1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 60 { 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 62 1 << order); 63 } 64 #else 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 66 { 67 return false; 68 } 69 #endif 70 static unsigned long hugetlb_cma_size __initdata; 71 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 73 74 /* for command line parsing */ 75 static struct hstate * __initdata parsed_hstate; 76 static unsigned long __initdata default_hstate_max_huge_pages; 77 static bool __initdata parsed_valid_hugepagesz = true; 78 static bool __initdata parsed_default_hugepagesz; 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 80 81 /* 82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 83 * free_huge_pages, and surplus_huge_pages. 84 */ 85 DEFINE_SPINLOCK(hugetlb_lock); 86 87 /* 88 * Serializes faults on the same logical page. This is used to 89 * prevent spurious OOMs when the hugepage pool is fully utilized. 90 */ 91 static int num_fault_mutexes; 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 93 94 /* Forward declaration */ 95 static int hugetlb_acct_memory(struct hstate *h, long delta); 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 100 unsigned long start, unsigned long end); 101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 102 103 static inline bool subpool_is_free(struct hugepage_subpool *spool) 104 { 105 if (spool->count) 106 return false; 107 if (spool->max_hpages != -1) 108 return spool->used_hpages == 0; 109 if (spool->min_hpages != -1) 110 return spool->rsv_hpages == spool->min_hpages; 111 112 return true; 113 } 114 115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 116 unsigned long irq_flags) 117 { 118 spin_unlock_irqrestore(&spool->lock, irq_flags); 119 120 /* If no pages are used, and no other handles to the subpool 121 * remain, give up any reservations based on minimum size and 122 * free the subpool */ 123 if (subpool_is_free(spool)) { 124 if (spool->min_hpages != -1) 125 hugetlb_acct_memory(spool->hstate, 126 -spool->min_hpages); 127 kfree(spool); 128 } 129 } 130 131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 132 long min_hpages) 133 { 134 struct hugepage_subpool *spool; 135 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 137 if (!spool) 138 return NULL; 139 140 spin_lock_init(&spool->lock); 141 spool->count = 1; 142 spool->max_hpages = max_hpages; 143 spool->hstate = h; 144 spool->min_hpages = min_hpages; 145 146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 147 kfree(spool); 148 return NULL; 149 } 150 spool->rsv_hpages = min_hpages; 151 152 return spool; 153 } 154 155 void hugepage_put_subpool(struct hugepage_subpool *spool) 156 { 157 unsigned long flags; 158 159 spin_lock_irqsave(&spool->lock, flags); 160 BUG_ON(!spool->count); 161 spool->count--; 162 unlock_or_release_subpool(spool, flags); 163 } 164 165 /* 166 * Subpool accounting for allocating and reserving pages. 167 * Return -ENOMEM if there are not enough resources to satisfy the 168 * request. Otherwise, return the number of pages by which the 169 * global pools must be adjusted (upward). The returned value may 170 * only be different than the passed value (delta) in the case where 171 * a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return ret; 180 181 spin_lock_irq(&spool->lock); 182 183 if (spool->max_hpages != -1) { /* maximum size accounting */ 184 if ((spool->used_hpages + delta) <= spool->max_hpages) 185 spool->used_hpages += delta; 186 else { 187 ret = -ENOMEM; 188 goto unlock_ret; 189 } 190 } 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->rsv_hpages) { 194 if (delta > spool->rsv_hpages) { 195 /* 196 * Asking for more reserves than those already taken on 197 * behalf of subpool. Return difference. 198 */ 199 ret = delta - spool->rsv_hpages; 200 spool->rsv_hpages = 0; 201 } else { 202 ret = 0; /* reserves already accounted for */ 203 spool->rsv_hpages -= delta; 204 } 205 } 206 207 unlock_ret: 208 spin_unlock_irq(&spool->lock); 209 return ret; 210 } 211 212 /* 213 * Subpool accounting for freeing and unreserving pages. 214 * Return the number of global page reservations that must be dropped. 215 * The return value may only be different than the passed value (delta) 216 * in the case where a subpool minimum size must be maintained. 217 */ 218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 219 long delta) 220 { 221 long ret = delta; 222 unsigned long flags; 223 224 if (!spool) 225 return delta; 226 227 spin_lock_irqsave(&spool->lock, flags); 228 229 if (spool->max_hpages != -1) /* maximum size accounting */ 230 spool->used_hpages -= delta; 231 232 /* minimum size accounting */ 233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 234 if (spool->rsv_hpages + delta <= spool->min_hpages) 235 ret = 0; 236 else 237 ret = spool->rsv_hpages + delta - spool->min_hpages; 238 239 spool->rsv_hpages += delta; 240 if (spool->rsv_hpages > spool->min_hpages) 241 spool->rsv_hpages = spool->min_hpages; 242 } 243 244 /* 245 * If hugetlbfs_put_super couldn't free spool due to an outstanding 246 * quota reference, free it now. 247 */ 248 unlock_or_release_subpool(spool, flags); 249 250 return ret; 251 } 252 253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 254 { 255 return HUGETLBFS_SB(inode->i_sb)->spool; 256 } 257 258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 259 { 260 return subpool_inode(file_inode(vma->vm_file)); 261 } 262 263 /* 264 * hugetlb vma_lock helper routines 265 */ 266 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 267 { 268 if (__vma_shareable_lock(vma)) { 269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 270 271 down_read(&vma_lock->rw_sema); 272 } else if (__vma_private_lock(vma)) { 273 struct resv_map *resv_map = vma_resv_map(vma); 274 275 down_read(&resv_map->rw_sema); 276 } 277 } 278 279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 280 { 281 if (__vma_shareable_lock(vma)) { 282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 283 284 up_read(&vma_lock->rw_sema); 285 } else if (__vma_private_lock(vma)) { 286 struct resv_map *resv_map = vma_resv_map(vma); 287 288 up_read(&resv_map->rw_sema); 289 } 290 } 291 292 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_write(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_write(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_write(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_write(&resv_map->rw_sema); 315 } 316 } 317 318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 319 { 320 321 if (__vma_shareable_lock(vma)) { 322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 323 324 return down_write_trylock(&vma_lock->rw_sema); 325 } else if (__vma_private_lock(vma)) { 326 struct resv_map *resv_map = vma_resv_map(vma); 327 328 return down_write_trylock(&resv_map->rw_sema); 329 } 330 331 return 1; 332 } 333 334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 335 { 336 if (__vma_shareable_lock(vma)) { 337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 338 339 lockdep_assert_held(&vma_lock->rw_sema); 340 } else if (__vma_private_lock(vma)) { 341 struct resv_map *resv_map = vma_resv_map(vma); 342 343 lockdep_assert_held(&resv_map->rw_sema); 344 } 345 } 346 347 void hugetlb_vma_lock_release(struct kref *kref) 348 { 349 struct hugetlb_vma_lock *vma_lock = container_of(kref, 350 struct hugetlb_vma_lock, refs); 351 352 kfree(vma_lock); 353 } 354 355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 356 { 357 struct vm_area_struct *vma = vma_lock->vma; 358 359 /* 360 * vma_lock structure may or not be released as a result of put, 361 * it certainly will no longer be attached to vma so clear pointer. 362 * Semaphore synchronizes access to vma_lock->vma field. 363 */ 364 vma_lock->vma = NULL; 365 vma->vm_private_data = NULL; 366 up_write(&vma_lock->rw_sema); 367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 368 } 369 370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 371 { 372 if (__vma_shareable_lock(vma)) { 373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 374 375 __hugetlb_vma_unlock_write_put(vma_lock); 376 } else if (__vma_private_lock(vma)) { 377 struct resv_map *resv_map = vma_resv_map(vma); 378 379 /* no free for anon vmas, but still need to unlock */ 380 up_write(&resv_map->rw_sema); 381 } 382 } 383 384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 385 { 386 /* 387 * Only present in sharable vmas. 388 */ 389 if (!vma || !__vma_shareable_lock(vma)) 390 return; 391 392 if (vma->vm_private_data) { 393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 394 395 down_write(&vma_lock->rw_sema); 396 __hugetlb_vma_unlock_write_put(vma_lock); 397 } 398 } 399 400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 401 { 402 struct hugetlb_vma_lock *vma_lock; 403 404 /* Only establish in (flags) sharable vmas */ 405 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 406 return; 407 408 /* Should never get here with non-NULL vm_private_data */ 409 if (vma->vm_private_data) 410 return; 411 412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 413 if (!vma_lock) { 414 /* 415 * If we can not allocate structure, then vma can not 416 * participate in pmd sharing. This is only a possible 417 * performance enhancement and memory saving issue. 418 * However, the lock is also used to synchronize page 419 * faults with truncation. If the lock is not present, 420 * unlikely races could leave pages in a file past i_size 421 * until the file is removed. Warn in the unlikely case of 422 * allocation failure. 423 */ 424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 425 return; 426 } 427 428 kref_init(&vma_lock->refs); 429 init_rwsem(&vma_lock->rw_sema); 430 vma_lock->vma = vma; 431 vma->vm_private_data = vma_lock; 432 } 433 434 /* Helper that removes a struct file_region from the resv_map cache and returns 435 * it for use. 436 */ 437 static struct file_region * 438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 439 { 440 struct file_region *nrg; 441 442 VM_BUG_ON(resv->region_cache_count <= 0); 443 444 resv->region_cache_count--; 445 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 446 list_del(&nrg->link); 447 448 nrg->from = from; 449 nrg->to = to; 450 451 return nrg; 452 } 453 454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 455 struct file_region *rg) 456 { 457 #ifdef CONFIG_CGROUP_HUGETLB 458 nrg->reservation_counter = rg->reservation_counter; 459 nrg->css = rg->css; 460 if (rg->css) 461 css_get(rg->css); 462 #endif 463 } 464 465 /* Helper that records hugetlb_cgroup uncharge info. */ 466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 467 struct hstate *h, 468 struct resv_map *resv, 469 struct file_region *nrg) 470 { 471 #ifdef CONFIG_CGROUP_HUGETLB 472 if (h_cg) { 473 nrg->reservation_counter = 474 &h_cg->rsvd_hugepage[hstate_index(h)]; 475 nrg->css = &h_cg->css; 476 /* 477 * The caller will hold exactly one h_cg->css reference for the 478 * whole contiguous reservation region. But this area might be 479 * scattered when there are already some file_regions reside in 480 * it. As a result, many file_regions may share only one css 481 * reference. In order to ensure that one file_region must hold 482 * exactly one h_cg->css reference, we should do css_get for 483 * each file_region and leave the reference held by caller 484 * untouched. 485 */ 486 css_get(&h_cg->css); 487 if (!resv->pages_per_hpage) 488 resv->pages_per_hpage = pages_per_huge_page(h); 489 /* pages_per_hpage should be the same for all entries in 490 * a resv_map. 491 */ 492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 493 } else { 494 nrg->reservation_counter = NULL; 495 nrg->css = NULL; 496 } 497 #endif 498 } 499 500 static void put_uncharge_info(struct file_region *rg) 501 { 502 #ifdef CONFIG_CGROUP_HUGETLB 503 if (rg->css) 504 css_put(rg->css); 505 #endif 506 } 507 508 static bool has_same_uncharge_info(struct file_region *rg, 509 struct file_region *org) 510 { 511 #ifdef CONFIG_CGROUP_HUGETLB 512 return rg->reservation_counter == org->reservation_counter && 513 rg->css == org->css; 514 515 #else 516 return true; 517 #endif 518 } 519 520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 521 { 522 struct file_region *nrg, *prg; 523 524 prg = list_prev_entry(rg, link); 525 if (&prg->link != &resv->regions && prg->to == rg->from && 526 has_same_uncharge_info(prg, rg)) { 527 prg->to = rg->to; 528 529 list_del(&rg->link); 530 put_uncharge_info(rg); 531 kfree(rg); 532 533 rg = prg; 534 } 535 536 nrg = list_next_entry(rg, link); 537 if (&nrg->link != &resv->regions && nrg->from == rg->to && 538 has_same_uncharge_info(nrg, rg)) { 539 nrg->from = rg->from; 540 541 list_del(&rg->link); 542 put_uncharge_info(rg); 543 kfree(rg); 544 } 545 } 546 547 static inline long 548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 549 long to, struct hstate *h, struct hugetlb_cgroup *cg, 550 long *regions_needed) 551 { 552 struct file_region *nrg; 553 554 if (!regions_needed) { 555 nrg = get_file_region_entry_from_cache(map, from, to); 556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 557 list_add(&nrg->link, rg); 558 coalesce_file_region(map, nrg); 559 } else 560 *regions_needed += 1; 561 562 return to - from; 563 } 564 565 /* 566 * Must be called with resv->lock held. 567 * 568 * Calling this with regions_needed != NULL will count the number of pages 569 * to be added but will not modify the linked list. And regions_needed will 570 * indicate the number of file_regions needed in the cache to carry out to add 571 * the regions for this range. 572 */ 573 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 574 struct hugetlb_cgroup *h_cg, 575 struct hstate *h, long *regions_needed) 576 { 577 long add = 0; 578 struct list_head *head = &resv->regions; 579 long last_accounted_offset = f; 580 struct file_region *iter, *trg = NULL; 581 struct list_head *rg = NULL; 582 583 if (regions_needed) 584 *regions_needed = 0; 585 586 /* In this loop, we essentially handle an entry for the range 587 * [last_accounted_offset, iter->from), at every iteration, with some 588 * bounds checking. 589 */ 590 list_for_each_entry_safe(iter, trg, head, link) { 591 /* Skip irrelevant regions that start before our range. */ 592 if (iter->from < f) { 593 /* If this region ends after the last accounted offset, 594 * then we need to update last_accounted_offset. 595 */ 596 if (iter->to > last_accounted_offset) 597 last_accounted_offset = iter->to; 598 continue; 599 } 600 601 /* When we find a region that starts beyond our range, we've 602 * finished. 603 */ 604 if (iter->from >= t) { 605 rg = iter->link.prev; 606 break; 607 } 608 609 /* Add an entry for last_accounted_offset -> iter->from, and 610 * update last_accounted_offset. 611 */ 612 if (iter->from > last_accounted_offset) 613 add += hugetlb_resv_map_add(resv, iter->link.prev, 614 last_accounted_offset, 615 iter->from, h, h_cg, 616 regions_needed); 617 618 last_accounted_offset = iter->to; 619 } 620 621 /* Handle the case where our range extends beyond 622 * last_accounted_offset. 623 */ 624 if (!rg) 625 rg = head->prev; 626 if (last_accounted_offset < t) 627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 628 t, h, h_cg, regions_needed); 629 630 return add; 631 } 632 633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 634 */ 635 static int allocate_file_region_entries(struct resv_map *resv, 636 int regions_needed) 637 __must_hold(&resv->lock) 638 { 639 LIST_HEAD(allocated_regions); 640 int to_allocate = 0, i = 0; 641 struct file_region *trg = NULL, *rg = NULL; 642 643 VM_BUG_ON(regions_needed < 0); 644 645 /* 646 * Check for sufficient descriptors in the cache to accommodate 647 * the number of in progress add operations plus regions_needed. 648 * 649 * This is a while loop because when we drop the lock, some other call 650 * to region_add or region_del may have consumed some region_entries, 651 * so we keep looping here until we finally have enough entries for 652 * (adds_in_progress + regions_needed). 653 */ 654 while (resv->region_cache_count < 655 (resv->adds_in_progress + regions_needed)) { 656 to_allocate = resv->adds_in_progress + regions_needed - 657 resv->region_cache_count; 658 659 /* At this point, we should have enough entries in the cache 660 * for all the existing adds_in_progress. We should only be 661 * needing to allocate for regions_needed. 662 */ 663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 664 665 spin_unlock(&resv->lock); 666 for (i = 0; i < to_allocate; i++) { 667 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 668 if (!trg) 669 goto out_of_memory; 670 list_add(&trg->link, &allocated_regions); 671 } 672 673 spin_lock(&resv->lock); 674 675 list_splice(&allocated_regions, &resv->region_cache); 676 resv->region_cache_count += to_allocate; 677 } 678 679 return 0; 680 681 out_of_memory: 682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 683 list_del(&rg->link); 684 kfree(rg); 685 } 686 return -ENOMEM; 687 } 688 689 /* 690 * Add the huge page range represented by [f, t) to the reserve 691 * map. Regions will be taken from the cache to fill in this range. 692 * Sufficient regions should exist in the cache due to the previous 693 * call to region_chg with the same range, but in some cases the cache will not 694 * have sufficient entries due to races with other code doing region_add or 695 * region_del. The extra needed entries will be allocated. 696 * 697 * regions_needed is the out value provided by a previous call to region_chg. 698 * 699 * Return the number of new huge pages added to the map. This number is greater 700 * than or equal to zero. If file_region entries needed to be allocated for 701 * this operation and we were not able to allocate, it returns -ENOMEM. 702 * region_add of regions of length 1 never allocate file_regions and cannot 703 * fail; region_chg will always allocate at least 1 entry and a region_add for 704 * 1 page will only require at most 1 entry. 705 */ 706 static long region_add(struct resv_map *resv, long f, long t, 707 long in_regions_needed, struct hstate *h, 708 struct hugetlb_cgroup *h_cg) 709 { 710 long add = 0, actual_regions_needed = 0; 711 712 spin_lock(&resv->lock); 713 retry: 714 715 /* Count how many regions are actually needed to execute this add. */ 716 add_reservation_in_range(resv, f, t, NULL, NULL, 717 &actual_regions_needed); 718 719 /* 720 * Check for sufficient descriptors in the cache to accommodate 721 * this add operation. Note that actual_regions_needed may be greater 722 * than in_regions_needed, as the resv_map may have been modified since 723 * the region_chg call. In this case, we need to make sure that we 724 * allocate extra entries, such that we have enough for all the 725 * existing adds_in_progress, plus the excess needed for this 726 * operation. 727 */ 728 if (actual_regions_needed > in_regions_needed && 729 resv->region_cache_count < 730 resv->adds_in_progress + 731 (actual_regions_needed - in_regions_needed)) { 732 /* region_add operation of range 1 should never need to 733 * allocate file_region entries. 734 */ 735 VM_BUG_ON(t - f <= 1); 736 737 if (allocate_file_region_entries( 738 resv, actual_regions_needed - in_regions_needed)) { 739 return -ENOMEM; 740 } 741 742 goto retry; 743 } 744 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 746 747 resv->adds_in_progress -= in_regions_needed; 748 749 spin_unlock(&resv->lock); 750 return add; 751 } 752 753 /* 754 * Examine the existing reserve map and determine how many 755 * huge pages in the specified range [f, t) are NOT currently 756 * represented. This routine is called before a subsequent 757 * call to region_add that will actually modify the reserve 758 * map to add the specified range [f, t). region_chg does 759 * not change the number of huge pages represented by the 760 * map. A number of new file_region structures is added to the cache as a 761 * placeholder, for the subsequent region_add call to use. At least 1 762 * file_region structure is added. 763 * 764 * out_regions_needed is the number of regions added to the 765 * resv->adds_in_progress. This value needs to be provided to a follow up call 766 * to region_add or region_abort for proper accounting. 767 * 768 * Returns the number of huge pages that need to be added to the existing 769 * reservation map for the range [f, t). This number is greater or equal to 770 * zero. -ENOMEM is returned if a new file_region structure or cache entry 771 * is needed and can not be allocated. 772 */ 773 static long region_chg(struct resv_map *resv, long f, long t, 774 long *out_regions_needed) 775 { 776 long chg = 0; 777 778 spin_lock(&resv->lock); 779 780 /* Count how many hugepages in this range are NOT represented. */ 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 782 out_regions_needed); 783 784 if (*out_regions_needed == 0) 785 *out_regions_needed = 1; 786 787 if (allocate_file_region_entries(resv, *out_regions_needed)) 788 return -ENOMEM; 789 790 resv->adds_in_progress += *out_regions_needed; 791 792 spin_unlock(&resv->lock); 793 return chg; 794 } 795 796 /* 797 * Abort the in progress add operation. The adds_in_progress field 798 * of the resv_map keeps track of the operations in progress between 799 * calls to region_chg and region_add. Operations are sometimes 800 * aborted after the call to region_chg. In such cases, region_abort 801 * is called to decrement the adds_in_progress counter. regions_needed 802 * is the value returned by the region_chg call, it is used to decrement 803 * the adds_in_progress counter. 804 * 805 * NOTE: The range arguments [f, t) are not needed or used in this 806 * routine. They are kept to make reading the calling code easier as 807 * arguments will match the associated region_chg call. 808 */ 809 static void region_abort(struct resv_map *resv, long f, long t, 810 long regions_needed) 811 { 812 spin_lock(&resv->lock); 813 VM_BUG_ON(!resv->region_cache_count); 814 resv->adds_in_progress -= regions_needed; 815 spin_unlock(&resv->lock); 816 } 817 818 /* 819 * Delete the specified range [f, t) from the reserve map. If the 820 * t parameter is LONG_MAX, this indicates that ALL regions after f 821 * should be deleted. Locate the regions which intersect [f, t) 822 * and either trim, delete or split the existing regions. 823 * 824 * Returns the number of huge pages deleted from the reserve map. 825 * In the normal case, the return value is zero or more. In the 826 * case where a region must be split, a new region descriptor must 827 * be allocated. If the allocation fails, -ENOMEM will be returned. 828 * NOTE: If the parameter t == LONG_MAX, then we will never split 829 * a region and possibly return -ENOMEM. Callers specifying 830 * t == LONG_MAX do not need to check for -ENOMEM error. 831 */ 832 static long region_del(struct resv_map *resv, long f, long t) 833 { 834 struct list_head *head = &resv->regions; 835 struct file_region *rg, *trg; 836 struct file_region *nrg = NULL; 837 long del = 0; 838 839 retry: 840 spin_lock(&resv->lock); 841 list_for_each_entry_safe(rg, trg, head, link) { 842 /* 843 * Skip regions before the range to be deleted. file_region 844 * ranges are normally of the form [from, to). However, there 845 * may be a "placeholder" entry in the map which is of the form 846 * (from, to) with from == to. Check for placeholder entries 847 * at the beginning of the range to be deleted. 848 */ 849 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 850 continue; 851 852 if (rg->from >= t) 853 break; 854 855 if (f > rg->from && t < rg->to) { /* Must split region */ 856 /* 857 * Check for an entry in the cache before dropping 858 * lock and attempting allocation. 859 */ 860 if (!nrg && 861 resv->region_cache_count > resv->adds_in_progress) { 862 nrg = list_first_entry(&resv->region_cache, 863 struct file_region, 864 link); 865 list_del(&nrg->link); 866 resv->region_cache_count--; 867 } 868 869 if (!nrg) { 870 spin_unlock(&resv->lock); 871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 872 if (!nrg) 873 return -ENOMEM; 874 goto retry; 875 } 876 877 del += t - f; 878 hugetlb_cgroup_uncharge_file_region( 879 resv, rg, t - f, false); 880 881 /* New entry for end of split region */ 882 nrg->from = t; 883 nrg->to = rg->to; 884 885 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 886 887 INIT_LIST_HEAD(&nrg->link); 888 889 /* Original entry is trimmed */ 890 rg->to = f; 891 892 list_add(&nrg->link, &rg->link); 893 nrg = NULL; 894 break; 895 } 896 897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 898 del += rg->to - rg->from; 899 hugetlb_cgroup_uncharge_file_region(resv, rg, 900 rg->to - rg->from, true); 901 list_del(&rg->link); 902 kfree(rg); 903 continue; 904 } 905 906 if (f <= rg->from) { /* Trim beginning of region */ 907 hugetlb_cgroup_uncharge_file_region(resv, rg, 908 t - rg->from, false); 909 910 del += t - rg->from; 911 rg->from = t; 912 } else { /* Trim end of region */ 913 hugetlb_cgroup_uncharge_file_region(resv, rg, 914 rg->to - f, false); 915 916 del += rg->to - f; 917 rg->to = f; 918 } 919 } 920 921 spin_unlock(&resv->lock); 922 kfree(nrg); 923 return del; 924 } 925 926 /* 927 * A rare out of memory error was encountered which prevented removal of 928 * the reserve map region for a page. The huge page itself was free'ed 929 * and removed from the page cache. This routine will adjust the subpool 930 * usage count, and the global reserve count if needed. By incrementing 931 * these counts, the reserve map entry which could not be deleted will 932 * appear as a "reserved" entry instead of simply dangling with incorrect 933 * counts. 934 */ 935 void hugetlb_fix_reserve_counts(struct inode *inode) 936 { 937 struct hugepage_subpool *spool = subpool_inode(inode); 938 long rsv_adjust; 939 bool reserved = false; 940 941 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 942 if (rsv_adjust > 0) { 943 struct hstate *h = hstate_inode(inode); 944 945 if (!hugetlb_acct_memory(h, 1)) 946 reserved = true; 947 } else if (!rsv_adjust) { 948 reserved = true; 949 } 950 951 if (!reserved) 952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 953 } 954 955 /* 956 * Count and return the number of huge pages in the reserve map 957 * that intersect with the range [f, t). 958 */ 959 static long region_count(struct resv_map *resv, long f, long t) 960 { 961 struct list_head *head = &resv->regions; 962 struct file_region *rg; 963 long chg = 0; 964 965 spin_lock(&resv->lock); 966 /* Locate each segment we overlap with, and count that overlap. */ 967 list_for_each_entry(rg, head, link) { 968 long seg_from; 969 long seg_to; 970 971 if (rg->to <= f) 972 continue; 973 if (rg->from >= t) 974 break; 975 976 seg_from = max(rg->from, f); 977 seg_to = min(rg->to, t); 978 979 chg += seg_to - seg_from; 980 } 981 spin_unlock(&resv->lock); 982 983 return chg; 984 } 985 986 /* 987 * Convert the address within this vma to the page offset within 988 * the mapping, huge page units here. 989 */ 990 static pgoff_t vma_hugecache_offset(struct hstate *h, 991 struct vm_area_struct *vma, unsigned long address) 992 { 993 return ((address - vma->vm_start) >> huge_page_shift(h)) + 994 (vma->vm_pgoff >> huge_page_order(h)); 995 } 996 997 /** 998 * vma_kernel_pagesize - Page size granularity for this VMA. 999 * @vma: The user mapping. 1000 * 1001 * Folios in this VMA will be aligned to, and at least the size of the 1002 * number of bytes returned by this function. 1003 * 1004 * Return: The default size of the folios allocated when backing a VMA. 1005 */ 1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1007 { 1008 if (vma->vm_ops && vma->vm_ops->pagesize) 1009 return vma->vm_ops->pagesize(vma); 1010 return PAGE_SIZE; 1011 } 1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1013 1014 /* 1015 * Return the page size being used by the MMU to back a VMA. In the majority 1016 * of cases, the page size used by the kernel matches the MMU size. On 1017 * architectures where it differs, an architecture-specific 'strong' 1018 * version of this symbol is required. 1019 */ 1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1021 { 1022 return vma_kernel_pagesize(vma); 1023 } 1024 1025 /* 1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1027 * bits of the reservation map pointer, which are always clear due to 1028 * alignment. 1029 */ 1030 #define HPAGE_RESV_OWNER (1UL << 0) 1031 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1033 1034 /* 1035 * These helpers are used to track how many pages are reserved for 1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1037 * is guaranteed to have their future faults succeed. 1038 * 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1040 * the reserve counters are updated with the hugetlb_lock held. It is safe 1041 * to reset the VMA at fork() time as it is not in use yet and there is no 1042 * chance of the global counters getting corrupted as a result of the values. 1043 * 1044 * The private mapping reservation is represented in a subtly different 1045 * manner to a shared mapping. A shared mapping has a region map associated 1046 * with the underlying file, this region map represents the backing file 1047 * pages which have ever had a reservation assigned which this persists even 1048 * after the page is instantiated. A private mapping has a region map 1049 * associated with the original mmap which is attached to all VMAs which 1050 * reference it, this region map represents those offsets which have consumed 1051 * reservation ie. where pages have been instantiated. 