1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/rcupdate_wait.h> 21 #include <linux/swapops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 static unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover both the anon and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 */ 423 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 424 hugepage_global_enabled()) 425 return true; 426 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 431 hugepage_global_enabled()) 432 return true; 433 return false; 434 } 435 436 void __khugepaged_enter(struct mm_struct *mm) 437 { 438 struct khugepaged_mm_slot *mm_slot; 439 struct mm_slot *slot; 440 int wakeup; 441 442 /* __khugepaged_exit() must not run from under us */ 443 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 444 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 445 return; 446 447 mm_slot = mm_slot_alloc(mm_slot_cache); 448 if (!mm_slot) 449 return; 450 451 slot = &mm_slot->slot; 452 453 spin_lock(&khugepaged_mm_lock); 454 mm_slot_insert(mm_slots_hash, mm, slot); 455 /* 456 * Insert just behind the scanning cursor, to let the area settle 457 * down a little. 458 */ 459 wakeup = list_empty(&khugepaged_scan.mm_head); 460 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 461 spin_unlock(&khugepaged_mm_lock); 462 463 mmgrab(mm); 464 if (wakeup) 465 wake_up_interruptible(&khugepaged_wait); 466 } 467 468 void khugepaged_enter_vma(struct vm_area_struct *vma, 469 unsigned long vm_flags) 470 { 471 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 472 hugepage_pmd_enabled()) { 473 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 474 PMD_ORDER)) 475 __khugepaged_enter(vma->vm_mm); 476 } 477 } 478 479 void __khugepaged_exit(struct mm_struct *mm) 480 { 481 struct khugepaged_mm_slot *mm_slot; 482 struct mm_slot *slot; 483 int free = 0; 484 485 spin_lock(&khugepaged_mm_lock); 486 slot = mm_slot_lookup(mm_slots_hash, mm); 487 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 488 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 489 hash_del(&slot->hash); 490 list_del(&slot->mm_node); 491 free = 1; 492 } 493 spin_unlock(&khugepaged_mm_lock); 494 495 if (free) { 496 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 497 mm_slot_free(mm_slot_cache, mm_slot); 498 mmdrop(mm); 499 } else if (mm_slot) { 500 /* 501 * This is required to serialize against 502 * hpage_collapse_test_exit() (which is guaranteed to run 503 * under mmap sem read mode). Stop here (after we return all 504 * pagetables will be destroyed) until khugepaged has finished 505 * working on the pagetables under the mmap_lock. 506 */ 507 mmap_write_lock(mm); 508 mmap_write_unlock(mm); 509 } 510 } 511 512 static void release_pte_folio(struct folio *folio) 513 { 514 node_stat_mod_folio(folio, 515 NR_ISOLATED_ANON + folio_is_file_lru(folio), 516 -folio_nr_pages(folio)); 517 folio_unlock(folio); 518 folio_putback_lru(folio); 519 } 520 521 static void release_pte_pages(pte_t *pte, pte_t *_pte, 522 struct list_head *compound_pagelist) 523 { 524 struct folio *folio, *tmp; 525 526 while (--_pte >= pte) { 527 pte_t pteval = ptep_get(_pte); 528 unsigned long pfn; 529 530 if (pte_none(pteval)) 531 continue; 532 pfn = pte_pfn(pteval); 533 if (is_zero_pfn(pfn)) 534 continue; 535 folio = pfn_folio(pfn); 536 if (folio_test_large(folio)) 537 continue; 538 release_pte_folio(folio); 539 } 540 541 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 542 list_del(&folio->lru); 543 release_pte_folio(folio); 544 } 545 } 546 547 static bool is_refcount_suitable(struct folio *folio) 548 { 549 int expected_refcount; 550 551 expected_refcount = folio_mapcount(folio); 552 if (folio_test_swapcache(folio)) 553 expected_refcount += folio_nr_pages(folio); 554 555 return folio_ref_count(folio) == expected_refcount; 556 } 557 558 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 559 unsigned long address, 560 pte_t *pte, 561 struct collapse_control *cc, 562 struct list_head *compound_pagelist) 563 { 564 struct page *page = NULL; 565 struct folio *folio = NULL; 566 pte_t *_pte; 567 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 568 bool writable = false; 569 570 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 571 _pte++, address += PAGE_SIZE) { 572 pte_t pteval = ptep_get(_pte); 573 if (pte_none(pteval) || (pte_present(pteval) && 574 is_zero_pfn(pte_pfn(pteval)))) { 575 ++none_or_zero; 576 if (!userfaultfd_armed(vma) && 577 (!cc->is_khugepaged || 578 none_or_zero <= khugepaged_max_ptes_none)) { 579 continue; 580 } else { 581 result = SCAN_EXCEED_NONE_PTE; 582 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 583 goto out; 584 } 585 } 586 if (!pte_present(pteval)) { 587 result = SCAN_PTE_NON_PRESENT; 588 goto out; 589 } 590 if (pte_uffd_wp(pteval)) { 591 result = SCAN_PTE_UFFD_WP; 592 goto out; 593 } 594 page = vm_normal_page(vma, address, pteval); 595 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 596 result = SCAN_PAGE_NULL; 597 goto out; 598 } 599 600 folio = page_folio(page); 601 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 602 603 /* See hpage_collapse_scan_pmd(). */ 604 if (folio_likely_mapped_shared(folio)) { 605 ++shared; 606 if (cc->is_khugepaged && 607 shared > khugepaged_max_ptes_shared) { 608 result = SCAN_EXCEED_SHARED_PTE; 609 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 610 goto out; 611 } 612 } 613 614 if (folio_test_large(folio)) { 615 struct folio *f; 616 617 /* 618 * Check if we have dealt with the compound page 619 * already 620 */ 621 list_for_each_entry(f, compound_pagelist, lru) { 622 if (folio == f) 623 goto next; 624 } 625 } 626 627 /* 628 * We can do it before isolate_lru_page because the 629 * page can't be freed from under us. NOTE: PG_lock 630 * is needed to serialize against split_huge_page 631 * when invoked from the VM. 632 */ 633 if (!folio_trylock(folio)) { 634 result = SCAN_PAGE_LOCK; 635 goto out; 636 } 637 638 /* 639 * Check if the page has any GUP (or other external) pins. 640 * 641 * The page table that maps the page has been already unlinked 642 * from the page table tree and this process cannot get 643 * an additional pin on the page. 644 * 645 * New pins can come later if the page is shared across fork, 646 * but not from this process. The other process cannot write to 647 * the page, only trigger CoW. 648 */ 649 if (!is_refcount_suitable(folio)) { 650 folio_unlock(folio); 651 result = SCAN_PAGE_COUNT; 652 goto out; 653 } 654 655 /* 656 * Isolate the page to avoid collapsing an hugepage 657 * currently in use by the VM. 658 */ 659 if (!folio_isolate_lru(folio)) { 660 folio_unlock(folio); 661 result = SCAN_DEL_PAGE_LRU; 662 goto out; 663 } 664 node_stat_mod_folio(folio, 665 NR_ISOLATED_ANON + folio_is_file_lru(folio), 666 folio_nr_pages(folio)); 667 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 668 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 669 670 if (folio_test_large(folio)) 671 list_add_tail(&folio->lru, compound_pagelist); 672 next: 673 /* 674 * If collapse was initiated by khugepaged, check that there is 675 * enough young pte to justify collapsing the page 676 */ 677 if (cc->is_khugepaged && 678 (pte_young(pteval) || folio_test_young(folio) || 679 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 680 address))) 681 referenced++; 682 683 if (pte_write(pteval)) 684 writable = true; 685 } 686 687 if (unlikely(!writable)) { 688 result = SCAN_PAGE_RO; 689 } else if (unlikely(cc->is_khugepaged && !referenced)) { 690 result = SCAN_LACK_REFERENCED_PAGE; 691 } else { 692 result = SCAN_SUCCEED; 693 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 694 referenced, writable, result); 695 return result; 696 } 697 out: 698 release_pte_pages(pte, _pte, compound_pagelist); 699 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 700 referenced, writable, result); 701 return result; 702 } 703 704 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 705 struct vm_area_struct *vma, 706 unsigned long address, 707 spinlock_t *ptl, 708 struct list_head *compound_pagelist) 709 { 710 struct folio *src, *tmp; 711 pte_t *_pte; 712 pte_t pteval; 713 714 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 715 _pte++, address += PAGE_SIZE) { 716 pteval = ptep_get(_pte); 717 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 718 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 719 if (is_zero_pfn(pte_pfn(pteval))) { 720 /* 721 * ptl mostly unnecessary. 