~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/ksm.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Memory merging support.
  4  *
  5  * This code enables dynamic sharing of identical pages found in different
  6  * memory areas, even if they are not shared by fork()
  7  *
  8  * Copyright (C) 2008-2009 Red Hat, Inc.
  9  * Authors:
 10  *      Izik Eidus
 11  *      Andrea Arcangeli
 12  *      Chris Wright
 13  *      Hugh Dickins
 14  */
 15 
 16 #include <linux/errno.h>
 17 #include <linux/mm.h>
 18 #include <linux/mm_inline.h>
 19 #include <linux/fs.h>
 20 #include <linux/mman.h>
 21 #include <linux/sched.h>
 22 #include <linux/sched/mm.h>
 23 #include <linux/sched/coredump.h>
 24 #include <linux/sched/cputime.h>
 25 #include <linux/rwsem.h>
 26 #include <linux/pagemap.h>
 27 #include <linux/rmap.h>
 28 #include <linux/spinlock.h>
 29 #include <linux/xxhash.h>
 30 #include <linux/delay.h>
 31 #include <linux/kthread.h>
 32 #include <linux/wait.h>
 33 #include <linux/slab.h>
 34 #include <linux/rbtree.h>
 35 #include <linux/memory.h>
 36 #include <linux/mmu_notifier.h>
 37 #include <linux/swap.h>
 38 #include <linux/ksm.h>
 39 #include <linux/hashtable.h>
 40 #include <linux/freezer.h>
 41 #include <linux/oom.h>
 42 #include <linux/numa.h>
 43 #include <linux/pagewalk.h>
 44 
 45 #include <asm/tlbflush.h>
 46 #include "internal.h"
 47 #include "mm_slot.h"
 48 
 49 #define CREATE_TRACE_POINTS
 50 #include <trace/events/ksm.h>
 51 
 52 #ifdef CONFIG_NUMA
 53 #define NUMA(x)         (x)
 54 #define DO_NUMA(x)      do { (x); } while (0)
 55 #else
 56 #define NUMA(x)         (0)
 57 #define DO_NUMA(x)      do { } while (0)
 58 #endif
 59 
 60 typedef u8 rmap_age_t;
 61 
 62 /**
 63  * DOC: Overview
 64  *
 65  * A few notes about the KSM scanning process,
 66  * to make it easier to understand the data structures below:
 67  *
 68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
 69  * contents into a data structure that holds pointers to the pages' locations.
 70  *
 71  * Since the contents of the pages may change at any moment, KSM cannot just
 72  * insert the pages into a normal sorted tree and expect it to find anything.
 73  * Therefore KSM uses two data structures - the stable and the unstable tree.
 74  *
 75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
 76  * by their contents.  Because each such page is write-protected, searching on
 77  * this tree is fully assured to be working (except when pages are unmapped),
 78  * and therefore this tree is called the stable tree.
 79  *
 80  * The stable tree node includes information required for reverse
 81  * mapping from a KSM page to virtual addresses that map this page.
 82  *
 83  * In order to avoid large latencies of the rmap walks on KSM pages,
 84  * KSM maintains two types of nodes in the stable tree:
 85  *
 86  * * the regular nodes that keep the reverse mapping structures in a
 87  *   linked list
 88  * * the "chains" that link nodes ("dups") that represent the same
 89  *   write protected memory content, but each "dup" corresponds to a
 90  *   different KSM page copy of that content
 91  *
 92  * Internally, the regular nodes, "dups" and "chains" are represented
 93  * using the same struct ksm_stable_node structure.
 94  *
 95  * In addition to the stable tree, KSM uses a second data structure called the
 96  * unstable tree: this tree holds pointers to pages which have been found to
 97  * be "unchanged for a period of time".  The unstable tree sorts these pages
 98  * by their contents, but since they are not write-protected, KSM cannot rely
 99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121 
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128         struct mm_slot slot;
129         struct ksm_rmap_item *rmap_list;
130 };
131 
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142         struct ksm_mm_slot *mm_slot;
143         unsigned long address;
144         struct ksm_rmap_item **rmap_list;
145         unsigned long seqnr;
146 };
147 
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161         union {
162                 struct rb_node node;    /* when node of stable tree */
163                 struct {                /* when listed for migration */
164                         struct list_head *head;
165                         struct {
166                                 struct hlist_node hlist_dup;
167                                 struct list_head list;
168                         };
169                 };
170         };
171         struct hlist_head hlist;
172         union {
173                 unsigned long kpfn;
174                 unsigned long chain_prune_time;
175         };
176         /*
177          * STABLE_NODE_CHAIN can be any negative number in
178          * rmap_hlist_len negative range, but better not -1 to be able
179          * to reliably detect underflows.
180          */
181 #define STABLE_NODE_CHAIN -1024
182         int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184         int nid;
185 #endif
186 };
187 
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203         struct ksm_rmap_item *rmap_list;
204         union {
205                 struct anon_vma *anon_vma;      /* when stable */
206 #ifdef CONFIG_NUMA
207                 int nid;                /* when node of unstable tree */
208 #endif
209         };
210         struct mm_struct *mm;
211         unsigned long address;          /* + low bits used for flags below */
212         unsigned int oldchecksum;       /* when unstable */
213         rmap_age_t age;
214         rmap_age_t remaining_skips;
215         union {
216                 struct rb_node node;    /* when node of unstable tree */
217                 struct {                /* when listed from stable tree */
218                         struct ksm_stable_node *head;
219                         struct hlist_node hlist;
220                 };
221         };
222 };
223 
224 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
226 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
227 
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233 
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237 
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240 
241 static struct ksm_mm_slot ksm_mm_head = {
242         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245         .mm_slot = &ksm_mm_head,
246 };
247 
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251 
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254 
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257 
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260 
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263 
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266 
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269 
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272 
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275 
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278 
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281 
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284 
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287 
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290 
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293 
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297 
298 /* The number of zero pages which is placed by KSM */
299 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
300 
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303 
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306 
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309 
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312 
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315 
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318 
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327         ktime_t start_scan;
328         unsigned long scan_time;
329         unsigned long change;
330         unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333 
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336         KSM_ADVISOR_NONE,
337         KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340 
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345 
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348 
349 static void set_advisor_defaults(void)
350 {
351         if (ksm_advisor == KSM_ADVISOR_NONE) {
352                 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353         } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354                 advisor_ctx = (const struct advisor_ctx){ 0 };
355                 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356         }
357 }
358 #endif /* CONFIG_SYSFS */
359 
360 static inline void advisor_start_scan(void)
361 {
362         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363                 advisor_ctx.start_scan = ktime_get();
364 }
365 
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371                                            unsigned long scan_time)
372 {
373         return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375 
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379         return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381 
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405         unsigned int cpu_percent;
406         unsigned long cpu_time;
407         unsigned long cpu_time_diff;
408         unsigned long cpu_time_diff_ms;
409         unsigned long pages;
410         unsigned long per_page_cost;
411         unsigned long factor;
412         unsigned long change;
413         unsigned long last_scan_time;
414         unsigned long scan_time;
415 
416         /* Convert scan time to seconds */
417         scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418                             MSEC_PER_SEC);
419         scan_time = scan_time ? scan_time : 1;
420 
421         /* Calculate CPU consumption of ksmd background thread */
422         cpu_time = task_sched_runtime(current);
423         cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424         cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425 
426         cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427         cpu_percent = cpu_percent ? cpu_percent : 1;
428         last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429 
430         /* Calculate scan time as percentage of target scan time */
431         factor = ksm_advisor_target_scan_time * 100 / scan_time;
432         factor = factor ? factor : 1;
433 
434         /*
435          * Calculate scan time as percentage of last scan time and use
436          * exponentially weighted average to smooth it
437          */
438         change = scan_time * 100 / last_scan_time;
439         change = change ? change : 1;
440         change = ewma(advisor_ctx.change, change);
441 
442         /* Calculate new scan rate based on target scan rate. */
443         pages = ksm_thread_pages_to_scan * 100 / factor;
444         /* Update pages_to_scan by weighted change percentage. */
445         pages = pages * change / 100;
446 
447         /* Cap new pages_to_scan value */
448         per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449         per_page_cost = per_page_cost ? per_page_cost : 1;
450 
451         pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452         pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453         pages = min(pages, ksm_advisor_max_pages_to_scan);
454 
455         /* Update advisor context */
456         advisor_ctx.change = change;
457         advisor_ctx.scan_time = scan_time;
458         advisor_ctx.cpu_time = cpu_time;
459 
460         ksm_thread_pages_to_scan = pages;
461         trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463 
464 static void advisor_stop_scan(void)
465 {
466         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467                 scan_time_advisor();
468 }
469 
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes  1U
476 #define ksm_nr_node_ids         1
477 #endif
478 
479 #define KSM_RUN_STOP    0
480 #define KSM_RUN_MERGE   1
481 #define KSM_RUN_UNMERGE 2
482 #define KSM_RUN_OFFLINE 4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485 
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490 
491 static int __init ksm_slab_init(void)
492 {
493         rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
494         if (!rmap_item_cache)
495                 goto out;
496 
497         stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
498         if (!stable_node_cache)
499                 goto out_free1;
500 
501         mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
502         if (!mm_slot_cache)
503                 goto out_free2;
504 
505         return 0;
506 
507 out_free2:
508         kmem_cache_destroy(stable_node_cache);
509 out_free1:
510         kmem_cache_destroy(rmap_item_cache);
511 out:
512         return -ENOMEM;
513 }
514 
515 static void __init ksm_slab_free(void)
516 {
517         kmem_cache_destroy(mm_slot_cache);
518         kmem_cache_destroy(stable_node_cache);
519         kmem_cache_destroy(rmap_item_cache);
520         mm_slot_cache = NULL;
521 }
522 
523 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
524 {
525         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
526 }
527 
528 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
529 {
530         return dup->head == STABLE_NODE_DUP_HEAD;
531 }
532 
533 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
534                                              struct ksm_stable_node *chain)
535 {
536         VM_BUG_ON(is_stable_node_dup(dup));
537         dup->head = STABLE_NODE_DUP_HEAD;
538         VM_BUG_ON(!is_stable_node_chain(chain));
539         hlist_add_head(&dup->hlist_dup, &chain->hlist);
540         ksm_stable_node_dups++;
541 }
542 
543 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
544 {
545         VM_BUG_ON(!is_stable_node_dup(dup));
546         hlist_del(&dup->hlist_dup);
547         ksm_stable_node_dups--;
548 }
549 
550 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
551 {
552         VM_BUG_ON(is_stable_node_chain(dup));
553         if (is_stable_node_dup(dup))
554                 __stable_node_dup_del(dup);
555         else
556                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
557 #ifdef CONFIG_DEBUG_VM
558         dup->head = NULL;
559 #endif
560 }
561 
562 static inline struct ksm_rmap_item *alloc_rmap_item(void)
563 {
564         struct ksm_rmap_item *rmap_item;
565 
566         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
567                                                 __GFP_NORETRY | __GFP_NOWARN);
568         if (rmap_item)
569                 ksm_rmap_items++;
570         return rmap_item;
571 }
572 
573 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
574 {
575         ksm_rmap_items--;
576         rmap_item->mm->ksm_rmap_items--;
577         rmap_item->mm = NULL;   /* debug safety */
578         kmem_cache_free(rmap_item_cache, rmap_item);
579 }
580 
581 static inline struct ksm_stable_node *alloc_stable_node(void)
582 {
583         /*
584          * The allocation can take too long with GFP_KERNEL when memory is under
585          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
586          * grants access to memory reserves, helping to avoid this problem.
