~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/kasan/kasan_test.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *
  4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  5  * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
  6  */
  7 
  8 #define pr_fmt(fmt) "kasan: test: " fmt
  9 
 10 #include <kunit/test.h>
 11 #include <linux/bitops.h>
 12 #include <linux/delay.h>
 13 #include <linux/io.h>
 14 #include <linux/kasan.h>
 15 #include <linux/kernel.h>
 16 #include <linux/mempool.h>
 17 #include <linux/mm.h>
 18 #include <linux/mman.h>
 19 #include <linux/module.h>
 20 #include <linux/printk.h>
 21 #include <linux/random.h>
 22 #include <linux/set_memory.h>
 23 #include <linux/slab.h>
 24 #include <linux/string.h>
 25 #include <linux/tracepoint.h>
 26 #include <linux/uaccess.h>
 27 #include <linux/vmalloc.h>
 28 #include <trace/events/printk.h>
 29 
 30 #include <asm/page.h>
 31 
 32 #include "kasan.h"
 33 
 34 #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
 35 
 36 static bool multishot;
 37 
 38 /* Fields set based on lines observed in the console. */
 39 static struct {
 40         bool report_found;
 41         bool async_fault;
 42 } test_status;
 43 
 44 /*
 45  * Some tests use these global variables to store return values from function
 46  * calls that could otherwise be eliminated by the compiler as dead code.
 47  */
 48 void *kasan_ptr_result;
 49 int kasan_int_result;
 50 
 51 /* Probe for console output: obtains test_status lines of interest. */
 52 static void probe_console(void *ignore, const char *buf, size_t len)
 53 {
 54         if (strnstr(buf, "BUG: KASAN: ", len))
 55                 WRITE_ONCE(test_status.report_found, true);
 56         else if (strnstr(buf, "Asynchronous fault: ", len))
 57                 WRITE_ONCE(test_status.async_fault, true);
 58 }
 59 
 60 static int kasan_suite_init(struct kunit_suite *suite)
 61 {
 62         if (!kasan_enabled()) {
 63                 pr_err("Can't run KASAN tests with KASAN disabled");
 64                 return -1;
 65         }
 66 
 67         /* Stop failing KUnit tests on KASAN reports. */
 68         kasan_kunit_test_suite_start();
 69 
 70         /*
 71          * Temporarily enable multi-shot mode. Otherwise, KASAN would only
 72          * report the first detected bug and panic the kernel if panic_on_warn
 73          * is enabled.
 74          */
 75         multishot = kasan_save_enable_multi_shot();
 76 
 77         register_trace_console(probe_console, NULL);
 78         return 0;
 79 }
 80 
 81 static void kasan_suite_exit(struct kunit_suite *suite)
 82 {
 83         kasan_kunit_test_suite_end();
 84         kasan_restore_multi_shot(multishot);
 85         unregister_trace_console(probe_console, NULL);
 86         tracepoint_synchronize_unregister();
 87 }
 88 
 89 static void kasan_test_exit(struct kunit *test)
 90 {
 91         KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));
 92 }
 93 
 94 /**
 95  * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a
 96  * KASAN report; causes a KUnit test failure otherwise.
 97  *
 98  * @test: Currently executing KUnit test.
 99  * @expression: Expression that must produce a KASAN report.
100  *
101  * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
102  * checking is auto-disabled. When this happens, this test handler reenables
103  * tag checking. As tag checking can be only disabled or enabled per CPU,
104  * this handler disables migration (preemption).
105  *
106  * Since the compiler doesn't see that the expression can change the test_status
107  * fields, it can reorder or optimize away the accesses to those fields.
108  * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
109  * expression to prevent that.
110  *
111  * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
112  * as false. This allows detecting KASAN reports that happen outside of the
113  * checks by asserting !test_status.report_found at the start of
114  * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
115  */
116 #define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {                  \
117         if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&                         \
118             kasan_sync_fault_possible())                                \
119                 migrate_disable();                                      \
120         KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));  \
121         barrier();                                                      \
122         expression;                                                     \
123         barrier();                                                      \
124         if (kasan_async_fault_possible())                               \
125                 kasan_force_async_fault();                              \
126         if (!READ_ONCE(test_status.report_found)) {                     \
127                 KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "  \
128                                 "expected in \"" #expression            \
129                                  "\", but none occurred");              \
130         }                                                               \
131         if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&                         \
132             kasan_sync_fault_possible()) {                              \
133                 if (READ_ONCE(test_status.report_found) &&              \
134                     !READ_ONCE(test_status.async_fault))                \
135                         kasan_enable_hw_tags();                         \
136                 migrate_enable();                                       \
137         }                                                               \
138         WRITE_ONCE(test_status.report_found, false);                    \
139         WRITE_ONCE(test_status.async_fault, false);                     \
140 } while (0)
141 
142 #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {                   \
143         if (!IS_ENABLED(config))                                        \
144                 kunit_skip((test), "Test requires " #config "=y");      \
145 } while (0)
146 
147 #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {                  \
148         if (IS_ENABLED(config))                                         \
149                 kunit_skip((test), "Test requires " #config "=n");      \
150 } while (0)
151 
152 #define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do {               \
153         if (IS_ENABLED(CONFIG_KASAN_HW_TAGS))                           \
154                 break;  /* No compiler instrumentation. */              \
155         if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX))        \
156                 break;  /* Should always be instrumented! */            \
157         if (IS_ENABLED(CONFIG_GENERIC_ENTRY))                           \
158                 kunit_skip((test), "Test requires checked mem*()");     \
159 } while (0)
160 
161 static void kmalloc_oob_right(struct kunit *test)
162 {
163         char *ptr;
164         size_t size = 128 - KASAN_GRANULE_SIZE - 5;
165 
166         ptr = kmalloc(size, GFP_KERNEL);
167         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
168 
169         OPTIMIZER_HIDE_VAR(ptr);
170         /*
171          * An unaligned access past the requested kmalloc size.
172          * Only generic KASAN can precisely detect these.
173          */
174         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
175                 KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
176 
177         /*
178          * An aligned access into the first out-of-bounds granule that falls
179          * within the aligned kmalloc object.
180          */
181         KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
182 
183         /* Out-of-bounds access past the aligned kmalloc object. */
184         KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
185                                         ptr[size + KASAN_GRANULE_SIZE + 5]);
186 
187         kfree(ptr);
188 }
189 
190 static void kmalloc_oob_left(struct kunit *test)
191 {
192         char *ptr;
193         size_t size = 15;
194 
195         ptr = kmalloc(size, GFP_KERNEL);
196         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
197 
198         OPTIMIZER_HIDE_VAR(ptr);
199         KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
200         kfree(ptr);
201 }
202 
203 static void kmalloc_node_oob_right(struct kunit *test)
204 {
205         char *ptr;
206         size_t size = 4096;
207 
208         ptr = kmalloc_node(size, GFP_KERNEL, 0);
209         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
210 
211         OPTIMIZER_HIDE_VAR(ptr);
212         KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
213         kfree(ptr);
214 }
215 
216 /*
217  * Check that KASAN detects an out-of-bounds access for a big object allocated
218  * via kmalloc(). But not as big as to trigger the page_alloc fallback.
