~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/kfence/core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * KFENCE guarded object allocator and fault handling.
  4  *
  5  * Copyright (C) 2020, Google LLC.
  6  */
  7 
  8 #define pr_fmt(fmt) "kfence: " fmt
  9 
 10 #include <linux/atomic.h>
 11 #include <linux/bug.h>
 12 #include <linux/debugfs.h>
 13 #include <linux/hash.h>
 14 #include <linux/irq_work.h>
 15 #include <linux/jhash.h>
 16 #include <linux/kcsan-checks.h>
 17 #include <linux/kfence.h>
 18 #include <linux/kmemleak.h>
 19 #include <linux/list.h>
 20 #include <linux/lockdep.h>
 21 #include <linux/log2.h>
 22 #include <linux/memblock.h>
 23 #include <linux/moduleparam.h>
 24 #include <linux/notifier.h>
 25 #include <linux/panic_notifier.h>
 26 #include <linux/random.h>
 27 #include <linux/rcupdate.h>
 28 #include <linux/sched/clock.h>
 29 #include <linux/seq_file.h>
 30 #include <linux/slab.h>
 31 #include <linux/spinlock.h>
 32 #include <linux/string.h>
 33 
 34 #include <asm/kfence.h>
 35 
 36 #include "kfence.h"
 37 
 38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
 39 #define KFENCE_WARN_ON(cond)                                                   \
 40         ({                                                                     \
 41                 const bool __cond = WARN_ON(cond);                             \
 42                 if (unlikely(__cond)) {                                        \
 43                         WRITE_ONCE(kfence_enabled, false);                     \
 44                         disabled_by_warn = true;                               \
 45                 }                                                              \
 46                 __cond;                                                        \
 47         })
 48 
 49 /* === Data ================================================================= */
 50 
 51 static bool kfence_enabled __read_mostly;
 52 static bool disabled_by_warn __read_mostly;
 53 
 54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
 55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
 56 
 57 #ifdef MODULE_PARAM_PREFIX
 58 #undef MODULE_PARAM_PREFIX
 59 #endif
 60 #define MODULE_PARAM_PREFIX "kfence."
 61 
 62 static int kfence_enable_late(void);
 63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
 64 {
 65         unsigned long num;
 66         int ret = kstrtoul(val, 0, &num);
 67 
 68         if (ret < 0)
 69                 return ret;
 70 
 71         /* Using 0 to indicate KFENCE is disabled. */
 72         if (!num && READ_ONCE(kfence_enabled)) {
 73                 pr_info("disabled\n");
 74                 WRITE_ONCE(kfence_enabled, false);
 75         }
 76 
 77         *((unsigned long *)kp->arg) = num;
 78 
 79         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
 80                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
 81         return 0;
 82 }
 83 
 84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
 85 {
 86         if (!READ_ONCE(kfence_enabled))
 87                 return sprintf(buffer, "\n");
 88 
 89         return param_get_ulong(buffer, kp);
 90 }
 91 
 92 static const struct kernel_param_ops sample_interval_param_ops = {
 93         .set = param_set_sample_interval,
 94         .get = param_get_sample_interval,
 95 };
 96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
 97 
 98 /* Pool usage% threshold when currently covered allocations are skipped. */
 99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
101 
102 /* If true, use a deferrable timer. */
103 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
104 module_param_named(deferrable, kfence_deferrable, bool, 0444);
105 
106 /* If true, check all canary bytes on panic. */
107 static bool kfence_check_on_panic __read_mostly;
108 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
109 
110 /* The pool of pages used for guard pages and objects. */
111 char *__kfence_pool __read_mostly;
112 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
113 
114 /*
115  * Per-object metadata, with one-to-one mapping of object metadata to
116  * backing pages (in __kfence_pool).
117  */
118 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
119 struct kfence_metadata *kfence_metadata __read_mostly;
120 
121 /*
122  * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
123  * So introduce kfence_metadata_init to initialize metadata, and then make
124  * kfence_metadata visible after initialization is successful. This prevents
125  * potential UAF or access to uninitialized metadata.
126  */
127 static struct kfence_metadata *kfence_metadata_init __read_mostly;
128 
129 /* Freelist with available objects. */
130 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
131 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
132 
133 /*
134  * The static key to set up a KFENCE allocation; or if static keys are not used
135  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
136  */
137 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
138 
139 /* Gates the allocation, ensuring only one succeeds in a given period. */
140 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
141 
142 /*
143  * A Counting Bloom filter of allocation coverage: limits currently covered
144  * allocations of the same source filling up the pool.
