1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Test cases for KMSAN. 4 * For each test case checks the presence (or absence) of generated reports. 5 * Relies on 'console' tracepoint to capture reports as they appear in the 6 * kernel log. 7 * 8 * Copyright (C) 2021-2022, Google LLC. 9 * Author: Alexander Potapenko <glider@google.com> 10 * 11 */ 12 13 #include <kunit/test.h> 14 #include "kmsan.h" 15 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsan.h> 19 #include <linux/mm.h> 20 #include <linux/random.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/tracepoint.h> 25 #include <linux/vmalloc.h> 26 #include <trace/events/printk.h> 27 28 static DEFINE_PER_CPU(int, per_cpu_var); 29 30 /* Report as observed from console. */ 31 static struct { 32 spinlock_t lock; 33 bool available; 34 bool ignore; /* Stop console output collection. */ 35 char header[256]; 36 } observed = { 37 .lock = __SPIN_LOCK_UNLOCKED(observed.lock), 38 }; 39 40 /* Probe for console output: obtains observed lines of interest. */ 41 static void probe_console(void *ignore, const char *buf, size_t len) 42 { 43 unsigned long flags; 44 45 if (observed.ignore) 46 return; 47 spin_lock_irqsave(&observed.lock, flags); 48 49 if (strnstr(buf, "BUG: KMSAN: ", len)) { 50 /* 51 * KMSAN report and related to the test. 52 * 53 * The provided @buf is not NUL-terminated; copy no more than 54 * @len bytes and let strscpy() add the missing NUL-terminator. 55 */ 56 strscpy(observed.header, buf, 57 min(len + 1, sizeof(observed.header))); 58 WRITE_ONCE(observed.available, true); 59 observed.ignore = true; 60 } 61 spin_unlock_irqrestore(&observed.lock, flags); 62 } 63 64 /* Check if a report related to the test exists. */ 65 static bool report_available(void) 66 { 67 return READ_ONCE(observed.available); 68 } 69 70 /* Reset observed.available, so that the test can trigger another report. */ 71 static void report_reset(void) 72 { 73 unsigned long flags; 74 75 spin_lock_irqsave(&observed.lock, flags); 76 WRITE_ONCE(observed.available, false); 77 observed.ignore = false; 78 spin_unlock_irqrestore(&observed.lock, flags); 79 } 80 81 /* Information we expect in a report. */ 82 struct expect_report { 83 const char *error_type; /* Error type. */ 84 /* 85 * Kernel symbol from the error header, or NULL if no report is 86 * expected. 87 */ 88 const char *symbol; 89 }; 90 91 /* Check observed report matches information in @r. */ 92 static bool report_matches(const struct expect_report *r) 93 { 94 typeof(observed.header) expected_header; 95 unsigned long flags; 96 bool ret = false; 97 const char *end; 98 char *cur; 99 100 /* Doubled-checked locking. */ 101 if (!report_available() || !r->symbol) 102 return (!report_available() && !r->symbol); 103 104 /* Generate expected report contents. */ 105 106 /* Title */ 107 cur = expected_header; 108 end = &expected_header[sizeof(expected_header) - 1]; 109 110 cur += scnprintf(cur, end - cur, "BUG: KMSAN: %s", r->error_type); 111 112 scnprintf(cur, end - cur, " in %s", r->symbol); 113 /* The exact offset won't match, remove it; also strip module name. */ 114 cur = strchr(expected_header, '+'); 115 if (cur) 116 *cur = '\0'; 117 118 spin_lock_irqsave(&observed.lock, flags); 119 if (!report_available()) 120 goto out; /* A new report is being captured. */ 121 122 /* Finally match expected output to what we actually observed. */ 123 ret = strstr(observed.header, expected_header); 124 out: 125 spin_unlock_irqrestore(&observed.lock, flags); 126 127 return ret; 128 } 129 130 /* ===== Test cases ===== */ 131 132 /* Prevent replacing branch with select in LLVM. */ 133 static noinline void check_true(char *arg) 134 { 135 pr_info("%s is true\n", arg); 136 } 137 138 static noinline void check_false(char *arg) 139 { 140 pr_info("%s is false\n", arg); 141 } 142 143 #define USE(x) \ 144 do { \ 145 if (x) \ 146 check_true(#x); \ 147 else \ 148 check_false(#x); \ 149 } while (0) 150 151 #define EXPECTATION_ETYPE_FN(e, reason, fn) \ 152 struct expect_report e = { \ 153 .error_type = reason, \ 154 .symbol = fn, \ 155 } 156 157 #define EXPECTATION_NO_REPORT(e) EXPECTATION_ETYPE_FN(e, NULL, NULL) 158 #define EXPECTATION_UNINIT_VALUE_FN(e, fn) \ 159 EXPECTATION_ETYPE_FN(e, "uninit-value", fn) 160 #define EXPECTATION_UNINIT_VALUE(e) EXPECTATION_UNINIT_VALUE_FN(e, __func__) 161 #define EXPECTATION_USE_AFTER_FREE(e) \ 162 EXPECTATION_ETYPE_FN(e, "use-after-free", __func__) 163 164 /* Test case: ensure that kmalloc() returns uninitialized memory. */ 165 static void test_uninit_kmalloc(struct kunit *test) 166 { 167 EXPECTATION_UNINIT_VALUE(expect); 168 int *ptr; 169 170 kunit_info(test, "uninitialized kmalloc test (UMR report)\n"); 171 ptr = kmalloc(sizeof(*ptr), GFP_KERNEL); 172 USE(*ptr); 173 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 174 } 175 176 /* 177 * Test case: ensure that kmalloc'ed memory becomes initialized after memset(). 178 */ 179 static void test_init_kmalloc(struct kunit *test) 180 { 181 EXPECTATION_NO_REPORT(expect); 182 int *ptr; 183 184 kunit_info(test, "initialized kmalloc test (no reports)\n"); 185 ptr = kmalloc(sizeof(*ptr), GFP_KERNEL); 186 memset(ptr, 0, sizeof(*ptr)); 187 USE(*ptr); 188 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 189 } 190 191 /* Test case: ensure that kzalloc() returns initialized memory. */ 192 static void test_init_kzalloc(struct kunit *test) 193 { 194 EXPECTATION_NO_REPORT(expect); 195 int *ptr; 196 197 kunit_info(test, "initialized kzalloc test (no reports)\n"); 198 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 199 USE(*ptr); 200 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 201 } 202 203 /* Test case: ensure that local variables are uninitialized by default. */ 204 static void test_uninit_stack_var(struct kunit *test) 205 { 206 EXPECTATION_UNINIT_VALUE(expect); 207 volatile int cond; 208 209 kunit_info(test, "uninitialized stack variable (UMR report)\n"); 210 USE(cond); 211 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 212 } 213 214 /* Test case: ensure that local variables with initializers are initialized. */ 215 static void test_init_stack_var(struct kunit *test) 216 { 217 EXPECTATION_NO_REPORT(expect); 218 volatile int cond = 1; 219 220 kunit_info(test, "initialized stack variable (no reports)\n"); 221 USE(cond); 222 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 223 } 224 225 static noinline void two_param_fn_2(int arg1, int arg2) 226 { 227 USE(arg1); 228 USE(arg2); 229 } 230 231 static noinline void one_param_fn(int arg) 232 { 233 two_param_fn_2(arg, arg); 234 USE(arg); 235 } 236 237 static noinline void two_param_fn(int arg1, int arg2) 238 { 239 int init = 0; 240 241 one_param_fn(init); 242 USE(arg1); 243 USE(arg2); 244 } 245 246 static void test_params(struct kunit *test) 247 { 248 #ifdef CONFIG_KMSAN_CHECK_PARAM_RETVAL 249 /* 250 * With eager param/retval checking enabled, KMSAN will report an error 251 * before the call to two_param_fn(). 252 */ 253 EXPECTATION_UNINIT_VALUE_FN(expect, "test_params"); 254 #else 255 EXPECTATION_UNINIT_VALUE_FN(expect, "two_param_fn"); 256 #endif 257 volatile int uninit, init = 1; 258 259 kunit_info(test, 260 "uninit passed through a function parameter (UMR report)\n"); 261 two_param_fn(uninit, init); 262 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 263 } 264 265 static int signed_sum3(int a, int b, int c) 266 { 267 return a + b + c; 268 } 269 270 /* 271 * Test case: ensure that uninitialized values are tracked through function 272 * arguments. 