722 */ 723 spin_lock(ptl); 724 ptep_clear(vma->vm_mm, address, _pte); 725 spin_unlock(ptl); 726 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 727 } 728 } else { 729 struct page *src_page = pte_page(pteval); 730 731 src = page_folio(src_page); 732 if (!folio_test_large(src)) 733 release_pte_folio(src); 734 /* 735 * ptl mostly unnecessary, but preempt has to 736 * be disabled to update the per-cpu stats 737 * inside folio_remove_rmap_pte(). 738 */ 739 spin_lock(ptl); 740 ptep_clear(vma->vm_mm, address, _pte); 741 folio_remove_rmap_pte(src, src_page, vma); 742 spin_unlock(ptl); 743 free_page_and_swap_cache(src_page); 744 } 745 } 746 747 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 748 list_del(&src->lru); 749 node_stat_sub_folio(src, NR_ISOLATED_ANON + 750 folio_is_file_lru(src)); 751 folio_unlock(src); 752 free_swap_cache(src); 753 folio_putback_lru(src); 754 } 755 } 756 757 static void __collapse_huge_page_copy_failed(pte_t *pte, 758 pmd_t *pmd, 759 pmd_t orig_pmd, 760 struct vm_area_struct *vma, 761 struct list_head *compound_pagelist) 762 { 763 spinlock_t *pmd_ptl; 764 765 /* 766 * Re-establish the PMD to point to the original page table 767 * entry. Restoring PMD needs to be done prior to releasing 768 * pages. Since pages are still isolated and locked here, 769 * acquiring anon_vma_lock_write is unnecessary. 770 */ 771 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 772 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 773 spin_unlock(pmd_ptl); 774 /* 775 * Release both raw and compound pages isolated 776 * in __collapse_huge_page_isolate. 777 */ 778 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 779 } 780 781 /* 782 * __collapse_huge_page_copy - attempts to copy memory contents from raw 783 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 784 * otherwise restores the original page table and releases isolated raw pages. 785 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 786 * 787 * @pte: starting of the PTEs to copy from 788 * @folio: the new hugepage to copy contents to 789 * @pmd: pointer to the new hugepage's PMD 790 * @orig_pmd: the original raw pages' PMD 791 * @vma: the original raw pages' virtual memory area 792 * @address: starting address to copy 793 * @ptl: lock on raw pages' PTEs 794 * @compound_pagelist: list that stores compound pages 795 */ 796 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 797 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 798 unsigned long address, spinlock_t *ptl, 799 struct list_head *compound_pagelist) 800 { 801 unsigned int i; 802 int result = SCAN_SUCCEED; 803 804 /* 805 * Copying pages' contents is subject to memory poison at any iteration. 806 */ 807 for (i = 0; i < HPAGE_PMD_NR; i++) { 808 pte_t pteval = ptep_get(pte + i); 809 struct page *page = folio_page(folio, i); 810 unsigned long src_addr = address + i * PAGE_SIZE; 811 struct page *src_page; 812 813 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 814 clear_user_highpage(page, src_addr); 815 continue; 816 } 817 src_page = pte_page(pteval); 818 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 819 result = SCAN_COPY_MC; 820 break; 821 } 822 } 823 824 if (likely(result == SCAN_SUCCEED)) 825 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 826 compound_pagelist); 827 else 828 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 829 compound_pagelist); 830 831 return result; 832 } 833 834 static void khugepaged_alloc_sleep(void) 835 { 836 DEFINE_WAIT(wait); 837 838 add_wait_queue(&khugepaged_wait, &wait); 839 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 840 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 841 remove_wait_queue(&khugepaged_wait, &wait); 842 } 843 844 struct collapse_control khugepaged_collapse_control = { 845 .is_khugepaged = true, 846 }; 847 848 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 849 { 850 int i; 851 852 /* 853 * If node_reclaim_mode is disabled, then no extra effort is made to 854 * allocate memory locally. 855 */ 856 if (!node_reclaim_enabled()) 857 return false; 858 859 /* If there is a count for this node already, it must be acceptable */ 860 if (cc->node_load[nid]) 861 return false; 862 863 for (i = 0; i < MAX_NUMNODES; i++) { 864 if (!cc->node_load[i]) 865 continue; 866 if (node_distance(nid, i) > node_reclaim_distance) 867 return true; 868 } 869 return false; 870 } 871 872 #define khugepaged_defrag() \ 873 (transparent_hugepage_flags & \ 874 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 875 876 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 877 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 878 { 879 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 880 } 881 882 #ifdef CONFIG_NUMA 883 static int hpage_collapse_find_target_node(struct collapse_control *cc) 884 { 885 int nid, target_node = 0, max_value = 0; 886 887 /* find first node with max normal pages hit */ 888 for (nid = 0; nid < MAX_NUMNODES; nid++) 889 if (cc->node_load[nid] > max_value) { 890 max_value = cc->node_load[nid]; 891 target_node = nid; 892 } 893 894 for_each_online_node(nid) { 895 if (max_value == cc->node_load[nid]) 896 node_set(nid, cc->alloc_nmask); 897 } 898 899 return target_node; 900 } 901 #else 902 static int hpage_collapse_find_target_node(struct collapse_control *cc) 903 { 904 return 0; 905 } 906 #endif 907 908 /* 909 * If mmap_lock temporarily dropped, revalidate vma 910 * before taking mmap_lock. 911 * Returns enum scan_result value. 912 */ 913 914 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 915 bool expect_anon, 916 struct vm_area_struct **vmap, 917 struct collapse_control *cc) 918 { 919 struct vm_area_struct *vma; 920 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 921 922 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 923 return SCAN_ANY_PROCESS; 924 925 *vmap = vma = find_vma(mm, address); 926 if (!vma) 927 return SCAN_VMA_NULL; 928 929 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 930 return SCAN_ADDRESS_RANGE; 931 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 932 return SCAN_VMA_CHECK; 933 /* 934 * Anon VMA expected, the address may be unmapped then 935 * remapped to file after khugepaged reaquired the mmap_lock. 936 * 937 * thp_vma_allowable_order may return true for qualified file 938 * vmas. 939 */ 940 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 941 return SCAN_PAGE_ANON; 942 return SCAN_SUCCEED; 943 } 944 945 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 946 unsigned long address, 947 pmd_t **pmd) 948 { 949 pmd_t pmde; 950 951 *pmd = mm_find_pmd(mm, address); 952 if (!*pmd) 953 return SCAN_PMD_NULL; 954 955 pmde = pmdp_get_lockless(*pmd); 956 if (pmd_none(pmde)) 957 return SCAN_PMD_NONE; 958 if (!pmd_present(pmde)) 959 return SCAN_PMD_NULL; 960 if (pmd_trans_huge(pmde)) 961 return SCAN_PMD_MAPPED; 962 if (pmd_devmap(pmde)) 963 return SCAN_PMD_NULL; 964 if (pmd_bad(pmde)) 965 return SCAN_PMD_NULL; 966 return SCAN_SUCCEED; 967 } 968 969 static int check_pmd_still_valid(struct mm_struct *mm, 970 unsigned long address, 971 pmd_t *pmd) 972 { 973 pmd_t *new_pmd; 974 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 975 976 if (result != SCAN_SUCCEED) 977 return result; 978 if (new_pmd != pmd) 979 return SCAN_FAIL; 980 return SCAN_SUCCEED; 981 } 982 983 /* 984 * Bring missing pages in from swap, to complete THP collapse. 985 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 986 * 987 * Called and returns without pte mapped or spinlocks held. 988 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 989 */ 990 static int __collapse_huge_page_swapin(struct mm_struct *mm, 991 struct vm_area_struct *vma, 992 unsigned long haddr, pmd_t *pmd, 993 int referenced) 994 { 995 int swapped_in = 0; 996 vm_fault_t ret = 0; 997 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 998 int result; 999 pte_t *pte = NULL; 1000 spinlock_t *ptl; 1001 1002 for (address = haddr; address < end; address += PAGE_SIZE) { 1003 struct vm_fault vmf = { 1004 .vma = vma, 1005 .address = address, 1006 .pgoff = linear_page_index(vma, address), 1007 .flags = FAULT_FLAG_ALLOW_RETRY, 1008 .pmd = pmd, 1009 }; 1010 1011 if (!pte++) { 1012 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 1013 if (!pte) { 1014 mmap_read_unlock(mm); 1015 result = SCAN_PMD_NULL; 1016 goto out; 1017 } 1018 } 1019 1020 vmf.orig_pte = ptep_get_lockless(pte); 1021 if (!is_swap_pte(vmf.orig_pte)) 1022 continue; 1023 1024 vmf.pte = pte; 1025 vmf.ptl = ptl; 1026 ret = do_swap_page(&vmf); 1027 /* Which unmaps pte (after perhaps re-checking the entry) */ 1028 pte = NULL; 1029 1030 /* 1031 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1032 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1033 * we do not retry here and swap entry will remain in pagetable 1034 * resulting in later failure. 