145  *
146  * Assuming a range of 15%-85% unique allocations in the pool at any point in
147  * time, the below parameters provide a probablity of 0.02-0.33 for false
148  * positive hits respectively:
149  *
150  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
151  */
152 #define ALLOC_COVERED_HNUM      2
153 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
154 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
155 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
156 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
157 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
158 
159 /* Stack depth used to determine uniqueness of an allocation. */
160 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
161 
162 /*
163  * Randomness for stack hashes, making the same collisions across reboots and
164  * different machines less likely.
165  */
166 static u32 stack_hash_seed __ro_after_init;
167 
168 /* Statistics counters for debugfs. */
169 enum kfence_counter_id {
170         KFENCE_COUNTER_ALLOCATED,
171         KFENCE_COUNTER_ALLOCS,
172         KFENCE_COUNTER_FREES,
173         KFENCE_COUNTER_ZOMBIES,
174         KFENCE_COUNTER_BUGS,
175         KFENCE_COUNTER_SKIP_INCOMPAT,
176         KFENCE_COUNTER_SKIP_CAPACITY,
177         KFENCE_COUNTER_SKIP_COVERED,
178         KFENCE_COUNTER_COUNT,
179 };
180 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
181 static const char *const counter_names[] = {
182         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
183         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
184         [KFENCE_COUNTER_FREES]          = "total frees",
185         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
186         [KFENCE_COUNTER_BUGS]           = "total bugs",
187         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
188         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
189         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
190 };
191 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
192 
193 /* === Internals ============================================================ */
194 
195 static inline bool should_skip_covered(void)
196 {
197         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
198 
199         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
200 }
201 
202 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
203 {
204         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
205         num_entries = filter_irq_stacks(stack_entries, num_entries);
206         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
207 }
208 
209 /*
210  * Adds (or subtracts) count @val for allocation stack trace hash
211  * @alloc_stack_hash from Counting Bloom filter.
212  */
213 static void alloc_covered_add(u32 alloc_stack_hash, int val)
214 {
215         int i;
216 
217         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
218                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
219                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
220         }
221 }
222 
223 /*
224  * Returns true if the allocation stack trace hash @alloc_stack_hash is
225  * currently contained (non-zero count) in Counting Bloom filter.
226  */
227 static bool alloc_covered_contains(u32 alloc_stack_hash)
228 {
229         int i;
230 
231         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
232                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
233                         return false;
234                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
235         }
236 
237         return true;
238 }
239 
240 static bool kfence_protect(unsigned long addr)
241 {
242         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
243 }
244 
245 static bool kfence_unprotect(unsigned long addr)
246 {
247         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
248 }
249 
250 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
251 {
252         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
253         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
254 
255         /* The checks do not affect performance; only called from slow-paths. */
256 
257         /* Only call with a pointer into kfence_metadata. */
258         if (KFENCE_WARN_ON(meta < kfence_metadata ||
259                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
260                 return 0;
261 
262         /*
263          * This metadata object only ever maps to 1 page; verify that the stored
264          * address is in the expected range.
265          */
266         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
267                 return 0;
268 
269         return pageaddr;
270 }
271 
272 /*
273  * Update the object's metadata state, including updating the alloc/free stacks
274  * depending on the state transition.
275  */
276 static noinline void
277 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
278                       unsigned long *stack_entries, size_t num_stack_entries)
279 {
280         struct kfence_track *track =
281                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
282 
283         lockdep_assert_held(&meta->lock);
284 
285         if (stack_entries) {
286                 memcpy(track->stack_entries, stack_entries,
287                        num_stack_entries * sizeof(stack_entries[0]));
288         } else {
289                 /*
290                  * Skip over 1 (this) functions; noinline ensures we do not
291                  * accidentally skip over the caller by never inlining.
292                  */
293                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
294         }
295         track->num_stack_entries = num_stack_entries;
296         track->pid = task_pid_nr(current);
297         track->cpu = raw_smp_processor_id();
298         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
299 
300         /*
301          * Pairs with READ_ONCE() in
302          *      kfence_shutdown_cache(),
303          *      kfence_handle_page_fault().
