure. 4054 */ 4055 if (chunk > PAGE_SIZE) 4056 chunk /= 2; 4057 if (copied) { 4058 bytes = copied; 4059 goto retry; 4060 } 4061 } else { 4062 pos += status; 4063 written += status; 4064 } 4065 } while (iov_iter_count(i)); 4066 4067 if (!written) 4068 return status; 4069 iocb->ki_pos += written; 4070 return written; 4071 } 4072 EXPORT_SYMBOL(generic_perform_write); 4073 4074 /** 4075 * __generic_file_write_iter - write data to a file 4076 * @iocb: IO state structure (file, offset, etc.) 4077 * @from: iov_iter with data to write 4078 * 4079 * This function does all the work needed for actually writing data to a 4080 * file. It does all basic checks, removes SUID from the file, updates 4081 * modification times and calls proper subroutines depending on whether we 4082 * do direct IO or a standard buffered write. 4083 * 4084 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4085 * object which does not need locking at all. 4086 * 4087 * This function does *not* take care of syncing data in case of O_SYNC write. 4088 * A caller has to handle it. This is mainly due to the fact that we want to 4089 * avoid syncing under i_rwsem. 4090 * 4091 * Return: 4092 * * number of bytes written, even for truncated writes 4093 * * negative error code if no data has been written at all 4094 */ 4095 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4096 { 4097 struct file *file = iocb->ki_filp; 4098 struct address_space *mapping = file->f_mapping; 4099 struct inode *inode = mapping->host; 4100 ssize_t ret; 4101 4102 ret = file_remove_privs(file); 4103 if (ret) 4104 return ret; 4105 4106 ret = file_update_time(file); 4107 if (ret) 4108 return ret; 4109 4110 if (iocb->ki_flags & IOCB_DIRECT) { 4111 ret = generic_file_direct_write(iocb, from); 4112 /* 4113 * If the write stopped short of completing, fall back to 4114 * buffered writes. Some filesystems do this for writes to 4115 * holes, for example. For DAX files, a buffered write will 4116 * not succeed (even if it did, DAX does not handle dirty 4117 * page-cache pages correctly). 4118 */ 4119 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4120 return ret; 4121 return direct_write_fallback(iocb, from, ret, 4122 generic_perform_write(iocb, from)); 4123 } 4124 4125 return generic_perform_write(iocb, from); 4126 } 4127 EXPORT_SYMBOL(__generic_file_write_iter); 4128 4129 /** 4130 * generic_file_write_iter - write data to a file 4131 * @iocb: IO state structure 4132 * @from: iov_iter with data to write 4133 * 4134 * This is a wrapper around __generic_file_write_iter() to be used by most 4135 * filesystems. It takes care of syncing the file in case of O_SYNC file 4136 * and acquires i_rwsem as needed. 4137 * Return: 4138 * * negative error code if no data has been written at all of 4139 * vfs_fsync_range() failed for a synchronous write 4140 * * number of bytes written, even for truncated writes 4141 */ 4142 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4143 { 4144 struct file *file = iocb->ki_filp; 4145 struct inode *inode = file->f_mapping->host; 4146 ssize_t ret; 4147 4148 inode_lock(inode); 4149 ret = generic_write_checks(iocb, from); 4150 if (ret > 0) 4151 ret = __generic_file_write_iter(iocb, from); 4152 inode_unlock(inode); 4153 4154 if (ret > 0) 4155 ret = generic_write_sync(iocb, ret); 4156 return ret; 4157 } 4158 EXPORT_SYMBOL(generic_file_write_iter); 4159 4160 /** 4161 * filemap_release_folio() - Release fs-specific metadata on a folio. 4162 * @folio: The folio which the kernel is trying to free. 4163 * @gfp: Memory allocation flags (and I/O mode). 4164 * 4165 * The address_space is trying to release any data attached to a folio 4166 * (presumably at folio->private). 4167 * 4168 * This will also be called if the private_2 flag is set on a page, 4169 * indicating that the folio has other metadata associated with it. 4170 * 4171 * The @gfp argument specifies whether I/O may be performed to release 4172 * this page (__GFP_IO), and whether the call may block 4173 * (__GFP_RECLAIM & __GFP_FS). 4174 * 4175 * Return: %true if the release was successful, otherwise %false. 