1035 */ 1036 if (ret & VM_FAULT_RETRY) { 1037 /* Likely, but not guaranteed, that page lock failed */ 1038 result = SCAN_PAGE_LOCK; 1039 goto out; 1040 } 1041 if (ret & VM_FAULT_ERROR) { 1042 mmap_read_unlock(mm); 1043 result = SCAN_FAIL; 1044 goto out; 1045 } 1046 swapped_in++; 1047 } 1048 1049 if (pte) 1050 pte_unmap(pte); 1051 1052 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1053 if (swapped_in) 1054 lru_add_drain(); 1055 1056 result = SCAN_SUCCEED; 1057 out: 1058 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1059 return result; 1060 } 1061 1062 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1063 struct collapse_control *cc) 1064 { 1065 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1066 GFP_TRANSHUGE); 1067 int node = hpage_collapse_find_target_node(cc); 1068 struct folio *folio; 1069 1070 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1071 if (!folio) { 1072 *foliop = NULL; 1073 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1074 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1075 } 1076 1077 count_vm_event(THP_COLLAPSE_ALLOC); 1078 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1079 folio_put(folio); 1080 *foliop = NULL; 1081 return SCAN_CGROUP_CHARGE_FAIL; 1082 } 1083 1084 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1085 1086 *foliop = folio; 1087 return SCAN_SUCCEED; 1088 } 1089 1090 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1091 int referenced, int unmapped, 1092 struct collapse_control *cc) 1093 { 1094 LIST_HEAD(compound_pagelist); 1095 pmd_t *pmd, _pmd; 1096 pte_t *pte; 1097 pgtable_t pgtable; 1098 struct folio *folio; 1099 spinlock_t *pmd_ptl, *pte_ptl; 1100 int result = SCAN_FAIL; 1101 struct vm_area_struct *vma; 1102 struct mmu_notifier_range range; 1103 1104 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1105 1106 /* 1107 * Before allocating the hugepage, release the mmap_lock read lock. 1108 * The allocation can take potentially a long time if it involves 1109 * sync compaction, and we do not need to hold the mmap_lock during 1110 * that. We will recheck the vma after taking it again in write mode. 1111 */ 1112 mmap_read_unlock(mm); 1113 1114 result = alloc_charge_folio(&folio, mm, cc); 1115 if (result != SCAN_SUCCEED) 1116 goto out_nolock; 1117 1118 mmap_read_lock(mm); 1119 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1120 if (result != SCAN_SUCCEED) { 1121 mmap_read_unlock(mm); 1122 goto out_nolock; 1123 } 1124 1125 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1126 if (result != SCAN_SUCCEED) { 1127 mmap_read_unlock(mm); 1128 goto out_nolock; 1129 } 1130 1131 if (unmapped) { 1132 /* 1133 * __collapse_huge_page_swapin will return with mmap_lock 1134 * released when it fails. So we jump out_nolock directly in 1135 * that case. Continuing to collapse causes inconsistency. 1136 */ 1137 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1138 referenced); 1139 if (result != SCAN_SUCCEED) 1140 goto out_nolock; 1141 } 1142 1143 mmap_read_unlock(mm); 1144 /* 1145 * Prevent all access to pagetables with the exception of 1146 * gup_fast later handled by the ptep_clear_flush and the VM 1147 * handled by the anon_vma lock + PG_lock. 1148 * 1149 * UFFDIO_MOVE is prevented to race as well thanks to the 1150 * mmap_lock. 1151 */ 1152 mmap_write_lock(mm); 1153 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1154 if (result != SCAN_SUCCEED) 1155 goto out_up_write; 1156 /* check if the pmd is still valid */ 1157 result = check_pmd_still_valid(mm, address, pmd); 1158 if (result != SCAN_SUCCEED) 1159 goto out_up_write; 1160 1161 vma_start_write(vma); 1162 anon_vma_lock_write(vma->anon_vma); 1163 1164 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1165 address + HPAGE_PMD_SIZE); 1166 mmu_notifier_invalidate_range_start(&range); 1167 1168 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1169 /* 1170 * This removes any huge TLB entry from the CPU so we won't allow 1171 * huge and small TLB entries for the same virtual address to 1172 * avoid the risk of CPU bugs in that area. 1173 * 1174 * Parallel GUP-fast is fine since GUP-fast will back off when 1175 * it detects PMD is changed. 1176 */ 1177 _pmd = pmdp_collapse_flush(vma, address, pmd); 1178 spin_unlock(pmd_ptl); 1179 mmu_notifier_invalidate_range_end(&range); 1180 tlb_remove_table_sync_one(); 1181 1182 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1183 if (pte) { 1184 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1185 &compound_pagelist); 1186 spin_unlock(pte_ptl); 1187 } else { 1188 result = SCAN_PMD_NULL; 1189 } 1190 1191 if (unlikely(result != SCAN_SUCCEED)) { 1192 if (pte) 1193 pte_unmap(pte); 1194 spin_lock(pmd_ptl); 1195 BUG_ON(!pmd_none(*pmd)); 1196 /* 1197 * We can only use set_pmd_at when establishing 1198 * hugepmds and never for establishing regular pmds that 1199 * points to regular pagetables. Use pmd_populate for that 1200 */ 1201 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1202 spin_unlock(pmd_ptl); 1203 anon_vma_unlock_write(vma->anon_vma); 1204 goto out_up_write; 1205 } 1206 1207 /* 1208 * All pages are isolated and locked so anon_vma rmap 1209 * can't run anymore. 1210 */ 1211 anon_vma_unlock_write(vma->anon_vma); 1212 1213 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1214 vma, address, pte_ptl, 1215 &compound_pagelist); 1216 pte_unmap(pte); 1217 if (unlikely(result != SCAN_SUCCEED)) 1218 goto out_up_write; 1219 1220 /* 1221 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1222 * copy_huge_page writes become visible before the set_pmd_at() 1223 * write. 1224 */ 1225 __folio_mark_uptodate(folio); 1226 pgtable = pmd_pgtable(_pmd); 1227 1228 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1229 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1230 1231 spin_lock(pmd_ptl); 1232 BUG_ON(!pmd_none(*pmd)); 1233 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1234 folio_add_lru_vma(folio, vma); 1235 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1236 set_pmd_at(mm, address, pmd, _pmd); 1237 update_mmu_cache_pmd(vma, address, pmd); 1238 spin_unlock(pmd_ptl); 1239 1240 folio = NULL; 1241 1242 result = SCAN_SUCCEED; 1243 out_up_write: 1244 mmap_write_unlock(mm); 1245 out_nolock: 1246 if (folio) 1247 folio_put(folio); 1248 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1249 return result; 1250 } 1251 1252 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1253 struct vm_area_struct *vma, 1254 unsigned long address, bool *mmap_locked, 1255 struct collapse_control *cc) 1256 { 1257 pmd_t *pmd; 1258 pte_t *pte, *_pte; 1259 int result = SCAN_FAIL, referenced = 0; 1260 int none_or_zero = 0, shared = 0; 1261 struct page *page = NULL; 1262 struct folio *folio = NULL; 1263 unsigned long _address; 1264 spinlock_t *ptl; 1265 int node = NUMA_NO_NODE, unmapped = 0; 1266 bool writable = false; 1267 1268 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1269 1270 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1271 if (result != SCAN_SUCCEED) 1272 goto out; 1273 1274 memset(cc->node_load, 0, sizeof(cc->node_load)); 1275 nodes_clear(cc->alloc_nmask); 1276 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1277 if (!pte) { 1278 result = SCAN_PMD_NULL; 1279 goto out; 1280 } 1281 1282 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1283 _pte++, _address += PAGE_SIZE) { 1284 pte_t pteval = ptep_get(_pte); 1285 if (is_swap_pte(pteval)) { 1286 ++unmapped; 1287 if (!cc->is_khugepaged || 1288 unmapped <= khugepaged_max_ptes_swap) { 1289 /* 1290 * Always be strict with uffd-wp 1291 * enabled swap entries. Please see 1292 * comment below for pte_uffd_wp(). 1293 */ 1294 if (pte_swp_uffd_wp_any(pteval)) { 1295 result = SCAN_PTE_UFFD_WP; 1296 goto out_unmap; 1297 } 1298 continue; 1299 } else { 1300 result = SCAN_EXCEED_SWAP_PTE; 1301 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1302 goto out_unmap; 1303 } 1304 } 1305 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1306 ++none_or_zero; 1307 if (!userfaultfd_armed(vma) && 1308 (!cc->is_khugepaged || 1309 none_or_zero <= khugepaged_max_ptes_none)) { 1310 continue; 1311 } else { 1312 result = SCAN_EXCEED_NONE_PTE; 1313 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1314 goto out_unmap; 1315 } 1316 } 1317 if (pte_uffd_wp(pteval)) { 1318 /* 1319 * Don't collapse the page if any of the small 1320 * PTEs are armed with uffd write protection. 