304          */
305         WRITE_ONCE(meta->state, next);
306 }
307 
308 #ifdef CONFIG_KMSAN
309 #define check_canary_attributes noinline __no_kmsan_checks
310 #else
311 #define check_canary_attributes inline
312 #endif
313 
314 /* Check canary byte at @addr. */
315 static check_canary_attributes bool check_canary_byte(u8 *addr)
316 {
317         struct kfence_metadata *meta;
318         unsigned long flags;
319 
320         if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
321                 return true;
322 
323         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
324 
325         meta = addr_to_metadata((unsigned long)addr);
326         raw_spin_lock_irqsave(&meta->lock, flags);
327         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
328         raw_spin_unlock_irqrestore(&meta->lock, flags);
329 
330         return false;
331 }
332 
333 static inline void set_canary(const struct kfence_metadata *meta)
334 {
335         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
336         unsigned long addr = pageaddr;
337 
338         /*
339          * The canary may be written to part of the object memory, but it does
340          * not affect it. The user should initialize the object before using it.
341          */
342         for (; addr < meta->addr; addr += sizeof(u64))
343                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
344 
345         addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
346         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
347                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
348 }
349 
350 static check_canary_attributes void
351 check_canary(const struct kfence_metadata *meta)
352 {
353         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
354         unsigned long addr = pageaddr;
355 
356         /*
357          * We'll iterate over each canary byte per-side until a corrupted byte
358          * is found. However, we'll still iterate over the canary bytes to the
359          * right of the object even if there was an error in the canary bytes to
360          * the left of the object. Specifically, if check_canary_byte()
361          * generates an error, showing both sides might give more clues as to
362          * what the error is about when displaying which bytes were corrupted.
363          */
364 
365         /* Apply to left of object. */
366         for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
367                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
368                         break;
369         }
370 
371         /*
372          * If the canary is corrupted in a certain 64 bytes, or the canary
373          * memory cannot be completely covered by multiple consecutive 64 bytes,
374          * it needs to be checked one by one.
375          */
376         for (; addr < meta->addr; addr++) {
377                 if (unlikely(!check_canary_byte((u8 *)addr)))
378                         break;
379         }
380 
381         /* Apply to right of object. */
382         for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
383                 if (unlikely(!check_canary_byte((u8 *)addr)))
384                         return;
385         }
386         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
387                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
388 
389                         for (; addr - pageaddr < PAGE_SIZE; addr++) {
390                                 if (!check_canary_byte((u8 *)addr))
391                                         return;
392                         }
393                 }
394         }
395 }
396 
397 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
398                                   unsigned long *stack_entries, size_t num_stack_entries,
399                                   u32 alloc_stack_hash)
400 {
401         struct kfence_metadata *meta = NULL;
402         unsigned long flags;
403         struct slab *slab;
404         void *addr;
405         const bool random_right_allocate = get_random_u32_below(2);
406         const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
407                                   !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
408 
409         /* Try to obtain a free object. */
410         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
411         if (!list_empty(&kfence_freelist)) {
412                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
413                 list_del_init(&meta->list);
414         }
415         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
416         if (!meta) {
417                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
418                 return NULL;
419         }
420 
421         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
422                 /*
423                  * This is extremely unlikely -- we are reporting on a
424                  * use-after-free, which locked meta->lock, and the reporting
425                  * code via printk calls kmalloc() which ends up in
426                  * kfence_alloc() and tries to grab the same object that we're
427                  * reporting on. While it has never been observed, lockdep does
428                  * report that there is a possibility of deadlock. Fix it by
429                  * using trylock and bailing out gracefully.
430                  */
431                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
432                 /* Put the object back on the freelist. */
433                 list_add_tail(&meta->list, &kfence_freelist);
434                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
435 
436                 return NULL;
437         }
438 
439         meta->addr = metadata_to_pageaddr(meta);
440         /* Unprotect if we're reusing this page. */
441         if (meta->state == KFENCE_OBJECT_FREED)
442                 kfence_unprotect(meta->addr);
443 
444         /*
445          * Note: for allocations made before RNG initialization, will always
446          * return zero. We still benefit from enabling KFENCE as early as
447          * possible, even when the RNG is not yet available, as this will allow
448          * KFENCE to detect bugs due to earlier allocations. The only downside
449          * is that the out-of-bounds accesses detected are deterministic for
450          * such allocations.
