1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/mm_types.h> 24 #include <linux/khugepaged.h> 25 #include <linux/freezer.h> 26 #include <linux/pfn_t.h> 27 #include <linux/mman.h> 28 #include <linux/memremap.h> 29 #include <linux/pagemap.h> 30 #include <linux/debugfs.h> 31 #include <linux/migrate.h> 32 #include <linux/hashtable.h> 33 #include <linux/userfaultfd_k.h> 34 #include <linux/page_idle.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/oom.h> 37 #include <linux/numa.h> 38 #include <linux/page_owner.h> 39 #include <linux/sched/sysctl.h> 40 #include <linux/memory-tiers.h> 41 #include <linux/compat.h> 42 #include <linux/pgalloc_tag.h> 43 44 #include <asm/tlb.h> 45 #include <asm/pgalloc.h> 46 #include "internal.h" 47 #include "swap.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/thp.h> 51 52 /* 53 * By default, transparent hugepage support is disabled in order to avoid 54 * risking an increased memory footprint for applications that are not 55 * guaranteed to benefit from it. When transparent hugepage support is 56 * enabled, it is for all mappings, and khugepaged scans all mappings. 57 * Defrag is invoked by khugepaged hugepage allocations and by page faults 58 * for all hugepage allocations. 59 */ 60 unsigned long transparent_hugepage_flags __read_mostly = 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 62 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 63 #endif 64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 66 #endif 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 70 71 static struct shrinker *deferred_split_shrinker; 72 static unsigned long deferred_split_count(struct shrinker *shrink, 73 struct shrink_control *sc); 74 static unsigned long deferred_split_scan(struct shrinker *shrink, 75 struct shrink_control *sc); 76 77 static atomic_t huge_zero_refcount; 78 struct folio *huge_zero_folio __read_mostly; 79 unsigned long huge_zero_pfn __read_mostly = ~0UL; 80 unsigned long huge_anon_orders_always __read_mostly; 81 unsigned long huge_anon_orders_madvise __read_mostly; 82 unsigned long huge_anon_orders_inherit __read_mostly; 83 84 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 85 unsigned long vm_flags, 86 unsigned long tva_flags, 87 unsigned long orders) 88 { 89 bool smaps = tva_flags & TVA_SMAPS; 90 bool in_pf = tva_flags & TVA_IN_PF; 91 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 92 unsigned long supported_orders; 93 94 /* Check the intersection of requested and supported orders. */ 95 if (vma_is_anonymous(vma)) 96 supported_orders = THP_ORDERS_ALL_ANON; 97 else if (vma_is_dax(vma)) 98 supported_orders = THP_ORDERS_ALL_FILE_DAX; 99 else 100 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 101 102 orders &= supported_orders; 103 if (!orders) 104 return 0; 105 106 if (!vma->vm_mm) /* vdso */ 107 return 0; 108 109 /* 110 * Explicitly disabled through madvise or prctl, or some 111 * architectures may disable THP for some mappings, for 112 * example, s390 kvm. 113 * */ 114 if ((vm_flags & VM_NOHUGEPAGE) || 115 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 116 return 0; 117 /* 118 * If the hardware/firmware marked hugepage support disabled. 119 */ 120 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 121 return 0; 122 123 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 124 if (vma_is_dax(vma)) 125 return in_pf ? orders : 0; 126 127 /* 128 * khugepaged special VMA and hugetlb VMA. 129 * Must be checked after dax since some dax mappings may have 130 * VM_MIXEDMAP set. 131 */ 132 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 133 return 0; 134 135 /* 136 * Check alignment for file vma and size for both file and anon vma by 137 * filtering out the unsuitable orders. 138 * 139 * Skip the check for page fault. Huge fault does the check in fault 140 * handlers. 141 */ 142 if (!in_pf) { 143 int order = highest_order(orders); 144 unsigned long addr; 145 146 while (orders) { 147 addr = vma->vm_end - (PAGE_SIZE << order); 148 if (thp_vma_suitable_order(vma, addr, order)) 149 break; 150 order = next_order(&orders, order); 151 } 152 153 if (!orders) 154 return 0; 155 } 156 157 /* 158 * Enabled via shmem mount options or sysfs settings. 159 * Must be done before hugepage flags check since shmem has its 160 * own flags. 161 */ 162 if (!in_pf && shmem_file(vma->vm_file)) { 163 bool global_huge = shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 164 !enforce_sysfs, vma->vm_mm, vm_flags); 165 166 if (!vma_is_anon_shmem(vma)) 167 return global_huge ? orders : 0; 168 return shmem_allowable_huge_orders(file_inode(vma->vm_file), 169 vma, vma->vm_pgoff, global_huge); 170 } 171 172 if (!vma_is_anonymous(vma)) { 173 /* 174 * Enforce sysfs THP requirements as necessary. Anonymous vmas 175 * were already handled in thp_vma_allowable_orders(). 176 */ 177 if (enforce_sysfs && 178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 179 !hugepage_global_always()))) 180 return 0; 181 182 /* 183 * Trust that ->huge_fault() handlers know what they are doing 184 * in fault path. 185 */ 186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 187 return orders; 188 /* Only regular file is valid in collapse path */ 189 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 190 return orders; 191 return 0; 192 } 193 194 if (vma_is_temporary_stack(vma)) 195 return 0; 196 197 /* 198 * THPeligible bit of smaps should show 1 for proper VMAs even 199 * though anon_vma is not initialized yet. 200 * 201 * Allow page fault since anon_vma may be not initialized until 202 * the first page fault. 203 */ 204 if (!vma->anon_vma) 205 return (smaps || in_pf) ? orders : 0; 206 207 return orders; 208 } 209 210 static bool get_huge_zero_page(void) 211 { 212 struct folio *zero_folio; 213 retry: 214 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 215 return true; 216 217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 218 HPAGE_PMD_ORDER); 219 if (!zero_folio) { 220 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 221 return false; 222 } 223 /* Ensure zero folio won't have large_rmappable flag set. */ 224 folio_clear_large_rmappable(zero_folio); 225 preempt_disable(); 226 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 227 preempt_enable(); 228 folio_put(zero_folio); 229 goto retry; 230 } 231 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 232 233 /* We take additional reference here. It will be put back by shrinker */ 234 atomic_set(&huge_zero_refcount, 2); 235 preempt_enable(); 236 count_vm_event(THP_ZERO_PAGE_ALLOC); 237 return true; 238 } 239 240 static void put_huge_zero_page(void) 241 { 242 /* 243 * Counter should never go to zero here. Only shrinker can put 244 * last reference. 245 */ 246 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 247 } 248 249 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 250 { 251 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 252 return READ_ONCE(huge_zero_folio); 253 254 if (!get_huge_zero_page()) 255 return NULL; 256 257 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 258 put_huge_zero_page(); 259 260 return READ_ONCE(huge_zero_folio); 261 } 262 263 void mm_put_huge_zero_folio(struct mm_struct *mm) 264 { 265 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 266 put_huge_zero_page(); 267 } 268 269 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 270 struct shrink_control *sc) 271 { 272 /* we can free zero page only if last reference remains */ 273 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 274 } 275 276 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 277 struct shrink_control *sc) 278 { 279 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 280 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 281 BUG_ON(zero_folio == NULL); 282 WRITE_ONCE(huge_zero_pfn, ~0UL); 283 folio_put(zero_folio); 284 return HPAGE_PMD_NR; 285 } 286 287 return 0; 288 } 289 290 static struct shrinker *huge_zero_page_shrinker; 291 292 #ifdef CONFIG_SYSFS 293 static ssize_t enabled_show(struct kobject *kobj, 294 struct kobj_attribute *attr, char *buf) 295 { 296 const char *output; 297 298 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 299 output = "[always] madvise never"; 300 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 301 &transparent_hugepage_flags)) 302 output = "always [madvise] never"; 303 else 304 output = "always madvise [never]"; 305 306 return sysfs_emit(buf, "%s\n", output); 307 } 308 309 static ssize_t enabled_store(struct kobject *kobj, 310 struct kobj_attribute *attr, 311 const char *buf, size_t count) 312 { 313 ssize_t ret = count; 314 315 if (sysfs_streq(buf, "always")) { 316 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 317 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 318 } else if (sysfs_streq(buf, "madvise")) { 319 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 320 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 321 } else if (sysfs_streq(buf, "never")) { 322 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 323 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 324 } else 325 ret = -EINVAL; 326 327 if (ret > 0) { 328 int err = start_stop_khugepaged(); 329 if (err) 330 ret = err; 331 } 332 return ret; 333 } 334 335 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 336 337 ssize_t single_hugepage_flag_show(struct kobject *kobj, 338 struct kobj_attribute *attr, char *buf, 339 enum transparent_hugepage_flag flag) 340 { 341 return sysfs_emit(buf, "%d\n", 342 !!test_bit(flag, &transparent_hugepage_flags)); 343 } 344 345 ssize_t single_hugepage_flag_store(struct kobject *kobj, 346 struct kobj_attribute *attr, 347 const char *buf, size_t count, 348 enum transparent_hugepage_flag flag) 349 { 350 unsigned long value; 351 int ret; 352 353 ret = kstrtoul(buf, 10, &value); 354 if (ret < 0) 355 return ret; 356 if (value > 1) 357 return -EINVAL; 358 359 if (value) 360 set_bit(flag, &transparent_hugepage_flags); 361 else 362 clear_bit(flag, &transparent_hugepage_flags); 363 364 return count; 365 } 366 367 static ssize_t defrag_show(struct kobject *kobj, 368 struct kobj_attribute *attr, char *buf) 369 { 370 const char *output; 371 372 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 373 &transparent_hugepage_flags)) 374 output = "[always] defer defer+madvise madvise never"; 375 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 376 &transparent_hugepage_flags)) 377 output = "always [defer] defer+madvise madvise never"; 378 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 379 &transparent_hugepage_flags)) 380 output = "always defer [defer+madvise] madvise never"; 381 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 382 &transparent_hugepage_flags)) 383 output = "always defer defer+madvise [madvise] never"; 384 else 385 output = "always defer defer+madvise madvise [never]"; 386 387 return sysfs_emit(buf, "%s\n", output); 388 } 389 390 static ssize_t defrag_store(struct kobject *kobj, 391 struct kobj_attribute *attr, 392 const char *buf, size_t count) 393 { 394 if (sysfs_streq(buf, "always")) { 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 398 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 399 } else if (sysfs_streq(buf, "defer+madvise")) { 400 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 403 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 404 } else if (sysfs_streq(buf, "defer")) { 405 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 408 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 409 } else if (sysfs_streq(buf, "madvise")) { 410 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 413 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 414 } else if (sysfs_streq(buf, "never")) { 415 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 419 } else 420 return -EINVAL; 421 422 return count; 423 } 424 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 425 426 static ssize_t use_zero_page_show(struct kobject *kobj, 427 struct kobj_attribute *attr, char *buf) 428 { 429 return single_hugepage_flag_show(kobj, attr, buf, 430 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 431 } 432 static ssize_t use_zero_page_store(struct kobject *kobj, 433 struct kobj_attribute *attr, const char *buf, size_t count) 434 { 435 return single_hugepage_flag_store(kobj, attr, buf, count, 436 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 437 } 438 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 439 440 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 441 struct kobj_attribute *attr, char *buf) 442 { 443 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 444 } 445 static struct kobj_attribute hpage_pmd_size_attr = 446 __ATTR_RO(hpage_pmd_size); 447 448 static struct attribute *hugepage_attr[] = { 449 &enabled_attr.attr, 450 &defrag_attr.attr, 451 &use_zero_page_attr.attr, 452 &hpage_pmd_size_attr.attr, 453 #ifdef CONFIG_SHMEM 454 &shmem_enabled_attr.attr, 455 #endif 456 NULL, 457 }; 458 459 static const struct attribute_group hugepage_attr_group = { 460 .attrs = hugepage_attr, 461 }; 462 463 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 464 static void thpsize_release(struct kobject *kobj); 465 static DEFINE_SPINLOCK(huge_anon_orders_lock); 466 static LIST_HEAD(thpsize_list); 467 468 static ssize_t thpsize_enabled_show(struct kobject *kobj, 469 struct kobj_attribute *attr, char *buf) 470 { 471 int order = to_thpsize(kobj)->order; 472 const char *output; 473 474 if (test_bit(order, &huge_anon_orders_always)) 475 output = "[always] inherit madvise never"; 476 else if (test_bit(order, &huge_anon_orders_inherit)) 477 output = "always [inherit] madvise never"; 478 else if (test_bit(order, &huge_anon_orders_madvise)) 479 output = "always inherit [madvise] never"; 480 else 481 output = "always inherit madvise [never]"; 482 483 return sysfs_emit(buf, "%s\n", output); 484 } 485 486 static ssize_t thpsize_enabled_store(struct kobject *kobj, 487 struct kobj_attribute *attr, 488 const char *buf, size_t count) 489 { 490 int order = to_thpsize(kobj)->order; 491 ssize_t ret = count; 492 493 if (sysfs_streq(buf, "always")) { 494 spin_lock(&huge_anon_orders_lock); 495 clear_bit(order, &huge_anon_orders_inherit); 496 clear_bit(order, &huge_anon_orders_madvise); 497 set_bit(order, &huge_anon_orders_always); 498 spin_unlock(&huge_anon_orders_lock); 