1321 * Here we can also mark the new huge pmd as 1322 * write protected if any of the small ones is 1323 * marked but that could bring unknown 1324 * userfault messages that falls outside of 1325 * the registered range. So, just be simple. 1326 */ 1327 result = SCAN_PTE_UFFD_WP; 1328 goto out_unmap; 1329 } 1330 if (pte_write(pteval)) 1331 writable = true; 1332 1333 page = vm_normal_page(vma, _address, pteval); 1334 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1335 result = SCAN_PAGE_NULL; 1336 goto out_unmap; 1337 } 1338 folio = page_folio(page); 1339 1340 if (!folio_test_anon(folio)) { 1341 result = SCAN_PAGE_ANON; 1342 goto out_unmap; 1343 } 1344 1345 /* 1346 * We treat a single page as shared if any part of the THP 1347 * is shared. "False negatives" from 1348 * folio_likely_mapped_shared() are not expected to matter 1349 * much in practice. 1350 */ 1351 if (folio_likely_mapped_shared(folio)) { 1352 ++shared; 1353 if (cc->is_khugepaged && 1354 shared > khugepaged_max_ptes_shared) { 1355 result = SCAN_EXCEED_SHARED_PTE; 1356 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1357 goto out_unmap; 1358 } 1359 } 1360 1361 /* 1362 * Record which node the original page is from and save this 1363 * information to cc->node_load[]. 1364 * Khugepaged will allocate hugepage from the node has the max 1365 * hit record. 1366 */ 1367 node = folio_nid(folio); 1368 if (hpage_collapse_scan_abort(node, cc)) { 1369 result = SCAN_SCAN_ABORT; 1370 goto out_unmap; 1371 } 1372 cc->node_load[node]++; 1373 if (!folio_test_lru(folio)) { 1374 result = SCAN_PAGE_LRU; 1375 goto out_unmap; 1376 } 1377 if (folio_test_locked(folio)) { 1378 result = SCAN_PAGE_LOCK; 1379 goto out_unmap; 1380 } 1381 1382 /* 1383 * Check if the page has any GUP (or other external) pins. 1384 * 1385 * Here the check may be racy: 1386 * it may see folio_mapcount() > folio_ref_count(). 1387 * But such case is ephemeral we could always retry collapse 1388 * later. However it may report false positive if the page 1389 * has excessive GUP pins (i.e. 512). Anyway the same check 1390 * will be done again later the risk seems low. 1391 */ 1392 if (!is_refcount_suitable(folio)) { 1393 result = SCAN_PAGE_COUNT; 1394 goto out_unmap; 1395 } 1396 1397 /* 1398 * If collapse was initiated by khugepaged, check that there is 1399 * enough young pte to justify collapsing the page 1400 */ 1401 if (cc->is_khugepaged && 1402 (pte_young(pteval) || folio_test_young(folio) || 1403 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1404 address))) 1405 referenced++; 1406 } 1407 if (!writable) { 1408 result = SCAN_PAGE_RO; 1409 } else if (cc->is_khugepaged && 1410 (!referenced || 1411 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1412 result = SCAN_LACK_REFERENCED_PAGE; 1413 } else { 1414 result = SCAN_SUCCEED; 1415 } 1416 out_unmap: 1417 pte_unmap_unlock(pte, ptl); 1418 if (result == SCAN_SUCCEED) { 1419 result = collapse_huge_page(mm, address, referenced, 1420 unmapped, cc); 1421 /* collapse_huge_page will return with the mmap_lock released */ 1422 *mmap_locked = false; 1423 } 1424 out: 1425 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1426 none_or_zero, result, unmapped); 1427 return result; 1428 } 1429 1430 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1431 { 1432 struct mm_slot *slot = &mm_slot->slot; 1433 struct mm_struct *mm = slot->mm; 1434 1435 lockdep_assert_held(&khugepaged_mm_lock); 1436 1437 if (hpage_collapse_test_exit(mm)) { 1438 /* free mm_slot */ 1439 hash_del(&slot->hash); 1440 list_del(&slot->mm_node); 1441 1442 /* 1443 * Not strictly needed because the mm exited already. 1444 * 1445 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1446 */ 1447 1448 /* khugepaged_mm_lock actually not necessary for the below */ 1449 mm_slot_free(mm_slot_cache, mm_slot); 1450 mmdrop(mm); 1451 } 1452 } 1453 1454 #ifdef CONFIG_SHMEM 1455 /* hpage must be locked, and mmap_lock must be held */ 1456 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1457 pmd_t *pmdp, struct page *hpage) 1458 { 1459 struct vm_fault vmf = { 1460 .vma = vma, 1461 .address = addr, 1462 .flags = 0, 1463 .pmd = pmdp, 1464 }; 1465 1466 VM_BUG_ON(!PageTransHuge(hpage)); 1467 mmap_assert_locked(vma->vm_mm); 1468 1469 if (do_set_pmd(&vmf, hpage)) 1470 return SCAN_FAIL; 1471 1472 get_page(hpage); 1473 return SCAN_SUCCEED; 1474 } 1475 1476 /** 1477 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1478 * address haddr. 1479 * 1480 * @mm: process address space where collapse happens 1481 * @addr: THP collapse address 1482 * @install_pmd: If a huge PMD should be installed 1483 * 1484 * This function checks whether all the PTEs in the PMD are pointing to the 1485 * right THP. If so, retract the page table so the THP can refault in with 1486 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1487 */ 1488 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1489 bool install_pmd) 1490 { 1491 struct mmu_notifier_range range; 1492 bool notified = false; 1493 unsigned long haddr = addr & HPAGE_PMD_MASK; 1494 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1495 struct folio *folio; 1496 pte_t *start_pte, *pte; 1497 pmd_t *pmd, pgt_pmd; 1498 spinlock_t *pml = NULL, *ptl; 1499 int nr_ptes = 0, result = SCAN_FAIL; 1500 int i; 1501 1502 mmap_assert_locked(mm); 1503 1504 /* First check VMA found, in case page tables are being torn down */ 1505 if (!vma || !vma->vm_file || 1506 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1507 return SCAN_VMA_CHECK; 1508 1509 /* Fast check before locking page if already PMD-mapped */ 1510 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1511 if (result == SCAN_PMD_MAPPED) 1512 return result; 1513 1514 /* 1515 * If we are here, we've succeeded in replacing all the native pages 1516 * in the page cache with a single hugepage. If a mm were to fault-in 1517 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1518 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1519 * analogously elide sysfs THP settings here. 1520 */ 1521 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1522 return SCAN_VMA_CHECK; 1523 1524 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1525 if (userfaultfd_wp(vma)) 1526 return SCAN_PTE_UFFD_WP; 1527 1528 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1529 linear_page_index(vma, haddr)); 1530 if (IS_ERR(folio)) 1531 return SCAN_PAGE_NULL; 1532 1533 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1534 result = SCAN_PAGE_COMPOUND; 1535 goto drop_folio; 1536 } 1537 1538 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1539 switch (result) { 1540 case SCAN_SUCCEED: 1541 break; 1542 case SCAN_PMD_NONE: 1543 /* 1544 * All pte entries have been removed and pmd cleared. 1545 * Skip all the pte checks and just update the pmd mapping. 1546 */ 1547 goto maybe_install_pmd; 1548 default: 1549 goto drop_folio; 1550 } 1551 1552 result = SCAN_FAIL; 1553 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1554 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1555 goto drop_folio; 1556 1557 /* step 1: check all mapped PTEs are to the right huge page */ 1558 for (i = 0, addr = haddr, pte = start_pte; 1559 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1560 struct page *page; 1561 pte_t ptent = ptep_get(pte); 1562 1563 /* empty pte, skip */ 1564 if (pte_none(ptent)) 1565 continue; 1566 1567 /* page swapped out, abort */ 1568 if (!pte_present(ptent)) { 1569 result = SCAN_PTE_NON_PRESENT; 1570 goto abort; 1571 } 1572 1573 page = vm_normal_page(vma, addr, ptent); 1574 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1575 page = NULL; 1576 /* 1577 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1578 * page table, but the new page will not be a subpage of hpage. 1579 */ 1580 if (folio_page(folio, i) != page) 1581 goto abort; 1582 } 1583 1584 pte_unmap_unlock(start_pte, ptl); 1585 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1586 haddr, haddr + HPAGE_PMD_SIZE); 1587 mmu_notifier_invalidate_range_start(&range); 1588 notified = true; 1589 1590 /* 1591 * pmd_lock covers a wider range than ptl, and (if split from mm's 1592 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1593 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1594 * inserts a valid as-if-COWed PTE without even looking up page cache. 