1052 */ 1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1054 { 1055 return (unsigned long)vma->vm_private_data; 1056 } 1057 1058 static void set_vma_private_data(struct vm_area_struct *vma, 1059 unsigned long value) 1060 { 1061 vma->vm_private_data = (void *)value; 1062 } 1063 1064 static void 1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1066 struct hugetlb_cgroup *h_cg, 1067 struct hstate *h) 1068 { 1069 #ifdef CONFIG_CGROUP_HUGETLB 1070 if (!h_cg || !h) { 1071 resv_map->reservation_counter = NULL; 1072 resv_map->pages_per_hpage = 0; 1073 resv_map->css = NULL; 1074 } else { 1075 resv_map->reservation_counter = 1076 &h_cg->rsvd_hugepage[hstate_index(h)]; 1077 resv_map->pages_per_hpage = pages_per_huge_page(h); 1078 resv_map->css = &h_cg->css; 1079 } 1080 #endif 1081 } 1082 1083 struct resv_map *resv_map_alloc(void) 1084 { 1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1087 1088 if (!resv_map || !rg) { 1089 kfree(resv_map); 1090 kfree(rg); 1091 return NULL; 1092 } 1093 1094 kref_init(&resv_map->refs); 1095 spin_lock_init(&resv_map->lock); 1096 INIT_LIST_HEAD(&resv_map->regions); 1097 init_rwsem(&resv_map->rw_sema); 1098 1099 resv_map->adds_in_progress = 0; 1100 /* 1101 * Initialize these to 0. On shared mappings, 0's here indicate these 1102 * fields don't do cgroup accounting. On private mappings, these will be 1103 * re-initialized to the proper values, to indicate that hugetlb cgroup 1104 * reservations are to be un-charged from here. 1105 */ 1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1107 1108 INIT_LIST_HEAD(&resv_map->region_cache); 1109 list_add(&rg->link, &resv_map->region_cache); 1110 resv_map->region_cache_count = 1; 1111 1112 return resv_map; 1113 } 1114 1115 void resv_map_release(struct kref *ref) 1116 { 1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1118 struct list_head *head = &resv_map->region_cache; 1119 struct file_region *rg, *trg; 1120 1121 /* Clear out any active regions before we release the map. */ 1122 region_del(resv_map, 0, LONG_MAX); 1123 1124 /* ... and any entries left in the cache */ 1125 list_for_each_entry_safe(rg, trg, head, link) { 1126 list_del(&rg->link); 1127 kfree(rg); 1128 } 1129 1130 VM_BUG_ON(resv_map->adds_in_progress); 1131 1132 kfree(resv_map); 1133 } 1134 1135 static inline struct resv_map *inode_resv_map(struct inode *inode) 1136 { 1137 /* 1138 * At inode evict time, i_mapping may not point to the original 1139 * address space within the inode. This original address space 1140 * contains the pointer to the resv_map. So, always use the 1141 * address space embedded within the inode. 1142 * The VERY common case is inode->mapping == &inode->i_data but, 1143 * this may not be true for device special inodes. 1144 */ 1145 return (struct resv_map *)(&inode->i_data)->i_private_data; 1146 } 1147 1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 if (vma->vm_flags & VM_MAYSHARE) { 1152 struct address_space *mapping = vma->vm_file->f_mapping; 1153 struct inode *inode = mapping->host; 1154 1155 return inode_resv_map(inode); 1156 1157 } else { 1158 return (struct resv_map *)(get_vma_private_data(vma) & 1159 ~HPAGE_RESV_MASK); 1160 } 1161 } 1162 1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1164 { 1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1167 1168 set_vma_private_data(vma, (unsigned long)map); 1169 } 1170 1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1175 1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1177 } 1178 1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1180 { 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1182 1183 return (get_vma_private_data(vma) & flag) != 0; 1184 } 1185 1186 bool __vma_private_lock(struct vm_area_struct *vma) 1187 { 1188 return !(vma->vm_flags & VM_MAYSHARE) && 1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1191 } 1192 1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 /* 1197 * Clear vm_private_data 1198 * - For shared mappings this is a per-vma semaphore that may be 1199 * allocated in a subsequent call to hugetlb_vm_op_open. 1200 * Before clearing, make sure pointer is not associated with vma 1201 * as this will leak the structure. This is the case when called 1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1203 * been called to allocate a new structure. 1204 * - For MAP_PRIVATE mappings, this is the reserve map which does 1205 * not apply to children. Faults generated by the children are 1206 * not guaranteed to succeed, even if read-only. 1207 */ 1208 if (vma->vm_flags & VM_MAYSHARE) { 1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1210 1211 if (vma_lock && vma_lock->vma != vma) 1212 vma->vm_private_data = NULL; 1213 } else 1214 vma->vm_private_data = NULL; 1215 } 1216 1217 /* 1218 * Reset and decrement one ref on hugepage private reservation. 1219 * Called with mm->mmap_lock writer semaphore held. 1220 * This function should be only used by move_vma() and operate on 1221 * same sized vma. It should never come here with last ref on the 1222 * reservation. 1223 */ 1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1225 { 1226 /* 1227 * Clear the old hugetlb private page reservation. 1228 * It has already been transferred to new_vma. 1229 * 1230 * During a mremap() operation of a hugetlb vma we call move_vma() 1231 * which copies vma into new_vma and unmaps vma. After the copy 1232 * operation both new_vma and vma share a reference to the resv_map 1233 * struct, and at that point vma is about to be unmapped. We don't 1234 * want to return the reservation to the pool at unmap of vma because 1235 * the reservation still lives on in new_vma, so simply decrement the 1236 * ref here and remove the resv_map reference from this vma. 1237 */ 1238 struct resv_map *reservations = vma_resv_map(vma); 1239 1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1242 kref_put(&reservations->refs, resv_map_release); 1243 } 1244 1245 hugetlb_dup_vma_private(vma); 1246 } 1247 1248 /* Returns true if the VMA has associated reserve pages */ 1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1250 { 1251 if (vma->vm_flags & VM_NORESERVE) { 1252 /* 1253 * This address is already reserved by other process(chg == 0), 1254 * so, we should decrement reserved count. Without decrementing, 1255 * reserve count remains after releasing inode, because this 1256 * allocated page will go into page cache and is regarded as 1257 * coming from reserved pool in releasing step. Currently, we 1258 * don't have any other solution to deal with this situation 1259 * properly, so add work-around here. 1260 */ 1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1262 return true; 1263 else 1264 return false; 1265 } 1266 1267 /* Shared mappings always use reserves */ 1268 if (vma->vm_flags & VM_MAYSHARE) { 1269 /* 1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1271 * be a region map for all pages. The only situation where 1272 * there is no region map is if a hole was punched via 1273 * fallocate. In this case, there really are no reserves to 1274 * use. This situation is indicated if chg != 0. 1275 */ 1276 if (chg) 1277 return false; 1278 else 1279 return true; 1280 } 1281 1282 /* 1283 * Only the process that called mmap() has reserves for 1284 * private mappings. 1285 */ 1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1287 /* 1288 * Like the shared case above, a hole punch or truncate 1289 * could have been performed on the private mapping. 1290 * Examine the value of chg to determine if reserves 1291 * actually exist or were previously consumed. 1292 * Very Subtle - The value of chg comes from a previous 1293 * call to vma_needs_reserves(). The reserve map for 1294 * private mappings has different (opposite) semantics 1295 * than that of shared mappings. vma_needs_reserves() 1296 * has already taken this difference in semantics into 1297 * account. Therefore, the meaning of chg is the same 1298 * as in the shared case above. Code could easily be 1299 * combined, but keeping it separate draws attention to 1300 * subtle differences. 1301 */ 1302 if (chg) 1303 return false; 1304 else 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1312 { 1313 int nid = folio_nid(folio); 1314 1315 lockdep_assert_held(&hugetlb_lock); 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1317 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1319 h->free_huge_pages++; 1320 h->free_huge_pages_node[nid]++; 1321 folio_set_hugetlb_freed(folio); 1322 } 1323 1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1325 int nid) 1326 { 1327 struct folio *folio; 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1329 1330 lockdep_assert_held(&hugetlb_lock); 1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1332 if (pin && !folio_is_longterm_pinnable(folio)) 1333 continue; 1334 1335 if (folio_test_hwpoison(folio)) 1336 continue; 1337 1338 list_move(&folio->lru, &h->hugepage_activelist); 1339 folio_ref_unfreeze(folio, 1); 1340 folio_clear_hugetlb_freed(folio); 1341 h->free_huge_pages--; 1342 h->free_huge_pages_node[nid]--; 1343 return folio; 1344 } 1345 1346 return NULL; 1347 } 1348 1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1350 int nid, nodemask_t *nmask) 1351 { 1352 unsigned int cpuset_mems_cookie; 1353 struct zonelist *zonelist; 1354 struct zone *zone; 1355 struct zoneref *z; 1356 int node = NUMA_NO_NODE; 1357 1358 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1359 if (nid == NUMA_NO_NODE) 1360 nid = numa_node_id(); 1361 1362 zonelist = node_zonelist(nid, gfp_mask); 1363 1364 retry_cpuset: 1365 cpuset_mems_cookie = read_mems_allowed_begin(); 1366 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1367 struct folio *folio; 1368 1369 if (!cpuset_zone_allowed(zone, gfp_mask)) 1370 continue; 1371 /* 1372 * no need to ask again on the same node. Pool is node rather than 1373 * zone aware 1374 */ 1375 if (zone_to_nid(zone) == node) 1376 continue; 1377 node = zone_to_nid(zone); 1378 1379 folio = dequeue_hugetlb_folio_node_exact(h, node); 1380 if (folio) 1381 return folio; 1382 } 1383 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1384 goto retry_cpuset; 1385 1386 return NULL; 1387 } 1388 1389 static unsigned long available_huge_pages(struct hstate *h) 1390 { 1391 return h->free_huge_pages - h->resv_huge_pages; 1392 } 1393 1394 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1395 struct vm_area_struct *vma, 1396 unsigned long address, int avoid_reserve, 1397 long chg) 1398 { 1399 struct folio *folio = NULL; 1400 struct mempolicy *mpol; 1401 gfp_t gfp_mask; 1402 nodemask_t *nodemask; 1403 int nid; 1404 1405 /* 1406 * A child process with MAP_PRIVATE mappings created by their parent 1407 * have no page reserves. This check ensures that reservations are 1408 * not "stolen". The child may still get SIGKILLed 1409 */ 1410 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1411 goto err; 1412 1413 /* If reserves cannot be used, ensure enough pages are in the pool */ 1414 if (avoid_reserve && !available_huge_pages(h)) 1415 goto err; 1416 1417 gfp_mask = htlb_alloc_mask(h); 1418 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1419 1420 if (mpol_is_preferred_many(mpol)) { 1421 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1422 nid, nodemask); 1423 1424 /* Fallback to all nodes if page==NULL */ 1425 nodemask = NULL; 1426 } 1427 1428 if (!folio) 1429 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1430 nid, nodemask); 1431 1432 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1433 folio_set_hugetlb_restore_reserve(folio); 1434 h->resv_huge_pages--; 1435 } 1436 1437 mpol_cond_put(mpol); 1438 return folio; 1439 1440 err: 1441 return NULL; 1442 } 1443 1444 /* 1445 * common helper functions for hstate_next_node_to_{alloc|free}. 1446 * We may have allocated or freed a huge page based on a different 1447 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1448 * be outside of *nodes_allowed. Ensure that we use an allowed 1449 * node for alloc or free. 1450 */ 1451 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1452 { 1453 nid = next_node_in(nid, *nodes_allowed); 1454 VM_BUG_ON(nid >= MAX_NUMNODES); 1455 1456 return nid; 1457 } 1458 1459 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1460 { 1461 if (!node_isset(nid, *nodes_allowed)) 1462 nid = next_node_allowed(nid, nodes_allowed); 1463 return nid; 1464 } 1465 1466 /* 1467 * returns the previously saved node ["this node"] from which to 1468 * allocate a persistent huge page for the pool and advance the 1469 * next node from which to allocate, handling wrap at end of node 1470 * mask. 1471 */ 1472 static int hstate_next_node_to_alloc(int *next_node, 1473 nodemask_t *nodes_allowed) 1474 { 1475 int nid; 1476 1477 VM_BUG_ON(!nodes_allowed); 1478 1479 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1480 *next_node = next_node_allowed(nid, nodes_allowed); 1481 1482 return nid; 1483 } 1484 1485 /* 1486 * helper for remove_pool_hugetlb_folio() - return the previously saved 1487 * node ["this node"] from which to free a huge page. Advance the 1488 * next node id whether or not we find a free huge page to free so 1489 * that the next attempt to free addresses the next node. 1490 */ 1491 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1492 { 1493 int nid; 1494 1495 VM_BUG_ON(!nodes_allowed); 1496 1497 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1498 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1499 1500 return nid; 1501 } 1502 1503 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1504 for (nr_nodes = nodes_weight(*mask); \ 1505 nr_nodes > 0 && \ 1506 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1507 nr_nodes--) 1508 1509 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1510 for (nr_nodes = nodes_weight(*mask); \ 1511 nr_nodes > 0 && \ 1512 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1513 nr_nodes--) 1514 1515 /* used to demote non-gigantic_huge pages as well */ 1516 static void __destroy_compound_gigantic_folio(struct folio *folio, 1517 unsigned int order, bool demote) 1518 { 1519 int i; 1520 int nr_pages = 1 << order; 1521 struct page *p; 1522 1523 atomic_set(&folio->_entire_mapcount, 0); 1524 atomic_set(&folio->_large_mapcount, 0); 1525 atomic_set(&folio->_pincount, 0); 1526 1527 for (i = 1; i < nr_pages; i++) { 1528 p = folio_page(folio, i); 1529 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1530 p->mapping = NULL; 1531 clear_compound_head(p); 1532 if (!demote) 1533 set_page_refcounted(p); 1534 } 1535 1536 __folio_clear_head(folio); 1537 } 1538 1539 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1540 unsigned int order) 1541 { 1542 __destroy_compound_gigantic_folio(folio, order, true); 1543 } 1544 1545 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1546 static void destroy_compound_gigantic_folio(struct folio *folio, 1547 unsigned int order) 1548 { 1549 __destroy_compound_gigantic_folio(folio, order, false); 1550 } 1551 1552 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1553 { 1554 /* 1555 * If the page isn't allocated using the cma allocator, 1556 * cma_release() returns false. 1557 */ 1558 #ifdef CONFIG_CMA 1559 int nid = folio_nid(folio); 1560 1561 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1562 return; 1563 #endif 1564 1565 free_contig_range(folio_pfn(folio), 1 << order); 1566 } 1567 1568 #ifdef CONFIG_CONTIG_ALLOC 1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1570 int nid, nodemask_t *nodemask) 1571 { 1572 struct page *page; 1573 unsigned long nr_pages = pages_per_huge_page(h); 1574 if (nid == NUMA_NO_NODE) 1575 nid = numa_mem_id(); 1576 1577 #ifdef CONFIG_CMA 1578 { 1579 int node; 1580 1581 if (hugetlb_cma[nid]) { 1582 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1583 huge_page_order(h), true); 1584 if (page) 1585 return page_folio(page); 1586 } 1587 1588 if (!(gfp_mask & __GFP_THISNODE)) { 1589 for_each_node_mask(node, *nodemask) { 1590 if (node == nid || !hugetlb_cma[node]) 1591 continue; 1592 1593 page = cma_alloc(hugetlb_cma[node], nr_pages, 1594 huge_page_order(h), true); 1595 if (page) 1596 return page_folio(page); 1597 } 1598 } 1599 } 1600 #endif 1601 1602 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1603 return page ? page_folio(page) : NULL; 1604 } 1605 1606 #else /* !CONFIG_CONTIG_ALLOC */ 1607 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1608 int nid, nodemask_t *nodemask) 1609 { 1610 return NULL; 1611 } 1612 #endif /* CONFIG_CONTIG_ALLOC */ 1613 1614 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1615 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1616 int nid, nodemask_t *nodemask) 1617 { 1618 return NULL; 1619 } 1620 static inline void free_gigantic_folio(struct folio *folio, 1621 unsigned int order) { } 1622 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1623 unsigned int order) { } 1624 #endif 1625 1626 /* 1627 * Remove hugetlb folio from lists. 1628 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1629 * folio appears as just a compound page. Otherwise, wait until after 1630 * allocating vmemmap to clear the flag. 1631 * 1632 * Must be called with hugetlb lock held. 1633 */ 1634 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1635 bool adjust_surplus) 1636 { 1637 int nid = folio_nid(folio); 1638 1639 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1640 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1641 1642 lockdep_assert_held(&hugetlb_lock); 1643 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1644 return; 1645 1646 list_del(&folio->lru); 1647 1648 if (folio_test_hugetlb_freed(folio)) { 1649 folio_clear_hugetlb_freed(folio); 1650 h->free_huge_pages--; 1651 h->free_huge_pages_node[nid]--; 1652 } 1653 if (adjust_surplus) { 1654 h->surplus_huge_pages--; 1655 h->surplus_huge_pages_node[nid]--; 1656 } 1657 1658 /* 1659 * We can only clear the hugetlb flag after allocating vmemmap 1660 * pages. Otherwise, someone (memory error handling) may try to write 1661 * to tail struct pages. 1662 */ 1663 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1664 __folio_clear_hugetlb(folio); 1665 1666 h->nr_huge_pages--; 1667 h->nr_huge_pages_node[nid]--; 1668 } 1669 1670 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1671 bool adjust_surplus) 1672 { 1673 int nid = folio_nid(folio); 1674 1675 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1676 1677 lockdep_assert_held(&hugetlb_lock); 1678 1679 INIT_LIST_HEAD(&folio->lru); 1680 h->nr_huge_pages++; 1681 h->nr_huge_pages_node[nid]++; 1682 1683 if (adjust_surplus) { 1684 h->surplus_huge_pages++; 1685 h->surplus_huge_pages_node[nid]++; 1686 } 1687 1688 __folio_set_hugetlb(folio); 1689 folio_change_private(folio, NULL); 1690 /* 1691 * We have to set hugetlb_vmemmap_optimized again as above 1692 * folio_change_private(folio, NULL) cleared it. 1693 */ 1694 folio_set_hugetlb_vmemmap_optimized(folio); 1695 1696 arch_clear_hugetlb_flags(folio); 1697 enqueue_hugetlb_folio(h, folio); 1698 } 1699 1700 static void __update_and_free_hugetlb_folio(struct hstate *h, 1701 struct folio *folio) 1702 { 1703 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1704 1705 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1706 return; 1707 1708 /* 1709 * If we don't know which subpages are hwpoisoned, we can't free 1710 * the hugepage, so it's leaked intentionally. 1711 */ 1712 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1713 return; 1714 1715 /* 1716 * If folio is not vmemmap optimized (!clear_flag), then the folio 1717 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1718 * can only be passed hugetlb pages and will BUG otherwise. 1719 */ 1720 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1721 spin_lock_irq(&hugetlb_lock); 1722 /* 1723 * If we cannot allocate vmemmap pages, just refuse to free the 1724 * page and put the page back on the hugetlb free list and treat 1725 * as a surplus page. 1726 */ 1727 add_hugetlb_folio(h, folio, true); 1728 spin_unlock_irq(&hugetlb_lock); 1729 return; 1730 } 1731 1732 /* 1733 * If vmemmap pages were allocated above, then we need to clear the 1734 * hugetlb flag under the hugetlb lock. 1735 */ 1736 if (folio_test_hugetlb(folio)) { 1737 spin_lock_irq(&hugetlb_lock); 1738 __folio_clear_hugetlb(folio); 1739 spin_unlock_irq(&hugetlb_lock); 1740 } 1741 1742 /* 1743 * Move PageHWPoison flag from head page to the raw error pages, 1744 * which makes any healthy subpages reusable. 1745 */ 1746 if (unlikely(folio_test_hwpoison(folio))) 1747 folio_clear_hugetlb_hwpoison(folio); 1748 1749 folio_ref_unfreeze(folio, 1); 1750 1751 /* 1752 * Non-gigantic pages demoted from CMA allocated gigantic pages 1753 * need to be given back to CMA in free_gigantic_folio. 1754 */ 1755 if (hstate_is_gigantic(h) || 1756 hugetlb_cma_folio(folio, huge_page_order(h))) { 1757 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1758 free_gigantic_folio(folio, huge_page_order(h)); 1759 } else { 1760 INIT_LIST_HEAD(&folio->_deferred_list); 1761 folio_put(folio); 1762 } 1763 } 1764 1765 /* 1766 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1767 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1768 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1769 * the vmemmap pages. 1770 * 1771 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1772 * freed and frees them one-by-one. As the page->mapping pointer is going 1773 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1774 * structure of a lockless linked list of huge pages to be freed. 1775 */ 1776 static LLIST_HEAD(hpage_freelist); 1777 1778 static void free_hpage_workfn(struct work_struct *work) 1779 { 1780 struct llist_node *node; 1781 1782 node = llist_del_all(&hpage_freelist); 1783 1784 while (node) { 1785 struct folio *folio; 1786 struct hstate *h; 1787 1788 folio = container_of((struct address_space **)node, 1789 struct folio, mapping); 1790 node = node->next; 1791 folio->mapping = NULL; 1792 /* 1793 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1794 * folio_hstate() is going to trigger because a previous call to 1795 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1796 * not use folio_hstate() directly. 1797 */ 1798 h = size_to_hstate(folio_size(folio)); 1799 1800 __update_and_free_hugetlb_folio(h, folio); 1801 1802 cond_resched(); 1803 } 1804 } 1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1806 1807 static inline void flush_free_hpage_work(struct hstate *h) 1808 { 1809 if (hugetlb_vmemmap_optimizable(h)) 1810 flush_work(&free_hpage_work); 1811 } 1812 1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1814 bool atomic) 1815 { 1816 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1817 __update_and_free_hugetlb_folio(h, folio); 1818 return; 1819 } 1820 1821 /* 1822 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1823 * 1824 * Only call schedule_work() if hpage_freelist is previously 1825 * empty. Otherwise, schedule_work() had been called but the workfn 1826 * hasn't retrieved the list yet. 1827 */ 1828 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1829 schedule_work(&free_hpage_work); 1830 } 1831 1832 static void bulk_vmemmap_restore_error(struct hstate *h, 1833 struct list_head *folio_list, 1834 struct list_head *non_hvo_folios) 1835 { 1836 struct folio *folio, *t_folio; 1837 1838 if (!list_empty(non_hvo_folios)) { 1839 /* 1840 * Free any restored hugetlb pages so that restore of the 1841 * entire list can be retried. 1842 * The idea is that in the common case of ENOMEM errors freeing 1843 * hugetlb pages with vmemmap we will free up memory so that we 1844 * can allocate vmemmap for more hugetlb pages. 1845 */ 1846 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1847 list_del(&folio->lru); 1848 spin_lock_irq(&hugetlb_lock); 1849 __folio_clear_hugetlb(folio); 1850 spin_unlock_irq(&hugetlb_lock); 1851 update_and_free_hugetlb_folio(h, folio, false); 1852 cond_resched(); 1853 } 1854 } else { 1855 /* 1856 * In the case where there are no folios which can be 1857 * immediately freed, we loop through the list trying to restore 1858 * vmemmap individually in the hope that someone elsewhere may 1859 * have done something to cause success (such as freeing some 1860 * memory). If unable to restore a hugetlb page, the hugetlb 1861 * page is made a surplus page and removed from the list. 1862 * If are able to restore vmemmap and free one hugetlb page, we 1863 * quit processing the list to retry the bulk operation. 1864 */ 1865 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1866 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1867 list_del(&folio->lru); 1868 spin_lock_irq(&hugetlb_lock); 1869 add_hugetlb_folio(h, folio, true); 1870 spin_unlock_irq(&hugetlb_lock); 1871 } else { 1872 list_del(&folio->lru); 1873 spin_lock_irq(&hugetlb_lock); 1874 __folio_clear_hugetlb(folio); 1875 spin_unlock_irq(&hugetlb_lock); 1876 update_and_free_hugetlb_folio(h, folio, false); 1877 cond_resched(); 1878 break; 1879 } 1880 } 1881 } 1882 1883 static void update_and_free_pages_bulk(struct hstate *h, 1884 struct list_head *folio_list) 1885 { 1886 long ret; 1887 struct folio *folio, *t_folio; 1888 LIST_HEAD(non_hvo_folios); 1889 1890 /* 1891 * First allocate required vmemmmap (if necessary) for all folios. 1892 * Carefully handle errors and free up any available hugetlb pages 1893 * in an effort to make forward progress. 1894 */ 1895 retry: 1896 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1897 if (ret < 0) { 1898 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1899 goto retry; 1900 } 1901 1902 /* 1903 * At this point, list should be empty, ret should be >= 0 and there 1904 * should only be pages on the non_hvo_folios list. 1905 * Do note that the non_hvo_folios list could be empty. 1906 * Without HVO enabled, ret will be 0 and there is no need to call 1907 * __folio_clear_hugetlb as this was done previously. 1908 */ 1909 VM_WARN_ON(!list_empty(folio_list)); 1910 VM_WARN_ON(ret < 0); 1911 if (!list_empty(&non_hvo_folios) && ret) { 1912 spin_lock_irq(&hugetlb_lock); 1913 list_for_each_entry(folio, &non_hvo_folios, lru) 1914 __folio_clear_hugetlb(folio); 1915 spin_unlock_irq(&hugetlb_lock); 1916 } 1917 1918 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1919 update_and_free_hugetlb_folio(h, folio, false); 1920 cond_resched(); 1921 } 1922 } 1923 1924 struct hstate *size_to_hstate(unsigned long size) 1925 { 1926 struct hstate *h; 1927 1928 for_each_hstate(h) { 1929 if (huge_page_size(h) == size) 1930 return h; 1931 } 1932 return NULL; 1933 } 1934 1935 void free_huge_folio(struct folio *folio) 1936 { 1937 /* 1938 * Can't pass hstate in here because it is called from the 1939 * generic mm code. 1940 */ 1941 struct hstate *h = folio_hstate(folio); 1942 int nid = folio_nid(folio); 1943 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1944 bool restore_reserve; 1945 unsigned long flags; 1946 1947 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1948 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1949 1950 hugetlb_set_folio_subpool(folio, NULL); 1951 if (folio_test_anon(folio)) 1952 __ClearPageAnonExclusive(&folio->page); 1953 folio->mapping = NULL; 1954 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1955 folio_clear_hugetlb_restore_reserve(folio); 1956 1957 /* 1958 * If HPageRestoreReserve was set on page, page allocation consumed a 1959 * reservation. If the page was associated with a subpool, there 1960 * would have been a page reserved in the subpool before allocation 1961 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1962 * reservation, do not call hugepage_subpool_put_pages() as this will 1963 * remove the reserved page from the subpool. 1964 */ 1965 if (!restore_reserve) { 1966 /* 1967 * A return code of zero implies that the subpool will be 1968 * under its minimum size if the reservation is not restored 1969 * after page is free. Therefore, force restore_reserve 1970 * operation. 1971 */ 1972 if (hugepage_subpool_put_pages(spool, 1) == 0) 1973 restore_reserve = true; 1974 } 1975 1976 spin_lock_irqsave(&hugetlb_lock, flags); 1977 folio_clear_hugetlb_migratable(folio); 1978 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1979 pages_per_huge_page(h), folio); 1980 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1981 pages_per_huge_page(h), folio); 1982 mem_cgroup_uncharge(folio); 1983 if (restore_reserve) 1984 h->resv_huge_pages++; 1985 1986 if (folio_test_hugetlb_temporary(folio)) { 1987 remove_hugetlb_folio(h, folio, false); 1988 spin_unlock_irqrestore(&hugetlb_lock, flags); 1989 update_and_free_hugetlb_folio(h, folio, true); 1990 } else if (h->surplus_huge_pages_node[nid]) { 1991 /* remove the page from active list */ 1992 remove_hugetlb_folio(h, folio, true); 1993 spin_unlock_irqrestore(&hugetlb_lock, flags); 1994 update_and_free_hugetlb_folio(h, folio, true); 1995 } else { 1996 arch_clear_hugetlb_flags(folio); 1997 enqueue_hugetlb_folio(h, folio); 1998 spin_unlock_irqrestore(&hugetlb_lock, flags); 1999 } 2000 } 2001 2002 /* 2003 * Must be called with the hugetlb lock held 2004 */ 2005 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2006 { 2007 lockdep_assert_held(&hugetlb_lock); 2008 h->nr_huge_pages++; 2009 h->nr_huge_pages_node[nid]++; 2010 } 2011 2012 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2013 { 2014 __folio_set_hugetlb(folio); 2015 INIT_LIST_HEAD(&folio->lru); 2016 hugetlb_set_folio_subpool(folio, NULL); 2017 set_hugetlb_cgroup(folio, NULL); 2018 set_hugetlb_cgroup_rsvd(folio, NULL); 2019 } 2020 2021 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2022 { 2023 init_new_hugetlb_folio(h, folio); 2024 hugetlb_vmemmap_optimize_folio(h, folio); 2025 } 2026 2027 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2028 { 2029 __prep_new_hugetlb_folio(h, folio); 2030 spin_lock_irq(&hugetlb_lock); 2031 __prep_account_new_huge_page(h, nid); 2032 spin_unlock_irq(&hugetlb_lock); 2033 } 2034 2035 static bool __prep_compound_gigantic_folio(struct folio *folio, 2036 unsigned int order, bool demote) 2037 { 2038 int i, j; 2039 int nr_pages = 1 << order; 2040 struct page *p; 2041 2042 __folio_clear_reserved(folio); 2043 for (i = 0; i < nr_pages; i++) { 2044 p = folio_page(folio, i); 2045 2046 /* 2047 * For gigantic hugepages allocated through bootmem at 2048 * boot, it's safer to be consistent with the not-gigantic 2049 * hugepages and clear the PG_reserved bit from all tail pages 2050 * too. Otherwise drivers using get_user_pages() to access tail 2051 * pages may get the reference counting wrong if they see 2052 * PG_reserved set on a tail page (despite the head page not 2053 * having PG_reserved set). Enforcing this consistency between 2054 * head and tail pages allows drivers to optimize away a check 2055 * on the head page when they need know if put_page() is needed 2056 * after get_user_pages(). 