4176 */ 4177 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4178 { 4179 struct address_space * const mapping = folio->mapping; 4180 4181 BUG_ON(!folio_test_locked(folio)); 4182 if (!folio_needs_release(folio)) 4183 return true; 4184 if (folio_test_writeback(folio)) 4185 return false; 4186 4187 if (mapping && mapping->a_ops->release_folio) 4188 return mapping->a_ops->release_folio(folio, gfp); 4189 return try_to_free_buffers(folio); 4190 } 4191 EXPORT_SYMBOL(filemap_release_folio); 4192 4193 /** 4194 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4195 * @inode: The inode to flush 4196 * @flush: Set to write back rather than simply invalidate. 4197 * @start: First byte to in range. 4198 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4199 * onwards. 4200 * 4201 * Invalidate all the folios on an inode that contribute to the specified 4202 * range, possibly writing them back first. Whilst the operation is 4203 * undertaken, the invalidate lock is held to prevent new folios from being 4204 * installed. 4205 */ 4206 int filemap_invalidate_inode(struct inode *inode, bool flush, 4207 loff_t start, loff_t end) 4208 { 4209 struct address_space *mapping = inode->i_mapping; 4210 pgoff_t first = start >> PAGE_SHIFT; 4211 pgoff_t last = end >> PAGE_SHIFT; 4212 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4213 4214 if (!mapping || !mapping->nrpages || end < start) 4215 goto out; 4216 4217 /* Prevent new folios from being added to the inode. */ 4218 filemap_invalidate_lock(mapping); 4219 4220 if (!mapping->nrpages) 4221 goto unlock; 4222 4223 unmap_mapping_pages(mapping, first, nr, false); 4224 4225 /* Write back the data if we're asked to. */ 4226 if (flush) { 4227 struct writeback_control wbc = { 4228 .sync_mode = WB_SYNC_ALL, 4229 .nr_to_write = LONG_MAX, 4230 .range_start = start, 4231 .range_end = end, 4232 }; 4233 4234 filemap_fdatawrite_wbc(mapping, &wbc); 4235 } 4236 4237 /* Wait for writeback to complete on all folios and discard. */ 4238 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4239 4240 unlock: 4241 filemap_invalidate_unlock(mapping); 4242 out: 4243 return filemap_check_errors(mapping); 4244 } 4245 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4246 4247 #ifdef CONFIG_CACHESTAT_SYSCALL 4248 /** 4249 * filemap_cachestat() - compute the page cache statistics of a mapping 4250 * @mapping: The mapping to compute the statistics for. 4251 * @first_index: The starting page cache index. 4252 * @last_index: The final page index (inclusive). 4253 * @cs: the cachestat struct to write the result to. 4254 * 4255 * This will query the page cache statistics of a mapping in the 4256 * page range of [first_index, last_index] (inclusive). The statistics 4257 * queried include: number of dirty pages, number of pages marked for 4258 * writeback, and the number of (recently) evicted pages. 4259 */ 4260 static void filemap_cachestat(struct address_space *mapping, 4261 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4262 { 4263 XA_STATE(xas, &mapping->i_pages, first_index); 4264 struct folio *folio; 4265 4266 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4267 mem_cgroup_flush_stats_ratelimited(NULL); 4268 4269 rcu_read_lock(); 4270 xas_for_each(&xas, folio, last_index) { 4271 int order; 4272 unsigned long nr_pages; 4273 pgoff_t folio_first_index, folio_last_index; 4274 4275 /* 4276 * Don't deref the folio. It is not pinned, and might 4277 * get freed (and reused) underneath us. 4278 * 4279 * We *could* pin it, but that would be expensive for 4280 * what should be a fast and lightweight syscall. 4281 * 4282 * Instead, derive all information of interest from 4283 * the rcu-protected xarray. 