451          */
452         if (random_right_allocate) {
453                 /* Allocate on the "right" side, re-calculate address. */
454                 meta->addr += PAGE_SIZE - size;
455                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
456         }
457 
458         addr = (void *)meta->addr;
459 
460         /* Update remaining metadata. */
461         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
462         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
463         WRITE_ONCE(meta->cache, cache);
464         meta->size = size;
465         meta->alloc_stack_hash = alloc_stack_hash;
466         raw_spin_unlock_irqrestore(&meta->lock, flags);
467 
468         alloc_covered_add(alloc_stack_hash, 1);
469 
470         /* Set required slab fields. */
471         slab = virt_to_slab((void *)meta->addr);
472         slab->slab_cache = cache;
473         slab->objects = 1;
474 
475         /* Memory initialization. */
476         set_canary(meta);
477 
478         /*
479          * We check slab_want_init_on_alloc() ourselves, rather than letting
480          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
481          * redzone.
482          */
483         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
484                 memzero_explicit(addr, size);
485         if (cache->ctor)
486                 cache->ctor(addr);
487 
488         if (random_fault)
489                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
490 
491         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
492         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
493 
494         return addr;
495 }
496 
497 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
498 {
499         struct kcsan_scoped_access assert_page_exclusive;
500         unsigned long flags;
501         bool init;
502 
503         raw_spin_lock_irqsave(&meta->lock, flags);
504 
505         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
506                 /* Invalid or double-free, bail out. */
507                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
508                 kfence_report_error((unsigned long)addr, false, NULL, meta,
509                                     KFENCE_ERROR_INVALID_FREE);
510                 raw_spin_unlock_irqrestore(&meta->lock, flags);
511                 return;
512         }
513 
514         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
515         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
516                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
517                                   &assert_page_exclusive);
518 
519         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
520                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
521 
522         /* Restore page protection if there was an OOB access. */
523         if (meta->unprotected_page) {
524                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
525                 kfence_protect(meta->unprotected_page);
526                 meta->unprotected_page = 0;
527         }
528 
529         /* Mark the object as freed. */
530         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
531         init = slab_want_init_on_free(meta->cache);
532         raw_spin_unlock_irqrestore(&meta->lock, flags);
533 
534         alloc_covered_add(meta->alloc_stack_hash, -1);
535 
536         /* Check canary bytes for memory corruption. */
537         check_canary(meta);
538 
539         /*
540          * Clear memory if init-on-free is set. While we protect the page, the
541          * data is still there, and after a use-after-free is detected, we
542          * unprotect the page, so the data is still accessible.
543          */
544         if (!zombie && unlikely(init))
545                 memzero_explicit(addr, meta->size);
546 
547         /* Protect to detect use-after-frees. */
548         kfence_protect((unsigned long)addr);
549 
550         kcsan_end_scoped_access(&assert_page_exclusive);
551         if (!zombie) {
552                 /* Add it to the tail of the freelist for reuse. */
553                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
554                 KFENCE_WARN_ON(!list_empty(&meta->list));
555                 list_add_tail(&meta->list, &kfence_freelist);
556                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
557 
558                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
559                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
560         } else {
561                 /* See kfence_shutdown_cache(). */
562                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
563         }
564 }
565 
566 static void rcu_guarded_free(struct rcu_head *h)
567 {
568         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
569 
570         kfence_guarded_free((void *)meta->addr, meta, false);
571 }
572 
573 /*
574  * Initialization of the KFENCE pool after its allocation.
575  * Returns 0 on success; otherwise returns the address up to
576  * which partial initialization succeeded.
577  */
578 static unsigned long kfence_init_pool(void)
579 {
580         unsigned long addr;
581         struct page *pages;
582         int i;
583 
584         if (!arch_kfence_init_pool())
585                 return (unsigned long)__kfence_pool;
586 
587         addr = (unsigned long)__kfence_pool;
588         pages = virt_to_page(__kfence_pool);
589 
590         /*
591          * Set up object pages: they must have PG_slab set, to avoid freeing
592          * these as real pages.
593          *
594          * We also want to avoid inserting kfence_free() in the kfree()
595          * fast-path in SLUB, and therefore need to ensure kfree() correctly
596          * enters __slab_free() slow-path.
597          */
598         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
599                 struct slab *slab = page_slab(nth_page(pages, i));
600 
601                 if (!i || (i % 2))
602                         continue;
603 
604                 __folio_set_slab(slab_folio(slab));
605 #ifdef CONFIG_MEMCG
606                 slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
607                                  MEMCG_DATA_OBJEXTS;
608 #endif
609         }
610 
611         /*
612          * Protect the first 2 pages. The first page is mostly unnecessary, and
613          * merely serves as an extended guard page. However, adding one
614          * additional page in the beginning gives us an even number of pages,
615          * which simplifies the mapping of address to metadata index.