2057 */ 2058 if (i != 0) /* head page cleared above */ 2059 __ClearPageReserved(p); 2060 /* 2061 * Subtle and very unlikely 2062 * 2063 * Gigantic 'page allocators' such as memblock or cma will 2064 * return a set of pages with each page ref counted. We need 2065 * to turn this set of pages into a compound page with tail 2066 * page ref counts set to zero. Code such as speculative page 2067 * cache adding could take a ref on a 'to be' tail page. 2068 * We need to respect any increased ref count, and only set 2069 * the ref count to zero if count is currently 1. If count 2070 * is not 1, we return an error. An error return indicates 2071 * the set of pages can not be converted to a gigantic page. 2072 * The caller who allocated the pages should then discard the 2073 * pages using the appropriate free interface. 2074 * 2075 * In the case of demote, the ref count will be zero. 2076 */ 2077 if (!demote) { 2078 if (!page_ref_freeze(p, 1)) { 2079 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2080 goto out_error; 2081 } 2082 } else { 2083 VM_BUG_ON_PAGE(page_count(p), p); 2084 } 2085 if (i != 0) 2086 set_compound_head(p, &folio->page); 2087 } 2088 __folio_set_head(folio); 2089 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */ 2090 folio_set_order(folio, order); 2091 atomic_set(&folio->_entire_mapcount, -1); 2092 atomic_set(&folio->_large_mapcount, -1); 2093 atomic_set(&folio->_pincount, 0); 2094 return true; 2095 2096 out_error: 2097 /* undo page modifications made above */ 2098 for (j = 0; j < i; j++) { 2099 p = folio_page(folio, j); 2100 if (j != 0) 2101 clear_compound_head(p); 2102 set_page_refcounted(p); 2103 } 2104 /* need to clear PG_reserved on remaining tail pages */ 2105 for (; j < nr_pages; j++) { 2106 p = folio_page(folio, j); 2107 __ClearPageReserved(p); 2108 } 2109 return false; 2110 } 2111 2112 static bool prep_compound_gigantic_folio(struct folio *folio, 2113 unsigned int order) 2114 { 2115 return __prep_compound_gigantic_folio(folio, order, false); 2116 } 2117 2118 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2119 unsigned int order) 2120 { 2121 return __prep_compound_gigantic_folio(folio, order, true); 2122 } 2123 2124 /* 2125 * Find and lock address space (mapping) in write mode. 2126 * 2127 * Upon entry, the folio is locked which means that folio_mapping() is 2128 * stable. Due to locking order, we can only trylock_write. If we can 2129 * not get the lock, simply return NULL to caller. 2130 */ 2131 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 2132 { 2133 struct address_space *mapping = folio_mapping(folio); 2134 2135 if (!mapping) 2136 return mapping; 2137 2138 if (i_mmap_trylock_write(mapping)) 2139 return mapping; 2140 2141 return NULL; 2142 } 2143 2144 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2145 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2146 nodemask_t *node_alloc_noretry) 2147 { 2148 int order = huge_page_order(h); 2149 struct folio *folio; 2150 bool alloc_try_hard = true; 2151 bool retry = true; 2152 2153 /* 2154 * By default we always try hard to allocate the folio with 2155 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 2156 * a loop (to adjust global huge page counts) and previous allocation 2157 * failed, do not continue to try hard on the same node. Use the 2158 * node_alloc_noretry bitmap to manage this state information. 2159 */ 2160 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2161 alloc_try_hard = false; 2162 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2163 if (alloc_try_hard) 2164 gfp_mask |= __GFP_RETRY_MAYFAIL; 2165 if (nid == NUMA_NO_NODE) 2166 nid = numa_mem_id(); 2167 retry: 2168 folio = __folio_alloc(gfp_mask, order, nid, nmask); 2169 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 2170 if (folio) 2171 folio_clear_large_rmappable(folio); 2172 2173 if (folio && !folio_ref_freeze(folio, 1)) { 2174 folio_put(folio); 2175 if (retry) { /* retry once */ 2176 retry = false; 2177 goto retry; 2178 } 2179 /* WOW! twice in a row. */ 2180 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 2181 folio = NULL; 2182 } 2183 2184 /* 2185 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 2186 * folio this indicates an overall state change. Clear bit so 2187 * that we resume normal 'try hard' allocations. 2188 */ 2189 if (node_alloc_noretry && folio && !alloc_try_hard) 2190 node_clear(nid, *node_alloc_noretry); 2191 2192 /* 2193 * If we tried hard to get a folio but failed, set bit so that 2194 * subsequent attempts will not try as hard until there is an 2195 * overall state change. 2196 */ 2197 if (node_alloc_noretry && !folio && alloc_try_hard) 2198 node_set(nid, *node_alloc_noretry); 2199 2200 if (!folio) { 2201 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2202 return NULL; 2203 } 2204 2205 __count_vm_event(HTLB_BUDDY_PGALLOC); 2206 return folio; 2207 } 2208 2209 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2210 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2211 nodemask_t *node_alloc_noretry) 2212 { 2213 struct folio *folio; 2214 bool retry = false; 2215 2216 retry: 2217 if (hstate_is_gigantic(h)) 2218 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2219 else 2220 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2221 nid, nmask, node_alloc_noretry); 2222 if (!folio) 2223 return NULL; 2224 2225 if (hstate_is_gigantic(h)) { 2226 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2227 /* 2228 * Rare failure to convert pages to compound page. 2229 * Free pages and try again - ONCE! 2230 */ 2231 free_gigantic_folio(folio, huge_page_order(h)); 2232 if (!retry) { 2233 retry = true; 2234 goto retry; 2235 } 2236 return NULL; 2237 } 2238 } 2239 2240 return folio; 2241 } 2242 2243 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2244 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2245 nodemask_t *node_alloc_noretry) 2246 { 2247 struct folio *folio; 2248 2249 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2250 node_alloc_noretry); 2251 if (folio) 2252 init_new_hugetlb_folio(h, folio); 2253 return folio; 2254 } 2255 2256 /* 2257 * Common helper to allocate a fresh hugetlb page. All specific allocators 2258 * should use this function to get new hugetlb pages 2259 * 2260 * Note that returned page is 'frozen': ref count of head page and all tail 2261 * pages is zero. 2262 */ 2263 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2264 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2265 { 2266 struct folio *folio; 2267 2268 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2269 if (!folio) 2270 return NULL; 2271 2272 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2273 return folio; 2274 } 2275 2276 static void prep_and_add_allocated_folios(struct hstate *h, 2277 struct list_head *folio_list) 2278 { 2279 unsigned long flags; 2280 struct folio *folio, *tmp_f; 2281 2282 /* Send list for bulk vmemmap optimization processing */ 2283 hugetlb_vmemmap_optimize_folios(h, folio_list); 2284 2285 /* Add all new pool pages to free lists in one lock cycle */ 2286 spin_lock_irqsave(&hugetlb_lock, flags); 2287 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2288 __prep_account_new_huge_page(h, folio_nid(folio)); 2289 enqueue_hugetlb_folio(h, folio); 2290 } 2291 spin_unlock_irqrestore(&hugetlb_lock, flags); 2292 } 2293 2294 /* 2295 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2296 * will later be added to the appropriate hugetlb pool. 2297 */ 2298 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2299 nodemask_t *nodes_allowed, 2300 nodemask_t *node_alloc_noretry, 2301 int *next_node) 2302 { 2303 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2304 int nr_nodes, node; 2305 2306 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2307 struct folio *folio; 2308 2309 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2310 nodes_allowed, node_alloc_noretry); 2311 if (folio) 2312 return folio; 2313 } 2314 2315 return NULL; 2316 } 2317 2318 /* 2319 * Remove huge page from pool from next node to free. Attempt to keep 2320 * persistent huge pages more or less balanced over allowed nodes. 2321 * This routine only 'removes' the hugetlb page. The caller must make 2322 * an additional call to free the page to low level allocators. 2323 * Called with hugetlb_lock locked. 2324 */ 2325 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2326 nodemask_t *nodes_allowed, bool acct_surplus) 2327 { 2328 int nr_nodes, node; 2329 struct folio *folio = NULL; 2330 2331 lockdep_assert_held(&hugetlb_lock); 2332 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2333 /* 2334 * If we're returning unused surplus pages, only examine 2335 * nodes with surplus pages. 2336 */ 2337 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2338 !list_empty(&h->hugepage_freelists[node])) { 2339 folio = list_entry(h->hugepage_freelists[node].next, 2340 struct folio, lru); 2341 remove_hugetlb_folio(h, folio, acct_surplus); 2342 break; 2343 } 2344 } 2345 2346 return folio; 2347 } 2348 2349 /* 2350 * Dissolve a given free hugetlb folio into free buddy pages. This function 2351 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2352 * This function returns values like below: 2353 * 2354 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2355 * when the system is under memory pressure and the feature of 2356 * freeing unused vmemmap pages associated with each hugetlb page 2357 * is enabled. 2358 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2359 * (allocated or reserved.) 2360 * 0: successfully dissolved free hugepages or the page is not a 2361 * hugepage (considered as already dissolved) 2362 */ 2363 int dissolve_free_hugetlb_folio(struct folio *folio) 2364 { 2365 int rc = -EBUSY; 2366 2367 retry: 2368 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2369 if (!folio_test_hugetlb(folio)) 2370 return 0; 2371 2372 spin_lock_irq(&hugetlb_lock); 2373 if (!folio_test_hugetlb(folio)) { 2374 rc = 0; 2375 goto out; 2376 } 2377 2378 if (!folio_ref_count(folio)) { 2379 struct hstate *h = folio_hstate(folio); 2380 if (!available_huge_pages(h)) 2381 goto out; 2382 2383 /* 2384 * We should make sure that the page is already on the free list 2385 * when it is dissolved. 2386 */ 2387 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2388 spin_unlock_irq(&hugetlb_lock); 2389 cond_resched(); 2390 2391 /* 2392 * Theoretically, we should return -EBUSY when we 2393 * encounter this race. In fact, we have a chance 2394 * to successfully dissolve the page if we do a 2395 * retry. Because the race window is quite small. 2396 * If we seize this opportunity, it is an optimization 2397 * for increasing the success rate of dissolving page. 2398 */ 2399 goto retry; 2400 } 2401 2402 remove_hugetlb_folio(h, folio, false); 2403 h->max_huge_pages--; 2404 spin_unlock_irq(&hugetlb_lock); 2405 2406 /* 2407 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2408 * before freeing the page. update_and_free_hugtlb_folio will fail to 2409 * free the page if it can not allocate required vmemmap. We 2410 * need to adjust max_huge_pages if the page is not freed. 2411 * Attempt to allocate vmemmmap here so that we can take 2412 * appropriate action on failure. 2413 * 2414 * The folio_test_hugetlb check here is because 2415 * remove_hugetlb_folio will clear hugetlb folio flag for 2416 * non-vmemmap optimized hugetlb folios. 2417 */ 2418 if (folio_test_hugetlb(folio)) { 2419 rc = hugetlb_vmemmap_restore_folio(h, folio); 2420 if (rc) { 2421 spin_lock_irq(&hugetlb_lock); 2422 add_hugetlb_folio(h, folio, false); 2423 h->max_huge_pages++; 2424 goto out; 2425 } 2426 } else 2427 rc = 0; 2428 2429 update_and_free_hugetlb_folio(h, folio, false); 2430 return rc; 2431 } 2432 out: 2433 spin_unlock_irq(&hugetlb_lock); 2434 return rc; 2435 } 2436 2437 /* 2438 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2439 * make specified memory blocks removable from the system. 2440 * Note that this will dissolve a free gigantic hugepage completely, if any 2441 * part of it lies within the given range. 2442 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2443 * free hugetlb folios that were dissolved before that error are lost. 2444 */ 2445 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2446 { 2447 unsigned long pfn; 2448 struct folio *folio; 2449 int rc = 0; 2450 unsigned int order; 2451 struct hstate *h; 2452 2453 if (!hugepages_supported()) 2454 return rc; 2455 2456 order = huge_page_order(&default_hstate); 2457 for_each_hstate(h) 2458 order = min(order, huge_page_order(h)); 2459 2460 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2461 folio = pfn_folio(pfn); 2462 rc = dissolve_free_hugetlb_folio(folio); 2463 if (rc) 2464 break; 2465 } 2466 2467 return rc; 2468 } 2469 2470 /* 2471 * Allocates a fresh surplus page from the page allocator. 2472 */ 2473 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2474 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2475 { 2476 struct folio *folio = NULL; 2477 2478 if (hstate_is_gigantic(h)) 2479 return NULL; 2480 2481 spin_lock_irq(&hugetlb_lock); 2482 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2483 goto out_unlock; 2484 spin_unlock_irq(&hugetlb_lock); 2485 2486 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2487 if (!folio) 2488 return NULL; 2489 2490 spin_lock_irq(&hugetlb_lock); 2491 /* 2492 * We could have raced with the pool size change. 2493 * Double check that and simply deallocate the new page 2494 * if we would end up overcommiting the surpluses. Abuse 2495 * temporary page to workaround the nasty free_huge_folio 2496 * codeflow 2497 */ 2498 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2499 folio_set_hugetlb_temporary(folio); 2500 spin_unlock_irq(&hugetlb_lock); 2501 free_huge_folio(folio); 2502 return NULL; 2503 } 2504 2505 h->surplus_huge_pages++; 2506 h->surplus_huge_pages_node[folio_nid(folio)]++; 2507 2508 out_unlock: 2509 spin_unlock_irq(&hugetlb_lock); 2510 2511 return folio; 2512 } 2513 2514 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2515 int nid, nodemask_t *nmask) 2516 { 2517 struct folio *folio; 2518 2519 if (hstate_is_gigantic(h)) 2520 return NULL; 2521 2522 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2523 if (!folio) 2524 return NULL; 2525 2526 /* fresh huge pages are frozen */ 2527 folio_ref_unfreeze(folio, 1); 2528 /* 2529 * We do not account these pages as surplus because they are only 2530 * temporary and will be released properly on the last reference 2531 */ 2532 folio_set_hugetlb_temporary(folio); 2533 2534 return folio; 2535 } 2536 2537 /* 2538 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2539 */ 2540 static 2541 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2542 struct vm_area_struct *vma, unsigned long addr) 2543 { 2544 struct folio *folio = NULL; 2545 struct mempolicy *mpol; 2546 gfp_t gfp_mask = htlb_alloc_mask(h); 2547 int nid; 2548 nodemask_t *nodemask; 2549 2550 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2551 if (mpol_is_preferred_many(mpol)) { 2552 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2553 2554 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2555 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2556 2557 /* Fallback to all nodes if page==NULL */ 2558 nodemask = NULL; 2559 } 2560 2561 if (!folio) 2562 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2563 mpol_cond_put(mpol); 2564 return folio; 2565 } 2566 2567 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2568 nodemask_t *nmask, gfp_t gfp_mask) 2569 { 2570 struct folio *folio; 2571 2572 spin_lock_irq(&hugetlb_lock); 2573 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2574 nmask); 2575 if (folio) { 2576 VM_BUG_ON(!h->resv_huge_pages); 2577 h->resv_huge_pages--; 2578 } 2579 2580 spin_unlock_irq(&hugetlb_lock); 2581 return folio; 2582 } 2583 2584 /* folio migration callback function */ 2585 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2586 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2587 { 2588 spin_lock_irq(&hugetlb_lock); 2589 if (available_huge_pages(h)) { 2590 struct folio *folio; 2591 2592 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2593 preferred_nid, nmask); 2594 if (folio) { 2595 spin_unlock_irq(&hugetlb_lock); 2596 return folio; 2597 } 2598 } 2599 spin_unlock_irq(&hugetlb_lock); 2600 2601 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2602 if (!allow_alloc_fallback) 2603 gfp_mask |= __GFP_THISNODE; 2604 2605 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2606 } 2607 2608 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2609 { 2610 #ifdef CONFIG_NUMA 2611 struct mempolicy *mpol = get_task_policy(current); 2612 2613 /* 2614 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2615 * (from policy_nodemask) specifically for hugetlb case 2616 */ 2617 if (mpol->mode == MPOL_BIND && 2618 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2619 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2620 return &mpol->nodes; 2621 #endif 2622 return NULL; 2623 } 2624 2625 /* 2626 * Increase the hugetlb pool such that it can accommodate a reservation 2627 * of size 'delta'. 2628 */ 2629 static int gather_surplus_pages(struct hstate *h, long delta) 2630 __must_hold(&hugetlb_lock) 2631 { 2632 LIST_HEAD(surplus_list); 2633 struct folio *folio, *tmp; 2634 int ret; 2635 long i; 2636 long needed, allocated; 2637 bool alloc_ok = true; 2638 int node; 2639 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2640 2641 lockdep_assert_held(&hugetlb_lock); 2642 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2643 if (needed <= 0) { 2644 h->resv_huge_pages += delta; 2645 return 0; 2646 } 2647 2648 allocated = 0; 2649 2650 ret = -ENOMEM; 2651 retry: 2652 spin_unlock_irq(&hugetlb_lock); 2653 for (i = 0; i < needed; i++) { 2654 folio = NULL; 2655 for_each_node_mask(node, cpuset_current_mems_allowed) { 2656 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) { 2657 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2658 node, NULL); 2659 if (folio) 2660 break; 2661 } 2662 } 2663 if (!folio) { 2664 alloc_ok = false; 2665 break; 2666 } 2667 list_add(&folio->lru, &surplus_list); 2668 cond_resched(); 2669 } 2670 allocated += i; 2671 2672 /* 2673 * After retaking hugetlb_lock, we need to recalculate 'needed' 2674 * because either resv_huge_pages or free_huge_pages may have changed. 2675 */ 2676 spin_lock_irq(&hugetlb_lock); 2677 needed = (h->resv_huge_pages + delta) - 2678 (h->free_huge_pages + allocated); 2679 if (needed > 0) { 2680 if (alloc_ok) 2681 goto retry; 2682 /* 2683 * We were not able to allocate enough pages to 2684 * satisfy the entire reservation so we free what 2685 * we've allocated so far. 2686 */ 2687 goto free; 2688 } 2689 /* 2690 * The surplus_list now contains _at_least_ the number of extra pages 2691 * needed to accommodate the reservation. Add the appropriate number 2692 * of pages to the hugetlb pool and free the extras back to the buddy 2693 * allocator. Commit the entire reservation here to prevent another 2694 * process from stealing the pages as they are added to the pool but 2695 * before they are reserved. 2696 */ 2697 needed += allocated; 2698 h->resv_huge_pages += delta; 2699 ret = 0; 2700 2701 /* Free the needed pages to the hugetlb pool */ 2702 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2703 if ((--needed) < 0) 2704 break; 2705 /* Add the page to the hugetlb allocator */ 2706 enqueue_hugetlb_folio(h, folio); 2707 } 2708 free: 2709 spin_unlock_irq(&hugetlb_lock); 2710 2711 /* 2712 * Free unnecessary surplus pages to the buddy allocator. 2713 * Pages have no ref count, call free_huge_folio directly. 2714 */ 2715 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2716 free_huge_folio(folio); 2717 spin_lock_irq(&hugetlb_lock); 2718 2719 return ret; 2720 } 2721 2722 /* 2723 * This routine has two main purposes: 2724 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2725 * in unused_resv_pages. This corresponds to the prior adjustments made 2726 * to the associated reservation map. 2727 * 2) Free any unused surplus pages that may have been allocated to satisfy 2728 * the reservation. As many as unused_resv_pages may be freed. 2729 */ 2730 static void return_unused_surplus_pages(struct hstate *h, 2731 unsigned long unused_resv_pages) 2732 { 2733 unsigned long nr_pages; 2734 LIST_HEAD(page_list); 2735 2736 lockdep_assert_held(&hugetlb_lock); 2737 /* Uncommit the reservation */ 2738 h->resv_huge_pages -= unused_resv_pages; 2739 2740 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2741 goto out; 2742 2743 /* 2744 * Part (or even all) of the reservation could have been backed 2745 * by pre-allocated pages. Only free surplus pages. 2746 */ 2747 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2748 2749 /* 2750 * We want to release as many surplus pages as possible, spread 2751 * evenly across all nodes with memory. Iterate across these nodes 2752 * until we can no longer free unreserved surplus pages. This occurs 2753 * when the nodes with surplus pages have no free pages. 2754 * remove_pool_hugetlb_folio() will balance the freed pages across the 2755 * on-line nodes with memory and will handle the hstate accounting. 2756 */ 2757 while (nr_pages--) { 2758 struct folio *folio; 2759 2760 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2761 if (!folio) 2762 goto out; 2763 2764 list_add(&folio->lru, &page_list); 2765 } 2766 2767 out: 2768 spin_unlock_irq(&hugetlb_lock); 2769 update_and_free_pages_bulk(h, &page_list); 2770 spin_lock_irq(&hugetlb_lock); 2771 } 2772 2773 2774 /* 2775 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2776 * are used by the huge page allocation routines to manage reservations. 2777 * 2778 * vma_needs_reservation is called to determine if the huge page at addr 2779 * within the vma has an associated reservation. If a reservation is 2780 * needed, the value 1 is returned. The caller is then responsible for 2781 * managing the global reservation and subpool usage counts. After 2782 * the huge page has been allocated, vma_commit_reservation is called 2783 * to add the page to the reservation map. If the page allocation fails, 2784 * the reservation must be ended instead of committed. vma_end_reservation 2785 * is called in such cases. 2786 * 2787 * In the normal case, vma_commit_reservation returns the same value 2788 * as the preceding vma_needs_reservation call. The only time this 2789 * is not the case is if a reserve map was changed between calls. It 2790 * is the responsibility of the caller to notice the difference and 2791 * take appropriate action. 2792 * 2793 * vma_add_reservation is used in error paths where a reservation must 2794 * be restored when a newly allocated huge page must be freed. It is 2795 * to be called after calling vma_needs_reservation to determine if a 2796 * reservation exists. 2797 * 2798 * vma_del_reservation is used in error paths where an entry in the reserve 2799 * map was created during huge page allocation and must be removed. It is to 2800 * be called after calling vma_needs_reservation to determine if a reservation 2801 * exists. 2802 */ 2803 enum vma_resv_mode { 2804 VMA_NEEDS_RESV, 2805 VMA_COMMIT_RESV, 2806 VMA_END_RESV, 2807 VMA_ADD_RESV, 2808 VMA_DEL_RESV, 2809 }; 2810 static long __vma_reservation_common(struct hstate *h, 2811 struct vm_area_struct *vma, unsigned long addr, 2812 enum vma_resv_mode mode) 2813 { 2814 struct resv_map *resv; 2815 pgoff_t idx; 2816 long ret; 2817 long dummy_out_regions_needed; 2818 2819 resv = vma_resv_map(vma); 2820 if (!resv) 2821 return 1; 2822 2823 idx = vma_hugecache_offset(h, vma, addr); 2824 switch (mode) { 2825 case VMA_NEEDS_RESV: 2826 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2827 /* We assume that vma_reservation_* routines always operate on 2828 * 1 page, and that adding to resv map a 1 page entry can only 2829 * ever require 1 region. 2830 */ 2831 VM_BUG_ON(dummy_out_regions_needed != 1); 2832 break; 2833 case VMA_COMMIT_RESV: 2834 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2835 /* region_add calls of range 1 should never fail. */ 2836 VM_BUG_ON(ret < 0); 2837 break; 2838 case VMA_END_RESV: 2839 region_abort(resv, idx, idx + 1, 1); 2840 ret = 0; 2841 break; 2842 case VMA_ADD_RESV: 2843 if (vma->vm_flags & VM_MAYSHARE) { 2844 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2845 /* region_add calls of range 1 should never fail. */ 2846 VM_BUG_ON(ret < 0); 2847 } else { 2848 region_abort(resv, idx, idx + 1, 1); 2849 ret = region_del(resv, idx, idx + 1); 2850 } 2851 break; 2852 case VMA_DEL_RESV: 2853 if (vma->vm_flags & VM_MAYSHARE) { 2854 region_abort(resv, idx, idx + 1, 1); 2855 ret = region_del(resv, idx, idx + 1); 2856 } else { 2857 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2858 /* region_add calls of range 1 should never fail. */ 2859 VM_BUG_ON(ret < 0); 2860 } 2861 break; 2862 default: 2863 BUG(); 2864 } 2865 2866 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2867 return ret; 2868 /* 2869 * We know private mapping must have HPAGE_RESV_OWNER set. 2870 * 2871 * In most cases, reserves always exist for private mappings. 2872 * However, a file associated with mapping could have been 2873 * hole punched or truncated after reserves were consumed. 2874 * As subsequent fault on such a range will not use reserves. 2875 * Subtle - The reserve map for private mappings has the 2876 * opposite meaning than that of shared mappings. If NO 2877 * entry is in the reserve map, it means a reservation exists. 2878 * If an entry exists in the reserve map, it means the 2879 * reservation has already been consumed. As a result, the 2880 * return value of this routine is the opposite of the 2881 * value returned from reserve map manipulation routines above. 2882 */ 2883 if (ret > 0) 2884 return 0; 2885 if (ret == 0) 2886 return 1; 2887 return ret; 2888 } 2889 2890 static long vma_needs_reservation(struct hstate *h, 2891 struct vm_area_struct *vma, unsigned long addr) 2892 { 2893 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2894 } 2895 2896 static long vma_commit_reservation(struct hstate *h, 2897 struct vm_area_struct *vma, unsigned long addr) 2898 { 2899 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2900 } 2901 2902 static void vma_end_reservation(struct hstate *h, 2903 struct vm_area_struct *vma, unsigned long addr) 2904 { 2905 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2906 } 2907 2908 static long vma_add_reservation(struct hstate *h, 2909 struct vm_area_struct *vma, unsigned long addr) 2910 { 2911 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2912 } 2913 2914 static long vma_del_reservation(struct hstate *h, 2915 struct vm_area_struct *vma, unsigned long addr) 2916 { 2917 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2918 } 2919 2920 /* 2921 * This routine is called to restore reservation information on error paths. 2922 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2923 * and the hugetlb mutex should remain held when calling this routine. 2924 * 2925 * It handles two specific cases: 2926 * 1) A reservation was in place and the folio consumed the reservation. 2927 * hugetlb_restore_reserve is set in the folio. 2928 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2929 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2930 * 2931 * In case 1, free_huge_folio later in the error path will increment the 2932 * global reserve count. But, free_huge_folio does not have enough context 2933 * to adjust the reservation map. This case deals primarily with private 2934 * mappings. Adjust the reserve map here to be consistent with global 2935 * reserve count adjustments to be made by free_huge_folio. Make sure the 2936 * reserve map indicates there is a reservation present. 2937 * 2938 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2939 */ 2940 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2941 unsigned long address, struct folio *folio) 2942 { 2943 long rc = vma_needs_reservation(h, vma, address); 2944 2945 if (folio_test_hugetlb_restore_reserve(folio)) { 2946 if (unlikely(rc < 0)) 2947 /* 2948 * Rare out of memory condition in reserve map 2949 * manipulation. Clear hugetlb_restore_reserve so 2950 * that global reserve count will not be incremented 2951 * by free_huge_folio. This will make it appear 2952 * as though the reservation for this folio was 2953 * consumed. This may prevent the task from 2954 * faulting in the folio at a later time. This 2955 * is better than inconsistent global huge page 2956 * accounting of reserve counts. 2957 */ 2958 folio_clear_hugetlb_restore_reserve(folio); 2959 else if (rc) 2960 (void)vma_add_reservation(h, vma, address); 2961 else 2962 vma_end_reservation(h, vma, address); 2963 } else { 2964 if (!rc) { 2965 /* 2966 * This indicates there is an entry in the reserve map 2967 * not added by alloc_hugetlb_folio. We know it was added 2968 * before the alloc_hugetlb_folio call, otherwise 2969 * hugetlb_restore_reserve would be set on the folio. 2970 * Remove the entry so that a subsequent allocation 2971 * does not consume a reservation. 2972 */ 2973 rc = vma_del_reservation(h, vma, address); 2974 if (rc < 0) 2975 /* 2976 * VERY rare out of memory condition. Since 2977 * we can not delete the entry, set 2978 * hugetlb_restore_reserve so that the reserve 2979 * count will be incremented when the folio 2980 * is freed. This reserve will be consumed 2981 * on a subsequent allocation. 