273 */ 274 static void test_uninit_multiple_params(struct kunit *test) 275 { 276 EXPECTATION_UNINIT_VALUE(expect); 277 volatile char b = 3, c; 278 volatile int a; 279 280 kunit_info(test, "uninitialized local passed to fn (UMR report)\n"); 281 USE(signed_sum3(a, b, c)); 282 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 283 } 284 285 /* Helper function to make an array uninitialized. */ 286 static noinline void do_uninit_local_array(char *array, int start, int stop) 287 { 288 volatile char uninit; 289 290 for (int i = start; i < stop; i++) 291 array[i] = uninit; 292 } 293 294 /* 295 * Test case: ensure kmsan_check_memory() reports an error when checking 296 * uninitialized memory. 297 */ 298 static void test_uninit_kmsan_check_memory(struct kunit *test) 299 { 300 EXPECTATION_UNINIT_VALUE_FN(expect, "test_uninit_kmsan_check_memory"); 301 volatile char local_array[8]; 302 303 kunit_info( 304 test, 305 "kmsan_check_memory() called on uninit local (UMR report)\n"); 306 do_uninit_local_array((char *)local_array, 5, 7); 307 308 kmsan_check_memory((char *)local_array, 8); 309 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 310 } 311 312 /* 313 * Test case: check that a virtual memory range created with vmap() from 314 * initialized pages is still considered as initialized. 315 */ 316 static void test_init_kmsan_vmap_vunmap(struct kunit *test) 317 { 318 EXPECTATION_NO_REPORT(expect); 319 const int npages = 2; 320 struct page **pages; 321 void *vbuf; 322 323 kunit_info(test, "pages initialized via vmap (no reports)\n"); 324 325 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 326 for (int i = 0; i < npages; i++) 327 pages[i] = alloc_page(GFP_KERNEL); 328 vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL); 329 memset(vbuf, 0xfe, npages * PAGE_SIZE); 330 for (int i = 0; i < npages; i++) 331 kmsan_check_memory(page_address(pages[i]), PAGE_SIZE); 332 333 if (vbuf) 334 vunmap(vbuf); 335 for (int i = 0; i < npages; i++) { 336 if (pages[i]) 337 __free_page(pages[i]); 338 } 339 kfree(pages); 340 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 341 } 342 343 /* 344 * Test case: ensure that memset() can initialize a buffer allocated via 345 * vmalloc(). 346 */ 347 static void test_init_vmalloc(struct kunit *test) 348 { 349 EXPECTATION_NO_REPORT(expect); 350 int npages = 8; 351 char *buf; 352 353 kunit_info(test, "vmalloc buffer can be initialized (no reports)\n"); 354 buf = vmalloc(PAGE_SIZE * npages); 355 buf[0] = 1; 356 memset(buf, 0xfe, PAGE_SIZE * npages); 357 USE(buf[0]); 358 for (int i = 0; i < npages; i++) 359 kmsan_check_memory(&buf[PAGE_SIZE * i], PAGE_SIZE); 360 vfree(buf); 361 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 362 } 363 364 /* Test case: ensure that use-after-free reporting works. */ 365 static void test_uaf(struct kunit *test) 366 { 367 EXPECTATION_USE_AFTER_FREE(expect); 368 volatile int value; 369 volatile int *var; 370 371 kunit_info(test, "use-after-free in kmalloc-ed buffer (UMR report)\n"); 372 var = kmalloc(80, GFP_KERNEL); 373 var[3] = 0xfeedface; 374 kfree((int *)var); 375 /* Copy the invalid value before checking it. */ 376 value = var[3]; 377 USE(value); 378 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 379 } 380 381 /* 382 * Test case: ensure that uninitialized values are propagated through per-CPU 383 * memory. 