499 } else if (sysfs_streq(buf, "inherit")) { 500 spin_lock(&huge_anon_orders_lock); 501 clear_bit(order, &huge_anon_orders_always); 502 clear_bit(order, &huge_anon_orders_madvise); 503 set_bit(order, &huge_anon_orders_inherit); 504 spin_unlock(&huge_anon_orders_lock); 505 } else if (sysfs_streq(buf, "madvise")) { 506 spin_lock(&huge_anon_orders_lock); 507 clear_bit(order, &huge_anon_orders_always); 508 clear_bit(order, &huge_anon_orders_inherit); 509 set_bit(order, &huge_anon_orders_madvise); 510 spin_unlock(&huge_anon_orders_lock); 511 } else if (sysfs_streq(buf, "never")) { 512 spin_lock(&huge_anon_orders_lock); 513 clear_bit(order, &huge_anon_orders_always); 514 clear_bit(order, &huge_anon_orders_inherit); 515 clear_bit(order, &huge_anon_orders_madvise); 516 spin_unlock(&huge_anon_orders_lock); 517 } else 518 ret = -EINVAL; 519 520 if (ret > 0) { 521 int err; 522 523 err = start_stop_khugepaged(); 524 if (err) 525 ret = err; 526 } 527 return ret; 528 } 529 530 static struct kobj_attribute thpsize_enabled_attr = 531 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 532 533 static struct attribute *thpsize_attrs[] = { 534 &thpsize_enabled_attr.attr, 535 #ifdef CONFIG_SHMEM 536 &thpsize_shmem_enabled_attr.attr, 537 #endif 538 NULL, 539 }; 540 541 static const struct attribute_group thpsize_attr_group = { 542 .attrs = thpsize_attrs, 543 }; 544 545 static const struct kobj_type thpsize_ktype = { 546 .release = &thpsize_release, 547 .sysfs_ops = &kobj_sysfs_ops, 548 }; 549 550 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 551 552 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 553 { 554 unsigned long sum = 0; 555 int cpu; 556 557 for_each_possible_cpu(cpu) { 558 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 559 560 sum += this->stats[order][item]; 561 } 562 563 return sum; 564 } 565 566 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 567 static ssize_t _name##_show(struct kobject *kobj, \ 568 struct kobj_attribute *attr, char *buf) \ 569 { \ 570 int order = to_thpsize(kobj)->order; \ 571 \ 572 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 573 } \ 574 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 575 576 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 577 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 578 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 579 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 580 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 581 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 582 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 583 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 584 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 585 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 586 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 587 588 static struct attribute *stats_attrs[] = { 589 &anon_fault_alloc_attr.attr, 590 &anon_fault_fallback_attr.attr, 591 &anon_fault_fallback_charge_attr.attr, 592 &swpout_attr.attr, 593 &swpout_fallback_attr.attr, 594 &shmem_alloc_attr.attr, 595 &shmem_fallback_attr.attr, 596 &shmem_fallback_charge_attr.attr, 597 &split_attr.attr, 598 &split_failed_attr.attr, 599 &split_deferred_attr.attr, 600 NULL, 601 }; 602 603 static struct attribute_group stats_attr_group = { 604 .name = "stats", 605 .attrs = stats_attrs, 606 }; 607 608 static struct thpsize *thpsize_create(int order, struct kobject *parent) 609 { 610 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 611 struct thpsize *thpsize; 612 int ret; 613 614 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 615 if (!thpsize) 616 return ERR_PTR(-ENOMEM); 617 618 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 619 "hugepages-%lukB", size); 620 if (ret) { 621 kfree(thpsize); 622 return ERR_PTR(ret); 623 } 624 625 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 626 if (ret) { 627 kobject_put(&thpsize->kobj); 628 return ERR_PTR(ret); 629 } 630 631 ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group); 632 if (ret) { 633 kobject_put(&thpsize->kobj); 634 return ERR_PTR(ret); 635 } 636 637 thpsize->order = order; 638 return thpsize; 639 } 640 641 static void thpsize_release(struct kobject *kobj) 642 { 643 kfree(to_thpsize(kobj)); 644 } 645 646 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 647 { 648 int err; 649 struct thpsize *thpsize; 650 unsigned long orders; 651 int order; 652 653 /* 654 * Default to setting PMD-sized THP to inherit the global setting and 655 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 656 * constant so we have to do this here. 657 */ 658 huge_anon_orders_inherit = BIT(PMD_ORDER); 659 660 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 661 if (unlikely(!*hugepage_kobj)) { 662 pr_err("failed to create transparent hugepage kobject\n"); 663 return -ENOMEM; 664 } 665 666 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 667 if (err) { 668 pr_err("failed to register transparent hugepage group\n"); 669 goto delete_obj; 670 } 671 672 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 673 if (err) { 674 pr_err("failed to register transparent hugepage group\n"); 675 goto remove_hp_group; 676 } 677 678 orders = THP_ORDERS_ALL_ANON; 679 order = highest_order(orders); 680 while (orders) { 681 thpsize = thpsize_create(order, *hugepage_kobj); 682 if (IS_ERR(thpsize)) { 683 pr_err("failed to create thpsize for order %d\n", order); 684 err = PTR_ERR(thpsize); 685 goto remove_all; 686 } 687 list_add(&thpsize->node, &thpsize_list); 688 order = next_order(&orders, order); 689 } 690 691 return 0; 692 693 remove_all: 694 hugepage_exit_sysfs(*hugepage_kobj); 695 return err; 696 remove_hp_group: 697 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 698 delete_obj: 699 kobject_put(*hugepage_kobj); 700 return err; 701 } 702 703 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 704 { 705 struct thpsize *thpsize, *tmp; 706 707 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 708 list_del(&thpsize->node); 709 kobject_put(&thpsize->kobj); 710 } 711 712 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 713 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 714 kobject_put(hugepage_kobj); 715 } 716 #else 717 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 718 { 719 return 0; 720 } 721 722 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 723 { 724 } 725 #endif /* CONFIG_SYSFS */ 726 727 static int __init thp_shrinker_init(void) 728 { 729 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 730 if (!huge_zero_page_shrinker) 731 return -ENOMEM; 732 733 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 734 SHRINKER_MEMCG_AWARE | 735 SHRINKER_NONSLAB, 736 "thp-deferred_split"); 737 if (!deferred_split_shrinker) { 738 shrinker_free(huge_zero_page_shrinker); 739 return -ENOMEM; 740 } 741 742 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 743 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 744 shrinker_register(huge_zero_page_shrinker); 745 746 deferred_split_shrinker->count_objects = deferred_split_count; 747 deferred_split_shrinker->scan_objects = deferred_split_scan; 748 shrinker_register(deferred_split_shrinker); 749 750 return 0; 751 } 752 753 static void __init thp_shrinker_exit(void) 754 { 755 shrinker_free(huge_zero_page_shrinker); 756 shrinker_free(deferred_split_shrinker); 757 } 758 759 static int __init hugepage_init(void) 760 { 761 int err; 762 struct kobject *hugepage_kobj; 763 764 if (!has_transparent_hugepage()) { 765 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 766 return -EINVAL; 767 } 768 769 /* 770 * hugepages can't be allocated by the buddy allocator 771 */ 772 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 773 774 err = hugepage_init_sysfs(&hugepage_kobj); 775 if (err) 776 goto err_sysfs; 777 778 err = khugepaged_init(); 779 if (err) 780 goto err_slab; 781 782 err = thp_shrinker_init(); 783 if (err) 784 goto err_shrinker; 785 786 /* 787 * By default disable transparent hugepages on smaller systems, 788 * where the extra memory used could hurt more than TLB overhead 789 * is likely to save. The admin can still enable it through /sys. 790 */ 791 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 792 transparent_hugepage_flags = 0; 793 return 0; 794 } 795 796 err = start_stop_khugepaged(); 797 if (err) 798 goto err_khugepaged; 799 800 return 0; 801 err_khugepaged: 802 thp_shrinker_exit(); 803 err_shrinker: 804 khugepaged_destroy(); 805 err_slab: 806 hugepage_exit_sysfs(hugepage_kobj); 807 err_sysfs: 808 return err; 809 } 810 subsys_initcall(hugepage_init); 811 812 static int __init setup_transparent_hugepage(char *str) 813 { 814 int ret = 0; 815 if (!str) 816 goto out; 817 if (!strcmp(str, "always")) { 818 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 819 &transparent_hugepage_flags); 820 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 821 &transparent_hugepage_flags); 822 ret = 1; 823 } else if (!strcmp(str, "madvise")) { 824 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 825 &transparent_hugepage_flags); 826 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 827 &transparent_hugepage_flags); 828 ret = 1; 829 } else if (!strcmp(str, "never")) { 830 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 831 &transparent_hugepage_flags); 832 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 833 &transparent_hugepage_flags); 834 ret = 1; 835 } 836 out: 837 if (!ret) 838 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 839 return ret; 840 } 841 __setup("transparent_hugepage=", setup_transparent_hugepage); 842 843 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 844 { 845 if (likely(vma->vm_flags & VM_WRITE)) 846 pmd = pmd_mkwrite(pmd, vma); 847 return pmd; 848 } 849 850 #ifdef CONFIG_MEMCG 851 static inline 852 struct deferred_split *get_deferred_split_queue(struct folio *folio) 853 { 854 struct mem_cgroup *memcg = folio_memcg(folio); 855 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 856 857 if (memcg) 858 return &memcg->deferred_split_queue; 859 else 860 return &pgdat->deferred_split_queue; 861 } 862 #else 863 static inline 864 struct deferred_split *get_deferred_split_queue(struct folio *folio) 865 { 866 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 867 868 return &pgdat->deferred_split_queue; 869 } 870 #endif 871 872 static inline bool is_transparent_hugepage(const struct folio *folio) 873 { 874 if (!folio_test_large(folio)) 875 return false; 876 877 return is_huge_zero_folio(folio) || 878 folio_test_large_rmappable(folio); 879 } 880 881 static unsigned long __thp_get_unmapped_area(struct file *filp, 882 unsigned long addr, unsigned long len, 883 loff_t off, unsigned long flags, unsigned long size, 884 vm_flags_t vm_flags) 885 { 886 loff_t off_end = off + len; 887 loff_t off_align = round_up(off, size); 888 unsigned long len_pad, ret, off_sub; 889 890 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 891 return 0; 892 893 if (off_end <= off_align || (off_end - off_align) < size) 894 return 0; 895 896 len_pad = len + size; 897 if (len_pad < len || (off + len_pad) < off) 898 return 0; 899 900 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 901 off >> PAGE_SHIFT, flags, vm_flags); 902 903 /* 904 * The failure might be due to length padding. The caller will retry 905 * without the padding. 906 */ 907 if (IS_ERR_VALUE(ret)) 908 return 0; 909 910 /* 911 * Do not try to align to THP boundary if allocation at the address 912 * hint succeeds. 913 */ 914 if (ret == addr) 915 return addr; 916 917 off_sub = (off - ret) & (size - 1); 918 919 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 920 return ret + size; 921 922 ret += off_sub; 923 return ret; 924 } 925 926 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 927 unsigned long len, unsigned long pgoff, unsigned long flags, 928 vm_flags_t vm_flags) 929 { 930 unsigned long ret; 931 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 932 933 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 934 if (ret) 935 return ret; 936 937 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 938 vm_flags); 939 } 940 941 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 942 unsigned long len, unsigned long pgoff, unsigned long flags) 943 { 944 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 945 } 946 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 947 948 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 949 struct page *page, gfp_t gfp) 950 { 951 struct vm_area_struct *vma = vmf->vma; 952 struct folio *folio = page_folio(page); 953 pgtable_t pgtable; 954 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 955 vm_fault_t ret = 0; 956 957 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 958 959 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 960 folio_put(folio); 961 count_vm_event(THP_FAULT_FALLBACK); 962 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 963 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 964 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 965 return VM_FAULT_FALLBACK; 966 } 967 folio_throttle_swaprate(folio, gfp); 968 969 pgtable = pte_alloc_one(vma->vm_mm); 970 if (unlikely(!pgtable)) { 971 ret = VM_FAULT_OOM; 972 goto release; 973 } 974 975 folio_zero_user(folio, vmf->address); 976 /* 977 * The memory barrier inside __folio_mark_uptodate makes sure that 978 * folio_zero_user writes become visible before the set_pmd_at() 979 * write. 