219  */
220 static void kmalloc_big_oob_right(struct kunit *test)
221 {
222         char *ptr;
223         size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
224 
225         ptr = kmalloc(size, GFP_KERNEL);
226         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
227 
228         OPTIMIZER_HIDE_VAR(ptr);
229         KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
230         kfree(ptr);
231 }
232 
233 /*
234  * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk
235  * that does not fit into the largest slab cache and therefore is allocated via
236  * the page_alloc fallback.
237  */
238 
239 static void kmalloc_large_oob_right(struct kunit *test)
240 {
241         char *ptr;
242         size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
243 
244         ptr = kmalloc(size, GFP_KERNEL);
245         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
246 
247         OPTIMIZER_HIDE_VAR(ptr);
248         KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
249 
250         kfree(ptr);
251 }
252 
253 static void kmalloc_large_uaf(struct kunit *test)
254 {
255         char *ptr;
256         size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
257 
258         ptr = kmalloc(size, GFP_KERNEL);
259         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
260         kfree(ptr);
261 
262         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
263 }
264 
265 static void kmalloc_large_invalid_free(struct kunit *test)
266 {
267         char *ptr;
268         size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
269 
270         ptr = kmalloc(size, GFP_KERNEL);
271         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
272 
273         KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
274 }
275 
276 static void page_alloc_oob_right(struct kunit *test)
277 {
278         char *ptr;
279         struct page *pages;
280         size_t order = 4;
281         size_t size = (1UL << (PAGE_SHIFT + order));
282 
283         /*
284          * With generic KASAN page allocations have no redzones, thus
285          * out-of-bounds detection is not guaranteed.
286          * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
287          */
288         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
289 
290         pages = alloc_pages(GFP_KERNEL, order);
291         ptr = page_address(pages);
292         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
293 
294         KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
295         free_pages((unsigned long)ptr, order);
296 }
297 
298 static void page_alloc_uaf(struct kunit *test)
299 {
300         char *ptr;
301         struct page *pages;
302         size_t order = 4;
303 
304         pages = alloc_pages(GFP_KERNEL, order);
305         ptr = page_address(pages);
306         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
307         free_pages((unsigned long)ptr, order);
308 
309         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
310 }
311 
312 static void krealloc_more_oob_helper(struct kunit *test,
313                                         size_t size1, size_t size2)
314 {
315         char *ptr1, *ptr2;
316         size_t middle;
317 
318         KUNIT_ASSERT_LT(test, size1, size2);
319         middle = size1 + (size2 - size1) / 2;
320 
321         ptr1 = kmalloc(size1, GFP_KERNEL);
322         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
323 
324         ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
325         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
326 
327         /* Suppress -Warray-bounds warnings. */
328         OPTIMIZER_HIDE_VAR(ptr2);
329 
330         /* All offsets up to size2 must be accessible. */
331         ptr2[size1 - 1] = 'x';
332         ptr2[size1] = 'x';
333         ptr2[middle] = 'x';
334         ptr2[size2 - 1] = 'x';
335 
336         /* Generic mode is precise, so unaligned size2 must be inaccessible. */
337         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
338                 KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
339 
340         /* For all modes first aligned offset after size2 must be inaccessible. */
341         KUNIT_EXPECT_KASAN_FAIL(test,
342                 ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
343 
344         kfree(ptr2);
345 }
346 
347 static void krealloc_less_oob_helper(struct kunit *test,
348                                         size_t size1, size_t size2)
349 {
350         char *ptr1, *ptr2;
351         size_t middle;
352 
353         KUNIT_ASSERT_LT(test, size2, size1);
354         middle = size2 + (size1 - size2) / 2;
355 
356         ptr1 = kmalloc(size1, GFP_KERNEL);
357         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
358 
359         ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
360         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
361 
362         /* Suppress -Warray-bounds warnings. */
363         OPTIMIZER_HIDE_VAR(ptr2);
364 
365         /* Must be accessible for all modes. */
366         ptr2[size2 - 1] = 'x';
367 
368         /* Generic mode is precise, so unaligned size2 must be inaccessible. */
369         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
370                 KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
371 
372         /* For all modes first aligned offset after size2 must be inaccessible. */
373         KUNIT_EXPECT_KASAN_FAIL(test,
374                 ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
375 
376         /*
377          * For all modes all size2, middle, and size1 should land in separate
378          * granules and thus the latter two offsets should be inaccessible.
379          */
380         KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
381                                 round_down(middle, KASAN_GRANULE_SIZE));
382         KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
383                                 round_down(size1, KASAN_GRANULE_SIZE));
384         KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
385         KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
386         KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
387 
388         kfree(ptr2);
389 }
390 
391 static void krealloc_more_oob(struct kunit *test)
392 {
393         krealloc_more_oob_helper(test, 201, 235);
394 }
395 
396 static void krealloc_less_oob(struct kunit *test)
397 {
398         krealloc_less_oob_helper(test, 235, 201);
399 }
400 
401 static void krealloc_large_more_oob(struct kunit *test)
402 {
403         krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
404                                         KMALLOC_MAX_CACHE_SIZE + 235);
405 }
406 
407 static void krealloc_large_less_oob(struct kunit *test)
408 {
409         krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
410                                         KMALLOC_MAX_CACHE_SIZE + 201);
411 }
412 
413 /*
414  * Check that krealloc() detects a use-after-free, returns NULL,
415  * and doesn't unpoison the freed object.
416  */
417 static void krealloc_uaf(struct kunit *test)
418 {
419         char *ptr1, *ptr2;
420         int size1 = 201;
421         int size2 = 235;
422 
423         ptr1 = kmalloc(size1, GFP_KERNEL);
424         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
425         kfree(ptr1);
426 
427         KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
428         KUNIT_ASSERT_NULL(test, ptr2);
429         KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
430 }
431 
432 static void kmalloc_oob_16(struct kunit *test)
433 {
434         struct {
435                 u64 words[2];
436         } *ptr1, *ptr2;
437 
438         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
439 
440         /* This test is specifically crafted for the generic mode. */
441         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
442 
443         /* RELOC_HIDE to prevent gcc from warning about short alloc */
444         ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0);
445         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
446 
447         ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
448         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
449 
450         OPTIMIZER_HIDE_VAR(ptr1);
451         OPTIMIZER_HIDE_VAR(ptr2);
452         KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
453         kfree(ptr1);
454         kfree(ptr2);
455 }
456 
457 static void kmalloc_uaf_16(struct kunit *test)
458 {
459         struct {
460                 u64 words[2];
461         } *ptr1, *ptr2;
462 
463         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
464 
465         ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
466         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
467 
468         ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
469         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
470         kfree(ptr2);
471 
472         KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
473         kfree(ptr1);
474 }
475 
476 /*
477  * Note: in the memset tests below, the written range touches both valid and
478  * invalid memory. This makes sure that the instrumentation does not only check
479  * the starting address but the whole range.