587          */
588         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
589 }
590 
591 static inline void free_stable_node(struct ksm_stable_node *stable_node)
592 {
593         VM_BUG_ON(stable_node->rmap_hlist_len &&
594                   !is_stable_node_chain(stable_node));
595         kmem_cache_free(stable_node_cache, stable_node);
596 }
597 
598 /*
599  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
600  * page tables after it has passed through ksm_exit() - which, if necessary,
601  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
602  * a special flag: they can just back out as soon as mm_users goes to zero.
603  * ksm_test_exit() is used throughout to make this test for exit: in some
604  * places for correctness, in some places just to avoid unnecessary work.
605  */
606 static inline bool ksm_test_exit(struct mm_struct *mm)
607 {
608         return atomic_read(&mm->mm_users) == 0;
609 }
610 
611 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
612                         struct mm_walk *walk)
613 {
614         struct page *page = NULL;
615         spinlock_t *ptl;
616         pte_t *pte;
617         pte_t ptent;
618         int ret;
619 
620         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
621         if (!pte)
622                 return 0;
623         ptent = ptep_get(pte);
624         if (pte_present(ptent)) {
625                 page = vm_normal_page(walk->vma, addr, ptent);
626         } else if (!pte_none(ptent)) {
627                 swp_entry_t entry = pte_to_swp_entry(ptent);
628 
629                 /*
630                  * As KSM pages remain KSM pages until freed, no need to wait
631                  * here for migration to end.
632                  */
633                 if (is_migration_entry(entry))
634                         page = pfn_swap_entry_to_page(entry);
635         }
636         /* return 1 if the page is an normal ksm page or KSM-placed zero page */
637         ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
638         pte_unmap_unlock(pte, ptl);
639         return ret;
640 }
641 
642 static const struct mm_walk_ops break_ksm_ops = {
643         .pmd_entry = break_ksm_pmd_entry,
644         .walk_lock = PGWALK_RDLOCK,
645 };
646 
647 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
648         .pmd_entry = break_ksm_pmd_entry,
649         .walk_lock = PGWALK_WRLOCK,
650 };
651 
652 /*
653  * We use break_ksm to break COW on a ksm page by triggering unsharing,
654  * such that the ksm page will get replaced by an exclusive anonymous page.
655  *
656  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
657  * in case the application has unmapped and remapped mm,addr meanwhile.
658  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
659  * mmap of /dev/mem, where we would not want to touch it.
660  *
661  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
662  * of the process that owns 'vma'.  We also do not want to enforce
663  * protection keys here anyway.
664  */
665 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
666 {
667         vm_fault_t ret = 0;
668         const struct mm_walk_ops *ops = lock_vma ?
669                                 &break_ksm_lock_vma_ops : &break_ksm_ops;
670 
671         do {
672                 int ksm_page;
673 
674                 cond_resched();
675                 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
676                 if (WARN_ON_ONCE(ksm_page < 0))
677                         return ksm_page;
678                 if (!ksm_page)
679                         return 0;
680                 ret = handle_mm_fault(vma, addr,
681                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
682                                       NULL);
683         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
684         /*
685          * We must loop until we no longer find a KSM page because
686          * handle_mm_fault() may back out if there's any difficulty e.g. if
687          * pte accessed bit gets updated concurrently.
688          *
689          * VM_FAULT_SIGBUS could occur if we race with truncation of the
690          * backing file, which also invalidates anonymous pages: that's
691          * okay, that truncation will have unmapped the PageKsm for us.
692          *
693          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
694          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
695          * current task has TIF_MEMDIE set, and will be OOM killed on return
696          * to user; and ksmd, having no mm, would never be chosen for that.
697          *
698          * But if the mm is in a limited mem_cgroup, then the fault may fail
699          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
700          * even ksmd can fail in this way - though it's usually breaking ksm
701          * just to undo a merge it made a moment before, so unlikely to oom.
702          *
703          * That's a pity: we might therefore have more kernel pages allocated
704          * than we're counting as nodes in the stable tree; but ksm_do_scan
705          * will retry to break_cow on each pass, so should recover the page
706          * in due course.  The important thing is to not let VM_MERGEABLE
707          * be cleared while any such pages might remain in the area.
708          */
709         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
710 }
711 
712 static bool vma_ksm_compatible(struct vm_area_struct *vma)
713 {
714         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
715                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
716                              VM_MIXEDMAP| VM_DROPPABLE))
717                 return false;           /* just ignore the advice */
718 
719         if (vma_is_dax(vma))
720                 return false;
721 
722 #ifdef VM_SAO
723         if (vma->vm_flags & VM_SAO)
724                 return false;
725 #endif
726 #ifdef VM_SPARC_ADI
727         if (vma->vm_flags & VM_SPARC_ADI)
728                 return false;
729 #endif
730 
731         return true;
732 }
733 
734 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
735                 unsigned long addr)
736 {
737         struct vm_area_struct *vma;
738         if (ksm_test_exit(mm))
739                 return NULL;
740         vma = vma_lookup(mm, addr);
741         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
742                 return NULL;
743         return vma;
744 }
745 
746 static void break_cow(struct ksm_rmap_item *rmap_item)
747 {
748         struct mm_struct *mm = rmap_item->mm;
749         unsigned long addr = rmap_item->address;
750         struct vm_area_struct *vma;
751 
752         /*
753          * It is not an accident that whenever we want to break COW
754          * to undo, we also need to drop a reference to the anon_vma.
755          */
756         put_anon_vma(rmap_item->anon_vma);
757 
758         mmap_read_lock(mm);
759         vma = find_mergeable_vma(mm, addr);
760         if (vma)
761                 break_ksm(vma, addr, false);
762         mmap_read_unlock(mm);
763 }
764 
765 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
766 {
767         struct mm_struct *mm = rmap_item->mm;
768         unsigned long addr = rmap_item->address;
769         struct vm_area_struct *vma;
770         struct page *page;
771 
772         mmap_read_lock(mm);
773         vma = find_mergeable_vma(mm, addr);
774         if (!vma)
775                 goto out;
776 
777         page = follow_page(vma, addr, FOLL_GET);
778         if (IS_ERR_OR_NULL(page))
779                 goto out;
780         if (is_zone_device_page(page))
781                 goto out_putpage;
782         if (PageAnon(page)) {
783                 flush_anon_page(vma, page, addr);
784                 flush_dcache_page(page);
785         } else {
786 out_putpage:
787                 put_page(page);
788 out:
789                 page = NULL;
790         }
791         mmap_read_unlock(mm);
792         return page;
793 }
794 
795 /*
796  * This helper is used for getting right index into array of tree roots.
797  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
798  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
799  * every node has its own stable and unstable tree.
800  */
801 static inline int get_kpfn_nid(unsigned long kpfn)
802 {
803         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
804 }
805 
806 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
807                                                    struct rb_root *root)
808 {
809         struct ksm_stable_node *chain = alloc_stable_node();
810         VM_BUG_ON(is_stable_node_chain(dup));
811         if (likely(chain)) {
812                 INIT_HLIST_HEAD(&chain->hlist);
813                 chain->chain_prune_time = jiffies;
814                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
815 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
816                 chain->nid = NUMA_NO_NODE; /* debug */
817 #endif
818                 ksm_stable_node_chains++;
819 
820                 /*
821                  * Put the stable node chain in the first dimension of
822                  * the stable tree and at the same time remove the old
823                  * stable node.