2982 */ 2983 folio_set_hugetlb_restore_reserve(folio); 2984 } else if (rc < 0) { 2985 /* 2986 * Rare out of memory condition from 2987 * vma_needs_reservation call. Memory allocation is 2988 * only attempted if a new entry is needed. Therefore, 2989 * this implies there is not an entry in the 2990 * reserve map. 2991 * 2992 * For shared mappings, no entry in the map indicates 2993 * no reservation. We are done. 2994 */ 2995 if (!(vma->vm_flags & VM_MAYSHARE)) 2996 /* 2997 * For private mappings, no entry indicates 2998 * a reservation is present. Since we can 2999 * not add an entry, set hugetlb_restore_reserve 3000 * on the folio so reserve count will be 3001 * incremented when freed. This reserve will 3002 * be consumed on a subsequent allocation. 3003 */ 3004 folio_set_hugetlb_restore_reserve(folio); 3005 } else 3006 /* 3007 * No reservation present, do nothing 3008 */ 3009 vma_end_reservation(h, vma, address); 3010 } 3011 } 3012 3013 /* 3014 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 3015 * the old one 3016 * @h: struct hstate old page belongs to 3017 * @old_folio: Old folio to dissolve 3018 * @list: List to isolate the page in case we need to 3019 * Returns 0 on success, otherwise negated error. 3020 */ 3021 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3022 struct folio *old_folio, struct list_head *list) 3023 { 3024 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3025 int nid = folio_nid(old_folio); 3026 struct folio *new_folio = NULL; 3027 int ret = 0; 3028 3029 retry: 3030 spin_lock_irq(&hugetlb_lock); 3031 if (!folio_test_hugetlb(old_folio)) { 3032 /* 3033 * Freed from under us. Drop new_folio too. 3034 */ 3035 goto free_new; 3036 } else if (folio_ref_count(old_folio)) { 3037 bool isolated; 3038 3039 /* 3040 * Someone has grabbed the folio, try to isolate it here. 3041 * Fail with -EBUSY if not possible. 3042 */ 3043 spin_unlock_irq(&hugetlb_lock); 3044 isolated = isolate_hugetlb(old_folio, list); 3045 ret = isolated ? 0 : -EBUSY; 3046 spin_lock_irq(&hugetlb_lock); 3047 goto free_new; 3048 } else if (!folio_test_hugetlb_freed(old_folio)) { 3049 /* 3050 * Folio's refcount is 0 but it has not been enqueued in the 3051 * freelist yet. Race window is small, so we can succeed here if 3052 * we retry. 3053 */ 3054 spin_unlock_irq(&hugetlb_lock); 3055 cond_resched(); 3056 goto retry; 3057 } else { 3058 if (!new_folio) { 3059 spin_unlock_irq(&hugetlb_lock); 3060 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 3061 NULL, NULL); 3062 if (!new_folio) 3063 return -ENOMEM; 3064 __prep_new_hugetlb_folio(h, new_folio); 3065 goto retry; 3066 } 3067 3068 /* 3069 * Ok, old_folio is still a genuine free hugepage. Remove it from 3070 * the freelist and decrease the counters. These will be 3071 * incremented again when calling __prep_account_new_huge_page() 3072 * and enqueue_hugetlb_folio() for new_folio. The counters will 3073 * remain stable since this happens under the lock. 3074 */ 3075 remove_hugetlb_folio(h, old_folio, false); 3076 3077 /* 3078 * Ref count on new_folio is already zero as it was dropped 3079 * earlier. It can be directly added to the pool free list. 3080 */ 3081 __prep_account_new_huge_page(h, nid); 3082 enqueue_hugetlb_folio(h, new_folio); 3083 3084 /* 3085 * Folio has been replaced, we can safely free the old one. 3086 */ 3087 spin_unlock_irq(&hugetlb_lock); 3088 update_and_free_hugetlb_folio(h, old_folio, false); 3089 } 3090 3091 return ret; 3092 3093 free_new: 3094 spin_unlock_irq(&hugetlb_lock); 3095 if (new_folio) 3096 update_and_free_hugetlb_folio(h, new_folio, false); 3097 3098 return ret; 3099 } 3100 3101 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3102 { 3103 struct hstate *h; 3104 struct folio *folio = page_folio(page); 3105 int ret = -EBUSY; 3106 3107 /* 3108 * The page might have been dissolved from under our feet, so make sure 3109 * to carefully check the state under the lock. 3110 * Return success when racing as if we dissolved the page ourselves. 3111 */ 3112 spin_lock_irq(&hugetlb_lock); 3113 if (folio_test_hugetlb(folio)) { 3114 h = folio_hstate(folio); 3115 } else { 3116 spin_unlock_irq(&hugetlb_lock); 3117 return 0; 3118 } 3119 spin_unlock_irq(&hugetlb_lock); 3120 3121 /* 3122 * Fence off gigantic pages as there is a cyclic dependency between 3123 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3124 * of bailing out right away without further retrying. 3125 */ 3126 if (hstate_is_gigantic(h)) 3127 return -ENOMEM; 3128 3129 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3130 ret = 0; 3131 else if (!folio_ref_count(folio)) 3132 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3133 3134 return ret; 3135 } 3136 3137 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3138 unsigned long addr, int avoid_reserve) 3139 { 3140 struct hugepage_subpool *spool = subpool_vma(vma); 3141 struct hstate *h = hstate_vma(vma); 3142 struct folio *folio; 3143 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3144 long gbl_chg; 3145 int memcg_charge_ret, ret, idx; 3146 struct hugetlb_cgroup *h_cg = NULL; 3147 struct mem_cgroup *memcg; 3148 bool deferred_reserve; 3149 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3150 3151 memcg = get_mem_cgroup_from_current(); 3152 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3153 if (memcg_charge_ret == -ENOMEM) { 3154 mem_cgroup_put(memcg); 3155 return ERR_PTR(-ENOMEM); 3156 } 3157 3158 idx = hstate_index(h); 3159 /* 3160 * Examine the region/reserve map to determine if the process 3161 * has a reservation for the page to be allocated. A return 3162 * code of zero indicates a reservation exists (no change). 3163 */ 3164 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3165 if (map_chg < 0) { 3166 if (!memcg_charge_ret) 3167 mem_cgroup_cancel_charge(memcg, nr_pages); 3168 mem_cgroup_put(memcg); 3169 return ERR_PTR(-ENOMEM); 3170 } 3171 3172 /* 3173 * Processes that did not create the mapping will have no 3174 * reserves as indicated by the region/reserve map. Check 3175 * that the allocation will not exceed the subpool limit. 3176 * Allocations for MAP_NORESERVE mappings also need to be 3177 * checked against any subpool limit. 3178 */ 3179 if (map_chg || avoid_reserve) { 3180 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3181 if (gbl_chg < 0) 3182 goto out_end_reservation; 3183 3184 /* 3185 * Even though there was no reservation in the region/reserve 3186 * map, there could be reservations associated with the 3187 * subpool that can be used. This would be indicated if the 3188 * return value of hugepage_subpool_get_pages() is zero. 3189 * However, if avoid_reserve is specified we still avoid even 3190 * the subpool reservations. 3191 */ 3192 if (avoid_reserve) 3193 gbl_chg = 1; 3194 } 3195 3196 /* If this allocation is not consuming a reservation, charge it now. 3197 */ 3198 deferred_reserve = map_chg || avoid_reserve; 3199 if (deferred_reserve) { 3200 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3201 idx, pages_per_huge_page(h), &h_cg); 3202 if (ret) 3203 goto out_subpool_put; 3204 } 3205 3206 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3207 if (ret) 3208 goto out_uncharge_cgroup_reservation; 3209 3210 spin_lock_irq(&hugetlb_lock); 3211 /* 3212 * glb_chg is passed to indicate whether or not a page must be taken 3213 * from the global free pool (global change). gbl_chg == 0 indicates 3214 * a reservation exists for the allocation. 3215 */ 3216 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3217 if (!folio) { 3218 spin_unlock_irq(&hugetlb_lock); 3219 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3220 if (!folio) 3221 goto out_uncharge_cgroup; 3222 spin_lock_irq(&hugetlb_lock); 3223 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3224 folio_set_hugetlb_restore_reserve(folio); 3225 h->resv_huge_pages--; 3226 } 3227 list_add(&folio->lru, &h->hugepage_activelist); 3228 folio_ref_unfreeze(folio, 1); 3229 /* Fall through */ 3230 } 3231 3232 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3233 /* If allocation is not consuming a reservation, also store the 3234 * hugetlb_cgroup pointer on the page. 3235 */ 3236 if (deferred_reserve) { 3237 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3238 h_cg, folio); 3239 } 3240 3241 spin_unlock_irq(&hugetlb_lock); 3242 3243 hugetlb_set_folio_subpool(folio, spool); 3244 3245 map_commit = vma_commit_reservation(h, vma, addr); 3246 if (unlikely(map_chg > map_commit)) { 3247 /* 3248 * The page was added to the reservation map between 3249 * vma_needs_reservation and vma_commit_reservation. 3250 * This indicates a race with hugetlb_reserve_pages. 3251 * Adjust for the subpool count incremented above AND 3252 * in hugetlb_reserve_pages for the same page. Also, 3253 * the reservation count added in hugetlb_reserve_pages 3254 * no longer applies. 3255 */ 3256 long rsv_adjust; 3257 3258 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3259 hugetlb_acct_memory(h, -rsv_adjust); 3260 if (deferred_reserve) { 3261 spin_lock_irq(&hugetlb_lock); 3262 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3263 pages_per_huge_page(h), folio); 3264 spin_unlock_irq(&hugetlb_lock); 3265 } 3266 } 3267 3268 if (!memcg_charge_ret) 3269 mem_cgroup_commit_charge(folio, memcg); 3270 mem_cgroup_put(memcg); 3271 3272 return folio; 3273 3274 out_uncharge_cgroup: 3275 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3276 out_uncharge_cgroup_reservation: 3277 if (deferred_reserve) 3278 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3279 h_cg); 3280 out_subpool_put: 3281 if (map_chg || avoid_reserve) 3282 hugepage_subpool_put_pages(spool, 1); 3283 out_end_reservation: 3284 vma_end_reservation(h, vma, addr); 3285 if (!memcg_charge_ret) 3286 mem_cgroup_cancel_charge(memcg, nr_pages); 3287 mem_cgroup_put(memcg); 3288 return ERR_PTR(-ENOSPC); 3289 } 3290 3291 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3292 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3293 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3294 { 3295 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3296 int nr_nodes, node = nid; 3297 3298 /* do node specific alloc */ 3299 if (nid != NUMA_NO_NODE) { 3300 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3301 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3302 if (!m) 3303 return 0; 3304 goto found; 3305 } 3306 /* allocate from next node when distributing huge pages */ 3307 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3308 m = memblock_alloc_try_nid_raw( 3309 huge_page_size(h), huge_page_size(h), 3310 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3311 /* 3312 * Use the beginning of the huge page to store the 3313 * huge_bootmem_page struct (until gather_bootmem 3314 * puts them into the mem_map). 3315 */ 3316 if (!m) 3317 return 0; 3318 goto found; 3319 } 3320 3321 found: 3322 3323 /* 3324 * Only initialize the head struct page in memmap_init_reserved_pages, 3325 * rest of the struct pages will be initialized by the HugeTLB 3326 * subsystem itself. 3327 * The head struct page is used to get folio information by the HugeTLB 3328 * subsystem like zone id and node id. 3329 */ 3330 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3331 huge_page_size(h) - PAGE_SIZE); 3332 /* Put them into a private list first because mem_map is not up yet */ 3333 INIT_LIST_HEAD(&m->list); 3334 list_add(&m->list, &huge_boot_pages[node]); 3335 m->hstate = h; 3336 return 1; 3337 } 3338 3339 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3340 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3341 unsigned long start_page_number, 3342 unsigned long end_page_number) 3343 { 3344 enum zone_type zone = zone_idx(folio_zone(folio)); 3345 int nid = folio_nid(folio); 3346 unsigned long head_pfn = folio_pfn(folio); 3347 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3348 int ret; 3349 3350 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3351 struct page *page = pfn_to_page(pfn); 3352 3353 __init_single_page(page, pfn, zone, nid); 3354 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3355 ret = page_ref_freeze(page, 1); 3356 VM_BUG_ON(!ret); 3357 } 3358 } 3359 3360 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3361 struct hstate *h, 3362 unsigned long nr_pages) 3363 { 3364 int ret; 3365 3366 /* Prepare folio head */ 3367 __folio_clear_reserved(folio); 3368 __folio_set_head(folio); 3369 ret = folio_ref_freeze(folio, 1); 3370 VM_BUG_ON(!ret); 3371 /* Initialize the necessary tail struct pages */ 3372 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3373 prep_compound_head((struct page *)folio, huge_page_order(h)); 3374 } 3375 3376 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3377 struct list_head *folio_list) 3378 { 3379 unsigned long flags; 3380 struct folio *folio, *tmp_f; 3381 3382 /* Send list for bulk vmemmap optimization processing */ 3383 hugetlb_vmemmap_optimize_folios(h, folio_list); 3384 3385 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3386 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3387 /* 3388 * If HVO fails, initialize all tail struct pages 3389 * We do not worry about potential long lock hold 3390 * time as this is early in boot and there should 3391 * be no contention. 3392 */ 3393 hugetlb_folio_init_tail_vmemmap(folio, 3394 HUGETLB_VMEMMAP_RESERVE_PAGES, 3395 pages_per_huge_page(h)); 3396 } 3397 /* Subdivide locks to achieve better parallel performance */ 3398 spin_lock_irqsave(&hugetlb_lock, flags); 3399 __prep_account_new_huge_page(h, folio_nid(folio)); 3400 enqueue_hugetlb_folio(h, folio); 3401 spin_unlock_irqrestore(&hugetlb_lock, flags); 3402 } 3403 } 3404 3405 /* 3406 * Put bootmem huge pages into the standard lists after mem_map is up. 3407 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3408 */ 3409 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3410 { 3411 LIST_HEAD(folio_list); 3412 struct huge_bootmem_page *m; 3413 struct hstate *h = NULL, *prev_h = NULL; 3414 3415 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3416 struct page *page = virt_to_page(m); 3417 struct folio *folio = (void *)page; 3418 3419 h = m->hstate; 3420 /* 3421 * It is possible to have multiple huge page sizes (hstates) 3422 * in this list. If so, process each size separately. 3423 */ 3424 if (h != prev_h && prev_h != NULL) 3425 prep_and_add_bootmem_folios(prev_h, &folio_list); 3426 prev_h = h; 3427 3428 VM_BUG_ON(!hstate_is_gigantic(h)); 3429 WARN_ON(folio_ref_count(folio) != 1); 3430 3431 hugetlb_folio_init_vmemmap(folio, h, 3432 HUGETLB_VMEMMAP_RESERVE_PAGES); 3433 init_new_hugetlb_folio(h, folio); 3434 list_add(&folio->lru, &folio_list); 3435 3436 /* 3437 * We need to restore the 'stolen' pages to totalram_pages 3438 * in order to fix confusing memory reports from free(1) and 3439 * other side-effects, like CommitLimit going negative. 3440 */ 3441 adjust_managed_page_count(page, pages_per_huge_page(h)); 3442 cond_resched(); 3443 } 3444 3445 prep_and_add_bootmem_folios(h, &folio_list); 3446 } 3447 3448 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3449 unsigned long end, void *arg) 3450 { 3451 int nid; 3452 3453 for (nid = start; nid < end; nid++) 3454 gather_bootmem_prealloc_node(nid); 3455 } 3456 3457 static void __init gather_bootmem_prealloc(void) 3458 { 3459 struct padata_mt_job job = { 3460 .thread_fn = gather_bootmem_prealloc_parallel, 3461 .fn_arg = NULL, 3462 .start = 0, 3463 .size = num_node_state(N_MEMORY), 3464 .align = 1, 3465 .min_chunk = 1, 3466 .max_threads = num_node_state(N_MEMORY), 3467 .numa_aware = true, 3468 }; 3469 3470 padata_do_multithreaded(&job); 3471 } 3472 3473 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3474 { 3475 unsigned long i; 3476 char buf[32]; 3477 3478 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3479 if (hstate_is_gigantic(h)) { 3480 if (!alloc_bootmem_huge_page(h, nid)) 3481 break; 3482 } else { 3483 struct folio *folio; 3484 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3485 3486 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3487 &node_states[N_MEMORY]); 3488 if (!folio) 3489 break; 3490 free_huge_folio(folio); /* free it into the hugepage allocator */ 3491 } 3492 cond_resched(); 3493 } 3494 if (i == h->max_huge_pages_node[nid]) 3495 return; 3496 3497 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3498 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3499 h->max_huge_pages_node[nid], buf, nid, i); 3500 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3501 h->max_huge_pages_node[nid] = i; 3502 } 3503 3504 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3505 { 3506 int i; 3507 bool node_specific_alloc = false; 3508 3509 for_each_online_node(i) { 3510 if (h->max_huge_pages_node[i] > 0) { 3511 hugetlb_hstate_alloc_pages_onenode(h, i); 3512 node_specific_alloc = true; 3513 } 3514 } 3515 3516 return node_specific_alloc; 3517 } 3518 3519 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3520 { 3521 if (allocated < h->max_huge_pages) { 3522 char buf[32]; 3523 3524 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3525 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3526 h->max_huge_pages, buf, allocated); 3527 h->max_huge_pages = allocated; 3528 } 3529 } 3530 3531 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3532 { 3533 struct hstate *h = (struct hstate *)arg; 3534 int i, num = end - start; 3535 nodemask_t node_alloc_noretry; 3536 LIST_HEAD(folio_list); 3537 int next_node = first_online_node; 3538 3539 /* Bit mask controlling how hard we retry per-node allocations.*/ 3540 nodes_clear(node_alloc_noretry); 3541 3542 for (i = 0; i < num; ++i) { 3543 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3544 &node_alloc_noretry, &next_node); 3545 if (!folio) 3546 break; 3547 3548 list_move(&folio->lru, &folio_list); 3549 cond_resched(); 3550 } 3551 3552 prep_and_add_allocated_folios(h, &folio_list); 3553 } 3554 3555 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3556 { 3557 unsigned long i; 3558 3559 for (i = 0; i < h->max_huge_pages; ++i) { 3560 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3561 break; 3562 cond_resched(); 3563 } 3564 3565 return i; 3566 } 3567 3568 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3569 { 3570 struct padata_mt_job job = { 3571 .fn_arg = h, 3572 .align = 1, 3573 .numa_aware = true 3574 }; 3575 3576 job.thread_fn = hugetlb_pages_alloc_boot_node; 3577 job.start = 0; 3578 job.size = h->max_huge_pages; 3579 3580 /* 3581 * job.max_threads is twice the num_node_state(N_MEMORY), 3582 * 3583 * Tests below indicate that a multiplier of 2 significantly improves 3584 * performance, and although larger values also provide improvements, 3585 * the gains are marginal. 3586 * 3587 * Therefore, choosing 2 as the multiplier strikes a good balance between 3588 * enhancing parallel processing capabilities and maintaining efficient 3589 * resource management. 3590 * 3591 * +------------+-------+-------+-------+-------+-------+ 3592 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3593 * +------------+-------+-------+-------+-------+-------+ 3594 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3595 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3596 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3597 * +------------+-------+-------+-------+-------+-------+ 3598 */ 3599 job.max_threads = num_node_state(N_MEMORY) * 2; 3600 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3601 padata_do_multithreaded(&job); 3602 3603 return h->nr_huge_pages; 3604 } 3605 3606 /* 3607 * NOTE: this routine is called in different contexts for gigantic and 3608 * non-gigantic pages. 3609 * - For gigantic pages, this is called early in the boot process and 3610 * pages are allocated from memblock allocated or something similar. 3611 * Gigantic pages are actually added to pools later with the routine 3612 * gather_bootmem_prealloc. 3613 * - For non-gigantic pages, this is called later in the boot process after 3614 * all of mm is up and functional. Pages are allocated from buddy and 3615 * then added to hugetlb pools. 3616 */ 3617 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3618 { 3619 unsigned long allocated; 3620 static bool initialized __initdata; 3621 3622 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3623 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3624 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3625 return; 3626 } 3627 3628 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3629 if (!initialized) { 3630 int i = 0; 3631 3632 for (i = 0; i < MAX_NUMNODES; i++) 3633 INIT_LIST_HEAD(&huge_boot_pages[i]); 3634 initialized = true; 3635 } 3636 3637 /* do node specific alloc */ 3638 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3639 return; 3640 3641 /* below will do all node balanced alloc */ 3642 if (hstate_is_gigantic(h)) 3643 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3644 else 3645 allocated = hugetlb_pages_alloc_boot(h); 3646 3647 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3648 } 3649 3650 static void __init hugetlb_init_hstates(void) 3651 { 3652 struct hstate *h, *h2; 3653 3654 for_each_hstate(h) { 3655 /* oversize hugepages were init'ed in early boot */ 3656 if (!hstate_is_gigantic(h)) 3657 hugetlb_hstate_alloc_pages(h); 3658 3659 /* 3660 * Set demote order for each hstate. Note that 3661 * h->demote_order is initially 0. 3662 * - We can not demote gigantic pages if runtime freeing 3663 * is not supported, so skip this. 3664 * - If CMA allocation is possible, we can not demote 3665 * HUGETLB_PAGE_ORDER or smaller size pages. 3666 */ 3667 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3668 continue; 3669 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3670 continue; 3671 for_each_hstate(h2) { 3672 if (h2 == h) 3673 continue; 3674 if (h2->order < h->order && 3675 h2->order > h->demote_order) 3676 h->demote_order = h2->order; 3677 } 3678 } 3679 } 3680 3681 static void __init report_hugepages(void) 3682 { 3683 struct hstate *h; 3684 3685 for_each_hstate(h) { 3686 char buf[32]; 3687 3688 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3689 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3690 buf, h->free_huge_pages); 3691 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3692 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3693 } 3694 } 3695 3696 #ifdef CONFIG_HIGHMEM 3697 static void try_to_free_low(struct hstate *h, unsigned long count, 3698 nodemask_t *nodes_allowed) 3699 { 3700 int i; 3701 LIST_HEAD(page_list); 3702 3703 lockdep_assert_held(&hugetlb_lock); 3704 if (hstate_is_gigantic(h)) 3705 return; 3706 3707 /* 3708 * Collect pages to be freed on a list, and free after dropping lock 3709 */ 3710 for_each_node_mask(i, *nodes_allowed) { 3711 struct folio *folio, *next; 3712 struct list_head *freel = &h->hugepage_freelists[i]; 3713 list_for_each_entry_safe(folio, next, freel, lru) { 3714 if (count >= h->nr_huge_pages) 3715 goto out; 3716 if (folio_test_highmem(folio)) 3717 continue; 3718 remove_hugetlb_folio(h, folio, false); 3719 list_add(&folio->lru, &page_list); 3720 } 3721 } 3722 3723 out: 3724 spin_unlock_irq(&hugetlb_lock); 3725 update_and_free_pages_bulk(h, &page_list); 3726 spin_lock_irq(&hugetlb_lock); 3727 } 3728 #else 3729 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3730 nodemask_t *nodes_allowed) 3731 { 3732 } 3733 #endif 3734 3735 /* 3736 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3737 * balanced by operating on them in a round-robin fashion. 3738 * Returns 1 if an adjustment was made. 3739 */ 3740 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3741 int delta) 3742 { 3743 int nr_nodes, node; 3744 3745 lockdep_assert_held(&hugetlb_lock); 3746 VM_BUG_ON(delta != -1 && delta != 1); 3747 3748 if (delta < 0) { 3749 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3750 if (h->surplus_huge_pages_node[node]) 3751 goto found; 3752 } 3753 } else { 3754 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3755 if (h->surplus_huge_pages_node[node] < 3756 h->nr_huge_pages_node[node]) 3757 goto found; 3758 } 3759 } 3760 return 0; 3761 3762 found: 3763 h->surplus_huge_pages += delta; 3764 h->surplus_huge_pages_node[node] += delta; 3765 return 1; 3766 } 3767 3768 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3769 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3770 nodemask_t *nodes_allowed) 3771 { 3772 unsigned long min_count; 3773 unsigned long allocated; 3774 struct folio *folio; 3775 LIST_HEAD(page_list); 3776 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3777 3778 /* 3779 * Bit mask controlling how hard we retry per-node allocations. 3780 * If we can not allocate the bit mask, do not attempt to allocate 3781 * the requested huge pages. 3782 */ 3783 if (node_alloc_noretry) 3784 nodes_clear(*node_alloc_noretry); 3785 else 3786 return -ENOMEM; 3787 3788 /* 3789 * resize_lock mutex prevents concurrent adjustments to number of 3790 * pages in hstate via the proc/sysfs interfaces. 3791 */ 3792 mutex_lock(&h->resize_lock); 3793 flush_free_hpage_work(h); 3794 spin_lock_irq(&hugetlb_lock); 3795 3796 /* 3797 * Check for a node specific request. 3798 * Changing node specific huge page count may require a corresponding 3799 * change to the global count. In any case, the passed node mask 3800 * (nodes_allowed) will restrict alloc/free to the specified node. 3801 */ 3802 if (nid != NUMA_NO_NODE) { 3803 unsigned long old_count = count; 3804 3805 count += persistent_huge_pages(h) - 3806 (h->nr_huge_pages_node[nid] - 3807 h->surplus_huge_pages_node[nid]); 3808 /* 3809 * User may have specified a large count value which caused the 3810 * above calculation to overflow. In this case, they wanted 3811 * to allocate as many huge pages as possible. Set count to 3812 * largest possible value to align with their intention. 3813 */ 3814 if (count < old_count) 3815 count = ULONG_MAX; 3816 } 3817 3818 /* 3819 * Gigantic pages runtime allocation depend on the capability for large 3820 * page range allocation. 3821 * If the system does not provide this feature, return an error when 3822 * the user tries to allocate gigantic pages but let the user free the 3823 * boottime allocated gigantic pages. 3824 */ 3825 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3826 if (count > persistent_huge_pages(h)) { 3827 spin_unlock_irq(&hugetlb_lock); 3828 mutex_unlock(&h->resize_lock); 3829 NODEMASK_FREE(node_alloc_noretry); 3830 return -EINVAL; 3831 } 3832 /* Fall through to decrease pool */ 3833 } 3834 3835 /* 3836 * Increase the pool size 3837 * First take pages out of surplus state. Then make up the 3838 * remaining difference by allocating fresh huge pages. 3839 * 3840 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3841 * to convert a surplus huge page to a normal huge page. That is 3842 * not critical, though, it just means the overall size of the 3843 * pool might be one hugepage larger than it needs to be, but 3844 * within all the constraints specified by the sysctls. 3845 */ 3846 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3847 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3848 break; 3849 } 3850 3851 allocated = 0; 3852 while (count > (persistent_huge_pages(h) + allocated)) { 3853 /* 3854 * If this allocation races such that we no longer need the 3855 * page, free_huge_folio will handle it by freeing the page 3856 * and reducing the surplus. 3857 */ 3858 spin_unlock_irq(&hugetlb_lock); 3859 3860 /* yield cpu to avoid soft lockup */ 3861 cond_resched(); 3862 3863 folio = alloc_pool_huge_folio(h, nodes_allowed, 3864 node_alloc_noretry, 3865 &h->next_nid_to_alloc); 3866 if (!folio) { 3867 prep_and_add_allocated_folios(h, &page_list); 3868 spin_lock_irq(&hugetlb_lock); 3869 goto out; 3870 } 3871 3872 list_add(&folio->lru, &page_list); 3873 allocated++; 3874 3875 /* Bail for signals. Probably ctrl-c from user */ 3876 if (signal_pending(current)) { 3877 prep_and_add_allocated_folios(h, &page_list); 3878 spin_lock_irq(&hugetlb_lock); 3879 goto out; 3880 } 3881 3882 spin_lock_irq(&hugetlb_lock); 3883 } 3884 3885 /* Add allocated pages to the pool */ 3886 if (!list_empty(&page_list)) { 3887 spin_unlock_irq(&hugetlb_lock); 3888 prep_and_add_allocated_folios(h, &page_list); 3889 spin_lock_irq(&hugetlb_lock); 3890 } 3891 3892 /* 3893 * Decrease the pool size 3894 * First return free pages to the buddy allocator (being careful 3895 * to keep enough around to satisfy reservations). Then place 3896 * pages into surplus state as needed so the pool will shrink 3897 * to the desired size as pages become free. 3898 * 3899 * By placing pages into the surplus state independent of the 3900 * overcommit value, we are allowing the surplus pool size to 3901 * exceed overcommit. There are few sane options here. Since 3902 * alloc_surplus_hugetlb_folio() is checking the global counter, 3903 * though, we'll note that we're not allowed to exceed surplus 3904 * and won't grow the pool anywhere else. Not until one of the 3905 * sysctls are changed, or the surplus pages go out of use. 3906 */ 3907 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3908 min_count = max(count, min_count); 3909 try_to_free_low(h, min_count, nodes_allowed); 3910 3911 /* 3912 * Collect pages to be removed on list without dropping lock 3913 */ 3914 while (min_count < persistent_huge_pages(h)) { 3915 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3916 if (!folio) 3917 break; 3918 3919 list_add(&folio->lru, &page_list); 3920 } 3921 /* free the pages after dropping lock */ 3922 spin_unlock_irq(&hugetlb_lock); 3923 update_and_free_pages_bulk(h, &page_list); 3924 flush_free_hpage_work(h); 3925 spin_lock_irq(&hugetlb_lock); 3926 3927 while (count < persistent_huge_pages(h)) { 3928 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3929 break; 3930 } 3931 out: 3932 h->max_huge_pages = persistent_huge_pages(h); 3933 spin_unlock_irq(&hugetlb_lock); 3934 mutex_unlock(&h->resize_lock); 3935 3936 NODEMASK_FREE(node_alloc_noretry); 3937 3938 return 0; 3939 } 3940 3941 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3942 struct list_head *src_list) 3943 { 3944 long rc; 3945 struct folio *folio, *next; 3946 LIST_HEAD(dst_list); 3947 LIST_HEAD(ret_list); 3948 3949 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 3950 list_splice_init(&ret_list, src_list); 3951 3952 /* 3953 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3954 * Without the mutex, pages added to target hstate could be marked 3955 * as surplus. 