480  */
481 
482 static void kmalloc_oob_memset_2(struct kunit *test)
483 {
484         char *ptr;
485         size_t size = 128 - KASAN_GRANULE_SIZE;
486         size_t memset_size = 2;
487 
488         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
489 
490         ptr = kmalloc(size, GFP_KERNEL);
491         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
492 
493         OPTIMIZER_HIDE_VAR(ptr);
494         OPTIMIZER_HIDE_VAR(size);
495         OPTIMIZER_HIDE_VAR(memset_size);
496         KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size));
497         kfree(ptr);
498 }
499 
500 static void kmalloc_oob_memset_4(struct kunit *test)
501 {
502         char *ptr;
503         size_t size = 128 - KASAN_GRANULE_SIZE;
504         size_t memset_size = 4;
505 
506         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
507 
508         ptr = kmalloc(size, GFP_KERNEL);
509         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
510 
511         OPTIMIZER_HIDE_VAR(ptr);
512         OPTIMIZER_HIDE_VAR(size);
513         OPTIMIZER_HIDE_VAR(memset_size);
514         KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size));
515         kfree(ptr);
516 }
517 
518 static void kmalloc_oob_memset_8(struct kunit *test)
519 {
520         char *ptr;
521         size_t size = 128 - KASAN_GRANULE_SIZE;
522         size_t memset_size = 8;
523 
524         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
525 
526         ptr = kmalloc(size, GFP_KERNEL);
527         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
528 
529         OPTIMIZER_HIDE_VAR(ptr);
530         OPTIMIZER_HIDE_VAR(size);
531         OPTIMIZER_HIDE_VAR(memset_size);
532         KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size));
533         kfree(ptr);
534 }
535 
536 static void kmalloc_oob_memset_16(struct kunit *test)
537 {
538         char *ptr;
539         size_t size = 128 - KASAN_GRANULE_SIZE;
540         size_t memset_size = 16;
541 
542         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
543 
544         ptr = kmalloc(size, GFP_KERNEL);
545         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
546 
547         OPTIMIZER_HIDE_VAR(ptr);
548         OPTIMIZER_HIDE_VAR(size);
549         OPTIMIZER_HIDE_VAR(memset_size);
550         KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size));
551         kfree(ptr);
552 }
553 
554 static void kmalloc_oob_in_memset(struct kunit *test)
555 {
556         char *ptr;
557         size_t size = 128 - KASAN_GRANULE_SIZE;
558 
559         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
560 
561         ptr = kmalloc(size, GFP_KERNEL);
562         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
563 
564         OPTIMIZER_HIDE_VAR(ptr);
565         OPTIMIZER_HIDE_VAR(size);
566         KUNIT_EXPECT_KASAN_FAIL(test,
567                                 memset(ptr, 0, size + KASAN_GRANULE_SIZE));
568         kfree(ptr);
569 }
570 
571 static void kmalloc_memmove_negative_size(struct kunit *test)
572 {
573         char *ptr;
574         size_t size = 64;
575         size_t invalid_size = -2;
576 
577         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
578 
579         /*
580          * Hardware tag-based mode doesn't check memmove for negative size.
581          * As a result, this test introduces a side-effect memory corruption,
582          * which can result in a crash.
583          */
584         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
585 
586         ptr = kmalloc(size, GFP_KERNEL);
587         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
588 
589         memset((char *)ptr, 0, 64);
590         OPTIMIZER_HIDE_VAR(ptr);
591         OPTIMIZER_HIDE_VAR(invalid_size);
592         KUNIT_EXPECT_KASAN_FAIL(test,
593                 memmove((char *)ptr, (char *)ptr + 4, invalid_size));
594         kfree(ptr);
595 }
596 
597 static void kmalloc_memmove_invalid_size(struct kunit *test)
598 {
599         char *ptr;
600         size_t size = 64;
601         size_t invalid_size = size;
602 
603         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
604 
605         ptr = kmalloc(size, GFP_KERNEL);
606         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
607 
608         memset((char *)ptr, 0, 64);
609         OPTIMIZER_HIDE_VAR(ptr);
610         OPTIMIZER_HIDE_VAR(invalid_size);
611         KUNIT_EXPECT_KASAN_FAIL(test,
612                 memmove((char *)ptr, (char *)ptr + 4, invalid_size));
613         kfree(ptr);
614 }
615 
616 static void kmalloc_uaf(struct kunit *test)
617 {
618         char *ptr;
619         size_t size = 10;
620 
621         ptr = kmalloc(size, GFP_KERNEL);
622         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
623 
624         kfree(ptr);
625         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
626 }
627 
628 static void kmalloc_uaf_memset(struct kunit *test)
629 {
630         char *ptr;
631         size_t size = 33;
632 
633         KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
634 
635         /*
636          * Only generic KASAN uses quarantine, which is required to avoid a
637          * kernel memory corruption this test causes.
638          */
639         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
640 
641         ptr = kmalloc(size, GFP_KERNEL);
642         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
643 
644         kfree(ptr);
645         KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
646 }
647 
648 static void kmalloc_uaf2(struct kunit *test)
649 {
650         char *ptr1, *ptr2;
651         size_t size = 43;
652         int counter = 0;
653 
654 again:
655         ptr1 = kmalloc(size, GFP_KERNEL);
656         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
657 
658         kfree(ptr1);
659 
660         ptr2 = kmalloc(size, GFP_KERNEL);
661         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
662 
663         /*
664          * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
665          * Allow up to 16 attempts at generating different tags.
666          */
667         if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
668                 kfree(ptr2);
669                 goto again;
670         }
671 
672         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
673         KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
674 
675         kfree(ptr2);
676 }
677 
678 /*
679  * Check that KASAN detects use-after-free when another object was allocated in
680  * the same slot. Relevant for the tag-based modes, which do not use quarantine.
681  */
682 static void kmalloc_uaf3(struct kunit *test)
683 {
684         char *ptr1, *ptr2;
685         size_t size = 100;
686 
687         /* This test is specifically crafted for tag-based modes. */
688         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
689 
690         ptr1 = kmalloc(size, GFP_KERNEL);
691         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
692         kfree(ptr1);
693 
694         ptr2 = kmalloc(size, GFP_KERNEL);
695         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
696         kfree(ptr2);
697 
698         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
699 }
700 
701 static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe)
702 {
703         int *i_unsafe = unsafe;
704 
705         KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe));
706         KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42));
707         KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe));
708         KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42));
709 
710         KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe));
711         KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42));
712         KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe));
713         KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe));
714         KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe));
715         KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe));
716         KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe));
717         KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe));
718         KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe));
719         KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe));
720         KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42));
721         KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42));
722         KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42));
723         KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42));
724         KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe));
725         KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe));
726         KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe));
727         KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe));
728         KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42));
729         KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe));
730         KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe));
731         KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe));
732         KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe));
733 
734         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe));
735         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42));
736         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe));
737         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe));
738         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe));
739         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe));
740         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe));
741         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe));
742         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe));
743         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe));
744         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42));
745         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42));
746         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42));
747         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42));
748         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe));
749         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe));
750         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe));
751         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe));
752         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42));
753         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe));
754         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe));
755         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe));
756         KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe));
757 }
758 
759 static void kasan_atomics(struct kunit *test)
760 {
761         void *a1, *a2;
762 
763         /*
764          * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such
765          * that the following 16 bytes will make up the redzone.
