~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/hugetlb.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Generic hugetlb support.
  4  * (C) Nadia Yvette Chambers, April 2004
  5  */
  6 #include <linux/list.h>
  7 #include <linux/init.h>
  8 #include <linux/mm.h>
  9 #include <linux/seq_file.h>
 10 #include <linux/sysctl.h>
 11 #include <linux/highmem.h>
 12 #include <linux/mmu_notifier.h>
 13 #include <linux/nodemask.h>
 14 #include <linux/pagemap.h>
 15 #include <linux/mempolicy.h>
 16 #include <linux/compiler.h>
 17 #include <linux/cpuset.h>
 18 #include <linux/mutex.h>
 19 #include <linux/memblock.h>
 20 #include <linux/sysfs.h>
 21 #include <linux/slab.h>
 22 #include <linux/sched/mm.h>
 23 #include <linux/mmdebug.h>
 24 #include <linux/sched/signal.h>
 25 #include <linux/rmap.h>
 26 #include <linux/string_helpers.h>
 27 #include <linux/swap.h>
 28 #include <linux/swapops.h>
 29 #include <linux/jhash.h>
 30 #include <linux/numa.h>
 31 #include <linux/llist.h>
 32 #include <linux/cma.h>
 33 #include <linux/migrate.h>
 34 #include <linux/nospec.h>
 35 #include <linux/delayacct.h>
 36 #include <linux/memory.h>
 37 #include <linux/mm_inline.h>
 38 #include <linux/padata.h>
 39 
 40 #include <asm/page.h>
 41 #include <asm/pgalloc.h>
 42 #include <asm/tlb.h>
 43 
 44 #include <linux/io.h>
 45 #include <linux/hugetlb.h>
 46 #include <linux/hugetlb_cgroup.h>
 47 #include <linux/node.h>
 48 #include <linux/page_owner.h>
 49 #include "internal.h"
 50 #include "hugetlb_vmemmap.h"
 51 
 52 int hugetlb_max_hstate __read_mostly;
 53 unsigned int default_hstate_idx;
 54 struct hstate hstates[HUGE_MAX_HSTATE];
 55 
 56 #ifdef CONFIG_CMA
 57 static struct cma *hugetlb_cma[MAX_NUMNODES];
 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
 60 {
 61         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
 62                                 1 << order);
 63 }
 64 #else
 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
 66 {
 67         return false;
 68 }
 69 #endif
 70 static unsigned long hugetlb_cma_size __initdata;
 71 
 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
 73 
 74 /* for command line parsing */
 75 static struct hstate * __initdata parsed_hstate;
 76 static unsigned long __initdata default_hstate_max_huge_pages;
 77 static bool __initdata parsed_valid_hugepagesz = true;
 78 static bool __initdata parsed_default_hugepagesz;
 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
 80 
 81 /*
 82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 83  * free_huge_pages, and surplus_huge_pages.
 84  */
 85 DEFINE_SPINLOCK(hugetlb_lock);
 86 
 87 /*
 88  * Serializes faults on the same logical page.  This is used to
 89  * prevent spurious OOMs when the hugepage pool is fully utilized.
 90  */
 91 static int num_fault_mutexes;
 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
 93 
 94 /* Forward declaration */
 95 static int hugetlb_acct_memory(struct hstate *h, long delta);
 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100                 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102 
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105         if (spool->count)
106                 return false;
107         if (spool->max_hpages != -1)
108                 return spool->used_hpages == 0;
109         if (spool->min_hpages != -1)
110                 return spool->rsv_hpages == spool->min_hpages;
111 
112         return true;
113 }
114 
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116                                                 unsigned long irq_flags)
117 {
118         spin_unlock_irqrestore(&spool->lock, irq_flags);
119 
120         /* If no pages are used, and no other handles to the subpool
121          * remain, give up any reservations based on minimum size and
122          * free the subpool */
123         if (subpool_is_free(spool)) {
124                 if (spool->min_hpages != -1)
125                         hugetlb_acct_memory(spool->hstate,
126                                                 -spool->min_hpages);
127                 kfree(spool);
128         }
129 }
130 
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132                                                 long min_hpages)
133 {
134         struct hugepage_subpool *spool;
135 
136         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137         if (!spool)
138                 return NULL;
139 
140         spin_lock_init(&spool->lock);
141         spool->count = 1;
142         spool->max_hpages = max_hpages;
143         spool->hstate = h;
144         spool->min_hpages = min_hpages;
145 
146         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147                 kfree(spool);
148                 return NULL;
149         }
150         spool->rsv_hpages = min_hpages;
151 
152         return spool;
153 }
154 
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157         unsigned long flags;
158 
159         spin_lock_irqsave(&spool->lock, flags);
160         BUG_ON(!spool->count);
161         spool->count--;
162         unlock_or_release_subpool(spool, flags);
163 }
164 
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174                                       long delta)
175 {
176         long ret = delta;
177 
178         if (!spool)
179                 return ret;
180 
181         spin_lock_irq(&spool->lock);
182 
183         if (spool->max_hpages != -1) {          /* maximum size accounting */
184                 if ((spool->used_hpages + delta) <= spool->max_hpages)
185                         spool->used_hpages += delta;
186                 else {
187                         ret = -ENOMEM;
188                         goto unlock_ret;
189                 }
190         }
191 
192         /* minimum size accounting */
193         if (spool->min_hpages != -1 && spool->rsv_hpages) {
194                 if (delta > spool->rsv_hpages) {
195                         /*
196                          * Asking for more reserves than those already taken on
197                          * behalf of subpool.  Return difference.
198                          */
199                         ret = delta - spool->rsv_hpages;
200                         spool->rsv_hpages = 0;
201                 } else {
202                         ret = 0;        /* reserves already accounted for */
203                         spool->rsv_hpages -= delta;
204                 }
205         }
206 
207 unlock_ret:
208         spin_unlock_irq(&spool->lock);
209         return ret;
210 }
211 
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219                                        long delta)
220 {
221         long ret = delta;
222         unsigned long flags;
223 
224         if (!spool)
225                 return delta;
226 
227         spin_lock_irqsave(&spool->lock, flags);
228 
229         if (spool->max_hpages != -1)            /* maximum size accounting */
230                 spool->used_hpages -= delta;
231 
232          /* minimum size accounting */
233         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234                 if (spool->rsv_hpages + delta <= spool->min_hpages)
235                         ret = 0;
236                 else
237                         ret = spool->rsv_hpages + delta - spool->min_hpages;
238 
239                 spool->rsv_hpages += delta;
240                 if (spool->rsv_hpages > spool->min_hpages)
241                         spool->rsv_hpages = spool->min_hpages;
242         }
243 
244         /*
245          * If hugetlbfs_put_super couldn't free spool due to an outstanding
246          * quota reference, free it now.
247          */
248         unlock_or_release_subpool(spool, flags);
249 
250         return ret;
251 }
252 
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255         return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257 
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260         return subpool_inode(file_inode(vma->vm_file));
261 }
262 
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268         if (__vma_shareable_lock(vma)) {
269                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270 
271                 down_read(&vma_lock->rw_sema);
272         } else if (__vma_private_lock(vma)) {
273                 struct resv_map *resv_map = vma_resv_map(vma);
274 
275                 down_read(&resv_map->rw_sema);
276         }
277 }
278 
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281         if (__vma_shareable_lock(vma)) {
282                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283 
284                 up_read(&vma_lock->rw_sema);
285         } else if (__vma_private_lock(vma)) {
286                 struct resv_map *resv_map = vma_resv_map(vma);
287 
288                 up_read(&resv_map->rw_sema);
289         }
290 }
291 
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294         if (__vma_shareable_lock(vma)) {
295                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 
297                 down_write(&vma_lock->rw_sema);
298         } else if (__vma_private_lock(vma)) {
299                 struct resv_map *resv_map = vma_resv_map(vma);
300 
301                 down_write(&resv_map->rw_sema);
302         }
303 }
304 
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307         if (__vma_shareable_lock(vma)) {
308                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 
310                 up_write(&vma_lock->rw_sema);
311         } else if (__vma_private_lock(vma)) {
312                 struct resv_map *resv_map = vma_resv_map(vma);
313 
314                 up_write(&resv_map->rw_sema);
315         }
316 }
317 
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320 
321         if (__vma_shareable_lock(vma)) {
322                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323 
324                 return down_write_trylock(&vma_lock->rw_sema);
325         } else if (__vma_private_lock(vma)) {
326                 struct resv_map *resv_map = vma_resv_map(vma);
327 
328                 return down_write_trylock(&resv_map->rw_sema);
329         }
330 
331         return 1;
332 }
333 
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336         if (__vma_shareable_lock(vma)) {
337                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338 
339                 lockdep_assert_held(&vma_lock->rw_sema);
340         } else if (__vma_private_lock(vma)) {
341                 struct resv_map *resv_map = vma_resv_map(vma);
342 
343                 lockdep_assert_held(&resv_map->rw_sema);
344         }
345 }
346 
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349         struct hugetlb_vma_lock *vma_lock = container_of(kref,
350                         struct hugetlb_vma_lock, refs);
351 
352         kfree(vma_lock);
353 }
354 
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357         struct vm_area_struct *vma = vma_lock->vma;
358 
359         /*
360          * vma_lock structure may or not be released as a result of put,
361          * it certainly will no longer be attached to vma so clear pointer.
362          * Semaphore synchronizes access to vma_lock->vma field.
363          */
364         vma_lock->vma = NULL;
365         vma->vm_private_data = NULL;
366         up_write(&vma_lock->rw_sema);
367         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369 
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372         if (__vma_shareable_lock(vma)) {
373                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374 
375                 __hugetlb_vma_unlock_write_put(vma_lock);
376         } else if (__vma_private_lock(vma)) {
377                 struct resv_map *resv_map = vma_resv_map(vma);
378 
379                 /* no free for anon vmas, but still need to unlock */
380                 up_write(&resv_map->rw_sema);
381         }
382 }
383 
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386         /*
387          * Only present in sharable vmas.
388          */
389         if (!vma || !__vma_shareable_lock(vma))
390                 return;
391 
392         if (vma->vm_private_data) {
393                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394 
395                 down_write(&vma_lock->rw_sema);
396                 __hugetlb_vma_unlock_write_put(vma_lock);
397         }
398 }
399 
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402         struct hugetlb_vma_lock *vma_lock;
403 
404         /* Only establish in (flags) sharable vmas */
405         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406                 return;
407 
408         /* Should never get here with non-NULL vm_private_data */
409         if (vma->vm_private_data)
410                 return;
411 
412         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413         if (!vma_lock) {
414                 /*
415                  * If we can not allocate structure, then vma can not
416                  * participate in pmd sharing.  This is only a possible
417                  * performance enhancement and memory saving issue.
418                  * However, the lock is also used to synchronize page
419                  * faults with truncation.  If the lock is not present,
420                  * unlikely races could leave pages in a file past i_size
421                  * until the file is removed.  Warn in the unlikely case of
422                  * allocation failure.
423                  */
424                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425                 return;
426         }
427 
428         kref_init(&vma_lock->refs);
429         init_rwsem(&vma_lock->rw_sema);
430         vma_lock->vma = vma;
431         vma->vm_private_data = vma_lock;
432 }
433 
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440         struct file_region *nrg;
441 
442         VM_BUG_ON(resv->region_cache_count <= 0);
443 
444         resv->region_cache_count--;
445         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446         list_del(&nrg->link);
447 
448         nrg->from = from;
449         nrg->to = to;
450 
451         return nrg;
452 }
453 
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455                                               struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458         nrg->reservation_counter = rg->reservation_counter;
459         nrg->css = rg->css;
460         if (rg->css)
461                 css_get(rg->css);
462 #endif
463 }
464 
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467                                                 struct hstate *h,
468                                                 struct resv_map *resv,
469                                                 struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472         if (h_cg) {
473                 nrg->reservation_counter =
474                         &h_cg->rsvd_hugepage[hstate_index(h)];
475                 nrg->css = &h_cg->css;
476                 /*
477                  * The caller will hold exactly one h_cg->css reference for the
478                  * whole contiguous reservation region. But this area might be
479                  * scattered when there are already some file_regions reside in
480                  * it. As a result, many file_regions may share only one css
481                  * reference. In order to ensure that one file_region must hold
482                  * exactly one h_cg->css reference, we should do css_get for
483                  * each file_region and leave the reference held by caller
484                  * untouched.
485                  */
486                 css_get(&h_cg->css);
487                 if (!resv->pages_per_hpage)
488                         resv->pages_per_hpage = pages_per_huge_page(h);
489                 /* pages_per_hpage should be the same for all entries in
490                  * a resv_map.
491                  */
492                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493         } else {
494                 nrg->reservation_counter = NULL;
495                 nrg->css = NULL;
496         }
497 #endif
498 }
499 
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503         if (rg->css)
504                 css_put(rg->css);
505 #endif
506 }
507 
508 static bool has_same_uncharge_info(struct file_region *rg,
509                                    struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512         return rg->reservation_counter == org->reservation_counter &&
513                rg->css == org->css;
514 
515 #else
516         return true;
517 #endif
518 }
519 
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522         struct file_region *nrg, *prg;
523 
524         prg = list_prev_entry(rg, link);
525         if (&prg->link != &resv->regions && prg->to == rg->from &&
526             has_same_uncharge_info(prg, rg)) {
527                 prg->to = rg->to;
528 
529                 list_del(&rg->link);
530                 put_uncharge_info(rg);
531                 kfree(rg);
532 
533                 rg = prg;
534         }
535 
536         nrg = list_next_entry(rg, link);
537         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538             has_same_uncharge_info(nrg, rg)) {
539                 nrg->from = rg->from;
540 
541                 list_del(&rg->link);
542                 put_uncharge_info(rg);
543                 kfree(rg);
544         }
545 }
546 
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
550                      long *regions_needed)
551 {
552         struct file_region *nrg;
553 
554         if (!regions_needed) {
555                 nrg = get_file_region_entry_from_cache(map, from, to);
556                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557                 list_add(&nrg->link, rg);
558                 coalesce_file_region(map, nrg);
559         } else
560                 *regions_needed += 1;
561 
562         return to - from;
563 }
564 
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574                                      struct hugetlb_cgroup *h_cg,
575                                      struct hstate *h, long *regions_needed)
576 {
577         long add = 0;
578         struct list_head *head = &resv->regions;
579         long last_accounted_offset = f;
580         struct file_region *iter, *trg = NULL;
581         struct list_head *rg = NULL;
582 
583         if (regions_needed)
584                 *regions_needed = 0;
585 
586         /* In this loop, we essentially handle an entry for the range
587          * [last_accounted_offset, iter->from), at every iteration, with some
588          * bounds checking.
589          */
590         list_for_each_entry_safe(iter, trg, head, link) {
591                 /* Skip irrelevant regions that start before our range. */
592                 if (iter->from < f) {
593                         /* If this region ends after the last accounted offset,
594                          * then we need to update last_accounted_offset.
595                          */
596                         if (iter->to > last_accounted_offset)
597                                 last_accounted_offset = iter->to;
598                         continue;
599                 }
600 
601                 /* When we find a region that starts beyond our range, we've
602                  * finished.
603                  */
604                 if (iter->from >= t) {
605                         rg = iter->link.prev;
606                         break;
607                 }
608 
609                 /* Add an entry for last_accounted_offset -> iter->from, and
610                  * update last_accounted_offset.
611                  */
612                 if (iter->from > last_accounted_offset)
613                         add += hugetlb_resv_map_add(resv, iter->link.prev,
614                                                     last_accounted_offset,
615                                                     iter->from, h, h_cg,
616                                                     regions_needed);
617 
618                 last_accounted_offset = iter->to;
619         }
620 
621         /* Handle the case where our range extends beyond
622          * last_accounted_offset.
623          */
624         if (!rg)
625                 rg = head->prev;
626         if (last_accounted_offset < t)
627                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628                                             t, h, h_cg, regions_needed);
629 
630         return add;
631 }
632 
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636                                         int regions_needed)
637         __must_hold(&resv->lock)
638 {
639         LIST_HEAD(allocated_regions);
640         int to_allocate = 0, i = 0;
641         struct file_region *trg = NULL, *rg = NULL;
642 
643         VM_BUG_ON(regions_needed < 0);
644 
645         /*
646          * Check for sufficient descriptors in the cache to accommodate
647          * the number of in progress add operations plus regions_needed.
648          *
649          * This is a while loop because when we drop the lock, some other call
650          * to region_add or region_del may have consumed some region_entries,
651          * so we keep looping here until we finally have enough entries for
652          * (adds_in_progress + regions_needed).
653          */
654         while (resv->region_cache_count <
655                (resv->adds_in_progress + regions_needed)) {
656                 to_allocate = resv->adds_in_progress + regions_needed -
657                               resv->region_cache_count;
658 
659                 /* At this point, we should have enough entries in the cache
660                  * for all the existing adds_in_progress. We should only be
661                  * needing to allocate for regions_needed.
662                  */
663                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664 
665                 spin_unlock(&resv->lock);
666                 for (i = 0; i < to_allocate; i++) {
667                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668                         if (!trg)
669                                 goto out_of_memory;
670                         list_add(&trg->link, &allocated_regions);
671                 }
672 
673                 spin_lock(&resv->lock);
674 
675                 list_splice(&allocated_regions, &resv->region_cache);
676                 resv->region_cache_count += to_allocate;
677         }
678 
679         return 0;
680 
681 out_of_memory:
682         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683                 list_del(&rg->link);
684                 kfree(rg);
685         }
686         return -ENOMEM;
687 }
688 
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707                        long in_regions_needed, struct hstate *h,
708                        struct hugetlb_cgroup *h_cg)
709 {
710         long add = 0, actual_regions_needed = 0;
711 
712         spin_lock(&resv->lock);
713 retry:
714 
715         /* Count how many regions are actually needed to execute this add. */
716         add_reservation_in_range(resv, f, t, NULL, NULL,
717                                  &actual_regions_needed);
718 
719         /*
720          * Check for sufficient descriptors in the cache to accommodate
721          * this add operation. Note that actual_regions_needed may be greater
722          * than in_regions_needed, as the resv_map may have been modified since
723          * the region_chg call. In this case, we need to make sure that we
724          * allocate extra entries, such that we have enough for all the
725          * existing adds_in_progress, plus the excess needed for this
726          * operation.
727          */
728         if (actual_regions_needed > in_regions_needed &&
729             resv->region_cache_count <
730                     resv->adds_in_progress +
731                             (actual_regions_needed - in_regions_needed)) {
732                 /* region_add operation of range 1 should never need to
733                  * allocate file_region entries.
734                  */
735                 VM_BUG_ON(t - f <= 1);
736 
737                 if (allocate_file_region_entries(
738                             resv, actual_regions_needed - in_regions_needed)) {
739                         return -ENOMEM;
740                 }
741 
742                 goto retry;
743         }
744 
745         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746 
747         resv->adds_in_progress -= in_regions_needed;
748 
749         spin_unlock(&resv->lock);
750         return add;
751 }
752 
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774                        long *out_regions_needed)
775 {
776         long chg = 0;
777 
778         spin_lock(&resv->lock);
779 
780         /* Count how many hugepages in this range are NOT represented. */
781         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782                                        out_regions_needed);
783 
784         if (*out_regions_needed == 0)
785                 *out_regions_needed = 1;
786 
787         if (allocate_file_region_entries(resv, *out_regions_needed))
788                 return -ENOMEM;
789 
790         resv->adds_in_progress += *out_regions_needed;
791 
792         spin_unlock(&resv->lock);
793         return chg;
794 }
795 
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810                          long regions_needed)
811 {
812         spin_lock(&resv->lock);
813         VM_BUG_ON(!resv->region_cache_count);
814         resv->adds_in_progress -= regions_needed;
815         spin_unlock(&resv->lock);
816 }
817 
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834         struct list_head *head = &resv->regions;
835         struct file_region *rg, *trg;
836         struct file_region *nrg = NULL;
837         long del = 0;
838 
839 retry:
840         spin_lock(&resv->lock);
841         list_for_each_entry_safe(rg, trg, head, link) {
842                 /*
843                  * Skip regions before the range to be deleted.  file_region
844                  * ranges are normally of the form [from, to).  However, there
845                  * may be a "placeholder" entry in the map which is of the form
846                  * (from, to) with from == to.  Check for placeholder entries
847                  * at the beginning of the range to be deleted.
848                  */
849                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850                         continue;
851 
852                 if (rg->from >= t)
853                         break;
854 
855                 if (f > rg->from && t < rg->to) { /* Must split region */
856                         /*
857                          * Check for an entry in the cache before dropping
858                          * lock and attempting allocation.
859                          */
860                         if (!nrg &&
861                             resv->region_cache_count > resv->adds_in_progress) {
862                                 nrg = list_first_entry(&resv->region_cache,
863                                                         struct file_region,
864                                                         link);
865                                 list_del(&nrg->link);
866                                 resv->region_cache_count--;
867                         }
868 
869                         if (!nrg) {
870                                 spin_unlock(&resv->lock);
871                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872                                 if (!nrg)
873                                         return -ENOMEM;
874                                 goto retry;
875                         }
876 
877                         del += t - f;
878                         hugetlb_cgroup_uncharge_file_region(
879                                 resv, rg, t - f, false);
880 
881                         /* New entry for end of split region */
882                         nrg->from = t;
883                         nrg->to = rg->to;
884 
885                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886 
887                         INIT_LIST_HEAD(&nrg->link);
888 
889                         /* Original entry is trimmed */
890                         rg->to = f;
891 
892                         list_add(&nrg->link, &rg->link);
893                         nrg = NULL;
894                         break;
895                 }
896 
897                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898                         del += rg->to - rg->from;
899                         hugetlb_cgroup_uncharge_file_region(resv, rg,
900                                                             rg->to - rg->from, true);
901                         list_del(&rg->link);
902                         kfree(rg);
903                         continue;
904                 }
905 
906                 if (f <= rg->from) {    /* Trim beginning of region */
907                         hugetlb_cgroup_uncharge_file_region(resv, rg,
908                                                             t - rg->from, false);
909 
910                         del += t - rg->from;
911                         rg->from = t;
912                 } else {                /* Trim end of region */
913                         hugetlb_cgroup_uncharge_file_region(resv, rg,
914                                                             rg->to - f, false);
915 
916                         del += rg->to - f;
917                         rg->to = f;
918                 }
919         }
920 
921         spin_unlock(&resv->lock);
922         kfree(nrg);
923         return del;
924 }
925 
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937         struct hugepage_subpool *spool = subpool_inode(inode);
938         long rsv_adjust;
939         bool reserved = false;
940 
941         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942         if (rsv_adjust > 0) {
943                 struct hstate *h = hstate_inode(inode);
944 
945                 if (!hugetlb_acct_memory(h, 1))
946                         reserved = true;
947         } else if (!rsv_adjust) {
948                 reserved = true;
949         }
950 
951         if (!reserved)
952                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954 
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961         struct list_head *head = &resv->regions;
962         struct file_region *rg;
963         long chg = 0;
964 
965         spin_lock(&resv->lock);
966         /* Locate each segment we overlap with, and count that overlap. */
967         list_for_each_entry(rg, head, link) {
968                 long seg_from;
969                 long seg_to;
970 
971                 if (rg->to <= f)
972                         continue;
973                 if (rg->from >= t)
974                         break;
975 
976                 seg_from = max(rg->from, f);
977                 seg_to = min(rg->to, t);
978 
979                 chg += seg_to - seg_from;
980         }
981         spin_unlock(&resv->lock);
982 
983         return chg;
984 }
985 
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991                         struct vm_area_struct *vma, unsigned long address)
992 {
993         return ((address - vma->vm_start) >> huge_page_shift(h)) +
994                         (vma->vm_pgoff >> huge_page_order(h));
995 }
996 
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008         if (vma->vm_ops && vma->vm_ops->pagesize)
1009                 return vma->vm_ops->pagesize(vma);
1010         return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013 
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022         return vma_kernel_pagesize(vma);
1023 }
1024 
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033 
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055         return (unsigned long)vma->vm_private_data;
1056 }
1057 
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059                                                         unsigned long value)
1060 {
1061         vma->vm_private_data = (void *)value;
1062 }
1063 
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066                                           struct hugetlb_cgroup *h_cg,
1067                                           struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070         if (!h_cg || !h) {
1071                 resv_map->reservation_counter = NULL;
1072                 resv_map->pages_per_hpage = 0;
1073                 resv_map->css = NULL;
1074         } else {
1075                 resv_map->reservation_counter =
1076                         &h_cg->rsvd_hugepage[hstate_index(h)];
1077                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078                 resv_map->css = &h_cg->css;
1079         }
1080 #endif
1081 }
1082 
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087 
1088         if (!resv_map || !rg) {
1089                 kfree(resv_map);
1090                 kfree(rg);
1091                 return NULL;
1092         }
1093 
1094         kref_init(&resv_map->refs);
1095         spin_lock_init(&resv_map->lock);
1096         INIT_LIST_HEAD(&resv_map->regions);
1097         init_rwsem(&resv_map->rw_sema);
1098 
1099         resv_map->adds_in_progress = 0;
1100         /*
1101          * Initialize these to 0. On shared mappings, 0's here indicate these
1102          * fields don't do cgroup accounting. On private mappings, these will be
1103          * re-initialized to the proper values, to indicate that hugetlb cgroup
1104          * reservations are to be un-charged from here.
1105          */
1106         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107 
1108         INIT_LIST_HEAD(&resv_map->region_cache);
1109         list_add(&rg->link, &resv_map->region_cache);
1110         resv_map->region_cache_count = 1;
1111 
1112         return resv_map;
1113 }
1114 
1115 void resv_map_release(struct kref *ref)
1116 {
1117         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118         struct list_head *head = &resv_map->region_cache;
1119         struct file_region *rg, *trg;
1120 
1121         /* Clear out any active regions before we release the map. */
1122         region_del(resv_map, 0, LONG_MAX);
1123 
1124         /* ... and any entries left in the cache */
1125         list_for_each_entry_safe(rg, trg, head, link) {
1126                 list_del(&rg->link);
1127                 kfree(rg);
1128         }
1129 
1130         VM_BUG_ON(resv_map->adds_in_progress);
1131 
1132         kfree(resv_map);
1133 }
1134 
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137         /*
1138          * At inode evict time, i_mapping may not point to the original
1139          * address space within the inode.  This original address space
1140          * contains the pointer to the resv_map.  So, always use the
1141          * address space embedded within the inode.
1142          * The VERY common case is inode->mapping == &inode->i_data but,
1143          * this may not be true for device special inodes.
1144          */
1145         return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147 
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151         if (vma->vm_flags & VM_MAYSHARE) {
1152                 struct address_space *mapping = vma->vm_file->f_mapping;
1153                 struct inode *inode = mapping->host;
1154 
1155                 return inode_resv_map(inode);
1156 
1157         } else {
1158                 return (struct resv_map *)(get_vma_private_data(vma) &
1159                                                         ~HPAGE_RESV_MASK);
1160         }
1161 }
1162 
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167 
1168         set_vma_private_data(vma, (unsigned long)map);
1169 }
1170 
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175 
1176         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178 
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182 
1183         return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185 
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188         return !(vma->vm_flags & VM_MAYSHARE) &&
1189                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192 
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196         /*
1197          * Clear vm_private_data
1198          * - For shared mappings this is a per-vma semaphore that may be
1199          *   allocated in a subsequent call to hugetlb_vm_op_open.
1200          *   Before clearing, make sure pointer is not associated with vma
1201          *   as this will leak the structure.  This is the case when called
1202          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203          *   been called to allocate a new structure.
1204          * - For MAP_PRIVATE mappings, this is the reserve map which does
1205          *   not apply to children.  Faults generated by the children are
1206          *   not guaranteed to succeed, even if read-only.
1207          */
1208         if (vma->vm_flags & VM_MAYSHARE) {
1209                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210 
1211                 if (vma_lock && vma_lock->vma != vma)
1212                         vma->vm_private_data = NULL;
1213         } else
1214                 vma->vm_private_data = NULL;
1215 }
1216 
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226         /*
1227          * Clear the old hugetlb private page reservation.
1228          * It has already been transferred to new_vma.
1229          *
1230          * During a mremap() operation of a hugetlb vma we call move_vma()
1231          * which copies vma into new_vma and unmaps vma. After the copy
1232          * operation both new_vma and vma share a reference to the resv_map
1233          * struct, and at that point vma is about to be unmapped. We don't
1234          * want to return the reservation to the pool at unmap of vma because
1235          * the reservation still lives on in new_vma, so simply decrement the
1236          * ref here and remove the resv_map reference from this vma.
1237          */
1238         struct resv_map *reservations = vma_resv_map(vma);
1239 
1240         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242                 kref_put(&reservations->refs, resv_map_release);
1243         }
1244 
1245         hugetlb_dup_vma_private(vma);
1246 }
1247 
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251         if (vma->vm_flags & VM_NORESERVE) {
1252                 /*
1253                  * This address is already reserved by other process(chg == 0),
1254                  * so, we should decrement reserved count. Without decrementing,
1255                  * reserve count remains after releasing inode, because this
1256                  * allocated page will go into page cache and is regarded as
1257                  * coming from reserved pool in releasing step.  Currently, we
1258                  * don't have any other solution to deal with this situation
1259                  * properly, so add work-around here.
1260                  */
1261                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262                         return true;
1263                 else
1264                         return false;
1265         }
1266 
1267         /* Shared mappings always use reserves */
1268         if (vma->vm_flags & VM_MAYSHARE) {
1269                 /*
1270                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271                  * be a region map for all pages.  The only situation where
1272                  * there is no region map is if a hole was punched via
1273                  * fallocate.  In this case, there really are no reserves to
1274                  * use.  This situation is indicated if chg != 0.