3956 * 3957 * Note that we already hold src->resize_lock. To prevent deadlock, 3958 * use the convention of always taking larger size hstate mutex first. 3959 */ 3960 mutex_lock(&dst->resize_lock); 3961 3962 list_for_each_entry_safe(folio, next, src_list, lru) { 3963 int i; 3964 3965 if (folio_test_hugetlb_vmemmap_optimized(folio)) 3966 continue; 3967 3968 list_del(&folio->lru); 3969 /* 3970 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3971 * sizes as it will not ref count folios. 3972 */ 3973 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(src)); 3974 3975 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 3976 struct page *page = folio_page(folio, i); 3977 3978 if (hstate_is_gigantic(dst)) 3979 prep_compound_gigantic_folio_for_demote(page_folio(page), 3980 dst->order); 3981 else 3982 prep_compound_page(page, dst->order); 3983 set_page_private(page, 0); 3984 3985 init_new_hugetlb_folio(dst, page_folio(page)); 3986 list_add(&page->lru, &dst_list); 3987 } 3988 } 3989 3990 prep_and_add_allocated_folios(dst, &dst_list); 3991 3992 mutex_unlock(&dst->resize_lock); 3993 3994 return rc; 3995 } 3996 3997 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 3998 unsigned long nr_to_demote) 3999 __must_hold(&hugetlb_lock) 4000 { 4001 int nr_nodes, node; 4002 struct hstate *dst; 4003 long rc = 0; 4004 long nr_demoted = 0; 4005 4006 lockdep_assert_held(&hugetlb_lock); 4007 4008 /* We should never get here if no demote order */ 4009 if (!src->demote_order) { 4010 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4011 return -EINVAL; /* internal error */ 4012 } 4013 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4014 4015 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4016 LIST_HEAD(list); 4017 struct folio *folio, *next; 4018 4019 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4020 if (folio_test_hwpoison(folio)) 4021 continue; 4022 4023 remove_hugetlb_folio(src, folio, false); 4024 list_add(&folio->lru, &list); 4025 4026 if (++nr_demoted == nr_to_demote) 4027 break; 4028 } 4029 4030 spin_unlock_irq(&hugetlb_lock); 4031 4032 rc = demote_free_hugetlb_folios(src, dst, &list); 4033 4034 spin_lock_irq(&hugetlb_lock); 4035 4036 list_for_each_entry_safe(folio, next, &list, lru) { 4037 list_del(&folio->lru); 4038 add_hugetlb_folio(src, folio, false); 4039 4040 nr_demoted--; 4041 } 4042 4043 if (rc < 0 || nr_demoted == nr_to_demote) 4044 break; 4045 } 4046 4047 /* 4048 * Not absolutely necessary, but for consistency update max_huge_pages 4049 * based on pool changes for the demoted page. 4050 */ 4051 src->max_huge_pages -= nr_demoted; 4052 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4053 4054 if (rc < 0) 4055 return rc; 4056 4057 if (nr_demoted) 4058 return nr_demoted; 4059 /* 4060 * Only way to get here is if all pages on free lists are poisoned. 4061 * Return -EBUSY so that caller will not retry. 4062 */ 4063 return -EBUSY; 4064 } 4065 4066 #define HSTATE_ATTR_RO(_name) \ 4067 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4068 4069 #define HSTATE_ATTR_WO(_name) \ 4070 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4071 4072 #define HSTATE_ATTR(_name) \ 4073 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4074 4075 static struct kobject *hugepages_kobj; 4076 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4077 4078 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4079 4080 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4081 { 4082 int i; 4083 4084 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4085 if (hstate_kobjs[i] == kobj) { 4086 if (nidp) 4087 *nidp = NUMA_NO_NODE; 4088 return &hstates[i]; 4089 } 4090 4091 return kobj_to_node_hstate(kobj, nidp); 4092 } 4093 4094 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4095 struct kobj_attribute *attr, char *buf) 4096 { 4097 struct hstate *h; 4098 unsigned long nr_huge_pages; 4099 int nid; 4100 4101 h = kobj_to_hstate(kobj, &nid); 4102 if (nid == NUMA_NO_NODE) 4103 nr_huge_pages = h->nr_huge_pages; 4104 else 4105 nr_huge_pages = h->nr_huge_pages_node[nid]; 4106 4107 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4108 } 4109 4110 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4111 struct hstate *h, int nid, 4112 unsigned long count, size_t len) 4113 { 4114 int err; 4115 nodemask_t nodes_allowed, *n_mask; 4116 4117 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4118 return -EINVAL; 4119 4120 if (nid == NUMA_NO_NODE) { 4121 /* 4122 * global hstate attribute 4123 */ 4124 if (!(obey_mempolicy && 4125 init_nodemask_of_mempolicy(&nodes_allowed))) 4126 n_mask = &node_states[N_MEMORY]; 4127 else 4128 n_mask = &nodes_allowed; 4129 } else { 4130 /* 4131 * Node specific request. count adjustment happens in 4132 * set_max_huge_pages() after acquiring hugetlb_lock. 4133 */ 4134 init_nodemask_of_node(&nodes_allowed, nid); 4135 n_mask = &nodes_allowed; 4136 } 4137 4138 err = set_max_huge_pages(h, count, nid, n_mask); 4139 4140 return err ? err : len; 4141 } 4142 4143 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4144 struct kobject *kobj, const char *buf, 4145 size_t len) 4146 { 4147 struct hstate *h; 4148 unsigned long count; 4149 int nid; 4150 int err; 4151 4152 err = kstrtoul(buf, 10, &count); 4153 if (err) 4154 return err; 4155 4156 h = kobj_to_hstate(kobj, &nid); 4157 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4158 } 4159 4160 static ssize_t nr_hugepages_show(struct kobject *kobj, 4161 struct kobj_attribute *attr, char *buf) 4162 { 4163 return nr_hugepages_show_common(kobj, attr, buf); 4164 } 4165 4166 static ssize_t nr_hugepages_store(struct kobject *kobj, 4167 struct kobj_attribute *attr, const char *buf, size_t len) 4168 { 4169 return nr_hugepages_store_common(false, kobj, buf, len); 4170 } 4171 HSTATE_ATTR(nr_hugepages); 4172 4173 #ifdef CONFIG_NUMA 4174 4175 /* 4176 * hstate attribute for optionally mempolicy-based constraint on persistent 4177 * huge page alloc/free. 4178 */ 4179 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4180 struct kobj_attribute *attr, 4181 char *buf) 4182 { 4183 return nr_hugepages_show_common(kobj, attr, buf); 4184 } 4185 4186 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4187 struct kobj_attribute *attr, const char *buf, size_t len) 4188 { 4189 return nr_hugepages_store_common(true, kobj, buf, len); 4190 } 4191 HSTATE_ATTR(nr_hugepages_mempolicy); 4192 #endif 4193 4194 4195 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4196 struct kobj_attribute *attr, char *buf) 4197 { 4198 struct hstate *h = kobj_to_hstate(kobj, NULL); 4199 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4200 } 4201 4202 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4203 struct kobj_attribute *attr, const char *buf, size_t count) 4204 { 4205 int err; 4206 unsigned long input; 4207 struct hstate *h = kobj_to_hstate(kobj, NULL); 4208 4209 if (hstate_is_gigantic(h)) 4210 return -EINVAL; 4211 4212 err = kstrtoul(buf, 10, &input); 4213 if (err) 4214 return err; 4215 4216 spin_lock_irq(&hugetlb_lock); 4217 h->nr_overcommit_huge_pages = input; 4218 spin_unlock_irq(&hugetlb_lock); 4219 4220 return count; 4221 } 4222 HSTATE_ATTR(nr_overcommit_hugepages); 4223 4224 static ssize_t free_hugepages_show(struct kobject *kobj, 4225 struct kobj_attribute *attr, char *buf) 4226 { 4227 struct hstate *h; 4228 unsigned long free_huge_pages; 4229 int nid; 4230 4231 h = kobj_to_hstate(kobj, &nid); 4232 if (nid == NUMA_NO_NODE) 4233 free_huge_pages = h->free_huge_pages; 4234 else 4235 free_huge_pages = h->free_huge_pages_node[nid]; 4236 4237 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4238 } 4239 HSTATE_ATTR_RO(free_hugepages); 4240 4241 static ssize_t resv_hugepages_show(struct kobject *kobj, 4242 struct kobj_attribute *attr, char *buf) 4243 { 4244 struct hstate *h = kobj_to_hstate(kobj, NULL); 4245 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4246 } 4247 HSTATE_ATTR_RO(resv_hugepages); 4248 4249 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4250 struct kobj_attribute *attr, char *buf) 4251 { 4252 struct hstate *h; 4253 unsigned long surplus_huge_pages; 4254 int nid; 4255 4256 h = kobj_to_hstate(kobj, &nid); 4257 if (nid == NUMA_NO_NODE) 4258 surplus_huge_pages = h->surplus_huge_pages; 4259 else 4260 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4261 4262 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4263 } 4264 HSTATE_ATTR_RO(surplus_hugepages); 4265 4266 static ssize_t demote_store(struct kobject *kobj, 4267 struct kobj_attribute *attr, const char *buf, size_t len) 4268 { 4269 unsigned long nr_demote; 4270 unsigned long nr_available; 4271 nodemask_t nodes_allowed, *n_mask; 4272 struct hstate *h; 4273 int err; 4274 int nid; 4275 4276 err = kstrtoul(buf, 10, &nr_demote); 4277 if (err) 4278 return err; 4279 h = kobj_to_hstate(kobj, &nid); 4280 4281 if (nid != NUMA_NO_NODE) { 4282 init_nodemask_of_node(&nodes_allowed, nid); 4283 n_mask = &nodes_allowed; 4284 } else { 4285 n_mask = &node_states[N_MEMORY]; 4286 } 4287 4288 /* Synchronize with other sysfs operations modifying huge pages */ 4289 mutex_lock(&h->resize_lock); 4290 spin_lock_irq(&hugetlb_lock); 4291 4292 while (nr_demote) { 4293 long rc; 4294 4295 /* 4296 * Check for available pages to demote each time thorough the 4297 * loop as demote_pool_huge_page will drop hugetlb_lock. 4298 */ 4299 if (nid != NUMA_NO_NODE) 4300 nr_available = h->free_huge_pages_node[nid]; 4301 else 4302 nr_available = h->free_huge_pages; 4303 nr_available -= h->resv_huge_pages; 4304 if (!nr_available) 4305 break; 4306 4307 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4308 if (rc < 0) { 4309 err = rc; 4310 break; 4311 } 4312 4313 nr_demote -= rc; 4314 } 4315 4316 spin_unlock_irq(&hugetlb_lock); 4317 mutex_unlock(&h->resize_lock); 4318 4319 if (err) 4320 return err; 4321 return len; 4322 } 4323 HSTATE_ATTR_WO(demote); 4324 4325 static ssize_t demote_size_show(struct kobject *kobj, 4326 struct kobj_attribute *attr, char *buf) 4327 { 4328 struct hstate *h = kobj_to_hstate(kobj, NULL); 4329 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4330 4331 return sysfs_emit(buf, "%lukB\n", demote_size); 4332 } 4333 4334 static ssize_t demote_size_store(struct kobject *kobj, 4335 struct kobj_attribute *attr, 4336 const char *buf, size_t count) 4337 { 4338 struct hstate *h, *demote_hstate; 4339 unsigned long demote_size; 4340 unsigned int demote_order; 4341 4342 demote_size = (unsigned long)memparse(buf, NULL); 4343 4344 demote_hstate = size_to_hstate(demote_size); 4345 if (!demote_hstate) 4346 return -EINVAL; 4347 demote_order = demote_hstate->order; 4348 if (demote_order < HUGETLB_PAGE_ORDER) 4349 return -EINVAL; 4350 4351 /* demote order must be smaller than hstate order */ 4352 h = kobj_to_hstate(kobj, NULL); 4353 if (demote_order >= h->order) 4354 return -EINVAL; 4355 4356 /* resize_lock synchronizes access to demote size and writes */ 4357 mutex_lock(&h->resize_lock); 4358 h->demote_order = demote_order; 4359 mutex_unlock(&h->resize_lock); 4360 4361 return count; 4362 } 4363 HSTATE_ATTR(demote_size); 4364 4365 static struct attribute *hstate_attrs[] = { 4366 &nr_hugepages_attr.attr, 4367 &nr_overcommit_hugepages_attr.attr, 4368 &free_hugepages_attr.attr, 4369 &resv_hugepages_attr.attr, 4370 &surplus_hugepages_attr.attr, 4371 #ifdef CONFIG_NUMA 4372 &nr_hugepages_mempolicy_attr.attr, 4373 #endif 4374 NULL, 4375 }; 4376 4377 static const struct attribute_group hstate_attr_group = { 4378 .attrs = hstate_attrs, 4379 }; 4380 4381 static struct attribute *hstate_demote_attrs[] = { 4382 &demote_size_attr.attr, 4383 &demote_attr.attr, 4384 NULL, 4385 }; 4386 4387 static const struct attribute_group hstate_demote_attr_group = { 4388 .attrs = hstate_demote_attrs, 4389 }; 4390 4391 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4392 struct kobject **hstate_kobjs, 4393 const struct attribute_group *hstate_attr_group) 4394 { 4395 int retval; 4396 int hi = hstate_index(h); 4397 4398 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4399 if (!hstate_kobjs[hi]) 4400 return -ENOMEM; 4401 4402 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4403 if (retval) { 4404 kobject_put(hstate_kobjs[hi]); 4405 hstate_kobjs[hi] = NULL; 4406 return retval; 4407 } 4408 4409 if (h->demote_order) { 4410 retval = sysfs_create_group(hstate_kobjs[hi], 4411 &hstate_demote_attr_group); 4412 if (retval) { 4413 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4414 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4415 kobject_put(hstate_kobjs[hi]); 4416 hstate_kobjs[hi] = NULL; 4417 return retval; 4418 } 4419 } 4420 4421 return 0; 4422 } 4423 4424 #ifdef CONFIG_NUMA 4425 static bool hugetlb_sysfs_initialized __ro_after_init; 4426 4427 /* 4428 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4429 * with node devices in node_devices[] using a parallel array. The array 4430 * index of a node device or _hstate == node id. 4431 * This is here to avoid any static dependency of the node device driver, in 4432 * the base kernel, on the hugetlb module. 4433 */ 4434 struct node_hstate { 4435 struct kobject *hugepages_kobj; 4436 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4437 }; 4438 static struct node_hstate node_hstates[MAX_NUMNODES]; 4439 4440 /* 4441 * A subset of global hstate attributes for node devices 4442 */ 4443 static struct attribute *per_node_hstate_attrs[] = { 4444 &nr_hugepages_attr.attr, 4445 &free_hugepages_attr.attr, 4446 &surplus_hugepages_attr.attr, 4447 NULL, 4448 }; 4449 4450 static const struct attribute_group per_node_hstate_attr_group = { 4451 .attrs = per_node_hstate_attrs, 4452 }; 4453 4454 /* 4455 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4456 * Returns node id via non-NULL nidp. 4457 */ 4458 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4459 { 4460 int nid; 4461 4462 for (nid = 0; nid < nr_node_ids; nid++) { 4463 struct node_hstate *nhs = &node_hstates[nid]; 4464 int i; 4465 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4466 if (nhs->hstate_kobjs[i] == kobj) { 4467 if (nidp) 4468 *nidp = nid; 4469 return &hstates[i]; 4470 } 4471 } 4472 4473 BUG(); 4474 return NULL; 4475 } 4476 4477 /* 4478 * Unregister hstate attributes from a single node device. 4479 * No-op if no hstate attributes attached. 4480 */ 4481 void hugetlb_unregister_node(struct node *node) 4482 { 4483 struct hstate *h; 4484 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4485 4486 if (!nhs->hugepages_kobj) 4487 return; /* no hstate attributes */ 4488 4489 for_each_hstate(h) { 4490 int idx = hstate_index(h); 4491 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4492 4493 if (!hstate_kobj) 4494 continue; 4495 if (h->demote_order) 4496 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4497 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4498 kobject_put(hstate_kobj); 4499 nhs->hstate_kobjs[idx] = NULL; 4500 } 4501 4502 kobject_put(nhs->hugepages_kobj); 4503 nhs->hugepages_kobj = NULL; 4504 } 4505 4506 4507 /* 4508 * Register hstate attributes for a single node device. 4509 * No-op if attributes already registered. 4510 */ 4511 void hugetlb_register_node(struct node *node) 4512 { 4513 struct hstate *h; 4514 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4515 int err; 4516 4517 if (!hugetlb_sysfs_initialized) 4518 return; 4519 4520 if (nhs->hugepages_kobj) 4521 return; /* already allocated */ 4522 4523 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4524 &node->dev.kobj); 4525 if (!nhs->hugepages_kobj) 4526 return; 4527 4528 for_each_hstate(h) { 4529 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4530 nhs->hstate_kobjs, 4531 &per_node_hstate_attr_group); 4532 if (err) { 4533 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4534 h->name, node->dev.id); 4535 hugetlb_unregister_node(node); 4536 break; 4537 } 4538 } 4539 } 4540 4541 /* 4542 * hugetlb init time: register hstate attributes for all registered node 4543 * devices of nodes that have memory. All on-line nodes should have 4544 * registered their associated device by this time. 4545 */ 4546 static void __init hugetlb_register_all_nodes(void) 4547 { 4548 int nid; 4549 4550 for_each_online_node(nid) 4551 hugetlb_register_node(node_devices[nid]); 4552 } 4553 #else /* !CONFIG_NUMA */ 4554 4555 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4556 { 4557 BUG(); 4558 if (nidp) 4559 *nidp = -1; 4560 return NULL; 4561 } 4562 4563 static void hugetlb_register_all_nodes(void) { } 4564 4565 #endif 4566 4567 #ifdef CONFIG_CMA 4568 static void __init hugetlb_cma_check(void); 4569 #else 4570 static inline __init void hugetlb_cma_check(void) 4571 { 4572 } 4573 #endif 4574 4575 static void __init hugetlb_sysfs_init(void) 4576 { 4577 struct hstate *h; 4578 int err; 4579 4580 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4581 if (!hugepages_kobj) 4582 return; 4583 4584 for_each_hstate(h) { 4585 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4586 hstate_kobjs, &hstate_attr_group); 4587 if (err) 4588 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4589 } 4590 4591 #ifdef CONFIG_NUMA 4592 hugetlb_sysfs_initialized = true; 4593 #endif 4594 hugetlb_register_all_nodes(); 4595 } 4596 4597 #ifdef CONFIG_SYSCTL 4598 static void hugetlb_sysctl_init(void); 4599 #else 4600 static inline void hugetlb_sysctl_init(void) { } 4601 #endif 4602 4603 static int __init hugetlb_init(void) 4604 { 4605 int i; 4606 4607 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4608 __NR_HPAGEFLAGS); 4609 4610 if (!hugepages_supported()) { 4611 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4612 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4613 return 0; 4614 } 4615 4616 /* 4617 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4618 * architectures depend on setup being done here. 4619 */ 4620 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4621 if (!parsed_default_hugepagesz) { 4622 /* 4623 * If we did not parse a default huge page size, set 4624 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4625 * number of huge pages for this default size was implicitly 4626 * specified, set that here as well. 4627 * Note that the implicit setting will overwrite an explicit 4628 * setting. A warning will be printed in this case. 4629 */ 4630 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4631 if (default_hstate_max_huge_pages) { 4632 if (default_hstate.max_huge_pages) { 4633 char buf[32]; 4634 4635 string_get_size(huge_page_size(&default_hstate), 4636 1, STRING_UNITS_2, buf, 32); 4637 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4638 default_hstate.max_huge_pages, buf); 4639 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4640 default_hstate_max_huge_pages); 4641 } 4642 default_hstate.max_huge_pages = 4643 default_hstate_max_huge_pages; 4644 4645 for_each_online_node(i) 4646 default_hstate.max_huge_pages_node[i] = 4647 default_hugepages_in_node[i]; 4648 } 4649 } 4650 4651 hugetlb_cma_check(); 4652 hugetlb_init_hstates(); 4653 gather_bootmem_prealloc(); 4654 report_hugepages(); 4655 4656 hugetlb_sysfs_init(); 4657 hugetlb_cgroup_file_init(); 4658 hugetlb_sysctl_init(); 4659 4660 #ifdef CONFIG_SMP 4661 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4662 #else 4663 num_fault_mutexes = 1; 4664 #endif 4665 hugetlb_fault_mutex_table = 4666 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4667 GFP_KERNEL); 4668 BUG_ON(!hugetlb_fault_mutex_table); 4669 4670 for (i = 0; i < num_fault_mutexes; i++) 4671 mutex_init(&hugetlb_fault_mutex_table[i]); 4672 return 0; 4673 } 4674 subsys_initcall(hugetlb_init); 4675 4676 /* Overwritten by architectures with more huge page sizes */ 4677 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4678 { 4679 return size == HPAGE_SIZE; 4680 } 4681 4682 void __init hugetlb_add_hstate(unsigned int order) 4683 { 4684 struct hstate *h; 4685 unsigned long i; 4686 4687 if (size_to_hstate(PAGE_SIZE << order)) { 4688 return; 4689 } 4690 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4691 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4692 h = &hstates[hugetlb_max_hstate++]; 4693 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4694 h->order = order; 4695 h->mask = ~(huge_page_size(h) - 1); 4696 for (i = 0; i < MAX_NUMNODES; ++i) 4697 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4698 INIT_LIST_HEAD(&h->hugepage_activelist); 4699 h->next_nid_to_alloc = first_memory_node; 4700 h->next_nid_to_free = first_memory_node; 4701 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4702 huge_page_size(h)/SZ_1K); 4703 4704 parsed_hstate = h; 4705 } 4706 4707 bool __init __weak hugetlb_node_alloc_supported(void) 4708 { 4709 return true; 4710 } 4711 4712 static void __init hugepages_clear_pages_in_node(void) 4713 { 4714 if (!hugetlb_max_hstate) { 4715 default_hstate_max_huge_pages = 0; 4716 memset(default_hugepages_in_node, 0, 4717 sizeof(default_hugepages_in_node)); 4718 } else { 4719 parsed_hstate->max_huge_pages = 0; 4720 memset(parsed_hstate->max_huge_pages_node, 0, 4721 sizeof(parsed_hstate->max_huge_pages_node)); 4722 } 4723 } 4724 4725 /* 4726 * hugepages command line processing 4727 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4728 * specification. If not, ignore the hugepages value. hugepages can also 4729 * be the first huge page command line option in which case it implicitly 4730 * specifies the number of huge pages for the default size. 4731 */ 4732 static int __init hugepages_setup(char *s) 4733 { 4734 unsigned long *mhp; 4735 static unsigned long *last_mhp; 4736 int node = NUMA_NO_NODE; 4737 int count; 4738 unsigned long tmp; 4739 char *p = s; 4740 4741 if (!parsed_valid_hugepagesz) { 4742 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4743 parsed_valid_hugepagesz = true; 4744 return 1; 4745 } 4746 4747 /* 4748 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4749 * yet, so this hugepages= parameter goes to the "default hstate". 4750 * Otherwise, it goes with the previously parsed hugepagesz or 4751 * default_hugepagesz. 4752 */ 4753 else if (!hugetlb_max_hstate) 4754 mhp = &default_hstate_max_huge_pages; 4755 else 4756 mhp = &parsed_hstate->max_huge_pages; 4757 4758 if (mhp == last_mhp) { 4759 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4760 return 1; 4761 } 4762 4763 while (*p) { 4764 count = 0; 4765 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4766 goto invalid; 4767 /* Parameter is node format */ 4768 if (p[count] == ':') { 4769 if (!hugetlb_node_alloc_supported()) { 4770 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4771 return 1; 4772 } 4773 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4774 goto invalid; 4775 node = array_index_nospec(tmp, MAX_NUMNODES); 4776 p += count + 1; 4777 /* Parse hugepages */ 4778 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4779 goto invalid; 4780 if (!hugetlb_max_hstate) 4781 default_hugepages_in_node[node] = tmp; 4782 else 4783 parsed_hstate->max_huge_pages_node[node] = tmp; 4784 *mhp += tmp; 4785 /* Go to parse next node*/ 4786 if (p[count] == ',') 4787 p += count + 1; 4788 else 4789 break; 4790 } else { 4791 if (p != s) 4792 goto invalid; 4793 *mhp = tmp; 4794 break; 4795 } 4796 } 4797 4798 /* 4799 * Global state is always initialized later in hugetlb_init. 4800 * But we need to allocate gigantic hstates here early to still 4801 * use the bootmem allocator. 4802 */ 4803 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4804 hugetlb_hstate_alloc_pages(parsed_hstate); 4805 4806 last_mhp = mhp; 4807 4808 return 1; 4809 4810 invalid: 4811 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4812 hugepages_clear_pages_in_node(); 4813 return 1; 4814 } 4815 __setup("hugepages=", hugepages_setup); 4816 4817 /* 4818 * hugepagesz command line processing 4819 * A specific huge page size can only be specified once with hugepagesz. 4820 * hugepagesz is followed by hugepages on the command line. The global 4821 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4822 * hugepagesz argument was valid. 4823 */ 4824 static int __init hugepagesz_setup(char *s) 4825 { 4826 unsigned long size; 4827 struct hstate *h; 4828 4829 parsed_valid_hugepagesz = false; 4830 size = (unsigned long)memparse(s, NULL); 4831 4832 if (!arch_hugetlb_valid_size(size)) { 4833 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4834 return 1; 4835 } 4836 4837 h = size_to_hstate(size); 4838 if (h) { 4839 /* 4840 * hstate for this size already exists. This is normally 4841 * an error, but is allowed if the existing hstate is the 4842 * default hstate. More specifically, it is only allowed if 4843 * the number of huge pages for the default hstate was not 4844 * previously specified. 4845 */ 4846 if (!parsed_default_hugepagesz || h != &default_hstate || 4847 default_hstate.max_huge_pages) { 4848 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4849 return 1; 4850 } 4851 4852 /* 4853 * No need to call hugetlb_add_hstate() as hstate already 4854 * exists. But, do set parsed_hstate so that a following 4855 * hugepages= parameter will be applied to this hstate. 4856 */ 4857 parsed_hstate = h; 4858 parsed_valid_hugepagesz = true; 4859 return 1; 4860 } 4861 4862 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4863 parsed_valid_hugepagesz = true; 4864 return 1; 4865 } 4866 __setup("hugepagesz=", hugepagesz_setup); 4867 4868 /* 4869 * default_hugepagesz command line input 4870 * Only one instance of default_hugepagesz allowed on command line. 4871 */ 4872 static int __init default_hugepagesz_setup(char *s) 4873 { 4874 unsigned long size; 4875 int i; 4876 4877 parsed_valid_hugepagesz = false; 4878 if (parsed_default_hugepagesz) { 4879 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4880 return 1; 4881 } 4882 4883 size = (unsigned long)memparse(s, NULL); 4884 4885 if (!arch_hugetlb_valid_size(size)) { 4886 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4887 return 1; 4888 } 4889 4890 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4891 parsed_valid_hugepagesz = true; 4892 parsed_default_hugepagesz = true; 4893 default_hstate_idx = hstate_index(size_to_hstate(size)); 4894 4895 /* 4896 * The number of default huge pages (for this size) could have been 4897 * specified as the first hugetlb parameter: hugepages=X. If so, 4898 * then default_hstate_max_huge_pages is set. If the default huge 4899 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4900 * allocated here from bootmem allocator. 