766          */
767         a1 = kzalloc(48, GFP_KERNEL);
768         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1);
769         a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL);
770         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2);
771 
772         /* Use atomics to access the redzone. */
773         kasan_atomics_helper(test, a1 + 48, a2);
774 
775         kfree(a1);
776         kfree(a2);
777 }
778 
779 static void kmalloc_double_kzfree(struct kunit *test)
780 {
781         char *ptr;
782         size_t size = 16;
783 
784         ptr = kmalloc(size, GFP_KERNEL);
785         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
786 
787         kfree_sensitive(ptr);
788         KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
789 }
790 
791 /* Check that ksize() does NOT unpoison whole object. */
792 static void ksize_unpoisons_memory(struct kunit *test)
793 {
794         char *ptr;
795         size_t size = 128 - KASAN_GRANULE_SIZE - 5;
796         size_t real_size;
797 
798         ptr = kmalloc(size, GFP_KERNEL);
799         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
800 
801         real_size = ksize(ptr);
802         KUNIT_EXPECT_GT(test, real_size, size);
803 
804         OPTIMIZER_HIDE_VAR(ptr);
805 
806         /* These accesses shouldn't trigger a KASAN report. */
807         ptr[0] = 'x';
808         ptr[size - 1] = 'x';
809 
810         /* These must trigger a KASAN report. */
811         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
812                 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
813         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]);
814         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]);
815 
816         kfree(ptr);
817 }
818 
819 /*
820  * Check that a use-after-free is detected by ksize() and via normal accesses
821  * after it.
822  */
823 static void ksize_uaf(struct kunit *test)
824 {
825         char *ptr;
826         int size = 128 - KASAN_GRANULE_SIZE;
827 
828         ptr = kmalloc(size, GFP_KERNEL);
829         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
830         kfree(ptr);
831 
832         OPTIMIZER_HIDE_VAR(ptr);
833         KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
834         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
835         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
836 }
837 
838 /*
839  * The two tests below check that Generic KASAN prints auxiliary stack traces
840  * for RCU callbacks and workqueues. The reports need to be inspected manually.
841  *
842  * These tests are still enabled for other KASAN modes to make sure that all
843  * modes report bad accesses in tested scenarios.
844  */
845 
846 static struct kasan_rcu_info {
847         int i;
848         struct rcu_head rcu;
849 } *global_rcu_ptr;
850 
851 static void rcu_uaf_reclaim(struct rcu_head *rp)
852 {
853         struct kasan_rcu_info *fp =
854                 container_of(rp, struct kasan_rcu_info, rcu);
855 
856         kfree(fp);
857         ((volatile struct kasan_rcu_info *)fp)->i;
858 }
859 
860 static void rcu_uaf(struct kunit *test)
861 {
862         struct kasan_rcu_info *ptr;
863 
864         ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
865         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
866 
867         global_rcu_ptr = rcu_dereference_protected(
868                                 (struct kasan_rcu_info __rcu *)ptr, NULL);
869 
870         KUNIT_EXPECT_KASAN_FAIL(test,
871                 call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim);
872                 rcu_barrier());
873 }
874 
875 static void workqueue_uaf_work(struct work_struct *work)
876 {
877         kfree(work);
878 }
879 
880 static void workqueue_uaf(struct kunit *test)
881 {
882         struct workqueue_struct *workqueue;
883         struct work_struct *work;
884 
885         workqueue = create_workqueue("kasan_workqueue_test");
886         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue);
887 
888         work = kmalloc(sizeof(struct work_struct), GFP_KERNEL);
889         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work);
890 
891         INIT_WORK(work, workqueue_uaf_work);
892         queue_work(workqueue, work);
893         destroy_workqueue(workqueue);
894 
895         KUNIT_EXPECT_KASAN_FAIL(test,
896                 ((volatile struct work_struct *)work)->data);
897 }
898 
899 static void kfree_via_page(struct kunit *test)
900 {
901         char *ptr;
902         size_t size = 8;
903         struct page *page;
904         unsigned long offset;
905 
906         ptr = kmalloc(size, GFP_KERNEL);
907         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
908 
909         page = virt_to_page(ptr);
910         offset = offset_in_page(ptr);
911         kfree(page_address(page) + offset);
912 }
913 
914 static void kfree_via_phys(struct kunit *test)
915 {
916         char *ptr;
917         size_t size = 8;
918         phys_addr_t phys;
919 
920         ptr = kmalloc(size, GFP_KERNEL);
921         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
922 
923         phys = virt_to_phys(ptr);
924         kfree(phys_to_virt(phys));
925 }
926 
927 static void kmem_cache_oob(struct kunit *test)
928 {
929         char *p;
930         size_t size = 200;
931         struct kmem_cache *cache;
932 
933         cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
934         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
935 
936         p = kmem_cache_alloc(cache, GFP_KERNEL);
937         if (!p) {
938                 kunit_err(test, "Allocation failed: %s\n", __func__);
939                 kmem_cache_destroy(cache);
940                 return;
941         }
942 
943         KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
944 
945         kmem_cache_free(cache, p);
946         kmem_cache_destroy(cache);
947 }
948 
949 static void kmem_cache_double_free(struct kunit *test)
950 {
951         char *p;
952         size_t size = 200;
953         struct kmem_cache *cache;
954 
955         cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
956         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
957 
958         p = kmem_cache_alloc(cache, GFP_KERNEL);
959         if (!p) {
960                 kunit_err(test, "Allocation failed: %s\n", __func__);
961                 kmem_cache_destroy(cache);
962                 return;
963         }
964 
965         kmem_cache_free(cache, p);
966         KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
967         kmem_cache_destroy(cache);
968 }
969 
970 static void kmem_cache_invalid_free(struct kunit *test)
971 {
972         char *p;
973         size_t size = 200;
974         struct kmem_cache *cache;
975 
976         cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
977                                   NULL);
978         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
979 
980         p = kmem_cache_alloc(cache, GFP_KERNEL);
981         if (!p) {
982                 kunit_err(test, "Allocation failed: %s\n", __func__);
983                 kmem_cache_destroy(cache);
984                 return;
985         }
986 
987         /* Trigger invalid free, the object doesn't get freed. */
988         KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
989 
990         /*
991          * Properly free the object to prevent the "Objects remaining in
992          * test_cache on __kmem_cache_shutdown" BUG failure.
993          */
994         kmem_cache_free(cache, p);
995 
996         kmem_cache_destroy(cache);
997 }
998 
999 static void empty_cache_ctor(void *object) { }
1000 
1001 static void kmem_cache_double_destroy(struct kunit *test)
1002 {
1003         struct kmem_cache *cache;
1004 
1005         /* Provide a constructor to prevent cache merging. */
1006         cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
1007         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1008         kmem_cache_destroy(cache);
1009         KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
1010 }
1011 
1012 static void kmem_cache_accounted(struct kunit *test)
1013 {
1014         int i;
1015         char *p;
1016         size_t size = 200;
1017         struct kmem_cache *cache;
1018 
1019         cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
1020         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1021 
1022         /*
1023          * Several allocations with a delay to allow for lazy per memcg kmem
1024          * cache creation.