824                  */
825                 rb_replace_node(&dup->node, &chain->node, root);
826 
827                 /*
828                  * Move the old stable node to the second dimension
829                  * queued in the hlist_dup. The invariant is that all
830                  * dup stable_nodes in the chain->hlist point to pages
831                  * that are write protected and have the exact same
832                  * content.
833                  */
834                 stable_node_chain_add_dup(dup, chain);
835         }
836         return chain;
837 }
838 
839 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
840                                           struct rb_root *root)
841 {
842         rb_erase(&chain->node, root);
843         free_stable_node(chain);
844         ksm_stable_node_chains--;
845 }
846 
847 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
848 {
849         struct ksm_rmap_item *rmap_item;
850 
851         /* check it's not STABLE_NODE_CHAIN or negative */
852         BUG_ON(stable_node->rmap_hlist_len < 0);
853 
854         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
855                 if (rmap_item->hlist.next) {
856                         ksm_pages_sharing--;
857                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
858                 } else {
859                         ksm_pages_shared--;
860                 }
861 
862                 rmap_item->mm->ksm_merging_pages--;
863 
864                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
865                 stable_node->rmap_hlist_len--;
866                 put_anon_vma(rmap_item->anon_vma);
867                 rmap_item->address &= PAGE_MASK;
868                 cond_resched();
869         }
870 
871         /*
872          * We need the second aligned pointer of the migrate_nodes
873          * list_head to stay clear from the rb_parent_color union
874          * (aligned and different than any node) and also different
875          * from &migrate_nodes. This will verify that future list.h changes
876          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
877          */
878         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
879         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
880 
881         trace_ksm_remove_ksm_page(stable_node->kpfn);
882         if (stable_node->head == &migrate_nodes)
883                 list_del(&stable_node->list);
884         else
885                 stable_node_dup_del(stable_node);
886         free_stable_node(stable_node);
887 }
888 
889 enum ksm_get_folio_flags {
890         KSM_GET_FOLIO_NOLOCK,
891         KSM_GET_FOLIO_LOCK,
892         KSM_GET_FOLIO_TRYLOCK
893 };
894 
895 /*
896  * ksm_get_folio: checks if the page indicated by the stable node
897  * is still its ksm page, despite having held no reference to it.
898  * In which case we can trust the content of the page, and it
899  * returns the gotten page; but if the page has now been zapped,
900  * remove the stale node from the stable tree and return NULL.
901  * But beware, the stable node's page might be being migrated.
902  *
903  * You would expect the stable_node to hold a reference to the ksm page.
904  * But if it increments the page's count, swapping out has to wait for
905  * ksmd to come around again before it can free the page, which may take
906  * seconds or even minutes: much too unresponsive.  So instead we use a
907  * "keyhole reference": access to the ksm page from the stable node peeps
908  * out through its keyhole to see if that page still holds the right key,
909  * pointing back to this stable node.  This relies on freeing a PageAnon
910  * page to reset its page->mapping to NULL, and relies on no other use of
911  * a page to put something that might look like our key in page->mapping.
912  * is on its way to being freed; but it is an anomaly to bear in mind.
913  */
914 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
915                                  enum ksm_get_folio_flags flags)
916 {
917         struct folio *folio;
918         void *expected_mapping;
919         unsigned long kpfn;
920 
921         expected_mapping = (void *)((unsigned long)stable_node |
922                                         PAGE_MAPPING_KSM);
923 again:
924         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
925         folio = pfn_folio(kpfn);
926         if (READ_ONCE(folio->mapping) != expected_mapping)
927                 goto stale;
928 
929         /*
930          * We cannot do anything with the page while its refcount is 0.
931          * Usually 0 means free, or tail of a higher-order page: in which
932          * case this node is no longer referenced, and should be freed;
933          * however, it might mean that the page is under page_ref_freeze().
934          * The __remove_mapping() case is easy, again the node is now stale;
935          * the same is in reuse_ksm_page() case; but if page is swapcache
936          * in folio_migrate_mapping(), it might still be our page,
937          * in which case it's essential to keep the node.
938          */
939         while (!folio_try_get(folio)) {
940                 /*
941                  * Another check for page->mapping != expected_mapping would
942                  * work here too.  We have chosen the !PageSwapCache test to
943                  * optimize the common case, when the page is or is about to
944                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
945                  * in the ref_freeze section of __remove_mapping(); but Anon
946                  * folio->mapping reset to NULL later, in free_pages_prepare().
947                  */
948                 if (!folio_test_swapcache(folio))
949                         goto stale;
950                 cpu_relax();
951         }
952 
953         if (READ_ONCE(folio->mapping) != expected_mapping) {
954                 folio_put(folio);
955                 goto stale;
956         }
957 
958         if (flags == KSM_GET_FOLIO_TRYLOCK) {
959                 if (!folio_trylock(folio)) {
960                         folio_put(folio);
961                         return ERR_PTR(-EBUSY);
962                 }
963         } else if (flags == KSM_GET_FOLIO_LOCK)
964                 folio_lock(folio);
965 
966         if (flags != KSM_GET_FOLIO_NOLOCK) {
967                 if (READ_ONCE(folio->mapping) != expected_mapping) {
968                         folio_unlock(folio);
969                         folio_put(folio);
970                         goto stale;
971                 }
972         }
973         return folio;
974 
975 stale:
976         /*
977          * We come here from above when page->mapping or !PageSwapCache
978          * suggests that the node is stale; but it might be under migration.
979          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
980          * before checking whether node->kpfn has been changed.
981          */
982         smp_rmb();
983         if (READ_ONCE(stable_node->kpfn) != kpfn)
984                 goto again;
985         remove_node_from_stable_tree(stable_node);
986         return NULL;
987 }
988 
989 /*
990  * Removing rmap_item from stable or unstable tree.
991  * This function will clean the information from the stable/unstable tree.
992  */
993 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
994 {
995         if (rmap_item->address & STABLE_FLAG) {
996                 struct ksm_stable_node *stable_node;
997                 struct folio *folio;
998 
999                 stable_node = rmap_item->head;
1000                 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1001                 if (!folio)
1002                         goto out;
1003 
1004                 hlist_del(&rmap_item->hlist);
1005                 folio_unlock(folio);
1006                 folio_put(folio);
1007 
1008                 if (!hlist_empty(&stable_node->hlist))
1009                         ksm_pages_sharing--;
1010                 else
1011                         ksm_pages_shared--;
1012 
1013                 rmap_item->mm->ksm_merging_pages--;
1014 
1015                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1016                 stable_node->rmap_hlist_len--;
1017 
1018                 put_anon_vma(rmap_item->anon_vma);
1019                 rmap_item->head = NULL;
1020                 rmap_item->address &= PAGE_MASK;
1021 
1022         } else if (rmap_item->address & UNSTABLE_FLAG) {
1023                 unsigned char age;
1024                 /*
1025                  * Usually ksmd can and must skip the rb_erase, because
1026                  * root_unstable_tree was already reset to RB_ROOT.
1027                  * But be careful when an mm is exiting: do the rb_erase
1028                  * if this rmap_item was inserted by this scan, rather
1029                  * than left over from before.
1030                  */
1031                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1032                 BUG_ON(age > 1);
1033                 if (!age)
1034                         rb_erase(&rmap_item->node,
1035                                  root_unstable_tree + NUMA(rmap_item->nid));
1036                 ksm_pages_unshared--;
1037                 rmap_item->address &= PAGE_MASK;
1038         }
1039 out:
1040         cond_resched();         /* we're called from many long loops */
1041 }
1042 
1043 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1044 {
1045         while (*rmap_list) {
1046                 struct ksm_rmap_item *rmap_item = *rmap_list;
1047                 *rmap_list = rmap_item->rmap_list;
1048                 remove_rmap_item_from_tree(rmap_item);
1049                 free_rmap_item(rmap_item);
1050         }
1051 }
1052 
1053 /*
1054  * Though it's very tempting to unmerge rmap_items from stable tree rather
1055  * than check every pte of a given vma, the locking doesn't quite work for
1056  * that - an rmap_item is assigned to the stable tree after inserting ksm
1057  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1058  * rmap_items from parent to child at fork time (so as not to waste time
1059  * if exit comes before the next scan reaches it).
1060  *
1061  * Similarly, although we'd like to remove rmap_items (so updating counts
1062  * and freeing memory) when unmerging an area, it's easier to leave that
1063  * to the next pass of ksmd - consider, for example, how ksmd might be
1064  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1065  */
1066 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1067                              unsigned long start, unsigned long end, bool lock_vma)
1068 {
1069         unsigned long addr;
1070         int err = 0;
1071 
1072         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1073                 if (ksm_test_exit(vma->vm_mm))
1074                         break;
1075                 if (signal_pending(current))
1076                         err = -ERESTARTSYS;
1077                 else
1078                         err = break_ksm(vma, addr, lock_vma);
1079         }
1080         return err;
1081 }
1082 
1083 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1084 {
1085         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1086 }
1087 
1088 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1089 {
1090         return folio_stable_node(page_folio(page));
1091 }
1092 
1093 static inline void folio_set_stable_node(struct folio *folio,
1094                                          struct ksm_stable_node *stable_node)
1095 {
1096         VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1097         folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1098 }
1099 
1100 #ifdef CONFIG_SYSFS
1101 /*
1102  * Only called through the sysfs control interface:
1103  */
1104 static int remove_stable_node(struct ksm_stable_node *stable_node)
1105 {
1106         struct folio *folio;
1107         int err;
1108 
1109         folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1110         if (!folio) {
1111                 /*
1112                  * ksm_get_folio did remove_node_from_stable_tree itself.