4901 */ 4902 if (default_hstate_max_huge_pages) { 4903 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4904 for_each_online_node(i) 4905 default_hstate.max_huge_pages_node[i] = 4906 default_hugepages_in_node[i]; 4907 if (hstate_is_gigantic(&default_hstate)) 4908 hugetlb_hstate_alloc_pages(&default_hstate); 4909 default_hstate_max_huge_pages = 0; 4910 } 4911 4912 return 1; 4913 } 4914 __setup("default_hugepagesz=", default_hugepagesz_setup); 4915 4916 static unsigned int allowed_mems_nr(struct hstate *h) 4917 { 4918 int node; 4919 unsigned int nr = 0; 4920 nodemask_t *mbind_nodemask; 4921 unsigned int *array = h->free_huge_pages_node; 4922 gfp_t gfp_mask = htlb_alloc_mask(h); 4923 4924 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4925 for_each_node_mask(node, cpuset_current_mems_allowed) { 4926 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4927 nr += array[node]; 4928 } 4929 4930 return nr; 4931 } 4932 4933 #ifdef CONFIG_SYSCTL 4934 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 4935 void *buffer, size_t *length, 4936 loff_t *ppos, unsigned long *out) 4937 { 4938 struct ctl_table dup_table; 4939 4940 /* 4941 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4942 * can duplicate the @table and alter the duplicate of it. 4943 */ 4944 dup_table = *table; 4945 dup_table.data = out; 4946 4947 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4948 } 4949 4950 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4951 const struct ctl_table *table, int write, 4952 void *buffer, size_t *length, loff_t *ppos) 4953 { 4954 struct hstate *h = &default_hstate; 4955 unsigned long tmp = h->max_huge_pages; 4956 int ret; 4957 4958 if (!hugepages_supported()) 4959 return -EOPNOTSUPP; 4960 4961 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4962 &tmp); 4963 if (ret) 4964 goto out; 4965 4966 if (write) 4967 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4968 NUMA_NO_NODE, tmp, *length); 4969 out: 4970 return ret; 4971 } 4972 4973 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 4974 void *buffer, size_t *length, loff_t *ppos) 4975 { 4976 4977 return hugetlb_sysctl_handler_common(false, table, write, 4978 buffer, length, ppos); 4979 } 4980 4981 #ifdef CONFIG_NUMA 4982 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 4983 void *buffer, size_t *length, loff_t *ppos) 4984 { 4985 return hugetlb_sysctl_handler_common(true, table, write, 4986 buffer, length, ppos); 4987 } 4988 #endif /* CONFIG_NUMA */ 4989 4990 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 4991 void *buffer, size_t *length, loff_t *ppos) 4992 { 4993 struct hstate *h = &default_hstate; 4994 unsigned long tmp; 4995 int ret; 4996 4997 if (!hugepages_supported()) 4998 return -EOPNOTSUPP; 4999 5000 tmp = h->nr_overcommit_huge_pages; 5001 5002 if (write && hstate_is_gigantic(h)) 5003 return -EINVAL; 5004 5005 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5006 &tmp); 5007 if (ret) 5008 goto out; 5009 5010 if (write) { 5011 spin_lock_irq(&hugetlb_lock); 5012 h->nr_overcommit_huge_pages = tmp; 5013 spin_unlock_irq(&hugetlb_lock); 5014 } 5015 out: 5016 return ret; 5017 } 5018 5019 static struct ctl_table hugetlb_table[] = { 5020 { 5021 .procname = "nr_hugepages", 5022 .data = NULL, 5023 .maxlen = sizeof(unsigned long), 5024 .mode = 0644, 5025 .proc_handler = hugetlb_sysctl_handler, 5026 }, 5027 #ifdef CONFIG_NUMA 5028 { 5029 .procname = "nr_hugepages_mempolicy", 5030 .data = NULL, 5031 .maxlen = sizeof(unsigned long), 5032 .mode = 0644, 5033 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5034 }, 5035 #endif 5036 { 5037 .procname = "hugetlb_shm_group", 5038 .data = &sysctl_hugetlb_shm_group, 5039 .maxlen = sizeof(gid_t), 5040 .mode = 0644, 5041 .proc_handler = proc_dointvec, 5042 }, 5043 { 5044 .procname = "nr_overcommit_hugepages", 5045 .data = NULL, 5046 .maxlen = sizeof(unsigned long), 5047 .mode = 0644, 5048 .proc_handler = hugetlb_overcommit_handler, 5049 }, 5050 }; 5051 5052 static void hugetlb_sysctl_init(void) 5053 { 5054 register_sysctl_init("vm", hugetlb_table); 5055 } 5056 #endif /* CONFIG_SYSCTL */ 5057 5058 void hugetlb_report_meminfo(struct seq_file *m) 5059 { 5060 struct hstate *h; 5061 unsigned long total = 0; 5062 5063 if (!hugepages_supported()) 5064 return; 5065 5066 for_each_hstate(h) { 5067 unsigned long count = h->nr_huge_pages; 5068 5069 total += huge_page_size(h) * count; 5070 5071 if (h == &default_hstate) 5072 seq_printf(m, 5073 "HugePages_Total: %5lu\n" 5074 "HugePages_Free: %5lu\n" 5075 "HugePages_Rsvd: %5lu\n" 5076 "HugePages_Surp: %5lu\n" 5077 "Hugepagesize: %8lu kB\n", 5078 count, 5079 h->free_huge_pages, 5080 h->resv_huge_pages, 5081 h->surplus_huge_pages, 5082 huge_page_size(h) / SZ_1K); 5083 } 5084 5085 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5086 } 5087 5088 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5089 { 5090 struct hstate *h = &default_hstate; 5091 5092 if (!hugepages_supported()) 5093 return 0; 5094 5095 return sysfs_emit_at(buf, len, 5096 "Node %d HugePages_Total: %5u\n" 5097 "Node %d HugePages_Free: %5u\n" 5098 "Node %d HugePages_Surp: %5u\n", 5099 nid, h->nr_huge_pages_node[nid], 5100 nid, h->free_huge_pages_node[nid], 5101 nid, h->surplus_huge_pages_node[nid]); 5102 } 5103 5104 void hugetlb_show_meminfo_node(int nid) 5105 { 5106 struct hstate *h; 5107 5108 if (!hugepages_supported()) 5109 return; 5110 5111 for_each_hstate(h) 5112 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5113 nid, 5114 h->nr_huge_pages_node[nid], 5115 h->free_huge_pages_node[nid], 5116 h->surplus_huge_pages_node[nid], 5117 huge_page_size(h) / SZ_1K); 5118 } 5119 5120 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5121 { 5122 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5123 K(atomic_long_read(&mm->hugetlb_usage))); 5124 } 5125 5126 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5127 unsigned long hugetlb_total_pages(void) 5128 { 5129 struct hstate *h; 5130 unsigned long nr_total_pages = 0; 5131 5132 for_each_hstate(h) 5133 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5134 return nr_total_pages; 5135 } 5136 5137 static int hugetlb_acct_memory(struct hstate *h, long delta) 5138 { 5139 int ret = -ENOMEM; 5140 5141 if (!delta) 5142 return 0; 5143 5144 spin_lock_irq(&hugetlb_lock); 5145 /* 5146 * When cpuset is configured, it breaks the strict hugetlb page 5147 * reservation as the accounting is done on a global variable. Such 5148 * reservation is completely rubbish in the presence of cpuset because 5149 * the reservation is not checked against page availability for the 5150 * current cpuset. Application can still potentially OOM'ed by kernel 5151 * with lack of free htlb page in cpuset that the task is in. 5152 * Attempt to enforce strict accounting with cpuset is almost 5153 * impossible (or too ugly) because cpuset is too fluid that 5154 * task or memory node can be dynamically moved between cpusets. 5155 * 5156 * The change of semantics for shared hugetlb mapping with cpuset is 5157 * undesirable. However, in order to preserve some of the semantics, 5158 * we fall back to check against current free page availability as 5159 * a best attempt and hopefully to minimize the impact of changing 5160 * semantics that cpuset has. 5161 * 5162 * Apart from cpuset, we also have memory policy mechanism that 5163 * also determines from which node the kernel will allocate memory 5164 * in a NUMA system. So similar to cpuset, we also should consider 5165 * the memory policy of the current task. Similar to the description 5166 * above. 5167 */ 5168 if (delta > 0) { 5169 if (gather_surplus_pages(h, delta) < 0) 5170 goto out; 5171 5172 if (delta > allowed_mems_nr(h)) { 5173 return_unused_surplus_pages(h, delta); 5174 goto out; 5175 } 5176 } 5177 5178 ret = 0; 5179 if (delta < 0) 5180 return_unused_surplus_pages(h, (unsigned long) -delta); 5181 5182 out: 5183 spin_unlock_irq(&hugetlb_lock); 5184 return ret; 5185 } 5186 5187 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5188 { 5189 struct resv_map *resv = vma_resv_map(vma); 5190 5191 /* 5192 * HPAGE_RESV_OWNER indicates a private mapping. 5193 * This new VMA should share its siblings reservation map if present. 5194 * The VMA will only ever have a valid reservation map pointer where 5195 * it is being copied for another still existing VMA. As that VMA 5196 * has a reference to the reservation map it cannot disappear until 5197 * after this open call completes. It is therefore safe to take a 5198 * new reference here without additional locking. 5199 */ 5200 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5201 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5202 kref_get(&resv->refs); 5203 } 5204 5205 /* 5206 * vma_lock structure for sharable mappings is vma specific. 5207 * Clear old pointer (if copied via vm_area_dup) and allocate 5208 * new structure. Before clearing, make sure vma_lock is not 5209 * for this vma. 5210 */ 5211 if (vma->vm_flags & VM_MAYSHARE) { 5212 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5213 5214 if (vma_lock) { 5215 if (vma_lock->vma != vma) { 5216 vma->vm_private_data = NULL; 5217 hugetlb_vma_lock_alloc(vma); 5218 } else 5219 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5220 } else 5221 hugetlb_vma_lock_alloc(vma); 5222 } 5223 } 5224 5225 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5226 { 5227 struct hstate *h = hstate_vma(vma); 5228 struct resv_map *resv; 5229 struct hugepage_subpool *spool = subpool_vma(vma); 5230 unsigned long reserve, start, end; 5231 long gbl_reserve; 5232 5233 hugetlb_vma_lock_free(vma); 5234 5235 resv = vma_resv_map(vma); 5236 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5237 return; 5238 5239 start = vma_hugecache_offset(h, vma, vma->vm_start); 5240 end = vma_hugecache_offset(h, vma, vma->vm_end); 5241 5242 reserve = (end - start) - region_count(resv, start, end); 5243 hugetlb_cgroup_uncharge_counter(resv, start, end); 5244 if (reserve) { 5245 /* 5246 * Decrement reserve counts. The global reserve count may be 5247 * adjusted if the subpool has a minimum size. 5248 */ 5249 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5250 hugetlb_acct_memory(h, -gbl_reserve); 5251 } 5252 5253 kref_put(&resv->refs, resv_map_release); 5254 } 5255 5256 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5257 { 5258 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5259 return -EINVAL; 5260 5261 /* 5262 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5263 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5264 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5265 */ 5266 if (addr & ~PUD_MASK) { 5267 /* 5268 * hugetlb_vm_op_split is called right before we attempt to 5269 * split the VMA. We will need to unshare PMDs in the old and 5270 * new VMAs, so let's unshare before we split. 5271 */ 5272 unsigned long floor = addr & PUD_MASK; 5273 unsigned long ceil = floor + PUD_SIZE; 5274 5275 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5276 hugetlb_unshare_pmds(vma, floor, ceil); 5277 } 5278 5279 return 0; 5280 } 5281 5282 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5283 { 5284 return huge_page_size(hstate_vma(vma)); 5285 } 5286 5287 /* 5288 * We cannot handle pagefaults against hugetlb pages at all. They cause 5289 * handle_mm_fault() to try to instantiate regular-sized pages in the 5290 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5291 * this far. 5292 */ 5293 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5294 { 5295 BUG(); 5296 return 0; 5297 } 5298 5299 /* 5300 * When a new function is introduced to vm_operations_struct and added 5301 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5302 * This is because under System V memory model, mappings created via 5303 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5304 * their original vm_ops are overwritten with shm_vm_ops. 5305 */ 5306 const struct vm_operations_struct hugetlb_vm_ops = { 5307 .fault = hugetlb_vm_op_fault, 5308 .open = hugetlb_vm_op_open, 5309 .close = hugetlb_vm_op_close, 5310 .may_split = hugetlb_vm_op_split, 5311 .pagesize = hugetlb_vm_op_pagesize, 5312 }; 5313 5314 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5315 int writable) 5316 { 5317 pte_t entry; 5318 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5319 5320 if (writable) { 5321 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5322 vma->vm_page_prot))); 5323 } else { 5324 entry = huge_pte_wrprotect(mk_huge_pte(page, 5325 vma->vm_page_prot)); 5326 } 5327 entry = pte_mkyoung(entry); 5328 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5329 5330 return entry; 5331 } 5332 5333 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5334 unsigned long address, pte_t *ptep) 5335 { 5336 pte_t entry; 5337 5338 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5339 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5340 update_mmu_cache(vma, address, ptep); 5341 } 5342 5343 bool is_hugetlb_entry_migration(pte_t pte) 5344 { 5345 swp_entry_t swp; 5346 5347 if (huge_pte_none(pte) || pte_present(pte)) 5348 return false; 5349 swp = pte_to_swp_entry(pte); 5350 if (is_migration_entry(swp)) 5351 return true; 5352 else 5353 return false; 5354 } 5355 5356 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5357 { 5358 swp_entry_t swp; 5359 5360 if (huge_pte_none(pte) || pte_present(pte)) 5361 return false; 5362 swp = pte_to_swp_entry(pte); 5363 if (is_hwpoison_entry(swp)) 5364 return true; 5365 else 5366 return false; 5367 } 5368 5369 static void 5370 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5371 struct folio *new_folio, pte_t old, unsigned long sz) 5372 { 5373 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5374 5375 __folio_mark_uptodate(new_folio); 5376 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5377 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5378 newpte = huge_pte_mkuffd_wp(newpte); 5379 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5380 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5381 folio_set_hugetlb_migratable(new_folio); 5382 } 5383 5384 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5385 struct vm_area_struct *dst_vma, 5386 struct vm_area_struct *src_vma) 5387 { 5388 pte_t *src_pte, *dst_pte, entry; 5389 struct folio *pte_folio; 5390 unsigned long addr; 5391 bool cow = is_cow_mapping(src_vma->vm_flags); 5392 struct hstate *h = hstate_vma(src_vma); 5393 unsigned long sz = huge_page_size(h); 5394 unsigned long npages = pages_per_huge_page(h); 5395 struct mmu_notifier_range range; 5396 unsigned long last_addr_mask; 5397 int ret = 0; 5398 5399 if (cow) { 5400 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5401 src_vma->vm_start, 5402 src_vma->vm_end); 5403 mmu_notifier_invalidate_range_start(&range); 5404 vma_assert_write_locked(src_vma); 5405 raw_write_seqcount_begin(&src->write_protect_seq); 5406 } else { 5407 /* 5408 * For shared mappings the vma lock must be held before 5409 * calling hugetlb_walk() in the src vma. Otherwise, the 5410 * returned ptep could go away if part of a shared pmd and 5411 * another thread calls huge_pmd_unshare. 5412 */ 5413 hugetlb_vma_lock_read(src_vma); 5414 } 5415 5416 last_addr_mask = hugetlb_mask_last_page(h); 5417 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5418 spinlock_t *src_ptl, *dst_ptl; 5419 src_pte = hugetlb_walk(src_vma, addr, sz); 5420 if (!src_pte) { 5421 addr |= last_addr_mask; 5422 continue; 5423 } 5424 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5425 if (!dst_pte) { 5426 ret = -ENOMEM; 5427 break; 5428 } 5429 5430 /* 5431 * If the pagetables are shared don't copy or take references. 5432 * 5433 * dst_pte == src_pte is the common case of src/dest sharing. 5434 * However, src could have 'unshared' and dst shares with 5435 * another vma. So page_count of ptep page is checked instead 5436 * to reliably determine whether pte is shared. 5437 */ 5438 if (page_count(virt_to_page(dst_pte)) > 1) { 5439 addr |= last_addr_mask; 5440 continue; 5441 } 5442 5443 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5444 src_ptl = huge_pte_lockptr(h, src, src_pte); 5445 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5446 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5447 again: 5448 if (huge_pte_none(entry)) { 5449 /* 5450 * Skip if src entry none. 5451 */ 5452 ; 5453 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5454 if (!userfaultfd_wp(dst_vma)) 5455 entry = huge_pte_clear_uffd_wp(entry); 5456 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5457 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5458 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5459 bool uffd_wp = pte_swp_uffd_wp(entry); 5460 5461 if (!is_readable_migration_entry(swp_entry) && cow) { 5462 /* 5463 * COW mappings require pages in both 5464 * parent and child to be set to read. 5465 */ 5466 swp_entry = make_readable_migration_entry( 5467 swp_offset(swp_entry)); 5468 entry = swp_entry_to_pte(swp_entry); 5469 if (userfaultfd_wp(src_vma) && uffd_wp) 5470 entry = pte_swp_mkuffd_wp(entry); 5471 set_huge_pte_at(src, addr, src_pte, entry, sz); 5472 } 5473 if (!userfaultfd_wp(dst_vma)) 5474 entry = huge_pte_clear_uffd_wp(entry); 5475 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5476 } else if (unlikely(is_pte_marker(entry))) { 5477 pte_marker marker = copy_pte_marker( 5478 pte_to_swp_entry(entry), dst_vma); 5479 5480 if (marker) 5481 set_huge_pte_at(dst, addr, dst_pte, 5482 make_pte_marker(marker), sz); 5483 } else { 5484 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5485 pte_folio = page_folio(pte_page(entry)); 5486 folio_get(pte_folio); 5487 5488 /* 5489 * Failing to duplicate the anon rmap is a rare case 5490 * where we see pinned hugetlb pages while they're 5491 * prone to COW. We need to do the COW earlier during 5492 * fork. 5493 * 5494 * When pre-allocating the page or copying data, we 5495 * need to be without the pgtable locks since we could 5496 * sleep during the process. 5497 */ 5498 if (!folio_test_anon(pte_folio)) { 5499 hugetlb_add_file_rmap(pte_folio); 5500 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5501 pte_t src_pte_old = entry; 5502 struct folio *new_folio; 5503 5504 spin_unlock(src_ptl); 5505 spin_unlock(dst_ptl); 5506 /* Do not use reserve as it's private owned */ 5507 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5508 if (IS_ERR(new_folio)) { 5509 folio_put(pte_folio); 5510 ret = PTR_ERR(new_folio); 5511 break; 5512 } 5513 ret = copy_user_large_folio(new_folio, pte_folio, 5514 ALIGN_DOWN(addr, sz), dst_vma); 5515 folio_put(pte_folio); 5516 if (ret) { 5517 folio_put(new_folio); 5518 break; 5519 } 5520 5521 /* Install the new hugetlb folio if src pte stable */ 5522 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5523 src_ptl = huge_pte_lockptr(h, src, src_pte); 5524 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5525 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5526 if (!pte_same(src_pte_old, entry)) { 5527 restore_reserve_on_error(h, dst_vma, addr, 5528 new_folio); 5529 folio_put(new_folio); 5530 /* huge_ptep of dst_pte won't change as in child */ 5531 goto again; 5532 } 5533 hugetlb_install_folio(dst_vma, dst_pte, addr, 5534 new_folio, src_pte_old, sz); 5535 spin_unlock(src_ptl); 5536 spin_unlock(dst_ptl); 5537 continue; 5538 } 5539 5540 if (cow) { 5541 /* 5542 * No need to notify as we are downgrading page 5543 * table protection not changing it to point 5544 * to a new page. 5545 * 5546 * See Documentation/mm/mmu_notifier.rst 5547 */ 5548 huge_ptep_set_wrprotect(src, addr, src_pte); 5549 entry = huge_pte_wrprotect(entry); 5550 } 5551 5552 if (!userfaultfd_wp(dst_vma)) 5553 entry = huge_pte_clear_uffd_wp(entry); 5554 5555 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5556 hugetlb_count_add(npages, dst); 5557 } 5558 spin_unlock(src_ptl); 5559 spin_unlock(dst_ptl); 5560 } 5561 5562 if (cow) { 5563 raw_write_seqcount_end(&src->write_protect_seq); 5564 mmu_notifier_invalidate_range_end(&range); 5565 } else { 5566 hugetlb_vma_unlock_read(src_vma); 5567 } 5568 5569 return ret; 5570 } 5571 5572 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5573 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5574 unsigned long sz) 5575 { 5576 struct hstate *h = hstate_vma(vma); 5577 struct mm_struct *mm = vma->vm_mm; 5578 spinlock_t *src_ptl, *dst_ptl; 5579 pte_t pte; 5580 5581 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5582 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5583 5584 /* 5585 * We don't have to worry about the ordering of src and dst ptlocks 5586 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5587 */ 5588 if (src_ptl != dst_ptl) 5589 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5590 5591 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5592 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5593 5594 if (src_ptl != dst_ptl) 5595 spin_unlock(src_ptl); 5596 spin_unlock(dst_ptl); 5597 } 5598 5599 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5600 struct vm_area_struct *new_vma, 5601 unsigned long old_addr, unsigned long new_addr, 5602 unsigned long len) 5603 { 5604 struct hstate *h = hstate_vma(vma); 5605 struct address_space *mapping = vma->vm_file->f_mapping; 5606 unsigned long sz = huge_page_size(h); 5607 struct mm_struct *mm = vma->vm_mm; 5608 unsigned long old_end = old_addr + len; 5609 unsigned long last_addr_mask; 5610 pte_t *src_pte, *dst_pte; 5611 struct mmu_notifier_range range; 5612 bool shared_pmd = false; 5613 5614 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5615 old_end); 5616 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5617 /* 5618 * In case of shared PMDs, we should cover the maximum possible 5619 * range. 5620 */ 5621 flush_cache_range(vma, range.start, range.end); 5622 5623 mmu_notifier_invalidate_range_start(&range); 5624 last_addr_mask = hugetlb_mask_last_page(h); 5625 /* Prevent race with file truncation */ 5626 hugetlb_vma_lock_write(vma); 5627 i_mmap_lock_write(mapping); 5628 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5629 src_pte = hugetlb_walk(vma, old_addr, sz); 5630 if (!src_pte) { 5631 old_addr |= last_addr_mask; 5632 new_addr |= last_addr_mask; 5633 continue; 5634 } 5635 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5636 continue; 5637 5638 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5639 shared_pmd = true; 5640 old_addr |= last_addr_mask; 5641 new_addr |= last_addr_mask; 5642 continue; 5643 } 5644 5645 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5646 if (!dst_pte) 5647 break; 5648 5649 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5650 } 5651 5652 if (shared_pmd) 5653 flush_hugetlb_tlb_range(vma, range.start, range.end); 5654 else 5655 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5656 mmu_notifier_invalidate_range_end(&range); 5657 i_mmap_unlock_write(mapping); 5658 hugetlb_vma_unlock_write(vma); 5659 5660 return len + old_addr - old_end; 5661 } 5662 5663 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5664 unsigned long start, unsigned long end, 5665 struct page *ref_page, zap_flags_t zap_flags) 5666 { 5667 struct mm_struct *mm = vma->vm_mm; 5668 unsigned long address; 5669 pte_t *ptep; 5670 pte_t pte; 5671 spinlock_t *ptl; 5672 struct page *page; 5673 struct hstate *h = hstate_vma(vma); 5674 unsigned long sz = huge_page_size(h); 5675 bool adjust_reservation = false; 5676 unsigned long last_addr_mask; 5677 bool force_flush = false; 5678 5679 WARN_ON(!is_vm_hugetlb_page(vma)); 5680 BUG_ON(start & ~huge_page_mask(h)); 5681 BUG_ON(end & ~huge_page_mask(h)); 5682 5683 /* 5684 * This is a hugetlb vma, all the pte entries should point 5685 * to huge page. 5686 */ 5687 tlb_change_page_size(tlb, sz); 5688 tlb_start_vma(tlb, vma); 5689 5690 last_addr_mask = hugetlb_mask_last_page(h); 5691 address = start; 5692 for (; address < end; address += sz) { 5693 ptep = hugetlb_walk(vma, address, sz); 5694 if (!ptep) { 5695 address |= last_addr_mask; 5696 continue; 5697 } 5698 5699 ptl = huge_pte_lock(h, mm, ptep); 5700 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5701 spin_unlock(ptl); 5702 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5703 force_flush = true; 5704 address |= last_addr_mask; 5705 continue; 5706 } 5707 5708 pte = huge_ptep_get(mm, address, ptep); 5709 if (huge_pte_none(pte)) { 5710 spin_unlock(ptl); 5711 continue; 5712 } 5713 5714 /* 5715 * Migrating hugepage or HWPoisoned hugepage is already 5716 * unmapped and its refcount is dropped, so just clear pte here. 5717 */ 5718 if (unlikely(!pte_present(pte))) { 5719 /* 5720 * If the pte was wr-protected by uffd-wp in any of the 5721 * swap forms, meanwhile the caller does not want to 5722 * drop the uffd-wp bit in this zap, then replace the 5723 * pte with a marker. 5724 */ 5725 if (pte_swp_uffd_wp_any(pte) && 5726 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5727 set_huge_pte_at(mm, address, ptep, 5728 make_pte_marker(PTE_MARKER_UFFD_WP), 5729 sz); 5730 else 5731 huge_pte_clear(mm, address, ptep, sz); 5732 spin_unlock(ptl); 5733 continue; 5734 } 5735 5736 page = pte_page(pte); 5737 /* 5738 * If a reference page is supplied, it is because a specific 5739 * page is being unmapped, not a range. Ensure the page we 5740 * are about to unmap is the actual page of interest. 5741 */ 5742 if (ref_page) { 5743 if (page != ref_page) { 5744 spin_unlock(ptl); 5745 continue; 5746 } 5747 /* 5748 * Mark the VMA as having unmapped its page so that 5749 * future faults in this VMA will fail rather than 5750 * looking like data was lost 5751 */ 5752 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5753 } 5754 5755 pte = huge_ptep_get_and_clear(mm, address, ptep); 5756 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5757 if (huge_pte_dirty(pte)) 5758 set_page_dirty(page); 5759 /* Leave a uffd-wp pte marker if needed */ 5760 if (huge_pte_uffd_wp(pte) && 5761 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5762 set_huge_pte_at(mm, address, ptep, 5763 make_pte_marker(PTE_MARKER_UFFD_WP), 5764 sz); 5765 hugetlb_count_sub(pages_per_huge_page(h), mm); 5766 hugetlb_remove_rmap(page_folio(page)); 5767 5768 /* 5769 * Restore the reservation for anonymous page, otherwise the 5770 * backing page could be stolen by someone. 5771 * If there we are freeing a surplus, do not set the restore 5772 * reservation bit. 5773 */ 5774 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5775 folio_test_anon(page_folio(page))) { 5776 folio_set_hugetlb_restore_reserve(page_folio(page)); 5777 /* Reservation to be adjusted after the spin lock */ 5778 adjust_reservation = true; 5779 } 5780 5781 spin_unlock(ptl); 5782 5783 /* 5784 * Adjust the reservation for the region that will have the 5785 * reserve restored. Keep in mind that vma_needs_reservation() changes 5786 * resv->adds_in_progress if it succeeds. If this is not done, 5787 * do_exit() will not see it, and will keep the reservation 5788 * forever. 5789 */ 5790 if (adjust_reservation) { 5791 int rc = vma_needs_reservation(h, vma, address); 5792 5793 if (rc < 0) 5794 /* Pressumably allocate_file_region_entries failed 5795 * to allocate a file_region struct. Clear 5796 * hugetlb_restore_reserve so that global reserve 5797 * count will not be incremented by free_huge_folio. 5798 * Act as if we consumed the reservation. 5799 */ 5800 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5801 else if (rc) 5802 vma_add_reservation(h, vma, address); 5803 } 5804 5805 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5806 /* 5807 * Bail out after unmapping reference page if supplied 5808 */ 5809 if (ref_page) 5810 break; 5811 } 5812 tlb_end_vma(tlb, vma); 5813 5814 /* 5815 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5816 * could defer the flush until now, since by holding i_mmap_rwsem we 5817 * guaranteed that the last refernece would not be dropped. But we must 5818 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5819 * dropped and the last reference to the shared PMDs page might be 5820 * dropped as well. 5821 * 5822 * In theory we could defer the freeing of the PMD pages as well, but 5823 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5824 * detect sharing, so we cannot defer the release of the page either. 5825 * Instead, do flush now. 5826 */ 5827 if (force_flush) 5828 tlb_flush_mmu_tlbonly(tlb); 5829 } 5830 5831 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5832 unsigned long *start, unsigned long *end) 5833 { 5834 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5835 return; 5836 5837 adjust_range_if_pmd_sharing_possible(vma, start, end); 5838 hugetlb_vma_lock_write(vma); 5839 if (vma->vm_file) 5840 i_mmap_lock_write(vma->vm_file->f_mapping); 5841 } 5842 5843 void __hugetlb_zap_end(struct vm_area_struct *vma, 5844 struct zap_details *details) 5845 { 5846 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5847 5848 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5849 return; 5850 5851 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5852 /* 5853 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5854 * When the vma_lock is freed, this makes the vma ineligible 5855 * for pmd sharing. And, i_mmap_rwsem is required to set up 5856 * pmd sharing. This is important as page tables for this 5857 * unmapped range will be asynchrously deleted. If the page 5858 * tables are shared, there will be issues when accessed by 5859 * someone else. 5860 */ 5861 __hugetlb_vma_unlock_write_free(vma); 5862 } else { 5863 hugetlb_vma_unlock_write(vma); 5864 } 5865 5866 if (vma->vm_file) 5867 i_mmap_unlock_write(vma->vm_file->f_mapping); 5868 } 5869 5870 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5871 unsigned long end, struct page *ref_page, 5872 zap_flags_t zap_flags) 5873 { 5874 struct mmu_notifier_range range; 5875 struct mmu_gather tlb; 5876 5877 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5878 start, end); 5879 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5880 mmu_notifier_invalidate_range_start(&range); 5881 tlb_gather_mmu(&tlb, vma->vm_mm); 5882 5883 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5884 5885 mmu_notifier_invalidate_range_end(&range); 5886 tlb_finish_mmu(&tlb); 5887 } 5888 5889 /* 5890 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5891 * mapping it owns the reserve page for. The intention is to unmap the page 5892 * from other VMAs and let the children be SIGKILLed if they are faulting the 5893 * same region. 5894 */ 5895 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5896 struct page *page, unsigned long address) 5897 { 5898 struct hstate *h = hstate_vma(vma); 5899 struct vm_area_struct *iter_vma; 5900 struct address_space *mapping; 5901 pgoff_t pgoff; 5902 5903 /* 5904 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5905 * from page cache lookup which is in HPAGE_SIZE units. 5906 */ 5907 address = address & huge_page_mask(h); 5908 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5909 vma->vm_pgoff; 5910 mapping = vma->vm_file->f_mapping; 5911 5912 /* 5913 * Take the mapping lock for the duration of the table walk. As 5914 * this mapping should be shared between all the VMAs, 5915 * __unmap_hugepage_range() is called as the lock is already held 5916 */ 5917 i_mmap_lock_write(mapping); 5918 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5919 /* Do not unmap the current VMA */ 5920 if (iter_vma == vma) 5921 continue; 5922 5923 /* 5924 * Shared VMAs have their own reserves and do not affect 5925 * MAP_PRIVATE accounting but it is possible that a shared 5926 * VMA is using the same page so check and skip such VMAs. 5927 */ 5928 if (iter_vma->vm_flags & VM_MAYSHARE) 5929 continue; 5930 5931 /* 5932 * Unmap the page from other VMAs without their own reserves. 5933 * They get marked to be SIGKILLed if they fault in these 5934 * areas. This is because a future no-page fault on this VMA 5935 * could insert a zeroed page instead of the data existing 5936 * from the time of fork. This would look like data corruption 5937 */ 5938 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5939 unmap_hugepage_range(iter_vma, address, 5940 address + huge_page_size(h), page, 0); 5941 } 5942 i_mmap_unlock_write(mapping); 5943 } 5944 5945 /* 5946 * hugetlb_wp() should be called with page lock of the original hugepage held. 5947 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5948 * cannot race with other handlers or page migration. 5949 * Keep the pte_same checks anyway to make transition from the mutex easier. 5950 */ 5951 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 5952 struct vm_fault *vmf) 5953 { 5954 struct vm_area_struct *vma = vmf->vma; 5955 struct mm_struct *mm = vma->vm_mm; 5956 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5957 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 5958 struct hstate *h = hstate_vma(vma); 5959 struct folio *old_folio; 5960 struct folio *new_folio; 5961 int outside_reserve = 0; 5962 vm_fault_t ret = 0; 5963 struct mmu_notifier_range range; 5964 5965 /* 5966 * Never handle CoW for uffd-wp protected pages. It should be only 5967 * handled when the uffd-wp protection is removed. 