1275                  */
1276                 if (chg)
1277                         return false;
1278                 else
1279                         return true;
1280         }
1281 
1282         /*
1283          * Only the process that called mmap() has reserves for
1284          * private mappings.
1285          */
1286         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287                 /*
1288                  * Like the shared case above, a hole punch or truncate
1289                  * could have been performed on the private mapping.
1290                  * Examine the value of chg to determine if reserves
1291                  * actually exist or were previously consumed.
1292                  * Very Subtle - The value of chg comes from a previous
1293                  * call to vma_needs_reserves().  The reserve map for
1294                  * private mappings has different (opposite) semantics
1295                  * than that of shared mappings.  vma_needs_reserves()
1296                  * has already taken this difference in semantics into
1297                  * account.  Therefore, the meaning of chg is the same
1298                  * as in the shared case above.  Code could easily be
1299                  * combined, but keeping it separate draws attention to
1300                  * subtle differences.
1301                  */
1302                 if (chg)
1303                         return false;
1304                 else
1305                         return true;
1306         }
1307 
1308         return false;
1309 }
1310 
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313         int nid = folio_nid(folio);
1314 
1315         lockdep_assert_held(&hugetlb_lock);
1316         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317 
1318         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319         h->free_huge_pages++;
1320         h->free_huge_pages_node[nid]++;
1321         folio_set_hugetlb_freed(folio);
1322 }
1323 
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325                                                                 int nid)
1326 {
1327         struct folio *folio;
1328         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329 
1330         lockdep_assert_held(&hugetlb_lock);
1331         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332                 if (pin && !folio_is_longterm_pinnable(folio))
1333                         continue;
1334 
1335                 if (folio_test_hwpoison(folio))
1336                         continue;
1337 
1338                 list_move(&folio->lru, &h->hugepage_activelist);
1339                 folio_ref_unfreeze(folio, 1);
1340                 folio_clear_hugetlb_freed(folio);
1341                 h->free_huge_pages--;
1342                 h->free_huge_pages_node[nid]--;
1343                 return folio;
1344         }
1345 
1346         return NULL;
1347 }
1348 
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350                                                         int nid, nodemask_t *nmask)
1351 {
1352         unsigned int cpuset_mems_cookie;
1353         struct zonelist *zonelist;
1354         struct zone *zone;
1355         struct zoneref *z;
1356         int node = NUMA_NO_NODE;
1357 
1358         /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1359         if (nid == NUMA_NO_NODE)
1360                 nid = numa_node_id();
1361 
1362         zonelist = node_zonelist(nid, gfp_mask);
1363 
1364 retry_cpuset:
1365         cpuset_mems_cookie = read_mems_allowed_begin();
1366         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1367                 struct folio *folio;
1368 
1369                 if (!cpuset_zone_allowed(zone, gfp_mask))
1370                         continue;
1371                 /*
1372                  * no need to ask again on the same node. Pool is node rather than
1373                  * zone aware
1374                  */
1375                 if (zone_to_nid(zone) == node)
1376                         continue;
1377                 node = zone_to_nid(zone);
1378 
1379                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1380                 if (folio)
1381                         return folio;
1382         }
1383         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1384                 goto retry_cpuset;
1385 
1386         return NULL;
1387 }
1388 
1389 static unsigned long available_huge_pages(struct hstate *h)
1390 {
1391         return h->free_huge_pages - h->resv_huge_pages;
1392 }
1393 
1394 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1395                                 struct vm_area_struct *vma,
1396                                 unsigned long address, int avoid_reserve,
1397                                 long chg)
1398 {
1399         struct folio *folio = NULL;
1400         struct mempolicy *mpol;
1401         gfp_t gfp_mask;
1402         nodemask_t *nodemask;
1403         int nid;
1404 
1405         /*
1406          * A child process with MAP_PRIVATE mappings created by their parent
1407          * have no page reserves. This check ensures that reservations are
1408          * not "stolen". The child may still get SIGKILLed
1409          */
1410         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1411                 goto err;
1412 
1413         /* If reserves cannot be used, ensure enough pages are in the pool */
1414         if (avoid_reserve && !available_huge_pages(h))
1415                 goto err;
1416 
1417         gfp_mask = htlb_alloc_mask(h);
1418         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1419 
1420         if (mpol_is_preferred_many(mpol)) {
1421                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1422                                                         nid, nodemask);
1423 
1424                 /* Fallback to all nodes if page==NULL */
1425                 nodemask = NULL;
1426         }
1427 
1428         if (!folio)
1429                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1430                                                         nid, nodemask);
1431 
1432         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1433                 folio_set_hugetlb_restore_reserve(folio);
1434                 h->resv_huge_pages--;
1435         }
1436 
1437         mpol_cond_put(mpol);
1438         return folio;
1439 
1440 err:
1441         return NULL;
1442 }
1443 
1444 /*
1445  * common helper functions for hstate_next_node_to_{alloc|free}.
1446  * We may have allocated or freed a huge page based on a different
1447  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1448  * be outside of *nodes_allowed.  Ensure that we use an allowed
1449  * node for alloc or free.
1450  */
1451 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1452 {
1453         nid = next_node_in(nid, *nodes_allowed);
1454         VM_BUG_ON(nid >= MAX_NUMNODES);
1455 
1456         return nid;
1457 }
1458 
1459 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1460 {
1461         if (!node_isset(nid, *nodes_allowed))
1462                 nid = next_node_allowed(nid, nodes_allowed);
1463         return nid;
1464 }
1465 
1466 /*
1467  * returns the previously saved node ["this node"] from which to
1468  * allocate a persistent huge page for the pool and advance the
1469  * next node from which to allocate, handling wrap at end of node
1470  * mask.
1471  */
1472 static int hstate_next_node_to_alloc(int *next_node,
1473                                         nodemask_t *nodes_allowed)
1474 {
1475         int nid;
1476 
1477         VM_BUG_ON(!nodes_allowed);
1478 
1479         nid = get_valid_node_allowed(*next_node, nodes_allowed);
1480         *next_node = next_node_allowed(nid, nodes_allowed);
1481 
1482         return nid;
1483 }
1484 
1485 /*
1486  * helper for remove_pool_hugetlb_folio() - return the previously saved
1487  * node ["this node"] from which to free a huge page.  Advance the
1488  * next node id whether or not we find a free huge page to free so
1489  * that the next attempt to free addresses the next node.
1490  */
1491 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1492 {
1493         int nid;
1494 
1495         VM_BUG_ON(!nodes_allowed);
1496 
1497         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1498         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1499 
1500         return nid;
1501 }
1502 
1503 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)            \
1504         for (nr_nodes = nodes_weight(*mask);                            \
1505                 nr_nodes > 0 &&                                         \
1506                 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1);     \
1507                 nr_nodes--)
1508 
1509 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1510         for (nr_nodes = nodes_weight(*mask);                            \
1511                 nr_nodes > 0 &&                                         \
1512                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1513                 nr_nodes--)
1514 
1515 /* used to demote non-gigantic_huge pages as well */
1516 static void __destroy_compound_gigantic_folio(struct folio *folio,
1517                                         unsigned int order, bool demote)
1518 {
1519         int i;
1520         int nr_pages = 1 << order;
1521         struct page *p;
1522 
1523         atomic_set(&folio->_entire_mapcount, 0);
1524         atomic_set(&folio->_large_mapcount, 0);
1525         atomic_set(&folio->_pincount, 0);
1526 
1527         for (i = 1; i < nr_pages; i++) {
1528                 p = folio_page(folio, i);
1529                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1530                 p->mapping = NULL;
1531                 clear_compound_head(p);
1532                 if (!demote)
1533                         set_page_refcounted(p);
1534         }
1535 
1536         __folio_clear_head(folio);
1537 }
1538 
1539 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1540                                         unsigned int order)
1541 {
1542         __destroy_compound_gigantic_folio(folio, order, true);
1543 }
1544 
1545 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1546 static void destroy_compound_gigantic_folio(struct folio *folio,
1547                                         unsigned int order)
1548 {
1549         __destroy_compound_gigantic_folio(folio, order, false);
1550 }
1551 
1552 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1553 {
1554         /*
1555          * If the page isn't allocated using the cma allocator,
1556          * cma_release() returns false.
1557          */
1558 #ifdef CONFIG_CMA
1559         int nid = folio_nid(folio);
1560 
1561         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1562                 return;
1563 #endif
1564 
1565         free_contig_range(folio_pfn(folio), 1 << order);
1566 }
1567 
1568 #ifdef CONFIG_CONTIG_ALLOC
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570                 int nid, nodemask_t *nodemask)
1571 {
1572         struct page *page;
1573         unsigned long nr_pages = pages_per_huge_page(h);
1574         if (nid == NUMA_NO_NODE)
1575                 nid = numa_mem_id();
1576 
1577 #ifdef CONFIG_CMA
1578         {
1579                 int node;
1580 
1581                 if (hugetlb_cma[nid]) {
1582                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1583                                         huge_page_order(h), true);
1584                         if (page)
1585                                 return page_folio(page);
1586                 }
1587 
1588                 if (!(gfp_mask & __GFP_THISNODE)) {
1589                         for_each_node_mask(node, *nodemask) {
1590                                 if (node == nid || !hugetlb_cma[node])
1591                                         continue;
1592 
1593                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1594                                                 huge_page_order(h), true);
1595                                 if (page)
1596                                         return page_folio(page);
1597                         }
1598                 }
1599         }
1600 #endif
1601 
1602         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1603         return page ? page_folio(page) : NULL;
1604 }
1605 
1606 #else /* !CONFIG_CONTIG_ALLOC */
1607 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1608                                         int nid, nodemask_t *nodemask)
1609 {
1610         return NULL;
1611 }
1612 #endif /* CONFIG_CONTIG_ALLOC */
1613 
1614 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1615 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1616                                         int nid, nodemask_t *nodemask)
1617 {
1618         return NULL;
1619 }
1620 static inline void free_gigantic_folio(struct folio *folio,
1621                                                 unsigned int order) { }
1622 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1623                                                 unsigned int order) { }
1624 #endif
1625 
1626 /*
1627  * Remove hugetlb folio from lists.
1628  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1629  * folio appears as just a compound page.  Otherwise, wait until after
1630  * allocating vmemmap to clear the flag.
1631  *
1632  * Must be called with hugetlb lock held.
1633  */
1634 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1635                                                         bool adjust_surplus)
1636 {
1637         int nid = folio_nid(folio);
1638 
1639         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1640         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1641 
1642         lockdep_assert_held(&hugetlb_lock);
1643         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1644                 return;
1645 
1646         list_del(&folio->lru);
1647 
1648         if (folio_test_hugetlb_freed(folio)) {
1649                 folio_clear_hugetlb_freed(folio);
1650                 h->free_huge_pages--;
1651                 h->free_huge_pages_node[nid]--;
1652         }
1653         if (adjust_surplus) {
1654                 h->surplus_huge_pages--;
1655                 h->surplus_huge_pages_node[nid]--;
1656         }
1657 
1658         /*
1659          * We can only clear the hugetlb flag after allocating vmemmap
1660          * pages.  Otherwise, someone (memory error handling) may try to write
1661          * to tail struct pages.
1662          */
1663         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1664                 __folio_clear_hugetlb(folio);
1665 
1666         h->nr_huge_pages--;
1667         h->nr_huge_pages_node[nid]--;
1668 }
1669 
1670 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1671                              bool adjust_surplus)
1672 {
1673         int nid = folio_nid(folio);
1674 
1675         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1676 
1677         lockdep_assert_held(&hugetlb_lock);
1678 
1679         INIT_LIST_HEAD(&folio->lru);
1680         h->nr_huge_pages++;
1681         h->nr_huge_pages_node[nid]++;
1682 
1683         if (adjust_surplus) {
1684                 h->surplus_huge_pages++;
1685                 h->surplus_huge_pages_node[nid]++;
1686         }
1687 
1688         __folio_set_hugetlb(folio);
1689         folio_change_private(folio, NULL);
1690         /*
1691          * We have to set hugetlb_vmemmap_optimized again as above
1692          * folio_change_private(folio, NULL) cleared it.
1693          */
1694         folio_set_hugetlb_vmemmap_optimized(folio);
1695 
1696         arch_clear_hugetlb_flags(folio);
1697         enqueue_hugetlb_folio(h, folio);
1698 }
1699 
1700 static void __update_and_free_hugetlb_folio(struct hstate *h,
1701                                                 struct folio *folio)
1702 {
1703         bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1704 
1705         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1706                 return;
1707 
1708         /*
1709          * If we don't know which subpages are hwpoisoned, we can't free
1710          * the hugepage, so it's leaked intentionally.
1711          */
1712         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1713                 return;
1714 
1715         /*
1716          * If folio is not vmemmap optimized (!clear_flag), then the folio
1717          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1718          * can only be passed hugetlb pages and will BUG otherwise.
1719          */
1720         if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1721                 spin_lock_irq(&hugetlb_lock);
1722                 /*
1723                  * If we cannot allocate vmemmap pages, just refuse to free the
1724                  * page and put the page back on the hugetlb free list and treat
1725                  * as a surplus page.
1726                  */
1727                 add_hugetlb_folio(h, folio, true);
1728                 spin_unlock_irq(&hugetlb_lock);
1729                 return;
1730         }
1731 
1732         /*
1733          * If vmemmap pages were allocated above, then we need to clear the
1734          * hugetlb flag under the hugetlb lock.
1735          */
1736         if (folio_test_hugetlb(folio)) {
1737                 spin_lock_irq(&hugetlb_lock);
1738                 __folio_clear_hugetlb(folio);
1739                 spin_unlock_irq(&hugetlb_lock);
1740         }
1741 
1742         /*
1743          * Move PageHWPoison flag from head page to the raw error pages,
1744          * which makes any healthy subpages reusable.
1745          */
1746         if (unlikely(folio_test_hwpoison(folio)))
1747                 folio_clear_hugetlb_hwpoison(folio);
1748 
1749         folio_ref_unfreeze(folio, 1);
1750 
1751         /*
1752          * Non-gigantic pages demoted from CMA allocated gigantic pages
1753          * need to be given back to CMA in free_gigantic_folio.
1754          */
1755         if (hstate_is_gigantic(h) ||
1756             hugetlb_cma_folio(folio, huge_page_order(h))) {
1757                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1758                 free_gigantic_folio(folio, huge_page_order(h));
1759         } else {
1760                 INIT_LIST_HEAD(&folio->_deferred_list);
1761                 folio_put(folio);
1762         }
1763 }
1764 
1765 /*
1766  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1767  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1768  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1769  * the vmemmap pages.
1770  *
1771  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1772  * freed and frees them one-by-one. As the page->mapping pointer is going
1773  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1774  * structure of a lockless linked list of huge pages to be freed.
1775  */
1776 static LLIST_HEAD(hpage_freelist);
1777 
1778 static void free_hpage_workfn(struct work_struct *work)
1779 {
1780         struct llist_node *node;
1781 
1782         node = llist_del_all(&hpage_freelist);
1783 
1784         while (node) {
1785                 struct folio *folio;
1786                 struct hstate *h;
1787 
1788                 folio = container_of((struct address_space **)node,
1789                                      struct folio, mapping);
1790                 node = node->next;
1791                 folio->mapping = NULL;
1792                 /*
1793                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1794                  * folio_hstate() is going to trigger because a previous call to
1795                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1796                  * not use folio_hstate() directly.
1797                  */
1798                 h = size_to_hstate(folio_size(folio));
1799 
1800                 __update_and_free_hugetlb_folio(h, folio);
1801 
1802                 cond_resched();
1803         }
1804 }
1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1806 
1807 static inline void flush_free_hpage_work(struct hstate *h)
1808 {
1809         if (hugetlb_vmemmap_optimizable(h))
1810                 flush_work(&free_hpage_work);
1811 }
1812 
1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1814                                  bool atomic)
1815 {
1816         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1817                 __update_and_free_hugetlb_folio(h, folio);
1818                 return;
1819         }
1820 
1821         /*
1822          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1823          *
1824          * Only call schedule_work() if hpage_freelist is previously
1825          * empty. Otherwise, schedule_work() had been called but the workfn
1826          * hasn't retrieved the list yet.
1827          */
1828         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1829                 schedule_work(&free_hpage_work);
1830 }
1831 
1832 static void bulk_vmemmap_restore_error(struct hstate *h,
1833                                         struct list_head *folio_list,
1834                                         struct list_head *non_hvo_folios)
1835 {
1836         struct folio *folio, *t_folio;
1837 
1838         if (!list_empty(non_hvo_folios)) {
1839                 /*
1840                  * Free any restored hugetlb pages so that restore of the
1841                  * entire list can be retried.
1842                  * The idea is that in the common case of ENOMEM errors freeing
1843                  * hugetlb pages with vmemmap we will free up memory so that we
1844                  * can allocate vmemmap for more hugetlb pages.
1845                  */
1846                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1847                         list_del(&folio->lru);
1848                         spin_lock_irq(&hugetlb_lock);
1849                         __folio_clear_hugetlb(folio);
1850                         spin_unlock_irq(&hugetlb_lock);
1851                         update_and_free_hugetlb_folio(h, folio, false);
1852                         cond_resched();
1853                 }
1854         } else {
1855                 /*
1856                  * In the case where there are no folios which can be
1857                  * immediately freed, we loop through the list trying to restore
1858                  * vmemmap individually in the hope that someone elsewhere may
1859                  * have done something to cause success (such as freeing some
1860                  * memory).  If unable to restore a hugetlb page, the hugetlb
1861                  * page is made a surplus page and removed from the list.
1862                  * If are able to restore vmemmap and free one hugetlb page, we
1863                  * quit processing the list to retry the bulk operation.
1864                  */
1865                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1866                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1867                                 list_del(&folio->lru);
1868                                 spin_lock_irq(&hugetlb_lock);
1869                                 add_hugetlb_folio(h, folio, true);
1870                                 spin_unlock_irq(&hugetlb_lock);
1871                         } else {
1872                                 list_del(&folio->lru);
1873                                 spin_lock_irq(&hugetlb_lock);
1874                                 __folio_clear_hugetlb(folio);
1875                                 spin_unlock_irq(&hugetlb_lock);
1876                                 update_and_free_hugetlb_folio(h, folio, false);
1877                                 cond_resched();
1878                                 break;
1879                         }
1880         }
1881 }
1882 
1883 static void update_and_free_pages_bulk(struct hstate *h,
1884                                                 struct list_head *folio_list)
1885 {
1886         long ret;
1887         struct folio *folio, *t_folio;
1888         LIST_HEAD(non_hvo_folios);
1889 
1890         /*
1891          * First allocate required vmemmmap (if necessary) for all folios.
1892          * Carefully handle errors and free up any available hugetlb pages
1893          * in an effort to make forward progress.
1894          */
1895 retry:
1896         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1897         if (ret < 0) {
1898                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1899                 goto retry;
1900         }
1901 
1902         /*
1903          * At this point, list should be empty, ret should be >= 0 and there
1904          * should only be pages on the non_hvo_folios list.
1905          * Do note that the non_hvo_folios list could be empty.
1906          * Without HVO enabled, ret will be 0 and there is no need to call
1907          * __folio_clear_hugetlb as this was done previously.
1908          */
1909         VM_WARN_ON(!list_empty(folio_list));
1910         VM_WARN_ON(ret < 0);
1911         if (!list_empty(&non_hvo_folios) && ret) {
1912                 spin_lock_irq(&hugetlb_lock);
1913                 list_for_each_entry(folio, &non_hvo_folios, lru)
1914                         __folio_clear_hugetlb(folio);
1915                 spin_unlock_irq(&hugetlb_lock);
1916         }
1917 
1918         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1919                 update_and_free_hugetlb_folio(h, folio, false);
1920                 cond_resched();
1921         }
1922 }
1923 
1924 struct hstate *size_to_hstate(unsigned long size)
1925 {
1926         struct hstate *h;
1927 
1928         for_each_hstate(h) {
1929                 if (huge_page_size(h) == size)
1930                         return h;
1931         }
1932         return NULL;
1933 }
1934 
1935 void free_huge_folio(struct folio *folio)
1936 {
1937         /*
1938          * Can't pass hstate in here because it is called from the
1939          * generic mm code.
1940          */
1941         struct hstate *h = folio_hstate(folio);
1942         int nid = folio_nid(folio);
1943         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1944         bool restore_reserve;
1945         unsigned long flags;
1946 
1947         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1948         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1949 
1950         hugetlb_set_folio_subpool(folio, NULL);
1951         if (folio_test_anon(folio))
1952                 __ClearPageAnonExclusive(&folio->page);
1953         folio->mapping = NULL;
1954         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1955         folio_clear_hugetlb_restore_reserve(folio);
1956 
1957         /*
1958          * If HPageRestoreReserve was set on page, page allocation consumed a
1959          * reservation.  If the page was associated with a subpool, there
1960          * would have been a page reserved in the subpool before allocation
1961          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1962          * reservation, do not call hugepage_subpool_put_pages() as this will
1963          * remove the reserved page from the subpool.
1964          */
1965         if (!restore_reserve) {
1966                 /*
1967                  * A return code of zero implies that the subpool will be
1968                  * under its minimum size if the reservation is not restored
1969                  * after page is free.  Therefore, force restore_reserve
1970                  * operation.
1971                  */
1972                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1973                         restore_reserve = true;
1974         }
1975 
1976         spin_lock_irqsave(&hugetlb_lock, flags);
1977         folio_clear_hugetlb_migratable(folio);
1978         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1979                                      pages_per_huge_page(h), folio);
1980         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1981                                           pages_per_huge_page(h), folio);
1982         mem_cgroup_uncharge(folio);
1983         if (restore_reserve)
1984                 h->resv_huge_pages++;
1985 
1986         if (folio_test_hugetlb_temporary(folio)) {
1987                 remove_hugetlb_folio(h, folio, false);
1988                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1989                 update_and_free_hugetlb_folio(h, folio, true);
1990         } else if (h->surplus_huge_pages_node[nid]) {
1991                 /* remove the page from active list */
1992                 remove_hugetlb_folio(h, folio, true);
1993                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1994                 update_and_free_hugetlb_folio(h, folio, true);
1995         } else {
1996                 arch_clear_hugetlb_flags(folio);
1997                 enqueue_hugetlb_folio(h, folio);
1998                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1999         }
2000 }
2001 
2002 /*
2003  * Must be called with the hugetlb lock held
2004  */
2005 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2006 {
2007         lockdep_assert_held(&hugetlb_lock);
2008         h->nr_huge_pages++;
2009         h->nr_huge_pages_node[nid]++;
2010 }
2011 
2012 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2013 {
2014         __folio_set_hugetlb(folio);
2015         INIT_LIST_HEAD(&folio->lru);
2016         hugetlb_set_folio_subpool(folio, NULL);
2017         set_hugetlb_cgroup(folio, NULL);
2018         set_hugetlb_cgroup_rsvd(folio, NULL);
2019 }
2020 
2021 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2022 {
2023         init_new_hugetlb_folio(h, folio);
2024         hugetlb_vmemmap_optimize_folio(h, folio);
2025 }
2026 
2027 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2028 {
2029         __prep_new_hugetlb_folio(h, folio);
2030         spin_lock_irq(&hugetlb_lock);
2031         __prep_account_new_huge_page(h, nid);
2032         spin_unlock_irq(&hugetlb_lock);
2033 }
2034 
2035 static bool __prep_compound_gigantic_folio(struct folio *folio,
2036                                         unsigned int order, bool demote)
2037 {
2038         int i, j;
2039         int nr_pages = 1 << order;
2040         struct page *p;
2041 
2042         __folio_clear_reserved(folio);
2043         for (i = 0; i < nr_pages; i++) {
2044                 p = folio_page(folio, i);
2045 
2046                 /*
2047                  * For gigantic hugepages allocated through bootmem at
2048                  * boot, it's safer to be consistent with the not-gigantic
2049                  * hugepages and clear the PG_reserved bit from all tail pages
2050                  * too.  Otherwise drivers using get_user_pages() to access tail
2051                  * pages may get the reference counting wrong if they see
2052                  * PG_reserved set on a tail page (despite the head page not
2053                  * having PG_reserved set).  Enforcing this consistency between
2054                  * head and tail pages allows drivers to optimize away a check
2055                  * on the head page when they need know if put_page() is needed
2056                  * after get_user_pages().
2057                  */
2058                 if (i != 0)     /* head page cleared above */
2059                         __ClearPageReserved(p);
2060                 /*
2061                  * Subtle and very unlikely
2062                  *
2063                  * Gigantic 'page allocators' such as memblock or cma will
2064                  * return a set of pages with each page ref counted.  We need
2065                  * to turn this set of pages into a compound page with tail
2066                  * page ref counts set to zero.  Code such as speculative page
2067                  * cache adding could take a ref on a 'to be' tail page.
2068                  * We need to respect any increased ref count, and only set
2069                  * the ref count to zero if count is currently 1.  If count
2070                  * is not 1, we return an error.  An error return indicates
2071                  * the set of pages can not be converted to a gigantic page.
2072                  * The caller who allocated the pages should then discard the
2073                  * pages using the appropriate free interface.
2074                  *
2075                  * In the case of demote, the ref count will be zero.
2076                  */
2077                 if (!demote) {
2078                         if (!page_ref_freeze(p, 1)) {
2079                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2080                                 goto out_error;
2081                         }
2082                 } else {
2083                         VM_BUG_ON_PAGE(page_count(p), p);
2084                 }
2085                 if (i != 0)
2086                         set_compound_head(p, &folio->page);
2087         }
2088         __folio_set_head(folio);
2089         /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2090         folio_set_order(folio, order);
2091         atomic_set(&folio->_entire_mapcount, -1);
2092         atomic_set(&folio->_large_mapcount, -1);
2093         atomic_set(&folio->_pincount, 0);
2094         return true;
2095 
2096 out_error:
2097         /* undo page modifications made above */
2098         for (j = 0; j < i; j++) {
2099                 p = folio_page(folio, j);
2100                 if (j != 0)
2101                         clear_compound_head(p);
2102                 set_page_refcounted(p);
2103         }
2104         /* need to clear PG_reserved on remaining tail pages  */
2105         for (; j < nr_pages; j++) {
2106                 p = folio_page(folio, j);
2107                 __ClearPageReserved(p);
2108         }
2109         return false;
2110 }
2111 
2112 static bool prep_compound_gigantic_folio(struct folio *folio,
2113                                                         unsigned int order)
2114 {
2115         return __prep_compound_gigantic_folio(folio, order, false);
2116 }
2117 
2118 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2119                                                         unsigned int order)
2120 {
2121         return __prep_compound_gigantic_folio(folio, order, true);
2122 }
2123 
2124 /*
2125  * Find and lock address space (mapping) in write mode.
2126  *
2127  * Upon entry, the folio is locked which means that folio_mapping() is
2128  * stable.  Due to locking order, we can only trylock_write.  If we can
2129  * not get the lock, simply return NULL to caller.
2130  */
2131 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2132 {
2133         struct address_space *mapping = folio_mapping(folio);
2134 
2135         if (!mapping)
2136                 return mapping;
2137 
2138         if (i_mmap_trylock_write(mapping))
2139                 return mapping;
2140 
2141         return NULL;
2142 }
2143 
2144 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2145                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2146                 nodemask_t *node_alloc_noretry)
2147 {
2148         int order = huge_page_order(h);
2149         struct folio *folio;
2150         bool alloc_try_hard = true;
2151         bool retry = true;
2152 
2153         /*
2154          * By default we always try hard to allocate the folio with
2155          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2156          * a loop (to adjust global huge page counts) and previous allocation
2157          * failed, do not continue to try hard on the same node.  Use the
2158          * node_alloc_noretry bitmap to manage this state information.
2159          */
2160         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2161                 alloc_try_hard = false;
2162         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2163         if (alloc_try_hard)
2164                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2165         if (nid == NUMA_NO_NODE)
2166                 nid = numa_mem_id();
2167 retry:
2168         folio = __folio_alloc(gfp_mask, order, nid, nmask);
2169         /* Ensure hugetlb folio won't have large_rmappable flag set. */
2170         if (folio)
2171                 folio_clear_large_rmappable(folio);
2172 
2173         if (folio && !folio_ref_freeze(folio, 1)) {
2174                 folio_put(folio);
2175                 if (retry) {    /* retry once */
2176                         retry = false;
2177                         goto retry;
2178                 }
2179                 /* WOW!  twice in a row. */
2180                 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2181                 folio = NULL;
2182         }
2183 
2184         /*
2185          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2186          * folio this indicates an overall state change.  Clear bit so
2187          * that we resume normal 'try hard' allocations.
2188          */
2189         if (node_alloc_noretry && folio && !alloc_try_hard)
2190                 node_clear(nid, *node_alloc_noretry);
2191 
2192         /*
2193          * If we tried hard to get a folio but failed, set bit so that
2194          * subsequent attempts will not try as hard until there is an
2195          * overall state change.
2196          */
2197         if (node_alloc_noretry && !folio && alloc_try_hard)
2198                 node_set(nid, *node_alloc_noretry);
2199 
2200         if (!folio) {
2201                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2202                 return NULL;
2203         }
2204 
2205         __count_vm_event(HTLB_BUDDY_PGALLOC);
2206         return folio;
2207 }
2208 
2209 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2210                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2211                                 nodemask_t *node_alloc_noretry)
2212 {
2213         struct folio *folio;
2214         bool retry = false;
2215 
2216 retry:
2217         if (hstate_is_gigantic(h))
2218                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2219         else
2220                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2221                                 nid, nmask, node_alloc_noretry);
2222         if (!folio)
2223                 return NULL;
2224 
2225         if (hstate_is_gigantic(h)) {
2226                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2227                         /*
2228                          * Rare failure to convert pages to compound page.