1025          */
1026         for (i = 0; i < 5; i++) {
1027                 p = kmem_cache_alloc(cache, GFP_KERNEL);
1028                 if (!p)
1029                         goto free_cache;
1030 
1031                 kmem_cache_free(cache, p);
1032                 msleep(100);
1033         }
1034 
1035 free_cache:
1036         kmem_cache_destroy(cache);
1037 }
1038 
1039 static void kmem_cache_bulk(struct kunit *test)
1040 {
1041         struct kmem_cache *cache;
1042         size_t size = 200;
1043         char *p[10];
1044         bool ret;
1045         int i;
1046 
1047         cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
1048         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1049 
1050         ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
1051         if (!ret) {
1052                 kunit_err(test, "Allocation failed: %s\n", __func__);
1053                 kmem_cache_destroy(cache);
1054                 return;
1055         }
1056 
1057         for (i = 0; i < ARRAY_SIZE(p); i++)
1058                 p[i][0] = p[i][size - 1] = 42;
1059 
1060         kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
1061         kmem_cache_destroy(cache);
1062 }
1063 
1064 static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size)
1065 {
1066         int pool_size = 4;
1067         int ret;
1068         void *elem;
1069 
1070         memset(pool, 0, sizeof(*pool));
1071         ret = mempool_init_kmalloc_pool(pool, pool_size, size);
1072         KUNIT_ASSERT_EQ(test, ret, 0);
1073 
1074         /*
1075          * Allocate one element to prevent mempool from freeing elements to the
1076          * underlying allocator and instead make it add them to the element
1077          * list when the tests trigger double-free and invalid-free bugs.
1078          * This allows testing KASAN annotations in add_element().
1079          */
1080         elem = mempool_alloc_preallocated(pool);
1081         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1082 
1083         return elem;
1084 }
1085 
1086 static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size)
1087 {
1088         struct kmem_cache *cache;
1089         int pool_size = 4;
1090         int ret;
1091 
1092         cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
1093         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
1094 
1095         memset(pool, 0, sizeof(*pool));
1096         ret = mempool_init_slab_pool(pool, pool_size, cache);
1097         KUNIT_ASSERT_EQ(test, ret, 0);
1098 
1099         /*
1100          * Do not allocate one preallocated element, as we skip the double-free
1101          * and invalid-free tests for slab mempool for simplicity.
1102          */
1103 
1104         return cache;
1105 }
1106 
1107 static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order)
1108 {
1109         int pool_size = 4;
1110         int ret;
1111         void *elem;
1112 
1113         memset(pool, 0, sizeof(*pool));
1114         ret = mempool_init_page_pool(pool, pool_size, order);
1115         KUNIT_ASSERT_EQ(test, ret, 0);
1116 
1117         elem = mempool_alloc_preallocated(pool);
1118         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1119 
1120         return elem;
1121 }
1122 
1123 static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size)
1124 {
1125         char *elem;
1126 
1127         elem = mempool_alloc_preallocated(pool);
1128         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1129 
1130         OPTIMIZER_HIDE_VAR(elem);
1131 
1132         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1133                 KUNIT_EXPECT_KASAN_FAIL(test,
1134                         ((volatile char *)&elem[size])[0]);
1135         else
1136                 KUNIT_EXPECT_KASAN_FAIL(test,
1137                         ((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]);
1138 
1139         mempool_free(elem, pool);
1140 }
1141 
1142 static void mempool_kmalloc_oob_right(struct kunit *test)
1143 {
1144         mempool_t pool;
1145         size_t size = 128 - KASAN_GRANULE_SIZE - 5;
1146         void *extra_elem;
1147 
1148         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1149 
1150         mempool_oob_right_helper(test, &pool, size);
1151 
1152         mempool_free(extra_elem, &pool);
1153         mempool_exit(&pool);
1154 }
1155 
1156 static void mempool_kmalloc_large_oob_right(struct kunit *test)
1157 {
1158         mempool_t pool;
1159         size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1160         void *extra_elem;
1161 
1162         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1163 
1164         mempool_oob_right_helper(test, &pool, size);
1165 
1166         mempool_free(extra_elem, &pool);
1167         mempool_exit(&pool);
1168 }
1169 
1170 static void mempool_slab_oob_right(struct kunit *test)
1171 {
1172         mempool_t pool;
1173         size_t size = 123;
1174         struct kmem_cache *cache;
1175 
1176         cache = mempool_prepare_slab(test, &pool, size);
1177 
1178         mempool_oob_right_helper(test, &pool, size);
1179 
1180         mempool_exit(&pool);
1181         kmem_cache_destroy(cache);
1182 }
1183 
1184 /*
1185  * Skip the out-of-bounds test for page mempool. With Generic KASAN, page
1186  * allocations have no redzones, and thus the out-of-bounds detection is not
1187  * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With
1188  * the tag-based KASAN modes, the neighboring allocation might have the same
1189  * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505.
1190  */
1191 
1192 static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page)
1193 {
1194         char *elem, *ptr;
1195 
1196         elem = mempool_alloc_preallocated(pool);
1197         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1198 
1199         mempool_free(elem, pool);
1200 
1201         ptr = page ? page_address((struct page *)elem) : elem;
1202         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
1203 }
1204 
1205 static void mempool_kmalloc_uaf(struct kunit *test)
1206 {
1207         mempool_t pool;
1208         size_t size = 128;
1209         void *extra_elem;
1210 
1211         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1212 
1213         mempool_uaf_helper(test, &pool, false);
1214 
1215         mempool_free(extra_elem, &pool);
1216         mempool_exit(&pool);
1217 }
1218 
1219 static void mempool_kmalloc_large_uaf(struct kunit *test)
1220 {
1221         mempool_t pool;
1222         size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1223         void *extra_elem;
1224 
1225         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1226 
1227         mempool_uaf_helper(test, &pool, false);
1228 
1229         mempool_free(extra_elem, &pool);
1230         mempool_exit(&pool);
1231 }
1232 
1233 static void mempool_slab_uaf(struct kunit *test)
1234 {
1235         mempool_t pool;
1236         size_t size = 123;
1237         struct kmem_cache *cache;
1238 
1239         cache = mempool_prepare_slab(test, &pool, size);
1240 
1241         mempool_uaf_helper(test, &pool, false);
1242 
1243         mempool_exit(&pool);
1244         kmem_cache_destroy(cache);
1245 }
1246 
1247 static void mempool_page_alloc_uaf(struct kunit *test)
1248 {
1249         mempool_t pool;
1250         int order = 2;
1251         void *extra_elem;
1252 
1253         extra_elem = mempool_prepare_page(test, &pool, order);
1254 
1255         mempool_uaf_helper(test, &pool, true);
1256 
1257         mempool_free(extra_elem, &pool);
1258         mempool_exit(&pool);
1259 }
1260 
1261 static void mempool_double_free_helper(struct kunit *test, mempool_t *pool)
1262 {
1263         char *elem;
1264 
1265         elem = mempool_alloc_preallocated(pool);
1266         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1267 
1268         mempool_free(elem, pool);
1269 
1270         KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool));
1271 }
1272 
1273 static void mempool_kmalloc_double_free(struct kunit *test)
1274 {
1275         mempool_t pool;
1276         size_t size = 128;
1277         char *extra_elem;
1278 
1279         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1280 
1281         mempool_double_free_helper(test, &pool);
1282 
1283         mempool_free(extra_elem, &pool);
1284         mempool_exit(&pool);
1285 }
1286 
1287 static void mempool_kmalloc_large_double_free(struct kunit *test)
1288 {
1289         mempool_t pool;
1290         size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1291         char *extra_elem;
1292 
1293         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1294 
1295         mempool_double_free_helper(test, &pool);
1296 
1297         mempool_free(extra_elem, &pool);
1298         mempool_exit(&pool);
1299 }
1300 
1301 static void mempool_page_alloc_double_free(struct kunit *test)
1302 {
1303         mempool_t pool;
1304         int order = 2;
1305         char *extra_elem;
1306 
1307         extra_elem = mempool_prepare_page(test, &pool, order);
1308 
1309         mempool_double_free_helper(test, &pool);
1310 
1311         mempool_free(extra_elem, &pool);
1312         mempool_exit(&pool);
1313 }
1314 
1315 static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool)
1316 {
1317         char *elem;
1318 
1319         elem = mempool_alloc_preallocated(pool);
1320         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
1321 
1322         KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool));
1323 
1324         mempool_free(elem, pool);
1325 }
1326 
1327 static void mempool_kmalloc_invalid_free(struct kunit *test)
1328 {
1329         mempool_t pool;
1330         size_t size = 128;
1331         char *extra_elem;
1332 
1333         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1334 
1335         mempool_kmalloc_invalid_free_helper(test, &pool);
1336 
1337         mempool_free(extra_elem, &pool);
1338         mempool_exit(&pool);
1339 }
1340 
1341 static void mempool_kmalloc_large_invalid_free(struct kunit *test)
1342 {
1343         mempool_t pool;
1344         size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
1345         char *extra_elem;
1346 
1347         extra_elem = mempool_prepare_kmalloc(test, &pool, size);
1348 
1349         mempool_kmalloc_invalid_free_helper(test, &pool);
1350 
1351         mempool_free(extra_elem, &pool);
1352         mempool_exit(&pool);
1353 }
1354 
1355 /*
1356  * Skip the invalid-free test for page mempool. The invalid-free detection only
1357  * works for compound pages and mempool preallocates all page elements without
1358  * the __GFP_COMP flag.