980 */ 981 __folio_mark_uptodate(folio); 982 983 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 984 if (unlikely(!pmd_none(*vmf->pmd))) { 985 goto unlock_release; 986 } else { 987 pmd_t entry; 988 989 ret = check_stable_address_space(vma->vm_mm); 990 if (ret) 991 goto unlock_release; 992 993 /* Deliver the page fault to userland */ 994 if (userfaultfd_missing(vma)) { 995 spin_unlock(vmf->ptl); 996 folio_put(folio); 997 pte_free(vma->vm_mm, pgtable); 998 ret = handle_userfault(vmf, VM_UFFD_MISSING); 999 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1000 return ret; 1001 } 1002 1003 entry = mk_huge_pmd(page, vma->vm_page_prot); 1004 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1005 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1006 folio_add_lru_vma(folio, vma); 1007 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1008 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1009 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1010 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1011 mm_inc_nr_ptes(vma->vm_mm); 1012 spin_unlock(vmf->ptl); 1013 count_vm_event(THP_FAULT_ALLOC); 1014 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1015 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1016 } 1017 1018 return 0; 1019 unlock_release: 1020 spin_unlock(vmf->ptl); 1021 release: 1022 if (pgtable) 1023 pte_free(vma->vm_mm, pgtable); 1024 folio_put(folio); 1025 return ret; 1026 1027 } 1028 1029 /* 1030 * always: directly stall for all thp allocations 1031 * defer: wake kswapd and fail if not immediately available 1032 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1033 * fail if not immediately available 1034 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1035 * available 1036 * never: never stall for any thp allocation 1037 */ 1038 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1039 { 1040 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1041 1042 /* Always do synchronous compaction */ 1043 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1044 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1045 1046 /* Kick kcompactd and fail quickly */ 1047 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1048 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1049 1050 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1051 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1052 return GFP_TRANSHUGE_LIGHT | 1053 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1054 __GFP_KSWAPD_RECLAIM); 1055 1056 /* Only do synchronous compaction if madvised */ 1057 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1058 return GFP_TRANSHUGE_LIGHT | 1059 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1060 1061 return GFP_TRANSHUGE_LIGHT; 1062 } 1063 1064 /* Caller must hold page table lock. */ 1065 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1066 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1067 struct folio *zero_folio) 1068 { 1069 pmd_t entry; 1070 if (!pmd_none(*pmd)) 1071 return; 1072 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot); 1073 entry = pmd_mkhuge(entry); 1074 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1075 set_pmd_at(mm, haddr, pmd, entry); 1076 mm_inc_nr_ptes(mm); 1077 } 1078 1079 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1080 { 1081 struct vm_area_struct *vma = vmf->vma; 1082 gfp_t gfp; 1083 struct folio *folio; 1084 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1085 vm_fault_t ret; 1086 1087 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1088 return VM_FAULT_FALLBACK; 1089 ret = vmf_anon_prepare(vmf); 1090 if (ret) 1091 return ret; 1092 khugepaged_enter_vma(vma, vma->vm_flags); 1093 1094 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1095 !mm_forbids_zeropage(vma->vm_mm) && 1096 transparent_hugepage_use_zero_page()) { 1097 pgtable_t pgtable; 1098 struct folio *zero_folio; 1099 vm_fault_t ret; 1100 1101 pgtable = pte_alloc_one(vma->vm_mm); 1102 if (unlikely(!pgtable)) 1103 return VM_FAULT_OOM; 1104 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1105 if (unlikely(!zero_folio)) { 1106 pte_free(vma->vm_mm, pgtable); 1107 count_vm_event(THP_FAULT_FALLBACK); 1108 return VM_FAULT_FALLBACK; 1109 } 1110 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1111 ret = 0; 1112 if (pmd_none(*vmf->pmd)) { 1113 ret = check_stable_address_space(vma->vm_mm); 1114 if (ret) { 1115 spin_unlock(vmf->ptl); 1116 pte_free(vma->vm_mm, pgtable); 1117 } else if (userfaultfd_missing(vma)) { 1118 spin_unlock(vmf->ptl); 1119 pte_free(vma->vm_mm, pgtable); 1120 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1121 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1122 } else { 1123 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1124 haddr, vmf->pmd, zero_folio); 1125 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1126 spin_unlock(vmf->ptl); 1127 } 1128 } else { 1129 spin_unlock(vmf->ptl); 1130 pte_free(vma->vm_mm, pgtable); 1131 } 1132 return ret; 1133 } 1134 gfp = vma_thp_gfp_mask(vma); 1135 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1136 if (unlikely(!folio)) { 1137 count_vm_event(THP_FAULT_FALLBACK); 1138 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 1139 return VM_FAULT_FALLBACK; 1140 } 1141 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1142 } 1143 1144 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1145 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1146 pgtable_t pgtable) 1147 { 1148 struct mm_struct *mm = vma->vm_mm; 1149 pmd_t entry; 1150 spinlock_t *ptl; 1151 1152 ptl = pmd_lock(mm, pmd); 1153 if (!pmd_none(*pmd)) { 1154 if (write) { 1155 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1156 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1157 goto out_unlock; 1158 } 1159 entry = pmd_mkyoung(*pmd); 1160 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1161 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1162 update_mmu_cache_pmd(vma, addr, pmd); 1163 } 1164 1165 goto out_unlock; 1166 } 1167 1168 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1169 if (pfn_t_devmap(pfn)) 1170 entry = pmd_mkdevmap(entry); 1171 if (write) { 1172 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1173 entry = maybe_pmd_mkwrite(entry, vma); 1174 } 1175 1176 if (pgtable) { 1177 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1178 mm_inc_nr_ptes(mm); 1179 pgtable = NULL; 1180 } 1181 1182 set_pmd_at(mm, addr, pmd, entry); 1183 update_mmu_cache_pmd(vma, addr, pmd); 1184 1185 out_unlock: 1186 spin_unlock(ptl); 1187 if (pgtable) 1188 pte_free(mm, pgtable); 1189 } 1190 1191 /** 1192 * vmf_insert_pfn_pmd - insert a pmd size pfn 1193 * @vmf: Structure describing the fault 1194 * @pfn: pfn to insert 1195 * @write: whether it's a write fault 1196 * 1197 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1198 * 1199 * Return: vm_fault_t value. 1200 */ 1201 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1202 { 1203 unsigned long addr = vmf->address & PMD_MASK; 1204 struct vm_area_struct *vma = vmf->vma; 1205 pgprot_t pgprot = vma->vm_page_prot; 1206 pgtable_t pgtable = NULL; 1207 1208 /* 1209 * If we had pmd_special, we could avoid all these restrictions, 1210 * but we need to be consistent with PTEs and architectures that 1211 * can't support a 'special' bit. 1212 */ 1213 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1214 !pfn_t_devmap(pfn)); 1215 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1216 (VM_PFNMAP|VM_MIXEDMAP)); 1217 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1218 1219 if (addr < vma->vm_start || addr >= vma->vm_end) 1220 return VM_FAULT_SIGBUS; 1221 1222 if (arch_needs_pgtable_deposit()) { 1223 pgtable = pte_alloc_one(vma->vm_mm); 1224 if (!pgtable) 1225 return VM_FAULT_OOM; 1226 } 1227 1228 track_pfn_insert(vma, &pgprot, pfn); 1229 1230 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1231 return VM_FAULT_NOPAGE; 1232 } 1233 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1234 1235 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1236 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1237 { 1238 if (likely(vma->vm_flags & VM_WRITE)) 1239 pud = pud_mkwrite(pud); 1240 return pud; 1241 } 1242 1243 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1244 pud_t *pud, pfn_t pfn, bool write) 1245 { 1246 struct mm_struct *mm = vma->vm_mm; 1247 pgprot_t prot = vma->vm_page_prot; 1248 pud_t entry; 1249 spinlock_t *ptl; 1250 1251 ptl = pud_lock(mm, pud); 1252 if (!pud_none(*pud)) { 1253 if (write) { 1254 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1255 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1256 goto out_unlock; 1257 } 1258 entry = pud_mkyoung(*pud); 1259 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1260 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1261 update_mmu_cache_pud(vma, addr, pud); 1262 } 1263 goto out_unlock; 1264 } 1265 1266 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1267 if (pfn_t_devmap(pfn)) 1268 entry = pud_mkdevmap(entry); 1269 if (write) { 1270 entry = pud_mkyoung(pud_mkdirty(entry)); 1271 entry = maybe_pud_mkwrite(entry, vma); 1272 } 1273 set_pud_at(mm, addr, pud, entry); 1274 update_mmu_cache_pud(vma, addr, pud); 1275 1276 out_unlock: 1277 spin_unlock(ptl); 1278 } 1279 1280 /** 1281 * vmf_insert_pfn_pud - insert a pud size pfn 1282 * @vmf: Structure describing the fault 1283 * @pfn: pfn to insert 1284 * @write: whether it's a write fault 1285 * 1286 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1287 * 1288 * Return: vm_fault_t value. 1289 */ 1290 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1291 { 1292 unsigned long addr = vmf->address & PUD_MASK; 1293 struct vm_area_struct *vma = vmf->vma; 1294 pgprot_t pgprot = vma->vm_page_prot; 1295 1296 /* 1297 * If we had pud_special, we could avoid all these restrictions, 1298 * but we need to be consistent with PTEs and architectures that 1299 * can't support a 'special' bit. 1300 */ 1301 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1302 !pfn_t_devmap(pfn)); 1303 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1304 (VM_PFNMAP|VM_MIXEDMAP)); 1305 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1306 1307 if (addr < vma->vm_start || addr >= vma->vm_end) 1308 return VM_FAULT_SIGBUS; 1309 1310 track_pfn_insert(vma, &pgprot, pfn); 1311 1312 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1313 return VM_FAULT_NOPAGE; 1314 } 1315 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1316 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1317 1318 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1319 pmd_t *pmd, bool write) 1320 { 1321 pmd_t _pmd; 1322 1323 _pmd = pmd_mkyoung(*pmd); 1324 if (write) 1325 _pmd = pmd_mkdirty(_pmd); 1326 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1327 pmd, _pmd, write)) 1328 update_mmu_cache_pmd(vma, addr, pmd); 1329 } 1330 1331 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1332 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1333 { 1334 unsigned long pfn = pmd_pfn(*pmd); 1335 struct mm_struct *mm = vma->vm_mm; 1336 struct page *page; 1337 int ret; 1338 1339 assert_spin_locked(pmd_lockptr(mm, pmd)); 1340 1341 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1342 return NULL; 1343 1344 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1345 /* pass */; 1346 else 1347 return NULL; 1348 1349 if (flags & FOLL_TOUCH) 1350 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1351 1352 /* 1353 * device mapped pages can only be returned if the 1354 * caller will manage the page reference count. 1355 */ 1356 if (!(flags & (FOLL_GET | FOLL_PIN))) 1357 return ERR_PTR(-EEXIST); 1358 1359 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1360 *pgmap = get_dev_pagemap(pfn, *pgmap); 1361 if (!*pgmap) 1362 return ERR_PTR(-EFAULT); 1363 page = pfn_to_page(pfn); 1364 ret = try_grab_folio(page_folio(page), 1, flags); 1365 if (ret) 1366 page = ERR_PTR(ret); 1367 1368 return page; 1369 } 1370 1371 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1372 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1373 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1374 { 1375 spinlock_t *dst_ptl, *src_ptl; 1376 struct page *src_page; 1377 struct folio *src_folio; 1378 pmd_t pmd; 1379 pgtable_t pgtable = NULL; 1380 int ret = -ENOMEM; 1381 1382 /* Skip if can be re-fill on fault */ 1383 if (!vma_is_anonymous(dst_vma)) 1384 return 0; 1385 1386 pgtable = pte_alloc_one(dst_mm); 1387 if (unlikely(!pgtable)) 1388 goto out; 1389 1390 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1391 src_ptl = pmd_lockptr(src_mm, src_pmd); 1392 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1393 1394 ret = -EAGAIN; 1395 pmd = *src_pmd; 1396 1397 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1398 if (unlikely(is_swap_pmd(pmd))) { 1399 swp_entry_t entry = pmd_to_swp_entry(pmd); 1400 1401 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1402 if (!is_readable_migration_entry(entry)) { 1403 entry = make_readable_migration_entry( 1404 swp_offset(entry)); 1405 pmd = swp_entry_to_pmd(entry); 1406 if (pmd_swp_soft_dirty(*src_pmd)) 1407 pmd = pmd_swp_mksoft_dirty(pmd); 1408 if (pmd_swp_uffd_wp(*src_pmd)) 1409 pmd = pmd_swp_mkuffd_wp(pmd); 1410 set_pmd_at(src_mm, addr, src_pmd, pmd); 1411 } 1412 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1413 mm_inc_nr_ptes(dst_mm); 1414 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1415 if (!userfaultfd_wp(dst_vma)) 1416 pmd = pmd_swp_clear_uffd_wp(pmd); 1417 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1418 ret = 0; 1419 goto out_unlock; 1420 } 1421 #endif 1422 1423 if (unlikely(!pmd_trans_huge(pmd))) { 1424 pte_free(dst_mm, pgtable); 1425 goto out_unlock; 1426 } 1427 /* 1428 * When page table lock is held, the huge zero pmd should not be 1429 * under splitting since we don't split the page itself, only pmd to 1430 * a page table. 1431 */ 1432 if (is_huge_zero_pmd(pmd)) { 1433 /* 1434 * mm_get_huge_zero_folio() will never allocate a new 1435 * folio here, since we already have a zero page to 1436 * copy. It just takes a reference. 