1595 * So page lock of folio does not protect from it, so we must not drop 1596 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1597 */ 1598 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1599 pml = pmd_lock(mm, pmd); 1600 1601 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl); 1602 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1603 goto abort; 1604 if (!pml) 1605 spin_lock(ptl); 1606 else if (ptl != pml) 1607 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1608 1609 /* step 2: clear page table and adjust rmap */ 1610 for (i = 0, addr = haddr, pte = start_pte; 1611 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1612 struct page *page; 1613 pte_t ptent = ptep_get(pte); 1614 1615 if (pte_none(ptent)) 1616 continue; 1617 /* 1618 * We dropped ptl after the first scan, to do the mmu_notifier: 1619 * page lock stops more PTEs of the folio being faulted in, but 1620 * does not stop write faults COWing anon copies from existing 1621 * PTEs; and does not stop those being swapped out or migrated. 1622 */ 1623 if (!pte_present(ptent)) { 1624 result = SCAN_PTE_NON_PRESENT; 1625 goto abort; 1626 } 1627 page = vm_normal_page(vma, addr, ptent); 1628 if (folio_page(folio, i) != page) 1629 goto abort; 1630 1631 /* 1632 * Must clear entry, or a racing truncate may re-remove it. 1633 * TLB flush can be left until pmdp_collapse_flush() does it. 1634 * PTE dirty? Shmem page is already dirty; file is read-only. 1635 */ 1636 ptep_clear(mm, addr, pte); 1637 folio_remove_rmap_pte(folio, page, vma); 1638 nr_ptes++; 1639 } 1640 1641 pte_unmap(start_pte); 1642 if (!pml) 1643 spin_unlock(ptl); 1644 1645 /* step 3: set proper refcount and mm_counters. */ 1646 if (nr_ptes) { 1647 folio_ref_sub(folio, nr_ptes); 1648 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1649 } 1650 1651 /* step 4: remove empty page table */ 1652 if (!pml) { 1653 pml = pmd_lock(mm, pmd); 1654 if (ptl != pml) 1655 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1656 } 1657 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1658 pmdp_get_lockless_sync(); 1659 if (ptl != pml) 1660 spin_unlock(ptl); 1661 spin_unlock(pml); 1662 1663 mmu_notifier_invalidate_range_end(&range); 1664 1665 mm_dec_nr_ptes(mm); 1666 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1667 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1668 1669 maybe_install_pmd: 1670 /* step 5: install pmd entry */ 1671 result = install_pmd 1672 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1673 : SCAN_SUCCEED; 1674 goto drop_folio; 1675 abort: 1676 if (nr_ptes) { 1677 flush_tlb_mm(mm); 1678 folio_ref_sub(folio, nr_ptes); 1679 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1680 } 1681 if (start_pte) 1682 pte_unmap_unlock(start_pte, ptl); 1683 if (pml && pml != ptl) 1684 spin_unlock(pml); 1685 if (notified) 1686 mmu_notifier_invalidate_range_end(&range); 1687 drop_folio: 1688 folio_unlock(folio); 1689 folio_put(folio); 1690 return result; 1691 } 1692 1693 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1694 { 1695 struct vm_area_struct *vma; 1696 1697 i_mmap_lock_read(mapping); 1698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1699 struct mmu_notifier_range range; 1700 struct mm_struct *mm; 1701 unsigned long addr; 1702 pmd_t *pmd, pgt_pmd; 1703 spinlock_t *pml; 1704 spinlock_t *ptl; 1705 bool skipped_uffd = false; 1706 1707 /* 1708 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1709 * got written to. These VMAs are likely not worth removing 1710 * page tables from, as PMD-mapping is likely to be split later. 1711 */ 1712 if (READ_ONCE(vma->anon_vma)) 1713 continue; 1714 1715 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1716 if (addr & ~HPAGE_PMD_MASK || 1717 vma->vm_end < addr + HPAGE_PMD_SIZE) 1718 continue; 1719 1720 mm = vma->vm_mm; 1721 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1722 continue; 1723 1724 if (hpage_collapse_test_exit(mm)) 1725 continue; 1726 /* 1727 * When a vma is registered with uffd-wp, we cannot recycle 1728 * the page table because there may be pte markers installed. 1729 * Other vmas can still have the same file mapped hugely, but 1730 * skip this one: it will always be mapped in small page size 1731 * for uffd-wp registered ranges. 1732 */ 1733 if (userfaultfd_wp(vma)) 1734 continue; 1735 1736 /* PTEs were notified when unmapped; but now for the PMD? */ 1737 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1738 addr, addr + HPAGE_PMD_SIZE); 1739 mmu_notifier_invalidate_range_start(&range); 1740 1741 pml = pmd_lock(mm, pmd); 1742 ptl = pte_lockptr(mm, pmd); 1743 if (ptl != pml) 1744 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1745 1746 /* 1747 * Huge page lock is still held, so normally the page table 1748 * must remain empty; and we have already skipped anon_vma 1749 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1750 * held, it is still possible for a racing userfaultfd_ioctl() 1751 * to have inserted ptes or markers. Now that we hold ptlock, 1752 * repeating the anon_vma check protects from one category, 1753 * and repeating the userfaultfd_wp() check from another. 1754 */ 1755 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1756 skipped_uffd = true; 1757 } else { 1758 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1759 pmdp_get_lockless_sync(); 1760 } 1761 1762 if (ptl != pml) 1763 spin_unlock(ptl); 1764 spin_unlock(pml); 1765 1766 mmu_notifier_invalidate_range_end(&range); 1767 1768 if (!skipped_uffd) { 1769 mm_dec_nr_ptes(mm); 1770 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1771 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1772 } 1773 } 1774 i_mmap_unlock_read(mapping); 1775 } 1776 1777 /** 1778 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1779 * 1780 * @mm: process address space where collapse happens 1781 * @addr: virtual collapse start address 1782 * @file: file that collapse on 1783 * @start: collapse start address 1784 * @cc: collapse context and scratchpad 1785 * 1786 * Basic scheme is simple, details are more complex: 1787 * - allocate and lock a new huge page; 1788 * - scan page cache, locking old pages 1789 * + swap/gup in pages if necessary; 1790 * - copy data to new page 1791 * - handle shmem holes 1792 * + re-validate that holes weren't filled by someone else 1793 * + check for userfaultfd 1794 * - finalize updates to the page cache; 1795 * - if replacing succeeds: 1796 * + unlock huge page; 1797 * + free old pages; 1798 * - if replacing failed; 1799 * + unlock old pages 1800 * + unlock and free huge page; 1801 */ 1802 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1803 struct file *file, pgoff_t start, 1804 struct collapse_control *cc) 1805 { 1806 struct address_space *mapping = file->f_mapping; 1807 struct page *dst; 1808 struct folio *folio, *tmp, *new_folio; 1809 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1810 LIST_HEAD(pagelist); 1811 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1812 int nr_none = 0, result = SCAN_SUCCEED; 1813 bool is_shmem = shmem_file(file); 1814 1815 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1816 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1817 1818 result = alloc_charge_folio(&new_folio, mm, cc); 1819 if (result != SCAN_SUCCEED) 1820 goto out; 1821 1822 __folio_set_locked(new_folio); 1823 if (is_shmem) 1824 __folio_set_swapbacked(new_folio); 1825 new_folio->index = start; 1826 new_folio->mapping = mapping; 1827 1828 /* 1829 * Ensure we have slots for all the pages in the range. This is 1830 * almost certainly a no-op because most of the pages must be present 1831 */ 1832 do { 1833 xas_lock_irq(&xas); 1834 xas_create_range(&xas); 1835 if (!xas_error(&xas)) 1836 break; 1837 xas_unlock_irq(&xas); 1838 if (!xas_nomem(&xas, GFP_KERNEL)) { 1839 result = SCAN_FAIL; 1840 goto rollback; 1841 } 1842 } while (1); 1843 1844 for (index = start; index < end; index++) { 1845 xas_set(&xas, index); 1846 folio = xas_load(&xas); 1847 1848 VM_BUG_ON(index != xas.xa_index); 1849 if (is_shmem) { 1850 if (!folio) { 1851 /* 1852 * Stop if extent has been truncated or 1853 * hole-punched, and is now completely 1854 * empty. 1855 */ 1856 if (index == start) { 1857 if (!xas_next_entry(&xas, end - 1)) { 1858 result = SCAN_TRUNCATED; 1859 goto xa_locked; 1860 } 1861 } 1862 nr_none++; 1863 continue; 1864 } 1865 1866 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1867 xas_unlock_irq(&xas); 1868 /* swap in or instantiate fallocated page */ 1869 if (shmem_get_folio(mapping->host, index, 1870 &folio, SGP_NOALLOC)) { 1871 result = SCAN_FAIL; 1872 goto xa_unlocked; 1873 } 1874 /* drain lru cache to help isolate_lru_page() */ 1875 lru_add_drain(); 1876 } else if (folio_trylock(folio)) { 1877 folio_get(folio); 1878 xas_unlock_irq(&xas); 1879 } else { 1880 result = SCAN_PAGE_LOCK; 1881 goto xa_locked; 1882 } 1883 } else { /* !is_shmem */ 1884 if (!folio || xa_is_value(folio)) { 1885 xas_unlock_irq(&xas); 1886 page_cache_sync_readahead(mapping, &file->f_ra, 1887 file, index, 1888 end - index); 1889 /* drain lru cache to help isolate_lru_page() */ 1890 lru_add_drain(); 1891 folio = filemap_lock_folio(mapping, index); 1892 if (IS_ERR(folio)) { 1893 result = SCAN_FAIL; 1894 goto xa_unlocked; 1895 } 1896 } else if (folio_test_dirty(folio)) { 1897 /* 1898 * khugepaged only works on read-only fd, 1899 * so this page is dirty because it hasn't 1900 * been flushed since first write. There 1901 * won't be new dirty pages. 