1359  */
1360 
1361 static char global_array[10];
1362 
1363 static void kasan_global_oob_right(struct kunit *test)
1364 {
1365         /*
1366          * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
1367          * from failing here and panicking the kernel, access the array via a
1368          * volatile pointer, which will prevent the compiler from being able to
1369          * determine the array bounds.
1370          *
1371          * This access uses a volatile pointer to char (char *volatile) rather
1372          * than the more conventional pointer to volatile char (volatile char *)
1373          * because we want to prevent the compiler from making inferences about
1374          * the pointer itself (i.e. its array bounds), not the data that it
1375          * refers to.
1376          */
1377         char *volatile array = global_array;
1378         char *p = &array[ARRAY_SIZE(global_array) + 3];
1379 
1380         /* Only generic mode instruments globals. */
1381         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1382 
1383         KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1384 }
1385 
1386 static void kasan_global_oob_left(struct kunit *test)
1387 {
1388         char *volatile array = global_array;
1389         char *p = array - 3;
1390 
1391         /*
1392          * GCC is known to fail this test, skip it.
1393          * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
1394          */
1395         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
1396         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1397         KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1398 }
1399 
1400 static void kasan_stack_oob(struct kunit *test)
1401 {
1402         char stack_array[10];
1403         /* See comment in kasan_global_oob_right. */
1404         char *volatile array = stack_array;
1405         char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
1406 
1407         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1408 
1409         KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1410 }
1411 
1412 static void kasan_alloca_oob_left(struct kunit *test)
1413 {
1414         volatile int i = 10;
1415         char alloca_array[i];
1416         /* See comment in kasan_global_oob_right. */
1417         char *volatile array = alloca_array;
1418         char *p = array - 1;
1419 
1420         /* Only generic mode instruments dynamic allocas. */
1421         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1422         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1423 
1424         KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1425 }
1426 
1427 static void kasan_alloca_oob_right(struct kunit *test)
1428 {
1429         volatile int i = 10;
1430         char alloca_array[i];
1431         /* See comment in kasan_global_oob_right. */
1432         char *volatile array = alloca_array;
1433         char *p = array + i;
1434 
1435         /* Only generic mode instruments dynamic allocas. */
1436         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1437         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
1438 
1439         KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
1440 }
1441 
1442 static void kasan_memchr(struct kunit *test)
1443 {
1444         char *ptr;
1445         size_t size = 24;
1446 
1447         /*
1448          * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1449          * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1450          */
1451         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1452 
1453         if (OOB_TAG_OFF)
1454                 size = round_up(size, OOB_TAG_OFF);
1455 
1456         ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1457         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1458 
1459         OPTIMIZER_HIDE_VAR(ptr);
1460         OPTIMIZER_HIDE_VAR(size);
1461         KUNIT_EXPECT_KASAN_FAIL(test,
1462                 kasan_ptr_result = memchr(ptr, '1', size + 1));
1463 
1464         kfree(ptr);
1465 }
1466 
1467 static void kasan_memcmp(struct kunit *test)
1468 {
1469         char *ptr;
1470         size_t size = 24;
1471         int arr[9];
1472 
1473         /*
1474          * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1475          * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1476          */
1477         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1478 
1479         if (OOB_TAG_OFF)
1480                 size = round_up(size, OOB_TAG_OFF);
1481 
1482         ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1483         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1484         memset(arr, 0, sizeof(arr));
1485 
1486         OPTIMIZER_HIDE_VAR(ptr);
1487         OPTIMIZER_HIDE_VAR(size);
1488         KUNIT_EXPECT_KASAN_FAIL(test,
1489                 kasan_int_result = memcmp(ptr, arr, size+1));
1490         kfree(ptr);
1491 }
1492 
1493 static void kasan_strings(struct kunit *test)
1494 {
1495         char *ptr;
1496         size_t size = 24;
1497 
1498         /*
1499          * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
1500          * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
1501          */
1502         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
1503 
1504         ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
1505         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1506 
1507         kfree(ptr);
1508 
1509         /*
1510          * Try to cause only 1 invalid access (less spam in dmesg).
1511          * For that we need ptr to point to zeroed byte.
1512          * Skip metadata that could be stored in freed object so ptr
1513          * will likely point to zeroed byte.
1514          */
1515         ptr += 16;
1516         KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
1517 
1518         KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
1519 
1520         KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
1521 
1522         KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
1523 
1524         KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
1525 
1526         KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
1527 }
1528 
1529 static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
1530 {
1531         KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
1532         KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
1533         KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
1534         KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
1535         KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
1536         KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
1537         KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
1538         KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
1539 }
1540 
1541 static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
1542 {
1543         KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
1544         KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
1545         KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
1546         KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
1547         KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
1548         KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
1549         KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
1550         KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
1551         if (nr < 7)
1552                 KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
1553                                 xor_unlock_is_negative_byte(1 << nr, addr));
1554 }
1555 
1556 static void kasan_bitops_generic(struct kunit *test)
1557 {
1558         long *bits;
1559 
1560         /* This test is specifically crafted for the generic mode. */
1561         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1562 
1563         /*
1564          * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
1565          * this way we do not actually corrupt other memory.
1566          */
1567         bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
1568         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1569 
1570         /*
1571          * Below calls try to access bit within allocated memory; however, the
1572          * below accesses are still out-of-bounds, since bitops are defined to
1573          * operate on the whole long the bit is in.