1437 */ 1438 mm_get_huge_zero_folio(dst_mm); 1439 goto out_zero_page; 1440 } 1441 1442 src_page = pmd_page(pmd); 1443 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1444 src_folio = page_folio(src_page); 1445 1446 folio_get(src_folio); 1447 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1448 /* Page maybe pinned: split and retry the fault on PTEs. */ 1449 folio_put(src_folio); 1450 pte_free(dst_mm, pgtable); 1451 spin_unlock(src_ptl); 1452 spin_unlock(dst_ptl); 1453 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1454 return -EAGAIN; 1455 } 1456 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1457 out_zero_page: 1458 mm_inc_nr_ptes(dst_mm); 1459 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1460 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1461 if (!userfaultfd_wp(dst_vma)) 1462 pmd = pmd_clear_uffd_wp(pmd); 1463 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1464 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1465 1466 ret = 0; 1467 out_unlock: 1468 spin_unlock(src_ptl); 1469 spin_unlock(dst_ptl); 1470 out: 1471 return ret; 1472 } 1473 1474 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1475 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1476 pud_t *pud, bool write) 1477 { 1478 pud_t _pud; 1479 1480 _pud = pud_mkyoung(*pud); 1481 if (write) 1482 _pud = pud_mkdirty(_pud); 1483 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1484 pud, _pud, write)) 1485 update_mmu_cache_pud(vma, addr, pud); 1486 } 1487 1488 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1489 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1490 struct vm_area_struct *vma) 1491 { 1492 spinlock_t *dst_ptl, *src_ptl; 1493 pud_t pud; 1494 int ret; 1495 1496 dst_ptl = pud_lock(dst_mm, dst_pud); 1497 src_ptl = pud_lockptr(src_mm, src_pud); 1498 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1499 1500 ret = -EAGAIN; 1501 pud = *src_pud; 1502 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1503 goto out_unlock; 1504 1505 /* 1506 * When page table lock is held, the huge zero pud should not be 1507 * under splitting since we don't split the page itself, only pud to 1508 * a page table. 1509 */ 1510 if (is_huge_zero_pud(pud)) { 1511 /* No huge zero pud yet */ 1512 } 1513 1514 /* 1515 * TODO: once we support anonymous pages, use 1516 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1517 */ 1518 pudp_set_wrprotect(src_mm, addr, src_pud); 1519 pud = pud_mkold(pud_wrprotect(pud)); 1520 set_pud_at(dst_mm, addr, dst_pud, pud); 1521 1522 ret = 0; 1523 out_unlock: 1524 spin_unlock(src_ptl); 1525 spin_unlock(dst_ptl); 1526 return ret; 1527 } 1528 1529 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1530 { 1531 bool write = vmf->flags & FAULT_FLAG_WRITE; 1532 1533 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1534 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1535 goto unlock; 1536 1537 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1538 unlock: 1539 spin_unlock(vmf->ptl); 1540 } 1541 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1542 1543 void huge_pmd_set_accessed(struct vm_fault *vmf) 1544 { 1545 bool write = vmf->flags & FAULT_FLAG_WRITE; 1546 1547 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1548 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1549 goto unlock; 1550 1551 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1552 1553 unlock: 1554 spin_unlock(vmf->ptl); 1555 } 1556 1557 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1558 { 1559 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1560 struct vm_area_struct *vma = vmf->vma; 1561 struct folio *folio; 1562 struct page *page; 1563 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1564 pmd_t orig_pmd = vmf->orig_pmd; 1565 1566 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1567 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1568 1569 if (is_huge_zero_pmd(orig_pmd)) 1570 goto fallback; 1571 1572 spin_lock(vmf->ptl); 1573 1574 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1575 spin_unlock(vmf->ptl); 1576 return 0; 1577 } 1578 1579 page = pmd_page(orig_pmd); 1580 folio = page_folio(page); 1581 VM_BUG_ON_PAGE(!PageHead(page), page); 1582 1583 /* Early check when only holding the PT lock. */ 1584 if (PageAnonExclusive(page)) 1585 goto reuse; 1586 1587 if (!folio_trylock(folio)) { 1588 folio_get(folio); 1589 spin_unlock(vmf->ptl); 1590 folio_lock(folio); 1591 spin_lock(vmf->ptl); 1592 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1593 spin_unlock(vmf->ptl); 1594 folio_unlock(folio); 1595 folio_put(folio); 1596 return 0; 1597 } 1598 folio_put(folio); 1599 } 1600 1601 /* Recheck after temporarily dropping the PT lock. */ 1602 if (PageAnonExclusive(page)) { 1603 folio_unlock(folio); 1604 goto reuse; 1605 } 1606 1607 /* 1608 * See do_wp_page(): we can only reuse the folio exclusively if 1609 * there are no additional references. Note that we always drain 1610 * the LRU cache immediately after adding a THP. 1611 */ 1612 if (folio_ref_count(folio) > 1613 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1614 goto unlock_fallback; 1615 if (folio_test_swapcache(folio)) 1616 folio_free_swap(folio); 1617 if (folio_ref_count(folio) == 1) { 1618 pmd_t entry; 1619 1620 folio_move_anon_rmap(folio, vma); 1621 SetPageAnonExclusive(page); 1622 folio_unlock(folio); 1623 reuse: 1624 if (unlikely(unshare)) { 1625 spin_unlock(vmf->ptl); 1626 return 0; 1627 } 1628 entry = pmd_mkyoung(orig_pmd); 1629 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1630 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1631 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1632 spin_unlock(vmf->ptl); 1633 return 0; 1634 } 1635 1636 unlock_fallback: 1637 folio_unlock(folio); 1638 spin_unlock(vmf->ptl); 1639 fallback: 1640 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1641 return VM_FAULT_FALLBACK; 1642 } 1643 1644 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1645 unsigned long addr, pmd_t pmd) 1646 { 1647 struct page *page; 1648 1649 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1650 return false; 1651 1652 /* Don't touch entries that are not even readable (NUMA hinting). */ 1653 if (pmd_protnone(pmd)) 1654 return false; 1655 1656 /* Do we need write faults for softdirty tracking? */ 1657 if (pmd_needs_soft_dirty_wp(vma, pmd)) 1658 return false; 1659 1660 /* Do we need write faults for uffd-wp tracking? */ 1661 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1662 return false; 1663 1664 if (!(vma->vm_flags & VM_SHARED)) { 1665 /* See can_change_pte_writable(). */ 1666 page = vm_normal_page_pmd(vma, addr, pmd); 1667 return page && PageAnon(page) && PageAnonExclusive(page); 1668 } 1669 1670 /* See can_change_pte_writable(). */ 1671 return pmd_dirty(pmd); 1672 } 1673 1674 /* NUMA hinting page fault entry point for trans huge pmds */ 1675 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1676 { 1677 struct vm_area_struct *vma = vmf->vma; 1678 pmd_t oldpmd = vmf->orig_pmd; 1679 pmd_t pmd; 1680 struct folio *folio; 1681 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1682 int nid = NUMA_NO_NODE; 1683 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1684 bool writable = false; 1685 int flags = 0; 1686 1687 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1688 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1689 spin_unlock(vmf->ptl); 1690 return 0; 1691 } 1692 1693 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1694 1695 /* 1696 * Detect now whether the PMD could be writable; this information 1697 * is only valid while holding the PT lock. 1698 */ 1699 writable = pmd_write(pmd); 1700 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1701 can_change_pmd_writable(vma, vmf->address, pmd)) 1702 writable = true; 1703 1704 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1705 if (!folio) 1706 goto out_map; 1707 1708 /* See similar comment in do_numa_page for explanation */ 1709 if (!writable) 1710 flags |= TNF_NO_GROUP; 1711 1712 nid = folio_nid(folio); 1713 /* 1714 * For memory tiering mode, cpupid of slow memory page is used 1715 * to record page access time. So use default value. 1716 */ 1717 if (node_is_toptier(nid)) 1718 last_cpupid = folio_last_cpupid(folio); 1719 target_nid = numa_migrate_prep(folio, vmf, haddr, nid, &flags); 1720 if (target_nid == NUMA_NO_NODE) 1721 goto out_map; 1722 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 1723 flags |= TNF_MIGRATE_FAIL; 1724 goto out_map; 1725 } 1726 /* The folio is isolated and isolation code holds a folio reference. */ 1727 spin_unlock(vmf->ptl); 1728 writable = false; 1729 1730 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 1731 flags |= TNF_MIGRATED; 1732 nid = target_nid; 1733 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1734 return 0; 1735 } 1736 1737 flags |= TNF_MIGRATE_FAIL; 1738 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1739 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1740 spin_unlock(vmf->ptl); 1741 return 0; 1742 } 1743 out_map: 1744 /* Restore the PMD */ 1745 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1746 pmd = pmd_mkyoung(pmd); 1747 if (writable) 1748 pmd = pmd_mkwrite(pmd, vma); 1749 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1750 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1751 spin_unlock(vmf->ptl); 1752 1753 if (nid != NUMA_NO_NODE) 1754 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1755 return 0; 1756 } 1757 1758 /* 1759 * Return true if we do MADV_FREE successfully on entire pmd page. 1760 * Otherwise, return false. 1761 */ 1762 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1763 pmd_t *pmd, unsigned long addr, unsigned long next) 1764 { 1765 spinlock_t *ptl; 1766 pmd_t orig_pmd; 1767 struct folio *folio; 1768 struct mm_struct *mm = tlb->mm; 1769 bool ret = false; 1770 1771 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1772 1773 ptl = pmd_trans_huge_lock(pmd, vma); 1774 if (!ptl) 1775 goto out_unlocked; 1776 1777 orig_pmd = *pmd; 1778 if (is_huge_zero_pmd(orig_pmd)) 1779 goto out; 1780 1781 if (unlikely(!pmd_present(orig_pmd))) { 1782 VM_BUG_ON(thp_migration_supported() && 1783 !is_pmd_migration_entry(orig_pmd)); 1784 goto out; 1785 } 1786 1787 folio = pmd_folio(orig_pmd); 1788 /* 1789 * If other processes are mapping this folio, we couldn't discard 1790 * the folio unless they all do MADV_FREE so let's skip the folio. 1791 */ 1792 if (folio_likely_mapped_shared(folio)) 1793 goto out; 1794 1795 if (!folio_trylock(folio)) 1796 goto out; 1797 1798 /* 1799 * If user want to discard part-pages of THP, split it so MADV_FREE 1800 * will deactivate only them. 1801 */ 1802 if (next - addr != HPAGE_PMD_SIZE) { 1803 folio_get(folio); 1804 spin_unlock(ptl); 1805 split_folio(folio); 1806 folio_unlock(folio); 1807 folio_put(folio); 1808 goto out_unlocked; 1809 } 1810 1811 if (folio_test_dirty(folio)) 1812 folio_clear_dirty(folio); 1813 folio_unlock(folio); 1814 1815 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1816 pmdp_invalidate(vma, addr, pmd); 1817 orig_pmd = pmd_mkold(orig_pmd); 1818 orig_pmd = pmd_mkclean(orig_pmd); 1819 1820 set_pmd_at(mm, addr, pmd, orig_pmd); 1821 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1822 } 1823 1824 folio_mark_lazyfree(folio); 1825 ret = true; 1826 out: 1827 spin_unlock(ptl); 1828 out_unlocked: 1829 return ret; 1830 } 1831 1832 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1833 { 1834 pgtable_t pgtable; 1835 1836 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1837 pte_free(mm, pgtable); 1838 mm_dec_nr_ptes(mm); 1839 } 1840 1841 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1842 pmd_t *pmd, unsigned long addr) 1843 { 1844 pmd_t orig_pmd; 1845 spinlock_t *ptl; 1846 1847 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1848 1849 ptl = __pmd_trans_huge_lock(pmd, vma); 1850 if (!ptl) 1851 return 0; 1852 /* 1853 * For architectures like ppc64 we look at deposited pgtable 1854 * when calling pmdp_huge_get_and_clear. So do the 1855 * pgtable_trans_huge_withdraw after finishing pmdp related 1856 * operations. 1857 */ 1858 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1859 tlb->fullmm); 1860 arch_check_zapped_pmd(vma, orig_pmd); 1861 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1862 if (vma_is_special_huge(vma)) { 1863 if (arch_needs_pgtable_deposit()) 1864 zap_deposited_table(tlb->mm, pmd); 1865 spin_unlock(ptl); 1866 } else if (is_huge_zero_pmd(orig_pmd)) { 1867 zap_deposited_table(tlb->mm, pmd); 1868 spin_unlock(ptl); 1869 } else { 1870 struct folio *folio = NULL; 1871 int flush_needed = 1; 1872 1873 if (pmd_present(orig_pmd)) { 1874 struct page *page = pmd_page(orig_pmd); 1875 1876 folio = page_folio(page); 1877 folio_remove_rmap_pmd(folio, page, vma); 1878 WARN_ON_ONCE(folio_mapcount(folio) < 0); 1879 VM_BUG_ON_PAGE(!PageHead(page), page); 1880 } else if (thp_migration_supported()) { 1881 swp_entry_t entry; 1882 1883 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1884 entry = pmd_to_swp_entry(orig_pmd); 1885 folio = pfn_swap_entry_folio(entry); 1886 flush_needed = 0; 1887 } else 1888 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1889 1890 if (folio_test_anon(folio)) { 1891 zap_deposited_table(tlb->mm, pmd); 1892 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1893 } else { 1894 if (arch_needs_pgtable_deposit()) 1895 zap_deposited_table(tlb->mm, pmd); 1896 add_mm_counter(tlb->mm, mm_counter_file(folio), 1897 -HPAGE_PMD_NR); 1898 } 1899 1900 spin_unlock(ptl); 1901 if (flush_needed) 1902 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1903 } 1904 return 1; 1905 } 1906 1907 #ifndef pmd_move_must_withdraw 1908 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1909 spinlock_t *old_pmd_ptl, 1910 struct vm_area_struct *vma) 1911 { 1912 /* 1913 * With split pmd lock we also need to move preallocated 1914 * PTE page table if new_pmd is on different PMD page table. 1915 * 1916 * We also don't deposit and withdraw tables for file pages. 1917 */ 1918 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1919 } 1920 #endif 1921 1922 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1923 { 1924 #ifdef CONFIG_MEM_SOFT_DIRTY 1925 if (unlikely(is_pmd_migration_entry(pmd))) 1926 pmd = pmd_swp_mksoft_dirty(pmd); 1927 else if (pmd_present(pmd)) 1928 pmd = pmd_mksoft_dirty(pmd); 1929 #endif 1930 return pmd; 1931 } 1932 1933 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1934 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1935 { 1936 spinlock_t *old_ptl, *new_ptl; 1937 pmd_t pmd; 1938 struct mm_struct *mm = vma->vm_mm; 1939 bool force_flush = false; 1940 1941 /* 1942 * The destination pmd shouldn't be established, free_pgtables() 1943 * should have released it; but move_page_tables() might have already 1944 * inserted a page table, if racing against shmem/file collapse. 1945 */ 1946 if (!pmd_none(*new_pmd)) { 1947 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1948 return false; 1949 } 1950 1951 /* 1952 * We don't have to worry about the ordering of src and dst 1953 * ptlocks because exclusive mmap_lock prevents deadlock. 