2229                          * Free pages and try again - ONCE!
2230                          */
2231                         free_gigantic_folio(folio, huge_page_order(h));
2232                         if (!retry) {
2233                                 retry = true;
2234                                 goto retry;
2235                         }
2236                         return NULL;
2237                 }
2238         }
2239 
2240         return folio;
2241 }
2242 
2243 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2244                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2245                 nodemask_t *node_alloc_noretry)
2246 {
2247         struct folio *folio;
2248 
2249         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2250                                                 node_alloc_noretry);
2251         if (folio)
2252                 init_new_hugetlb_folio(h, folio);
2253         return folio;
2254 }
2255 
2256 /*
2257  * Common helper to allocate a fresh hugetlb page. All specific allocators
2258  * should use this function to get new hugetlb pages
2259  *
2260  * Note that returned page is 'frozen':  ref count of head page and all tail
2261  * pages is zero.
2262  */
2263 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2264                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2265 {
2266         struct folio *folio;
2267 
2268         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2269         if (!folio)
2270                 return NULL;
2271 
2272         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2273         return folio;
2274 }
2275 
2276 static void prep_and_add_allocated_folios(struct hstate *h,
2277                                         struct list_head *folio_list)
2278 {
2279         unsigned long flags;
2280         struct folio *folio, *tmp_f;
2281 
2282         /* Send list for bulk vmemmap optimization processing */
2283         hugetlb_vmemmap_optimize_folios(h, folio_list);
2284 
2285         /* Add all new pool pages to free lists in one lock cycle */
2286         spin_lock_irqsave(&hugetlb_lock, flags);
2287         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2288                 __prep_account_new_huge_page(h, folio_nid(folio));
2289                 enqueue_hugetlb_folio(h, folio);
2290         }
2291         spin_unlock_irqrestore(&hugetlb_lock, flags);
2292 }
2293 
2294 /*
2295  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2296  * will later be added to the appropriate hugetlb pool.
2297  */
2298 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2299                                         nodemask_t *nodes_allowed,
2300                                         nodemask_t *node_alloc_noretry,
2301                                         int *next_node)
2302 {
2303         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2304         int nr_nodes, node;
2305 
2306         for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2307                 struct folio *folio;
2308 
2309                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2310                                         nodes_allowed, node_alloc_noretry);
2311                 if (folio)
2312                         return folio;
2313         }
2314 
2315         return NULL;
2316 }
2317 
2318 /*
2319  * Remove huge page from pool from next node to free.  Attempt to keep
2320  * persistent huge pages more or less balanced over allowed nodes.
2321  * This routine only 'removes' the hugetlb page.  The caller must make
2322  * an additional call to free the page to low level allocators.
2323  * Called with hugetlb_lock locked.
2324  */
2325 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2326                 nodemask_t *nodes_allowed, bool acct_surplus)
2327 {
2328         int nr_nodes, node;
2329         struct folio *folio = NULL;
2330 
2331         lockdep_assert_held(&hugetlb_lock);
2332         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2333                 /*
2334                  * If we're returning unused surplus pages, only examine
2335                  * nodes with surplus pages.
2336                  */
2337                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2338                     !list_empty(&h->hugepage_freelists[node])) {
2339                         folio = list_entry(h->hugepage_freelists[node].next,
2340                                           struct folio, lru);
2341                         remove_hugetlb_folio(h, folio, acct_surplus);
2342                         break;
2343                 }
2344         }
2345 
2346         return folio;
2347 }
2348 
2349 /*
2350  * Dissolve a given free hugetlb folio into free buddy pages. This function
2351  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2352  * This function returns values like below:
2353  *
2354  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2355  *           when the system is under memory pressure and the feature of
2356  *           freeing unused vmemmap pages associated with each hugetlb page
2357  *           is enabled.
2358  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2359  *           (allocated or reserved.)
2360  *       0:  successfully dissolved free hugepages or the page is not a
2361  *           hugepage (considered as already dissolved)
2362  */
2363 int dissolve_free_hugetlb_folio(struct folio *folio)
2364 {
2365         int rc = -EBUSY;
2366 
2367 retry:
2368         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2369         if (!folio_test_hugetlb(folio))
2370                 return 0;
2371 
2372         spin_lock_irq(&hugetlb_lock);
2373         if (!folio_test_hugetlb(folio)) {
2374                 rc = 0;
2375                 goto out;
2376         }
2377 
2378         if (!folio_ref_count(folio)) {
2379                 struct hstate *h = folio_hstate(folio);
2380                 if (!available_huge_pages(h))
2381                         goto out;
2382 
2383                 /*
2384                  * We should make sure that the page is already on the free list
2385                  * when it is dissolved.
2386                  */
2387                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2388                         spin_unlock_irq(&hugetlb_lock);
2389                         cond_resched();
2390 
2391                         /*
2392                          * Theoretically, we should return -EBUSY when we
2393                          * encounter this race. In fact, we have a chance
2394                          * to successfully dissolve the page if we do a
2395                          * retry. Because the race window is quite small.
2396                          * If we seize this opportunity, it is an optimization
2397                          * for increasing the success rate of dissolving page.
2398                          */
2399                         goto retry;
2400                 }
2401 
2402                 remove_hugetlb_folio(h, folio, false);
2403                 h->max_huge_pages--;
2404                 spin_unlock_irq(&hugetlb_lock);
2405 
2406                 /*
2407                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2408                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2409                  * free the page if it can not allocate required vmemmap.  We
2410                  * need to adjust max_huge_pages if the page is not freed.
2411                  * Attempt to allocate vmemmmap here so that we can take
2412                  * appropriate action on failure.
2413                  *
2414                  * The folio_test_hugetlb check here is because
2415                  * remove_hugetlb_folio will clear hugetlb folio flag for
2416                  * non-vmemmap optimized hugetlb folios.
2417                  */
2418                 if (folio_test_hugetlb(folio)) {
2419                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2420                         if (rc) {
2421                                 spin_lock_irq(&hugetlb_lock);
2422                                 add_hugetlb_folio(h, folio, false);
2423                                 h->max_huge_pages++;
2424                                 goto out;
2425                         }
2426                 } else
2427                         rc = 0;
2428 
2429                 update_and_free_hugetlb_folio(h, folio, false);
2430                 return rc;
2431         }
2432 out:
2433         spin_unlock_irq(&hugetlb_lock);
2434         return rc;
2435 }
2436 
2437 /*
2438  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2439  * make specified memory blocks removable from the system.
2440  * Note that this will dissolve a free gigantic hugepage completely, if any
2441  * part of it lies within the given range.
2442  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2443  * free hugetlb folios that were dissolved before that error are lost.
2444  */
2445 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2446 {
2447         unsigned long pfn;
2448         struct folio *folio;
2449         int rc = 0;
2450         unsigned int order;
2451         struct hstate *h;
2452 
2453         if (!hugepages_supported())
2454                 return rc;
2455 
2456         order = huge_page_order(&default_hstate);
2457         for_each_hstate(h)
2458                 order = min(order, huge_page_order(h));
2459 
2460         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2461                 folio = pfn_folio(pfn);
2462                 rc = dissolve_free_hugetlb_folio(folio);
2463                 if (rc)
2464                         break;
2465         }
2466 
2467         return rc;
2468 }
2469 
2470 /*
2471  * Allocates a fresh surplus page from the page allocator.
2472  */
2473 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2474                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2475 {
2476         struct folio *folio = NULL;
2477 
2478         if (hstate_is_gigantic(h))
2479                 return NULL;
2480 
2481         spin_lock_irq(&hugetlb_lock);
2482         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2483                 goto out_unlock;
2484         spin_unlock_irq(&hugetlb_lock);
2485 
2486         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2487         if (!folio)
2488                 return NULL;
2489 
2490         spin_lock_irq(&hugetlb_lock);
2491         /*
2492          * We could have raced with the pool size change.
2493          * Double check that and simply deallocate the new page
2494          * if we would end up overcommiting the surpluses. Abuse
2495          * temporary page to workaround the nasty free_huge_folio
2496          * codeflow
2497          */
2498         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2499                 folio_set_hugetlb_temporary(folio);
2500                 spin_unlock_irq(&hugetlb_lock);
2501                 free_huge_folio(folio);
2502                 return NULL;
2503         }
2504 
2505         h->surplus_huge_pages++;
2506         h->surplus_huge_pages_node[folio_nid(folio)]++;
2507 
2508 out_unlock:
2509         spin_unlock_irq(&hugetlb_lock);
2510 
2511         return folio;
2512 }
2513 
2514 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2515                                      int nid, nodemask_t *nmask)
2516 {
2517         struct folio *folio;
2518 
2519         if (hstate_is_gigantic(h))
2520                 return NULL;
2521 
2522         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2523         if (!folio)
2524                 return NULL;
2525 
2526         /* fresh huge pages are frozen */
2527         folio_ref_unfreeze(folio, 1);
2528         /*
2529          * We do not account these pages as surplus because they are only
2530          * temporary and will be released properly on the last reference
2531          */
2532         folio_set_hugetlb_temporary(folio);
2533 
2534         return folio;
2535 }
2536 
2537 /*
2538  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2539  */
2540 static
2541 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2542                 struct vm_area_struct *vma, unsigned long addr)
2543 {
2544         struct folio *folio = NULL;
2545         struct mempolicy *mpol;
2546         gfp_t gfp_mask = htlb_alloc_mask(h);
2547         int nid;
2548         nodemask_t *nodemask;
2549 
2550         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2551         if (mpol_is_preferred_many(mpol)) {
2552                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2553 
2554                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2555                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2556 
2557                 /* Fallback to all nodes if page==NULL */
2558                 nodemask = NULL;
2559         }
2560 
2561         if (!folio)
2562                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2563         mpol_cond_put(mpol);
2564         return folio;
2565 }
2566 
2567 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2568                 nodemask_t *nmask, gfp_t gfp_mask)
2569 {
2570         struct folio *folio;
2571 
2572         spin_lock_irq(&hugetlb_lock);
2573         folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2574                                                nmask);
2575         if (folio) {
2576                 VM_BUG_ON(!h->resv_huge_pages);
2577                 h->resv_huge_pages--;
2578         }
2579 
2580         spin_unlock_irq(&hugetlb_lock);
2581         return folio;
2582 }
2583 
2584 /* folio migration callback function */
2585 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2586                 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2587 {
2588         spin_lock_irq(&hugetlb_lock);
2589         if (available_huge_pages(h)) {
2590                 struct folio *folio;
2591 
2592                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2593                                                 preferred_nid, nmask);
2594                 if (folio) {
2595                         spin_unlock_irq(&hugetlb_lock);
2596                         return folio;
2597                 }
2598         }
2599         spin_unlock_irq(&hugetlb_lock);
2600 
2601         /* We cannot fallback to other nodes, as we could break the per-node pool. */
2602         if (!allow_alloc_fallback)
2603                 gfp_mask |= __GFP_THISNODE;
2604 
2605         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2606 }
2607 
2608 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2609 {
2610 #ifdef CONFIG_NUMA
2611         struct mempolicy *mpol = get_task_policy(current);
2612 
2613         /*
2614          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2615          * (from policy_nodemask) specifically for hugetlb case
2616          */
2617         if (mpol->mode == MPOL_BIND &&
2618                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2619                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2620                 return &mpol->nodes;
2621 #endif
2622         return NULL;
2623 }
2624 
2625 /*
2626  * Increase the hugetlb pool such that it can accommodate a reservation
2627  * of size 'delta'.
2628  */
2629 static int gather_surplus_pages(struct hstate *h, long delta)
2630         __must_hold(&hugetlb_lock)
2631 {
2632         LIST_HEAD(surplus_list);
2633         struct folio *folio, *tmp;
2634         int ret;
2635         long i;
2636         long needed, allocated;
2637         bool alloc_ok = true;
2638         int node;
2639         nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2640 
2641         lockdep_assert_held(&hugetlb_lock);
2642         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2643         if (needed <= 0) {
2644                 h->resv_huge_pages += delta;
2645                 return 0;
2646         }
2647 
2648         allocated = 0;
2649 
2650         ret = -ENOMEM;
2651 retry:
2652         spin_unlock_irq(&hugetlb_lock);
2653         for (i = 0; i < needed; i++) {
2654                 folio = NULL;
2655                 for_each_node_mask(node, cpuset_current_mems_allowed) {
2656                         if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2657                                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2658                                                 node, NULL);
2659                                 if (folio)
2660                                         break;
2661                         }
2662                 }
2663                 if (!folio) {
2664                         alloc_ok = false;
2665                         break;
2666                 }
2667                 list_add(&folio->lru, &surplus_list);
2668                 cond_resched();
2669         }
2670         allocated += i;
2671 
2672         /*
2673          * After retaking hugetlb_lock, we need to recalculate 'needed'
2674          * because either resv_huge_pages or free_huge_pages may have changed.
2675          */
2676         spin_lock_irq(&hugetlb_lock);
2677         needed = (h->resv_huge_pages + delta) -
2678                         (h->free_huge_pages + allocated);
2679         if (needed > 0) {
2680                 if (alloc_ok)
2681                         goto retry;
2682                 /*
2683                  * We were not able to allocate enough pages to
2684                  * satisfy the entire reservation so we free what
2685                  * we've allocated so far.
2686                  */
2687                 goto free;
2688         }
2689         /*
2690          * The surplus_list now contains _at_least_ the number of extra pages
2691          * needed to accommodate the reservation.  Add the appropriate number
2692          * of pages to the hugetlb pool and free the extras back to the buddy
2693          * allocator.  Commit the entire reservation here to prevent another
2694          * process from stealing the pages as they are added to the pool but
2695          * before they are reserved.
2696          */
2697         needed += allocated;
2698         h->resv_huge_pages += delta;
2699         ret = 0;
2700 
2701         /* Free the needed pages to the hugetlb pool */
2702         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2703                 if ((--needed) < 0)
2704                         break;
2705                 /* Add the page to the hugetlb allocator */
2706                 enqueue_hugetlb_folio(h, folio);
2707         }
2708 free:
2709         spin_unlock_irq(&hugetlb_lock);
2710 
2711         /*
2712          * Free unnecessary surplus pages to the buddy allocator.
2713          * Pages have no ref count, call free_huge_folio directly.
2714          */
2715         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2716                 free_huge_folio(folio);
2717         spin_lock_irq(&hugetlb_lock);
2718 
2719         return ret;
2720 }
2721 
2722 /*
2723  * This routine has two main purposes:
2724  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2725  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2726  *    to the associated reservation map.
2727  * 2) Free any unused surplus pages that may have been allocated to satisfy
2728  *    the reservation.  As many as unused_resv_pages may be freed.
2729  */
2730 static void return_unused_surplus_pages(struct hstate *h,
2731                                         unsigned long unused_resv_pages)
2732 {
2733         unsigned long nr_pages;
2734         LIST_HEAD(page_list);
2735 
2736         lockdep_assert_held(&hugetlb_lock);
2737         /* Uncommit the reservation */
2738         h->resv_huge_pages -= unused_resv_pages;
2739 
2740         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2741                 goto out;
2742 
2743         /*
2744          * Part (or even all) of the reservation could have been backed
2745          * by pre-allocated pages. Only free surplus pages.
2746          */
2747         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2748 
2749         /*
2750          * We want to release as many surplus pages as possible, spread
2751          * evenly across all nodes with memory. Iterate across these nodes
2752          * until we can no longer free unreserved surplus pages. This occurs
2753          * when the nodes with surplus pages have no free pages.
2754          * remove_pool_hugetlb_folio() will balance the freed pages across the
2755          * on-line nodes with memory and will handle the hstate accounting.
2756          */
2757         while (nr_pages--) {
2758                 struct folio *folio;
2759 
2760                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2761                 if (!folio)
2762                         goto out;
2763 
2764                 list_add(&folio->lru, &page_list);
2765         }
2766 
2767 out:
2768         spin_unlock_irq(&hugetlb_lock);
2769         update_and_free_pages_bulk(h, &page_list);
2770         spin_lock_irq(&hugetlb_lock);
2771 }
2772 
2773 
2774 /*
2775  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2776  * are used by the huge page allocation routines to manage reservations.
2777  *
2778  * vma_needs_reservation is called to determine if the huge page at addr
2779  * within the vma has an associated reservation.  If a reservation is
2780  * needed, the value 1 is returned.  The caller is then responsible for
2781  * managing the global reservation and subpool usage counts.  After
2782  * the huge page has been allocated, vma_commit_reservation is called
2783  * to add the page to the reservation map.  If the page allocation fails,
2784  * the reservation must be ended instead of committed.  vma_end_reservation
2785  * is called in such cases.
2786  *
2787  * In the normal case, vma_commit_reservation returns the same value
2788  * as the preceding vma_needs_reservation call.  The only time this
2789  * is not the case is if a reserve map was changed between calls.  It
2790  * is the responsibility of the caller to notice the difference and
2791  * take appropriate action.
2792  *
2793  * vma_add_reservation is used in error paths where a reservation must
2794  * be restored when a newly allocated huge page must be freed.  It is
2795  * to be called after calling vma_needs_reservation to determine if a
2796  * reservation exists.
2797  *
2798  * vma_del_reservation is used in error paths where an entry in the reserve
2799  * map was created during huge page allocation and must be removed.  It is to
2800  * be called after calling vma_needs_reservation to determine if a reservation
2801  * exists.
2802  */
2803 enum vma_resv_mode {
2804         VMA_NEEDS_RESV,
2805         VMA_COMMIT_RESV,
2806         VMA_END_RESV,
2807         VMA_ADD_RESV,
2808         VMA_DEL_RESV,
2809 };
2810 static long __vma_reservation_common(struct hstate *h,
2811                                 struct vm_area_struct *vma, unsigned long addr,
2812                                 enum vma_resv_mode mode)
2813 {
2814         struct resv_map *resv;
2815         pgoff_t idx;
2816         long ret;
2817         long dummy_out_regions_needed;
2818 
2819         resv = vma_resv_map(vma);
2820         if (!resv)
2821                 return 1;
2822 
2823         idx = vma_hugecache_offset(h, vma, addr);
2824         switch (mode) {
2825         case VMA_NEEDS_RESV:
2826                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2827                 /* We assume that vma_reservation_* routines always operate on
2828                  * 1 page, and that adding to resv map a 1 page entry can only
2829                  * ever require 1 region.
2830                  */
2831                 VM_BUG_ON(dummy_out_regions_needed != 1);
2832                 break;
2833         case VMA_COMMIT_RESV:
2834                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2835                 /* region_add calls of range 1 should never fail. */
2836                 VM_BUG_ON(ret < 0);
2837                 break;
2838         case VMA_END_RESV:
2839                 region_abort(resv, idx, idx + 1, 1);
2840                 ret = 0;
2841                 break;
2842         case VMA_ADD_RESV:
2843                 if (vma->vm_flags & VM_MAYSHARE) {
2844                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2845                         /* region_add calls of range 1 should never fail. */
2846                         VM_BUG_ON(ret < 0);
2847                 } else {
2848                         region_abort(resv, idx, idx + 1, 1);
2849                         ret = region_del(resv, idx, idx + 1);
2850                 }
2851                 break;
2852         case VMA_DEL_RESV:
2853                 if (vma->vm_flags & VM_MAYSHARE) {
2854                         region_abort(resv, idx, idx + 1, 1);
2855                         ret = region_del(resv, idx, idx + 1);
2856                 } else {
2857                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2858                         /* region_add calls of range 1 should never fail. */
2859                         VM_BUG_ON(ret < 0);
2860                 }
2861                 break;
2862         default:
2863                 BUG();
2864         }
2865 
2866         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2867                 return ret;
2868         /*
2869          * We know private mapping must have HPAGE_RESV_OWNER set.
2870          *
2871          * In most cases, reserves always exist for private mappings.
2872          * However, a file associated with mapping could have been
2873          * hole punched or truncated after reserves were consumed.
2874          * As subsequent fault on such a range will not use reserves.
2875          * Subtle - The reserve map for private mappings has the
2876          * opposite meaning than that of shared mappings.  If NO
2877          * entry is in the reserve map, it means a reservation exists.
2878          * If an entry exists in the reserve map, it means the
2879          * reservation has already been consumed.  As a result, the
2880          * return value of this routine is the opposite of the
2881          * value returned from reserve map manipulation routines above.
2882          */
2883         if (ret > 0)
2884                 return 0;
2885         if (ret == 0)
2886                 return 1;
2887         return ret;
2888 }
2889 
2890 static long vma_needs_reservation(struct hstate *h,
2891                         struct vm_area_struct *vma, unsigned long addr)
2892 {
2893         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2894 }
2895 
2896 static long vma_commit_reservation(struct hstate *h,
2897                         struct vm_area_struct *vma, unsigned long addr)
2898 {
2899         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2900 }
2901 
2902 static void vma_end_reservation(struct hstate *h,
2903                         struct vm_area_struct *vma, unsigned long addr)
2904 {
2905         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2906 }
2907 
2908 static long vma_add_reservation(struct hstate *h,
2909                         struct vm_area_struct *vma, unsigned long addr)
2910 {
2911         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2912 }
2913 
2914 static long vma_del_reservation(struct hstate *h,
2915                         struct vm_area_struct *vma, unsigned long addr)
2916 {
2917         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2918 }
2919 
2920 /*
2921  * This routine is called to restore reservation information on error paths.
2922  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2923  * and the hugetlb mutex should remain held when calling this routine.
2924  *
2925  * It handles two specific cases:
2926  * 1) A reservation was in place and the folio consumed the reservation.
2927  *    hugetlb_restore_reserve is set in the folio.
2928  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2929  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2930  *
2931  * In case 1, free_huge_folio later in the error path will increment the
2932  * global reserve count.  But, free_huge_folio does not have enough context
2933  * to adjust the reservation map.  This case deals primarily with private
2934  * mappings.  Adjust the reserve map here to be consistent with global
2935  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2936  * reserve map indicates there is a reservation present.
2937  *
2938  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2939  */
2940 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2941                         unsigned long address, struct folio *folio)
2942 {
2943         long rc = vma_needs_reservation(h, vma, address);
2944 
2945         if (folio_test_hugetlb_restore_reserve(folio)) {
2946                 if (unlikely(rc < 0))
2947                         /*
2948                          * Rare out of memory condition in reserve map
2949                          * manipulation.  Clear hugetlb_restore_reserve so
2950                          * that global reserve count will not be incremented
2951                          * by free_huge_folio.  This will make it appear
2952                          * as though the reservation for this folio was
2953                          * consumed.  This may prevent the task from
2954                          * faulting in the folio at a later time.  This
2955                          * is better than inconsistent global huge page
2956                          * accounting of reserve counts.
2957                          */
2958                         folio_clear_hugetlb_restore_reserve(folio);
2959                 else if (rc)
2960                         (void)vma_add_reservation(h, vma, address);
2961                 else
2962                         vma_end_reservation(h, vma, address);
2963         } else {
2964                 if (!rc) {
2965                         /*
2966                          * This indicates there is an entry in the reserve map
2967                          * not added by alloc_hugetlb_folio.  We know it was added
2968                          * before the alloc_hugetlb_folio call, otherwise
2969                          * hugetlb_restore_reserve would be set on the folio.
2970                          * Remove the entry so that a subsequent allocation
2971                          * does not consume a reservation.
2972                          */
2973                         rc = vma_del_reservation(h, vma, address);
2974                         if (rc < 0)
2975                                 /*
2976                                  * VERY rare out of memory condition.  Since
2977                                  * we can not delete the entry, set
2978                                  * hugetlb_restore_reserve so that the reserve
2979                                  * count will be incremented when the folio
2980                                  * is freed.  This reserve will be consumed
2981                                  * on a subsequent allocation.
2982                                  */
2983                                 folio_set_hugetlb_restore_reserve(folio);
2984                 } else if (rc < 0) {
2985                         /*
2986                          * Rare out of memory condition from
2987                          * vma_needs_reservation call.  Memory allocation is
2988                          * only attempted if a new entry is needed.  Therefore,
2989                          * this implies there is not an entry in the
2990                          * reserve map.
2991                          *
2992                          * For shared mappings, no entry in the map indicates
2993                          * no reservation.  We are done.
2994                          */
2995                         if (!(vma->vm_flags & VM_MAYSHARE))
2996                                 /*
2997                                  * For private mappings, no entry indicates
2998                                  * a reservation is present.  Since we can
2999                                  * not add an entry, set hugetlb_restore_reserve
3000                                  * on the folio so reserve count will be
3001                                  * incremented when freed.  This reserve will
3002                                  * be consumed on a subsequent allocation.
3003                                  */
3004                                 folio_set_hugetlb_restore_reserve(folio);
3005                 } else
3006                         /*
3007                          * No reservation present, do nothing
3008                          */
3009                          vma_end_reservation(h, vma, address);
3010         }
3011 }
3012 
3013 /*
3014  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3015  * the old one
3016  * @h: struct hstate old page belongs to
3017  * @old_folio: Old folio to dissolve
3018  * @list: List to isolate the page in case we need to
3019  * Returns 0 on success, otherwise negated error.
3020  */
3021 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3022                         struct folio *old_folio, struct list_head *list)
3023 {
3024         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3025         int nid = folio_nid(old_folio);
3026         struct folio *new_folio = NULL;
3027         int ret = 0;
3028 
3029 retry:
3030         spin_lock_irq(&hugetlb_lock);
3031         if (!folio_test_hugetlb(old_folio)) {
3032                 /*
3033                  * Freed from under us. Drop new_folio too.
3034                  */
3035                 goto free_new;
3036         } else if (folio_ref_count(old_folio)) {
3037                 bool isolated;
3038 
3039                 /*
3040                  * Someone has grabbed the folio, try to isolate it here.
3041                  * Fail with -EBUSY if not possible.
3042                  */
3043                 spin_unlock_irq(&hugetlb_lock);
3044                 isolated = isolate_hugetlb(old_folio, list);
3045                 ret = isolated ? 0 : -EBUSY;
3046                 spin_lock_irq(&hugetlb_lock);
3047                 goto free_new;
3048         } else if (!folio_test_hugetlb_freed(old_folio)) {
3049                 /*
3050                  * Folio's refcount is 0 but it has not been enqueued in the
3051                  * freelist yet. Race window is small, so we can succeed here if
3052                  * we retry.
3053                  */
3054                 spin_unlock_irq(&hugetlb_lock);
3055                 cond_resched();
3056                 goto retry;
3057         } else {
3058                 if (!new_folio) {
3059                         spin_unlock_irq(&hugetlb_lock);
3060                         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3061                                                               NULL, NULL);
3062                         if (!new_folio)
3063                                 return -ENOMEM;
3064                         __prep_new_hugetlb_folio(h, new_folio);
3065                         goto retry;
3066                 }
3067 
3068                 /*
3069                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3070                  * the freelist and decrease the counters. These will be
3071                  * incremented again when calling __prep_account_new_huge_page()
3072                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3073                  * remain stable since this happens under the lock.
3074                  */
3075                 remove_hugetlb_folio(h, old_folio, false);
3076 
3077                 /*
3078                  * Ref count on new_folio is already zero as it was dropped
3079                  * earlier.  It can be directly added to the pool free list.
3080                  */
3081                 __prep_account_new_huge_page(h, nid);
3082                 enqueue_hugetlb_folio(h, new_folio);
3083 
3084                 /*
3085                  * Folio has been replaced, we can safely free the old one.
3086                  */
3087                 spin_unlock_irq(&hugetlb_lock);
3088                 update_and_free_hugetlb_folio(h, old_folio, false);
3089         }
3090 
3091         return ret;
3092 
3093 free_new:
3094         spin_unlock_irq(&hugetlb_lock);
3095         if (new_folio)
3096                 update_and_free_hugetlb_folio(h, new_folio, false);
3097 
3098         return ret;
3099 }
3100 
3101 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3102 {
3103         struct hstate *h;
3104         struct folio *folio = page_folio(page);
3105         int ret = -EBUSY;
3106 
3107         /*
3108          * The page might have been dissolved from under our feet, so make sure
3109          * to carefully check the state under the lock.
3110          * Return success when racing as if we dissolved the page ourselves.
3111          */
3112         spin_lock_irq(&hugetlb_lock);
3113         if (folio_test_hugetlb(folio)) {
3114                 h = folio_hstate(folio);
3115         } else {
3116                 spin_unlock_irq(&hugetlb_lock);
3117                 return 0;
3118         }
3119         spin_unlock_irq(&hugetlb_lock);
3120 
3121         /*
3122          * Fence off gigantic pages as there is a cyclic dependency between
3123          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3124          * of bailing out right away without further retrying.
3125          */
3126         if (hstate_is_gigantic(h))
3127                 return -ENOMEM;
3128 
3129         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3130                 ret = 0;
3131         else if (!folio_ref_count(folio))
3132                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3133 
3134         return ret;
3135 }
3136 
3137 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3138                                     unsigned long addr, int avoid_reserve)
3139 {
3140         struct hugepage_subpool *spool = subpool_vma(vma);
3141         struct hstate *h = hstate_vma(vma);
3142         struct folio *folio;
3143         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3144         long gbl_chg;
3145         int memcg_charge_ret, ret, idx;
3146         struct hugetlb_cgroup *h_cg = NULL;
3147         struct mem_cgroup *memcg;
3148         bool deferred_reserve;
3149         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3150 
3151         memcg = get_mem_cgroup_from_current();
3152         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3153         if (memcg_charge_ret == -ENOMEM) {
3154                 mem_cgroup_put(memcg);
3155                 return ERR_PTR(-ENOMEM);
3156         }
3157 
3158         idx = hstate_index(h);
3159         /*
3160          * Examine the region/reserve map to determine if the process
3161          * has a reservation for the page to be allocated.  A return
3162          * code of zero indicates a reservation exists (no change).