616          */
617         for (i = 0; i < 2; i++) {
618                 if (unlikely(!kfence_protect(addr)))
619                         return addr;
620 
621                 addr += PAGE_SIZE;
622         }
623 
624         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
625                 struct kfence_metadata *meta = &kfence_metadata_init[i];
626 
627                 /* Initialize metadata. */
628                 INIT_LIST_HEAD(&meta->list);
629                 raw_spin_lock_init(&meta->lock);
630                 meta->state = KFENCE_OBJECT_UNUSED;
631                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
632                 list_add_tail(&meta->list, &kfence_freelist);
633 
634                 /* Protect the right redzone. */
635                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
636                         goto reset_slab;
637 
638                 addr += 2 * PAGE_SIZE;
639         }
640 
641         /*
642          * Make kfence_metadata visible only when initialization is successful.
643          * Otherwise, if the initialization fails and kfence_metadata is freed,
644          * it may cause UAF in kfence_shutdown_cache().
645          */
646         smp_store_release(&kfence_metadata, kfence_metadata_init);
647         return 0;
648 
649 reset_slab:
650         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
651                 struct slab *slab = page_slab(nth_page(pages, i));
652 
653                 if (!i || (i % 2))
654                         continue;
655 #ifdef CONFIG_MEMCG
656                 slab->obj_exts = 0;
657 #endif
658                 __folio_clear_slab(slab_folio(slab));
659         }
660 
661         return addr;
662 }
663 
664 static bool __init kfence_init_pool_early(void)
665 {
666         unsigned long addr;
667 
668         if (!__kfence_pool)
669                 return false;
670 
671         addr = kfence_init_pool();
672 
673         if (!addr) {
674                 /*
675                  * The pool is live and will never be deallocated from this point on.
676                  * Ignore the pool object from the kmemleak phys object tree, as it would
677                  * otherwise overlap with allocations returned by kfence_alloc(), which
678                  * are registered with kmemleak through the slab post-alloc hook.
679                  */
680                 kmemleak_ignore_phys(__pa(__kfence_pool));
681                 return true;
682         }
683 
684         /*
685          * Only release unprotected pages, and do not try to go back and change
686          * page attributes due to risk of failing to do so as well. If changing
687          * page attributes for some pages fails, it is very likely that it also
688          * fails for the first page, and therefore expect addr==__kfence_pool in
689          * most failure cases.
690          */
691         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
692         __kfence_pool = NULL;
693 
694         memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
695         kfence_metadata_init = NULL;
696 
697         return false;
698 }
699 
700 /* === DebugFS Interface ==================================================== */
701 
702 static int stats_show(struct seq_file *seq, void *v)
703 {
704         int i;
705 
706         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
707         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
708                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
709 
710         return 0;
711 }
712 DEFINE_SHOW_ATTRIBUTE(stats);
713 
714 /*
715  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
716  * start_object() and next_object() return the object index + 1, because NULL is used
717  * to stop iteration.