1113                  */
1114                 return 0;
1115         }
1116 
1117         /*
1118          * Page could be still mapped if this races with __mmput() running in
1119          * between ksm_exit() and exit_mmap(). Just refuse to let
1120          * merge_across_nodes/max_page_sharing be switched.
1121          */
1122         err = -EBUSY;
1123         if (!folio_mapped(folio)) {
1124                 /*
1125                  * The stable node did not yet appear stale to ksm_get_folio(),
1126                  * since that allows for an unmapped ksm folio to be recognized
1127                  * right up until it is freed; but the node is safe to remove.
1128                  * This folio might be in an LRU cache waiting to be freed,
1129                  * or it might be in the swapcache (perhaps under writeback),
1130                  * or it might have been removed from swapcache a moment ago.
1131                  */
1132                 folio_set_stable_node(folio, NULL);
1133                 remove_node_from_stable_tree(stable_node);
1134                 err = 0;
1135         }
1136 
1137         folio_unlock(folio);
1138         folio_put(folio);
1139         return err;
1140 }
1141 
1142 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1143                                     struct rb_root *root)
1144 {
1145         struct ksm_stable_node *dup;
1146         struct hlist_node *hlist_safe;
1147 
1148         if (!is_stable_node_chain(stable_node)) {
1149                 VM_BUG_ON(is_stable_node_dup(stable_node));
1150                 if (remove_stable_node(stable_node))
1151                         return true;
1152                 else
1153                         return false;
1154         }
1155 
1156         hlist_for_each_entry_safe(dup, hlist_safe,
1157                                   &stable_node->hlist, hlist_dup) {
1158                 VM_BUG_ON(!is_stable_node_dup(dup));
1159                 if (remove_stable_node(dup))
1160                         return true;
1161         }
1162         BUG_ON(!hlist_empty(&stable_node->hlist));
1163         free_stable_node_chain(stable_node, root);
1164         return false;
1165 }
1166 
1167 static int remove_all_stable_nodes(void)
1168 {
1169         struct ksm_stable_node *stable_node, *next;
1170         int nid;
1171         int err = 0;
1172 
1173         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1174                 while (root_stable_tree[nid].rb_node) {
1175                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
1176                                                 struct ksm_stable_node, node);
1177                         if (remove_stable_node_chain(stable_node,
1178                                                      root_stable_tree + nid)) {
1179                                 err = -EBUSY;
1180                                 break;  /* proceed to next nid */
1181                         }
1182                         cond_resched();
1183                 }
1184         }
1185         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1186                 if (remove_stable_node(stable_node))
1187                         err = -EBUSY;
1188                 cond_resched();
1189         }
1190         return err;
1191 }
1192 
1193 static int unmerge_and_remove_all_rmap_items(void)
1194 {
1195         struct ksm_mm_slot *mm_slot;
1196         struct mm_slot *slot;
1197         struct mm_struct *mm;
1198         struct vm_area_struct *vma;
1199         int err = 0;
1200 
1201         spin_lock(&ksm_mmlist_lock);
1202         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1203                           struct mm_slot, mm_node);
1204         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1205         spin_unlock(&ksm_mmlist_lock);
1206 
1207         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1208              mm_slot = ksm_scan.mm_slot) {
1209                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1210 
1211                 mm = mm_slot->slot.mm;
1212                 mmap_read_lock(mm);
1213 
1214                 /*
1215                  * Exit right away if mm is exiting to avoid lockdep issue in
1216                  * the maple tree
1217                  */
1218                 if (ksm_test_exit(mm))
1219                         goto mm_exiting;
1220 
1221                 for_each_vma(vmi, vma) {
1222                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1223                                 continue;
1224                         err = unmerge_ksm_pages(vma,
1225                                                 vma->vm_start, vma->vm_end, false);
1226                         if (err)
1227                                 goto error;
1228                 }
1229 
1230 mm_exiting:
1231                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1232                 mmap_read_unlock(mm);
1233 
1234                 spin_lock(&ksm_mmlist_lock);
1235                 slot = list_entry(mm_slot->slot.mm_node.next,
1236                                   struct mm_slot, mm_node);
1237                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1238                 if (ksm_test_exit(mm)) {
1239                         hash_del(&mm_slot->slot.hash);
1240                         list_del(&mm_slot->slot.mm_node);
1241                         spin_unlock(&ksm_mmlist_lock);
1242 
1243                         mm_slot_free(mm_slot_cache, mm_slot);
1244                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1245                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1246                         mmdrop(mm);
1247                 } else
1248                         spin_unlock(&ksm_mmlist_lock);
1249         }
1250 
1251         /* Clean up stable nodes, but don't worry if some are still busy */
1252         remove_all_stable_nodes();
1253         ksm_scan.seqnr = 0;
1254         return 0;
1255 
1256 error:
1257         mmap_read_unlock(mm);
1258         spin_lock(&ksm_mmlist_lock);
1259         ksm_scan.mm_slot = &ksm_mm_head;
1260         spin_unlock(&ksm_mmlist_lock);
1261         return err;
1262 }
1263 #endif /* CONFIG_SYSFS */
1264 
1265 static u32 calc_checksum(struct page *page)
1266 {
1267         u32 checksum;
1268         void *addr = kmap_local_page(page);
1269         checksum = xxhash(addr, PAGE_SIZE, 0);
1270         kunmap_local(addr);
1271         return checksum;
1272 }
1273 
1274 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1275                               pte_t *orig_pte)
1276 {
1277         struct mm_struct *mm = vma->vm_mm;
1278         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1279         int swapped;
1280         int err = -EFAULT;
1281         struct mmu_notifier_range range;
1282         bool anon_exclusive;
1283         pte_t entry;
1284 
1285         if (WARN_ON_ONCE(folio_test_large(folio)))
1286                 return err;
1287 
1288         pvmw.address = page_address_in_vma(&folio->page, vma);
1289         if (pvmw.address == -EFAULT)
1290                 goto out;
1291 
1292         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1293                                 pvmw.address + PAGE_SIZE);
1294         mmu_notifier_invalidate_range_start(&range);
1295 
1296         if (!page_vma_mapped_walk(&pvmw))
1297                 goto out_mn;
1298         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1299                 goto out_unlock;
1300 
1301         anon_exclusive = PageAnonExclusive(&folio->page);
1302         entry = ptep_get(pvmw.pte);
1303         if (pte_write(entry) || pte_dirty(entry) ||
1304             anon_exclusive || mm_tlb_flush_pending(mm)) {
1305                 swapped = folio_test_swapcache(folio);
1306                 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1307                 /*
1308                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1309                  * take any lock, therefore the check that we are going to make
1310                  * with the pagecount against the mapcount is racy and
1311                  * O_DIRECT can happen right after the check.
1312                  * So we clear the pte and flush the tlb before the check
1313                  * this assure us that no O_DIRECT can happen after the check
1314                  * or in the middle of the check.
1315                  *
1316                  * No need to notify as we are downgrading page table to read
1317                  * only not changing it to point to a new page.
1318                  *
1319                  * See Documentation/mm/mmu_notifier.rst
1320                  */
1321                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1322                 /*
1323                  * Check that no O_DIRECT or similar I/O is in progress on the
1324                  * page
1325                  */
1326                 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1327                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1328                         goto out_unlock;
1329                 }
1330 
1331                 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1332                 if (anon_exclusive &&
1333                     folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1334                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1335                         goto out_unlock;
1336                 }
1337 
1338                 if (pte_dirty(entry))
1339                         folio_mark_dirty(folio);
1340                 entry = pte_mkclean(entry);
1341 
1342                 if (pte_write(entry))
1343                         entry = pte_wrprotect(entry);
1344 
1345                 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1346         }
1347         *orig_pte = entry;
1348         err = 0;
1349 
1350 out_unlock:
1351         page_vma_mapped_walk_done(&pvmw);
1352 out_mn:
1353         mmu_notifier_invalidate_range_end(&range);
1354 out:
1355         return err;
1356 }
1357 
1358 /**
1359  * replace_page - replace page in vma by new ksm page
1360  * @vma:      vma that holds the pte pointing to page
1361  * @page:     the page we are replacing by kpage
1362  * @kpage:    the ksm page we replace page by
1363  * @orig_pte: the original value of the pte
1364  *
1365  * Returns 0 on success, -EFAULT on failure.
1366  */
1367 static int replace_page(struct vm_area_struct *vma, struct page *page,
1368                         struct page *kpage, pte_t orig_pte)
1369 {
1370         struct folio *kfolio = page_folio(kpage);
1371         struct mm_struct *mm = vma->vm_mm;
1372         struct folio *folio;
1373         pmd_t *pmd;
1374         pmd_t pmde;
1375         pte_t *ptep;
1376         pte_t newpte;
1377         spinlock_t *ptl;
1378         unsigned long addr;
1379         int err = -EFAULT;
1380         struct mmu_notifier_range range;
1381 
1382         addr = page_address_in_vma(page, vma);
1383         if (addr == -EFAULT)
1384                 goto out;
1385 
1386         pmd = mm_find_pmd(mm, addr);
1387         if (!pmd)
1388                 goto out;
1389         /*
1390          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1391          * without holding anon_vma lock for write.  So when looking for a
1392          * genuine pmde (in which to find pte), test present and !THP together.