384 */ 385 static void test_percpu_propagate(struct kunit *test) 386 { 387 EXPECTATION_UNINIT_VALUE(expect); 388 volatile int uninit, check; 389 390 kunit_info(test, 391 "uninit local stored to per_cpu memory (UMR report)\n"); 392 393 this_cpu_write(per_cpu_var, uninit); 394 check = this_cpu_read(per_cpu_var); 395 USE(check); 396 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 397 } 398 399 /* 400 * Test case: ensure that passing uninitialized values to printk() leads to an 401 * error report. 402 */ 403 static void test_printk(struct kunit *test) 404 { 405 #ifdef CONFIG_KMSAN_CHECK_PARAM_RETVAL 406 /* 407 * With eager param/retval checking enabled, KMSAN will report an error 408 * before the call to pr_info(). 409 */ 410 EXPECTATION_UNINIT_VALUE_FN(expect, "test_printk"); 411 #else 412 EXPECTATION_UNINIT_VALUE_FN(expect, "number"); 413 #endif 414 volatile int uninit; 415 416 kunit_info(test, "uninit local passed to pr_info() (UMR report)\n"); 417 pr_info("%px contains %d\n", &uninit, uninit); 418 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 419 } 420 421 /* Prevent the compiler from inlining a memcpy() call. */ 422 static noinline void *memcpy_noinline(volatile void *dst, 423 const volatile void *src, size_t size) 424 { 425 return memcpy((void *)dst, (const void *)src, size); 426 } 427 428 /* Test case: ensure that memcpy() correctly copies initialized values. */ 429 static void test_init_memcpy(struct kunit *test) 430 { 431 EXPECTATION_NO_REPORT(expect); 432 volatile long long src; 433 volatile long long dst = 0; 434 435 src = 1; 436 kunit_info( 437 test, 438 "memcpy()ing aligned initialized src to aligned dst (no reports)\n"); 439 memcpy_noinline((void *)&dst, (void *)&src, sizeof(src)); 440 kmsan_check_memory((void *)&dst, sizeof(dst)); 441 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 442 } 443 444 /* 445 * Test case: ensure that memcpy() correctly copies uninitialized values between 446 * aligned `src` and `dst`. 447 */ 448 static void test_memcpy_aligned_to_aligned(struct kunit *test) 449 { 450 EXPECTATION_UNINIT_VALUE_FN(expect, "test_memcpy_aligned_to_aligned"); 451 volatile int uninit_src; 452 volatile int dst = 0; 453 454 kunit_info( 455 test, 456 "memcpy()ing aligned uninit src to aligned dst (UMR report)\n"); 457 memcpy_noinline((void *)&dst, (void *)&uninit_src, sizeof(uninit_src)); 458 kmsan_check_memory((void *)&dst, sizeof(dst)); 459 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 460 } 461 462 /* 463 * Test case: ensure that memcpy() correctly copies uninitialized values between 464 * aligned `src` and unaligned `dst`. 465 * 466 * Copying aligned 4-byte value to an unaligned one leads to touching two 467 * aligned 4-byte values. This test case checks that KMSAN correctly reports an 468 * error on the mentioned two values. 469 */ 470 static void test_memcpy_aligned_to_unaligned(struct kunit *test) 471 { 472 EXPECTATION_UNINIT_VALUE_FN(expect, "test_memcpy_aligned_to_unaligned"); 473 volatile int uninit_src; 474 volatile char dst[8] = { 0 }; 475 476 kunit_info( 477 test, 478 "memcpy()ing aligned uninit src to unaligned dst (UMR report)\n"); 479 kmsan_check_memory((void *)&uninit_src, sizeof(uninit_src)); 480 memcpy_noinline((void *)&dst[1], (void *)&uninit_src, 481 sizeof(uninit_src)); 482 kmsan_check_memory((void *)dst, 4); 483 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 484 report_reset(); 485 kmsan_check_memory((void *)&dst[4], sizeof(uninit_src)); 486 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 487 } 488 489 /* 490 * Test case: ensure that origin slots do not accidentally get overwritten with 491 * zeroes during memcpy(). 