718  */
719 static void *start_object(struct seq_file *seq, loff_t *pos)
720 {
721         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
722                 return (void *)((long)*pos + 1);
723         return NULL;
724 }
725 
726 static void stop_object(struct seq_file *seq, void *v)
727 {
728 }
729 
730 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
731 {
732         ++*pos;
733         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
734                 return (void *)((long)*pos + 1);
735         return NULL;
736 }
737 
738 static int show_object(struct seq_file *seq, void *v)
739 {
740         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
741         unsigned long flags;
742 
743         raw_spin_lock_irqsave(&meta->lock, flags);
744         kfence_print_object(seq, meta);
745         raw_spin_unlock_irqrestore(&meta->lock, flags);
746         seq_puts(seq, "---------------------------------\n");
747 
748         return 0;
749 }
750 
751 static const struct seq_operations objects_sops = {
752         .start = start_object,
753         .next = next_object,
754         .stop = stop_object,
755         .show = show_object,
756 };
757 DEFINE_SEQ_ATTRIBUTE(objects);
758 
759 static int kfence_debugfs_init(void)
760 {
761         struct dentry *kfence_dir;
762 
763         if (!READ_ONCE(kfence_enabled))
764                 return 0;
765 
766         kfence_dir = debugfs_create_dir("kfence", NULL);
767         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
768         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
769         return 0;
770 }
771 
772 late_initcall(kfence_debugfs_init);
773 
774 /* === Panic Notifier ====================================================== */
775 
776 static void kfence_check_all_canary(void)
777 {
778         int i;
779 
780         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
781                 struct kfence_metadata *meta = &kfence_metadata[i];
782 
783                 if (meta->state == KFENCE_OBJECT_ALLOCATED)
784                         check_canary(meta);
785         }
786 }
787 
788 static int kfence_check_canary_callback(struct notifier_block *nb,
789                                         unsigned long reason, void *arg)
790 {
791         kfence_check_all_canary();
792         return NOTIFY_OK;
793 }
794 
795 static struct notifier_block kfence_check_canary_notifier = {
796         .notifier_call = kfence_check_canary_callback,
797 };
798 
799 /* === Allocation Gate Timer ================================================ */
800 
801 static struct delayed_work kfence_timer;
802 
803 #ifdef CONFIG_KFENCE_STATIC_KEYS
804 /* Wait queue to wake up allocation-gate timer task. */
805 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
806 
807 static void wake_up_kfence_timer(struct irq_work *work)
808 {
809         wake_up(&allocation_wait);
810 }
811 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
812 #endif
813 
814 /*
815  * Set up delayed work, which will enable and disable the static key. We need to
816  * use a work queue (rather than a simple timer), since enabling and disabling a
817  * static key cannot be done from an interrupt.
818  *
819  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
820  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
821  * more aggressive sampling intervals), we could get away with a variant that
822  * avoids IPIs, at the cost of not immediately capturing allocations if the
823  * instructions remain cached.
824  */
825 static void toggle_allocation_gate(struct work_struct *work)
826 {
827         if (!READ_ONCE(kfence_enabled))
828                 return;
829 
830         atomic_set(&kfence_allocation_gate, 0);
831 #ifdef CONFIG_KFENCE_STATIC_KEYS
832         /* Enable static key, and await allocation to happen. */
833         static_branch_enable(&kfence_allocation_key);
834 
835         wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
836 
837         /* Disable static key and reset timer. */
838         static_branch_disable(&kfence_allocation_key);
839 #endif
840         queue_delayed_work(system_unbound_wq, &kfence_timer,
841                            msecs_to_jiffies(kfence_sample_interval));
842 }
843 
844 /* === Public interface ===================================================== */
845 
846 void __init kfence_alloc_pool_and_metadata(void)
847 {
848         if (!kfence_sample_interval)
849                 return;
850 
851         /*
852          * If the pool has already been initialized by arch, there is no need to
853          * re-allocate the memory pool.
854          */
855         if (!__kfence_pool)
856                 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
857 
858         if (!__kfence_pool) {
859                 pr_err("failed to allocate pool\n");
860                 return;
861         }
862 
863         /* The memory allocated by memblock has been zeroed out. */
864         kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
865         if (!kfence_metadata_init) {
866                 pr_err("failed to allocate metadata\n");
867                 memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
868                 __kfence_pool = NULL;
869         }
870 }
871 
872 static void kfence_init_enable(void)
873 {
874         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
875                 static_branch_enable(&kfence_allocation_key);
876 
877         if (kfence_deferrable)
878                 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
879         else
880                 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
881 
882         if (kfence_check_on_panic)
883                 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
884 
885         WRITE_ONCE(kfence_enabled, true);
886         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
887 
888         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
889                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
890                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
891 }
892 
893 void __init kfence_init(void)
894 {
895         stack_hash_seed = get_random_u32();
896 
897         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
898         if (!kfence_sample_interval)
899                 return;
900 
901         if (!kfence_init_pool_early()) {
902                 pr_err("%s failed\n", __func__);
903                 return;
904         }
905 
906         kfence_init_enable();
907 }
908 
909 static int kfence_init_late(void)
910 {
911         const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
912         const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
913         unsigned long addr = (unsigned long)__kfence_pool;
914         unsigned long free_size = KFENCE_POOL_SIZE;
915         int err = -ENOMEM;
916 
917 #ifdef CONFIG_CONTIG_ALLOC