3163          */
3164         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3165         if (map_chg < 0) {
3166                 if (!memcg_charge_ret)
3167                         mem_cgroup_cancel_charge(memcg, nr_pages);
3168                 mem_cgroup_put(memcg);
3169                 return ERR_PTR(-ENOMEM);
3170         }
3171 
3172         /*
3173          * Processes that did not create the mapping will have no
3174          * reserves as indicated by the region/reserve map. Check
3175          * that the allocation will not exceed the subpool limit.
3176          * Allocations for MAP_NORESERVE mappings also need to be
3177          * checked against any subpool limit.
3178          */
3179         if (map_chg || avoid_reserve) {
3180                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3181                 if (gbl_chg < 0)
3182                         goto out_end_reservation;
3183 
3184                 /*
3185                  * Even though there was no reservation in the region/reserve
3186                  * map, there could be reservations associated with the
3187                  * subpool that can be used.  This would be indicated if the
3188                  * return value of hugepage_subpool_get_pages() is zero.
3189                  * However, if avoid_reserve is specified we still avoid even
3190                  * the subpool reservations.
3191                  */
3192                 if (avoid_reserve)
3193                         gbl_chg = 1;
3194         }
3195 
3196         /* If this allocation is not consuming a reservation, charge it now.
3197          */
3198         deferred_reserve = map_chg || avoid_reserve;
3199         if (deferred_reserve) {
3200                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3201                         idx, pages_per_huge_page(h), &h_cg);
3202                 if (ret)
3203                         goto out_subpool_put;
3204         }
3205 
3206         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3207         if (ret)
3208                 goto out_uncharge_cgroup_reservation;
3209 
3210         spin_lock_irq(&hugetlb_lock);
3211         /*
3212          * glb_chg is passed to indicate whether or not a page must be taken
3213          * from the global free pool (global change).  gbl_chg == 0 indicates
3214          * a reservation exists for the allocation.
3215          */
3216         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3217         if (!folio) {
3218                 spin_unlock_irq(&hugetlb_lock);
3219                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3220                 if (!folio)
3221                         goto out_uncharge_cgroup;
3222                 spin_lock_irq(&hugetlb_lock);
3223                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3224                         folio_set_hugetlb_restore_reserve(folio);
3225                         h->resv_huge_pages--;
3226                 }
3227                 list_add(&folio->lru, &h->hugepage_activelist);
3228                 folio_ref_unfreeze(folio, 1);
3229                 /* Fall through */
3230         }
3231 
3232         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3233         /* If allocation is not consuming a reservation, also store the
3234          * hugetlb_cgroup pointer on the page.
3235          */
3236         if (deferred_reserve) {
3237                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3238                                                   h_cg, folio);
3239         }
3240 
3241         spin_unlock_irq(&hugetlb_lock);
3242 
3243         hugetlb_set_folio_subpool(folio, spool);
3244 
3245         map_commit = vma_commit_reservation(h, vma, addr);
3246         if (unlikely(map_chg > map_commit)) {
3247                 /*
3248                  * The page was added to the reservation map between
3249                  * vma_needs_reservation and vma_commit_reservation.
3250                  * This indicates a race with hugetlb_reserve_pages.
3251                  * Adjust for the subpool count incremented above AND
3252                  * in hugetlb_reserve_pages for the same page.  Also,
3253                  * the reservation count added in hugetlb_reserve_pages
3254                  * no longer applies.
3255                  */
3256                 long rsv_adjust;
3257 
3258                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3259                 hugetlb_acct_memory(h, -rsv_adjust);
3260                 if (deferred_reserve) {
3261                         spin_lock_irq(&hugetlb_lock);
3262                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3263                                         pages_per_huge_page(h), folio);
3264                         spin_unlock_irq(&hugetlb_lock);
3265                 }
3266         }
3267 
3268         if (!memcg_charge_ret)
3269                 mem_cgroup_commit_charge(folio, memcg);
3270         mem_cgroup_put(memcg);
3271 
3272         return folio;
3273 
3274 out_uncharge_cgroup:
3275         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3276 out_uncharge_cgroup_reservation:
3277         if (deferred_reserve)
3278                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3279                                                     h_cg);
3280 out_subpool_put:
3281         if (map_chg || avoid_reserve)
3282                 hugepage_subpool_put_pages(spool, 1);
3283 out_end_reservation:
3284         vma_end_reservation(h, vma, addr);
3285         if (!memcg_charge_ret)
3286                 mem_cgroup_cancel_charge(memcg, nr_pages);
3287         mem_cgroup_put(memcg);
3288         return ERR_PTR(-ENOSPC);
3289 }
3290 
3291 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3292         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3293 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3294 {
3295         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3296         int nr_nodes, node = nid;
3297 
3298         /* do node specific alloc */
3299         if (nid != NUMA_NO_NODE) {
3300                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3301                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3302                 if (!m)
3303                         return 0;
3304                 goto found;
3305         }
3306         /* allocate from next node when distributing huge pages */
3307         for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3308                 m = memblock_alloc_try_nid_raw(
3309                                 huge_page_size(h), huge_page_size(h),
3310                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3311                 /*
3312                  * Use the beginning of the huge page to store the
3313                  * huge_bootmem_page struct (until gather_bootmem
3314                  * puts them into the mem_map).
3315                  */
3316                 if (!m)
3317                         return 0;
3318                 goto found;
3319         }
3320 
3321 found:
3322 
3323         /*
3324          * Only initialize the head struct page in memmap_init_reserved_pages,
3325          * rest of the struct pages will be initialized by the HugeTLB
3326          * subsystem itself.
3327          * The head struct page is used to get folio information by the HugeTLB
3328          * subsystem like zone id and node id.
3329          */
3330         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3331                 huge_page_size(h) - PAGE_SIZE);
3332         /* Put them into a private list first because mem_map is not up yet */
3333         INIT_LIST_HEAD(&m->list);
3334         list_add(&m->list, &huge_boot_pages[node]);
3335         m->hstate = h;
3336         return 1;
3337 }
3338 
3339 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3340 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3341                                         unsigned long start_page_number,
3342                                         unsigned long end_page_number)
3343 {
3344         enum zone_type zone = zone_idx(folio_zone(folio));
3345         int nid = folio_nid(folio);
3346         unsigned long head_pfn = folio_pfn(folio);
3347         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3348         int ret;
3349 
3350         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3351                 struct page *page = pfn_to_page(pfn);
3352 
3353                 __init_single_page(page, pfn, zone, nid);
3354                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3355                 ret = page_ref_freeze(page, 1);
3356                 VM_BUG_ON(!ret);
3357         }
3358 }
3359 
3360 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3361                                               struct hstate *h,
3362                                               unsigned long nr_pages)
3363 {
3364         int ret;
3365 
3366         /* Prepare folio head */
3367         __folio_clear_reserved(folio);
3368         __folio_set_head(folio);
3369         ret = folio_ref_freeze(folio, 1);
3370         VM_BUG_ON(!ret);
3371         /* Initialize the necessary tail struct pages */
3372         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3373         prep_compound_head((struct page *)folio, huge_page_order(h));
3374 }
3375 
3376 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3377                                         struct list_head *folio_list)
3378 {
3379         unsigned long flags;
3380         struct folio *folio, *tmp_f;
3381 
3382         /* Send list for bulk vmemmap optimization processing */
3383         hugetlb_vmemmap_optimize_folios(h, folio_list);
3384 
3385         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3386                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3387                         /*
3388                          * If HVO fails, initialize all tail struct pages
3389                          * We do not worry about potential long lock hold
3390                          * time as this is early in boot and there should
3391                          * be no contention.
3392                          */
3393                         hugetlb_folio_init_tail_vmemmap(folio,
3394                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3395                                         pages_per_huge_page(h));
3396                 }
3397                 /* Subdivide locks to achieve better parallel performance */
3398                 spin_lock_irqsave(&hugetlb_lock, flags);
3399                 __prep_account_new_huge_page(h, folio_nid(folio));
3400                 enqueue_hugetlb_folio(h, folio);
3401                 spin_unlock_irqrestore(&hugetlb_lock, flags);
3402         }
3403 }
3404 
3405 /*
3406  * Put bootmem huge pages into the standard lists after mem_map is up.
3407  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3408  */
3409 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3410 {
3411         LIST_HEAD(folio_list);
3412         struct huge_bootmem_page *m;
3413         struct hstate *h = NULL, *prev_h = NULL;
3414 
3415         list_for_each_entry(m, &huge_boot_pages[nid], list) {
3416                 struct page *page = virt_to_page(m);
3417                 struct folio *folio = (void *)page;
3418 
3419                 h = m->hstate;
3420                 /*
3421                  * It is possible to have multiple huge page sizes (hstates)
3422                  * in this list.  If so, process each size separately.
3423                  */
3424                 if (h != prev_h && prev_h != NULL)
3425                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3426                 prev_h = h;
3427 
3428                 VM_BUG_ON(!hstate_is_gigantic(h));
3429                 WARN_ON(folio_ref_count(folio) != 1);
3430 
3431                 hugetlb_folio_init_vmemmap(folio, h,
3432                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3433                 init_new_hugetlb_folio(h, folio);
3434                 list_add(&folio->lru, &folio_list);
3435 
3436                 /*
3437                  * We need to restore the 'stolen' pages to totalram_pages
3438                  * in order to fix confusing memory reports from free(1) and
3439                  * other side-effects, like CommitLimit going negative.
3440                  */
3441                 adjust_managed_page_count(page, pages_per_huge_page(h));
3442                 cond_resched();
3443         }
3444 
3445         prep_and_add_bootmem_folios(h, &folio_list);
3446 }
3447 
3448 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3449                                                     unsigned long end, void *arg)
3450 {
3451         int nid;
3452 
3453         for (nid = start; nid < end; nid++)
3454                 gather_bootmem_prealloc_node(nid);
3455 }
3456 
3457 static void __init gather_bootmem_prealloc(void)
3458 {
3459         struct padata_mt_job job = {
3460                 .thread_fn      = gather_bootmem_prealloc_parallel,
3461                 .fn_arg         = NULL,
3462                 .start          = 0,
3463                 .size           = num_node_state(N_MEMORY),
3464                 .align          = 1,
3465                 .min_chunk      = 1,
3466                 .max_threads    = num_node_state(N_MEMORY),
3467                 .numa_aware     = true,
3468         };
3469 
3470         padata_do_multithreaded(&job);
3471 }
3472 
3473 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3474 {
3475         unsigned long i;
3476         char buf[32];
3477 
3478         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3479                 if (hstate_is_gigantic(h)) {
3480                         if (!alloc_bootmem_huge_page(h, nid))
3481                                 break;
3482                 } else {
3483                         struct folio *folio;
3484                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3485 
3486                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3487                                         &node_states[N_MEMORY]);
3488                         if (!folio)
3489                                 break;
3490                         free_huge_folio(folio); /* free it into the hugepage allocator */
3491                 }
3492                 cond_resched();
3493         }
3494         if (i == h->max_huge_pages_node[nid])
3495                 return;
3496 
3497         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3498         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3499                 h->max_huge_pages_node[nid], buf, nid, i);
3500         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3501         h->max_huge_pages_node[nid] = i;
3502 }
3503 
3504 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3505 {
3506         int i;
3507         bool node_specific_alloc = false;
3508 
3509         for_each_online_node(i) {
3510                 if (h->max_huge_pages_node[i] > 0) {
3511                         hugetlb_hstate_alloc_pages_onenode(h, i);
3512                         node_specific_alloc = true;
3513                 }
3514         }
3515 
3516         return node_specific_alloc;
3517 }
3518 
3519 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3520 {
3521         if (allocated < h->max_huge_pages) {
3522                 char buf[32];
3523 
3524                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3525                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3526                         h->max_huge_pages, buf, allocated);
3527                 h->max_huge_pages = allocated;
3528         }
3529 }
3530 
3531 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3532 {
3533         struct hstate *h = (struct hstate *)arg;
3534         int i, num = end - start;
3535         nodemask_t node_alloc_noretry;
3536         LIST_HEAD(folio_list);
3537         int next_node = first_online_node;
3538 
3539         /* Bit mask controlling how hard we retry per-node allocations.*/
3540         nodes_clear(node_alloc_noretry);
3541 
3542         for (i = 0; i < num; ++i) {
3543                 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3544                                                 &node_alloc_noretry, &next_node);
3545                 if (!folio)
3546                         break;
3547 
3548                 list_move(&folio->lru, &folio_list);
3549                 cond_resched();
3550         }
3551 
3552         prep_and_add_allocated_folios(h, &folio_list);
3553 }
3554 
3555 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3556 {
3557         unsigned long i;
3558 
3559         for (i = 0; i < h->max_huge_pages; ++i) {
3560                 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3561                         break;
3562                 cond_resched();
3563         }
3564 
3565         return i;
3566 }
3567 
3568 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3569 {
3570         struct padata_mt_job job = {
3571                 .fn_arg         = h,
3572                 .align          = 1,
3573                 .numa_aware     = true
3574         };
3575 
3576         job.thread_fn   = hugetlb_pages_alloc_boot_node;
3577         job.start       = 0;
3578         job.size        = h->max_huge_pages;
3579 
3580         /*
3581          * job.max_threads is twice the num_node_state(N_MEMORY),
3582          *
3583          * Tests below indicate that a multiplier of 2 significantly improves
3584          * performance, and although larger values also provide improvements,
3585          * the gains are marginal.
3586          *
3587          * Therefore, choosing 2 as the multiplier strikes a good balance between
3588          * enhancing parallel processing capabilities and maintaining efficient
3589          * resource management.
3590          *
3591          * +------------+-------+-------+-------+-------+-------+
3592          * | multiplier |   1   |   2   |   3   |   4   |   5   |
3593          * +------------+-------+-------+-------+-------+-------+
3594          * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3595          * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3596          * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3597          * +------------+-------+-------+-------+-------+-------+
3598          */
3599         job.max_threads = num_node_state(N_MEMORY) * 2;
3600         job.min_chunk   = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3601         padata_do_multithreaded(&job);
3602 
3603         return h->nr_huge_pages;
3604 }
3605 
3606 /*
3607  * NOTE: this routine is called in different contexts for gigantic and
3608  * non-gigantic pages.
3609  * - For gigantic pages, this is called early in the boot process and
3610  *   pages are allocated from memblock allocated or something similar.
3611  *   Gigantic pages are actually added to pools later with the routine
3612  *   gather_bootmem_prealloc.
3613  * - For non-gigantic pages, this is called later in the boot process after
3614  *   all of mm is up and functional.  Pages are allocated from buddy and
3615  *   then added to hugetlb pools.
3616  */
3617 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3618 {
3619         unsigned long allocated;
3620         static bool initialized __initdata;
3621 
3622         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3623         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3624                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3625                 return;
3626         }
3627 
3628         /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3629         if (!initialized) {
3630                 int i = 0;
3631 
3632                 for (i = 0; i < MAX_NUMNODES; i++)
3633                         INIT_LIST_HEAD(&huge_boot_pages[i]);
3634                 initialized = true;
3635         }
3636 
3637         /* do node specific alloc */
3638         if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3639                 return;
3640 
3641         /* below will do all node balanced alloc */
3642         if (hstate_is_gigantic(h))
3643                 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3644         else
3645                 allocated = hugetlb_pages_alloc_boot(h);
3646 
3647         hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3648 }
3649 
3650 static void __init hugetlb_init_hstates(void)
3651 {
3652         struct hstate *h, *h2;
3653 
3654         for_each_hstate(h) {
3655                 /* oversize hugepages were init'ed in early boot */
3656                 if (!hstate_is_gigantic(h))
3657                         hugetlb_hstate_alloc_pages(h);
3658 
3659                 /*
3660                  * Set demote order for each hstate.  Note that
3661                  * h->demote_order is initially 0.
3662                  * - We can not demote gigantic pages if runtime freeing
3663                  *   is not supported, so skip this.
3664                  * - If CMA allocation is possible, we can not demote
3665                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3666                  */
3667                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3668                         continue;
3669                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3670                         continue;
3671                 for_each_hstate(h2) {
3672                         if (h2 == h)
3673                                 continue;
3674                         if (h2->order < h->order &&
3675                             h2->order > h->demote_order)
3676                                 h->demote_order = h2->order;
3677                 }
3678         }
3679 }
3680 
3681 static void __init report_hugepages(void)
3682 {
3683         struct hstate *h;
3684 
3685         for_each_hstate(h) {
3686                 char buf[32];
3687 
3688                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3689                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3690                         buf, h->free_huge_pages);
3691                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3692                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3693         }
3694 }
3695 
3696 #ifdef CONFIG_HIGHMEM
3697 static void try_to_free_low(struct hstate *h, unsigned long count,
3698                                                 nodemask_t *nodes_allowed)
3699 {
3700         int i;
3701         LIST_HEAD(page_list);
3702 
3703         lockdep_assert_held(&hugetlb_lock);
3704         if (hstate_is_gigantic(h))
3705                 return;
3706 
3707         /*
3708          * Collect pages to be freed on a list, and free after dropping lock
3709          */
3710         for_each_node_mask(i, *nodes_allowed) {
3711                 struct folio *folio, *next;
3712                 struct list_head *freel = &h->hugepage_freelists[i];
3713                 list_for_each_entry_safe(folio, next, freel, lru) {
3714                         if (count >= h->nr_huge_pages)
3715                                 goto out;
3716                         if (folio_test_highmem(folio))
3717                                 continue;
3718                         remove_hugetlb_folio(h, folio, false);
3719                         list_add(&folio->lru, &page_list);
3720                 }
3721         }
3722 
3723 out:
3724         spin_unlock_irq(&hugetlb_lock);
3725         update_and_free_pages_bulk(h, &page_list);
3726         spin_lock_irq(&hugetlb_lock);
3727 }
3728 #else
3729 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3730                                                 nodemask_t *nodes_allowed)
3731 {
3732 }
3733 #endif
3734 
3735 /*
3736  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3737  * balanced by operating on them in a round-robin fashion.
3738  * Returns 1 if an adjustment was made.
3739  */
3740 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3741                                 int delta)
3742 {
3743         int nr_nodes, node;
3744 
3745         lockdep_assert_held(&hugetlb_lock);
3746         VM_BUG_ON(delta != -1 && delta != 1);
3747 
3748         if (delta < 0) {
3749                 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3750                         if (h->surplus_huge_pages_node[node])
3751                                 goto found;
3752                 }
3753         } else {
3754                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3755                         if (h->surplus_huge_pages_node[node] <
3756                                         h->nr_huge_pages_node[node])
3757                                 goto found;
3758                 }
3759         }
3760         return 0;
3761 
3762 found:
3763         h->surplus_huge_pages += delta;
3764         h->surplus_huge_pages_node[node] += delta;
3765         return 1;
3766 }
3767 
3768 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3769 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3770                               nodemask_t *nodes_allowed)
3771 {
3772         unsigned long min_count;
3773         unsigned long allocated;
3774         struct folio *folio;
3775         LIST_HEAD(page_list);
3776         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3777 
3778         /*
3779          * Bit mask controlling how hard we retry per-node allocations.
3780          * If we can not allocate the bit mask, do not attempt to allocate
3781          * the requested huge pages.
3782          */
3783         if (node_alloc_noretry)
3784                 nodes_clear(*node_alloc_noretry);
3785         else
3786                 return -ENOMEM;
3787 
3788         /*
3789          * resize_lock mutex prevents concurrent adjustments to number of
3790          * pages in hstate via the proc/sysfs interfaces.
3791          */
3792         mutex_lock(&h->resize_lock);
3793         flush_free_hpage_work(h);
3794         spin_lock_irq(&hugetlb_lock);
3795 
3796         /*
3797          * Check for a node specific request.
3798          * Changing node specific huge page count may require a corresponding
3799          * change to the global count.  In any case, the passed node mask
3800          * (nodes_allowed) will restrict alloc/free to the specified node.
3801          */
3802         if (nid != NUMA_NO_NODE) {
3803                 unsigned long old_count = count;
3804 
3805                 count += persistent_huge_pages(h) -
3806                          (h->nr_huge_pages_node[nid] -
3807                           h->surplus_huge_pages_node[nid]);
3808                 /*
3809                  * User may have specified a large count value which caused the
3810                  * above calculation to overflow.  In this case, they wanted
3811                  * to allocate as many huge pages as possible.  Set count to
3812                  * largest possible value to align with their intention.
3813                  */
3814                 if (count < old_count)
3815                         count = ULONG_MAX;
3816         }
3817 
3818         /*
3819          * Gigantic pages runtime allocation depend on the capability for large
3820          * page range allocation.
3821          * If the system does not provide this feature, return an error when
3822          * the user tries to allocate gigantic pages but let the user free the
3823          * boottime allocated gigantic pages.
3824          */
3825         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3826                 if (count > persistent_huge_pages(h)) {
3827                         spin_unlock_irq(&hugetlb_lock);
3828                         mutex_unlock(&h->resize_lock);
3829                         NODEMASK_FREE(node_alloc_noretry);
3830                         return -EINVAL;
3831                 }
3832                 /* Fall through to decrease pool */
3833         }
3834 
3835         /*
3836          * Increase the pool size
3837          * First take pages out of surplus state.  Then make up the
3838          * remaining difference by allocating fresh huge pages.
3839          *
3840          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3841          * to convert a surplus huge page to a normal huge page. That is
3842          * not critical, though, it just means the overall size of the
3843          * pool might be one hugepage larger than it needs to be, but
3844          * within all the constraints specified by the sysctls.
3845          */
3846         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3847                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3848                         break;
3849         }
3850 
3851         allocated = 0;
3852         while (count > (persistent_huge_pages(h) + allocated)) {
3853                 /*
3854                  * If this allocation races such that we no longer need the
3855                  * page, free_huge_folio will handle it by freeing the page
3856                  * and reducing the surplus.
3857                  */
3858                 spin_unlock_irq(&hugetlb_lock);
3859 
3860                 /* yield cpu to avoid soft lockup */
3861                 cond_resched();
3862 
3863                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3864                                                 node_alloc_noretry,
3865                                                 &h->next_nid_to_alloc);
3866                 if (!folio) {
3867                         prep_and_add_allocated_folios(h, &page_list);
3868                         spin_lock_irq(&hugetlb_lock);
3869                         goto out;
3870                 }
3871 
3872                 list_add(&folio->lru, &page_list);
3873                 allocated++;
3874 
3875                 /* Bail for signals. Probably ctrl-c from user */
3876                 if (signal_pending(current)) {
3877                         prep_and_add_allocated_folios(h, &page_list);
3878                         spin_lock_irq(&hugetlb_lock);
3879                         goto out;
3880                 }
3881 
3882                 spin_lock_irq(&hugetlb_lock);
3883         }
3884 
3885         /* Add allocated pages to the pool */
3886         if (!list_empty(&page_list)) {
3887                 spin_unlock_irq(&hugetlb_lock);
3888                 prep_and_add_allocated_folios(h, &page_list);
3889                 spin_lock_irq(&hugetlb_lock);
3890         }
3891 
3892         /*
3893          * Decrease the pool size
3894          * First return free pages to the buddy allocator (being careful
3895          * to keep enough around to satisfy reservations).  Then place
3896          * pages into surplus state as needed so the pool will shrink
3897          * to the desired size as pages become free.
3898          *
3899          * By placing pages into the surplus state independent of the
3900          * overcommit value, we are allowing the surplus pool size to
3901          * exceed overcommit. There are few sane options here. Since
3902          * alloc_surplus_hugetlb_folio() is checking the global counter,
3903          * though, we'll note that we're not allowed to exceed surplus
3904          * and won't grow the pool anywhere else. Not until one of the
3905          * sysctls are changed, or the surplus pages go out of use.
3906          */
3907         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3908         min_count = max(count, min_count);
3909         try_to_free_low(h, min_count, nodes_allowed);
3910 
3911         /*
3912          * Collect pages to be removed on list without dropping lock
3913          */
3914         while (min_count < persistent_huge_pages(h)) {
3915                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3916                 if (!folio)
3917                         break;
3918 
3919                 list_add(&folio->lru, &page_list);
3920         }
3921         /* free the pages after dropping lock */
3922         spin_unlock_irq(&hugetlb_lock);
3923         update_and_free_pages_bulk(h, &page_list);
3924         flush_free_hpage_work(h);
3925         spin_lock_irq(&hugetlb_lock);
3926 
3927         while (count < persistent_huge_pages(h)) {
3928                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3929                         break;
3930         }
3931 out:
3932         h->max_huge_pages = persistent_huge_pages(h);
3933         spin_unlock_irq(&hugetlb_lock);
3934         mutex_unlock(&h->resize_lock);
3935 
3936         NODEMASK_FREE(node_alloc_noretry);
3937 
3938         return 0;
3939 }
3940 
3941 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3942                                        struct list_head *src_list)
3943 {
3944         long rc;
3945         struct folio *folio, *next;
3946         LIST_HEAD(dst_list);
3947         LIST_HEAD(ret_list);
3948 
3949         rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3950         list_splice_init(&ret_list, src_list);
3951 
3952         /*
3953          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3954          * Without the mutex, pages added to target hstate could be marked
3955          * as surplus.
3956          *
3957          * Note that we already hold src->resize_lock.  To prevent deadlock,
3958          * use the convention of always taking larger size hstate mutex first.
3959          */
3960         mutex_lock(&dst->resize_lock);
3961 
3962         list_for_each_entry_safe(folio, next, src_list, lru) {
3963                 int i;
3964 
3965                 if (folio_test_hugetlb_vmemmap_optimized(folio))
3966                         continue;
3967 
3968                 list_del(&folio->lru);
3969                 /*
3970                  * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3971                  * sizes as it will not ref count folios.
3972                  */
3973                 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(src));
3974 
3975                 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3976                         struct page *page = folio_page(folio, i);
3977 
3978                         if (hstate_is_gigantic(dst))
3979                                 prep_compound_gigantic_folio_for_demote(page_folio(page),
3980                                                                         dst->order);
3981                         else
3982                                 prep_compound_page(page, dst->order);
3983                         set_page_private(page, 0);
3984 
3985                         init_new_hugetlb_folio(dst, page_folio(page));
3986                         list_add(&page->lru, &dst_list);
3987                 }
3988         }
3989 
3990         prep_and_add_allocated_folios(dst, &dst_list);
3991 
3992         mutex_unlock(&dst->resize_lock);
3993 
3994         return rc;
3995 }
3996 
3997 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3998                                   unsigned long nr_to_demote)
3999         __must_hold(&hugetlb_lock)
4000 {
4001         int nr_nodes, node;
4002         struct hstate *dst;
4003         long rc = 0;
4004         long nr_demoted = 0;
4005 
4006         lockdep_assert_held(&hugetlb_lock);
4007 
4008         /* We should never get here if no demote order */
4009         if (!src->demote_order) {
4010                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4011                 return -EINVAL;         /* internal error */
4012         }
4013         dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4014 
4015         for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4016                 LIST_HEAD(list);
4017                 struct folio *folio, *next;
4018 
4019                 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4020                         if (folio_test_hwpoison(folio))
4021                                 continue;
4022 
4023                         remove_hugetlb_folio(src, folio, false);
4024                         list_add(&folio->lru, &list);
4025 
4026                         if (++nr_demoted == nr_to_demote)
4027                                 break;
4028                 }
4029 
4030                 spin_unlock_irq(&hugetlb_lock);
4031 
4032                 rc = demote_free_hugetlb_folios(src, dst, &list);
4033 
4034                 spin_lock_irq(&hugetlb_lock);
4035 
4036                 list_for_each_entry_safe(folio, next, &list, lru) {
4037                         list_del(&folio->lru);
4038                         add_hugetlb_folio(src, folio, false);
4039 
4040                         nr_demoted--;
4041                 }
4042 
4043                 if (rc < 0 || nr_demoted == nr_to_demote)
4044                         break;
4045         }
4046 
4047         /*
4048          * Not absolutely necessary, but for consistency update max_huge_pages
4049          * based on pool changes for the demoted page.
4050          */
4051         src->max_huge_pages -= nr_demoted;
4052         dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4053 
4054         if (rc < 0)
4055                 return rc;
4056 
4057         if (nr_demoted)
4058                 return nr_demoted;
4059         /*
4060          * Only way to get here is if all pages on free lists are poisoned.
4061          * Return -EBUSY so that caller will not retry.