492 * 493 * Previously, when copying memory from an aligned buffer to an unaligned one, 494 * if there were zero origins corresponding to zero shadow values in the source 495 * buffer, they could have ended up being copied to nonzero shadow values in the 496 * destination buffer: 497 * 498 * memcpy(0xffff888080a00000, 0xffff888080900002, 8) 499 * 500 * src (0xffff888080900002): ..xx .... xx.. 501 * src origins: o111 0000 o222 502 * dst (0xffff888080a00000): xx.. ..xx 503 * dst origins: o111 0000 504 * (or 0000 o222) 505 * 506 * (here . stands for an initialized byte, and x for an uninitialized one. 507 * 508 * Ensure that this does not happen anymore, and for both destination bytes 509 * the origin is nonzero (i.e. KMSAN reports an error). 510 */ 511 static void test_memcpy_initialized_gap(struct kunit *test) 512 { 513 EXPECTATION_UNINIT_VALUE_FN(expect, "test_memcpy_initialized_gap"); 514 volatile char uninit_src[12]; 515 volatile char dst[8] = { 0 }; 516 517 kunit_info( 518 test, 519 "unaligned 4-byte initialized value gets a nonzero origin after memcpy() - (2 UMR reports)\n"); 520 521 uninit_src[0] = 42; 522 uninit_src[1] = 42; 523 uninit_src[4] = 42; 524 uninit_src[5] = 42; 525 uninit_src[6] = 42; 526 uninit_src[7] = 42; 527 uninit_src[10] = 42; 528 uninit_src[11] = 42; 529 memcpy_noinline((void *)&dst[0], (void *)&uninit_src[2], 8); 530 531 kmsan_check_memory((void *)&dst[0], 4); 532 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 533 report_reset(); 534 kmsan_check_memory((void *)&dst[2], 4); 535 KUNIT_EXPECT_FALSE(test, report_matches(&expect)); 536 report_reset(); 537 kmsan_check_memory((void *)&dst[4], 4); 538 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 539 } 540 541 /* Generate test cases for memset16(), memset32(), memset64(). */ 542 #define DEFINE_TEST_MEMSETXX(size) \ 543 static void test_memset##size(struct kunit *test) \ 544 { \ 545 EXPECTATION_NO_REPORT(expect); \ 546 volatile uint##size##_t uninit; \ 547 \ 548 kunit_info(test, \ 549 "memset" #size "() should initialize memory\n"); \ 550 memset##size((uint##size##_t *)&uninit, 0, 1); \ 551 kmsan_check_memory((void *)&uninit, sizeof(uninit)); \ 552 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); \ 553 } 554 555 DEFINE_TEST_MEMSETXX(16) 556 DEFINE_TEST_MEMSETXX(32) 557 DEFINE_TEST_MEMSETXX(64) 558 559 static noinline void fibonacci(int *array, int size, int start) 560 { 561 if (start < 2 || (start == size)) 562 return; 563 array[start] = array[start - 1] + array[start - 2]; 564 fibonacci(array, size, start + 1); 565 } 566 567 static void test_long_origin_chain(struct kunit *test) 568 { 569 EXPECTATION_UNINIT_VALUE_FN(expect, "test_long_origin_chain"); 570 /* (KMSAN_MAX_ORIGIN_DEPTH * 2) recursive calls to fibonacci(). */ 571 volatile int accum[KMSAN_MAX_ORIGIN_DEPTH * 2 + 2]; 572 int last = ARRAY_SIZE(accum) - 1; 573 574 kunit_info( 575 test, 576 "origin chain exceeding KMSAN_MAX_ORIGIN_DEPTH (UMR report)\n"); 577 /* 578 * We do not set accum[1] to 0, so the uninitializedness will be carried 579 * over to accum[2..last]. 580 */ 581 accum[0] = 1; 582 fibonacci((int *)accum, ARRAY_SIZE(accum), 2); 583 kmsan_check_memory((void *)&accum[last], sizeof(int)); 584 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 585 } 586 587 /* 588 * Test case: ensure that saving/restoring/printing stacks to/from stackdepot 589 * does not trigger errors. 