1954 */ 1955 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1956 if (old_ptl) { 1957 new_ptl = pmd_lockptr(mm, new_pmd); 1958 if (new_ptl != old_ptl) 1959 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1960 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1961 if (pmd_present(pmd)) 1962 force_flush = true; 1963 VM_BUG_ON(!pmd_none(*new_pmd)); 1964 1965 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1966 pgtable_t pgtable; 1967 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1968 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1969 } 1970 pmd = move_soft_dirty_pmd(pmd); 1971 set_pmd_at(mm, new_addr, new_pmd, pmd); 1972 if (force_flush) 1973 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1974 if (new_ptl != old_ptl) 1975 spin_unlock(new_ptl); 1976 spin_unlock(old_ptl); 1977 return true; 1978 } 1979 return false; 1980 } 1981 1982 /* 1983 * Returns 1984 * - 0 if PMD could not be locked 1985 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1986 * or if prot_numa but THP migration is not supported 1987 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1988 */ 1989 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1990 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1991 unsigned long cp_flags) 1992 { 1993 struct mm_struct *mm = vma->vm_mm; 1994 spinlock_t *ptl; 1995 pmd_t oldpmd, entry; 1996 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1997 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1998 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1999 int ret = 1; 2000 2001 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2002 2003 if (prot_numa && !thp_migration_supported()) 2004 return 1; 2005 2006 ptl = __pmd_trans_huge_lock(pmd, vma); 2007 if (!ptl) 2008 return 0; 2009 2010 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2011 if (is_swap_pmd(*pmd)) { 2012 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2013 struct folio *folio = pfn_swap_entry_folio(entry); 2014 pmd_t newpmd; 2015 2016 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2017 if (is_writable_migration_entry(entry)) { 2018 /* 2019 * A protection check is difficult so 2020 * just be safe and disable write 2021 */ 2022 if (folio_test_anon(folio)) 2023 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2024 else 2025 entry = make_readable_migration_entry(swp_offset(entry)); 2026 newpmd = swp_entry_to_pmd(entry); 2027 if (pmd_swp_soft_dirty(*pmd)) 2028 newpmd = pmd_swp_mksoft_dirty(newpmd); 2029 } else { 2030 newpmd = *pmd; 2031 } 2032 2033 if (uffd_wp) 2034 newpmd = pmd_swp_mkuffd_wp(newpmd); 2035 else if (uffd_wp_resolve) 2036 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2037 if (!pmd_same(*pmd, newpmd)) 2038 set_pmd_at(mm, addr, pmd, newpmd); 2039 goto unlock; 2040 } 2041 #endif 2042 2043 if (prot_numa) { 2044 struct folio *folio; 2045 bool toptier; 2046 /* 2047 * Avoid trapping faults against the zero page. The read-only 2048 * data is likely to be read-cached on the local CPU and 2049 * local/remote hits to the zero page are not interesting. 2050 */ 2051 if (is_huge_zero_pmd(*pmd)) 2052 goto unlock; 2053 2054 if (pmd_protnone(*pmd)) 2055 goto unlock; 2056 2057 folio = pmd_folio(*pmd); 2058 toptier = node_is_toptier(folio_nid(folio)); 2059 /* 2060 * Skip scanning top tier node if normal numa 2061 * balancing is disabled 2062 */ 2063 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2064 toptier) 2065 goto unlock; 2066 2067 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2068 !toptier) 2069 folio_xchg_access_time(folio, 2070 jiffies_to_msecs(jiffies)); 2071 } 2072 /* 2073 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2074 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2075 * which is also under mmap_read_lock(mm): 2076 * 2077 * CPU0: CPU1: 2078 * change_huge_pmd(prot_numa=1) 2079 * pmdp_huge_get_and_clear_notify() 2080 * madvise_dontneed() 2081 * zap_pmd_range() 2082 * pmd_trans_huge(*pmd) == 0 (without ptl) 2083 * // skip the pmd 2084 * set_pmd_at(); 2085 * // pmd is re-established 2086 * 2087 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2088 * which may break userspace. 2089 * 2090 * pmdp_invalidate_ad() is required to make sure we don't miss 2091 * dirty/young flags set by hardware. 2092 */ 2093 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2094 2095 entry = pmd_modify(oldpmd, newprot); 2096 if (uffd_wp) 2097 entry = pmd_mkuffd_wp(entry); 2098 else if (uffd_wp_resolve) 2099 /* 2100 * Leave the write bit to be handled by PF interrupt 2101 * handler, then things like COW could be properly 2102 * handled. 2103 */ 2104 entry = pmd_clear_uffd_wp(entry); 2105 2106 /* See change_pte_range(). */ 2107 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2108 can_change_pmd_writable(vma, addr, entry)) 2109 entry = pmd_mkwrite(entry, vma); 2110 2111 ret = HPAGE_PMD_NR; 2112 set_pmd_at(mm, addr, pmd, entry); 2113 2114 if (huge_pmd_needs_flush(oldpmd, entry)) 2115 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2116 unlock: 2117 spin_unlock(ptl); 2118 return ret; 2119 } 2120 2121 #ifdef CONFIG_USERFAULTFD 2122 /* 2123 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2124 * the caller, but it must return after releasing the page_table_lock. 2125 * Just move the page from src_pmd to dst_pmd if possible. 2126 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2127 * repeated by the caller, or other errors in case of failure. 2128 */ 2129 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2130 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2131 unsigned long dst_addr, unsigned long src_addr) 2132 { 2133 pmd_t _dst_pmd, src_pmdval; 2134 struct page *src_page; 2135 struct folio *src_folio; 2136 struct anon_vma *src_anon_vma; 2137 spinlock_t *src_ptl, *dst_ptl; 2138 pgtable_t src_pgtable; 2139 struct mmu_notifier_range range; 2140 int err = 0; 2141 2142 src_pmdval = *src_pmd; 2143 src_ptl = pmd_lockptr(mm, src_pmd); 2144 2145 lockdep_assert_held(src_ptl); 2146 vma_assert_locked(src_vma); 2147 vma_assert_locked(dst_vma); 2148 2149 /* Sanity checks before the operation */ 2150 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2151 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2152 spin_unlock(src_ptl); 2153 return -EINVAL; 2154 } 2155 2156 if (!pmd_trans_huge(src_pmdval)) { 2157 spin_unlock(src_ptl); 2158 if (is_pmd_migration_entry(src_pmdval)) { 2159 pmd_migration_entry_wait(mm, &src_pmdval); 2160 return -EAGAIN; 2161 } 2162 return -ENOENT; 2163 } 2164 2165 src_page = pmd_page(src_pmdval); 2166 2167 if (!is_huge_zero_pmd(src_pmdval)) { 2168 if (unlikely(!PageAnonExclusive(src_page))) { 2169 spin_unlock(src_ptl); 2170 return -EBUSY; 2171 } 2172 2173 src_folio = page_folio(src_page); 2174 folio_get(src_folio); 2175 } else 2176 src_folio = NULL; 2177 2178 spin_unlock(src_ptl); 2179 2180 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2181 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2182 src_addr + HPAGE_PMD_SIZE); 2183 mmu_notifier_invalidate_range_start(&range); 2184 2185 if (src_folio) { 2186 folio_lock(src_folio); 2187 2188 /* 2189 * split_huge_page walks the anon_vma chain without the page 2190 * lock. Serialize against it with the anon_vma lock, the page 2191 * lock is not enough. 2192 */ 2193 src_anon_vma = folio_get_anon_vma(src_folio); 2194 if (!src_anon_vma) { 2195 err = -EAGAIN; 2196 goto unlock_folio; 2197 } 2198 anon_vma_lock_write(src_anon_vma); 2199 } else 2200 src_anon_vma = NULL; 2201 2202 dst_ptl = pmd_lockptr(mm, dst_pmd); 2203 double_pt_lock(src_ptl, dst_ptl); 2204 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2205 !pmd_same(*dst_pmd, dst_pmdval))) { 2206 err = -EAGAIN; 2207 goto unlock_ptls; 2208 } 2209 if (src_folio) { 2210 if (folio_maybe_dma_pinned(src_folio) || 2211 !PageAnonExclusive(&src_folio->page)) { 2212 err = -EBUSY; 2213 goto unlock_ptls; 2214 } 2215 2216 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2217 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2218 err = -EBUSY; 2219 goto unlock_ptls; 2220 } 2221 2222 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2223 /* Folio got pinned from under us. Put it back and fail the move. */ 2224 if (folio_maybe_dma_pinned(src_folio)) { 2225 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2226 err = -EBUSY; 2227 goto unlock_ptls; 2228 } 2229 2230 folio_move_anon_rmap(src_folio, dst_vma); 2231 src_folio->index = linear_page_index(dst_vma, dst_addr); 2232 2233 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2234 /* Follow mremap() behavior and treat the entry dirty after the move */ 2235 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2236 } else { 2237 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2238 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2239 } 2240 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2241 2242 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2243 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2244 unlock_ptls: 2245 double_pt_unlock(src_ptl, dst_ptl); 2246 if (src_anon_vma) { 2247 anon_vma_unlock_write(src_anon_vma); 2248 put_anon_vma(src_anon_vma); 2249 } 2250 unlock_folio: 2251 /* unblock rmap walks */ 2252 if (src_folio) 2253 folio_unlock(src_folio); 2254 mmu_notifier_invalidate_range_end(&range); 2255 if (src_folio) 2256 folio_put(src_folio); 2257 return err; 2258 } 2259 #endif /* CONFIG_USERFAULTFD */ 2260 2261 /* 2262 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2263 * 2264 * Note that if it returns page table lock pointer, this routine returns without 2265 * unlocking page table lock. So callers must unlock it. 2266 */ 2267 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2268 { 2269 spinlock_t *ptl; 2270 ptl = pmd_lock(vma->vm_mm, pmd); 2271 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2272 pmd_devmap(*pmd))) 2273 return ptl; 2274 spin_unlock(ptl); 2275 return NULL; 2276 } 2277 2278 /* 2279 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2280 * 2281 * Note that if it returns page table lock pointer, this routine returns without 2282 * unlocking page table lock. So callers must unlock it. 2283 */ 2284 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2285 { 2286 spinlock_t *ptl; 2287 2288 ptl = pud_lock(vma->vm_mm, pud); 2289 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2290 return ptl; 2291 spin_unlock(ptl); 2292 return NULL; 2293 } 2294 2295 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2296 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2297 pud_t *pud, unsigned long addr) 2298 { 2299 spinlock_t *ptl; 2300 2301 ptl = __pud_trans_huge_lock(pud, vma); 2302 if (!ptl) 2303 return 0; 2304 2305 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2306 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2307 if (vma_is_special_huge(vma)) { 2308 spin_unlock(ptl); 2309 /* No zero page support yet */ 2310 } else { 2311 /* No support for anonymous PUD pages yet */ 2312 BUG(); 2313 } 2314 return 1; 2315 } 2316 2317 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2318 unsigned long haddr) 2319 { 2320 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2321 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2322 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2323 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2324 2325 count_vm_event(THP_SPLIT_PUD); 2326 2327 pudp_huge_clear_flush(vma, haddr, pud); 2328 } 2329 2330 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2331 unsigned long address) 2332 { 2333 spinlock_t *ptl; 2334 struct mmu_notifier_range range; 2335 2336 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2337 address & HPAGE_PUD_MASK, 2338 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2339 mmu_notifier_invalidate_range_start(&range); 2340 ptl = pud_lock(vma->vm_mm, pud); 2341 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2342 goto out; 2343 __split_huge_pud_locked(vma, pud, range.start); 2344 2345 out: 2346 spin_unlock(ptl); 2347 mmu_notifier_invalidate_range_end(&range); 2348 } 2349 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2350 2351 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2352 unsigned long haddr, pmd_t *pmd) 2353 { 2354 struct mm_struct *mm = vma->vm_mm; 2355 pgtable_t pgtable; 2356 pmd_t _pmd, old_pmd; 2357 unsigned long addr; 2358 pte_t *pte; 2359 int i; 2360 2361 /* 2362 * Leave pmd empty until pte is filled note that it is fine to delay 2363 * notification until mmu_notifier_invalidate_range_end() as we are 2364 * replacing a zero pmd write protected page with a zero pte write 2365 * protected page. 2366 * 2367 * See Documentation/mm/mmu_notifier.rst 2368 */ 2369 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2370 2371 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2372 pmd_populate(mm, &_pmd, pgtable); 2373 2374 pte = pte_offset_map(&_pmd, haddr); 2375 VM_BUG_ON(!pte); 2376 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2377 pte_t entry; 2378 2379 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2380 entry = pte_mkspecial(entry); 2381 if (pmd_uffd_wp(old_pmd)) 2382 entry = pte_mkuffd_wp(entry); 2383 VM_BUG_ON(!pte_none(ptep_get(pte))); 2384 set_pte_at(mm, addr, pte, entry); 2385 pte++; 2386 } 2387 pte_unmap(pte - 1); 2388 smp_wmb(); /* make pte visible before pmd */ 2389 pmd_populate(mm, pmd, pgtable); 2390 } 2391 2392 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2393 unsigned long haddr, bool freeze) 2394 { 2395 struct mm_struct *mm = vma->vm_mm; 2396 struct folio *folio; 2397 struct page *page; 2398 pgtable_t pgtable; 2399 pmd_t old_pmd, _pmd; 2400 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2401 bool anon_exclusive = false, dirty = false; 2402 unsigned long addr; 2403 pte_t *pte; 2404 int i; 2405 2406 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2407 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2408 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2409 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2410 && !pmd_devmap(*pmd)); 2411 2412 count_vm_event(THP_SPLIT_PMD); 2413 2414 if (!vma_is_anonymous(vma)) { 2415 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2416 /* 2417 * We are going to unmap this huge page. So 2418 * just go ahead and zap it 2419 */ 2420 if (arch_needs_pgtable_deposit()) 2421 zap_deposited_table(mm, pmd); 2422 if (vma_is_special_huge(vma)) 2423 return; 2424 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2425 swp_entry_t entry; 2426 2427 entry = pmd_to_swp_entry(old_pmd); 2428 folio = pfn_swap_entry_folio(entry); 2429 } else { 2430 page = pmd_page(old_pmd); 2431 folio = page_folio(page); 2432 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2433 folio_mark_dirty(folio); 2434 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2435 folio_set_referenced(folio); 2436 folio_remove_rmap_pmd(folio, page, vma); 2437 folio_put(folio); 2438 } 2439 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2440 return; 2441 } 2442 2443 if (is_huge_zero_pmd(*pmd)) { 2444 /* 2445 * FIXME: Do we want to invalidate secondary mmu by calling 2446 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2447 * inside __split_huge_pmd() ? 