1393          */
1394         pmde = pmdp_get_lockless(pmd);
1395         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1396                 goto out;
1397 
1398         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1399                                 addr + PAGE_SIZE);
1400         mmu_notifier_invalidate_range_start(&range);
1401 
1402         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1403         if (!ptep)
1404                 goto out_mn;
1405         if (!pte_same(ptep_get(ptep), orig_pte)) {
1406                 pte_unmap_unlock(ptep, ptl);
1407                 goto out_mn;
1408         }
1409         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1410         VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1411                         kfolio);
1412 
1413         /*
1414          * No need to check ksm_use_zero_pages here: we can only have a
1415          * zero_page here if ksm_use_zero_pages was enabled already.
1416          */
1417         if (!is_zero_pfn(page_to_pfn(kpage))) {
1418                 folio_get(kfolio);
1419                 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1420                 newpte = mk_pte(kpage, vma->vm_page_prot);
1421         } else {
1422                 /*
1423                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1424                  * we can easily track all KSM-placed zero pages by checking if
1425                  * the dirty bit in zero page's PTE is set.
1426                  */
1427                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1428                 ksm_map_zero_page(mm);
1429                 /*
1430                  * We're replacing an anonymous page with a zero page, which is
1431                  * not anonymous. We need to do proper accounting otherwise we
1432                  * will get wrong values in /proc, and a BUG message in dmesg
1433                  * when tearing down the mm.
1434                  */
1435                 dec_mm_counter(mm, MM_ANONPAGES);
1436         }
1437 
1438         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1439         /*
1440          * No need to notify as we are replacing a read only page with another
1441          * read only page with the same content.
1442          *
1443          * See Documentation/mm/mmu_notifier.rst
1444          */
1445         ptep_clear_flush(vma, addr, ptep);
1446         set_pte_at(mm, addr, ptep, newpte);
1447 
1448         folio = page_folio(page);
1449         folio_remove_rmap_pte(folio, page, vma);
1450         if (!folio_mapped(folio))
1451                 folio_free_swap(folio);
1452         folio_put(folio);
1453 
1454         pte_unmap_unlock(ptep, ptl);
1455         err = 0;
1456 out_mn:
1457         mmu_notifier_invalidate_range_end(&range);
1458 out:
1459         return err;
1460 }
1461 
1462 /*
1463  * try_to_merge_one_page - take two pages and merge them into one
1464  * @vma: the vma that holds the pte pointing to page
1465  * @page: the PageAnon page that we want to replace with kpage
1466  * @kpage: the PageKsm page that we want to map instead of page,
1467  *         or NULL the first time when we want to use page as kpage.
1468  *
1469  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1470  */
1471 static int try_to_merge_one_page(struct vm_area_struct *vma,
1472                                  struct page *page, struct page *kpage)
1473 {
1474         pte_t orig_pte = __pte(0);
1475         int err = -EFAULT;
1476 
1477         if (page == kpage)                      /* ksm page forked */
1478                 return 0;
1479 
1480         if (!PageAnon(page))
1481                 goto out;
1482 
1483         /*
1484          * We need the page lock to read a stable PageSwapCache in
1485          * write_protect_page().  We use trylock_page() instead of
1486          * lock_page() because we don't want to wait here - we
1487          * prefer to continue scanning and merging different pages,
1488          * then come back to this page when it is unlocked.
1489          */
1490         if (!trylock_page(page))
1491                 goto out;
1492 
1493         if (PageTransCompound(page)) {
1494                 if (split_huge_page(page))
1495                         goto out_unlock;
1496         }
1497 
1498         /*
1499          * If this anonymous page is mapped only here, its pte may need
1500          * to be write-protected.  If it's mapped elsewhere, all of its
1501          * ptes are necessarily already write-protected.  But in either
1502          * case, we need to lock and check page_count is not raised.
1503          */
1504         if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1505                 if (!kpage) {
1506                         /*
1507                          * While we hold page lock, upgrade page from
1508                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1509                          * stable_tree_insert() will update stable_node.
1510                          */
1511                         folio_set_stable_node(page_folio(page), NULL);
1512                         mark_page_accessed(page);
1513                         /*
1514                          * Page reclaim just frees a clean page with no dirty
1515                          * ptes: make sure that the ksm page would be swapped.
1516                          */
1517                         if (!PageDirty(page))
1518                                 SetPageDirty(page);
1519                         err = 0;
1520                 } else if (pages_identical(page, kpage))
1521                         err = replace_page(vma, page, kpage, orig_pte);
1522         }
1523 
1524 out_unlock:
1525         unlock_page(page);
1526 out:
1527         return err;
1528 }
1529 
1530 /*
1531  * This function returns 0 if the pages were merged or if they are
1532  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1533  */
1534 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1535                                        struct page *page)
1536 {
1537         struct mm_struct *mm = rmap_item->mm;
1538         int err = -EFAULT;
1539 
1540         /*
1541          * Same checksum as an empty page. We attempt to merge it with the
1542          * appropriate zero page if the user enabled this via sysfs.
1543          */
1544         if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1545                 struct vm_area_struct *vma;
1546 
1547                 mmap_read_lock(mm);
1548                 vma = find_mergeable_vma(mm, rmap_item->address);
1549                 if (vma) {
1550                         err = try_to_merge_one_page(vma, page,
1551                                         ZERO_PAGE(rmap_item->address));
1552                         trace_ksm_merge_one_page(
1553                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
1554                                 rmap_item, mm, err);
1555                 } else {
1556                         /*
1557                          * If the vma is out of date, we do not need to
1558                          * continue.
1559                          */
1560                         err = 0;
1561                 }
1562                 mmap_read_unlock(mm);
1563         }
1564 
1565         return err;
1566 }
1567 
1568 /*
1569  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1570  * but no new kernel page is allocated: kpage must already be a ksm page.
1571  *
1572  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1573  */
1574 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1575                                       struct page *page, struct page *kpage)
1576 {
1577         struct mm_struct *mm = rmap_item->mm;
1578         struct vm_area_struct *vma;
1579         int err = -EFAULT;
1580 
1581         mmap_read_lock(mm);
1582         vma = find_mergeable_vma(mm, rmap_item->address);
1583         if (!vma)
1584                 goto out;
1585 
1586         err = try_to_merge_one_page(vma, page, kpage);
1587         if (err)
1588                 goto out;
1589 
1590         /* Unstable nid is in union with stable anon_vma: remove first */
1591         remove_rmap_item_from_tree(rmap_item);
1592 
1593         /* Must get reference to anon_vma while still holding mmap_lock */
1594         rmap_item->anon_vma = vma->anon_vma;
1595         get_anon_vma(vma->anon_vma);
1596 out:
1597         mmap_read_unlock(mm);
1598         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1599                                 rmap_item, mm, err);
1600         return err;
1601 }
1602 
1603 /*
1604  * try_to_merge_two_pages - take two identical pages and prepare them
1605  * to be merged into one page.
1606  *
1607  * This function returns the kpage if we successfully merged two identical
1608  * pages into one ksm page, NULL otherwise.
1609  *
1610  * Note that this function upgrades page to ksm page: if one of the pages
1611  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1612  */
1613 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1614                                            struct page *page,
1615                                            struct ksm_rmap_item *tree_rmap_item,
1616                                            struct page *tree_page)
1617 {
1618         int err;
1619 
1620         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1621         if (!err) {
1622                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1623                                                         tree_page, page);
1624                 /*
1625                  * If that fails, we have a ksm page with only one pte
1626                  * pointing to it: so break it.
1627                  */
1628                 if (err)
1629                         break_cow(rmap_item);
1630         }
1631         return err ? NULL : page;
1632 }
1633 
1634 static __always_inline
1635 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1636 {
1637         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1638         /*
1639          * Check that at least one mapping still exists, otherwise
1640          * there's no much point to merge and share with this
1641          * stable_node, as the underlying tree_page of the other
1642          * sharer is going to be freed soon.
1643          */
1644         return stable_node->rmap_hlist_len &&
1645                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1646 }
1647 
1648 static __always_inline
1649 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1650 {
1651         return __is_page_sharing_candidate(stable_node, 0);
1652 }
1653 
1654 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1655                                      struct ksm_stable_node **_stable_node,
1656                                      struct rb_root *root,
1657                                      bool prune_stale_stable_nodes)
1658 {
1659         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1660         struct hlist_node *hlist_safe;
1661         struct folio *folio, *tree_folio = NULL;
1662         int found_rmap_hlist_len;
1663 
1664         if (!prune_stale_stable_nodes ||
1665             time_before(jiffies, stable_node->chain_prune_time +
1666                         msecs_to_jiffies(
1667                                 ksm_stable_node_chains_prune_millisecs)))
1668                 prune_stale_stable_nodes = false;
1669         else
1670                 stable_node->chain_prune_time = jiffies;
1671 
1672         hlist_for_each_entry_safe(dup, hlist_safe,
1673                                   &stable_node->hlist, hlist_dup) {
1674                 cond_resched();
1675                 /*
1676                  * We must walk all stable_node_dup to prune the stale
1677                  * stable nodes during lookup.
1678                  *
1679                  * ksm_get_folio can drop the nodes from the
1680                  * stable_node->hlist if they point to freed pages
1681                  * (that's why we do a _safe walk). The "dup"
1682                  * stable_node parameter itself will be freed from
1683                  * under us if it returns NULL.