590 * 591 * KMSAN uses stackdepot to store origin stack traces, that's why we do not 592 * instrument lib/stackdepot.c. Yet it must properly mark its outputs as 593 * initialized because other kernel features (e.g. netdev tracker) may also 594 * access stackdepot from instrumented code. 595 */ 596 static void test_stackdepot_roundtrip(struct kunit *test) 597 { 598 unsigned long src_entries[16], *dst_entries; 599 unsigned int src_nentries, dst_nentries; 600 EXPECTATION_NO_REPORT(expect); 601 depot_stack_handle_t handle; 602 603 kunit_info(test, "testing stackdepot roundtrip (no reports)\n"); 604 605 src_nentries = 606 stack_trace_save(src_entries, ARRAY_SIZE(src_entries), 1); 607 handle = stack_depot_save(src_entries, src_nentries, GFP_KERNEL); 608 stack_depot_print(handle); 609 dst_nentries = stack_depot_fetch(handle, &dst_entries); 610 KUNIT_EXPECT_TRUE(test, src_nentries == dst_nentries); 611 612 kmsan_check_memory((void *)dst_entries, 613 sizeof(*dst_entries) * dst_nentries); 614 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 615 } 616 617 /* 618 * Test case: ensure that kmsan_unpoison_memory() and the instrumentation work 619 * the same. 620 */ 621 static void test_unpoison_memory(struct kunit *test) 622 { 623 EXPECTATION_UNINIT_VALUE_FN(expect, "test_unpoison_memory"); 624 volatile char a[4], b[4]; 625 626 kunit_info( 627 test, 628 "unpoisoning via the instrumentation vs. kmsan_unpoison_memory() (2 UMR reports)\n"); 629 630 /* Initialize a[0] and check a[1]--a[3]. */ 631 a[0] = 0; 632 kmsan_check_memory((char *)&a[1], 3); 633 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 634 635 report_reset(); 636 637 /* Initialize b[0] and check b[1]--b[3]. */ 638 kmsan_unpoison_memory((char *)&b[0], 1); 639 kmsan_check_memory((char *)&b[1], 3); 640 KUNIT_EXPECT_TRUE(test, report_matches(&expect)); 641 } 642 643 static struct kunit_case kmsan_test_cases[] = { 644 KUNIT_CASE(test_uninit_kmalloc), 645 KUNIT_CASE(test_init_kmalloc), 646 KUNIT_CASE(test_init_kzalloc), 647 KUNIT_CASE(test_uninit_stack_var), 648 KUNIT_CASE(test_init_stack_var), 649 KUNIT_CASE(test_params), 650 KUNIT_CASE(test_uninit_multiple_params), 651 KUNIT_CASE(test_uninit_kmsan_check_memory), 652 KUNIT_CASE(test_init_kmsan_vmap_vunmap), 653 KUNIT_CASE(test_init_vmalloc), 654 KUNIT_CASE(test_uaf), 655 KUNIT_CASE(test_percpu_propagate), 656 KUNIT_CASE(test_printk), 657 KUNIT_CASE(test_init_memcpy), 658 KUNIT_CASE(test_memcpy_aligned_to_aligned), 659 KUNIT_CASE(test_memcpy_aligned_to_unaligned), 660 KUNIT_CASE(test_memcpy_initialized_gap), 661 KUNIT_CASE(test_memset16), 662 KUNIT_CASE(test_memset32), 663 KUNIT_CASE(test_memset64), 664 KUNIT_CASE(test_long_origin_chain), 665 KUNIT_CASE(test_stackdepot_roundtrip), 666 KUNIT_CASE(test_unpoison_memory), 667 {}, 668 }; 669 670 /* ===== End test cases ===== */ 671 672 static int test_init(struct kunit *test) 673 { 674 unsigned long flags; 675 676 spin_lock_irqsave(&observed.lock, flags); 677 observed.header[0] = '\0'; 678 observed.ignore = false; 679 observed.available = false; 680 spin_unlock_irqrestore(&observed.lock, flags); 681 682 return 0; 683 } 684 685 static void test_exit(struct kunit *test) 686 { 687 } 688 689 static int orig_panic_on_kmsan; 690 691 static int kmsan_suite_init(struct kunit_suite *suite) 692 { 693 register_trace_console(probe_console, NULL); 694 orig_panic_on_kmsan = panic_on_kmsan; 695 panic_on_kmsan = 0; 696 return 0; 697 } 698 699 static void kmsan_suite_exit(struct kunit_suite *suite) 700 { 701 unregister_trace_console(probe_console, NULL); 702 tracepoint_synchronize_unregister(); 703 panic_on_kmsan = orig_panic_on_kmsan; 704 } 705 706 static struct kunit_suite kmsan_test_suite = { 707 .name = "kmsan", 708 .test_cases = kmsan_test_cases, 709 .init = test_init, 710 .exit = test_exit, 711 .suite_init = kmsan_suite_init, 712 .suite_exit = kmsan_suite_exit, 713 }; 714 kunit_test_suites(&kmsan_test_suite); 715 716 MODULE_LICENSE("GPL"); 717 MODULE_AUTHOR("Alexander Potapenko <glider@google.com>"); 718
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.