2448 * 2449 * We are going from a zero huge page write protected to zero 2450 * small page also write protected so it does not seems useful 2451 * to invalidate secondary mmu at this time. 2452 */ 2453 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2454 } 2455 2456 pmd_migration = is_pmd_migration_entry(*pmd); 2457 if (unlikely(pmd_migration)) { 2458 swp_entry_t entry; 2459 2460 old_pmd = *pmd; 2461 entry = pmd_to_swp_entry(old_pmd); 2462 page = pfn_swap_entry_to_page(entry); 2463 write = is_writable_migration_entry(entry); 2464 if (PageAnon(page)) 2465 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2466 young = is_migration_entry_young(entry); 2467 dirty = is_migration_entry_dirty(entry); 2468 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2469 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2470 } else { 2471 /* 2472 * Up to this point the pmd is present and huge and userland has 2473 * the whole access to the hugepage during the split (which 2474 * happens in place). If we overwrite the pmd with the not-huge 2475 * version pointing to the pte here (which of course we could if 2476 * all CPUs were bug free), userland could trigger a small page 2477 * size TLB miss on the small sized TLB while the hugepage TLB 2478 * entry is still established in the huge TLB. Some CPU doesn't 2479 * like that. See 2480 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2481 * 383 on page 105. Intel should be safe but is also warns that 2482 * it's only safe if the permission and cache attributes of the 2483 * two entries loaded in the two TLB is identical (which should 2484 * be the case here). But it is generally safer to never allow 2485 * small and huge TLB entries for the same virtual address to be 2486 * loaded simultaneously. So instead of doing "pmd_populate(); 2487 * flush_pmd_tlb_range();" we first mark the current pmd 2488 * notpresent (atomically because here the pmd_trans_huge must 2489 * remain set at all times on the pmd until the split is 2490 * complete for this pmd), then we flush the SMP TLB and finally 2491 * we write the non-huge version of the pmd entry with 2492 * pmd_populate. 2493 */ 2494 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2495 page = pmd_page(old_pmd); 2496 folio = page_folio(page); 2497 if (pmd_dirty(old_pmd)) { 2498 dirty = true; 2499 folio_set_dirty(folio); 2500 } 2501 write = pmd_write(old_pmd); 2502 young = pmd_young(old_pmd); 2503 soft_dirty = pmd_soft_dirty(old_pmd); 2504 uffd_wp = pmd_uffd_wp(old_pmd); 2505 2506 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2507 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2508 2509 /* 2510 * Without "freeze", we'll simply split the PMD, propagating the 2511 * PageAnonExclusive() flag for each PTE by setting it for 2512 * each subpage -- no need to (temporarily) clear. 2513 * 2514 * With "freeze" we want to replace mapped pages by 2515 * migration entries right away. This is only possible if we 2516 * managed to clear PageAnonExclusive() -- see 2517 * set_pmd_migration_entry(). 2518 * 2519 * In case we cannot clear PageAnonExclusive(), split the PMD 2520 * only and let try_to_migrate_one() fail later. 2521 * 2522 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2523 */ 2524 anon_exclusive = PageAnonExclusive(page); 2525 if (freeze && anon_exclusive && 2526 folio_try_share_anon_rmap_pmd(folio, page)) 2527 freeze = false; 2528 if (!freeze) { 2529 rmap_t rmap_flags = RMAP_NONE; 2530 2531 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2532 if (anon_exclusive) 2533 rmap_flags |= RMAP_EXCLUSIVE; 2534 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2535 vma, haddr, rmap_flags); 2536 } 2537 } 2538 2539 /* 2540 * Withdraw the table only after we mark the pmd entry invalid. 2541 * This's critical for some architectures (Power). 2542 */ 2543 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2544 pmd_populate(mm, &_pmd, pgtable); 2545 2546 pte = pte_offset_map(&_pmd, haddr); 2547 VM_BUG_ON(!pte); 2548 2549 /* 2550 * Note that NUMA hinting access restrictions are not transferred to 2551 * avoid any possibility of altering permissions across VMAs. 2552 */ 2553 if (freeze || pmd_migration) { 2554 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2555 pte_t entry; 2556 swp_entry_t swp_entry; 2557 2558 if (write) 2559 swp_entry = make_writable_migration_entry( 2560 page_to_pfn(page + i)); 2561 else if (anon_exclusive) 2562 swp_entry = make_readable_exclusive_migration_entry( 2563 page_to_pfn(page + i)); 2564 else 2565 swp_entry = make_readable_migration_entry( 2566 page_to_pfn(page + i)); 2567 if (young) 2568 swp_entry = make_migration_entry_young(swp_entry); 2569 if (dirty) 2570 swp_entry = make_migration_entry_dirty(swp_entry); 2571 entry = swp_entry_to_pte(swp_entry); 2572 if (soft_dirty) 2573 entry = pte_swp_mksoft_dirty(entry); 2574 if (uffd_wp) 2575 entry = pte_swp_mkuffd_wp(entry); 2576 2577 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2578 set_pte_at(mm, addr, pte + i, entry); 2579 } 2580 } else { 2581 pte_t entry; 2582 2583 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2584 if (write) 2585 entry = pte_mkwrite(entry, vma); 2586 if (!young) 2587 entry = pte_mkold(entry); 2588 /* NOTE: this may set soft-dirty too on some archs */ 2589 if (dirty) 2590 entry = pte_mkdirty(entry); 2591 if (soft_dirty) 2592 entry = pte_mksoft_dirty(entry); 2593 if (uffd_wp) 2594 entry = pte_mkuffd_wp(entry); 2595 2596 for (i = 0; i < HPAGE_PMD_NR; i++) 2597 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2598 2599 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2600 } 2601 pte_unmap(pte); 2602 2603 if (!pmd_migration) 2604 folio_remove_rmap_pmd(folio, page, vma); 2605 if (freeze) 2606 put_page(page); 2607 2608 smp_wmb(); /* make pte visible before pmd */ 2609 pmd_populate(mm, pmd, pgtable); 2610 } 2611 2612 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 2613 pmd_t *pmd, bool freeze, struct folio *folio) 2614 { 2615 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio)); 2616 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 2617 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2618 VM_BUG_ON(freeze && !folio); 2619 2620 /* 2621 * When the caller requests to set up a migration entry, we 2622 * require a folio to check the PMD against. Otherwise, there 2623 * is a risk of replacing the wrong folio. 2624 */ 2625 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2626 is_pmd_migration_entry(*pmd)) { 2627 if (folio && folio != pmd_folio(*pmd)) 2628 return; 2629 __split_huge_pmd_locked(vma, pmd, address, freeze); 2630 } 2631 } 2632 2633 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2634 unsigned long address, bool freeze, struct folio *folio) 2635 { 2636 spinlock_t *ptl; 2637 struct mmu_notifier_range range; 2638 2639 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2640 address & HPAGE_PMD_MASK, 2641 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2642 mmu_notifier_invalidate_range_start(&range); 2643 ptl = pmd_lock(vma->vm_mm, pmd); 2644 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio); 2645 spin_unlock(ptl); 2646 mmu_notifier_invalidate_range_end(&range); 2647 } 2648 2649 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2650 bool freeze, struct folio *folio) 2651 { 2652 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2653 2654 if (!pmd) 2655 return; 2656 2657 __split_huge_pmd(vma, pmd, address, freeze, folio); 2658 } 2659 2660 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2661 { 2662 /* 2663 * If the new address isn't hpage aligned and it could previously 2664 * contain an hugepage: check if we need to split an huge pmd. 2665 */ 2666 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2667 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2668 ALIGN(address, HPAGE_PMD_SIZE))) 2669 split_huge_pmd_address(vma, address, false, NULL); 2670 } 2671 2672 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2673 unsigned long start, 2674 unsigned long end, 2675 long adjust_next) 2676 { 2677 /* Check if we need to split start first. */ 2678 split_huge_pmd_if_needed(vma, start); 2679 2680 /* Check if we need to split end next. */ 2681 split_huge_pmd_if_needed(vma, end); 2682 2683 /* 2684 * If we're also updating the next vma vm_start, 2685 * check if we need to split it. 2686 */ 2687 if (adjust_next > 0) { 2688 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2689 unsigned long nstart = next->vm_start; 2690 nstart += adjust_next; 2691 split_huge_pmd_if_needed(next, nstart); 2692 } 2693 } 2694 2695 static void unmap_folio(struct folio *folio) 2696 { 2697 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 2698 TTU_BATCH_FLUSH; 2699 2700 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2701 2702 if (folio_test_pmd_mappable(folio)) 2703 ttu_flags |= TTU_SPLIT_HUGE_PMD; 2704 2705 /* 2706 * Anon pages need migration entries to preserve them, but file 2707 * pages can simply be left unmapped, then faulted back on demand. 2708 * If that is ever changed (perhaps for mlock), update remap_page(). 2709 */ 2710 if (folio_test_anon(folio)) 2711 try_to_migrate(folio, ttu_flags); 2712 else 2713 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2714 2715 try_to_unmap_flush(); 2716 } 2717 2718 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 2719 unsigned long addr, pmd_t *pmdp, 2720 struct folio *folio) 2721 { 2722 struct mm_struct *mm = vma->vm_mm; 2723 int ref_count, map_count; 2724 pmd_t orig_pmd = *pmdp; 2725 2726 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd)) 2727 return false; 2728 2729 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 2730 2731 /* 2732 * Syncing against concurrent GUP-fast: 2733 * - clear PMD; barrier; read refcount 2734 * - inc refcount; barrier; read PMD 2735 */ 2736 smp_mb(); 2737 2738 ref_count = folio_ref_count(folio); 2739 map_count = folio_mapcount(folio); 2740 2741 /* 2742 * Order reads for folio refcount and dirty flag 2743 * (see comments in __remove_mapping()). 2744 */ 2745 smp_rmb(); 2746 2747 /* 2748 * If the folio or its PMD is redirtied at this point, or if there 2749 * are unexpected references, we will give up to discard this folio 2750 * and remap it. 2751 * 2752 * The only folio refs must be one from isolation plus the rmap(s). 2753 */ 2754 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) || 2755 ref_count != map_count + 1) { 2756 set_pmd_at(mm, addr, pmdp, orig_pmd); 2757 return false; 2758 } 2759 2760 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 2761 zap_deposited_table(mm, pmdp); 2762 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2763 if (vma->vm_flags & VM_LOCKED) 2764 mlock_drain_local(); 2765 folio_put(folio); 2766 2767 return true; 2768 } 2769 2770 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 2771 pmd_t *pmdp, struct folio *folio) 2772 { 2773 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 2774 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2775 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 2776 2777 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) 2778 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 2779 2780 return false; 2781 } 2782 2783 static void remap_page(struct folio *folio, unsigned long nr) 2784 { 2785 int i = 0; 2786 2787 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2788 if (!folio_test_anon(folio)) 2789 return; 2790 for (;;) { 2791 remove_migration_ptes(folio, folio, true); 2792 i += folio_nr_pages(folio); 2793 if (i >= nr) 2794 break; 2795 folio = folio_next(folio); 2796 } 2797 } 2798 2799 static void lru_add_page_tail(struct page *head, struct page *tail, 2800 struct lruvec *lruvec, struct list_head *list) 2801 { 2802 VM_BUG_ON_PAGE(!PageHead(head), head); 2803 VM_BUG_ON_PAGE(PageLRU(tail), head); 2804 lockdep_assert_held(&lruvec->lru_lock); 2805 2806 if (list) { 2807 /* page reclaim is reclaiming a huge page */ 2808 VM_WARN_ON(PageLRU(head)); 2809 get_page(tail); 2810 list_add_tail(&tail->lru, list); 2811 } else { 2812 /* head is still on lru (and we have it frozen) */ 2813 VM_WARN_ON(!PageLRU(head)); 2814 if (PageUnevictable(tail)) 2815 tail->mlock_count = 0; 2816 else 2817 list_add_tail(&tail->lru, &head->lru); 2818 SetPageLRU(tail); 2819 } 2820 } 2821 2822 static void __split_huge_page_tail(struct folio *folio, int tail, 2823 struct lruvec *lruvec, struct list_head *list, 2824 unsigned int new_order) 2825 { 2826 struct page *head = &folio->page; 2827 struct page *page_tail = head + tail; 2828 /* 2829 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2830 * Don't pass it around before clear_compound_head(). 2831 */ 2832 struct folio *new_folio = (struct folio *)page_tail; 2833 2834 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2835 2836 /* 2837 * Clone page flags before unfreezing refcount. 2838 * 2839 * After successful get_page_unless_zero() might follow flags change, 2840 * for example lock_page() which set PG_waiters. 