918         struct page *pages;
919 
920         pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
921                                    NULL);
922         if (!pages)
923                 return -ENOMEM;
924 
925         __kfence_pool = page_to_virt(pages);
926         pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
927                                    NULL);
928         if (pages)
929                 kfence_metadata_init = page_to_virt(pages);
930 #else
931         if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
932             nr_pages_meta > MAX_ORDER_NR_PAGES) {
933                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
934                 return -EINVAL;
935         }
936 
937         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
938         if (!__kfence_pool)
939                 return -ENOMEM;
940 
941         kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
942 #endif
943 
944         if (!kfence_metadata_init)
945                 goto free_pool;
946 
947         memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
948         addr = kfence_init_pool();
949         if (!addr) {
950                 kfence_init_enable();
951                 kfence_debugfs_init();
952                 return 0;
953         }
954 
955         pr_err("%s failed\n", __func__);
956         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
957         err = -EBUSY;
958 
959 #ifdef CONFIG_CONTIG_ALLOC
960         free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
961                           nr_pages_meta);
962 free_pool:
963         free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
964                           free_size / PAGE_SIZE);
965 #else
966         free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
967 free_pool:
968         free_pages_exact((void *)addr, free_size);
969 #endif
970 
971         kfence_metadata_init = NULL;
972         __kfence_pool = NULL;
973         return err;
974 }
975 
976 static int kfence_enable_late(void)
977 {
978         if (!__kfence_pool)
979                 return kfence_init_late();
980 
981         WRITE_ONCE(kfence_enabled, true);
982         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
983         pr_info("re-enabled\n");
984         return 0;
985 }
986 
987 void kfence_shutdown_cache(struct kmem_cache *s)
988 {
989         unsigned long flags;
990         struct kfence_metadata *meta;
991         int i;
992 
993         /* Pairs with release in kfence_init_pool(). */
994         if (!smp_load_acquire(&kfence_metadata))
995                 return;
996 
997         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
998                 bool in_use;
999 
1000                 meta = &kfence_metadata[i];
1001 
1002                 /*
1003                  * If we observe some inconsistent cache and state pair where we
1004                  * should have returned false here, cache destruction is racing
1005                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1006                  * the lock will not help, as different critical section
1007                  * serialization will have the same outcome.
1008                  */
1009                 if (READ_ONCE(meta->cache) != s ||
1010                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
1011                         continue;
1012 
1013                 raw_spin_lock_irqsave(&meta->lock, flags);
1014                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
1015                 raw_spin_unlock_irqrestore(&meta->lock, flags);
1016 
1017                 if (in_use) {
1018                         /*
1019                          * This cache still has allocations, and we should not
1020                          * release them back into the freelist so they can still
1021                          * safely be used and retain the kernel's default
1022                          * behaviour of keeping the allocations alive (leak the
1023                          * cache); however, they effectively become "zombie
1024                          * allocations" as the KFENCE objects are the only ones
1025                          * still in use and the owning cache is being destroyed.
1026                          *
1027                          * We mark them freed, so that any subsequent use shows
1028                          * more useful error messages that will include stack
1029                          * traces of the user of the object, the original
1030                          * allocation, and caller to shutdown_cache().
1031                          */
1032                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1033                 }
1034         }
1035 
1036         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1037                 meta = &kfence_metadata[i];
1038 
1039                 /* See above. */
1040                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1041                         continue;
1042 
1043                 raw_spin_lock_irqsave(&meta->lock, flags);
1044                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1045                         meta->cache = NULL;
1046                 raw_spin_unlock_irqrestore(&meta->lock, flags);
1047         }
1048 }
1049 
1050 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1051 {
1052         unsigned long stack_entries[KFENCE_STACK_DEPTH];
1053         size_t num_stack_entries;
1054         u32 alloc_stack_hash;
1055 
1056         /*
1057          * Perform size check before switching kfence_allocation_gate, so that
1058          * we don't disable KFENCE without making an allocation.
1059          */
1060         if (size > PAGE_SIZE) {
1061                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1062                 return NULL;
1063         }
1064 
1065         /*
1066          * Skip allocations from non-default zones, including DMA. We cannot
1067          * guarantee that pages in the KFENCE pool will have the requested
1068          * properties (e.g. reside in DMAable memory).
1069          */
1070         if ((flags & GFP_ZONEMASK) ||
1071             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1072                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1073                 return NULL;
1074         }
1075 
1076         /*
1077          * Skip allocations for this slab, if KFENCE has been disabled for
1078          * this slab.
1079          */
1080         if (s->flags & SLAB_SKIP_KFENCE)
1081                 return NULL;
1082 
1083         if (atomic_inc_return(&kfence_allocation_gate) > 1)
1084                 return NULL;
1085 #ifdef CONFIG_KFENCE_STATIC_KEYS
1086         /*
1087          * waitqueue_active() is fully ordered after the update of
1088          * kfence_allocation_gate per atomic_inc_return().