5968 * 5969 * Note that only the CoW optimization path (in hugetlb_no_page()) 5970 * can trigger this, because hugetlb_fault() will always resolve 5971 * uffd-wp bit first. 5972 */ 5973 if (!unshare && huge_pte_uffd_wp(pte)) 5974 return 0; 5975 5976 /* 5977 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5978 * PTE mapped R/O such as maybe_mkwrite() would do. 5979 */ 5980 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5981 return VM_FAULT_SIGSEGV; 5982 5983 /* Let's take out MAP_SHARED mappings first. */ 5984 if (vma->vm_flags & VM_MAYSHARE) { 5985 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5986 return 0; 5987 } 5988 5989 old_folio = page_folio(pte_page(pte)); 5990 5991 delayacct_wpcopy_start(); 5992 5993 retry_avoidcopy: 5994 /* 5995 * If no-one else is actually using this page, we're the exclusive 5996 * owner and can reuse this page. 5997 * 5998 * Note that we don't rely on the (safer) folio refcount here, because 5999 * copying the hugetlb folio when there are unexpected (temporary) 6000 * folio references could harm simple fork()+exit() users when 6001 * we run out of free hugetlb folios: we would have to kill processes 6002 * in scenarios that used to work. As a side effect, there can still 6003 * be leaks between processes, for example, with FOLL_GET users. 6004 */ 6005 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6006 if (!PageAnonExclusive(&old_folio->page)) { 6007 folio_move_anon_rmap(old_folio, vma); 6008 SetPageAnonExclusive(&old_folio->page); 6009 } 6010 if (likely(!unshare)) 6011 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6012 6013 delayacct_wpcopy_end(); 6014 return 0; 6015 } 6016 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6017 PageAnonExclusive(&old_folio->page), &old_folio->page); 6018 6019 /* 6020 * If the process that created a MAP_PRIVATE mapping is about to 6021 * perform a COW due to a shared page count, attempt to satisfy 6022 * the allocation without using the existing reserves. The pagecache 6023 * page is used to determine if the reserve at this address was 6024 * consumed or not. If reserves were used, a partial faulted mapping 6025 * at the time of fork() could consume its reserves on COW instead 6026 * of the full address range. 6027 */ 6028 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6029 old_folio != pagecache_folio) 6030 outside_reserve = 1; 6031 6032 folio_get(old_folio); 6033 6034 /* 6035 * Drop page table lock as buddy allocator may be called. It will 6036 * be acquired again before returning to the caller, as expected. 6037 */ 6038 spin_unlock(vmf->ptl); 6039 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve); 6040 6041 if (IS_ERR(new_folio)) { 6042 /* 6043 * If a process owning a MAP_PRIVATE mapping fails to COW, 6044 * it is due to references held by a child and an insufficient 6045 * huge page pool. To guarantee the original mappers 6046 * reliability, unmap the page from child processes. The child 6047 * may get SIGKILLed if it later faults. 6048 */ 6049 if (outside_reserve) { 6050 struct address_space *mapping = vma->vm_file->f_mapping; 6051 pgoff_t idx; 6052 u32 hash; 6053 6054 folio_put(old_folio); 6055 /* 6056 * Drop hugetlb_fault_mutex and vma_lock before 6057 * unmapping. unmapping needs to hold vma_lock 6058 * in write mode. Dropping vma_lock in read mode 6059 * here is OK as COW mappings do not interact with 6060 * PMD sharing. 6061 * 6062 * Reacquire both after unmap operation. 6063 */ 6064 idx = vma_hugecache_offset(h, vma, vmf->address); 6065 hash = hugetlb_fault_mutex_hash(mapping, idx); 6066 hugetlb_vma_unlock_read(vma); 6067 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6068 6069 unmap_ref_private(mm, vma, &old_folio->page, 6070 vmf->address); 6071 6072 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6073 hugetlb_vma_lock_read(vma); 6074 spin_lock(vmf->ptl); 6075 vmf->pte = hugetlb_walk(vma, vmf->address, 6076 huge_page_size(h)); 6077 if (likely(vmf->pte && 6078 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6079 goto retry_avoidcopy; 6080 /* 6081 * race occurs while re-acquiring page table 6082 * lock, and our job is done. 6083 */ 6084 delayacct_wpcopy_end(); 6085 return 0; 6086 } 6087 6088 ret = vmf_error(PTR_ERR(new_folio)); 6089 goto out_release_old; 6090 } 6091 6092 /* 6093 * When the original hugepage is shared one, it does not have 6094 * anon_vma prepared. 6095 */ 6096 ret = __vmf_anon_prepare(vmf); 6097 if (unlikely(ret)) 6098 goto out_release_all; 6099 6100 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6101 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6102 goto out_release_all; 6103 } 6104 __folio_mark_uptodate(new_folio); 6105 6106 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6107 vmf->address + huge_page_size(h)); 6108 mmu_notifier_invalidate_range_start(&range); 6109 6110 /* 6111 * Retake the page table lock to check for racing updates 6112 * before the page tables are altered 6113 */ 6114 spin_lock(vmf->ptl); 6115 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6116 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6117 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6118 6119 /* Break COW or unshare */ 6120 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6121 hugetlb_remove_rmap(old_folio); 6122 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6123 if (huge_pte_uffd_wp(pte)) 6124 newpte = huge_pte_mkuffd_wp(newpte); 6125 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6126 huge_page_size(h)); 6127 folio_set_hugetlb_migratable(new_folio); 6128 /* Make the old page be freed below */ 6129 new_folio = old_folio; 6130 } 6131 spin_unlock(vmf->ptl); 6132 mmu_notifier_invalidate_range_end(&range); 6133 out_release_all: 6134 /* 6135 * No restore in case of successful pagetable update (Break COW or 6136 * unshare) 6137 */ 6138 if (new_folio != old_folio) 6139 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6140 folio_put(new_folio); 6141 out_release_old: 6142 folio_put(old_folio); 6143 6144 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6145 6146 delayacct_wpcopy_end(); 6147 return ret; 6148 } 6149 6150 /* 6151 * Return whether there is a pagecache page to back given address within VMA. 6152 */ 6153 bool hugetlbfs_pagecache_present(struct hstate *h, 6154 struct vm_area_struct *vma, unsigned long address) 6155 { 6156 struct address_space *mapping = vma->vm_file->f_mapping; 6157 pgoff_t idx = linear_page_index(vma, address); 6158 struct folio *folio; 6159 6160 folio = filemap_get_folio(mapping, idx); 6161 if (IS_ERR(folio)) 6162 return false; 6163 folio_put(folio); 6164 return true; 6165 } 6166 6167 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6168 pgoff_t idx) 6169 { 6170 struct inode *inode = mapping->host; 6171 struct hstate *h = hstate_inode(inode); 6172 int err; 6173 6174 idx <<= huge_page_order(h); 6175 __folio_set_locked(folio); 6176 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6177 6178 if (unlikely(err)) { 6179 __folio_clear_locked(folio); 6180 return err; 6181 } 6182 folio_clear_hugetlb_restore_reserve(folio); 6183 6184 /* 6185 * mark folio dirty so that it will not be removed from cache/file 6186 * by non-hugetlbfs specific code paths. 6187 */ 6188 folio_mark_dirty(folio); 6189 6190 spin_lock(&inode->i_lock); 6191 inode->i_blocks += blocks_per_huge_page(h); 6192 spin_unlock(&inode->i_lock); 6193 return 0; 6194 } 6195 6196 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6197 struct address_space *mapping, 6198 unsigned long reason) 6199 { 6200 u32 hash; 6201 6202 /* 6203 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6204 * userfault. Also mmap_lock could be dropped due to handling 6205 * userfault, any vma operation should be careful from here. 6206 */ 6207 hugetlb_vma_unlock_read(vmf->vma); 6208 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6209 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6210 return handle_userfault(vmf, reason); 6211 } 6212 6213 /* 6214 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6215 * false if pte changed or is changing. 6216 */ 6217 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6218 pte_t *ptep, pte_t old_pte) 6219 { 6220 spinlock_t *ptl; 6221 bool same; 6222 6223 ptl = huge_pte_lock(h, mm, ptep); 6224 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6225 spin_unlock(ptl); 6226 6227 return same; 6228 } 6229 6230 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6231 struct vm_fault *vmf) 6232 { 6233 struct vm_area_struct *vma = vmf->vma; 6234 struct mm_struct *mm = vma->vm_mm; 6235 struct hstate *h = hstate_vma(vma); 6236 vm_fault_t ret = VM_FAULT_SIGBUS; 6237 int anon_rmap = 0; 6238 unsigned long size; 6239 struct folio *folio; 6240 pte_t new_pte; 6241 bool new_folio, new_pagecache_folio = false; 6242 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6243 6244 /* 6245 * Currently, we are forced to kill the process in the event the 6246 * original mapper has unmapped pages from the child due to a failed 6247 * COW/unsharing. Warn that such a situation has occurred as it may not 6248 * be obvious. 6249 */ 6250 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6251 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6252 current->pid); 6253 goto out; 6254 } 6255 6256 /* 6257 * Use page lock to guard against racing truncation 6258 * before we get page_table_lock. 6259 */ 6260 new_folio = false; 6261 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6262 if (IS_ERR(folio)) { 6263 size = i_size_read(mapping->host) >> huge_page_shift(h); 6264 if (vmf->pgoff >= size) 6265 goto out; 6266 /* Check for page in userfault range */ 6267 if (userfaultfd_missing(vma)) { 6268 /* 6269 * Since hugetlb_no_page() was examining pte 6270 * without pgtable lock, we need to re-test under 6271 * lock because the pte may not be stable and could 6272 * have changed from under us. Try to detect 6273 * either changed or during-changing ptes and retry 6274 * properly when needed. 6275 * 6276 * Note that userfaultfd is actually fine with 6277 * false positives (e.g. caused by pte changed), 6278 * but not wrong logical events (e.g. caused by 6279 * reading a pte during changing). The latter can 6280 * confuse the userspace, so the strictness is very 6281 * much preferred. E.g., MISSING event should 6282 * never happen on the page after UFFDIO_COPY has 6283 * correctly installed the page and returned. 6284 */ 6285 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6286 ret = 0; 6287 goto out; 6288 } 6289 6290 return hugetlb_handle_userfault(vmf, mapping, 6291 VM_UFFD_MISSING); 6292 } 6293 6294 if (!(vma->vm_flags & VM_MAYSHARE)) { 6295 ret = __vmf_anon_prepare(vmf); 6296 if (unlikely(ret)) 6297 goto out; 6298 } 6299 6300 folio = alloc_hugetlb_folio(vma, vmf->address, 0); 6301 if (IS_ERR(folio)) { 6302 /* 6303 * Returning error will result in faulting task being 6304 * sent SIGBUS. The hugetlb fault mutex prevents two 6305 * tasks from racing to fault in the same page which 6306 * could result in false unable to allocate errors. 6307 * Page migration does not take the fault mutex, but 6308 * does a clear then write of pte's under page table 6309 * lock. Page fault code could race with migration, 6310 * notice the clear pte and try to allocate a page 6311 * here. Before returning error, get ptl and make 6312 * sure there really is no pte entry. 6313 */ 6314 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6315 ret = vmf_error(PTR_ERR(folio)); 6316 else 6317 ret = 0; 6318 goto out; 6319 } 6320 folio_zero_user(folio, vmf->real_address); 6321 __folio_mark_uptodate(folio); 6322 new_folio = true; 6323 6324 if (vma->vm_flags & VM_MAYSHARE) { 6325 int err = hugetlb_add_to_page_cache(folio, mapping, 6326 vmf->pgoff); 6327 if (err) { 6328 /* 6329 * err can't be -EEXIST which implies someone 6330 * else consumed the reservation since hugetlb 6331 * fault mutex is held when add a hugetlb page 6332 * to the page cache. So it's safe to call 6333 * restore_reserve_on_error() here. 6334 */ 6335 restore_reserve_on_error(h, vma, vmf->address, 6336 folio); 6337 folio_put(folio); 6338 ret = VM_FAULT_SIGBUS; 6339 goto out; 6340 } 6341 new_pagecache_folio = true; 6342 } else { 6343 folio_lock(folio); 6344 anon_rmap = 1; 6345 } 6346 } else { 6347 /* 6348 * If memory error occurs between mmap() and fault, some process 6349 * don't have hwpoisoned swap entry for errored virtual address. 6350 * So we need to block hugepage fault by PG_hwpoison bit check. 6351 */ 6352 if (unlikely(folio_test_hwpoison(folio))) { 6353 ret = VM_FAULT_HWPOISON_LARGE | 6354 VM_FAULT_SET_HINDEX(hstate_index(h)); 6355 goto backout_unlocked; 6356 } 6357 6358 /* Check for page in userfault range. */ 6359 if (userfaultfd_minor(vma)) { 6360 folio_unlock(folio); 6361 folio_put(folio); 6362 /* See comment in userfaultfd_missing() block above */ 6363 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6364 ret = 0; 6365 goto out; 6366 } 6367 return hugetlb_handle_userfault(vmf, mapping, 6368 VM_UFFD_MINOR); 6369 } 6370 } 6371 6372 /* 6373 * If we are going to COW a private mapping later, we examine the 6374 * pending reservations for this page now. This will ensure that 6375 * any allocations necessary to record that reservation occur outside 6376 * the spinlock. 6377 */ 6378 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6379 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6380 ret = VM_FAULT_OOM; 6381 goto backout_unlocked; 6382 } 6383 /* Just decrements count, does not deallocate */ 6384 vma_end_reservation(h, vma, vmf->address); 6385 } 6386 6387 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6388 ret = 0; 6389 /* If pte changed from under us, retry */ 6390 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6391 goto backout; 6392 6393 if (anon_rmap) 6394 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6395 else 6396 hugetlb_add_file_rmap(folio); 6397 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6398 && (vma->vm_flags & VM_SHARED))); 6399 /* 6400 * If this pte was previously wr-protected, keep it wr-protected even 6401 * if populated. 6402 */ 6403 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6404 new_pte = huge_pte_mkuffd_wp(new_pte); 6405 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6406 6407 hugetlb_count_add(pages_per_huge_page(h), mm); 6408 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6409 /* Optimization, do the COW without a second fault */ 6410 ret = hugetlb_wp(folio, vmf); 6411 } 6412 6413 spin_unlock(vmf->ptl); 6414 6415 /* 6416 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6417 * found in the pagecache may not have hugetlb_migratable if they have 6418 * been isolated for migration. 6419 */ 6420 if (new_folio) 6421 folio_set_hugetlb_migratable(folio); 6422 6423 folio_unlock(folio); 6424 out: 6425 hugetlb_vma_unlock_read(vma); 6426 6427 /* 6428 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6429 * the only way ret can be set to VM_FAULT_RETRY. 6430 */ 6431 if (unlikely(ret & VM_FAULT_RETRY)) 6432 vma_end_read(vma); 6433 6434 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6435 return ret; 6436 6437 backout: 6438 spin_unlock(vmf->ptl); 6439 backout_unlocked: 6440 if (new_folio && !new_pagecache_folio) 6441 restore_reserve_on_error(h, vma, vmf->address, folio); 6442 6443 folio_unlock(folio); 6444 folio_put(folio); 6445 goto out; 6446 } 6447 6448 #ifdef CONFIG_SMP 6449 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6450 { 6451 unsigned long key[2]; 6452 u32 hash; 6453 6454 key[0] = (unsigned long) mapping; 6455 key[1] = idx; 6456 6457 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6458 6459 return hash & (num_fault_mutexes - 1); 6460 } 6461 #else 6462 /* 6463 * For uniprocessor systems we always use a single mutex, so just 6464 * return 0 and avoid the hashing overhead. 6465 */ 6466 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6467 { 6468 return 0; 6469 } 6470 #endif 6471 6472 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6473 unsigned long address, unsigned int flags) 6474 { 6475 vm_fault_t ret; 6476 u32 hash; 6477 struct folio *folio = NULL; 6478 struct folio *pagecache_folio = NULL; 6479 struct hstate *h = hstate_vma(vma); 6480 struct address_space *mapping; 6481 int need_wait_lock = 0; 6482 struct vm_fault vmf = { 6483 .vma = vma, 6484 .address = address & huge_page_mask(h), 6485 .real_address = address, 6486 .flags = flags, 6487 .pgoff = vma_hugecache_offset(h, vma, 6488 address & huge_page_mask(h)), 6489 /* TODO: Track hugetlb faults using vm_fault */ 6490 6491 /* 6492 * Some fields may not be initialized, be careful as it may 6493 * be hard to debug if called functions make assumptions 6494 */ 6495 }; 6496 6497 /* 6498 * Serialize hugepage allocation and instantiation, so that we don't 6499 * get spurious allocation failures if two CPUs race to instantiate 6500 * the same page in the page cache. 6501 */ 6502 mapping = vma->vm_file->f_mapping; 6503 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6504 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6505 6506 /* 6507 * Acquire vma lock before calling huge_pte_alloc and hold 6508 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6509 * being called elsewhere and making the vmf.pte no longer valid. 6510 */ 6511 hugetlb_vma_lock_read(vma); 6512 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6513 if (!vmf.pte) { 6514 hugetlb_vma_unlock_read(vma); 6515 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6516 return VM_FAULT_OOM; 6517 } 6518 6519 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6520 if (huge_pte_none_mostly(vmf.orig_pte)) { 6521 if (is_pte_marker(vmf.orig_pte)) { 6522 pte_marker marker = 6523 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6524 6525 if (marker & PTE_MARKER_POISONED) { 6526 ret = VM_FAULT_HWPOISON_LARGE | 6527 VM_FAULT_SET_HINDEX(hstate_index(h)); 6528 goto out_mutex; 6529 } 6530 } 6531 6532 /* 6533 * Other PTE markers should be handled the same way as none PTE. 6534 * 6535 * hugetlb_no_page will drop vma lock and hugetlb fault 6536 * mutex internally, which make us return immediately. 6537 */ 6538 return hugetlb_no_page(mapping, &vmf); 6539 } 6540 6541 ret = 0; 6542 6543 /* 6544 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6545 * point, so this check prevents the kernel from going below assuming 6546 * that we have an active hugepage in pagecache. This goto expects 6547 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6548 * check will properly handle it. 6549 */ 6550 if (!pte_present(vmf.orig_pte)) { 6551 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6552 /* 6553 * Release the hugetlb fault lock now, but retain 6554 * the vma lock, because it is needed to guard the 6555 * huge_pte_lockptr() later in 6556 * migration_entry_wait_huge(). The vma lock will 6557 * be released there. 6558 */ 6559 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6560 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6561 return 0; 6562 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6563 ret = VM_FAULT_HWPOISON_LARGE | 6564 VM_FAULT_SET_HINDEX(hstate_index(h)); 6565 goto out_mutex; 6566 } 6567 6568 /* 6569 * If we are going to COW/unshare the mapping later, we examine the 6570 * pending reservations for this page now. This will ensure that any 6571 * allocations necessary to record that reservation occur outside the 6572 * spinlock. Also lookup the pagecache page now as it is used to 6573 * determine if a reservation has been consumed. 6574 */ 6575 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6576 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6577 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6578 ret = VM_FAULT_OOM; 6579 goto out_mutex; 6580 } 6581 /* Just decrements count, does not deallocate */ 6582 vma_end_reservation(h, vma, vmf.address); 6583 6584 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6585 vmf.pgoff); 6586 if (IS_ERR(pagecache_folio)) 6587 pagecache_folio = NULL; 6588 } 6589 6590 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6591 6592 /* Check for a racing update before calling hugetlb_wp() */ 6593 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6594 goto out_ptl; 6595 6596 /* Handle userfault-wp first, before trying to lock more pages */ 6597 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6598 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6599 if (!userfaultfd_wp_async(vma)) { 6600 spin_unlock(vmf.ptl); 6601 if (pagecache_folio) { 6602 folio_unlock(pagecache_folio); 6603 folio_put(pagecache_folio); 6604 } 6605 hugetlb_vma_unlock_read(vma); 6606 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6607 return handle_userfault(&vmf, VM_UFFD_WP); 6608 } 6609 6610 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6611 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6612 huge_page_size(hstate_vma(vma))); 6613 /* Fallthrough to CoW */ 6614 } 6615 6616 /* 6617 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6618 * pagecache_folio, so here we need take the former one 6619 * when folio != pagecache_folio or !pagecache_folio. 6620 */ 6621 folio = page_folio(pte_page(vmf.orig_pte)); 6622 if (folio != pagecache_folio) 6623 if (!folio_trylock(folio)) { 6624 need_wait_lock = 1; 6625 goto out_ptl; 6626 } 6627 6628 folio_get(folio); 6629 6630 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6631 if (!huge_pte_write(vmf.orig_pte)) { 6632 ret = hugetlb_wp(pagecache_folio, &vmf); 6633 goto out_put_page; 6634 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6635 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6636 } 6637 } 6638 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6639 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6640 flags & FAULT_FLAG_WRITE)) 6641 update_mmu_cache(vma, vmf.address, vmf.pte); 6642 out_put_page: 6643 if (folio != pagecache_folio) 6644 folio_unlock(folio); 6645 folio_put(folio); 6646 out_ptl: 6647 spin_unlock(vmf.ptl); 6648 6649 if (pagecache_folio) { 6650 folio_unlock(pagecache_folio); 6651 folio_put(pagecache_folio); 6652 } 6653 out_mutex: 6654 hugetlb_vma_unlock_read(vma); 6655 6656 /* 6657 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6658 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6659 */ 6660 if (unlikely(ret & VM_FAULT_RETRY)) 6661 vma_end_read(vma); 6662 6663 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6664 /* 6665 * Generally it's safe to hold refcount during waiting page lock. But 6666 * here we just wait to defer the next page fault to avoid busy loop and 6667 * the page is not used after unlocked before returning from the current 6668 * page fault. So we are safe from accessing freed page, even if we wait 6669 * here without taking refcount. 6670 */ 6671 if (need_wait_lock) 6672 folio_wait_locked(folio); 6673 return ret; 6674 } 6675 6676 #ifdef CONFIG_USERFAULTFD 6677 /* 6678 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6679 */ 6680 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6681 struct vm_area_struct *vma, unsigned long address) 6682 { 6683 struct mempolicy *mpol; 6684 nodemask_t *nodemask; 6685 struct folio *folio; 6686 gfp_t gfp_mask; 6687 int node; 6688 6689 gfp_mask = htlb_alloc_mask(h); 6690 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6691 /* 6692 * This is used to allocate a temporary hugetlb to hold the copied 6693 * content, which will then be copied again to the final hugetlb 6694 * consuming a reservation. Set the alloc_fallback to false to indicate 6695 * that breaking the per-node hugetlb pool is not allowed in this case. 6696 */ 6697 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6698 mpol_cond_put(mpol); 6699 6700 return folio; 6701 } 6702 6703 /* 6704 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6705 * with modifications for hugetlb pages. 6706 */ 6707 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6708 struct vm_area_struct *dst_vma, 6709 unsigned long dst_addr, 6710 unsigned long src_addr, 6711 uffd_flags_t flags, 6712 struct folio **foliop) 6713 { 6714 struct mm_struct *dst_mm = dst_vma->vm_mm; 6715 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6716 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6717 struct hstate *h = hstate_vma(dst_vma); 6718 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6719 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6720 unsigned long size = huge_page_size(h); 6721 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6722 pte_t _dst_pte; 6723 spinlock_t *ptl; 6724 int ret = -ENOMEM; 6725 struct folio *folio; 6726 int writable; 6727 bool folio_in_pagecache = false; 6728 6729 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6730 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6731 6732 /* Don't overwrite any existing PTEs (even markers) */ 6733 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6734 spin_unlock(ptl); 6735 return -EEXIST; 6736 } 6737 6738 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6739 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6740 6741 /* No need to invalidate - it was non-present before */ 6742 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6743 6744 spin_unlock(ptl); 6745 return 0; 6746 } 6747 6748 if (is_continue) { 6749 ret = -EFAULT; 6750 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6751 if (IS_ERR(folio)) 6752 goto out; 6753 folio_in_pagecache = true; 6754 } else if (!*foliop) { 6755 /* If a folio already exists, then it's UFFDIO_COPY for 6756 * a non-missing case. Return -EEXIST. 6757 */ 6758 if (vm_shared && 6759 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6760 ret = -EEXIST; 6761 goto out; 6762 } 6763 6764 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6765 if (IS_ERR(folio)) { 6766 ret = -ENOMEM; 6767 goto out; 6768 } 6769 6770 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6771 false); 6772 6773 /* fallback to copy_from_user outside mmap_lock */ 6774 if (unlikely(ret)) { 6775 ret = -ENOENT; 6776 /* Free the allocated folio which may have 6777 * consumed a reservation. 6778 */ 6779 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6780 folio_put(folio); 6781 6782 /* Allocate a temporary folio to hold the copied 6783 * contents. 6784 */ 6785 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6786 if (!folio) { 6787 ret = -ENOMEM; 6788 goto out; 6789 } 6790 *foliop = folio; 6791 /* Set the outparam foliop and return to the caller to 6792 * copy the contents outside the lock. Don't free the 6793 * folio. 6794 */ 6795 goto out; 6796 } 6797 } else { 6798 if (vm_shared && 6799 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6800 folio_put(*foliop); 6801 ret = -EEXIST; 6802 *foliop = NULL; 6803 goto out; 6804 } 6805 6806 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6807 if (IS_ERR(folio)) { 6808 folio_put(*foliop); 6809 ret = -ENOMEM; 6810 *foliop = NULL; 6811 goto out; 6812 } 6813 ret = copy_user_large_folio(folio, *foliop, 6814 ALIGN_DOWN(dst_addr, size), dst_vma); 6815 folio_put(*foliop); 6816 *foliop = NULL; 6817 if (ret) { 6818 folio_put(folio); 6819 goto out; 6820 } 6821 } 6822 6823 /* 6824 * If we just allocated a new page, we need a memory barrier to ensure 6825 * that preceding stores to the page become visible before the 6826 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6827 * is what we need. 6828 * 6829 * In the case where we have not allocated a new page (is_continue), 6830 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6831 * an earlier smp_wmb() to ensure that prior stores will be visible 6832 * before the set_pte_at() write. 6833 */ 6834 if (!is_continue) 6835 __folio_mark_uptodate(folio); 6836 else 6837 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6838 6839 /* Add shared, newly allocated pages to the page cache. */ 6840 if (vm_shared && !is_continue) { 6841 ret = -EFAULT; 6842 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6843 goto out_release_nounlock; 6844 6845 /* 6846 * Serialization between remove_inode_hugepages() and 6847 * hugetlb_add_to_page_cache() below happens through the 6848 * hugetlb_fault_mutex_table that here must be hold by 6849 * the caller. 