1902 * 1903 * Trigger async flush here and hope the 1904 * writeback is done when khugepaged 1905 * revisits this page. 1906 * 1907 * This is a one-off situation. We are not 1908 * forcing writeback in loop. 1909 */ 1910 xas_unlock_irq(&xas); 1911 filemap_flush(mapping); 1912 result = SCAN_FAIL; 1913 goto xa_unlocked; 1914 } else if (folio_test_writeback(folio)) { 1915 xas_unlock_irq(&xas); 1916 result = SCAN_FAIL; 1917 goto xa_unlocked; 1918 } else if (folio_trylock(folio)) { 1919 folio_get(folio); 1920 xas_unlock_irq(&xas); 1921 } else { 1922 result = SCAN_PAGE_LOCK; 1923 goto xa_locked; 1924 } 1925 } 1926 1927 /* 1928 * The folio must be locked, so we can drop the i_pages lock 1929 * without racing with truncate. 1930 */ 1931 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1932 1933 /* make sure the folio is up to date */ 1934 if (unlikely(!folio_test_uptodate(folio))) { 1935 result = SCAN_FAIL; 1936 goto out_unlock; 1937 } 1938 1939 /* 1940 * If file was truncated then extended, or hole-punched, before 1941 * we locked the first folio, then a THP might be there already. 1942 * This will be discovered on the first iteration. 1943 */ 1944 if (folio_test_large(folio)) { 1945 result = folio_order(folio) == HPAGE_PMD_ORDER && 1946 folio->index == start 1947 /* Maybe PMD-mapped */ 1948 ? SCAN_PTE_MAPPED_HUGEPAGE 1949 : SCAN_PAGE_COMPOUND; 1950 goto out_unlock; 1951 } 1952 1953 if (folio_mapping(folio) != mapping) { 1954 result = SCAN_TRUNCATED; 1955 goto out_unlock; 1956 } 1957 1958 if (!is_shmem && (folio_test_dirty(folio) || 1959 folio_test_writeback(folio))) { 1960 /* 1961 * khugepaged only works on read-only fd, so this 1962 * folio is dirty because it hasn't been flushed 1963 * since first write. 1964 */ 1965 result = SCAN_FAIL; 1966 goto out_unlock; 1967 } 1968 1969 if (!folio_isolate_lru(folio)) { 1970 result = SCAN_DEL_PAGE_LRU; 1971 goto out_unlock; 1972 } 1973 1974 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1975 result = SCAN_PAGE_HAS_PRIVATE; 1976 folio_putback_lru(folio); 1977 goto out_unlock; 1978 } 1979 1980 if (folio_mapped(folio)) 1981 try_to_unmap(folio, 1982 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1983 1984 xas_lock_irq(&xas); 1985 1986 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 1987 1988 /* 1989 * We control three references to the folio: 1990 * - we hold a pin on it; 1991 * - one reference from page cache; 1992 * - one from lru_isolate_folio; 1993 * If those are the only references, then any new usage 1994 * of the folio will have to fetch it from the page 1995 * cache. That requires locking the folio to handle 1996 * truncate, so any new usage will be blocked until we 1997 * unlock folio after collapse/during rollback. 1998 */ 1999 if (folio_ref_count(folio) != 3) { 2000 result = SCAN_PAGE_COUNT; 2001 xas_unlock_irq(&xas); 2002 folio_putback_lru(folio); 2003 goto out_unlock; 2004 } 2005 2006 /* 2007 * Accumulate the folios that are being collapsed. 2008 */ 2009 list_add_tail(&folio->lru, &pagelist); 2010 continue; 2011 out_unlock: 2012 folio_unlock(folio); 2013 folio_put(folio); 2014 goto xa_unlocked; 2015 } 2016 2017 if (!is_shmem) { 2018 filemap_nr_thps_inc(mapping); 2019 /* 2020 * Paired with the fence in do_dentry_open() -> get_write_access() 2021 * to ensure i_writecount is up to date and the update to nr_thps 2022 * is visible. Ensures the page cache will be truncated if the 2023 * file is opened writable. 2024 */ 2025 smp_mb(); 2026 if (inode_is_open_for_write(mapping->host)) { 2027 result = SCAN_FAIL; 2028 filemap_nr_thps_dec(mapping); 2029 } 2030 } 2031 2032 xa_locked: 2033 xas_unlock_irq(&xas); 2034 xa_unlocked: 2035 2036 /* 2037 * If collapse is successful, flush must be done now before copying. 2038 * If collapse is unsuccessful, does flush actually need to be done? 2039 * Do it anyway, to clear the state. 2040 */ 2041 try_to_unmap_flush(); 2042 2043 if (result == SCAN_SUCCEED && nr_none && 2044 !shmem_charge(mapping->host, nr_none)) 2045 result = SCAN_FAIL; 2046 if (result != SCAN_SUCCEED) { 2047 nr_none = 0; 2048 goto rollback; 2049 } 2050 2051 /* 2052 * The old folios are locked, so they won't change anymore. 2053 */ 2054 index = start; 2055 dst = folio_page(new_folio, 0); 2056 list_for_each_entry(folio, &pagelist, lru) { 2057 while (index < folio->index) { 2058 clear_highpage(dst); 2059 index++; 2060 dst++; 2061 } 2062 if (copy_mc_highpage(dst, folio_page(folio, 0)) > 0) { 2063 result = SCAN_COPY_MC; 2064 goto rollback; 2065 } 2066 index++; 2067 dst++; 2068 } 2069 while (index < end) { 2070 clear_highpage(dst); 2071 index++; 2072 dst++; 2073 } 2074 2075 if (nr_none) { 2076 struct vm_area_struct *vma; 2077 int nr_none_check = 0; 2078 2079 i_mmap_lock_read(mapping); 2080 xas_lock_irq(&xas); 2081 2082 xas_set(&xas, start); 2083 for (index = start; index < end; index++) { 2084 if (!xas_next(&xas)) { 2085 xas_store(&xas, XA_RETRY_ENTRY); 2086 if (xas_error(&xas)) { 2087 result = SCAN_STORE_FAILED; 2088 goto immap_locked; 2089 } 2090 nr_none_check++; 2091 } 2092 } 2093 2094 if (nr_none != nr_none_check) { 2095 result = SCAN_PAGE_FILLED; 2096 goto immap_locked; 2097 } 2098 2099 /* 2100 * If userspace observed a missing page in a VMA with 2101 * a MODE_MISSING userfaultfd, then it might expect a 2102 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2103 * roll back to avoid suppressing such an event. Since 2104 * wp/minor userfaultfds don't give userspace any 2105 * guarantees that the kernel doesn't fill a missing 2106 * page with a zero page, so they don't matter here. 2107 * 2108 * Any userfaultfds registered after this point will 2109 * not be able to observe any missing pages due to the 2110 * previously inserted retry entries. 2111 */ 2112 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2113 if (userfaultfd_missing(vma)) { 2114 result = SCAN_EXCEED_NONE_PTE; 2115 goto immap_locked; 2116 } 2117 } 2118 2119 immap_locked: 2120 i_mmap_unlock_read(mapping); 2121 if (result != SCAN_SUCCEED) { 2122 xas_set(&xas, start); 2123 for (index = start; index < end; index++) { 2124 if (xas_next(&xas) == XA_RETRY_ENTRY) 2125 xas_store(&xas, NULL); 2126 } 2127 2128 xas_unlock_irq(&xas); 2129 goto rollback; 2130 } 2131 } else { 2132 xas_lock_irq(&xas); 2133 } 2134 2135 if (is_shmem) 2136 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2137 else 2138 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2139 2140 if (nr_none) { 2141 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2142 /* nr_none is always 0 for non-shmem. */ 2143 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2144 } 2145 2146 /* 2147 * Mark new_folio as uptodate before inserting it into the 2148 * page cache so that it isn't mistaken for an fallocated but 2149 * unwritten page. 2150 */ 2151 folio_mark_uptodate(new_folio); 2152 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2153 2154 if (is_shmem) 2155 folio_mark_dirty(new_folio); 2156 folio_add_lru(new_folio); 2157 2158 /* Join all the small entries into a single multi-index entry. */ 2159 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2160 xas_store(&xas, new_folio); 2161 WARN_ON_ONCE(xas_error(&xas)); 2162 xas_unlock_irq(&xas); 2163 2164 /* 2165 * Remove pte page tables, so we can re-fault the page as huge. 2166 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2167 */ 2168 retract_page_tables(mapping, start); 2169 if (cc && !cc->is_khugepaged) 2170 result = SCAN_PTE_MAPPED_HUGEPAGE; 2171 folio_unlock(new_folio); 2172 2173 /* 2174 * The collapse has succeeded, so free the old folios. 2175 */ 2176 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2177 list_del(&folio->lru); 2178 folio->mapping = NULL; 2179 folio_clear_active(folio); 2180 folio_clear_unevictable(folio); 2181 folio_unlock(folio); 2182 folio_put_refs(folio, 3); 2183 } 2184 2185 goto out; 2186 2187 rollback: 2188 /* Something went wrong: roll back page cache changes */ 2189 if (nr_none) { 2190 xas_lock_irq(&xas); 2191 mapping->nrpages -= nr_none; 2192 xas_unlock_irq(&xas); 2193 shmem_uncharge(mapping->host, nr_none); 2194 } 2195 2196 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2197 list_del(&folio->lru); 2198 folio_unlock(folio); 2199 folio_putback_lru(folio); 2200 folio_put(folio); 2201 } 2202 /* 2203 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2204 * file only. This undo is not needed unless failure is 2205 * due to SCAN_COPY_MC. 2206 */ 2207 if (!is_shmem && result == SCAN_COPY_MC) { 2208 filemap_nr_thps_dec(mapping); 2209 /* 2210 * Paired with the fence in do_dentry_open() -> get_write_access() 2211 * to ensure the update to nr_thps is visible. 