1684                  */
1685                 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1686                 if (!folio)
1687                         continue;
1688                 /* Pick the best candidate if possible. */
1689                 if (!found || (is_page_sharing_candidate(dup) &&
1690                     (!is_page_sharing_candidate(found) ||
1691                      dup->rmap_hlist_len > found_rmap_hlist_len))) {
1692                         if (found)
1693                                 folio_put(tree_folio);
1694                         found = dup;
1695                         found_rmap_hlist_len = found->rmap_hlist_len;
1696                         tree_folio = folio;
1697                         /* skip put_page for found candidate */
1698                         if (!prune_stale_stable_nodes &&
1699                             is_page_sharing_candidate(found))
1700                                 break;
1701                         continue;
1702                 }
1703                 folio_put(folio);
1704         }
1705 
1706         if (found) {
1707                 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1708                         /*
1709                          * If there's not just one entry it would
1710                          * corrupt memory, better BUG_ON. In KSM
1711                          * context with no lock held it's not even
1712                          * fatal.
1713                          */
1714                         BUG_ON(stable_node->hlist.first->next);
1715 
1716                         /*
1717                          * There's just one entry and it is below the
1718                          * deduplication limit so drop the chain.
1719                          */
1720                         rb_replace_node(&stable_node->node, &found->node,
1721                                         root);
1722                         free_stable_node(stable_node);
1723                         ksm_stable_node_chains--;
1724                         ksm_stable_node_dups--;
1725                         /*
1726                          * NOTE: the caller depends on the stable_node
1727                          * to be equal to stable_node_dup if the chain
1728                          * was collapsed.
1729                          */
1730                         *_stable_node = found;
1731                         /*
1732                          * Just for robustness, as stable_node is
1733                          * otherwise left as a stable pointer, the
1734                          * compiler shall optimize it away at build
1735                          * time.
1736                          */
1737                         stable_node = NULL;
1738                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1739                            __is_page_sharing_candidate(found, 1)) {
1740                         /*
1741                          * If the found stable_node dup can accept one
1742                          * more future merge (in addition to the one
1743                          * that is underway) and is not at the head of
1744                          * the chain, put it there so next search will
1745                          * be quicker in the !prune_stale_stable_nodes
1746                          * case.
1747                          *
1748                          * NOTE: it would be inaccurate to use nr > 1
1749                          * instead of checking the hlist.first pointer
1750                          * directly, because in the
1751                          * prune_stale_stable_nodes case "nr" isn't
1752                          * the position of the found dup in the chain,
1753                          * but the total number of dups in the chain.
1754                          */
1755                         hlist_del(&found->hlist_dup);
1756                         hlist_add_head(&found->hlist_dup,
1757                                        &stable_node->hlist);
1758                 }
1759         } else {
1760                 /* Its hlist must be empty if no one found. */
1761                 free_stable_node_chain(stable_node, root);
1762         }
1763 
1764         *_stable_node_dup = found;
1765         return tree_folio;
1766 }
1767 
1768 /*
1769  * Like for ksm_get_folio, this function can free the *_stable_node and
1770  * *_stable_node_dup if the returned tree_page is NULL.
1771  *
1772  * It can also free and overwrite *_stable_node with the found
1773  * stable_node_dup if the chain is collapsed (in which case
1774  * *_stable_node will be equal to *_stable_node_dup like if the chain
1775  * never existed). It's up to the caller to verify tree_page is not
1776  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1777  *
1778  * *_stable_node_dup is really a second output parameter of this
1779  * function and will be overwritten in all cases, the caller doesn't
1780  * need to initialize it.
1781  */
1782 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1783                                          struct ksm_stable_node **_stable_node,
1784                                          struct rb_root *root,
1785                                          bool prune_stale_stable_nodes)
1786 {
1787         struct ksm_stable_node *stable_node = *_stable_node;
1788 
1789         if (!is_stable_node_chain(stable_node)) {
1790                 *_stable_node_dup = stable_node;
1791                 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1792         }
1793         return stable_node_dup(_stable_node_dup, _stable_node, root,
1794                                prune_stale_stable_nodes);
1795 }
1796 
1797 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1798                                                  struct ksm_stable_node **s_n,
1799                                                  struct rb_root *root)
1800 {
1801         return __stable_node_chain(s_n_d, s_n, root, true);
1802 }
1803 
1804 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1805                                            struct ksm_stable_node **s_n,
1806                                            struct rb_root *root)
1807 {
1808         return __stable_node_chain(s_n_d, s_n, root, false);
1809 }
1810 
1811 /*
1812  * stable_tree_search - search for page inside the stable tree
1813  *
1814  * This function checks if there is a page inside the stable tree
1815  * with identical content to the page that we are scanning right now.
1816  *
1817  * This function returns the stable tree node of identical content if found,
1818  * NULL otherwise.
1819  */
1820 static struct page *stable_tree_search(struct page *page)
1821 {
1822         int nid;
1823         struct rb_root *root;
1824         struct rb_node **new;
1825         struct rb_node *parent;
1826         struct ksm_stable_node *stable_node, *stable_node_dup;
1827         struct ksm_stable_node *page_node;
1828         struct folio *folio;
1829 
1830         folio = page_folio(page);
1831         page_node = folio_stable_node(folio);
1832         if (page_node && page_node->head != &migrate_nodes) {
1833                 /* ksm page forked */
1834                 folio_get(folio);
1835                 return &folio->page;
1836         }
1837 
1838         nid = get_kpfn_nid(folio_pfn(folio));
1839         root = root_stable_tree + nid;
1840 again:
1841         new = &root->rb_node;
1842         parent = NULL;
1843 
1844         while (*new) {
1845                 struct folio *tree_folio;
1846                 int ret;
1847 
1848                 cond_resched();
1849                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1850                 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1851                 if (!tree_folio) {
1852                         /*
1853                          * If we walked over a stale stable_node,
1854                          * ksm_get_folio() will call rb_erase() and it
1855                          * may rebalance the tree from under us. So
1856                          * restart the search from scratch. Returning
1857                          * NULL would be safe too, but we'd generate
1858                          * false negative insertions just because some
1859                          * stable_node was stale.
1860                          */
1861                         goto again;
1862                 }
1863 
1864                 ret = memcmp_pages(page, &tree_folio->page);
1865                 folio_put(tree_folio);
1866 
1867                 parent = *new;
1868                 if (ret < 0)
1869                         new = &parent->rb_left;
1870                 else if (ret > 0)
1871                         new = &parent->rb_right;
1872                 else {
1873                         if (page_node) {
1874                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1875                                 /*
1876                                  * If the mapcount of our migrated KSM folio is
1877                                  * at most 1, we can merge it with another
1878                                  * KSM folio where we know that we have space
1879                                  * for one more mapping without exceeding the
1880                                  * ksm_max_page_sharing limit: see
1881                                  * chain_prune(). This way, we can avoid adding
1882                                  * this stable node to the chain.
1883                                  */
1884                                 if (folio_mapcount(folio) > 1)
1885                                         goto chain_append;
1886                         }
1887 
1888                         if (!is_page_sharing_candidate(stable_node_dup)) {
1889                                 /*
1890                                  * If the stable_node is a chain and
1891                                  * we got a payload match in memcmp
1892                                  * but we cannot merge the scanned
1893                                  * page in any of the existing
1894                                  * stable_node dups because they're
1895                                  * all full, we need to wait the
1896                                  * scanned page to find itself a match
1897                                  * in the unstable tree to create a
1898                                  * brand new KSM page to add later to
1899                                  * the dups of this stable_node.
1900                                  */
1901                                 return NULL;
1902                         }
1903 
1904                         /*
1905                          * Lock and unlock the stable_node's page (which
1906                          * might already have been migrated) so that page
1907                          * migration is sure to notice its raised count.
1908                          * It would be more elegant to return stable_node
1909                          * than kpage, but that involves more changes.
1910                          */
1911                         tree_folio = ksm_get_folio(stable_node_dup,
1912                                                    KSM_GET_FOLIO_TRYLOCK);
1913 
1914                         if (PTR_ERR(tree_folio) == -EBUSY)
1915                                 return ERR_PTR(-EBUSY);
1916 
1917                         if (unlikely(!tree_folio))
1918                                 /*
1919                                  * The tree may have been rebalanced,
1920                                  * so re-evaluate parent and new.
1921                                  */
1922                                 goto again;
1923                         folio_unlock(tree_folio);
1924 
1925                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1926                             NUMA(stable_node_dup->nid)) {
1927                                 folio_put(tree_folio);
1928                                 goto replace;
1929                         }
1930                         return &tree_folio->page;
1931                 }
1932         }
1933 
1934         if (!page_node)
1935                 return NULL;
1936 
1937         list_del(&page_node->list);
1938         DO_NUMA(page_node->nid = nid);
1939         rb_link_node(&page_node->node, parent, new);
1940         rb_insert_color(&page_node->node, root);
1941 out:
1942         if (is_page_sharing_candidate(page_node)) {
1943                 folio_get(folio);
1944                 return &folio->page;
1945         } else
1946                 return NULL;
1947 
1948 replace:
1949         /*
1950          * If stable_node was a chain and chain_prune collapsed it,
1951          * stable_node has been updated to be the new regular
1952          * stable_node. A collapse of the chain is indistinguishable
1953          * from the case there was no chain in the stable
1954          * rbtree. Otherwise stable_node is the chain and
1955          * stable_node_dup is the dup to replace.