2841 * 2842 * Note that for mapped sub-pages of an anonymous THP, 2843 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2844 * the migration entry instead from where remap_page() will restore it. 2845 * We can still have PG_anon_exclusive set on effectively unmapped and 2846 * unreferenced sub-pages of an anonymous THP: we can simply drop 2847 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2848 */ 2849 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2850 page_tail->flags |= (head->flags & 2851 ((1L << PG_referenced) | 2852 (1L << PG_swapbacked) | 2853 (1L << PG_swapcache) | 2854 (1L << PG_mlocked) | 2855 (1L << PG_uptodate) | 2856 (1L << PG_active) | 2857 (1L << PG_workingset) | 2858 (1L << PG_locked) | 2859 (1L << PG_unevictable) | 2860 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2861 (1L << PG_arch_2) | 2862 (1L << PG_arch_3) | 2863 #endif 2864 (1L << PG_dirty) | 2865 LRU_GEN_MASK | LRU_REFS_MASK)); 2866 2867 /* ->mapping in first and second tail page is replaced by other uses */ 2868 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2869 page_tail); 2870 page_tail->mapping = head->mapping; 2871 page_tail->index = head->index + tail; 2872 2873 /* 2874 * page->private should not be set in tail pages. Fix up and warn once 2875 * if private is unexpectedly set. 2876 */ 2877 if (unlikely(page_tail->private)) { 2878 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2879 page_tail->private = 0; 2880 } 2881 if (folio_test_swapcache(folio)) 2882 new_folio->swap.val = folio->swap.val + tail; 2883 2884 /* Page flags must be visible before we make the page non-compound. */ 2885 smp_wmb(); 2886 2887 /* 2888 * Clear PageTail before unfreezing page refcount. 2889 * 2890 * After successful get_page_unless_zero() might follow put_page() 2891 * which needs correct compound_head(). 2892 */ 2893 clear_compound_head(page_tail); 2894 if (new_order) { 2895 prep_compound_page(page_tail, new_order); 2896 folio_set_large_rmappable(new_folio); 2897 } 2898 2899 /* Finally unfreeze refcount. Additional reference from page cache. */ 2900 page_ref_unfreeze(page_tail, 2901 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 2902 folio_nr_pages(new_folio) : 0)); 2903 2904 if (folio_test_young(folio)) 2905 folio_set_young(new_folio); 2906 if (folio_test_idle(folio)) 2907 folio_set_idle(new_folio); 2908 2909 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2910 2911 /* 2912 * always add to the tail because some iterators expect new 2913 * pages to show after the currently processed elements - e.g. 2914 * migrate_pages 2915 */ 2916 lru_add_page_tail(head, page_tail, lruvec, list); 2917 } 2918 2919 static void __split_huge_page(struct page *page, struct list_head *list, 2920 pgoff_t end, unsigned int new_order) 2921 { 2922 struct folio *folio = page_folio(page); 2923 struct page *head = &folio->page; 2924 struct lruvec *lruvec; 2925 struct address_space *swap_cache = NULL; 2926 unsigned long offset = 0; 2927 int i, nr_dropped = 0; 2928 unsigned int new_nr = 1 << new_order; 2929 int order = folio_order(folio); 2930 unsigned int nr = 1 << order; 2931 2932 /* complete memcg works before add pages to LRU */ 2933 split_page_memcg(head, order, new_order); 2934 2935 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2936 offset = swap_cache_index(folio->swap); 2937 swap_cache = swap_address_space(folio->swap); 2938 xa_lock(&swap_cache->i_pages); 2939 } 2940 2941 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2942 lruvec = folio_lruvec_lock(folio); 2943 2944 ClearPageHasHWPoisoned(head); 2945 2946 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 2947 __split_huge_page_tail(folio, i, lruvec, list, new_order); 2948 /* Some pages can be beyond EOF: drop them from page cache */ 2949 if (head[i].index >= end) { 2950 struct folio *tail = page_folio(head + i); 2951 2952 if (shmem_mapping(folio->mapping)) 2953 nr_dropped++; 2954 else if (folio_test_clear_dirty(tail)) 2955 folio_account_cleaned(tail, 2956 inode_to_wb(folio->mapping->host)); 2957 __filemap_remove_folio(tail, NULL); 2958 folio_put(tail); 2959 } else if (!PageAnon(page)) { 2960 __xa_store(&folio->mapping->i_pages, head[i].index, 2961 head + i, 0); 2962 } else if (swap_cache) { 2963 __xa_store(&swap_cache->i_pages, offset + i, 2964 head + i, 0); 2965 } 2966 } 2967 2968 if (!new_order) 2969 ClearPageCompound(head); 2970 else { 2971 struct folio *new_folio = (struct folio *)head; 2972 2973 folio_set_order(new_folio, new_order); 2974 } 2975 unlock_page_lruvec(lruvec); 2976 /* Caller disabled irqs, so they are still disabled here */ 2977 2978 split_page_owner(head, order, new_order); 2979 pgalloc_tag_split(head, 1 << order); 2980 2981 /* See comment in __split_huge_page_tail() */ 2982 if (folio_test_anon(folio)) { 2983 /* Additional pin to swap cache */ 2984 if (folio_test_swapcache(folio)) { 2985 folio_ref_add(folio, 1 + new_nr); 2986 xa_unlock(&swap_cache->i_pages); 2987 } else { 2988 folio_ref_inc(folio); 2989 } 2990 } else { 2991 /* Additional pin to page cache */ 2992 folio_ref_add(folio, 1 + new_nr); 2993 xa_unlock(&folio->mapping->i_pages); 2994 } 2995 local_irq_enable(); 2996 2997 if (nr_dropped) 2998 shmem_uncharge(folio->mapping->host, nr_dropped); 2999 remap_page(folio, nr); 3000 3001 /* 3002 * set page to its compound_head when split to non order-0 pages, so 3003 * we can skip unlocking it below, since PG_locked is transferred to 3004 * the compound_head of the page and the caller will unlock it. 3005 */ 3006 if (new_order) 3007 page = compound_head(page); 3008 3009 for (i = 0; i < nr; i += new_nr) { 3010 struct page *subpage = head + i; 3011 struct folio *new_folio = page_folio(subpage); 3012 if (subpage == page) 3013 continue; 3014 folio_unlock(new_folio); 3015 3016 /* 3017 * Subpages may be freed if there wasn't any mapping 3018 * like if add_to_swap() is running on a lru page that 3019 * had its mapping zapped. And freeing these pages 3020 * requires taking the lru_lock so we do the put_page 3021 * of the tail pages after the split is complete. 3022 */ 3023 free_page_and_swap_cache(subpage); 3024 } 3025 } 3026 3027 /* Racy check whether the huge page can be split */ 3028 bool can_split_folio(struct folio *folio, int *pextra_pins) 3029 { 3030 int extra_pins; 3031 3032 /* Additional pins from page cache */ 3033 if (folio_test_anon(folio)) 3034 extra_pins = folio_test_swapcache(folio) ? 3035 folio_nr_pages(folio) : 0; 3036 else 3037 extra_pins = folio_nr_pages(folio); 3038 if (pextra_pins) 3039 *pextra_pins = extra_pins; 3040 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 3041 } 3042 3043 /* 3044 * This function splits a large folio into smaller folios of order @new_order. 3045 * @page can point to any page of the large folio to split. The split operation 3046 * does not change the position of @page. 3047 * 3048 * Prerequisites: 3049 * 3050 * 1) The caller must hold a reference on the @page's owning folio, also known 3051 * as the large folio. 3052 * 3053 * 2) The large folio must be locked. 3054 * 3055 * 3) The folio must not be pinned. Any unexpected folio references, including 3056 * GUP pins, will result in the folio not getting split; instead, the caller 3057 * will receive an -EAGAIN. 3058 * 3059 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 3060 * supported for non-file-backed folios, because folio->_deferred_list, which 3061 * is used by partially mapped folios, is stored in subpage 2, but an order-1 3062 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 3063 * since they do not use _deferred_list. 3064 * 3065 * After splitting, the caller's folio reference will be transferred to @page, 3066 * resulting in a raised refcount of @page after this call. The other pages may 3067 * be freed if they are not mapped. 3068 * 3069 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3070 * 3071 * Pages in @new_order will inherit the mapping, flags, and so on from the 3072 * huge page. 3073 * 3074 * Returns 0 if the huge page was split successfully. 3075 * 3076 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 3077 * the folio was concurrently removed from the page cache. 3078 * 3079 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 3080 * under writeback, if fs-specific folio metadata cannot currently be 3081 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 3082 * truncation). 3083 * 3084 * Returns -EINVAL when trying to split to an order that is incompatible 3085 * with the folio. Splitting to order 0 is compatible with all folios. 3086 */ 3087 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3088 unsigned int new_order) 3089 { 3090 struct folio *folio = page_folio(page); 3091 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3092 /* reset xarray order to new order after split */ 3093 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 3094 struct anon_vma *anon_vma = NULL; 3095 struct address_space *mapping = NULL; 3096 int order = folio_order(folio); 3097 int extra_pins, ret; 3098 pgoff_t end; 3099 bool is_hzp; 3100 3101 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3102 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3103 3104 if (new_order >= folio_order(folio)) 3105 return -EINVAL; 3106 3107 if (folio_test_anon(folio)) { 3108 /* order-1 is not supported for anonymous THP. */ 3109 if (new_order == 1) { 3110 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3111 return -EINVAL; 3112 } 3113 } else if (new_order) { 3114 /* Split shmem folio to non-zero order not supported */ 3115 if (shmem_mapping(folio->mapping)) { 3116 VM_WARN_ONCE(1, 3117 "Cannot split shmem folio to non-0 order"); 3118 return -EINVAL; 3119 } 3120 /* 3121 * No split if the file system does not support large folio. 3122 * Note that we might still have THPs in such mappings due to 3123 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3124 * does not actually support large folios properly. 3125 */ 3126 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3127 !mapping_large_folio_support(folio->mapping)) { 3128 VM_WARN_ONCE(1, 3129 "Cannot split file folio to non-0 order"); 3130 return -EINVAL; 3131 } 3132 } 3133 3134 /* Only swapping a whole PMD-mapped folio is supported */ 3135 if (folio_test_swapcache(folio) && new_order) 3136 return -EINVAL; 3137 3138 is_hzp = is_huge_zero_folio(folio); 3139 if (is_hzp) { 3140 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3141 return -EBUSY; 3142 } 3143 3144 if (folio_test_writeback(folio)) 3145 return -EBUSY; 3146 3147 if (folio_test_anon(folio)) { 3148 /* 3149 * The caller does not necessarily hold an mmap_lock that would 3150 * prevent the anon_vma disappearing so we first we take a 3151 * reference to it and then lock the anon_vma for write. This 3152 * is similar to folio_lock_anon_vma_read except the write lock 3153 * is taken to serialise against parallel split or collapse 3154 * operations. 3155 */ 3156 anon_vma = folio_get_anon_vma(folio); 3157 if (!anon_vma) { 3158 ret = -EBUSY; 3159 goto out; 3160 } 3161 end = -1; 3162 mapping = NULL; 3163 anon_vma_lock_write(anon_vma); 3164 } else { 3165 gfp_t gfp; 3166 3167 mapping = folio->mapping; 3168 3169 /* Truncated ? */ 3170 if (!mapping) { 3171 ret = -EBUSY; 3172 goto out; 3173 } 3174 3175 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3176 GFP_RECLAIM_MASK); 3177 3178 if (!filemap_release_folio(folio, gfp)) { 3179 ret = -EBUSY; 3180 goto out; 3181 } 3182 3183 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3184 if (xas_error(&xas)) { 3185 ret = xas_error(&xas); 3186 goto out; 3187 } 3188 3189 anon_vma = NULL; 3190 i_mmap_lock_read(mapping); 3191 3192 /* 3193 *__split_huge_page() may need to trim off pages beyond EOF: 3194 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3195 * which cannot be nested inside the page tree lock. So note 3196 * end now: i_size itself may be changed at any moment, but 3197 * folio lock is good enough to serialize the trimming. 3198 */ 3199 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3200 if (shmem_mapping(mapping)) 3201 end = shmem_fallocend(mapping->host, end); 3202 } 3203 3204 /* 3205 * Racy check if we can split the page, before unmap_folio() will 3206 * split PMDs 3207 */ 3208 if (!can_split_folio(folio, &extra_pins)) { 3209 ret = -EAGAIN; 3210 goto out_unlock; 3211 } 3212 3213 unmap_folio(folio); 3214 3215 /* block interrupt reentry in xa_lock and spinlock */ 3216 local_irq_disable(); 3217 if (mapping) { 3218 /* 3219 * Check if the folio is present in page cache. 3220 * We assume all tail are present too, if folio is there. 3221 */ 3222 xas_lock(&xas); 3223 xas_reset(&xas); 3224 if (xas_load(&xas) != folio) 3225 goto fail; 3226 } 3227 3228 /* Prevent deferred_split_scan() touching ->_refcount */ 3229 spin_lock(&ds_queue->split_queue_lock); 3230 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3231 if (folio_order(folio) > 1 && 3232 !list_empty(&folio->_deferred_list)) { 3233 ds_queue->split_queue_len--; 3234 /* 3235 * Reinitialize page_deferred_list after removing the 3236 * page from the split_queue, otherwise a subsequent 3237 * split will see list corruption when checking the 3238 * page_deferred_list. 3239 */ 3240 list_del_init(&folio->_deferred_list); 3241 } 3242 spin_unlock(&ds_queue->split_queue_lock); 3243 if (mapping) { 3244 int nr = folio_nr_pages(folio); 3245 3246 xas_split(&xas, folio, folio_order(folio)); 3247 if (folio_test_pmd_mappable(folio) && 3248 new_order < HPAGE_PMD_ORDER) { 3249 if (folio_test_swapbacked(folio)) { 3250 __lruvec_stat_mod_folio(folio, 3251 NR_SHMEM_THPS, -nr); 3252 } else { 3253 __lruvec_stat_mod_folio(folio, 3254 NR_FILE_THPS, -nr); 3255 filemap_nr_thps_dec(mapping); 3256 } 3257 } 3258 } 3259 3260 __split_huge_page(page, list, end, new_order); 3261 ret = 0; 3262 } else { 3263 spin_unlock(&ds_queue->split_queue_lock); 3264 fail: 3265 if (mapping) 3266 xas_unlock(&xas); 3267 local_irq_enable(); 3268 remap_page(folio, folio_nr_pages(folio)); 3269 ret = -EAGAIN; 3270 } 3271 3272 out_unlock: 3273 if (anon_vma) { 3274 anon_vma_unlock_write(anon_vma); 3275 put_anon_vma(anon_vma); 3276 } 3277 if (mapping) 3278 i_mmap_unlock_read(mapping); 3279 out: 3280 xas_destroy(&xas); 3281 if (order == HPAGE_PMD_ORDER) 3282 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3283 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 3284 return ret; 3285 } 3286 3287 void __folio_undo_large_rmappable(struct folio *folio) 3288 { 3289 struct deferred_split *ds_queue; 3290 unsigned long flags; 3291 3292 ds_queue = get_deferred_split_queue(folio); 3293 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3294 if (!list_empty(&folio->_deferred_list)) { 3295 ds_queue->split_queue_len--; 3296 list_del_init(&folio->_deferred_list); 3297 } 3298 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3299 } 3300 3301 void deferred_split_folio(struct folio *folio) 3302 { 3303 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3304 #ifdef CONFIG_MEMCG 3305 struct mem_cgroup *memcg = folio_memcg(folio); 3306 #endif 3307 unsigned long flags; 3308 3309 /* 3310 * Order 1 folios have no space for a deferred list, but we also 3311 * won't waste much memory by not adding them to the deferred list. 3312 */ 3313 if (folio_order(folio) <= 1) 3314 return; 3315 3316 /* 3317 * The try_to_unmap() in page reclaim path might reach here too, 3318 * this may cause a race condition to corrupt deferred split queue. 