1574          */
1575         kasan_bitops_modify(test, BITS_PER_LONG, bits);
1576 
1577         /*
1578          * Below calls try to access bit beyond allocated memory.
1579          */
1580         kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
1581 
1582         kfree(bits);
1583 }
1584 
1585 static void kasan_bitops_tags(struct kunit *test)
1586 {
1587         long *bits;
1588 
1589         /* This test is specifically crafted for tag-based modes. */
1590         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1591 
1592         /* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
1593         bits = kzalloc(48, GFP_KERNEL);
1594         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1595 
1596         /* Do the accesses past the 48 allocated bytes, but within the redone. */
1597         kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
1598         kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
1599 
1600         kfree(bits);
1601 }
1602 
1603 static void vmalloc_helpers_tags(struct kunit *test)
1604 {
1605         void *ptr;
1606 
1607         /* This test is intended for tag-based modes. */
1608         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1609 
1610         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1611 
1612         if (!kasan_vmalloc_enabled())
1613                 kunit_skip(test, "Test requires kasan.vmalloc=on");
1614 
1615         ptr = vmalloc(PAGE_SIZE);
1616         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1617 
1618         /* Check that the returned pointer is tagged. */
1619         KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1620         KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1621 
1622         /* Make sure exported vmalloc helpers handle tagged pointers. */
1623         KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
1624         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));
1625 
1626 #if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
1627         {
1628                 int rv;
1629 
1630                 /* Make sure vmalloc'ed memory permissions can be changed. */
1631                 rv = set_memory_ro((unsigned long)ptr, 1);
1632                 KUNIT_ASSERT_GE(test, rv, 0);
1633                 rv = set_memory_rw((unsigned long)ptr, 1);
1634                 KUNIT_ASSERT_GE(test, rv, 0);
1635         }
1636 #endif
1637 
1638         vfree(ptr);
1639 }
1640 
1641 static void vmalloc_oob(struct kunit *test)
1642 {
1643         char *v_ptr, *p_ptr;
1644         struct page *page;
1645         size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;
1646 
1647         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1648 
1649         if (!kasan_vmalloc_enabled())
1650                 kunit_skip(test, "Test requires kasan.vmalloc=on");
1651 
1652         v_ptr = vmalloc(size);
1653         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1654 
1655         OPTIMIZER_HIDE_VAR(v_ptr);
1656 
1657         /*
1658          * We have to be careful not to hit the guard page in vmalloc tests.
1659          * The MMU will catch that and crash us.
1660          */
1661 
1662         /* Make sure in-bounds accesses are valid. */
1663         v_ptr[0] = 0;
1664         v_ptr[size - 1] = 0;
1665 
1666         /*
1667          * An unaligned access past the requested vmalloc size.
1668          * Only generic KASAN can precisely detect these.
1669          */
1670         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1671                 KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);
1672 
1673         /* An aligned access into the first out-of-bounds granule. */
1674         KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);
1675 
1676         /* Check that in-bounds accesses to the physical page are valid. */
1677         page = vmalloc_to_page(v_ptr);
1678         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1679         p_ptr = page_address(page);
1680         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1681         p_ptr[0] = 0;
1682 
1683         vfree(v_ptr);
1684 
1685         /*
1686          * We can't check for use-after-unmap bugs in this nor in the following
1687          * vmalloc tests, as the page might be fully unmapped and accessing it
1688          * will crash the kernel.
1689          */
1690 }
1691 
1692 static void vmap_tags(struct kunit *test)
1693 {
1694         char *p_ptr, *v_ptr;
1695         struct page *p_page, *v_page;
1696 
1697         /*
1698          * This test is specifically crafted for the software tag-based mode,
1699          * the only tag-based mode that poisons vmap mappings.
1700          */
1701         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1702 
1703         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1704 
1705         if (!kasan_vmalloc_enabled())
1706                 kunit_skip(test, "Test requires kasan.vmalloc=on");
1707 
1708         p_page = alloc_pages(GFP_KERNEL, 1);
1709         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
1710         p_ptr = page_address(p_page);
1711         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1712 
1713         v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
1714         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1715 
1716         /*
1717          * We can't check for out-of-bounds bugs in this nor in the following
1718          * vmalloc tests, as allocations have page granularity and accessing
1719          * the guard page will crash the kernel.
1720          */
1721 
1722         KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1723         KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1724 
1725         /* Make sure that in-bounds accesses through both pointers work. */
1726         *p_ptr = 0;
1727         *v_ptr = 0;
1728 
1729         /* Make sure vmalloc_to_page() correctly recovers the page pointer. */
1730         v_page = vmalloc_to_page(v_ptr);
1731         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
1732         KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);
1733 
1734         vunmap(v_ptr);
1735         free_pages((unsigned long)p_ptr, 1);
1736 }
1737 
1738 static void vm_map_ram_tags(struct kunit *test)
1739 {
1740         char *p_ptr, *v_ptr;
1741         struct page *page;
1742 
1743         /*
1744          * This test is specifically crafted for the software tag-based mode,
1745          * the only tag-based mode that poisons vm_map_ram mappings.
1746          */
1747         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1748 
1749         page = alloc_pages(GFP_KERNEL, 1);
1750         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1751         p_ptr = page_address(page);
1752         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1753 
1754         v_ptr = vm_map_ram(&page, 1, -1);
1755         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1756 
1757         KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1758         KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1759 
1760         /* Make sure that in-bounds accesses through both pointers work. */
1761         *p_ptr = 0;
1762         *v_ptr = 0;
1763 
1764         vm_unmap_ram(v_ptr, 1);
1765         free_pages((unsigned long)p_ptr, 1);
1766 }
1767 
1768 static void vmalloc_percpu(struct kunit *test)
1769 {
1770         char __percpu *ptr;
1771         int cpu;
1772 
1773         /*
1774          * This test is specifically crafted for the software tag-based mode,
1775          * the only tag-based mode that poisons percpu mappings.
1776          */
1777         KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1778 
1779         ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);
1780 
1781         for_each_possible_cpu(cpu) {
1782                 char *c_ptr = per_cpu_ptr(ptr, cpu);
1783 
1784                 KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
1785                 KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);
1786 
1787                 /* Make sure that in-bounds accesses don't crash the kernel. */
1788                 *c_ptr = 0;
1789         }
1790 
1791         free_percpu(ptr);
1792 }
1793 
1794 /*
1795  * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
1796  * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
1797  * modes.