6850 */ 6851 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6852 if (ret) 6853 goto out_release_nounlock; 6854 folio_in_pagecache = true; 6855 } 6856 6857 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6858 6859 ret = -EIO; 6860 if (folio_test_hwpoison(folio)) 6861 goto out_release_unlock; 6862 6863 /* 6864 * We allow to overwrite a pte marker: consider when both MISSING|WP 6865 * registered, we firstly wr-protect a none pte which has no page cache 6866 * page backing it, then access the page. 6867 */ 6868 ret = -EEXIST; 6869 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 6870 goto out_release_unlock; 6871 6872 if (folio_in_pagecache) 6873 hugetlb_add_file_rmap(folio); 6874 else 6875 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6876 6877 /* 6878 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6879 * with wp flag set, don't set pte write bit. 6880 */ 6881 if (wp_enabled || (is_continue && !vm_shared)) 6882 writable = 0; 6883 else 6884 writable = dst_vma->vm_flags & VM_WRITE; 6885 6886 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6887 /* 6888 * Always mark UFFDIO_COPY page dirty; note that this may not be 6889 * extremely important for hugetlbfs for now since swapping is not 6890 * supported, but we should still be clear in that this page cannot be 6891 * thrown away at will, even if write bit not set. 6892 */ 6893 _dst_pte = huge_pte_mkdirty(_dst_pte); 6894 _dst_pte = pte_mkyoung(_dst_pte); 6895 6896 if (wp_enabled) 6897 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6898 6899 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6900 6901 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6902 6903 /* No need to invalidate - it was non-present before */ 6904 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6905 6906 spin_unlock(ptl); 6907 if (!is_continue) 6908 folio_set_hugetlb_migratable(folio); 6909 if (vm_shared || is_continue) 6910 folio_unlock(folio); 6911 ret = 0; 6912 out: 6913 return ret; 6914 out_release_unlock: 6915 spin_unlock(ptl); 6916 if (vm_shared || is_continue) 6917 folio_unlock(folio); 6918 out_release_nounlock: 6919 if (!folio_in_pagecache) 6920 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6921 folio_put(folio); 6922 goto out; 6923 } 6924 #endif /* CONFIG_USERFAULTFD */ 6925 6926 long hugetlb_change_protection(struct vm_area_struct *vma, 6927 unsigned long address, unsigned long end, 6928 pgprot_t newprot, unsigned long cp_flags) 6929 { 6930 struct mm_struct *mm = vma->vm_mm; 6931 unsigned long start = address; 6932 pte_t *ptep; 6933 pte_t pte; 6934 struct hstate *h = hstate_vma(vma); 6935 long pages = 0, psize = huge_page_size(h); 6936 bool shared_pmd = false; 6937 struct mmu_notifier_range range; 6938 unsigned long last_addr_mask; 6939 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6940 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6941 6942 /* 6943 * In the case of shared PMDs, the area to flush could be beyond 6944 * start/end. Set range.start/range.end to cover the maximum possible 6945 * range if PMD sharing is possible. 6946 */ 6947 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6948 0, mm, start, end); 6949 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6950 6951 BUG_ON(address >= end); 6952 flush_cache_range(vma, range.start, range.end); 6953 6954 mmu_notifier_invalidate_range_start(&range); 6955 hugetlb_vma_lock_write(vma); 6956 i_mmap_lock_write(vma->vm_file->f_mapping); 6957 last_addr_mask = hugetlb_mask_last_page(h); 6958 for (; address < end; address += psize) { 6959 spinlock_t *ptl; 6960 ptep = hugetlb_walk(vma, address, psize); 6961 if (!ptep) { 6962 if (!uffd_wp) { 6963 address |= last_addr_mask; 6964 continue; 6965 } 6966 /* 6967 * Userfaultfd wr-protect requires pgtable 6968 * pre-allocations to install pte markers. 6969 */ 6970 ptep = huge_pte_alloc(mm, vma, address, psize); 6971 if (!ptep) { 6972 pages = -ENOMEM; 6973 break; 6974 } 6975 } 6976 ptl = huge_pte_lock(h, mm, ptep); 6977 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6978 /* 6979 * When uffd-wp is enabled on the vma, unshare 6980 * shouldn't happen at all. Warn about it if it 6981 * happened due to some reason. 6982 */ 6983 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6984 pages++; 6985 spin_unlock(ptl); 6986 shared_pmd = true; 6987 address |= last_addr_mask; 6988 continue; 6989 } 6990 pte = huge_ptep_get(mm, address, ptep); 6991 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6992 /* Nothing to do. */ 6993 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6994 swp_entry_t entry = pte_to_swp_entry(pte); 6995 struct page *page = pfn_swap_entry_to_page(entry); 6996 pte_t newpte = pte; 6997 6998 if (is_writable_migration_entry(entry)) { 6999 if (PageAnon(page)) 7000 entry = make_readable_exclusive_migration_entry( 7001 swp_offset(entry)); 7002 else 7003 entry = make_readable_migration_entry( 7004 swp_offset(entry)); 7005 newpte = swp_entry_to_pte(entry); 7006 pages++; 7007 } 7008 7009 if (uffd_wp) 7010 newpte = pte_swp_mkuffd_wp(newpte); 7011 else if (uffd_wp_resolve) 7012 newpte = pte_swp_clear_uffd_wp(newpte); 7013 if (!pte_same(pte, newpte)) 7014 set_huge_pte_at(mm, address, ptep, newpte, psize); 7015 } else if (unlikely(is_pte_marker(pte))) { 7016 /* 7017 * Do nothing on a poison marker; page is 7018 * corrupted, permissons do not apply. Here 7019 * pte_marker_uffd_wp()==true implies !poison 7020 * because they're mutual exclusive. 7021 */ 7022 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7023 /* Safe to modify directly (non-present->none). */ 7024 huge_pte_clear(mm, address, ptep, psize); 7025 } else if (!huge_pte_none(pte)) { 7026 pte_t old_pte; 7027 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7028 7029 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7030 pte = huge_pte_modify(old_pte, newprot); 7031 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7032 if (uffd_wp) 7033 pte = huge_pte_mkuffd_wp(pte); 7034 else if (uffd_wp_resolve) 7035 pte = huge_pte_clear_uffd_wp(pte); 7036 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7037 pages++; 7038 } else { 7039 /* None pte */ 7040 if (unlikely(uffd_wp)) 7041 /* Safe to modify directly (none->non-present). */ 7042 set_huge_pte_at(mm, address, ptep, 7043 make_pte_marker(PTE_MARKER_UFFD_WP), 7044 psize); 7045 } 7046 spin_unlock(ptl); 7047 } 7048 /* 7049 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7050 * may have cleared our pud entry and done put_page on the page table: 7051 * once we release i_mmap_rwsem, another task can do the final put_page 7052 * and that page table be reused and filled with junk. If we actually 7053 * did unshare a page of pmds, flush the range corresponding to the pud. 7054 */ 7055 if (shared_pmd) 7056 flush_hugetlb_tlb_range(vma, range.start, range.end); 7057 else 7058 flush_hugetlb_tlb_range(vma, start, end); 7059 /* 7060 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7061 * downgrading page table protection not changing it to point to a new 7062 * page. 7063 * 7064 * See Documentation/mm/mmu_notifier.rst 7065 */ 7066 i_mmap_unlock_write(vma->vm_file->f_mapping); 7067 hugetlb_vma_unlock_write(vma); 7068 mmu_notifier_invalidate_range_end(&range); 7069 7070 return pages > 0 ? (pages << h->order) : pages; 7071 } 7072 7073 /* Return true if reservation was successful, false otherwise. */ 7074 bool hugetlb_reserve_pages(struct inode *inode, 7075 long from, long to, 7076 struct vm_area_struct *vma, 7077 vm_flags_t vm_flags) 7078 { 7079 long chg = -1, add = -1; 7080 struct hstate *h = hstate_inode(inode); 7081 struct hugepage_subpool *spool = subpool_inode(inode); 7082 struct resv_map *resv_map; 7083 struct hugetlb_cgroup *h_cg = NULL; 7084 long gbl_reserve, regions_needed = 0; 7085 7086 /* This should never happen */ 7087 if (from > to) { 7088 VM_WARN(1, "%s called with a negative range\n", __func__); 7089 return false; 7090 } 7091 7092 /* 7093 * vma specific semaphore used for pmd sharing and fault/truncation 7094 * synchronization 7095 */ 7096 hugetlb_vma_lock_alloc(vma); 7097 7098 /* 7099 * Only apply hugepage reservation if asked. At fault time, an 7100 * attempt will be made for VM_NORESERVE to allocate a page 7101 * without using reserves 7102 */ 7103 if (vm_flags & VM_NORESERVE) 7104 return true; 7105 7106 /* 7107 * Shared mappings base their reservation on the number of pages that 7108 * are already allocated on behalf of the file. Private mappings need 7109 * to reserve the full area even if read-only as mprotect() may be 7110 * called to make the mapping read-write. Assume !vma is a shm mapping 7111 */ 7112 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7113 /* 7114 * resv_map can not be NULL as hugetlb_reserve_pages is only 7115 * called for inodes for which resv_maps were created (see 7116 * hugetlbfs_get_inode). 7117 */ 7118 resv_map = inode_resv_map(inode); 7119 7120 chg = region_chg(resv_map, from, to, ®ions_needed); 7121 } else { 7122 /* Private mapping. */ 7123 resv_map = resv_map_alloc(); 7124 if (!resv_map) 7125 goto out_err; 7126 7127 chg = to - from; 7128 7129 set_vma_resv_map(vma, resv_map); 7130 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7131 } 7132 7133 if (chg < 0) 7134 goto out_err; 7135 7136 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7137 chg * pages_per_huge_page(h), &h_cg) < 0) 7138 goto out_err; 7139 7140 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7141 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7142 * of the resv_map. 7143 */ 7144 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7145 } 7146 7147 /* 7148 * There must be enough pages in the subpool for the mapping. If 7149 * the subpool has a minimum size, there may be some global 7150 * reservations already in place (gbl_reserve). 7151 */ 7152 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7153 if (gbl_reserve < 0) 7154 goto out_uncharge_cgroup; 7155 7156 /* 7157 * Check enough hugepages are available for the reservation. 7158 * Hand the pages back to the subpool if there are not 7159 */ 7160 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7161 goto out_put_pages; 7162 7163 /* 7164 * Account for the reservations made. Shared mappings record regions 7165 * that have reservations as they are shared by multiple VMAs. 7166 * When the last VMA disappears, the region map says how much 7167 * the reservation was and the page cache tells how much of 7168 * the reservation was consumed. Private mappings are per-VMA and 7169 * only the consumed reservations are tracked. When the VMA 7170 * disappears, the original reservation is the VMA size and the 7171 * consumed reservations are stored in the map. Hence, nothing 7172 * else has to be done for private mappings here 7173 */ 7174 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7175 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7176 7177 if (unlikely(add < 0)) { 7178 hugetlb_acct_memory(h, -gbl_reserve); 7179 goto out_put_pages; 7180 } else if (unlikely(chg > add)) { 7181 /* 7182 * pages in this range were added to the reserve 7183 * map between region_chg and region_add. This 7184 * indicates a race with alloc_hugetlb_folio. Adjust 7185 * the subpool and reserve counts modified above 7186 * based on the difference. 7187 */ 7188 long rsv_adjust; 7189 7190 /* 7191 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7192 * reference to h_cg->css. See comment below for detail. 7193 */ 7194 hugetlb_cgroup_uncharge_cgroup_rsvd( 7195 hstate_index(h), 7196 (chg - add) * pages_per_huge_page(h), h_cg); 7197 7198 rsv_adjust = hugepage_subpool_put_pages(spool, 7199 chg - add); 7200 hugetlb_acct_memory(h, -rsv_adjust); 7201 } else if (h_cg) { 7202 /* 7203 * The file_regions will hold their own reference to 7204 * h_cg->css. So we should release the reference held 7205 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7206 * done. 7207 */ 7208 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7209 } 7210 } 7211 return true; 7212 7213 out_put_pages: 7214 /* put back original number of pages, chg */ 7215 (void)hugepage_subpool_put_pages(spool, chg); 7216 out_uncharge_cgroup: 7217 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7218 chg * pages_per_huge_page(h), h_cg); 7219 out_err: 7220 hugetlb_vma_lock_free(vma); 7221 if (!vma || vma->vm_flags & VM_MAYSHARE) 7222 /* Only call region_abort if the region_chg succeeded but the 7223 * region_add failed or didn't run. 7224 */ 7225 if (chg >= 0 && add < 0) 7226 region_abort(resv_map, from, to, regions_needed); 7227 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7228 kref_put(&resv_map->refs, resv_map_release); 7229 set_vma_resv_map(vma, NULL); 7230 } 7231 return false; 7232 } 7233 7234 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7235 long freed) 7236 { 7237 struct hstate *h = hstate_inode(inode); 7238 struct resv_map *resv_map = inode_resv_map(inode); 7239 long chg = 0; 7240 struct hugepage_subpool *spool = subpool_inode(inode); 7241 long gbl_reserve; 7242 7243 /* 7244 * Since this routine can be called in the evict inode path for all 7245 * hugetlbfs inodes, resv_map could be NULL. 7246 */ 7247 if (resv_map) { 7248 chg = region_del(resv_map, start, end); 7249 /* 7250 * region_del() can fail in the rare case where a region 7251 * must be split and another region descriptor can not be 7252 * allocated. If end == LONG_MAX, it will not fail. 7253 */ 7254 if (chg < 0) 7255 return chg; 7256 } 7257 7258 spin_lock(&inode->i_lock); 7259 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7260 spin_unlock(&inode->i_lock); 7261 7262 /* 7263 * If the subpool has a minimum size, the number of global 7264 * reservations to be released may be adjusted. 7265 * 7266 * Note that !resv_map implies freed == 0. So (chg - freed) 7267 * won't go negative. 7268 */ 7269 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7270 hugetlb_acct_memory(h, -gbl_reserve); 7271 7272 return 0; 7273 } 7274 7275 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7276 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7277 struct vm_area_struct *vma, 7278 unsigned long addr, pgoff_t idx) 7279 { 7280 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7281 svma->vm_start; 7282 unsigned long sbase = saddr & PUD_MASK; 7283 unsigned long s_end = sbase + PUD_SIZE; 7284 7285 /* Allow segments to share if only one is marked locked */ 7286 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7287 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7288 7289 /* 7290 * match the virtual addresses, permission and the alignment of the 7291 * page table page. 7292 * 7293 * Also, vma_lock (vm_private_data) is required for sharing. 7294 */ 7295 if (pmd_index(addr) != pmd_index(saddr) || 7296 vm_flags != svm_flags || 7297 !range_in_vma(svma, sbase, s_end) || 7298 !svma->vm_private_data) 7299 return 0; 7300 7301 return saddr; 7302 } 7303 7304 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7305 { 7306 unsigned long start = addr & PUD_MASK; 7307 unsigned long end = start + PUD_SIZE; 7308 7309 #ifdef CONFIG_USERFAULTFD 7310 if (uffd_disable_huge_pmd_share(vma)) 7311 return false; 7312 #endif 7313 /* 7314 * check on proper vm_flags and page table alignment 7315 */ 7316 if (!(vma->vm_flags & VM_MAYSHARE)) 7317 return false; 7318 if (!vma->vm_private_data) /* vma lock required for sharing */ 7319 return false; 7320 if (!range_in_vma(vma, start, end)) 7321 return false; 7322 return true; 7323 } 7324 7325 /* 7326 * Determine if start,end range within vma could be mapped by shared pmd. 7327 * If yes, adjust start and end to cover range associated with possible 7328 * shared pmd mappings. 7329 */ 7330 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7331 unsigned long *start, unsigned long *end) 7332 { 7333 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7334 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7335 7336 /* 7337 * vma needs to span at least one aligned PUD size, and the range 7338 * must be at least partially within in. 7339 */ 7340 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7341 (*end <= v_start) || (*start >= v_end)) 7342 return; 7343 7344 /* Extend the range to be PUD aligned for a worst case scenario */ 7345 if (*start > v_start) 7346 *start = ALIGN_DOWN(*start, PUD_SIZE); 7347 7348 if (*end < v_end) 7349 *end = ALIGN(*end, PUD_SIZE); 7350 } 7351 7352 /* 7353 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7354 * and returns the corresponding pte. While this is not necessary for the 7355 * !shared pmd case because we can allocate the pmd later as well, it makes the 7356 * code much cleaner. pmd allocation is essential for the shared case because 7357 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7358 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7359 * bad pmd for sharing. 7360 */ 7361 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7362 unsigned long addr, pud_t *pud) 7363 { 7364 struct address_space *mapping = vma->vm_file->f_mapping; 7365 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7366 vma->vm_pgoff; 7367 struct vm_area_struct *svma; 7368 unsigned long saddr; 7369 pte_t *spte = NULL; 7370 pte_t *pte; 7371 7372 i_mmap_lock_read(mapping); 7373 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7374 if (svma == vma) 7375 continue; 7376 7377 saddr = page_table_shareable(svma, vma, addr, idx); 7378 if (saddr) { 7379 spte = hugetlb_walk(svma, saddr, 7380 vma_mmu_pagesize(svma)); 7381 if (spte) { 7382 get_page(virt_to_page(spte)); 7383 break; 7384 } 7385 } 7386 } 7387 7388 if (!spte) 7389 goto out; 7390 7391 spin_lock(&mm->page_table_lock); 7392 if (pud_none(*pud)) { 7393 pud_populate(mm, pud, 7394 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7395 mm_inc_nr_pmds(mm); 7396 } else { 7397 put_page(virt_to_page(spte)); 7398 } 7399 spin_unlock(&mm->page_table_lock); 7400 out: 7401 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7402 i_mmap_unlock_read(mapping); 7403 return pte; 7404 } 7405 7406 /* 7407 * unmap huge page backed by shared pte. 7408 * 7409 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7410 * indicated by page_count > 1, unmap is achieved by clearing pud and 7411 * decrementing the ref count. If count == 1, the pte page is not shared. 7412 * 7413 * Called with page table lock held. 7414 * 7415 * returns: 1 successfully unmapped a shared pte page 7416 * 0 the underlying pte page is not shared, or it is the last user 7417 */ 7418 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7419 unsigned long addr, pte_t *ptep) 7420 { 7421 pgd_t *pgd = pgd_offset(mm, addr); 7422 p4d_t *p4d = p4d_offset(pgd, addr); 7423 pud_t *pud = pud_offset(p4d, addr); 7424 7425 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7426 hugetlb_vma_assert_locked(vma); 7427 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7428 if (page_count(virt_to_page(ptep)) == 1) 7429 return 0; 7430 7431 pud_clear(pud); 7432 put_page(virt_to_page(ptep)); 7433 mm_dec_nr_pmds(mm); 7434 return 1; 7435 } 7436 7437 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7438 7439 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7440 unsigned long addr, pud_t *pud) 7441 { 7442 return NULL; 7443 } 7444 7445 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7446 unsigned long addr, pte_t *ptep) 7447 { 7448 return 0; 7449 } 7450 7451 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7452 unsigned long *start, unsigned long *end) 7453 { 7454 } 7455 7456 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7457 { 7458 return false; 7459 } 7460 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7461 7462 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7463 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7464 unsigned long addr, unsigned long sz) 7465 { 7466 pgd_t *pgd; 7467 p4d_t *p4d; 7468 pud_t *pud; 7469 pte_t *pte = NULL; 7470 7471 pgd = pgd_offset(mm, addr); 7472 p4d = p4d_alloc(mm, pgd, addr); 7473 if (!p4d) 7474 return NULL; 7475 pud = pud_alloc(mm, p4d, addr); 7476 if (pud) { 7477 if (sz == PUD_SIZE) { 7478 pte = (pte_t *)pud; 7479 } else { 7480 BUG_ON(sz != PMD_SIZE); 7481 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7482 pte = huge_pmd_share(mm, vma, addr, pud); 7483 else 7484 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7485 } 7486 } 7487 7488 if (pte) { 7489 pte_t pteval = ptep_get_lockless(pte); 7490 7491 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7492 } 7493 7494 return pte; 7495 } 7496 7497 /* 7498 * huge_pte_offset() - Walk the page table to resolve the hugepage 7499 * entry at address @addr 7500 * 7501 * Return: Pointer to page table entry (PUD or PMD) for 7502 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7503 * size @sz doesn't match the hugepage size at this level of the page 7504 * table. 7505 */ 7506 pte_t *huge_pte_offset(struct mm_struct *mm, 7507 unsigned long addr, unsigned long sz) 7508 { 7509 pgd_t *pgd; 7510 p4d_t *p4d; 7511 pud_t *pud; 7512 pmd_t *pmd; 7513 7514 pgd = pgd_offset(mm, addr); 7515 if (!pgd_present(*pgd)) 7516 return NULL; 7517 p4d = p4d_offset(pgd, addr); 7518 if (!p4d_present(*p4d)) 7519 return NULL; 7520 7521 pud = pud_offset(p4d, addr); 7522 if (sz == PUD_SIZE) 7523 /* must be pud huge, non-present or none */ 7524 return (pte_t *)pud; 7525 if (!pud_present(*pud)) 7526 return NULL; 7527 /* must have a valid entry and size to go further */ 7528 7529 pmd = pmd_offset(pud, addr); 7530 /* must be pmd huge, non-present or none */ 7531 return (pte_t *)pmd; 7532 } 7533 7534 /* 7535 * Return a mask that can be used to update an address to the last huge 7536 * page in a page table page mapping size. Used to skip non-present 7537 * page table entries when linearly scanning address ranges. Architectures 7538 * with unique huge page to page table relationships can define their own 7539 * version of this routine. 7540 */ 7541 unsigned long hugetlb_mask_last_page(struct hstate *h) 7542 { 7543 unsigned long hp_size = huge_page_size(h); 7544 7545 if (hp_size == PUD_SIZE) 7546 return P4D_SIZE - PUD_SIZE; 7547 else if (hp_size == PMD_SIZE) 7548 return PUD_SIZE - PMD_SIZE; 7549 else 7550 return 0UL; 7551 } 7552 7553 #else 7554 7555 /* See description above. Architectures can provide their own version. */ 7556 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7557 { 7558 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7559 if (huge_page_size(h) == PMD_SIZE) 7560 return PUD_SIZE - PMD_SIZE; 7561 #endif 7562 return 0UL; 7563 } 7564 7565 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7566 7567 /* 7568 * These functions are overwritable if your architecture needs its own 7569 * behavior. 7570 */ 7571 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7572 { 7573 bool ret = true; 7574 7575 spin_lock_irq(&hugetlb_lock); 7576 if (!folio_test_hugetlb(folio) || 7577 !folio_test_hugetlb_migratable(folio) || 7578 !folio_try_get(folio)) { 7579 ret = false; 7580 goto unlock; 7581 } 7582 folio_clear_hugetlb_migratable(folio); 7583 list_move_tail(&folio->lru, list); 7584 unlock: 7585 spin_unlock_irq(&hugetlb_lock); 7586 return ret; 7587 } 7588 7589 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7590 { 7591 int ret = 0; 7592 7593 *hugetlb = false; 7594 spin_lock_irq(&hugetlb_lock); 7595 if (folio_test_hugetlb(folio)) { 7596 *hugetlb = true; 7597 if (folio_test_hugetlb_freed(folio)) 7598 ret = 0; 7599 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7600 ret = folio_try_get(folio); 7601 else 7602 ret = -EBUSY; 7603 } 7604 spin_unlock_irq(&hugetlb_lock); 7605 return ret; 7606 } 7607 7608 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7609 bool *migratable_cleared) 7610 { 7611 int ret; 7612 7613 spin_lock_irq(&hugetlb_lock); 7614 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7615 spin_unlock_irq(&hugetlb_lock); 7616 return ret; 7617 } 7618 7619 void folio_putback_active_hugetlb(struct folio *folio) 7620 { 7621 spin_lock_irq(&hugetlb_lock); 7622 folio_set_hugetlb_migratable(folio); 7623 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7624 spin_unlock_irq(&hugetlb_lock); 7625 folio_put(folio); 7626 } 7627 7628 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7629 { 7630 struct hstate *h = folio_hstate(old_folio); 7631 7632 hugetlb_cgroup_migrate(old_folio, new_folio); 7633 set_page_owner_migrate_reason(&new_folio->page, reason); 7634 7635 /* 7636 * transfer temporary state of the new hugetlb folio. This is 7637 * reverse to other transitions because the newpage is going to 7638 * be final while the old one will be freed so it takes over 7639 * the temporary status. 7640 * 7641 * Also note that we have to transfer the per-node surplus state 7642 * here as well otherwise the global surplus count will not match 7643 * the per-node's. 7644 */ 7645 if (folio_test_hugetlb_temporary(new_folio)) { 7646 int old_nid = folio_nid(old_folio); 7647 int new_nid = folio_nid(new_folio); 7648 7649 folio_set_hugetlb_temporary(old_folio); 7650 folio_clear_hugetlb_temporary(new_folio); 7651 7652 7653 /* 7654 * There is no need to transfer the per-node surplus state 7655 * when we do not cross the node. 7656 */ 7657 if (new_nid == old_nid) 7658 return; 7659 spin_lock_irq(&hugetlb_lock); 7660 if (h->surplus_huge_pages_node[old_nid]) { 7661 h->surplus_huge_pages_node[old_nid]--; 7662 h->surplus_huge_pages_node[new_nid]++; 7663 } 7664 spin_unlock_irq(&hugetlb_lock); 7665 } 7666 } 7667 7668 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7669 unsigned long start, 7670 unsigned long end) 7671 { 7672 struct hstate *h = hstate_vma(vma); 7673 unsigned long sz = huge_page_size(h); 7674 struct mm_struct *mm = vma->vm_mm; 7675 struct mmu_notifier_range range; 7676 unsigned long address; 7677 spinlock_t *ptl; 7678 pte_t *ptep; 7679 7680 if (!(vma->vm_flags & VM_MAYSHARE)) 7681 return; 7682 7683 if (start >= end) 7684 return; 7685 7686 flush_cache_range(vma, start, end); 7687 /* 7688 * No need to call adjust_range_if_pmd_sharing_possible(), because 7689 * we have already done the PUD_SIZE alignment. 7690 */ 7691 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7692 start, end); 7693 mmu_notifier_invalidate_range_start(&range); 7694 hugetlb_vma_lock_write(vma); 7695 i_mmap_lock_write(vma->vm_file->f_mapping); 7696 for (address = start; address < end; address += PUD_SIZE) { 7697 ptep = hugetlb_walk(vma, address, sz); 7698 if (!ptep) 7699 continue; 7700 ptl = huge_pte_lock(h, mm, ptep); 7701 huge_pmd_unshare(mm, vma, address, ptep); 7702 spin_unlock(ptl); 7703 } 7704 flush_hugetlb_tlb_range(vma, start, end); 7705 i_mmap_unlock_write(vma->vm_file->f_mapping); 7706 hugetlb_vma_unlock_write(vma); 7707 /* 7708 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7709 * Documentation/mm/mmu_notifier.rst. 7710 */ 7711 mmu_notifier_invalidate_range_end(&range); 7712 } 7713 7714 /* 7715 * This function will unconditionally remove all the shared pmd pgtable entries 7716 * within the specific vma for a hugetlbfs memory range. 7717 */ 7718 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7719 { 7720 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7721 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7722 } 7723 7724 #ifdef CONFIG_CMA 7725 static bool cma_reserve_called __initdata; 7726 7727 static int __init cmdline_parse_hugetlb_cma(char *p) 7728 { 7729 int nid, count = 0; 7730 unsigned long tmp; 7731 char *s = p; 7732 7733 while (*s) { 7734 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7735 break; 7736 7737 if (s[count] == ':') { 7738 if (tmp >= MAX_NUMNODES) 7739 break; 7740 nid = array_index_nospec(tmp, MAX_NUMNODES); 7741 7742 s += count + 1; 7743 tmp = memparse(s, &s); 7744 hugetlb_cma_size_in_node[nid] = tmp; 7745 hugetlb_cma_size += tmp; 7746 7747 /* 7748 * Skip the separator if have one, otherwise 7749 * break the parsing. 7750 */ 7751 if (*s == ',') 7752 s++; 7753 else 7754 break; 7755 } else { 7756 hugetlb_cma_size = memparse(p, &p); 7757 break; 7758 } 7759 } 7760 7761 return 0; 7762 } 7763 7764 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7765 7766 void __init hugetlb_cma_reserve(int order) 7767 { 7768 unsigned long size, reserved, per_node; 7769 bool node_specific_cma_alloc = false; 7770 int nid; 7771 7772 /* 7773 * HugeTLB CMA reservation is required for gigantic 7774 * huge pages which could not be allocated via the 7775 * page allocator. Just warn if there is any change 7776 * breaking this assumption. 7777 */ 7778 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7779 cma_reserve_called = true; 7780 7781 if (!hugetlb_cma_size) 7782 return; 7783 7784 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7785 if (hugetlb_cma_size_in_node[nid] == 0) 7786 continue; 7787 7788 if (!node_online(nid)) { 7789 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7790 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7791 hugetlb_cma_size_in_node[nid] = 0; 7792 continue; 7793 } 7794 7795 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7796 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7797 nid, (PAGE_SIZE << order) / SZ_1M); 7798 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7799 hugetlb_cma_size_in_node[nid] = 0; 7800 } else { 7801 node_specific_cma_alloc = true; 7802 } 7803 } 7804 7805 /* Validate the CMA size again in case some invalid nodes specified. */ 7806 if (!hugetlb_cma_size) 7807 return; 7808 7809 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7810 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7811 (PAGE_SIZE << order) / SZ_1M); 7812 hugetlb_cma_size = 0; 7813 return; 7814 } 7815 7816 if (!node_specific_cma_alloc) { 7817 /* 7818 * If 3 GB area is requested on a machine with 4 numa nodes, 7819 * let's allocate 1 GB on first three nodes and ignore the last one. 7820 */ 7821 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7822 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7823 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7824 } 7825 7826 reserved = 0; 7827 for_each_online_node(nid) { 7828 int res; 7829 char name[CMA_MAX_NAME]; 7830 7831 if (node_specific_cma_alloc) { 7832 if (hugetlb_cma_size_in_node[nid] == 0) 7833 continue; 7834 7835 size = hugetlb_cma_size_in_node[nid]; 7836 } else { 7837 size = min(per_node, hugetlb_cma_size - reserved); 7838 } 7839 7840 size = round_up(size, PAGE_SIZE << order); 7841 7842 snprintf(name, sizeof(name), "hugetlb%d", nid); 7843 /* 7844 * Note that 'order per bit' is based on smallest size that 7845 * may be returned to CMA allocator in the case of 7846 * huge page demotion. 7847 */ 7848 res = cma_declare_contiguous_nid(0, size, 0, 7849 PAGE_SIZE << order, 7850 HUGETLB_PAGE_ORDER, false, name, 7851 &hugetlb_cma[nid], nid); 7852 if (res) { 7853 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7854 res, nid); 7855 continue; 7856 } 7857 7858 reserved += size; 7859 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7860 size / SZ_1M, nid); 7861 7862 if (reserved >= hugetlb_cma_size) 7863 break; 7864 } 7865 7866 if (!reserved) 7867 /* 7868 * hugetlb_cma_size is used to determine if allocations from 7869 * cma are possible. Set to zero if no cma regions are set up. 7870 */ 7871 hugetlb_cma_size = 0; 7872 } 7873 7874 static void __init hugetlb_cma_check(void) 7875 { 7876 if (!hugetlb_cma_size || cma_reserve_called) 7877 return; 7878 7879 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7880 } 7881 7882 #endif /* CONFIG_CMA */ 7883
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.