1956          */
1957         if (stable_node_dup == stable_node) {
1958                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1959                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1960                 /* there is no chain */
1961                 if (page_node) {
1962                         VM_BUG_ON(page_node->head != &migrate_nodes);
1963                         list_del(&page_node->list);
1964                         DO_NUMA(page_node->nid = nid);
1965                         rb_replace_node(&stable_node_dup->node,
1966                                         &page_node->node,
1967                                         root);
1968                         if (is_page_sharing_candidate(page_node))
1969                                 folio_get(folio);
1970                         else
1971                                 folio = NULL;
1972                 } else {
1973                         rb_erase(&stable_node_dup->node, root);
1974                         folio = NULL;
1975                 }
1976         } else {
1977                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1978                 __stable_node_dup_del(stable_node_dup);
1979                 if (page_node) {
1980                         VM_BUG_ON(page_node->head != &migrate_nodes);
1981                         list_del(&page_node->list);
1982                         DO_NUMA(page_node->nid = nid);
1983                         stable_node_chain_add_dup(page_node, stable_node);
1984                         if (is_page_sharing_candidate(page_node))
1985                                 folio_get(folio);
1986                         else
1987                                 folio = NULL;
1988                 } else {
1989                         folio = NULL;
1990                 }
1991         }
1992         stable_node_dup->head = &migrate_nodes;
1993         list_add(&stable_node_dup->list, stable_node_dup->head);
1994         return &folio->page;
1995 
1996 chain_append:
1997         /*
1998          * If stable_node was a chain and chain_prune collapsed it,
1999          * stable_node has been updated to be the new regular
2000          * stable_node. A collapse of the chain is indistinguishable
2001          * from the case there was no chain in the stable
2002          * rbtree. Otherwise stable_node is the chain and
2003          * stable_node_dup is the dup to replace.
2004          */
2005         if (stable_node_dup == stable_node) {
2006                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2007                 /* chain is missing so create it */
2008                 stable_node = alloc_stable_node_chain(stable_node_dup,
2009                                                       root);
2010                 if (!stable_node)
2011                         return NULL;
2012         }
2013         /*
2014          * Add this stable_node dup that was
2015          * migrated to the stable_node chain
2016          * of the current nid for this page
2017          * content.
2018          */
2019         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2020         VM_BUG_ON(page_node->head != &migrate_nodes);
2021         list_del(&page_node->list);
2022         DO_NUMA(page_node->nid = nid);
2023         stable_node_chain_add_dup(page_node, stable_node);
2024         goto out;
2025 }
2026 
2027 /*
2028  * stable_tree_insert - insert stable tree node pointing to new ksm page
2029  * into the stable tree.
2030  *
2031  * This function returns the stable tree node just allocated on success,
2032  * NULL otherwise.
2033  */
2034 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2035 {
2036         int nid;
2037         unsigned long kpfn;
2038         struct rb_root *root;
2039         struct rb_node **new;
2040         struct rb_node *parent;
2041         struct ksm_stable_node *stable_node, *stable_node_dup;
2042         bool need_chain = false;
2043 
2044         kpfn = folio_pfn(kfolio);
2045         nid = get_kpfn_nid(kpfn);
2046         root = root_stable_tree + nid;
2047 again:
2048         parent = NULL;
2049         new = &root->rb_node;
2050 
2051         while (*new) {
2052                 struct folio *tree_folio;
2053                 int ret;
2054 
2055                 cond_resched();
2056                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2057                 tree_folio = chain(&stable_node_dup, &stable_node, root);
2058                 if (!tree_folio) {
2059                         /*
2060                          * If we walked over a stale stable_node,
2061                          * ksm_get_folio() will call rb_erase() and it
2062                          * may rebalance the tree from under us. So
2063                          * restart the search from scratch. Returning
2064                          * NULL would be safe too, but we'd generate
2065                          * false negative insertions just because some
2066                          * stable_node was stale.
2067                          */
2068                         goto again;
2069                 }
2070 
2071                 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2072                 folio_put(tree_folio);
2073 
2074                 parent = *new;
2075                 if (ret < 0)
2076                         new = &parent->rb_left;
2077                 else if (ret > 0)
2078                         new = &parent->rb_right;
2079                 else {
2080                         need_chain = true;
2081                         break;
2082                 }
2083         }
2084 
2085         stable_node_dup = alloc_stable_node();
2086         if (!stable_node_dup)
2087                 return NULL;
2088 
2089         INIT_HLIST_HEAD(&stable_node_dup->hlist);
2090         stable_node_dup->kpfn = kpfn;
2091         stable_node_dup->rmap_hlist_len = 0;
2092         DO_NUMA(stable_node_dup->nid = nid);
2093         if (!need_chain) {
2094                 rb_link_node(&stable_node_dup->node, parent, new);
2095                 rb_insert_color(&stable_node_dup->node, root);
2096         } else {
2097                 if (!is_stable_node_chain(stable_node)) {
2098                         struct ksm_stable_node *orig = stable_node;
2099                         /* chain is missing so create it */
2100                         stable_node = alloc_stable_node_chain(orig, root);
2101                         if (!stable_node) {
2102                                 free_stable_node(stable_node_dup);
2103                                 return NULL;
2104                         }
2105                 }
2106                 stable_node_chain_add_dup(stable_node_dup, stable_node);
2107         }
2108 
2109         folio_set_stable_node(kfolio, stable_node_dup);
2110 
2111         return stable_node_dup;
2112 }
2113 
2114 /*
2115  * unstable_tree_search_insert - search for identical page,
2116  * else insert rmap_item into the unstable tree.
2117  *
2118  * This function searches for a page in the unstable tree identical to the
2119  * page currently being scanned; and if no identical page is found in the
2120  * tree, we insert rmap_item as a new object into the unstable tree.
2121  *
2122  * This function returns pointer to rmap_item found to be identical
2123  * to the currently scanned page, NULL otherwise.
2124  *
2125  * This function does both searching and inserting, because they share
2126  * the same walking algorithm in an rbtree.
2127  */
2128 static
2129 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2130                                               struct page *page,
2131                                               struct page **tree_pagep)
2132 {
2133         struct rb_node **new;
2134         struct rb_root *root;
2135         struct rb_node *parent = NULL;
2136         int nid;
2137 
2138         nid = get_kpfn_nid(page_to_pfn(page));
2139         root = root_unstable_tree + nid;
2140         new = &root->rb_node;
2141 
2142         while (*new) {
2143                 struct ksm_rmap_item *tree_rmap_item;
2144                 struct page *tree_page;
2145                 int ret;
2146 
2147                 cond_resched();
2148                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2149                 tree_page = get_mergeable_page(tree_rmap_item);
2150                 if (!tree_page)
2151                         return NULL;
2152 
2153                 /*
2154                  * Don't substitute a ksm page for a forked page.
2155                  */
2156                 if (page == tree_page) {
2157                         put_page(tree_page);
2158                         return NULL;
2159                 }
2160 
2161                 ret = memcmp_pages(page, tree_page);
2162 
2163                 parent = *new;
2164                 if (ret < 0) {
2165                         put_page(tree_page);
2166                         new = &parent->rb_left;
2167                 } else if (ret > 0) {
2168                         put_page(tree_page);
2169                         new = &parent->rb_right;
2170                 } else if (!ksm_merge_across_nodes &&
2171                            page_to_nid(tree_page) != nid) {
2172                         /*
2173                          * If tree_page has been migrated to another NUMA node,
2174                          * it will be flushed out and put in the right unstable
2175                          * tree next time: only merge with it when across_nodes.
2176                          */
2177                         put_page(tree_page);
2178                         return NULL;
2179                 } else {
2180                         *tree_pagep = tree_page;
2181                         return tree_rmap_item;
2182                 }
2183         }
2184 
2185         rmap_item->address |= UNSTABLE_FLAG;
2186         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2187         DO_NUMA(rmap_item->nid = nid);
2188         rb_link_node(&rmap_item->node, parent, new);
2189         rb_insert_color(&rmap_item->node, root);
2190 
2191         ksm_pages_unshared++;
2192         return NULL;
2193 }
2194 
2195 /*
2196  * stable_tree_append - add another rmap_item to the linked list of
2197  * rmap_items hanging off a given node of the stable tree, all sharing
2198  * the same ksm page.
2199  */
2200 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2201                                struct ksm_stable_node *stable_node,
2202                                bool max_page_sharing_bypass)
2203 {
2204         /*
2205          * rmap won't find this mapping if we don't insert the
2206          * rmap_item in the right stable_node
2207          * duplicate. page_migration could break later if rmap breaks,
2208          * so we can as well crash here. We really need to check for
2209          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2210          * for other negative values as an underflow if detected here
2211          * for the first time (and not when decreasing rmap_hlist_len)
2212          * would be sign of memory corruption in the stable_node.
2213          */
2214         BUG_ON(stable_node->rmap_hlist_len < 0);
2215 
2216         stable_node->rmap_hlist_len++;
2217         if (!max_page_sharing_bypass)
2218                 /* possibly non fatal but unexpected overflow, only warn */
2219                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2220                              ksm_max_page_sharing);
2221 
2222         rmap_item->head = stable_node;
2223         rmap_item->address |= STABLE_FLAG;
2224         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2225 
2226         if (rmap_item->hlist.next)
2227                 ksm_pages_sharing++;
2228         else
2229                 ksm_pages_shared++;
2230 
2231         rmap_item->mm->ksm_merging_pages++;
2232 }
2233 
2234 /*
2235  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2236  * if not, compare checksum to previous and if it's the same, see if page can
2237  * be inserted into the unstable tree, or merged with a page already there and
2238  * both transferred to the stable tree.
2239  *
2240  * @page: the page that we are searching identical page to.