4062          */
4063         return -EBUSY;
4064 }
4065 
4066 #define HSTATE_ATTR_RO(_name) \
4067         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4068 
4069 #define HSTATE_ATTR_WO(_name) \
4070         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4071 
4072 #define HSTATE_ATTR(_name) \
4073         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4074 
4075 static struct kobject *hugepages_kobj;
4076 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4077 
4078 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4079 
4080 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4081 {
4082         int i;
4083 
4084         for (i = 0; i < HUGE_MAX_HSTATE; i++)
4085                 if (hstate_kobjs[i] == kobj) {
4086                         if (nidp)
4087                                 *nidp = NUMA_NO_NODE;
4088                         return &hstates[i];
4089                 }
4090 
4091         return kobj_to_node_hstate(kobj, nidp);
4092 }
4093 
4094 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4095                                         struct kobj_attribute *attr, char *buf)
4096 {
4097         struct hstate *h;
4098         unsigned long nr_huge_pages;
4099         int nid;
4100 
4101         h = kobj_to_hstate(kobj, &nid);
4102         if (nid == NUMA_NO_NODE)
4103                 nr_huge_pages = h->nr_huge_pages;
4104         else
4105                 nr_huge_pages = h->nr_huge_pages_node[nid];
4106 
4107         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4108 }
4109 
4110 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4111                                            struct hstate *h, int nid,
4112                                            unsigned long count, size_t len)
4113 {
4114         int err;
4115         nodemask_t nodes_allowed, *n_mask;
4116 
4117         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4118                 return -EINVAL;
4119 
4120         if (nid == NUMA_NO_NODE) {
4121                 /*
4122                  * global hstate attribute
4123                  */
4124                 if (!(obey_mempolicy &&
4125                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4126                         n_mask = &node_states[N_MEMORY];
4127                 else
4128                         n_mask = &nodes_allowed;
4129         } else {
4130                 /*
4131                  * Node specific request.  count adjustment happens in
4132                  * set_max_huge_pages() after acquiring hugetlb_lock.
4133                  */
4134                 init_nodemask_of_node(&nodes_allowed, nid);
4135                 n_mask = &nodes_allowed;
4136         }
4137 
4138         err = set_max_huge_pages(h, count, nid, n_mask);
4139 
4140         return err ? err : len;
4141 }
4142 
4143 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4144                                          struct kobject *kobj, const char *buf,
4145                                          size_t len)
4146 {
4147         struct hstate *h;
4148         unsigned long count;
4149         int nid;
4150         int err;
4151 
4152         err = kstrtoul(buf, 10, &count);
4153         if (err)
4154                 return err;
4155 
4156         h = kobj_to_hstate(kobj, &nid);
4157         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4158 }
4159 
4160 static ssize_t nr_hugepages_show(struct kobject *kobj,
4161                                        struct kobj_attribute *attr, char *buf)
4162 {
4163         return nr_hugepages_show_common(kobj, attr, buf);
4164 }
4165 
4166 static ssize_t nr_hugepages_store(struct kobject *kobj,
4167                struct kobj_attribute *attr, const char *buf, size_t len)
4168 {
4169         return nr_hugepages_store_common(false, kobj, buf, len);
4170 }
4171 HSTATE_ATTR(nr_hugepages);
4172 
4173 #ifdef CONFIG_NUMA
4174 
4175 /*
4176  * hstate attribute for optionally mempolicy-based constraint on persistent
4177  * huge page alloc/free.
4178  */
4179 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4180                                            struct kobj_attribute *attr,
4181                                            char *buf)
4182 {
4183         return nr_hugepages_show_common(kobj, attr, buf);
4184 }
4185 
4186 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4187                struct kobj_attribute *attr, const char *buf, size_t len)
4188 {
4189         return nr_hugepages_store_common(true, kobj, buf, len);
4190 }
4191 HSTATE_ATTR(nr_hugepages_mempolicy);
4192 #endif
4193 
4194 
4195 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4196                                         struct kobj_attribute *attr, char *buf)
4197 {
4198         struct hstate *h = kobj_to_hstate(kobj, NULL);
4199         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4200 }
4201 
4202 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4203                 struct kobj_attribute *attr, const char *buf, size_t count)
4204 {
4205         int err;
4206         unsigned long input;
4207         struct hstate *h = kobj_to_hstate(kobj, NULL);
4208 
4209         if (hstate_is_gigantic(h))
4210                 return -EINVAL;
4211 
4212         err = kstrtoul(buf, 10, &input);
4213         if (err)
4214                 return err;
4215 
4216         spin_lock_irq(&hugetlb_lock);
4217         h->nr_overcommit_huge_pages = input;
4218         spin_unlock_irq(&hugetlb_lock);
4219 
4220         return count;
4221 }
4222 HSTATE_ATTR(nr_overcommit_hugepages);
4223 
4224 static ssize_t free_hugepages_show(struct kobject *kobj,
4225                                         struct kobj_attribute *attr, char *buf)
4226 {
4227         struct hstate *h;
4228         unsigned long free_huge_pages;
4229         int nid;
4230 
4231         h = kobj_to_hstate(kobj, &nid);
4232         if (nid == NUMA_NO_NODE)
4233                 free_huge_pages = h->free_huge_pages;
4234         else
4235                 free_huge_pages = h->free_huge_pages_node[nid];
4236 
4237         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4238 }
4239 HSTATE_ATTR_RO(free_hugepages);
4240 
4241 static ssize_t resv_hugepages_show(struct kobject *kobj,
4242                                         struct kobj_attribute *attr, char *buf)
4243 {
4244         struct hstate *h = kobj_to_hstate(kobj, NULL);
4245         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4246 }
4247 HSTATE_ATTR_RO(resv_hugepages);
4248 
4249 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4250                                         struct kobj_attribute *attr, char *buf)
4251 {
4252         struct hstate *h;
4253         unsigned long surplus_huge_pages;
4254         int nid;
4255 
4256         h = kobj_to_hstate(kobj, &nid);
4257         if (nid == NUMA_NO_NODE)
4258                 surplus_huge_pages = h->surplus_huge_pages;
4259         else
4260                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4261 
4262         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4263 }
4264 HSTATE_ATTR_RO(surplus_hugepages);
4265 
4266 static ssize_t demote_store(struct kobject *kobj,
4267                struct kobj_attribute *attr, const char *buf, size_t len)
4268 {
4269         unsigned long nr_demote;
4270         unsigned long nr_available;
4271         nodemask_t nodes_allowed, *n_mask;
4272         struct hstate *h;
4273         int err;
4274         int nid;
4275 
4276         err = kstrtoul(buf, 10, &nr_demote);
4277         if (err)
4278                 return err;
4279         h = kobj_to_hstate(kobj, &nid);
4280 
4281         if (nid != NUMA_NO_NODE) {
4282                 init_nodemask_of_node(&nodes_allowed, nid);
4283                 n_mask = &nodes_allowed;
4284         } else {
4285                 n_mask = &node_states[N_MEMORY];
4286         }
4287 
4288         /* Synchronize with other sysfs operations modifying huge pages */
4289         mutex_lock(&h->resize_lock);
4290         spin_lock_irq(&hugetlb_lock);
4291 
4292         while (nr_demote) {
4293                 long rc;
4294 
4295                 /*
4296                  * Check for available pages to demote each time thorough the
4297                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4298                  */
4299                 if (nid != NUMA_NO_NODE)
4300                         nr_available = h->free_huge_pages_node[nid];
4301                 else
4302                         nr_available = h->free_huge_pages;
4303                 nr_available -= h->resv_huge_pages;
4304                 if (!nr_available)
4305                         break;
4306 
4307                 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4308                 if (rc < 0) {
4309                         err = rc;
4310                         break;
4311                 }
4312 
4313                 nr_demote -= rc;
4314         }
4315 
4316         spin_unlock_irq(&hugetlb_lock);
4317         mutex_unlock(&h->resize_lock);
4318 
4319         if (err)
4320                 return err;
4321         return len;
4322 }
4323 HSTATE_ATTR_WO(demote);
4324 
4325 static ssize_t demote_size_show(struct kobject *kobj,
4326                                         struct kobj_attribute *attr, char *buf)
4327 {
4328         struct hstate *h = kobj_to_hstate(kobj, NULL);
4329         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4330 
4331         return sysfs_emit(buf, "%lukB\n", demote_size);
4332 }
4333 
4334 static ssize_t demote_size_store(struct kobject *kobj,
4335                                         struct kobj_attribute *attr,
4336                                         const char *buf, size_t count)
4337 {
4338         struct hstate *h, *demote_hstate;
4339         unsigned long demote_size;
4340         unsigned int demote_order;
4341 
4342         demote_size = (unsigned long)memparse(buf, NULL);
4343 
4344         demote_hstate = size_to_hstate(demote_size);
4345         if (!demote_hstate)
4346                 return -EINVAL;
4347         demote_order = demote_hstate->order;
4348         if (demote_order < HUGETLB_PAGE_ORDER)
4349                 return -EINVAL;
4350 
4351         /* demote order must be smaller than hstate order */
4352         h = kobj_to_hstate(kobj, NULL);
4353         if (demote_order >= h->order)
4354                 return -EINVAL;
4355 
4356         /* resize_lock synchronizes access to demote size and writes */
4357         mutex_lock(&h->resize_lock);
4358         h->demote_order = demote_order;
4359         mutex_unlock(&h->resize_lock);
4360 
4361         return count;
4362 }
4363 HSTATE_ATTR(demote_size);
4364 
4365 static struct attribute *hstate_attrs[] = {
4366         &nr_hugepages_attr.attr,
4367         &nr_overcommit_hugepages_attr.attr,
4368         &free_hugepages_attr.attr,
4369         &resv_hugepages_attr.attr,
4370         &surplus_hugepages_attr.attr,
4371 #ifdef CONFIG_NUMA
4372         &nr_hugepages_mempolicy_attr.attr,
4373 #endif
4374         NULL,
4375 };
4376 
4377 static const struct attribute_group hstate_attr_group = {
4378         .attrs = hstate_attrs,
4379 };
4380 
4381 static struct attribute *hstate_demote_attrs[] = {
4382         &demote_size_attr.attr,
4383         &demote_attr.attr,
4384         NULL,
4385 };
4386 
4387 static const struct attribute_group hstate_demote_attr_group = {
4388         .attrs = hstate_demote_attrs,
4389 };
4390 
4391 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4392                                     struct kobject **hstate_kobjs,
4393                                     const struct attribute_group *hstate_attr_group)
4394 {
4395         int retval;
4396         int hi = hstate_index(h);
4397 
4398         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4399         if (!hstate_kobjs[hi])
4400                 return -ENOMEM;
4401 
4402         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4403         if (retval) {
4404                 kobject_put(hstate_kobjs[hi]);
4405                 hstate_kobjs[hi] = NULL;
4406                 return retval;
4407         }
4408 
4409         if (h->demote_order) {
4410                 retval = sysfs_create_group(hstate_kobjs[hi],
4411                                             &hstate_demote_attr_group);
4412                 if (retval) {
4413                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4414                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4415                         kobject_put(hstate_kobjs[hi]);
4416                         hstate_kobjs[hi] = NULL;
4417                         return retval;
4418                 }
4419         }
4420 
4421         return 0;
4422 }
4423 
4424 #ifdef CONFIG_NUMA
4425 static bool hugetlb_sysfs_initialized __ro_after_init;
4426 
4427 /*
4428  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4429  * with node devices in node_devices[] using a parallel array.  The array
4430  * index of a node device or _hstate == node id.
4431  * This is here to avoid any static dependency of the node device driver, in
4432  * the base kernel, on the hugetlb module.
4433  */
4434 struct node_hstate {
4435         struct kobject          *hugepages_kobj;
4436         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4437 };
4438 static struct node_hstate node_hstates[MAX_NUMNODES];
4439 
4440 /*
4441  * A subset of global hstate attributes for node devices
4442  */
4443 static struct attribute *per_node_hstate_attrs[] = {
4444         &nr_hugepages_attr.attr,
4445         &free_hugepages_attr.attr,
4446         &surplus_hugepages_attr.attr,
4447         NULL,
4448 };
4449 
4450 static const struct attribute_group per_node_hstate_attr_group = {
4451         .attrs = per_node_hstate_attrs,
4452 };
4453 
4454 /*
4455  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4456  * Returns node id via non-NULL nidp.
4457  */
4458 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4459 {
4460         int nid;
4461 
4462         for (nid = 0; nid < nr_node_ids; nid++) {
4463                 struct node_hstate *nhs = &node_hstates[nid];
4464                 int i;
4465                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4466                         if (nhs->hstate_kobjs[i] == kobj) {
4467                                 if (nidp)
4468                                         *nidp = nid;
4469                                 return &hstates[i];
4470                         }
4471         }
4472 
4473         BUG();
4474         return NULL;
4475 }
4476 
4477 /*
4478  * Unregister hstate attributes from a single node device.
4479  * No-op if no hstate attributes attached.
4480  */
4481 void hugetlb_unregister_node(struct node *node)
4482 {
4483         struct hstate *h;
4484         struct node_hstate *nhs = &node_hstates[node->dev.id];
4485 
4486         if (!nhs->hugepages_kobj)
4487                 return;         /* no hstate attributes */
4488 
4489         for_each_hstate(h) {
4490                 int idx = hstate_index(h);
4491                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4492 
4493                 if (!hstate_kobj)
4494                         continue;
4495                 if (h->demote_order)
4496                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4497                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4498                 kobject_put(hstate_kobj);
4499                 nhs->hstate_kobjs[idx] = NULL;
4500         }
4501 
4502         kobject_put(nhs->hugepages_kobj);
4503         nhs->hugepages_kobj = NULL;
4504 }
4505 
4506 
4507 /*
4508  * Register hstate attributes for a single node device.
4509  * No-op if attributes already registered.
4510  */
4511 void hugetlb_register_node(struct node *node)
4512 {
4513         struct hstate *h;
4514         struct node_hstate *nhs = &node_hstates[node->dev.id];
4515         int err;
4516 
4517         if (!hugetlb_sysfs_initialized)
4518                 return;
4519 
4520         if (nhs->hugepages_kobj)
4521                 return;         /* already allocated */
4522 
4523         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4524                                                         &node->dev.kobj);
4525         if (!nhs->hugepages_kobj)
4526                 return;
4527 
4528         for_each_hstate(h) {
4529                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4530                                                 nhs->hstate_kobjs,
4531                                                 &per_node_hstate_attr_group);
4532                 if (err) {
4533                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4534                                 h->name, node->dev.id);
4535                         hugetlb_unregister_node(node);
4536                         break;
4537                 }
4538         }
4539 }
4540 
4541 /*
4542  * hugetlb init time:  register hstate attributes for all registered node
4543  * devices of nodes that have memory.  All on-line nodes should have
4544  * registered their associated device by this time.
4545  */
4546 static void __init hugetlb_register_all_nodes(void)
4547 {
4548         int nid;
4549 
4550         for_each_online_node(nid)
4551                 hugetlb_register_node(node_devices[nid]);
4552 }
4553 #else   /* !CONFIG_NUMA */
4554 
4555 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4556 {
4557         BUG();
4558         if (nidp)
4559                 *nidp = -1;
4560         return NULL;
4561 }
4562 
4563 static void hugetlb_register_all_nodes(void) { }
4564 
4565 #endif
4566 
4567 #ifdef CONFIG_CMA
4568 static void __init hugetlb_cma_check(void);
4569 #else
4570 static inline __init void hugetlb_cma_check(void)
4571 {
4572 }
4573 #endif
4574 
4575 static void __init hugetlb_sysfs_init(void)
4576 {
4577         struct hstate *h;
4578         int err;
4579 
4580         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4581         if (!hugepages_kobj)
4582                 return;
4583 
4584         for_each_hstate(h) {
4585                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4586                                          hstate_kobjs, &hstate_attr_group);
4587                 if (err)
4588                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4589         }
4590 
4591 #ifdef CONFIG_NUMA
4592         hugetlb_sysfs_initialized = true;
4593 #endif
4594         hugetlb_register_all_nodes();
4595 }
4596 
4597 #ifdef CONFIG_SYSCTL
4598 static void hugetlb_sysctl_init(void);
4599 #else
4600 static inline void hugetlb_sysctl_init(void) { }
4601 #endif
4602 
4603 static int __init hugetlb_init(void)
4604 {
4605         int i;
4606 
4607         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4608                         __NR_HPAGEFLAGS);
4609 
4610         if (!hugepages_supported()) {
4611                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4612                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4613                 return 0;
4614         }
4615 
4616         /*
4617          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4618          * architectures depend on setup being done here.
4619          */
4620         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4621         if (!parsed_default_hugepagesz) {
4622                 /*
4623                  * If we did not parse a default huge page size, set
4624                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4625                  * number of huge pages for this default size was implicitly
4626                  * specified, set that here as well.
4627                  * Note that the implicit setting will overwrite an explicit
4628                  * setting.  A warning will be printed in this case.
4629                  */
4630                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4631                 if (default_hstate_max_huge_pages) {
4632                         if (default_hstate.max_huge_pages) {
4633                                 char buf[32];
4634 
4635                                 string_get_size(huge_page_size(&default_hstate),
4636                                         1, STRING_UNITS_2, buf, 32);
4637                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4638                                         default_hstate.max_huge_pages, buf);
4639                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4640                                         default_hstate_max_huge_pages);
4641                         }
4642                         default_hstate.max_huge_pages =
4643                                 default_hstate_max_huge_pages;
4644 
4645                         for_each_online_node(i)
4646                                 default_hstate.max_huge_pages_node[i] =
4647                                         default_hugepages_in_node[i];
4648                 }
4649         }
4650 
4651         hugetlb_cma_check();
4652         hugetlb_init_hstates();
4653         gather_bootmem_prealloc();
4654         report_hugepages();
4655 
4656         hugetlb_sysfs_init();
4657         hugetlb_cgroup_file_init();
4658         hugetlb_sysctl_init();
4659 
4660 #ifdef CONFIG_SMP
4661         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4662 #else
4663         num_fault_mutexes = 1;
4664 #endif
4665         hugetlb_fault_mutex_table =
4666                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4667                               GFP_KERNEL);
4668         BUG_ON(!hugetlb_fault_mutex_table);
4669 
4670         for (i = 0; i < num_fault_mutexes; i++)
4671                 mutex_init(&hugetlb_fault_mutex_table[i]);
4672         return 0;
4673 }
4674 subsys_initcall(hugetlb_init);
4675 
4676 /* Overwritten by architectures with more huge page sizes */
4677 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4678 {
4679         return size == HPAGE_SIZE;
4680 }
4681 
4682 void __init hugetlb_add_hstate(unsigned int order)
4683 {
4684         struct hstate *h;
4685         unsigned long i;
4686 
4687         if (size_to_hstate(PAGE_SIZE << order)) {
4688                 return;
4689         }
4690         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4691         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4692         h = &hstates[hugetlb_max_hstate++];
4693         __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4694         h->order = order;
4695         h->mask = ~(huge_page_size(h) - 1);
4696         for (i = 0; i < MAX_NUMNODES; ++i)
4697                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4698         INIT_LIST_HEAD(&h->hugepage_activelist);
4699         h->next_nid_to_alloc = first_memory_node;
4700         h->next_nid_to_free = first_memory_node;
4701         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4702                                         huge_page_size(h)/SZ_1K);
4703 
4704         parsed_hstate = h;
4705 }
4706 
4707 bool __init __weak hugetlb_node_alloc_supported(void)
4708 {
4709         return true;
4710 }
4711 
4712 static void __init hugepages_clear_pages_in_node(void)
4713 {
4714         if (!hugetlb_max_hstate) {
4715                 default_hstate_max_huge_pages = 0;
4716                 memset(default_hugepages_in_node, 0,
4717                         sizeof(default_hugepages_in_node));
4718         } else {
4719                 parsed_hstate->max_huge_pages = 0;
4720                 memset(parsed_hstate->max_huge_pages_node, 0,
4721                         sizeof(parsed_hstate->max_huge_pages_node));
4722         }
4723 }
4724 
4725 /*
4726  * hugepages command line processing
4727  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4728  * specification.  If not, ignore the hugepages value.  hugepages can also
4729  * be the first huge page command line  option in which case it implicitly
4730  * specifies the number of huge pages for the default size.
4731  */
4732 static int __init hugepages_setup(char *s)
4733 {
4734         unsigned long *mhp;
4735         static unsigned long *last_mhp;
4736         int node = NUMA_NO_NODE;
4737         int count;
4738         unsigned long tmp;
4739         char *p = s;
4740 
4741         if (!parsed_valid_hugepagesz) {
4742                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4743                 parsed_valid_hugepagesz = true;
4744                 return 1;
4745         }
4746 
4747         /*
4748          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4749          * yet, so this hugepages= parameter goes to the "default hstate".
4750          * Otherwise, it goes with the previously parsed hugepagesz or
4751          * default_hugepagesz.
4752          */
4753         else if (!hugetlb_max_hstate)
4754                 mhp = &default_hstate_max_huge_pages;
4755         else
4756                 mhp = &parsed_hstate->max_huge_pages;
4757 
4758         if (mhp == last_mhp) {
4759                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4760                 return 1;
4761         }
4762 
4763         while (*p) {
4764                 count = 0;
4765                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4766                         goto invalid;
4767                 /* Parameter is node format */
4768                 if (p[count] == ':') {
4769                         if (!hugetlb_node_alloc_supported()) {
4770                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4771                                 return 1;
4772                         }
4773                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4774                                 goto invalid;
4775                         node = array_index_nospec(tmp, MAX_NUMNODES);
4776                         p += count + 1;
4777                         /* Parse hugepages */
4778                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4779                                 goto invalid;
4780                         if (!hugetlb_max_hstate)
4781                                 default_hugepages_in_node[node] = tmp;
4782                         else
4783                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4784                         *mhp += tmp;
4785                         /* Go to parse next node*/
4786                         if (p[count] == ',')
4787                                 p += count + 1;
4788                         else
4789                                 break;
4790                 } else {
4791                         if (p != s)
4792                                 goto invalid;
4793                         *mhp = tmp;
4794                         break;
4795                 }
4796         }
4797 
4798         /*
4799          * Global state is always initialized later in hugetlb_init.
4800          * But we need to allocate gigantic hstates here early to still
4801          * use the bootmem allocator.
4802          */
4803         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4804                 hugetlb_hstate_alloc_pages(parsed_hstate);
4805 
4806         last_mhp = mhp;
4807 
4808         return 1;
4809 
4810 invalid:
4811         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4812         hugepages_clear_pages_in_node();
4813         return 1;
4814 }
4815 __setup("hugepages=", hugepages_setup);
4816 
4817 /*
4818  * hugepagesz command line processing
4819  * A specific huge page size can only be specified once with hugepagesz.
4820  * hugepagesz is followed by hugepages on the command line.  The global
4821  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4822  * hugepagesz argument was valid.
4823  */
4824 static int __init hugepagesz_setup(char *s)
4825 {
4826         unsigned long size;
4827         struct hstate *h;
4828 
4829         parsed_valid_hugepagesz = false;
4830         size = (unsigned long)memparse(s, NULL);
4831 
4832         if (!arch_hugetlb_valid_size(size)) {
4833                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4834                 return 1;
4835         }
4836 
4837         h = size_to_hstate(size);
4838         if (h) {
4839                 /*
4840                  * hstate for this size already exists.  This is normally
4841                  * an error, but is allowed if the existing hstate is the
4842                  * default hstate.  More specifically, it is only allowed if
4843                  * the number of huge pages for the default hstate was not
4844                  * previously specified.
4845                  */
4846                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4847                     default_hstate.max_huge_pages) {
4848                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4849                         return 1;
4850                 }
4851 
4852                 /*
4853                  * No need to call hugetlb_add_hstate() as hstate already
4854                  * exists.  But, do set parsed_hstate so that a following
4855                  * hugepages= parameter will be applied to this hstate.
4856                  */
4857                 parsed_hstate = h;
4858                 parsed_valid_hugepagesz = true;
4859                 return 1;
4860         }
4861 
4862         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4863         parsed_valid_hugepagesz = true;
4864         return 1;
4865 }
4866 __setup("hugepagesz=", hugepagesz_setup);
4867 
4868 /*
4869  * default_hugepagesz command line input
4870  * Only one instance of default_hugepagesz allowed on command line.
4871  */
4872 static int __init default_hugepagesz_setup(char *s)
4873 {
4874         unsigned long size;
4875         int i;
4876 
4877         parsed_valid_hugepagesz = false;
4878         if (parsed_default_hugepagesz) {
4879                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4880                 return 1;
4881         }
4882 
4883         size = (unsigned long)memparse(s, NULL);
4884 
4885         if (!arch_hugetlb_valid_size(size)) {
4886                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4887                 return 1;
4888         }
4889 
4890         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4891         parsed_valid_hugepagesz = true;
4892         parsed_default_hugepagesz = true;
4893         default_hstate_idx = hstate_index(size_to_hstate(size));
4894 
4895         /*
4896          * The number of default huge pages (for this size) could have been
4897          * specified as the first hugetlb parameter: hugepages=X.  If so,
4898          * then default_hstate_max_huge_pages is set.  If the default huge
4899          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4900          * allocated here from bootmem allocator.
4901          */
4902         if (default_hstate_max_huge_pages) {
4903                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4904                 for_each_online_node(i)
4905                         default_hstate.max_huge_pages_node[i] =
4906                                 default_hugepages_in_node[i];
4907                 if (hstate_is_gigantic(&default_hstate))
4908                         hugetlb_hstate_alloc_pages(&default_hstate);
4909                 default_hstate_max_huge_pages = 0;
4910         }
4911 
4912         return 1;
4913 }
4914 __setup("default_hugepagesz=", default_hugepagesz_setup);
4915 
4916 static unsigned int allowed_mems_nr(struct hstate *h)
4917 {
4918         int node;
4919         unsigned int nr = 0;
4920         nodemask_t *mbind_nodemask;
4921         unsigned int *array = h->free_huge_pages_node;
4922         gfp_t gfp_mask = htlb_alloc_mask(h);
4923 
4924         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4925         for_each_node_mask(node, cpuset_current_mems_allowed) {
4926                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4927                         nr += array[node];
4928         }
4929 
4930         return nr;
4931 }
4932 
4933 #ifdef CONFIG_SYSCTL
4934 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4935                                           void *buffer, size_t *length,
4936                                           loff_t *ppos, unsigned long *out)
4937 {
4938         struct ctl_table dup_table;
4939 
4940         /*
4941          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4942          * can duplicate the @table and alter the duplicate of it.
4943          */
4944         dup_table = *table;
4945         dup_table.data = out;
4946 
4947         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4948 }
4949 
4950 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4951                          const struct ctl_table *table, int write,
4952                          void *buffer, size_t *length, loff_t *ppos)
4953 {
4954         struct hstate *h = &default_hstate;
4955         unsigned long tmp = h->max_huge_pages;
4956         int ret;
4957 
4958         if (!hugepages_supported())
4959                 return -EOPNOTSUPP;
4960 
4961         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4962                                              &tmp);
4963         if (ret)
4964                 goto out;
4965 
4966         if (write)
4967                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4968                                                   NUMA_NO_NODE, tmp, *length);
4969 out:
4970         return ret;
4971 }
4972 
4973 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4974                           void *buffer, size_t *length, loff_t *ppos)
4975 {
4976 
4977         return hugetlb_sysctl_handler_common(false, table, write,
4978                                                         buffer, length, ppos);
4979 }
4980 
4981 #ifdef CONFIG_NUMA
4982 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4983                           void *buffer, size_t *length, loff_t *ppos)
4984 {
4985         return hugetlb_sysctl_handler_common(true, table, write,
4986                                                         buffer, length, ppos);
4987 }
4988 #endif /* CONFIG_NUMA */
4989 
4990 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4991                 void *buffer, size_t *length, loff_t *ppos)
4992 {
4993         struct hstate *h = &default_hstate;
4994         unsigned long tmp;
4995         int ret;
4996 
4997         if (!hugepages_supported())
4998                 return -EOPNOTSUPP;
4999 
5000         tmp = h->nr_overcommit_huge_pages;
5001 
5002         if (write && hstate_is_gigantic(h))
5003                 return -EINVAL;
5004 
5005         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5006                                              &tmp);
5007         if (ret)
5008                 goto out;
5009 
5010         if (write) {
5011                 spin_lock_irq(&hugetlb_lock);
5012                 h->nr_overcommit_huge_pages = tmp;
5013                 spin_unlock_irq(&hugetlb_lock);
5014         }
5015 out:
5016         return ret;
5017 }
5018 
5019 static struct ctl_table hugetlb_table[] = {
5020         {
5021                 .procname       = "nr_hugepages",
5022                 .data           = NULL,
5023                 .maxlen         = sizeof(unsigned long),
5024                 .mode           = 0644,
5025                 .proc_handler   = hugetlb_sysctl_handler,
5026         },
5027 #ifdef CONFIG_NUMA
5028         {
5029                 .procname       = "nr_hugepages_mempolicy",
5030                 .data           = NULL,
5031                 .maxlen         = sizeof(unsigned long),
5032                 .mode           = 0644,
5033                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5034         },
5035 #endif
5036         {
5037                 .procname       = "hugetlb_shm_group",
5038                 .data           = &sysctl_hugetlb_shm_group,
5039                 .maxlen         = sizeof(gid_t),
5040                 .mode           = 0644,
5041                 .proc_handler   = proc_dointvec,
5042         },
5043         {
5044                 .procname       = "nr_overcommit_hugepages",
5045                 .data           = NULL,
5046                 .maxlen         = sizeof(unsigned long),
5047                 .mode           = 0644,
5048                 .proc_handler   = hugetlb_overcommit_handler,
5049         },
5050 };
5051 
5052 static void hugetlb_sysctl_init(void)
5053 {
5054         register_sysctl_init("vm", hugetlb_table);
5055 }
5056 #endif /* CONFIG_SYSCTL */
5057 
5058 void hugetlb_report_meminfo(struct seq_file *m)
5059 {
5060         struct hstate *h;
5061         unsigned long total = 0;
5062 
5063         if (!hugepages_supported())
5064                 return;
5065 
5066         for_each_hstate(h) {
5067                 unsigned long count = h->nr_huge_pages;
5068 
5069                 total += huge_page_size(h) * count;
5070 
5071                 if (h == &default_hstate)
5072                         seq_printf(m,
5073                                    "HugePages_Total:   %5lu\n"
5074                                    "HugePages_Free:    %5lu\n"
5075                                    "HugePages_Rsvd:    %5lu\n"
5076                                    "HugePages_Surp:    %5lu\n"
5077                                    "Hugepagesize:   %8lu kB\n",
5078                                    count,
5079                                    h->free_huge_pages,
5080                                    h->resv_huge_pages,
5081                                    h->surplus_huge_pages,
5082                                    huge_page_size(h) / SZ_1K);
5083         }
5084 
5085         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5086 }
5087 
5088 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5089 {
5090         struct hstate *h = &default_hstate;
5091 
5092         if (!hugepages_supported())
5093                 return 0;
5094 
5095         return sysfs_emit_at(buf, len,
5096                              "Node %d HugePages_Total: %5u\n"
5097                              "Node %d HugePages_Free:  %5u\n"
5098                              "Node %d HugePages_Surp:  %5u\n",
5099                              nid, h->nr_huge_pages_node[nid],
5100                              nid, h->free_huge_pages_node[nid],
5101                              nid, h->surplus_huge_pages_node[nid]);
5102 }
5103 
5104 void hugetlb_show_meminfo_node(int nid)
5105 {
5106         struct hstate *h;
5107 
5108         if (!hugepages_supported())
5109                 return;
5110 
5111         for_each_hstate(h)
5112                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5113                         nid,
5114                         h->nr_huge_pages_node[nid],
5115                         h->free_huge_pages_node[nid],
5116                         h->surplus_huge_pages_node[nid],
5117                         huge_page_size(h) / SZ_1K);
5118 }
5119 
5120 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5121 {
5122         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5123                    K(atomic_long_read(&mm->hugetlb_usage)));
5124 }
5125 
5126 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5127 unsigned long hugetlb_total_pages(void)
5128 {
5129         struct hstate *h;
5130         unsigned long nr_total_pages = 0;
5131 
5132         for_each_hstate(h)
5133                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5134         return nr_total_pages;
5135 }
5136 
5137 static int hugetlb_acct_memory(struct hstate *h, long delta)
5138 {
5139         int ret = -ENOMEM;
5140 
5141         if (!delta)
5142                 return 0;
5143 
5144         spin_lock_irq(&hugetlb_lock);
5145         /*
5146          * When cpuset is configured, it breaks the strict hugetlb page
5147          * reservation as the accounting is done on a global variable. Such
5148          * reservation is completely rubbish in the presence of cpuset because
5149          * the reservation is not checked against page availability for the
5150          * current cpuset. Application can still potentially OOM'ed by kernel
5151          * with lack of free htlb page in cpuset that the task is in.