3319 * And, if page reclaim is already handling the same folio, it is 3320 * unnecessary to handle it again in shrinker. 3321 * 3322 * Check the swapcache flag to determine if the folio is being 3323 * handled by page reclaim since THP swap would add the folio into 3324 * swap cache before calling try_to_unmap(). 3325 */ 3326 if (folio_test_swapcache(folio)) 3327 return; 3328 3329 if (!list_empty(&folio->_deferred_list)) 3330 return; 3331 3332 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3333 if (list_empty(&folio->_deferred_list)) { 3334 if (folio_test_pmd_mappable(folio)) 3335 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3336 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 3337 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3338 ds_queue->split_queue_len++; 3339 #ifdef CONFIG_MEMCG 3340 if (memcg) 3341 set_shrinker_bit(memcg, folio_nid(folio), 3342 deferred_split_shrinker->id); 3343 #endif 3344 } 3345 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3346 } 3347 3348 static unsigned long deferred_split_count(struct shrinker *shrink, 3349 struct shrink_control *sc) 3350 { 3351 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3352 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3353 3354 #ifdef CONFIG_MEMCG 3355 if (sc->memcg) 3356 ds_queue = &sc->memcg->deferred_split_queue; 3357 #endif 3358 return READ_ONCE(ds_queue->split_queue_len); 3359 } 3360 3361 static unsigned long deferred_split_scan(struct shrinker *shrink, 3362 struct shrink_control *sc) 3363 { 3364 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3365 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3366 unsigned long flags; 3367 LIST_HEAD(list); 3368 struct folio *folio, *next; 3369 int split = 0; 3370 3371 #ifdef CONFIG_MEMCG 3372 if (sc->memcg) 3373 ds_queue = &sc->memcg->deferred_split_queue; 3374 #endif 3375 3376 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3377 /* Take pin on all head pages to avoid freeing them under us */ 3378 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3379 _deferred_list) { 3380 if (folio_try_get(folio)) { 3381 list_move(&folio->_deferred_list, &list); 3382 } else { 3383 /* We lost race with folio_put() */ 3384 list_del_init(&folio->_deferred_list); 3385 ds_queue->split_queue_len--; 3386 } 3387 if (!--sc->nr_to_scan) 3388 break; 3389 } 3390 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3391 3392 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3393 if (!folio_trylock(folio)) 3394 goto next; 3395 /* split_huge_page() removes page from list on success */ 3396 if (!split_folio(folio)) 3397 split++; 3398 folio_unlock(folio); 3399 next: 3400 folio_put(folio); 3401 } 3402 3403 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3404 list_splice_tail(&list, &ds_queue->split_queue); 3405 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3406 3407 /* 3408 * Stop shrinker if we didn't split any page, but the queue is empty. 3409 * This can happen if pages were freed under us. 3410 */ 3411 if (!split && list_empty(&ds_queue->split_queue)) 3412 return SHRINK_STOP; 3413 return split; 3414 } 3415 3416 #ifdef CONFIG_DEBUG_FS 3417 static void split_huge_pages_all(void) 3418 { 3419 struct zone *zone; 3420 struct page *page; 3421 struct folio *folio; 3422 unsigned long pfn, max_zone_pfn; 3423 unsigned long total = 0, split = 0; 3424 3425 pr_debug("Split all THPs\n"); 3426 for_each_zone(zone) { 3427 if (!managed_zone(zone)) 3428 continue; 3429 max_zone_pfn = zone_end_pfn(zone); 3430 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3431 int nr_pages; 3432 3433 page = pfn_to_online_page(pfn); 3434 if (!page || PageTail(page)) 3435 continue; 3436 folio = page_folio(page); 3437 if (!folio_try_get(folio)) 3438 continue; 3439 3440 if (unlikely(page_folio(page) != folio)) 3441 goto next; 3442 3443 if (zone != folio_zone(folio)) 3444 goto next; 3445 3446 if (!folio_test_large(folio) 3447 || folio_test_hugetlb(folio) 3448 || !folio_test_lru(folio)) 3449 goto next; 3450 3451 total++; 3452 folio_lock(folio); 3453 nr_pages = folio_nr_pages(folio); 3454 if (!split_folio(folio)) 3455 split++; 3456 pfn += nr_pages - 1; 3457 folio_unlock(folio); 3458 next: 3459 folio_put(folio); 3460 cond_resched(); 3461 } 3462 } 3463 3464 pr_debug("%lu of %lu THP split\n", split, total); 3465 } 3466 3467 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3468 { 3469 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3470 is_vm_hugetlb_page(vma); 3471 } 3472 3473 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3474 unsigned long vaddr_end, unsigned int new_order) 3475 { 3476 int ret = 0; 3477 struct task_struct *task; 3478 struct mm_struct *mm; 3479 unsigned long total = 0, split = 0; 3480 unsigned long addr; 3481 3482 vaddr_start &= PAGE_MASK; 3483 vaddr_end &= PAGE_MASK; 3484 3485 /* Find the task_struct from pid */ 3486 rcu_read_lock(); 3487 task = find_task_by_vpid(pid); 3488 if (!task) { 3489 rcu_read_unlock(); 3490 ret = -ESRCH; 3491 goto out; 3492 } 3493 get_task_struct(task); 3494 rcu_read_unlock(); 3495 3496 /* Find the mm_struct */ 3497 mm = get_task_mm(task); 3498 put_task_struct(task); 3499 3500 if (!mm) { 3501 ret = -EINVAL; 3502 goto out; 3503 } 3504 3505 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3506 pid, vaddr_start, vaddr_end); 3507 3508 mmap_read_lock(mm); 3509 /* 3510 * always increase addr by PAGE_SIZE, since we could have a PTE page 3511 * table filled with PTE-mapped THPs, each of which is distinct. 3512 */ 3513 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3514 struct vm_area_struct *vma = vma_lookup(mm, addr); 3515 struct page *page; 3516 struct folio *folio; 3517 3518 if (!vma) 3519 break; 3520 3521 /* skip special VMA and hugetlb VMA */ 3522 if (vma_not_suitable_for_thp_split(vma)) { 3523 addr = vma->vm_end; 3524 continue; 3525 } 3526 3527 /* FOLL_DUMP to ignore special (like zero) pages */ 3528 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3529 3530 if (IS_ERR_OR_NULL(page)) 3531 continue; 3532 3533 folio = page_folio(page); 3534 if (!is_transparent_hugepage(folio)) 3535 goto next; 3536 3537 if (new_order >= folio_order(folio)) 3538 goto next; 3539 3540 total++; 3541 /* 3542 * For folios with private, split_huge_page_to_list_to_order() 3543 * will try to drop it before split and then check if the folio 3544 * can be split or not. So skip the check here. 3545 */ 3546 if (!folio_test_private(folio) && 3547 !can_split_folio(folio, NULL)) 3548 goto next; 3549 3550 if (!folio_trylock(folio)) 3551 goto next; 3552 3553 if (!split_folio_to_order(folio, new_order)) 3554 split++; 3555 3556 folio_unlock(folio); 3557 next: 3558 folio_put(folio); 3559 cond_resched(); 3560 } 3561 mmap_read_unlock(mm); 3562 mmput(mm); 3563 3564 pr_debug("%lu of %lu THP split\n", split, total); 3565 3566 out: 3567 return ret; 3568 } 3569 3570 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3571 pgoff_t off_end, unsigned int new_order) 3572 { 3573 struct filename *file; 3574 struct file *candidate; 3575 struct address_space *mapping; 3576 int ret = -EINVAL; 3577 pgoff_t index; 3578 int nr_pages = 1; 3579 unsigned long total = 0, split = 0; 3580 3581 file = getname_kernel(file_path); 3582 if (IS_ERR(file)) 3583 return ret; 3584 3585 candidate = file_open_name(file, O_RDONLY, 0); 3586 if (IS_ERR(candidate)) 3587 goto out; 3588 3589 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3590 file_path, off_start, off_end); 3591 3592 mapping = candidate->f_mapping; 3593 3594 for (index = off_start; index < off_end; index += nr_pages) { 3595 struct folio *folio = filemap_get_folio(mapping, index); 3596 3597 nr_pages = 1; 3598 if (IS_ERR(folio)) 3599 continue; 3600 3601 if (!folio_test_large(folio)) 3602 goto next; 3603 3604 total++; 3605 nr_pages = folio_nr_pages(folio); 3606 3607 if (new_order >= folio_order(folio)) 3608 goto next; 3609 3610 if (!folio_trylock(folio)) 3611 goto next; 3612 3613 if (!split_folio_to_order(folio, new_order)) 3614 split++; 3615 3616 folio_unlock(folio); 3617 next: 3618 folio_put(folio); 3619 cond_resched(); 3620 } 3621 3622 filp_close(candidate, NULL); 3623 ret = 0; 3624 3625 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3626 out: 3627 putname(file); 3628 return ret; 3629 } 3630 3631 #define MAX_INPUT_BUF_SZ 255 3632 3633 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3634 size_t count, loff_t *ppops) 3635 { 3636 static DEFINE_MUTEX(split_debug_mutex); 3637 ssize_t ret; 3638 /* 3639 * hold pid, start_vaddr, end_vaddr, new_order or 3640 * file_path, off_start, off_end, new_order 3641 */ 3642 char input_buf[MAX_INPUT_BUF_SZ]; 3643 int pid; 3644 unsigned long vaddr_start, vaddr_end; 3645 unsigned int new_order = 0; 3646 3647 ret = mutex_lock_interruptible(&split_debug_mutex); 3648 if (ret) 3649 return ret; 3650 3651 ret = -EFAULT; 3652 3653 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3654 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3655 goto out; 3656 3657 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3658 3659 if (input_buf[0] == '/') { 3660 char *tok; 3661 char *buf = input_buf; 3662 char file_path[MAX_INPUT_BUF_SZ]; 3663 pgoff_t off_start = 0, off_end = 0; 3664 size_t input_len = strlen(input_buf); 3665 3666 tok = strsep(&buf, ","); 3667 if (tok) { 3668 strcpy(file_path, tok); 3669 } else { 3670 ret = -EINVAL; 3671 goto out; 3672 } 3673 3674 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 3675 if (ret != 2 && ret != 3) { 3676 ret = -EINVAL; 3677 goto out; 3678 } 3679 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 3680 if (!ret) 3681 ret = input_len; 3682 3683 goto out; 3684 } 3685 3686 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 3687 if (ret == 1 && pid == 1) { 3688 split_huge_pages_all(); 3689 ret = strlen(input_buf); 3690 goto out; 3691 } else if (ret != 3 && ret != 4) { 3692 ret = -EINVAL; 3693 goto out; 3694 } 3695 3696 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 3697 if (!ret) 3698 ret = strlen(input_buf); 3699 out: 3700 mutex_unlock(&split_debug_mutex); 3701 return ret; 3702 3703 } 3704 3705 static const struct file_operations split_huge_pages_fops = { 3706 .owner = THIS_MODULE, 3707 .write = split_huge_pages_write, 3708 .llseek = no_llseek, 3709 }; 3710 3711 static int __init split_huge_pages_debugfs(void) 3712 { 3713 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3714 &split_huge_pages_fops); 3715 return 0; 3716 } 3717 late_initcall(split_huge_pages_debugfs); 3718 #endif 3719 3720 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3721 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3722 struct page *page) 3723 { 3724 struct folio *folio = page_folio(page); 3725 struct vm_area_struct *vma = pvmw->vma; 3726 struct mm_struct *mm = vma->vm_mm; 3727 unsigned long address = pvmw->address; 3728 bool anon_exclusive; 3729 pmd_t pmdval; 3730 swp_entry_t entry; 3731 pmd_t pmdswp; 3732 3733 if (!(pvmw->pmd && !pvmw->pte)) 3734 return 0; 3735 3736 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3737 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3738 3739 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3740 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3741 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3742 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3743 return -EBUSY; 3744 } 3745 3746 if (pmd_dirty(pmdval)) 3747 folio_mark_dirty(folio); 3748 if (pmd_write(pmdval)) 3749 entry = make_writable_migration_entry(page_to_pfn(page)); 3750 else if (anon_exclusive) 3751 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3752 else 3753 entry = make_readable_migration_entry(page_to_pfn(page)); 3754 if (pmd_young(pmdval)) 3755 entry = make_migration_entry_young(entry); 3756 if (pmd_dirty(pmdval)) 3757 entry = make_migration_entry_dirty(entry); 3758 pmdswp = swp_entry_to_pmd(entry); 3759 if (pmd_soft_dirty(pmdval)) 3760 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3761 if (pmd_uffd_wp(pmdval)) 3762 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3763 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3764 folio_remove_rmap_pmd(folio, page, vma); 3765 folio_put(folio); 3766 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3767 3768 return 0; 3769 } 3770 3771 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3772 { 3773 struct folio *folio = page_folio(new); 3774 struct vm_area_struct *vma = pvmw->vma; 3775 struct mm_struct *mm = vma->vm_mm; 3776 unsigned long address = pvmw->address; 3777 unsigned long haddr = address & HPAGE_PMD_MASK; 3778 pmd_t pmde; 3779 swp_entry_t entry; 3780 3781 if (!(pvmw->pmd && !pvmw->pte)) 3782 return; 3783 3784 entry = pmd_to_swp_entry(*pvmw->pmd); 3785 folio_get(folio); 3786 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3787 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3788 pmde = pmd_mksoft_dirty(pmde); 3789 if (is_writable_migration_entry(entry)) 3790 pmde = pmd_mkwrite(pmde, vma); 3791 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3792 pmde = pmd_mkuffd_wp(pmde); 3793 if (!is_migration_entry_young(entry)) 3794 pmde = pmd_mkold(pmde); 3795 /* NOTE: this may contain setting soft-dirty on some archs */ 3796 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3797 pmde = pmd_mkdirty(pmde); 3798 3799 if (folio_test_anon(folio)) { 3800 rmap_t rmap_flags = RMAP_NONE; 3801 3802 if (!is_readable_migration_entry(entry)) 3803 rmap_flags |= RMAP_EXCLUSIVE; 3804 3805 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3806 } else { 3807 folio_add_file_rmap_pmd(folio, new, vma); 3808 } 3809 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3810 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3811 3812 /* No need to invalidate - it was non-present before */ 3813 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3814 trace_remove_migration_pmd(address, pmd_val(pmde)); 3815 } 3816 #endif 3817
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.