4284 */ 4285 4286 if (xas_retry(&xas, folio)) 4287 continue; 4288 4289 order = xa_get_order(xas.xa, xas.xa_index); 4290 nr_pages = 1 << order; 4291 folio_first_index = round_down(xas.xa_index, 1 << order); 4292 folio_last_index = folio_first_index + nr_pages - 1; 4293 4294 /* Folios might straddle the range boundaries, only count covered pages */ 4295 if (folio_first_index < first_index) 4296 nr_pages -= first_index - folio_first_index; 4297 4298 if (folio_last_index > last_index) 4299 nr_pages -= folio_last_index - last_index; 4300 4301 if (xa_is_value(folio)) { 4302 /* page is evicted */ 4303 void *shadow = (void *)folio; 4304 bool workingset; /* not used */ 4305 4306 cs->nr_evicted += nr_pages; 4307 4308 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4309 if (shmem_mapping(mapping)) { 4310 /* shmem file - in swap cache */ 4311 swp_entry_t swp = radix_to_swp_entry(folio); 4312 4313 /* swapin error results in poisoned entry */ 4314 if (non_swap_entry(swp)) 4315 goto resched; 4316 4317 /* 4318 * Getting a swap entry from the shmem 4319 * inode means we beat 4320 * shmem_unuse(). rcu_read_lock() 4321 * ensures swapoff waits for us before 4322 * freeing the swapper space. However, 4323 * we can race with swapping and 4324 * invalidation, so there might not be 4325 * a shadow in the swapcache (yet). 4326 */ 4327 shadow = get_shadow_from_swap_cache(swp); 4328 if (!shadow) 4329 goto resched; 4330 } 4331 #endif 4332 if (workingset_test_recent(shadow, true, &workingset, false)) 4333 cs->nr_recently_evicted += nr_pages; 4334 4335 goto resched; 4336 } 4337 4338 /* page is in cache */ 4339 cs->nr_cache += nr_pages; 4340 4341 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4342 cs->nr_dirty += nr_pages; 4343 4344 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4345 cs->nr_writeback += nr_pages; 4346 4347 resched: 4348 if (need_resched()) { 4349 xas_pause(&xas); 4350 cond_resched_rcu(); 4351 } 4352 } 4353 rcu_read_unlock(); 4354 } 4355 4356 /* 4357 * The cachestat(2) system call. 4358 * 4359 * cachestat() returns the page cache statistics of a file in the 4360 * bytes range specified by `off` and `len`: number of cached pages, 4361 * number of dirty pages, number of pages marked for writeback, 4362 * number of evicted pages, and number of recently evicted pages. 4363 * 4364 * An evicted page is a page that is previously in the page cache 4365 * but has been evicted since. A page is recently evicted if its last 4366 * eviction was recent enough that its reentry to the cache would 4367 * indicate that it is actively being used by the system, and that 4368 * there is memory pressure on the system. 4369 * 4370 * `off` and `len` must be non-negative integers. If `len` > 0, 4371 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4372 * we will query in the range from `off` to the end of the file. 4373 * 4374 * The `flags` argument is unused for now, but is included for future 4375 * extensibility. User should pass 0 (i.e no flag specified). 4376 * 4377 * Currently, hugetlbfs is not supported. 4378 * 4379 * Because the status of a page can change after cachestat() checks it 4380 * but before it returns to the application, the returned values may 4381 * contain stale information. 4382 * 4383 * return values: 4384 * zero - success 4385 * -EFAULT - cstat or cstat_range points to an illegal address 4386 * -EINVAL - invalid flags 4387 * -EBADF - invalid file descriptor 4388 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4389 */ 4390 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4391 struct cachestat_range __user *, cstat_range, 4392 struct cachestat __user *, cstat, unsigned int, flags) 4393 { 4394 struct fd f = fdget(fd); 4395 struct address_space *mapping; 4396 struct cachestat_range csr; 4397 struct cachestat cs; 4398 pgoff_t first_index, last_index; 4399 4400 if (!f.file) 4401 return -EBADF; 4402 4403 if (copy_from_user(&csr, cstat_range, 4404 sizeof(struct cachestat_range))) { 4405 fdput(f); 4406 return -EFAULT; 4407 } 4408 4409 /* hugetlbfs is not supported */ 4410 if (is_file_hugepages(f.file)) { 4411 fdput(f); 4412 return -EOPNOTSUPP; 4413 } 4414 4415 if (flags != 0) { 4416 fdput(f); 4417 return -EINVAL; 4418 } 4419 4420 first_index = csr.off >> PAGE_SHIFT; 4421 last_index = 4422 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4423 memset(&cs, 0, sizeof(struct cachestat)); 4424 mapping = f.file->f_mapping; 4425 filemap_cachestat(mapping, first_index, last_index, &cs); 4426 fdput(f); 4427 4428 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4429 return -EFAULT; 4430 4431 return 0; 4432 } 4433 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4434
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.