1798  */
1799 static void match_all_not_assigned(struct kunit *test)
1800 {
1801         char *ptr;
1802         struct page *pages;
1803         int i, size, order;
1804 
1805         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1806 
1807         for (i = 0; i < 256; i++) {
1808                 size = get_random_u32_inclusive(1, 1024);
1809                 ptr = kmalloc(size, GFP_KERNEL);
1810                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1811                 KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1812                 KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1813                 kfree(ptr);
1814         }
1815 
1816         for (i = 0; i < 256; i++) {
1817                 order = get_random_u32_inclusive(1, 4);
1818                 pages = alloc_pages(GFP_KERNEL, order);
1819                 ptr = page_address(pages);
1820                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1821                 KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1822                 KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1823                 free_pages((unsigned long)ptr, order);
1824         }
1825 
1826         if (!kasan_vmalloc_enabled())
1827                 return;
1828 
1829         for (i = 0; i < 256; i++) {
1830                 size = get_random_u32_inclusive(1, 1024);
1831                 ptr = vmalloc(size);
1832                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1833                 KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1834                 KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1835                 vfree(ptr);
1836         }
1837 }
1838 
1839 /* Check that 0xff works as a match-all pointer tag for tag-based modes. */
1840 static void match_all_ptr_tag(struct kunit *test)
1841 {
1842         char *ptr;
1843         u8 tag;
1844 
1845         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1846 
1847         ptr = kmalloc(128, GFP_KERNEL);
1848         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1849 
1850         /* Backup the assigned tag. */
1851         tag = get_tag(ptr);
1852         KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
1853 
1854         /* Reset the tag to 0xff.*/
1855         ptr = set_tag(ptr, KASAN_TAG_KERNEL);
1856 
1857         /* This access shouldn't trigger a KASAN report. */
1858         *ptr = 0;
1859 
1860         /* Recover the pointer tag and free. */
1861         ptr = set_tag(ptr, tag);
1862         kfree(ptr);
1863 }
1864 
1865 /* Check that there are no match-all memory tags for tag-based modes. */
1866 static void match_all_mem_tag(struct kunit *test)
1867 {
1868         char *ptr;
1869         int tag;
1870 
1871         KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1872 
1873         ptr = kmalloc(128, GFP_KERNEL);
1874         KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1875         KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1876 
1877         /* For each possible tag value not matching the pointer tag. */
1878         for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
1879                 /*
1880                  * For Software Tag-Based KASAN, skip the majority of tag
1881                  * values to avoid the test printing too many reports.
1882                  */
1883                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
1884                     tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8)
1885                         continue;
1886 
1887                 if (tag == get_tag(ptr))
1888                         continue;
1889 
1890                 /* Mark the first memory granule with the chosen memory tag. */
1891                 kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
1892 
1893                 /* This access must cause a KASAN report. */
1894                 KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
1895         }
1896 
1897         /* Recover the memory tag and free. */
1898         kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
1899         kfree(ptr);
1900 }
1901 
1902 static struct kunit_case kasan_kunit_test_cases[] = {
1903         KUNIT_CASE(kmalloc_oob_right),
1904         KUNIT_CASE(kmalloc_oob_left),
1905         KUNIT_CASE(kmalloc_node_oob_right),
1906         KUNIT_CASE(kmalloc_big_oob_right),
1907         KUNIT_CASE(kmalloc_large_oob_right),
1908         KUNIT_CASE(kmalloc_large_uaf),
1909         KUNIT_CASE(kmalloc_large_invalid_free),
1910         KUNIT_CASE(page_alloc_oob_right),
1911         KUNIT_CASE(page_alloc_uaf),
1912         KUNIT_CASE(krealloc_more_oob),
1913         KUNIT_CASE(krealloc_less_oob),
1914         KUNIT_CASE(krealloc_large_more_oob),
1915         KUNIT_CASE(krealloc_large_less_oob),
1916         KUNIT_CASE(krealloc_uaf),
1917         KUNIT_CASE(kmalloc_oob_16),
1918         KUNIT_CASE(kmalloc_uaf_16),
1919         KUNIT_CASE(kmalloc_oob_in_memset),
1920         KUNIT_CASE(kmalloc_oob_memset_2),
1921         KUNIT_CASE(kmalloc_oob_memset_4),
1922         KUNIT_CASE(kmalloc_oob_memset_8),
1923         KUNIT_CASE(kmalloc_oob_memset_16),
1924         KUNIT_CASE(kmalloc_memmove_negative_size),
1925         KUNIT_CASE(kmalloc_memmove_invalid_size),
1926         KUNIT_CASE(kmalloc_uaf),
1927         KUNIT_CASE(kmalloc_uaf_memset),
1928         KUNIT_CASE(kmalloc_uaf2),
1929         KUNIT_CASE(kmalloc_uaf3),
1930         KUNIT_CASE(kmalloc_double_kzfree),
1931         KUNIT_CASE(ksize_unpoisons_memory),
1932         KUNIT_CASE(ksize_uaf),
1933         KUNIT_CASE(rcu_uaf),
1934         KUNIT_CASE(workqueue_uaf),
1935         KUNIT_CASE(kfree_via_page),
1936         KUNIT_CASE(kfree_via_phys),
1937         KUNIT_CASE(kmem_cache_oob),
1938         KUNIT_CASE(kmem_cache_double_free),
1939         KUNIT_CASE(kmem_cache_invalid_free),
1940         KUNIT_CASE(kmem_cache_double_destroy),
1941         KUNIT_CASE(kmem_cache_accounted),
1942         KUNIT_CASE(kmem_cache_bulk),
1943         KUNIT_CASE(mempool_kmalloc_oob_right),
1944         KUNIT_CASE(mempool_kmalloc_large_oob_right),
1945         KUNIT_CASE(mempool_slab_oob_right),
1946         KUNIT_CASE(mempool_kmalloc_uaf),
1947         KUNIT_CASE(mempool_kmalloc_large_uaf),
1948         KUNIT_CASE(mempool_slab_uaf),
1949         KUNIT_CASE(mempool_page_alloc_uaf),
1950         KUNIT_CASE(mempool_kmalloc_double_free),
1951         KUNIT_CASE(mempool_kmalloc_large_double_free),
1952         KUNIT_CASE(mempool_page_alloc_double_free),
1953         KUNIT_CASE(mempool_kmalloc_invalid_free),
1954         KUNIT_CASE(mempool_kmalloc_large_invalid_free),
1955         KUNIT_CASE(kasan_global_oob_right),
1956         KUNIT_CASE(kasan_global_oob_left),
1957         KUNIT_CASE(kasan_stack_oob),
1958         KUNIT_CASE(kasan_alloca_oob_left),
1959         KUNIT_CASE(kasan_alloca_oob_right),
1960         KUNIT_CASE(kasan_memchr),
1961         KUNIT_CASE(kasan_memcmp),
1962         KUNIT_CASE(kasan_strings),
1963         KUNIT_CASE(kasan_bitops_generic),
1964         KUNIT_CASE(kasan_bitops_tags),
1965         KUNIT_CASE(kasan_atomics),
1966         KUNIT_CASE(vmalloc_helpers_tags),
1967         KUNIT_CASE(vmalloc_oob),
1968         KUNIT_CASE(vmap_tags),
1969         KUNIT_CASE(vm_map_ram_tags),
1970         KUNIT_CASE(vmalloc_percpu),
1971         KUNIT_CASE(match_all_not_assigned),
1972         KUNIT_CASE(match_all_ptr_tag),
1973         KUNIT_CASE(match_all_mem_tag),
1974         {}
1975 };
1976 
1977 static struct kunit_suite kasan_kunit_test_suite = {
1978         .name = "kasan",
1979         .test_cases = kasan_kunit_test_cases,
1980         .exit = kasan_test_exit,
1981         .suite_init = kasan_suite_init,
1982         .suite_exit = kasan_suite_exit,
1983 };
1984 
1985 kunit_test_suite(kasan_kunit_test_suite);
1986 
1987 MODULE_LICENSE("GPL");
1988 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php