1089          */
1090         if (waitqueue_active(&allocation_wait)) {
1091                 /*
1092                  * Calling wake_up() here may deadlock when allocations happen
1093                  * from within timer code. Use an irq_work to defer it.
1094                  */
1095                 irq_work_queue(&wake_up_kfence_timer_work);
1096         }
1097 #endif
1098 
1099         if (!READ_ONCE(kfence_enabled))
1100                 return NULL;
1101 
1102         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1103 
1104         /*
1105          * Do expensive check for coverage of allocation in slow-path after
1106          * allocation_gate has already become non-zero, even though it might
1107          * mean not making any allocation within a given sample interval.
1108          *
1109          * This ensures reasonable allocation coverage when the pool is almost
1110          * full, including avoiding long-lived allocations of the same source
1111          * filling up the pool (e.g. pagecache allocations).
1112          */
1113         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1114         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1115                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1116                 return NULL;
1117         }
1118 
1119         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1120                                     alloc_stack_hash);
1121 }
1122 
1123 size_t kfence_ksize(const void *addr)
1124 {
1125         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1126 
1127         /*
1128          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1129          * either a use-after-free or invalid access.
1130          */
1131         return meta ? meta->size : 0;
1132 }
1133 
1134 void *kfence_object_start(const void *addr)
1135 {
1136         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1137 
1138         /*
1139          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1140          * either a use-after-free or invalid access.
1141          */
1142         return meta ? (void *)meta->addr : NULL;
1143 }
1144 
1145 void __kfence_free(void *addr)
1146 {
1147         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1148 
1149 #ifdef CONFIG_MEMCG
1150         KFENCE_WARN_ON(meta->obj_exts.objcg);
1151 #endif
1152         /*
1153          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1154          * the object, as the object page may be recycled for other-typed
1155          * objects once it has been freed. meta->cache may be NULL if the cache
1156          * was destroyed.
1157          */
1158         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1159                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1160         else
1161                 kfence_guarded_free(addr, meta, false);
1162 }
1163 
1164 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1165 {
1166         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1167         struct kfence_metadata *to_report = NULL;
1168         enum kfence_error_type error_type;
1169         unsigned long flags;
1170 
1171         if (!is_kfence_address((void *)addr))
1172                 return false;
1173 
1174         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1175                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1176 
1177         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1178 
1179         if (page_index % 2) {
1180                 /* This is a redzone, report a buffer overflow. */
1181                 struct kfence_metadata *meta;
1182                 int distance = 0;
1183 
1184                 meta = addr_to_metadata(addr - PAGE_SIZE);
1185                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1186                         to_report = meta;
1187                         /* Data race ok; distance calculation approximate. */
1188                         distance = addr - data_race(meta->addr + meta->size);
1189                 }
1190 
1191                 meta = addr_to_metadata(addr + PAGE_SIZE);
1192                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1193                         /* Data race ok; distance calculation approximate. */
1194                         if (!to_report || distance > data_race(meta->addr) - addr)
1195                                 to_report = meta;
1196                 }
1197 
1198                 if (!to_report)
1199                         goto out;
1200 
1201                 raw_spin_lock_irqsave(&to_report->lock, flags);
1202                 to_report->unprotected_page = addr;
1203                 error_type = KFENCE_ERROR_OOB;
1204 
1205                 /*
1206                  * If the object was freed before we took the look we can still
1207                  * report this as an OOB -- the report will simply show the
1208                  * stacktrace of the free as well.
1209                  */
1210         } else {
1211                 to_report = addr_to_metadata(addr);
1212                 if (!to_report)
1213                         goto out;
1214 
1215                 raw_spin_lock_irqsave(&to_report->lock, flags);
1216                 error_type = KFENCE_ERROR_UAF;
1217                 /*
1218                  * We may race with __kfence_alloc(), and it is possible that a
1219                  * freed object may be reallocated. We simply report this as a
1220                  * use-after-free, with the stack trace showing the place where
1221                  * the object was re-allocated.
1222                  */
1223         }
1224 
1225 out:
1226         if (to_report) {
1227                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1228                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1229         } else {
1230                 /* This may be a UAF or OOB access, but we can't be sure. */
1231                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1232         }
1233 
1234         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1235 }
1236 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php