5152          * Attempt to enforce strict accounting with cpuset is almost
5153          * impossible (or too ugly) because cpuset is too fluid that
5154          * task or memory node can be dynamically moved between cpusets.
5155          *
5156          * The change of semantics for shared hugetlb mapping with cpuset is
5157          * undesirable. However, in order to preserve some of the semantics,
5158          * we fall back to check against current free page availability as
5159          * a best attempt and hopefully to minimize the impact of changing
5160          * semantics that cpuset has.
5161          *
5162          * Apart from cpuset, we also have memory policy mechanism that
5163          * also determines from which node the kernel will allocate memory
5164          * in a NUMA system. So similar to cpuset, we also should consider
5165          * the memory policy of the current task. Similar to the description
5166          * above.
5167          */
5168         if (delta > 0) {
5169                 if (gather_surplus_pages(h, delta) < 0)
5170                         goto out;
5171 
5172                 if (delta > allowed_mems_nr(h)) {
5173                         return_unused_surplus_pages(h, delta);
5174                         goto out;
5175                 }
5176         }
5177 
5178         ret = 0;
5179         if (delta < 0)
5180                 return_unused_surplus_pages(h, (unsigned long) -delta);
5181 
5182 out:
5183         spin_unlock_irq(&hugetlb_lock);
5184         return ret;
5185 }
5186 
5187 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5188 {
5189         struct resv_map *resv = vma_resv_map(vma);
5190 
5191         /*
5192          * HPAGE_RESV_OWNER indicates a private mapping.
5193          * This new VMA should share its siblings reservation map if present.
5194          * The VMA will only ever have a valid reservation map pointer where
5195          * it is being copied for another still existing VMA.  As that VMA
5196          * has a reference to the reservation map it cannot disappear until
5197          * after this open call completes.  It is therefore safe to take a
5198          * new reference here without additional locking.
5199          */
5200         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5201                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5202                 kref_get(&resv->refs);
5203         }
5204 
5205         /*
5206          * vma_lock structure for sharable mappings is vma specific.
5207          * Clear old pointer (if copied via vm_area_dup) and allocate
5208          * new structure.  Before clearing, make sure vma_lock is not
5209          * for this vma.
5210          */
5211         if (vma->vm_flags & VM_MAYSHARE) {
5212                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5213 
5214                 if (vma_lock) {
5215                         if (vma_lock->vma != vma) {
5216                                 vma->vm_private_data = NULL;
5217                                 hugetlb_vma_lock_alloc(vma);
5218                         } else
5219                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5220                 } else
5221                         hugetlb_vma_lock_alloc(vma);
5222         }
5223 }
5224 
5225 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5226 {
5227         struct hstate *h = hstate_vma(vma);
5228         struct resv_map *resv;
5229         struct hugepage_subpool *spool = subpool_vma(vma);
5230         unsigned long reserve, start, end;
5231         long gbl_reserve;
5232 
5233         hugetlb_vma_lock_free(vma);
5234 
5235         resv = vma_resv_map(vma);
5236         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5237                 return;
5238 
5239         start = vma_hugecache_offset(h, vma, vma->vm_start);
5240         end = vma_hugecache_offset(h, vma, vma->vm_end);
5241 
5242         reserve = (end - start) - region_count(resv, start, end);
5243         hugetlb_cgroup_uncharge_counter(resv, start, end);
5244         if (reserve) {
5245                 /*
5246                  * Decrement reserve counts.  The global reserve count may be
5247                  * adjusted if the subpool has a minimum size.
5248                  */
5249                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5250                 hugetlb_acct_memory(h, -gbl_reserve);
5251         }
5252 
5253         kref_put(&resv->refs, resv_map_release);
5254 }
5255 
5256 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5257 {
5258         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5259                 return -EINVAL;
5260 
5261         /*
5262          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5263          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5264          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5265          */
5266         if (addr & ~PUD_MASK) {
5267                 /*
5268                  * hugetlb_vm_op_split is called right before we attempt to
5269                  * split the VMA. We will need to unshare PMDs in the old and
5270                  * new VMAs, so let's unshare before we split.
5271                  */
5272                 unsigned long floor = addr & PUD_MASK;
5273                 unsigned long ceil = floor + PUD_SIZE;
5274 
5275                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5276                         hugetlb_unshare_pmds(vma, floor, ceil);
5277         }
5278 
5279         return 0;
5280 }
5281 
5282 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5283 {
5284         return huge_page_size(hstate_vma(vma));
5285 }
5286 
5287 /*
5288  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5289  * handle_mm_fault() to try to instantiate regular-sized pages in the
5290  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5291  * this far.
5292  */
5293 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5294 {
5295         BUG();
5296         return 0;
5297 }
5298 
5299 /*
5300  * When a new function is introduced to vm_operations_struct and added
5301  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5302  * This is because under System V memory model, mappings created via
5303  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5304  * their original vm_ops are overwritten with shm_vm_ops.
5305  */
5306 const struct vm_operations_struct hugetlb_vm_ops = {
5307         .fault = hugetlb_vm_op_fault,
5308         .open = hugetlb_vm_op_open,
5309         .close = hugetlb_vm_op_close,
5310         .may_split = hugetlb_vm_op_split,
5311         .pagesize = hugetlb_vm_op_pagesize,
5312 };
5313 
5314 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5315                                 int writable)
5316 {
5317         pte_t entry;
5318         unsigned int shift = huge_page_shift(hstate_vma(vma));
5319 
5320         if (writable) {
5321                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5322                                          vma->vm_page_prot)));
5323         } else {
5324                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5325                                            vma->vm_page_prot));
5326         }
5327         entry = pte_mkyoung(entry);
5328         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5329 
5330         return entry;
5331 }
5332 
5333 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5334                                    unsigned long address, pte_t *ptep)
5335 {
5336         pte_t entry;
5337 
5338         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5339         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5340                 update_mmu_cache(vma, address, ptep);
5341 }
5342 
5343 bool is_hugetlb_entry_migration(pte_t pte)
5344 {
5345         swp_entry_t swp;
5346 
5347         if (huge_pte_none(pte) || pte_present(pte))
5348                 return false;
5349         swp = pte_to_swp_entry(pte);
5350         if (is_migration_entry(swp))
5351                 return true;
5352         else
5353                 return false;
5354 }
5355 
5356 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5357 {
5358         swp_entry_t swp;
5359 
5360         if (huge_pte_none(pte) || pte_present(pte))
5361                 return false;
5362         swp = pte_to_swp_entry(pte);
5363         if (is_hwpoison_entry(swp))
5364                 return true;
5365         else
5366                 return false;
5367 }
5368 
5369 static void
5370 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5371                       struct folio *new_folio, pte_t old, unsigned long sz)
5372 {
5373         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5374 
5375         __folio_mark_uptodate(new_folio);
5376         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5377         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5378                 newpte = huge_pte_mkuffd_wp(newpte);
5379         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5380         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5381         folio_set_hugetlb_migratable(new_folio);
5382 }
5383 
5384 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5385                             struct vm_area_struct *dst_vma,
5386                             struct vm_area_struct *src_vma)
5387 {
5388         pte_t *src_pte, *dst_pte, entry;
5389         struct folio *pte_folio;
5390         unsigned long addr;
5391         bool cow = is_cow_mapping(src_vma->vm_flags);
5392         struct hstate *h = hstate_vma(src_vma);
5393         unsigned long sz = huge_page_size(h);
5394         unsigned long npages = pages_per_huge_page(h);
5395         struct mmu_notifier_range range;
5396         unsigned long last_addr_mask;
5397         int ret = 0;
5398 
5399         if (cow) {
5400                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5401                                         src_vma->vm_start,
5402                                         src_vma->vm_end);
5403                 mmu_notifier_invalidate_range_start(&range);
5404                 vma_assert_write_locked(src_vma);
5405                 raw_write_seqcount_begin(&src->write_protect_seq);
5406         } else {
5407                 /*
5408                  * For shared mappings the vma lock must be held before
5409                  * calling hugetlb_walk() in the src vma. Otherwise, the
5410                  * returned ptep could go away if part of a shared pmd and
5411                  * another thread calls huge_pmd_unshare.
5412                  */
5413                 hugetlb_vma_lock_read(src_vma);
5414         }
5415 
5416         last_addr_mask = hugetlb_mask_last_page(h);
5417         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5418                 spinlock_t *src_ptl, *dst_ptl;
5419                 src_pte = hugetlb_walk(src_vma, addr, sz);
5420                 if (!src_pte) {
5421                         addr |= last_addr_mask;
5422                         continue;
5423                 }
5424                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5425                 if (!dst_pte) {
5426                         ret = -ENOMEM;
5427                         break;
5428                 }
5429 
5430                 /*
5431                  * If the pagetables are shared don't copy or take references.
5432                  *
5433                  * dst_pte == src_pte is the common case of src/dest sharing.
5434                  * However, src could have 'unshared' and dst shares with
5435                  * another vma. So page_count of ptep page is checked instead
5436                  * to reliably determine whether pte is shared.
5437                  */
5438                 if (page_count(virt_to_page(dst_pte)) > 1) {
5439                         addr |= last_addr_mask;
5440                         continue;
5441                 }
5442 
5443                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5444                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5445                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5446                 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5447 again:
5448                 if (huge_pte_none(entry)) {
5449                         /*
5450                          * Skip if src entry none.
5451                          */
5452                         ;
5453                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5454                         if (!userfaultfd_wp(dst_vma))
5455                                 entry = huge_pte_clear_uffd_wp(entry);
5456                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5457                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5458                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5459                         bool uffd_wp = pte_swp_uffd_wp(entry);
5460 
5461                         if (!is_readable_migration_entry(swp_entry) && cow) {
5462                                 /*
5463                                  * COW mappings require pages in both
5464                                  * parent and child to be set to read.
5465                                  */
5466                                 swp_entry = make_readable_migration_entry(
5467                                                         swp_offset(swp_entry));
5468                                 entry = swp_entry_to_pte(swp_entry);
5469                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5470                                         entry = pte_swp_mkuffd_wp(entry);
5471                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5472                         }
5473                         if (!userfaultfd_wp(dst_vma))
5474                                 entry = huge_pte_clear_uffd_wp(entry);
5475                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5476                 } else if (unlikely(is_pte_marker(entry))) {
5477                         pte_marker marker = copy_pte_marker(
5478                                 pte_to_swp_entry(entry), dst_vma);
5479 
5480                         if (marker)
5481                                 set_huge_pte_at(dst, addr, dst_pte,
5482                                                 make_pte_marker(marker), sz);
5483                 } else {
5484                         entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5485                         pte_folio = page_folio(pte_page(entry));
5486                         folio_get(pte_folio);
5487 
5488                         /*
5489                          * Failing to duplicate the anon rmap is a rare case
5490                          * where we see pinned hugetlb pages while they're
5491                          * prone to COW. We need to do the COW earlier during
5492                          * fork.
5493                          *
5494                          * When pre-allocating the page or copying data, we
5495                          * need to be without the pgtable locks since we could
5496                          * sleep during the process.
5497                          */
5498                         if (!folio_test_anon(pte_folio)) {
5499                                 hugetlb_add_file_rmap(pte_folio);
5500                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5501                                 pte_t src_pte_old = entry;
5502                                 struct folio *new_folio;
5503 
5504                                 spin_unlock(src_ptl);
5505                                 spin_unlock(dst_ptl);
5506                                 /* Do not use reserve as it's private owned */
5507                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5508                                 if (IS_ERR(new_folio)) {
5509                                         folio_put(pte_folio);
5510                                         ret = PTR_ERR(new_folio);
5511                                         break;
5512                                 }
5513                                 ret = copy_user_large_folio(new_folio, pte_folio,
5514                                                 ALIGN_DOWN(addr, sz), dst_vma);
5515                                 folio_put(pte_folio);
5516                                 if (ret) {
5517                                         folio_put(new_folio);
5518                                         break;
5519                                 }
5520 
5521                                 /* Install the new hugetlb folio if src pte stable */
5522                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5523                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5524                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5525                                 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5526                                 if (!pte_same(src_pte_old, entry)) {
5527                                         restore_reserve_on_error(h, dst_vma, addr,
5528                                                                 new_folio);
5529                                         folio_put(new_folio);
5530                                         /* huge_ptep of dst_pte won't change as in child */
5531                                         goto again;
5532                                 }
5533                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5534                                                       new_folio, src_pte_old, sz);
5535                                 spin_unlock(src_ptl);
5536                                 spin_unlock(dst_ptl);
5537                                 continue;
5538                         }
5539 
5540                         if (cow) {
5541                                 /*
5542                                  * No need to notify as we are downgrading page
5543                                  * table protection not changing it to point
5544                                  * to a new page.
5545                                  *
5546                                  * See Documentation/mm/mmu_notifier.rst
5547                                  */
5548                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5549                                 entry = huge_pte_wrprotect(entry);
5550                         }
5551 
5552                         if (!userfaultfd_wp(dst_vma))
5553                                 entry = huge_pte_clear_uffd_wp(entry);
5554 
5555                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5556                         hugetlb_count_add(npages, dst);
5557                 }
5558                 spin_unlock(src_ptl);
5559                 spin_unlock(dst_ptl);
5560         }
5561 
5562         if (cow) {
5563                 raw_write_seqcount_end(&src->write_protect_seq);
5564                 mmu_notifier_invalidate_range_end(&range);
5565         } else {
5566                 hugetlb_vma_unlock_read(src_vma);
5567         }
5568 
5569         return ret;
5570 }
5571 
5572 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5573                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5574                           unsigned long sz)
5575 {
5576         struct hstate *h = hstate_vma(vma);
5577         struct mm_struct *mm = vma->vm_mm;
5578         spinlock_t *src_ptl, *dst_ptl;
5579         pte_t pte;
5580 
5581         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5582         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5583 
5584         /*
5585          * We don't have to worry about the ordering of src and dst ptlocks
5586          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5587          */
5588         if (src_ptl != dst_ptl)
5589                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5590 
5591         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5592         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5593 
5594         if (src_ptl != dst_ptl)
5595                 spin_unlock(src_ptl);
5596         spin_unlock(dst_ptl);
5597 }
5598 
5599 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5600                              struct vm_area_struct *new_vma,
5601                              unsigned long old_addr, unsigned long new_addr,
5602                              unsigned long len)
5603 {
5604         struct hstate *h = hstate_vma(vma);
5605         struct address_space *mapping = vma->vm_file->f_mapping;
5606         unsigned long sz = huge_page_size(h);
5607         struct mm_struct *mm = vma->vm_mm;
5608         unsigned long old_end = old_addr + len;
5609         unsigned long last_addr_mask;
5610         pte_t *src_pte, *dst_pte;
5611         struct mmu_notifier_range range;
5612         bool shared_pmd = false;
5613 
5614         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5615                                 old_end);
5616         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5617         /*
5618          * In case of shared PMDs, we should cover the maximum possible
5619          * range.
5620          */
5621         flush_cache_range(vma, range.start, range.end);
5622 
5623         mmu_notifier_invalidate_range_start(&range);
5624         last_addr_mask = hugetlb_mask_last_page(h);
5625         /* Prevent race with file truncation */
5626         hugetlb_vma_lock_write(vma);
5627         i_mmap_lock_write(mapping);
5628         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5629                 src_pte = hugetlb_walk(vma, old_addr, sz);
5630                 if (!src_pte) {
5631                         old_addr |= last_addr_mask;
5632                         new_addr |= last_addr_mask;
5633                         continue;
5634                 }
5635                 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5636                         continue;
5637 
5638                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5639                         shared_pmd = true;
5640                         old_addr |= last_addr_mask;
5641                         new_addr |= last_addr_mask;
5642                         continue;
5643                 }
5644 
5645                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5646                 if (!dst_pte)
5647                         break;
5648 
5649                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5650         }
5651 
5652         if (shared_pmd)
5653                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5654         else
5655                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5656         mmu_notifier_invalidate_range_end(&range);
5657         i_mmap_unlock_write(mapping);
5658         hugetlb_vma_unlock_write(vma);
5659 
5660         return len + old_addr - old_end;
5661 }
5662 
5663 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5664                             unsigned long start, unsigned long end,
5665                             struct page *ref_page, zap_flags_t zap_flags)
5666 {
5667         struct mm_struct *mm = vma->vm_mm;
5668         unsigned long address;
5669         pte_t *ptep;
5670         pte_t pte;
5671         spinlock_t *ptl;
5672         struct page *page;
5673         struct hstate *h = hstate_vma(vma);
5674         unsigned long sz = huge_page_size(h);
5675         bool adjust_reservation = false;
5676         unsigned long last_addr_mask;
5677         bool force_flush = false;
5678 
5679         WARN_ON(!is_vm_hugetlb_page(vma));
5680         BUG_ON(start & ~huge_page_mask(h));
5681         BUG_ON(end & ~huge_page_mask(h));
5682 
5683         /*
5684          * This is a hugetlb vma, all the pte entries should point
5685          * to huge page.
5686          */
5687         tlb_change_page_size(tlb, sz);
5688         tlb_start_vma(tlb, vma);
5689 
5690         last_addr_mask = hugetlb_mask_last_page(h);
5691         address = start;
5692         for (; address < end; address += sz) {
5693                 ptep = hugetlb_walk(vma, address, sz);
5694                 if (!ptep) {
5695                         address |= last_addr_mask;
5696                         continue;
5697                 }
5698 
5699                 ptl = huge_pte_lock(h, mm, ptep);
5700                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5701                         spin_unlock(ptl);
5702                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5703                         force_flush = true;
5704                         address |= last_addr_mask;
5705                         continue;
5706                 }
5707 
5708                 pte = huge_ptep_get(mm, address, ptep);
5709                 if (huge_pte_none(pte)) {
5710                         spin_unlock(ptl);
5711                         continue;
5712                 }
5713 
5714                 /*
5715                  * Migrating hugepage or HWPoisoned hugepage is already
5716                  * unmapped and its refcount is dropped, so just clear pte here.
5717                  */
5718                 if (unlikely(!pte_present(pte))) {
5719                         /*
5720                          * If the pte was wr-protected by uffd-wp in any of the
5721                          * swap forms, meanwhile the caller does not want to
5722                          * drop the uffd-wp bit in this zap, then replace the
5723                          * pte with a marker.
5724                          */
5725                         if (pte_swp_uffd_wp_any(pte) &&
5726                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5727                                 set_huge_pte_at(mm, address, ptep,
5728                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5729                                                 sz);
5730                         else
5731                                 huge_pte_clear(mm, address, ptep, sz);
5732                         spin_unlock(ptl);
5733                         continue;
5734                 }
5735 
5736                 page = pte_page(pte);
5737                 /*
5738                  * If a reference page is supplied, it is because a specific
5739                  * page is being unmapped, not a range. Ensure the page we
5740                  * are about to unmap is the actual page of interest.
5741                  */
5742                 if (ref_page) {
5743                         if (page != ref_page) {
5744                                 spin_unlock(ptl);
5745                                 continue;
5746                         }
5747                         /*
5748                          * Mark the VMA as having unmapped its page so that
5749                          * future faults in this VMA will fail rather than
5750                          * looking like data was lost
5751                          */
5752                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5753                 }
5754 
5755                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5756                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5757                 if (huge_pte_dirty(pte))
5758                         set_page_dirty(page);
5759                 /* Leave a uffd-wp pte marker if needed */
5760                 if (huge_pte_uffd_wp(pte) &&
5761                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5762                         set_huge_pte_at(mm, address, ptep,
5763                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5764                                         sz);
5765                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5766                 hugetlb_remove_rmap(page_folio(page));
5767 
5768                 /*
5769                  * Restore the reservation for anonymous page, otherwise the
5770                  * backing page could be stolen by someone.
5771                  * If there we are freeing a surplus, do not set the restore
5772                  * reservation bit.
5773                  */
5774                 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5775                     folio_test_anon(page_folio(page))) {
5776                         folio_set_hugetlb_restore_reserve(page_folio(page));
5777                         /* Reservation to be adjusted after the spin lock */
5778                         adjust_reservation = true;
5779                 }
5780 
5781                 spin_unlock(ptl);
5782 
5783                 /*
5784                  * Adjust the reservation for the region that will have the
5785                  * reserve restored. Keep in mind that vma_needs_reservation() changes
5786                  * resv->adds_in_progress if it succeeds. If this is not done,
5787                  * do_exit() will not see it, and will keep the reservation
5788                  * forever.
5789                  */
5790                 if (adjust_reservation) {
5791                         int rc = vma_needs_reservation(h, vma, address);
5792 
5793                         if (rc < 0)
5794                                 /* Pressumably allocate_file_region_entries failed
5795                                  * to allocate a file_region struct. Clear
5796                                  * hugetlb_restore_reserve so that global reserve
5797                                  * count will not be incremented by free_huge_folio.
5798                                  * Act as if we consumed the reservation.
5799                                  */
5800                                 folio_clear_hugetlb_restore_reserve(page_folio(page));
5801                         else if (rc)
5802                                 vma_add_reservation(h, vma, address);
5803                 }
5804 
5805                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5806                 /*
5807                  * Bail out after unmapping reference page if supplied
5808                  */
5809                 if (ref_page)
5810                         break;
5811         }
5812         tlb_end_vma(tlb, vma);
5813 
5814         /*
5815          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5816          * could defer the flush until now, since by holding i_mmap_rwsem we
5817          * guaranteed that the last refernece would not be dropped. But we must
5818          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5819          * dropped and the last reference to the shared PMDs page might be
5820          * dropped as well.
5821          *
5822          * In theory we could defer the freeing of the PMD pages as well, but
5823          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5824          * detect sharing, so we cannot defer the release of the page either.
5825          * Instead, do flush now.
5826          */
5827         if (force_flush)
5828                 tlb_flush_mmu_tlbonly(tlb);
5829 }
5830 
5831 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5832                          unsigned long *start, unsigned long *end)
5833 {
5834         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5835                 return;
5836 
5837         adjust_range_if_pmd_sharing_possible(vma, start, end);
5838         hugetlb_vma_lock_write(vma);
5839         if (vma->vm_file)
5840                 i_mmap_lock_write(vma->vm_file->f_mapping);
5841 }
5842 
5843 void __hugetlb_zap_end(struct vm_area_struct *vma,
5844                        struct zap_details *details)
5845 {
5846         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5847 
5848         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5849                 return;
5850 
5851         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5852                 /*
5853                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5854                  * When the vma_lock is freed, this makes the vma ineligible
5855                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5856                  * pmd sharing.  This is important as page tables for this
5857                  * unmapped range will be asynchrously deleted.  If the page
5858                  * tables are shared, there will be issues when accessed by
5859                  * someone else.
5860                  */
5861                 __hugetlb_vma_unlock_write_free(vma);
5862         } else {
5863                 hugetlb_vma_unlock_write(vma);
5864         }
5865 
5866         if (vma->vm_file)
5867                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5868 }
5869 
5870 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5871                           unsigned long end, struct page *ref_page,
5872                           zap_flags_t zap_flags)
5873 {
5874         struct mmu_notifier_range range;
5875         struct mmu_gather tlb;
5876 
5877         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5878                                 start, end);
5879         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5880         mmu_notifier_invalidate_range_start(&range);
5881         tlb_gather_mmu(&tlb, vma->vm_mm);
5882 
5883         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5884 
5885         mmu_notifier_invalidate_range_end(&range);
5886         tlb_finish_mmu(&tlb);
5887 }
5888 
5889 /*
5890  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5891  * mapping it owns the reserve page for. The intention is to unmap the page
5892  * from other VMAs and let the children be SIGKILLed if they are faulting the
5893  * same region.
5894  */
5895 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5896                               struct page *page, unsigned long address)
5897 {
5898         struct hstate *h = hstate_vma(vma);
5899         struct vm_area_struct *iter_vma;
5900         struct address_space *mapping;
5901         pgoff_t pgoff;
5902 
5903         /*
5904          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5905          * from page cache lookup which is in HPAGE_SIZE units.
5906          */
5907         address = address & huge_page_mask(h);
5908         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5909                         vma->vm_pgoff;
5910         mapping = vma->vm_file->f_mapping;
5911 
5912         /*
5913          * Take the mapping lock for the duration of the table walk. As
5914          * this mapping should be shared between all the VMAs,
5915          * __unmap_hugepage_range() is called as the lock is already held
5916          */
5917         i_mmap_lock_write(mapping);
5918         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5919                 /* Do not unmap the current VMA */
5920                 if (iter_vma == vma)
5921                         continue;
5922 
5923                 /*
5924                  * Shared VMAs have their own reserves and do not affect
5925                  * MAP_PRIVATE accounting but it is possible that a shared
5926                  * VMA is using the same page so check and skip such VMAs.
5927                  */
5928                 if (iter_vma->vm_flags & VM_MAYSHARE)
5929                         continue;
5930 
5931                 /*
5932                  * Unmap the page from other VMAs without their own reserves.
5933                  * They get marked to be SIGKILLed if they fault in these
5934                  * areas. This is because a future no-page fault on this VMA
5935                  * could insert a zeroed page instead of the data existing
5936                  * from the time of fork. This would look like data corruption
5937                  */
5938                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5939                         unmap_hugepage_range(iter_vma, address,
5940                                              address + huge_page_size(h), page, 0);
5941         }
5942         i_mmap_unlock_write(mapping);
5943 }
5944 
5945 /*
5946  * hugetlb_wp() should be called with page lock of the original hugepage held.
5947  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5948  * cannot race with other handlers or page migration.
5949  * Keep the pte_same checks anyway to make transition from the mutex easier.
5950  */
5951 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5952                        struct vm_fault *vmf)
5953 {
5954         struct vm_area_struct *vma = vmf->vma;
5955         struct mm_struct *mm = vma->vm_mm;
5956         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5957         pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5958         struct hstate *h = hstate_vma(vma);
5959         struct folio *old_folio;
5960         struct folio *new_folio;
5961         int outside_reserve = 0;
5962         vm_fault_t ret = 0;
5963         struct mmu_notifier_range range;
5964 
5965         /*
5966          * Never handle CoW for uffd-wp protected pages.  It should be only
5967          * handled when the uffd-wp protection is removed.
5968          *
5969          * Note that only the CoW optimization path (in hugetlb_no_page())
5970          * can trigger this, because hugetlb_fault() will always resolve
5971          * uffd-wp bit first.
5972          */
5973         if (!unshare && huge_pte_uffd_wp(pte))
5974                 return 0;
5975 
5976         /*
5977          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5978          * PTE mapped R/O such as maybe_mkwrite() would do.
5979          */
5980         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5981                 return VM_FAULT_SIGSEGV;
5982 
5983         /* Let's take out MAP_SHARED mappings first. */
5984         if (vma->vm_flags & VM_MAYSHARE) {
5985                 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5986                 return 0;
5987         }
5988 
5989         old_folio = page_folio(pte_page(pte));
5990 
5991         delayacct_wpcopy_start();
5992 
5993 retry_avoidcopy:
5994         /*
5995          * If no-one else is actually using this page, we're the exclusive
5996          * owner and can reuse this page.