2212 */ 2213 smp_mb(); 2214 } 2215 2216 new_folio->mapping = NULL; 2217 2218 folio_unlock(new_folio); 2219 folio_put(new_folio); 2220 out: 2221 VM_BUG_ON(!list_empty(&pagelist)); 2222 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2223 return result; 2224 } 2225 2226 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2227 struct file *file, pgoff_t start, 2228 struct collapse_control *cc) 2229 { 2230 struct folio *folio = NULL; 2231 struct address_space *mapping = file->f_mapping; 2232 XA_STATE(xas, &mapping->i_pages, start); 2233 int present, swap; 2234 int node = NUMA_NO_NODE; 2235 int result = SCAN_SUCCEED; 2236 2237 present = 0; 2238 swap = 0; 2239 memset(cc->node_load, 0, sizeof(cc->node_load)); 2240 nodes_clear(cc->alloc_nmask); 2241 rcu_read_lock(); 2242 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2243 if (xas_retry(&xas, folio)) 2244 continue; 2245 2246 if (xa_is_value(folio)) { 2247 ++swap; 2248 if (cc->is_khugepaged && 2249 swap > khugepaged_max_ptes_swap) { 2250 result = SCAN_EXCEED_SWAP_PTE; 2251 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2252 break; 2253 } 2254 continue; 2255 } 2256 2257 /* 2258 * TODO: khugepaged should compact smaller compound pages 2259 * into a PMD sized page 2260 */ 2261 if (folio_test_large(folio)) { 2262 result = folio_order(folio) == HPAGE_PMD_ORDER && 2263 folio->index == start 2264 /* Maybe PMD-mapped */ 2265 ? SCAN_PTE_MAPPED_HUGEPAGE 2266 : SCAN_PAGE_COMPOUND; 2267 /* 2268 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2269 * by the caller won't touch the page cache, and so 2270 * it's safe to skip LRU and refcount checks before 2271 * returning. 2272 */ 2273 break; 2274 } 2275 2276 node = folio_nid(folio); 2277 if (hpage_collapse_scan_abort(node, cc)) { 2278 result = SCAN_SCAN_ABORT; 2279 break; 2280 } 2281 cc->node_load[node]++; 2282 2283 if (!folio_test_lru(folio)) { 2284 result = SCAN_PAGE_LRU; 2285 break; 2286 } 2287 2288 if (folio_ref_count(folio) != 2289 1 + folio_mapcount(folio) + folio_test_private(folio)) { 2290 result = SCAN_PAGE_COUNT; 2291 break; 2292 } 2293 2294 /* 2295 * We probably should check if the folio is referenced 2296 * here, but nobody would transfer pte_young() to 2297 * folio_test_referenced() for us. And rmap walk here 2298 * is just too costly... 2299 */ 2300 2301 present++; 2302 2303 if (need_resched()) { 2304 xas_pause(&xas); 2305 cond_resched_rcu(); 2306 } 2307 } 2308 rcu_read_unlock(); 2309 2310 if (result == SCAN_SUCCEED) { 2311 if (cc->is_khugepaged && 2312 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2313 result = SCAN_EXCEED_NONE_PTE; 2314 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2315 } else { 2316 result = collapse_file(mm, addr, file, start, cc); 2317 } 2318 } 2319 2320 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2321 return result; 2322 } 2323 #else 2324 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2325 struct file *file, pgoff_t start, 2326 struct collapse_control *cc) 2327 { 2328 BUILD_BUG(); 2329 } 2330 #endif 2331 2332 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2333 struct collapse_control *cc) 2334 __releases(&khugepaged_mm_lock) 2335 __acquires(&khugepaged_mm_lock) 2336 { 2337 struct vma_iterator vmi; 2338 struct khugepaged_mm_slot *mm_slot; 2339 struct mm_slot *slot; 2340 struct mm_struct *mm; 2341 struct vm_area_struct *vma; 2342 int progress = 0; 2343 2344 VM_BUG_ON(!pages); 2345 lockdep_assert_held(&khugepaged_mm_lock); 2346 *result = SCAN_FAIL; 2347 2348 if (khugepaged_scan.mm_slot) { 2349 mm_slot = khugepaged_scan.mm_slot; 2350 slot = &mm_slot->slot; 2351 } else { 2352 slot = list_entry(khugepaged_scan.mm_head.next, 2353 struct mm_slot, mm_node); 2354 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2355 khugepaged_scan.address = 0; 2356 khugepaged_scan.mm_slot = mm_slot; 2357 } 2358 spin_unlock(&khugepaged_mm_lock); 2359 2360 mm = slot->mm; 2361 /* 2362 * Don't wait for semaphore (to avoid long wait times). Just move to 2363 * the next mm on the list. 2364 */ 2365 vma = NULL; 2366 if (unlikely(!mmap_read_trylock(mm))) 2367 goto breakouterloop_mmap_lock; 2368 2369 progress++; 2370 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2371 goto breakouterloop; 2372 2373 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2374 for_each_vma(vmi, vma) { 2375 unsigned long hstart, hend; 2376 2377 cond_resched(); 2378 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2379 progress++; 2380 break; 2381 } 2382 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2383 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2384 skip: 2385 progress++; 2386 continue; 2387 } 2388 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2389 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2390 if (khugepaged_scan.address > hend) 2391 goto skip; 2392 if (khugepaged_scan.address < hstart) 2393 khugepaged_scan.address = hstart; 2394 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2395 2396 while (khugepaged_scan.address < hend) { 2397 bool mmap_locked = true; 2398 2399 cond_resched(); 2400 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2401 goto breakouterloop; 2402 2403 VM_BUG_ON(khugepaged_scan.address < hstart || 2404 khugepaged_scan.address + HPAGE_PMD_SIZE > 2405 hend); 2406 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2407 struct file *file = get_file(vma->vm_file); 2408 pgoff_t pgoff = linear_page_index(vma, 2409 khugepaged_scan.address); 2410 2411 mmap_read_unlock(mm); 2412 mmap_locked = false; 2413 *result = hpage_collapse_scan_file(mm, 2414 khugepaged_scan.address, file, pgoff, cc); 2415 fput(file); 2416 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2417 mmap_read_lock(mm); 2418 if (hpage_collapse_test_exit_or_disable(mm)) 2419 goto breakouterloop; 2420 *result = collapse_pte_mapped_thp(mm, 2421 khugepaged_scan.address, false); 2422 if (*result == SCAN_PMD_MAPPED) 2423 *result = SCAN_SUCCEED; 2424 mmap_read_unlock(mm); 2425 } 2426 } else { 2427 *result = hpage_collapse_scan_pmd(mm, vma, 2428 khugepaged_scan.address, &mmap_locked, cc); 2429 } 2430 2431 if (*result == SCAN_SUCCEED) 2432 ++khugepaged_pages_collapsed; 2433 2434 /* move to next address */ 2435 khugepaged_scan.address += HPAGE_PMD_SIZE; 2436 progress += HPAGE_PMD_NR; 2437 if (!mmap_locked) 2438 /* 2439 * We released mmap_lock so break loop. Note 2440 * that we drop mmap_lock before all hugepage 2441 * allocations, so if allocation fails, we are 2442 * guaranteed to break here and report the 2443 * correct result back to caller. 2444 */ 2445 goto breakouterloop_mmap_lock; 2446 if (progress >= pages) 2447 goto breakouterloop; 2448 } 2449 } 2450 breakouterloop: 2451 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2452 breakouterloop_mmap_lock: 2453 2454 spin_lock(&khugepaged_mm_lock); 2455 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2456 /* 2457 * Release the current mm_slot if this mm is about to die, or 2458 * if we scanned all vmas of this mm. 2459 */ 2460 if (hpage_collapse_test_exit(mm) || !vma) { 2461 /* 2462 * Make sure that if mm_users is reaching zero while 2463 * khugepaged runs here, khugepaged_exit will find 2464 * mm_slot not pointing to the exiting mm. 2465 */ 2466 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2467 slot = list_entry(slot->mm_node.next, 2468 struct mm_slot, mm_node); 2469 khugepaged_scan.mm_slot = 2470 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2471 khugepaged_scan.address = 0; 2472 } else { 2473 khugepaged_scan.mm_slot = NULL; 2474 khugepaged_full_scans++; 2475 } 2476 2477 collect_mm_slot(mm_slot); 2478 } 2479 2480 return progress; 2481 } 2482 2483 static int khugepaged_has_work(void) 2484 { 2485 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2486 } 2487 2488 static int khugepaged_wait_event(void) 2489 { 2490 return !list_empty(&khugepaged_scan.mm_head) || 2491 kthread_should_stop(); 2492 } 2493 2494 static void khugepaged_do_scan(struct collapse_control *cc) 2495 { 2496 unsigned int progress = 0, pass_through_head = 0; 2497 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2498 bool wait = true; 2499 int result = SCAN_SUCCEED; 2500 2501 lru_add_drain_all(); 2502 2503 while (true) { 2504 cond_resched(); 2505 2506 if (unlikely(kthread_should_stop())) 2507 break; 2508 2509 spin_lock(&khugepaged_mm_lock); 2510 if (!khugepaged_scan.mm_slot) 2511 pass_through_head++; 2512 if (khugepaged_has_work() && 2513 pass_through_head < 2) 2514 progress += khugepaged_scan_mm_slot(pages - progress, 2515 &result, cc); 2516 else 2517 progress = pages; 2518 spin_unlock(&khugepaged_mm_lock); 2519 2520 if (progress >= pages) 2521 break; 2522 2523 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2524 /* 2525 * If fail to allocate the first time, try to sleep for 2526 * a while. When hit again, cancel the scan. 2527 */ 2528 if (!wait) 2529 break; 2530 wait = false; 2531 khugepaged_alloc_sleep(); 2532 } 2533 } 2534 } 2535 2536 static bool khugepaged_should_wakeup(void) 2537 { 2538 return kthread_should_stop() || 2539 time_after_eq(jiffies, khugepaged_sleep_expire); 2540 } 2541 2542 static void khugepaged_wait_work(void) 2543 { 2544 if (khugepaged_has_work()) { 2545 const unsigned long scan_sleep_jiffies = 2546 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2547 2548 if (!scan_sleep_jiffies) 2549 return; 2550 2551 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2552 wait_event_freezable_timeout(khugepaged_wait, 2553 khugepaged_should_wakeup(), 2554 scan_sleep_jiffies); 2555 return; 2556 } 2557 2558 if (hugepage_pmd_enabled()) 2559 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2560 } 2561 2562 static int khugepaged(void *none) 2563 { 2564 struct khugepaged_mm_slot *mm_slot; 2565 2566 set_freezable(); 2567 set_user_nice(current, MAX_NICE); 2568 2569 while (!kthread_should_stop()) { 2570 khugepaged_do_scan(&khugepaged_collapse_control); 2571 khugepaged_wait_work(); 2572 } 2573 2574 spin_lock(&khugepaged_mm_lock); 2575 mm_slot = khugepaged_scan.mm_slot; 2576 khugepaged_scan.mm_slot = NULL; 2577 if (mm_slot) 2578 collect_mm_slot(mm_slot); 2579 spin_unlock(&khugepaged_mm_lock); 2580 return 0; 2581 } 2582 2583 static void set_recommended_min_free_kbytes(void) 2584 { 2585 struct zone *zone; 2586 int nr_zones = 0; 2587 unsigned long recommended_min; 2588 2589 if (!hugepage_pmd_enabled()) { 2590 calculate_min_free_kbytes(); 2591 goto update_wmarks; 2592 } 2593 2594 for_each_populated_zone(zone) { 2595 /* 2596 * We don't need to worry about fragmentation of 2597 * ZONE_MOVABLE since it only has movable pages. 2598 */ 2599 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2600 continue; 2601 2602 nr_zones++; 2603 } 2604 2605 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2606 recommended_min = pageblock_nr_pages * nr_zones * 2; 2607 2608 /* 2609 * Make sure that on average at least two pageblocks are almost free 2610 * of another type, one for a migratetype to fall back to and a 2611 * second to avoid subsequent fallbacks of other types There are 3 2612 * MIGRATE_TYPES we care about. 2613 */ 2614 recommended_min += pageblock_nr_pages * nr_zones * 2615 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2616 2617 /* don't ever allow to reserve more than 5% of the lowmem */ 2618 recommended_min = min(recommended_min, 2619 (unsigned long) nr_free_buffer_pages() / 20); 2620 recommended_min <<= (PAGE_SHIFT-10); 2621 2622 if (recommended_min > min_free_kbytes) { 2623 if (user_min_free_kbytes >= 0) 2624 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2625 min_free_kbytes, recommended_min); 2626 2627 min_free_kbytes = recommended_min; 2628 } 2629 2630 update_wmarks: 2631 setup_per_zone_wmarks(); 2632 } 2633 2634 int start_stop_khugepaged(void) 2635 { 2636 int err = 0; 2637 2638 mutex_lock(&khugepaged_mutex); 2639 if (hugepage_pmd_enabled()) { 2640 if (!khugepaged_thread) 2641 khugepaged_thread = kthread_run(khugepaged, NULL, 2642 "khugepaged"); 2643 if (IS_ERR(khugepaged_thread)) { 2644 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2645 err = PTR_ERR(khugepaged_thread); 2646 khugepaged_thread = NULL; 2647 goto fail; 2648 } 2649 2650 if (!list_empty(&khugepaged_scan.mm_head)) 2651 wake_up_interruptible(&khugepaged_wait); 2652 } else if (khugepaged_thread) { 2653 kthread_stop(khugepaged_thread); 2654 khugepaged_thread = NULL; 2655 } 2656 set_recommended_min_free_kbytes(); 2657 fail: 2658 mutex_unlock(&khugepaged_mutex); 2659 return err; 2660 } 2661 2662 void khugepaged_min_free_kbytes_update(void) 2663 { 2664 mutex_lock(&khugepaged_mutex); 2665 if (hugepage_pmd_enabled() && khugepaged_thread) 2666 set_recommended_min_free_kbytes(); 2667 mutex_unlock(&khugepaged_mutex); 2668 } 2669 2670 bool current_is_khugepaged(void) 2671 { 2672 return kthread_func(current) == khugepaged; 2673 } 2674 2675 static int madvise_collapse_errno(enum scan_result r) 2676 { 2677 /* 2678 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2679 * actionable feedback to caller, so they may take an appropriate 2680 * fallback measure depending on the nature of the failure. 2681 */ 2682 switch (r) { 2683 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2684 return -ENOMEM; 2685 case SCAN_CGROUP_CHARGE_FAIL: 2686 case SCAN_EXCEED_NONE_PTE: 2687 return -EBUSY; 2688 /* Resource temporary unavailable - trying again might succeed */ 2689 case SCAN_PAGE_COUNT: 2690 case SCAN_PAGE_LOCK: 2691 case SCAN_PAGE_LRU: 2692 case SCAN_DEL_PAGE_LRU: 2693 case SCAN_PAGE_FILLED: 2694 return -EAGAIN; 2695 /* 2696 * Other: Trying again likely not to succeed / error intrinsic to 2697 * specified memory range. khugepaged likely won't be able to collapse 2698 * either. 2699 */ 2700 default: 2701 return -EINVAL; 2702 } 2703 } 2704 2705 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2706 unsigned long start, unsigned long end) 2707 { 2708 struct collapse_control *cc; 2709 struct mm_struct *mm = vma->vm_mm; 2710 unsigned long hstart, hend, addr; 2711 int thps = 0, last_fail = SCAN_FAIL; 2712 bool mmap_locked = true; 2713 2714 BUG_ON(vma->vm_start > start); 2715 BUG_ON(vma->vm_end < end); 2716 2717 *prev = vma; 2718 2719 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2720 return -EINVAL; 2721 2722 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2723 if (!cc) 2724 return -ENOMEM; 2725 cc->is_khugepaged = false; 2726 2727 mmgrab(mm); 2728 lru_add_drain_all(); 2729 2730 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2731 hend = end & HPAGE_PMD_MASK; 2732 2733 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2734 int result = SCAN_FAIL; 2735 2736 if (!mmap_locked) { 2737 cond_resched(); 2738 mmap_read_lock(mm); 2739 mmap_locked = true; 2740 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2741 cc); 2742 if (result != SCAN_SUCCEED) { 2743 last_fail = result; 2744 goto out_nolock; 2745 } 2746 2747 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2748 } 2749 mmap_assert_locked(mm); 2750 memset(cc->node_load, 0, sizeof(cc->node_load)); 2751 nodes_clear(cc->alloc_nmask); 2752 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2753 struct file *file = get_file(vma->vm_file); 2754 pgoff_t pgoff = linear_page_index(vma, addr); 2755 2756 mmap_read_unlock(mm); 2757 mmap_locked = false; 2758 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2759 cc); 2760 fput(file); 2761 } else { 2762 result = hpage_collapse_scan_pmd(mm, vma, addr, 2763 &mmap_locked, cc); 2764 } 2765 if (!mmap_locked) 2766 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2767 2768 handle_result: 2769 switch (result) { 2770 case SCAN_SUCCEED: 2771 case SCAN_PMD_MAPPED: 2772 ++thps; 2773 break; 2774 case SCAN_PTE_MAPPED_HUGEPAGE: 2775 BUG_ON(mmap_locked); 2776 BUG_ON(*prev); 2777 mmap_read_lock(mm); 2778 result = collapse_pte_mapped_thp(mm, addr, true); 2779 mmap_read_unlock(mm); 2780 goto handle_result; 2781 /* Whitelisted set of results where continuing OK */ 2782 case SCAN_PMD_NULL: 2783 case SCAN_PTE_NON_PRESENT: 2784 case SCAN_PTE_UFFD_WP: 2785 case SCAN_PAGE_RO: 2786 case SCAN_LACK_REFERENCED_PAGE: 2787 case SCAN_PAGE_NULL: 2788 case SCAN_PAGE_COUNT: 2789 case SCAN_PAGE_LOCK: 2790 case SCAN_PAGE_COMPOUND: 2791 case SCAN_PAGE_LRU: 2792 case SCAN_DEL_PAGE_LRU: 2793 last_fail = result; 2794 break; 2795 default: 2796 last_fail = result; 2797 /* Other error, exit */ 2798 goto out_maybelock; 2799 } 2800 } 2801 2802 out_maybelock: 2803 /* Caller expects us to hold mmap_lock on return */ 2804 if (!mmap_locked) 2805 mmap_read_lock(mm); 2806 out_nolock: 2807 mmap_assert_locked(mm); 2808 mmdrop(mm); 2809 kfree(cc); 2810 2811 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2812 : madvise_collapse_errno(last_fail); 2813 } 2814
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.