5997          *
5998          * Note that we don't rely on the (safer) folio refcount here, because
5999          * copying the hugetlb folio when there are unexpected (temporary)
6000          * folio references could harm simple fork()+exit() users when
6001          * we run out of free hugetlb folios: we would have to kill processes
6002          * in scenarios that used to work. As a side effect, there can still
6003          * be leaks between processes, for example, with FOLL_GET users.
6004          */
6005         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6006                 if (!PageAnonExclusive(&old_folio->page)) {
6007                         folio_move_anon_rmap(old_folio, vma);
6008                         SetPageAnonExclusive(&old_folio->page);
6009                 }
6010                 if (likely(!unshare))
6011                         set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6012 
6013                 delayacct_wpcopy_end();
6014                 return 0;
6015         }
6016         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6017                        PageAnonExclusive(&old_folio->page), &old_folio->page);
6018 
6019         /*
6020          * If the process that created a MAP_PRIVATE mapping is about to
6021          * perform a COW due to a shared page count, attempt to satisfy
6022          * the allocation without using the existing reserves. The pagecache
6023          * page is used to determine if the reserve at this address was
6024          * consumed or not. If reserves were used, a partial faulted mapping
6025          * at the time of fork() could consume its reserves on COW instead
6026          * of the full address range.
6027          */
6028         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6029                         old_folio != pagecache_folio)
6030                 outside_reserve = 1;
6031 
6032         folio_get(old_folio);
6033 
6034         /*
6035          * Drop page table lock as buddy allocator may be called. It will
6036          * be acquired again before returning to the caller, as expected.
6037          */
6038         spin_unlock(vmf->ptl);
6039         new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
6040 
6041         if (IS_ERR(new_folio)) {
6042                 /*
6043                  * If a process owning a MAP_PRIVATE mapping fails to COW,
6044                  * it is due to references held by a child and an insufficient
6045                  * huge page pool. To guarantee the original mappers
6046                  * reliability, unmap the page from child processes. The child
6047                  * may get SIGKILLed if it later faults.
6048                  */
6049                 if (outside_reserve) {
6050                         struct address_space *mapping = vma->vm_file->f_mapping;
6051                         pgoff_t idx;
6052                         u32 hash;
6053 
6054                         folio_put(old_folio);
6055                         /*
6056                          * Drop hugetlb_fault_mutex and vma_lock before
6057                          * unmapping.  unmapping needs to hold vma_lock
6058                          * in write mode.  Dropping vma_lock in read mode
6059                          * here is OK as COW mappings do not interact with
6060                          * PMD sharing.
6061                          *
6062                          * Reacquire both after unmap operation.
6063                          */
6064                         idx = vma_hugecache_offset(h, vma, vmf->address);
6065                         hash = hugetlb_fault_mutex_hash(mapping, idx);
6066                         hugetlb_vma_unlock_read(vma);
6067                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6068 
6069                         unmap_ref_private(mm, vma, &old_folio->page,
6070                                         vmf->address);
6071 
6072                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6073                         hugetlb_vma_lock_read(vma);
6074                         spin_lock(vmf->ptl);
6075                         vmf->pte = hugetlb_walk(vma, vmf->address,
6076                                         huge_page_size(h));
6077                         if (likely(vmf->pte &&
6078                                    pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6079                                 goto retry_avoidcopy;
6080                         /*
6081                          * race occurs while re-acquiring page table
6082                          * lock, and our job is done.
6083                          */
6084                         delayacct_wpcopy_end();
6085                         return 0;
6086                 }
6087 
6088                 ret = vmf_error(PTR_ERR(new_folio));
6089                 goto out_release_old;
6090         }
6091 
6092         /*
6093          * When the original hugepage is shared one, it does not have
6094          * anon_vma prepared.
6095          */
6096         ret = __vmf_anon_prepare(vmf);
6097         if (unlikely(ret))
6098                 goto out_release_all;
6099 
6100         if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6101                 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6102                 goto out_release_all;
6103         }
6104         __folio_mark_uptodate(new_folio);
6105 
6106         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6107                                 vmf->address + huge_page_size(h));
6108         mmu_notifier_invalidate_range_start(&range);
6109 
6110         /*
6111          * Retake the page table lock to check for racing updates
6112          * before the page tables are altered
6113          */
6114         spin_lock(vmf->ptl);
6115         vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6116         if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6117                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6118 
6119                 /* Break COW or unshare */
6120                 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6121                 hugetlb_remove_rmap(old_folio);
6122                 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6123                 if (huge_pte_uffd_wp(pte))
6124                         newpte = huge_pte_mkuffd_wp(newpte);
6125                 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6126                                 huge_page_size(h));
6127                 folio_set_hugetlb_migratable(new_folio);
6128                 /* Make the old page be freed below */
6129                 new_folio = old_folio;
6130         }
6131         spin_unlock(vmf->ptl);
6132         mmu_notifier_invalidate_range_end(&range);
6133 out_release_all:
6134         /*
6135          * No restore in case of successful pagetable update (Break COW or
6136          * unshare)
6137          */
6138         if (new_folio != old_folio)
6139                 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6140         folio_put(new_folio);
6141 out_release_old:
6142         folio_put(old_folio);
6143 
6144         spin_lock(vmf->ptl); /* Caller expects lock to be held */
6145 
6146         delayacct_wpcopy_end();
6147         return ret;
6148 }
6149 
6150 /*
6151  * Return whether there is a pagecache page to back given address within VMA.
6152  */
6153 bool hugetlbfs_pagecache_present(struct hstate *h,
6154                                  struct vm_area_struct *vma, unsigned long address)
6155 {
6156         struct address_space *mapping = vma->vm_file->f_mapping;
6157         pgoff_t idx = linear_page_index(vma, address);
6158         struct folio *folio;
6159 
6160         folio = filemap_get_folio(mapping, idx);
6161         if (IS_ERR(folio))
6162                 return false;
6163         folio_put(folio);
6164         return true;
6165 }
6166 
6167 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6168                            pgoff_t idx)
6169 {
6170         struct inode *inode = mapping->host;
6171         struct hstate *h = hstate_inode(inode);
6172         int err;
6173 
6174         idx <<= huge_page_order(h);
6175         __folio_set_locked(folio);
6176         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6177 
6178         if (unlikely(err)) {
6179                 __folio_clear_locked(folio);
6180                 return err;
6181         }
6182         folio_clear_hugetlb_restore_reserve(folio);
6183 
6184         /*
6185          * mark folio dirty so that it will not be removed from cache/file
6186          * by non-hugetlbfs specific code paths.
6187          */
6188         folio_mark_dirty(folio);
6189 
6190         spin_lock(&inode->i_lock);
6191         inode->i_blocks += blocks_per_huge_page(h);
6192         spin_unlock(&inode->i_lock);
6193         return 0;
6194 }
6195 
6196 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6197                                                   struct address_space *mapping,
6198                                                   unsigned long reason)
6199 {
6200         u32 hash;
6201 
6202         /*
6203          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6204          * userfault. Also mmap_lock could be dropped due to handling
6205          * userfault, any vma operation should be careful from here.
6206          */
6207         hugetlb_vma_unlock_read(vmf->vma);
6208         hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6209         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6210         return handle_userfault(vmf, reason);
6211 }
6212 
6213 /*
6214  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6215  * false if pte changed or is changing.
6216  */
6217 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6218                                pte_t *ptep, pte_t old_pte)
6219 {
6220         spinlock_t *ptl;
6221         bool same;
6222 
6223         ptl = huge_pte_lock(h, mm, ptep);
6224         same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6225         spin_unlock(ptl);
6226 
6227         return same;
6228 }
6229 
6230 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6231                         struct vm_fault *vmf)
6232 {
6233         struct vm_area_struct *vma = vmf->vma;
6234         struct mm_struct *mm = vma->vm_mm;
6235         struct hstate *h = hstate_vma(vma);
6236         vm_fault_t ret = VM_FAULT_SIGBUS;
6237         int anon_rmap = 0;
6238         unsigned long size;
6239         struct folio *folio;
6240         pte_t new_pte;
6241         bool new_folio, new_pagecache_folio = false;
6242         u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6243 
6244         /*
6245          * Currently, we are forced to kill the process in the event the
6246          * original mapper has unmapped pages from the child due to a failed
6247          * COW/unsharing. Warn that such a situation has occurred as it may not
6248          * be obvious.
6249          */
6250         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6251                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6252                            current->pid);
6253                 goto out;
6254         }
6255 
6256         /*
6257          * Use page lock to guard against racing truncation
6258          * before we get page_table_lock.
6259          */
6260         new_folio = false;
6261         folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6262         if (IS_ERR(folio)) {
6263                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6264                 if (vmf->pgoff >= size)
6265                         goto out;
6266                 /* Check for page in userfault range */
6267                 if (userfaultfd_missing(vma)) {
6268                         /*
6269                          * Since hugetlb_no_page() was examining pte
6270                          * without pgtable lock, we need to re-test under
6271                          * lock because the pte may not be stable and could
6272                          * have changed from under us.  Try to detect
6273                          * either changed or during-changing ptes and retry
6274                          * properly when needed.
6275                          *
6276                          * Note that userfaultfd is actually fine with
6277                          * false positives (e.g. caused by pte changed),
6278                          * but not wrong logical events (e.g. caused by
6279                          * reading a pte during changing).  The latter can
6280                          * confuse the userspace, so the strictness is very
6281                          * much preferred.  E.g., MISSING event should
6282                          * never happen on the page after UFFDIO_COPY has
6283                          * correctly installed the page and returned.
6284                          */
6285                         if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6286                                 ret = 0;
6287                                 goto out;
6288                         }
6289 
6290                         return hugetlb_handle_userfault(vmf, mapping,
6291                                                         VM_UFFD_MISSING);
6292                 }
6293 
6294                 if (!(vma->vm_flags & VM_MAYSHARE)) {
6295                         ret = __vmf_anon_prepare(vmf);
6296                         if (unlikely(ret))
6297                                 goto out;
6298                 }
6299 
6300                 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6301                 if (IS_ERR(folio)) {
6302                         /*
6303                          * Returning error will result in faulting task being
6304                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6305                          * tasks from racing to fault in the same page which
6306                          * could result in false unable to allocate errors.
6307                          * Page migration does not take the fault mutex, but
6308                          * does a clear then write of pte's under page table
6309                          * lock.  Page fault code could race with migration,
6310                          * notice the clear pte and try to allocate a page
6311                          * here.  Before returning error, get ptl and make
6312                          * sure there really is no pte entry.
6313                          */
6314                         if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6315                                 ret = vmf_error(PTR_ERR(folio));
6316                         else
6317                                 ret = 0;
6318                         goto out;
6319                 }
6320                 folio_zero_user(folio, vmf->real_address);
6321                 __folio_mark_uptodate(folio);
6322                 new_folio = true;
6323 
6324                 if (vma->vm_flags & VM_MAYSHARE) {
6325                         int err = hugetlb_add_to_page_cache(folio, mapping,
6326                                                         vmf->pgoff);
6327                         if (err) {
6328                                 /*
6329                                  * err can't be -EEXIST which implies someone
6330                                  * else consumed the reservation since hugetlb
6331                                  * fault mutex is held when add a hugetlb page
6332                                  * to the page cache. So it's safe to call
6333                                  * restore_reserve_on_error() here.
6334                                  */
6335                                 restore_reserve_on_error(h, vma, vmf->address,
6336                                                         folio);
6337                                 folio_put(folio);
6338                                 ret = VM_FAULT_SIGBUS;
6339                                 goto out;
6340                         }
6341                         new_pagecache_folio = true;
6342                 } else {
6343                         folio_lock(folio);
6344                         anon_rmap = 1;
6345                 }
6346         } else {
6347                 /*
6348                  * If memory error occurs between mmap() and fault, some process
6349                  * don't have hwpoisoned swap entry for errored virtual address.
6350                  * So we need to block hugepage fault by PG_hwpoison bit check.
6351                  */
6352                 if (unlikely(folio_test_hwpoison(folio))) {
6353                         ret = VM_FAULT_HWPOISON_LARGE |
6354                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6355                         goto backout_unlocked;
6356                 }
6357 
6358                 /* Check for page in userfault range. */
6359                 if (userfaultfd_minor(vma)) {
6360                         folio_unlock(folio);
6361                         folio_put(folio);
6362                         /* See comment in userfaultfd_missing() block above */
6363                         if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6364                                 ret = 0;
6365                                 goto out;
6366                         }
6367                         return hugetlb_handle_userfault(vmf, mapping,
6368                                                         VM_UFFD_MINOR);
6369                 }
6370         }
6371 
6372         /*
6373          * If we are going to COW a private mapping later, we examine the
6374          * pending reservations for this page now. This will ensure that
6375          * any allocations necessary to record that reservation occur outside
6376          * the spinlock.
6377          */
6378         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6379                 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6380                         ret = VM_FAULT_OOM;
6381                         goto backout_unlocked;
6382                 }
6383                 /* Just decrements count, does not deallocate */
6384                 vma_end_reservation(h, vma, vmf->address);
6385         }
6386 
6387         vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6388         ret = 0;
6389         /* If pte changed from under us, retry */
6390         if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6391                 goto backout;
6392 
6393         if (anon_rmap)
6394                 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6395         else
6396                 hugetlb_add_file_rmap(folio);
6397         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6398                                 && (vma->vm_flags & VM_SHARED)));
6399         /*
6400          * If this pte was previously wr-protected, keep it wr-protected even
6401          * if populated.
6402          */
6403         if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6404                 new_pte = huge_pte_mkuffd_wp(new_pte);
6405         set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6406 
6407         hugetlb_count_add(pages_per_huge_page(h), mm);
6408         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6409                 /* Optimization, do the COW without a second fault */
6410                 ret = hugetlb_wp(folio, vmf);
6411         }
6412 
6413         spin_unlock(vmf->ptl);
6414 
6415         /*
6416          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6417          * found in the pagecache may not have hugetlb_migratable if they have
6418          * been isolated for migration.
6419          */
6420         if (new_folio)
6421                 folio_set_hugetlb_migratable(folio);
6422 
6423         folio_unlock(folio);
6424 out:
6425         hugetlb_vma_unlock_read(vma);
6426 
6427         /*
6428          * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6429          * the only way ret can be set to VM_FAULT_RETRY.
6430          */
6431         if (unlikely(ret & VM_FAULT_RETRY))
6432                 vma_end_read(vma);
6433 
6434         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6435         return ret;
6436 
6437 backout:
6438         spin_unlock(vmf->ptl);
6439 backout_unlocked:
6440         if (new_folio && !new_pagecache_folio)
6441                 restore_reserve_on_error(h, vma, vmf->address, folio);
6442 
6443         folio_unlock(folio);
6444         folio_put(folio);
6445         goto out;
6446 }
6447 
6448 #ifdef CONFIG_SMP
6449 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6450 {
6451         unsigned long key[2];
6452         u32 hash;
6453 
6454         key[0] = (unsigned long) mapping;
6455         key[1] = idx;
6456 
6457         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6458 
6459         return hash & (num_fault_mutexes - 1);
6460 }
6461 #else
6462 /*
6463  * For uniprocessor systems we always use a single mutex, so just
6464  * return 0 and avoid the hashing overhead.
6465  */
6466 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6467 {
6468         return 0;
6469 }
6470 #endif
6471 
6472 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6473                         unsigned long address, unsigned int flags)
6474 {
6475         vm_fault_t ret;
6476         u32 hash;
6477         struct folio *folio = NULL;
6478         struct folio *pagecache_folio = NULL;
6479         struct hstate *h = hstate_vma(vma);
6480         struct address_space *mapping;
6481         int need_wait_lock = 0;
6482         struct vm_fault vmf = {
6483                 .vma = vma,
6484                 .address = address & huge_page_mask(h),
6485                 .real_address = address,
6486                 .flags = flags,
6487                 .pgoff = vma_hugecache_offset(h, vma,
6488                                 address & huge_page_mask(h)),
6489                 /* TODO: Track hugetlb faults using vm_fault */
6490 
6491                 /*
6492                  * Some fields may not be initialized, be careful as it may
6493                  * be hard to debug if called functions make assumptions
6494                  */
6495         };
6496 
6497         /*
6498          * Serialize hugepage allocation and instantiation, so that we don't
6499          * get spurious allocation failures if two CPUs race to instantiate
6500          * the same page in the page cache.
6501          */
6502         mapping = vma->vm_file->f_mapping;
6503         hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6504         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6505 
6506         /*
6507          * Acquire vma lock before calling huge_pte_alloc and hold
6508          * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6509          * being called elsewhere and making the vmf.pte no longer valid.
6510          */
6511         hugetlb_vma_lock_read(vma);
6512         vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6513         if (!vmf.pte) {
6514                 hugetlb_vma_unlock_read(vma);
6515                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6516                 return VM_FAULT_OOM;
6517         }
6518 
6519         vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6520         if (huge_pte_none_mostly(vmf.orig_pte)) {
6521                 if (is_pte_marker(vmf.orig_pte)) {
6522                         pte_marker marker =
6523                                 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6524 
6525                         if (marker & PTE_MARKER_POISONED) {
6526                                 ret = VM_FAULT_HWPOISON_LARGE |
6527                                       VM_FAULT_SET_HINDEX(hstate_index(h));
6528                                 goto out_mutex;
6529                         }
6530                 }
6531 
6532                 /*
6533                  * Other PTE markers should be handled the same way as none PTE.
6534                  *
6535                  * hugetlb_no_page will drop vma lock and hugetlb fault
6536                  * mutex internally, which make us return immediately.
6537                  */
6538                 return hugetlb_no_page(mapping, &vmf);
6539         }
6540 
6541         ret = 0;
6542 
6543         /*
6544          * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6545          * point, so this check prevents the kernel from going below assuming
6546          * that we have an active hugepage in pagecache. This goto expects
6547          * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6548          * check will properly handle it.
6549          */
6550         if (!pte_present(vmf.orig_pte)) {
6551                 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6552                         /*
6553                          * Release the hugetlb fault lock now, but retain
6554                          * the vma lock, because it is needed to guard the
6555                          * huge_pte_lockptr() later in
6556                          * migration_entry_wait_huge(). The vma lock will
6557                          * be released there.
6558                          */
6559                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6560                         migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6561                         return 0;
6562                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6563                         ret = VM_FAULT_HWPOISON_LARGE |
6564                             VM_FAULT_SET_HINDEX(hstate_index(h));
6565                 goto out_mutex;
6566         }
6567 
6568         /*
6569          * If we are going to COW/unshare the mapping later, we examine the
6570          * pending reservations for this page now. This will ensure that any
6571          * allocations necessary to record that reservation occur outside the
6572          * spinlock. Also lookup the pagecache page now as it is used to
6573          * determine if a reservation has been consumed.
6574          */
6575         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6576             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6577                 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6578                         ret = VM_FAULT_OOM;
6579                         goto out_mutex;
6580                 }
6581                 /* Just decrements count, does not deallocate */
6582                 vma_end_reservation(h, vma, vmf.address);
6583 
6584                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6585                                                              vmf.pgoff);
6586                 if (IS_ERR(pagecache_folio))
6587                         pagecache_folio = NULL;
6588         }
6589 
6590         vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6591 
6592         /* Check for a racing update before calling hugetlb_wp() */
6593         if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6594                 goto out_ptl;
6595 
6596         /* Handle userfault-wp first, before trying to lock more pages */
6597         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6598             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6599                 if (!userfaultfd_wp_async(vma)) {
6600                         spin_unlock(vmf.ptl);
6601                         if (pagecache_folio) {
6602                                 folio_unlock(pagecache_folio);
6603                                 folio_put(pagecache_folio);
6604                         }
6605                         hugetlb_vma_unlock_read(vma);
6606                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6607                         return handle_userfault(&vmf, VM_UFFD_WP);
6608                 }
6609 
6610                 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6611                 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6612                                 huge_page_size(hstate_vma(vma)));
6613                 /* Fallthrough to CoW */
6614         }
6615 
6616         /*
6617          * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6618          * pagecache_folio, so here we need take the former one
6619          * when folio != pagecache_folio or !pagecache_folio.
6620          */
6621         folio = page_folio(pte_page(vmf.orig_pte));
6622         if (folio != pagecache_folio)
6623                 if (!folio_trylock(folio)) {
6624                         need_wait_lock = 1;
6625                         goto out_ptl;
6626                 }
6627 
6628         folio_get(folio);
6629 
6630         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6631                 if (!huge_pte_write(vmf.orig_pte)) {
6632                         ret = hugetlb_wp(pagecache_folio, &vmf);
6633                         goto out_put_page;
6634                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6635                         vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6636                 }
6637         }
6638         vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6639         if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6640                                                 flags & FAULT_FLAG_WRITE))
6641                 update_mmu_cache(vma, vmf.address, vmf.pte);
6642 out_put_page:
6643         if (folio != pagecache_folio)
6644                 folio_unlock(folio);
6645         folio_put(folio);
6646 out_ptl:
6647         spin_unlock(vmf.ptl);
6648 
6649         if (pagecache_folio) {
6650                 folio_unlock(pagecache_folio);
6651                 folio_put(pagecache_folio);
6652         }
6653 out_mutex:
6654         hugetlb_vma_unlock_read(vma);
6655 
6656         /*
6657          * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6658          * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6659          */
6660         if (unlikely(ret & VM_FAULT_RETRY))
6661                 vma_end_read(vma);
6662 
6663         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6664         /*
6665          * Generally it's safe to hold refcount during waiting page lock. But
6666          * here we just wait to defer the next page fault to avoid busy loop and
6667          * the page is not used after unlocked before returning from the current
6668          * page fault. So we are safe from accessing freed page, even if we wait
6669          * here without taking refcount.
6670          */
6671         if (need_wait_lock)
6672                 folio_wait_locked(folio);
6673         return ret;
6674 }
6675 
6676 #ifdef CONFIG_USERFAULTFD
6677 /*
6678  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6679  */
6680 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6681                 struct vm_area_struct *vma, unsigned long address)
6682 {
6683         struct mempolicy *mpol;
6684         nodemask_t *nodemask;
6685         struct folio *folio;
6686         gfp_t gfp_mask;
6687         int node;
6688 
6689         gfp_mask = htlb_alloc_mask(h);
6690         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6691         /*
6692          * This is used to allocate a temporary hugetlb to hold the copied
6693          * content, which will then be copied again to the final hugetlb
6694          * consuming a reservation. Set the alloc_fallback to false to indicate
6695          * that breaking the per-node hugetlb pool is not allowed in this case.
6696          */
6697         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6698         mpol_cond_put(mpol);
6699 
6700         return folio;
6701 }
6702 
6703 /*
6704  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6705  * with modifications for hugetlb pages.
6706  */
6707 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6708                              struct vm_area_struct *dst_vma,
6709                              unsigned long dst_addr,
6710                              unsigned long src_addr,
6711                              uffd_flags_t flags,
6712                              struct folio **foliop)
6713 {
6714         struct mm_struct *dst_mm = dst_vma->vm_mm;
6715         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6716         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6717         struct hstate *h = hstate_vma(dst_vma);
6718         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6719         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6720         unsigned long size = huge_page_size(h);
6721         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6722         pte_t _dst_pte;
6723         spinlock_t *ptl;
6724         int ret = -ENOMEM;
6725         struct folio *folio;
6726         int writable;
6727         bool folio_in_pagecache = false;
6728 
6729         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6730                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6731 
6732                 /* Don't overwrite any existing PTEs (even markers) */
6733                 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6734                         spin_unlock(ptl);
6735                         return -EEXIST;
6736                 }
6737 
6738                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6739                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6740 
6741                 /* No need to invalidate - it was non-present before */
6742                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6743 
6744                 spin_unlock(ptl);
6745                 return 0;
6746         }
6747 
6748         if (is_continue) {
6749                 ret = -EFAULT;
6750                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6751                 if (IS_ERR(folio))
6752                         goto out;
6753                 folio_in_pagecache = true;
6754         } else if (!*foliop) {
6755                 /* If a folio already exists, then it's UFFDIO_COPY for
6756                  * a non-missing case. Return -EEXIST.
6757                  */
6758                 if (vm_shared &&
6759                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6760                         ret = -EEXIST;
6761                         goto out;
6762                 }
6763 
6764                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6765                 if (IS_ERR(folio)) {
6766                         ret = -ENOMEM;
6767                         goto out;
6768                 }
6769 
6770                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6771                                            false);
6772 
6773                 /* fallback to copy_from_user outside mmap_lock */
6774                 if (unlikely(ret)) {
6775                         ret = -ENOENT;
6776                         /* Free the allocated folio which may have
6777                          * consumed a reservation.
6778                          */
6779                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6780                         folio_put(folio);
6781 
6782                         /* Allocate a temporary folio to hold the copied
6783                          * contents.
6784                          */
6785                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6786                         if (!folio) {
6787                                 ret = -ENOMEM;
6788                                 goto out;
6789                         }
6790                         *foliop = folio;
6791                         /* Set the outparam foliop and return to the caller to
6792                          * copy the contents outside the lock. Don't free the
6793                          * folio.
6794                          */
6795                         goto out;
6796                 }
6797         } else {
6798                 if (vm_shared &&
6799                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6800                         folio_put(*foliop);
6801                         ret = -EEXIST;
6802                         *foliop = NULL;
6803                         goto out;
6804                 }
6805 
6806                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6807                 if (IS_ERR(folio)) {
6808                         folio_put(*foliop);
6809                         ret = -ENOMEM;
6810                         *foliop = NULL;
6811                         goto out;
6812                 }
6813                 ret = copy_user_large_folio(folio, *foliop,
6814                                             ALIGN_DOWN(dst_addr, size), dst_vma);
6815                 folio_put(*foliop);
6816                 *foliop = NULL;
6817                 if (ret) {
6818                         folio_put(folio);
6819                         goto out;
6820                 }
6821         }
6822 
6823         /*
6824          * If we just allocated a new page, we need a memory barrier to ensure
6825          * that preceding stores to the page become visible before the
6826          * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6827          * is what we need.
6828          *
6829          * In the case where we have not allocated a new page (is_continue),
6830          * the page must already be uptodate. UFFDIO_CONTINUE already includes
6831          * an earlier smp_wmb() to ensure that prior stores will be visible
6832          * before the set_pte_at() write.
6833          */
6834         if (!is_continue)
6835                 __folio_mark_uptodate(folio);
6836         else
6837                 WARN_ON_ONCE(!folio_test_uptodate(folio));
6838 
6839         /* Add shared, newly allocated pages to the page cache. */
6840         if (vm_shared && !is_continue) {
6841                 ret = -EFAULT;
6842                 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6843                         goto out_release_nounlock;
6844 
6845                 /*
6846                  * Serialization between remove_inode_hugepages() and
6847                  * hugetlb_add_to_page_cache() below happens through the
6848                  * hugetlb_fault_mutex_table that here must be hold by
6849                  * the caller.
6850                  */
6851                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6852                 if (ret)
6853                         goto out_release_nounlock;
6854                 folio_in_pagecache = true;
6855         }
6856 
6857         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6858 
6859         ret = -EIO;
6860         if (folio_test_hwpoison(folio))
6861                 goto out_release_unlock;
6862 
6863         /*
6864          * We allow to overwrite a pte marker: consider when both MISSING|WP
6865          * registered, we firstly wr-protect a none pte which has no page cache
6866          * page backing it, then access the page.
6867          */
6868         ret = -EEXIST;
6869         if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6870                 goto out_release_unlock;
6871 
6872         if (folio_in_pagecache)
6873                 hugetlb_add_file_rmap(folio);
6874         else
6875                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6876 
6877         /*
6878          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6879          * with wp flag set, don't set pte write bit.
6880          */
6881         if (wp_enabled || (is_continue && !vm_shared))
6882                 writable = 0;
6883         else
6884                 writable = dst_vma->vm_flags & VM_WRITE;
6885 
6886         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6887         /*
6888          * Always mark UFFDIO_COPY page dirty; note that this may not be
6889          * extremely important for hugetlbfs for now since swapping is not
6890          * supported, but we should still be clear in that this page cannot be
6891          * thrown away at will, even if write bit not set.
6892          */
6893         _dst_pte = huge_pte_mkdirty(_dst_pte);
6894         _dst_pte = pte_mkyoung(_dst_pte);
6895 
6896         if (wp_enabled)
6897                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6898 
6899         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6900 
6901         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6902 
6903         /* No need to invalidate - it was non-present before */
6904         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6905 
6906         spin_unlock(ptl);
6907         if (!is_continue)
6908                 folio_set_hugetlb_migratable(folio);
6909         if (vm_shared || is_continue)
6910                 folio_unlock(folio);
6911         ret = 0;
6912 out:
6913         return ret;
6914 out_release_unlock:
6915         spin_unlock(ptl);
6916         if (vm_shared || is_continue)
6917                 folio_unlock(folio);
6918 out_release_nounlock:
6919         if (!folio_in_pagecache)
6920                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6921         folio_put(folio);
6922         goto out;
6923 }
6924 #endif /* CONFIG_USERFAULTFD */
6925 
6926 long hugetlb_change_protection(struct vm_area_struct *vma,
6927                 unsigned long address, unsigned long end,
6928                 pgprot_t newprot, unsigned long cp_flags)
6929 {
6930         struct mm_struct *mm = vma->vm_mm;
6931         unsigned long start = address;
6932         pte_t *ptep;
6933         pte_t pte;
6934         struct hstate *h = hstate_vma(vma);
6935         long pages = 0, psize = huge_page_size(h);
6936         bool shared_pmd = false;
6937         struct mmu_notifier_range range;
6938         unsigned long last_addr_mask;
6939         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6940         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6941 
6942         /*
6943          * In the case of shared PMDs, the area to flush could be beyond
6944          * start/end.  Set range.start/range.end to cover the maximum possible
6945          * range if PMD sharing is possible.
6946          */
6947         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6948                                 0, mm, start, end);
6949         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6950 
6951         BUG_ON(address >= end);
6952         flush_cache_range(vma, range.start, range.end);
6953 
6954         mmu_notifier_invalidate_range_start(&range);
6955         hugetlb_vma_lock_write(vma);
6956         i_mmap_lock_write(vma->vm_file->f_mapping);
6957         last_addr_mask = hugetlb_mask_last_page(h);
6958         for (; address < end; address += psize) {
6959                 spinlock_t *ptl;
6960                 ptep = hugetlb_walk(vma, address, psize);
6961                 if (!ptep) {
6962                         if (!uffd_wp) {
6963                                 address |= last_addr_mask;
6964                                 continue;
6965                         }
6966                         /*
6967                          * Userfaultfd wr-protect requires pgtable
6968                          * pre-allocations to install pte markers.
6969                          */
6970                         ptep = huge_pte_alloc(mm, vma, address, psize);
6971                         if (!ptep) {
6972                                 pages = -ENOMEM;
6973                                 break;
6974                         }
6975                 }
6976                 ptl = huge_pte_lock(h, mm, ptep);
6977                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6978                         /*
6979                          * When uffd-wp is enabled on the vma, unshare
6980                          * shouldn't happen at all.  Warn about it if it
6981                          * happened due to some reason.
6982                          */
6983                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6984                         pages++;
6985                         spin_unlock(ptl);
6986                         shared_pmd = true;
6987                         address |= last_addr_mask;
6988                         continue;
6989                 }
6990                 pte = huge_ptep_get(mm, address, ptep);
6991                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6992                         /* Nothing to do. */
6993                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6994                         swp_entry_t entry = pte_to_swp_entry(pte);
6995                         struct page *page = pfn_swap_entry_to_page(entry);
6996                         pte_t newpte = pte;
6997 
6998                         if (is_writable_migration_entry(entry)) {
6999                                 if (PageAnon(page))
7000                                         entry = make_readable_exclusive_migration_entry(
7001                                                                 swp_offset(entry));
7002                                 else
7003                                         entry = make_readable_migration_entry(
7004                                                                 swp_offset(entry));
7005                                 newpte = swp_entry_to_pte(entry);
7006                                 pages++;
7007                         }
7008 
7009                         if (uffd_wp)
7010                                 newpte = pte_swp_mkuffd_wp(newpte);
7011                         else if (uffd_wp_resolve)
7012                                 newpte = pte_swp_clear_uffd_wp(newpte);
7013                         if (!pte_same(pte, newpte))
7014                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
7015                 } else if (unlikely(is_pte_marker(pte))) {
7016                         /*
7017                          * Do nothing on a poison marker; page is
7018                          * corrupted, permissons do not apply.  Here
7019                          * pte_marker_uffd_wp()==true implies !poison
7020                          * because they're mutual exclusive.
7021                          */
7022                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7023                                 /* Safe to modify directly (non-present->none). */
7024                                 huge_pte_clear(mm, address, ptep, psize);
7025                 } else if (!huge_pte_none(pte)) {
7026                         pte_t old_pte;
7027                         unsigned int shift = huge_page_shift(hstate_vma(vma));
7028 
7029                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7030                         pte = huge_pte_modify(old_pte, newprot);
7031                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7032                         if (uffd_wp)
7033                                 pte = huge_pte_mkuffd_wp(pte);
7034                         else if (uffd_wp_resolve)
7035                                 pte = huge_pte_clear_uffd_wp(pte);
7036                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7037                         pages++;
7038                 } else {
7039                         /* None pte */
7040                         if (unlikely(uffd_wp))
7041                                 /* Safe to modify directly (none->non-present). */
7042                                 set_huge_pte_at(mm, address, ptep,
7043                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
7044                                                 psize);
7045                 }
7046                 spin_unlock(ptl);
7047         }
7048         /*
7049          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7050          * may have cleared our pud entry and done put_page on the page table:
7051          * once we release i_mmap_rwsem, another task can do the final put_page
7052          * and that page table be reused and filled with junk.  If we actually
7053          * did unshare a page of pmds, flush the range corresponding to the pud.
7054          */
7055         if (shared_pmd)
7056                 flush_hugetlb_tlb_range(vma, range.start, range.end);
7057         else
7058                 flush_hugetlb_tlb_range(vma, start, end);
7059         /*
7060          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7061          * downgrading page table protection not changing it to point to a new
7062          * page.
7063          *
7064          * See Documentation/mm/mmu_notifier.rst
7065          */
7066         i_mmap_unlock_write(vma->vm_file->f_mapping);
7067         hugetlb_vma_unlock_write(vma);
7068         mmu_notifier_invalidate_range_end(&range);
7069 
7070         return pages > 0 ? (pages << h->order) : pages;
7071 }
7072 
7073 /* Return true if reservation was successful, false otherwise.  */
7074 bool hugetlb_reserve_pages(struct inode *inode,
7075                                         long from, long to,
7076                                         struct vm_area_struct *vma,
7077                                         vm_flags_t vm_flags)
7078 {
7079         long chg = -1, add = -1;
7080         struct hstate *h = hstate_inode(inode);
7081         struct hugepage_subpool *spool = subpool_inode(inode);
7082         struct resv_map *resv_map;
7083         struct hugetlb_cgroup *h_cg = NULL;
7084         long gbl_reserve, regions_needed = 0;
7085 
7086         /* This should never happen */
7087         if (from > to) {
7088                 VM_WARN(1, "%s called with a negative range\n", __func__);
7089                 return false;
7090         }
7091 
7092         /*
7093          * vma specific semaphore used for pmd sharing and fault/truncation
7094          * synchronization
7095          */
7096         hugetlb_vma_lock_alloc(vma);
7097 
7098         /*
7099          * Only apply hugepage reservation if asked. At fault time, an
7100          * attempt will be made for VM_NORESERVE to allocate a page
7101          * without using reserves
7102          */
7103         if (vm_flags & VM_NORESERVE)
7104                 return true;
7105 
7106         /*
7107          * Shared mappings base their reservation on the number of pages that
7108          * are already allocated on behalf of the file. Private mappings need
7109          * to reserve the full area even if read-only as mprotect() may be
7110          * called to make the mapping read-write. Assume !vma is a shm mapping
7111          */
7112         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7113                 /*
7114                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7115                  * called for inodes for which resv_maps were created (see
7116                  * hugetlbfs_get_inode).
7117                  */
7118                 resv_map = inode_resv_map(inode);
7119 
7120                 chg = region_chg(resv_map, from, to, &regions_needed);
7121         } else {
7122                 /* Private mapping. */
7123                 resv_map = resv_map_alloc();
7124                 if (!resv_map)
7125                         goto out_err;
7126 
7127                 chg = to - from;
7128 
7129                 set_vma_resv_map(vma, resv_map);
7130                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7131         }
7132 
7133         if (chg < 0)
7134                 goto out_err;
7135 
7136         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7137                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7138                 goto out_err;
7139 
7140         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7141                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7142                  * of the resv_map.
7143                  */
7144                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7145         }
7146 
7147         /*
7148          * There must be enough pages in the subpool for the mapping. If
7149          * the subpool has a minimum size, there may be some global
7150          * reservations already in place (gbl_reserve).
7151          */
7152         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7153         if (gbl_reserve < 0)
7154                 goto out_uncharge_cgroup;
7155 
7156         /*
7157          * Check enough hugepages are available for the reservation.
7158          * Hand the pages back to the subpool if there are not
7159          */
7160         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7161                 goto out_put_pages;
7162 
7163         /*
7164          * Account for the reservations made. Shared mappings record regions
7165          * that have reservations as they are shared by multiple VMAs.
7166          * When the last VMA disappears, the region map says how much
7167          * the reservation was and the page cache tells how much of
7168          * the reservation was consumed. Private mappings are per-VMA and
7169          * only the consumed reservations are tracked. When the VMA
7170          * disappears, the original reservation is the VMA size and the
7171          * consumed reservations are stored in the map. Hence, nothing
7172          * else has to be done for private mappings here
7173          */
7174         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7175                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7176 
7177                 if (unlikely(add < 0)) {
7178                         hugetlb_acct_memory(h, -gbl_reserve);
7179                         goto out_put_pages;
7180                 } else if (unlikely(chg > add)) {
7181                         /*
7182                          * pages in this range were added to the reserve
7183                          * map between region_chg and region_add.  This
7184                          * indicates a race with alloc_hugetlb_folio.  Adjust
7185                          * the subpool and reserve counts modified above
7186                          * based on the difference.
7187                          */
7188                         long rsv_adjust;
7189 
7190                         /*
7191                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7192                          * reference to h_cg->css. See comment below for detail.
7193                          */
7194                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7195                                 hstate_index(h),
7196                                 (chg - add) * pages_per_huge_page(h), h_cg);
7197 
7198                         rsv_adjust = hugepage_subpool_put_pages(spool,
7199                                                                 chg - add);
7200                         hugetlb_acct_memory(h, -rsv_adjust);
7201                 } else if (h_cg) {
7202                         /*
7203                          * The file_regions will hold their own reference to
7204                          * h_cg->css. So we should release the reference held
7205                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7206                          * done.
7207                          */
7208                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7209                 }
7210         }
7211         return true;
7212 
7213 out_put_pages:
7214         /* put back original number of pages, chg */
7215         (void)hugepage_subpool_put_pages(spool, chg);
7216 out_uncharge_cgroup:
7217         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7218                                             chg * pages_per_huge_page(h), h_cg);
7219 out_err:
7220         hugetlb_vma_lock_free(vma);
7221         if (!vma || vma->vm_flags & VM_MAYSHARE)
7222                 /* Only call region_abort if the region_chg succeeded but the
7223                  * region_add failed or didn't run.
7224                  */
7225                 if (chg >= 0 && add < 0)
7226                         region_abort(resv_map, from, to, regions_needed);
7227         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7228                 kref_put(&resv_map->refs, resv_map_release);
7229                 set_vma_resv_map(vma, NULL);
7230         }
7231         return false;
7232 }
7233 
7234 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7235                                                                 long freed)
7236 {
7237         struct hstate *h = hstate_inode(inode);
7238         struct resv_map *resv_map = inode_resv_map(inode);
7239         long chg = 0;
7240         struct hugepage_subpool *spool = subpool_inode(inode);
7241         long gbl_reserve;
7242 
7243         /*
7244          * Since this routine can be called in the evict inode path for all
7245          * hugetlbfs inodes, resv_map could be NULL.
7246          */
7247         if (resv_map) {
7248                 chg = region_del(resv_map, start, end);
7249                 /*
7250                  * region_del() can fail in the rare case where a region
7251                  * must be split and another region descriptor can not be
7252                  * allocated.  If end == LONG_MAX, it will not fail.
7253                  */
7254                 if (chg < 0)
7255                         return chg;
7256         }
7257 
7258         spin_lock(&inode->i_lock);
7259         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7260         spin_unlock(&inode->i_lock);
7261 
7262         /*
7263          * If the subpool has a minimum size, the number of global
7264          * reservations to be released may be adjusted.
7265          *
7266          * Note that !resv_map implies freed == 0. So (chg - freed)
7267          * won't go negative.
7268          */
7269         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7270         hugetlb_acct_memory(h, -gbl_reserve);
7271 
7272         return 0;
7273 }
7274 
7275 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7276 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7277                                 struct vm_area_struct *vma,
7278                                 unsigned long addr, pgoff_t idx)
7279 {
7280         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7281                                 svma->vm_start;
7282         unsigned long sbase = saddr & PUD_MASK;
7283         unsigned long s_end = sbase + PUD_SIZE;
7284 
7285         /* Allow segments to share if only one is marked locked */
7286         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7287         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7288 
7289         /*
7290          * match the virtual addresses, permission and the alignment of the
7291          * page table page.
7292          *
7293          * Also, vma_lock (vm_private_data) is required for sharing.
7294          */
7295         if (pmd_index(addr) != pmd_index(saddr) ||
7296             vm_flags != svm_flags ||
7297             !range_in_vma(svma, sbase, s_end) ||
7298             !svma->vm_private_data)
7299                 return 0;
7300 
7301         return saddr;
7302 }
7303 
7304 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7305 {
7306         unsigned long start = addr & PUD_MASK;
7307         unsigned long end = start + PUD_SIZE;
7308 
7309 #ifdef CONFIG_USERFAULTFD
7310         if (uffd_disable_huge_pmd_share(vma))
7311                 return false;
7312 #endif
7313         /*
7314          * check on proper vm_flags and page table alignment
7315          */
7316         if (!(vma->vm_flags & VM_MAYSHARE))
7317                 return false;
7318         if (!vma->vm_private_data)      /* vma lock required for sharing */
7319                 return false;
7320         if (!range_in_vma(vma, start, end))
7321                 return false;
7322         return true;
7323 }
7324 
7325 /*
7326  * Determine if start,end range within vma could be mapped by shared pmd.
7327  * If yes, adjust start and end to cover range associated with possible
7328  * shared pmd mappings.
7329  */
7330 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7331                                 unsigned long *start, unsigned long *end)
7332 {
7333         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7334                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7335 
7336         /*
7337          * vma needs to span at least one aligned PUD size, and the range
7338          * must be at least partially within in.
7339          */
7340         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7341                 (*end <= v_start) || (*start >= v_end))
7342                 return;
7343 
7344         /* Extend the range to be PUD aligned for a worst case scenario */
7345         if (*start > v_start)
7346                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7347 
7348         if (*end < v_end)
7349                 *end = ALIGN(*end, PUD_SIZE);
7350 }
7351 
7352 /*
7353  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7354  * and returns the corresponding pte. While this is not necessary for the
7355  * !shared pmd case because we can allocate the pmd later as well, it makes the
7356  * code much cleaner. pmd allocation is essential for the shared case because
7357  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7358  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7359  * bad pmd for sharing.
7360  */
7361 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7362                       unsigned long addr, pud_t *pud)
7363 {
7364         struct address_space *mapping = vma->vm_file->f_mapping;
7365         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7366                         vma->vm_pgoff;
7367         struct vm_area_struct *svma;
7368         unsigned long saddr;
7369         pte_t *spte = NULL;
7370         pte_t *pte;
7371 
7372         i_mmap_lock_read(mapping);
7373         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7374                 if (svma == vma)
7375                         continue;
7376 
7377                 saddr = page_table_shareable(svma, vma, addr, idx);
7378                 if (saddr) {
7379                         spte = hugetlb_walk(svma, saddr,
7380                                             vma_mmu_pagesize(svma));
7381                         if (spte) {
7382                                 get_page(virt_to_page(spte));
7383                                 break;
7384                         }
7385                 }
7386         }
7387 
7388         if (!spte)
7389                 goto out;
7390 
7391         spin_lock(&mm->page_table_lock);
7392         if (pud_none(*pud)) {
7393                 pud_populate(mm, pud,
7394                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7395                 mm_inc_nr_pmds(mm);
7396         } else {
7397                 put_page(virt_to_page(spte));
7398         }
7399         spin_unlock(&mm->page_table_lock);
7400 out:
7401         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7402         i_mmap_unlock_read(mapping);
7403         return pte;
7404 }
7405 
7406 /*
7407  * unmap huge page backed by shared pte.
7408  *
7409  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7410  * indicated by page_count > 1, unmap is achieved by clearing pud and
7411  * decrementing the ref count. If count == 1, the pte page is not shared.
7412  *
7413  * Called with page table lock held.
7414  *
7415  * returns: 1 successfully unmapped a shared pte page
7416  *          0 the underlying pte page is not shared, or it is the last user
7417  */
7418 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7419                                         unsigned long addr, pte_t *ptep)
7420 {
7421         pgd_t *pgd = pgd_offset(mm, addr);
7422         p4d_t *p4d = p4d_offset(pgd, addr);
7423         pud_t *pud = pud_offset(p4d, addr);
7424 
7425         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7426         hugetlb_vma_assert_locked(vma);
7427         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7428         if (page_count(virt_to_page(ptep)) == 1)
7429                 return 0;
7430 
7431         pud_clear(pud);
7432         put_page(virt_to_page(ptep));
7433         mm_dec_nr_pmds(mm);
7434         return 1;
7435 }
7436 
7437 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7438 
7439 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7440                       unsigned long addr, pud_t *pud)
7441 {
7442         return NULL;
7443 }
7444 
7445 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7446                                 unsigned long addr, pte_t *ptep)
7447 {
7448         return 0;
7449 }
7450 
7451 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7452                                 unsigned long *start, unsigned long *end)
7453 {
7454 }
7455 
7456 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7457 {
7458         return false;
7459 }
7460 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7461 
7462 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7463 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7464                         unsigned long addr, unsigned long sz)
7465 {
7466         pgd_t *pgd;
7467         p4d_t *p4d;
7468         pud_t *pud;
7469         pte_t *pte = NULL;
7470 
7471         pgd = pgd_offset(mm, addr);
7472         p4d = p4d_alloc(mm, pgd, addr);
7473         if (!p4d)
7474                 return NULL;
7475         pud = pud_alloc(mm, p4d, addr);
7476         if (pud) {
7477                 if (sz == PUD_SIZE) {
7478                         pte = (pte_t *)pud;
7479                 } else {
7480                         BUG_ON(sz != PMD_SIZE);
7481                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7482                                 pte = huge_pmd_share(mm, vma, addr, pud);
7483                         else
7484                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7485                 }
7486         }
7487 
7488         if (pte) {
7489                 pte_t pteval = ptep_get_lockless(pte);
7490 
7491                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7492         }
7493 
7494         return pte;
7495 }
7496 
7497 /*
7498  * huge_pte_offset() - Walk the page table to resolve the hugepage
7499  * entry at address @addr
7500  *
7501  * Return: Pointer to page table entry (PUD or PMD) for
7502  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7503  * size @sz doesn't match the hugepage size at this level of the page
7504  * table.
7505  */
7506 pte_t *huge_pte_offset(struct mm_struct *mm,
7507                        unsigned long addr, unsigned long sz)
7508 {
7509         pgd_t *pgd;
7510         p4d_t *p4d;
7511         pud_t *pud;
7512         pmd_t *pmd;
7513 
7514         pgd = pgd_offset(mm, addr);
7515         if (!pgd_present(*pgd))
7516                 return NULL;
7517         p4d = p4d_offset(pgd, addr);
7518         if (!p4d_present(*p4d))
7519                 return NULL;
7520 
7521         pud = pud_offset(p4d, addr);
7522         if (sz == PUD_SIZE)
7523                 /* must be pud huge, non-present or none */
7524                 return (pte_t *)pud;
7525         if (!pud_present(*pud))
7526                 return NULL;
7527         /* must have a valid entry and size to go further */
7528 
7529         pmd = pmd_offset(pud, addr);
7530         /* must be pmd huge, non-present or none */
7531         return (pte_t *)pmd;
7532 }
7533 
7534 /*
7535  * Return a mask that can be used to update an address to the last huge
7536  * page in a page table page mapping size.  Used to skip non-present
7537  * page table entries when linearly scanning address ranges.  Architectures
7538  * with unique huge page to page table relationships can define their own
7539  * version of this routine.
7540  */
7541 unsigned long hugetlb_mask_last_page(struct hstate *h)
7542 {
7543         unsigned long hp_size = huge_page_size(h);
7544 
7545         if (hp_size == PUD_SIZE)
7546                 return P4D_SIZE - PUD_SIZE;
7547         else if (hp_size == PMD_SIZE)
7548                 return PUD_SIZE - PMD_SIZE;
7549         else
7550                 return 0UL;
7551 }
7552 
7553 #else
7554 
7555 /* See description above.  Architectures can provide their own version. */
7556 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7557 {
7558 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7559         if (huge_page_size(h) == PMD_SIZE)
7560                 return PUD_SIZE - PMD_SIZE;
7561 #endif
7562         return 0UL;
7563 }
7564 
7565 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7566 
7567 /*
7568  * These functions are overwritable if your architecture needs its own
7569  * behavior.
7570  */
7571 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7572 {
7573         bool ret = true;
7574 
7575         spin_lock_irq(&hugetlb_lock);
7576         if (!folio_test_hugetlb(folio) ||
7577             !folio_test_hugetlb_migratable(folio) ||
7578             !folio_try_get(folio)) {
7579                 ret = false;
7580                 goto unlock;
7581         }
7582         folio_clear_hugetlb_migratable(folio);
7583         list_move_tail(&folio->lru, list);
7584 unlock:
7585         spin_unlock_irq(&hugetlb_lock);
7586         return ret;
7587 }
7588 
7589 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7590 {
7591         int ret = 0;
7592 
7593         *hugetlb = false;
7594         spin_lock_irq(&hugetlb_lock);
7595         if (folio_test_hugetlb(folio)) {
7596                 *hugetlb = true;
7597                 if (folio_test_hugetlb_freed(folio))
7598                         ret = 0;
7599                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7600                         ret = folio_try_get(folio);
7601                 else
7602                         ret = -EBUSY;
7603         }
7604         spin_unlock_irq(&hugetlb_lock);
7605         return ret;
7606 }
7607 
7608 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7609                                 bool *migratable_cleared)
7610 {
7611         int ret;
7612 
7613         spin_lock_irq(&hugetlb_lock);
7614         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7615         spin_unlock_irq(&hugetlb_lock);
7616         return ret;
7617 }
7618 
7619 void folio_putback_active_hugetlb(struct folio *folio)
7620 {
7621         spin_lock_irq(&hugetlb_lock);
7622         folio_set_hugetlb_migratable(folio);
7623         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7624         spin_unlock_irq(&hugetlb_lock);
7625         folio_put(folio);
7626 }
7627 
7628 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7629 {
7630         struct hstate *h = folio_hstate(old_folio);
7631 
7632         hugetlb_cgroup_migrate(old_folio, new_folio);
7633         set_page_owner_migrate_reason(&new_folio->page, reason);
7634 
7635         /*
7636          * transfer temporary state of the new hugetlb folio. This is
7637          * reverse to other transitions because the newpage is going to
7638          * be final while the old one will be freed so it takes over
7639          * the temporary status.
7640          *
7641          * Also note that we have to transfer the per-node surplus state
7642          * here as well otherwise the global surplus count will not match
7643          * the per-node's.
7644          */
7645         if (folio_test_hugetlb_temporary(new_folio)) {
7646                 int old_nid = folio_nid(old_folio);
7647                 int new_nid = folio_nid(new_folio);
7648 
7649                 folio_set_hugetlb_temporary(old_folio);
7650                 folio_clear_hugetlb_temporary(new_folio);
7651 
7652 
7653                 /*
7654                  * There is no need to transfer the per-node surplus state
7655                  * when we do not cross the node.
7656                  */
7657                 if (new_nid == old_nid)
7658                         return;
7659                 spin_lock_irq(&hugetlb_lock);
7660                 if (h->surplus_huge_pages_node[old_nid]) {
7661                         h->surplus_huge_pages_node[old_nid]--;
7662                         h->surplus_huge_pages_node[new_nid]++;
7663                 }
7664                 spin_unlock_irq(&hugetlb_lock);
7665         }
7666 }
7667 
7668 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7669                                    unsigned long start,
7670                                    unsigned long end)
7671 {
7672         struct hstate *h = hstate_vma(vma);
7673         unsigned long sz = huge_page_size(h);
7674         struct mm_struct *mm = vma->vm_mm;
7675         struct mmu_notifier_range range;
7676         unsigned long address;
7677         spinlock_t *ptl;
7678         pte_t *ptep;
7679 
7680         if (!(vma->vm_flags & VM_MAYSHARE))
7681                 return;
7682 
7683         if (start >= end)
7684                 return;
7685 
7686         flush_cache_range(vma, start, end);
7687         /*
7688          * No need to call adjust_range_if_pmd_sharing_possible(), because
7689          * we have already done the PUD_SIZE alignment.
7690          */
7691         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7692                                 start, end);
7693         mmu_notifier_invalidate_range_start(&range);
7694         hugetlb_vma_lock_write(vma);
7695         i_mmap_lock_write(vma->vm_file->f_mapping);
7696         for (address = start; address < end; address += PUD_SIZE) {
7697                 ptep = hugetlb_walk(vma, address, sz);
7698                 if (!ptep)
7699                         continue;
7700                 ptl = huge_pte_lock(h, mm, ptep);
7701                 huge_pmd_unshare(mm, vma, address, ptep);
7702                 spin_unlock(ptl);
7703         }
7704         flush_hugetlb_tlb_range(vma, start, end);
7705         i_mmap_unlock_write(vma->vm_file->f_mapping);
7706         hugetlb_vma_unlock_write(vma);
7707         /*
7708          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7709          * Documentation/mm/mmu_notifier.rst.
7710          */
7711         mmu_notifier_invalidate_range_end(&range);
7712 }
7713 
7714 /*
7715  * This function will unconditionally remove all the shared pmd pgtable entries
7716  * within the specific vma for a hugetlbfs memory range.
7717  */
7718 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7719 {
7720         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7721                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7722 }
7723 
7724 #ifdef CONFIG_CMA
7725 static bool cma_reserve_called __initdata;
7726 
7727 static int __init cmdline_parse_hugetlb_cma(char *p)
7728 {
7729         int nid, count = 0;
7730         unsigned long tmp;
7731         char *s = p;
7732 
7733         while (*s) {
7734                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7735                         break;
7736 
7737                 if (s[count] == ':') {
7738                         if (tmp >= MAX_NUMNODES)
7739                                 break;
7740                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7741 
7742                         s += count + 1;
7743                         tmp = memparse(s, &s);
7744                         hugetlb_cma_size_in_node[nid] = tmp;
7745                         hugetlb_cma_size += tmp;
7746 
7747                         /*
7748                          * Skip the separator if have one, otherwise
7749                          * break the parsing.
7750                          */
7751                         if (*s == ',')
7752                                 s++;
7753                         else
7754                                 break;
7755                 } else {
7756                         hugetlb_cma_size = memparse(p, &p);
7757                         break;
7758                 }
7759         }
7760 
7761         return 0;
7762 }
7763 
7764 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7765 
7766 void __init hugetlb_cma_reserve(int order)
7767 {
7768         unsigned long size, reserved, per_node;
7769         bool node_specific_cma_alloc = false;
7770         int nid;
7771 
7772         /*
7773          * HugeTLB CMA reservation is required for gigantic
7774          * huge pages which could not be allocated via the
7775          * page allocator. Just warn if there is any change
7776          * breaking this assumption.
7777          */
7778         VM_WARN_ON(order <= MAX_PAGE_ORDER);
7779         cma_reserve_called = true;
7780 
7781         if (!hugetlb_cma_size)
7782                 return;
7783 
7784         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7785                 if (hugetlb_cma_size_in_node[nid] == 0)
7786                         continue;
7787 
7788                 if (!node_online(nid)) {
7789                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7790                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7791                         hugetlb_cma_size_in_node[nid] = 0;
7792                         continue;
7793                 }
7794 
7795                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7796                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7797                                 nid, (PAGE_SIZE << order) / SZ_1M);
7798                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7799                         hugetlb_cma_size_in_node[nid] = 0;
7800                 } else {
7801                         node_specific_cma_alloc = true;
7802                 }
7803         }
7804 
7805         /* Validate the CMA size again in case some invalid nodes specified. */
7806         if (!hugetlb_cma_size)
7807                 return;
7808 
7809         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7810                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7811                         (PAGE_SIZE << order) / SZ_1M);
7812                 hugetlb_cma_size = 0;
7813                 return;
7814         }
7815 
7816         if (!node_specific_cma_alloc) {
7817                 /*
7818                  * If 3 GB area is requested on a machine with 4 numa nodes,
7819                  * let's allocate 1 GB on first three nodes and ignore the last one.
7820                  */
7821                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7822                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7823                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7824         }
7825 
7826         reserved = 0;
7827         for_each_online_node(nid) {
7828                 int res;
7829                 char name[CMA_MAX_NAME];
7830 
7831                 if (node_specific_cma_alloc) {
7832                         if (hugetlb_cma_size_in_node[nid] == 0)
7833                                 continue;
7834 
7835                         size = hugetlb_cma_size_in_node[nid];
7836                 } else {
7837                         size = min(per_node, hugetlb_cma_size - reserved);
7838                 }
7839 
7840                 size = round_up(size, PAGE_SIZE << order);
7841 
7842                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7843                 /*
7844                  * Note that 'order per bit' is based on smallest size that
7845                  * may be returned to CMA allocator in the case of
7846                  * huge page demotion.
7847                  */
7848                 res = cma_declare_contiguous_nid(0, size, 0,
7849                                         PAGE_SIZE << order,
7850                                         HUGETLB_PAGE_ORDER, false, name,
7851                                         &hugetlb_cma[nid], nid);
7852                 if (res) {
7853                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7854                                 res, nid);
7855                         continue;
7856                 }
7857 
7858                 reserved += size;
7859                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7860                         size / SZ_1M, nid);
7861 
7862                 if (reserved >= hugetlb_cma_size)
7863                         break;
7864         }
7865 
7866         if (!reserved)
7867                 /*
7868                  * hugetlb_cma_size is used to determine if allocations from
7869                  * cma are possible.  Set to zero if no cma regions are set up.
7870                  */
7871                 hugetlb_cma_size = 0;
7872 }
7873 
7874 static void __init hugetlb_cma_check(void)
7875 {
7876         if (!hugetlb_cma_size || cma_reserve_called)
7877                 return;
7878 
7879         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7880 }
7881 
7882 #endif /* CONFIG_CMA */
7883 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php