2241  * @rmap_item: the reverse mapping into the virtual address of this page
2242  */
2243 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2244 {
2245         struct ksm_rmap_item *tree_rmap_item;
2246         struct page *tree_page = NULL;
2247         struct ksm_stable_node *stable_node;
2248         struct page *kpage;
2249         unsigned int checksum;
2250         int err;
2251         bool max_page_sharing_bypass = false;
2252 
2253         stable_node = page_stable_node(page);
2254         if (stable_node) {
2255                 if (stable_node->head != &migrate_nodes &&
2256                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2257                     NUMA(stable_node->nid)) {
2258                         stable_node_dup_del(stable_node);
2259                         stable_node->head = &migrate_nodes;
2260                         list_add(&stable_node->list, stable_node->head);
2261                 }
2262                 if (stable_node->head != &migrate_nodes &&
2263                     rmap_item->head == stable_node)
2264                         return;
2265                 /*
2266                  * If it's a KSM fork, allow it to go over the sharing limit
2267                  * without warnings.
2268                  */
2269                 if (!is_page_sharing_candidate(stable_node))
2270                         max_page_sharing_bypass = true;
2271         } else {
2272                 remove_rmap_item_from_tree(rmap_item);
2273 
2274                 /*
2275                  * If the hash value of the page has changed from the last time
2276                  * we calculated it, this page is changing frequently: therefore we
2277                  * don't want to insert it in the unstable tree, and we don't want
2278                  * to waste our time searching for something identical to it there.
2279                  */
2280                 checksum = calc_checksum(page);
2281                 if (rmap_item->oldchecksum != checksum) {
2282                         rmap_item->oldchecksum = checksum;
2283                         return;
2284                 }
2285 
2286                 if (!try_to_merge_with_zero_page(rmap_item, page))
2287                         return;
2288         }
2289 
2290         /* We first start with searching the page inside the stable tree */
2291         kpage = stable_tree_search(page);
2292         if (kpage == page && rmap_item->head == stable_node) {
2293                 put_page(kpage);
2294                 return;
2295         }
2296 
2297         remove_rmap_item_from_tree(rmap_item);
2298 
2299         if (kpage) {
2300                 if (PTR_ERR(kpage) == -EBUSY)
2301                         return;
2302 
2303                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2304                 if (!err) {
2305                         /*
2306                          * The page was successfully merged:
2307                          * add its rmap_item to the stable tree.
2308                          */
2309                         lock_page(kpage);
2310                         stable_tree_append(rmap_item, page_stable_node(kpage),
2311                                            max_page_sharing_bypass);
2312                         unlock_page(kpage);
2313                 }
2314                 put_page(kpage);
2315                 return;
2316         }
2317 
2318         tree_rmap_item =
2319                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2320         if (tree_rmap_item) {
2321                 bool split;
2322 
2323                 kpage = try_to_merge_two_pages(rmap_item, page,
2324                                                 tree_rmap_item, tree_page);
2325                 /*
2326                  * If both pages we tried to merge belong to the same compound
2327                  * page, then we actually ended up increasing the reference
2328                  * count of the same compound page twice, and split_huge_page
2329                  * failed.
2330                  * Here we set a flag if that happened, and we use it later to
2331                  * try split_huge_page again. Since we call put_page right
2332                  * afterwards, the reference count will be correct and
2333                  * split_huge_page should succeed.
2334                  */
2335                 split = PageTransCompound(page)
2336                         && compound_head(page) == compound_head(tree_page);
2337                 put_page(tree_page);
2338                 if (kpage) {
2339                         /*
2340                          * The pages were successfully merged: insert new
2341                          * node in the stable tree and add both rmap_items.
2342                          */
2343                         lock_page(kpage);
2344                         stable_node = stable_tree_insert(page_folio(kpage));
2345                         if (stable_node) {
2346                                 stable_tree_append(tree_rmap_item, stable_node,
2347                                                    false);
2348                                 stable_tree_append(rmap_item, stable_node,
2349                                                    false);
2350                         }
2351                         unlock_page(kpage);
2352 
2353                         /*
2354                          * If we fail to insert the page into the stable tree,
2355                          * we will have 2 virtual addresses that are pointing
2356                          * to a ksm page left outside the stable tree,
2357                          * in which case we need to break_cow on both.
2358                          */
2359                         if (!stable_node) {
2360                                 break_cow(tree_rmap_item);
2361                                 break_cow(rmap_item);
2362                         }
2363                 } else if (split) {
2364                         /*
2365                          * We are here if we tried to merge two pages and
2366                          * failed because they both belonged to the same
2367                          * compound page. We will split the page now, but no
2368                          * merging will take place.
2369                          * We do not want to add the cost of a full lock; if
2370                          * the page is locked, it is better to skip it and
2371                          * perhaps try again later.
2372                          */
2373                         if (!trylock_page(page))
2374                                 return;
2375                         split_huge_page(page);
2376                         unlock_page(page);
2377                 }
2378         }
2379 }
2380 
2381 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2382                                             struct ksm_rmap_item **rmap_list,
2383                                             unsigned long addr)
2384 {
2385         struct ksm_rmap_item *rmap_item;
2386 
2387         while (*rmap_list) {
2388                 rmap_item = *rmap_list;
2389                 if ((rmap_item->address & PAGE_MASK) == addr)
2390                         return rmap_item;
2391                 if (rmap_item->address > addr)
2392                         break;
2393                 *rmap_list = rmap_item->rmap_list;
2394                 remove_rmap_item_from_tree(rmap_item);
2395                 free_rmap_item(rmap_item);
2396         }
2397 
2398         rmap_item = alloc_rmap_item();
2399         if (rmap_item) {
2400                 /* It has already been zeroed */
2401                 rmap_item->mm = mm_slot->slot.mm;
2402                 rmap_item->mm->ksm_rmap_items++;
2403                 rmap_item->address = addr;
2404                 rmap_item->rmap_list = *rmap_list;
2405                 *rmap_list = rmap_item;
2406         }
2407         return rmap_item;
2408 }
2409 
2410 /*
2411  * Calculate skip age for the ksm page age. The age determines how often
2412  * de-duplicating has already been tried unsuccessfully. If the age is
2413  * smaller, the scanning of this page is skipped for less scans.
2414  *
2415  * @age: rmap_item age of page
2416  */
2417 static unsigned int skip_age(rmap_age_t age)
2418 {
2419         if (age <= 3)
2420                 return 1;
2421         if (age <= 5)
2422                 return 2;
2423         if (age <= 8)
2424                 return 4;
2425 
2426         return 8;
2427 }
2428 
2429 /*
2430  * Determines if a page should be skipped for the current scan.
2431  *
2432  * @page: page to check
2433  * @rmap_item: associated rmap_item of page
2434  */
2435 static bool should_skip_rmap_item(struct page *page,
2436                                   struct ksm_rmap_item *rmap_item)
2437 {
2438         rmap_age_t age;
2439 
2440         if (!ksm_smart_scan)
2441                 return false;
2442 
2443         /*
2444          * Never skip pages that are already KSM; pages cmp_and_merge_page()
2445          * will essentially ignore them, but we still have to process them
2446          * properly.
2447          */
2448         if (PageKsm(page))
2449                 return false;
2450 
2451         age = rmap_item->age;
2452         if (age != U8_MAX)
2453                 rmap_item->age++;
2454 
2455         /*
2456          * Smaller ages are not skipped, they need to get a chance to go
2457          * through the different phases of the KSM merging.
2458          */
2459         if (age < 3)
2460                 return false;
2461 
2462         /*
2463          * Are we still allowed to skip? If not, then don't skip it
2464          * and determine how much more often we are allowed to skip next.
2465          */
2466         if (!rmap_item->remaining_skips) {
2467                 rmap_item->remaining_skips = skip_age(age);
2468                 return false;
2469         }
2470 
2471         /* Skip this page */
2472         ksm_pages_skipped++;
2473         rmap_item->remaining_skips--;
2474         remove_rmap_item_from_tree(rmap_item);
2475         return true;
2476 }
2477 
2478 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2479 {
2480         struct mm_struct *mm;
2481         struct ksm_mm_slot *mm_slot;
2482         struct mm_slot *slot;
2483         struct vm_area_struct *vma;
2484         struct ksm_rmap_item *rmap_item;
2485         struct vma_iterator vmi;
2486         int nid;
2487 
2488         if (list_empty(&ksm_mm_head.slot.mm_node))
2489                 return NULL;
2490 
2491         mm_slot = ksm_scan.mm_slot;
2492         if (mm_slot == &ksm_mm_head) {
2493                 advisor_start_scan();
2494                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2495 
2496                 /*
2497                  * A number of pages can hang around indefinitely in per-cpu
2498                  * LRU cache, raised page count preventing write_protect_page
2499                  * from merging them.  Though it doesn't really matter much,
2500                  * it is puzzling to see some stuck in pages_volatile until
2501                  * other activity jostles them out, and they also prevented
2502                  * LTP's KSM test from succeeding deterministically; so drain
2503                  * them here (here rather than on entry to ksm_do_scan(),
2504                  * so we don't IPI too often when pages_to_scan is set low).
2505                  */
2506                 lru_add_drain_all();
2507 
2508                 /*
2509                  * Whereas stale stable_nodes on the stable_tree itself
2510                  * get pruned in the regular course of stable_tree_search(),
2511                  * those moved out to the migrate_nodes list can accumulate:
2512                  * so prune them once before each full scan.
2513                  */
2514                 if (!ksm_merge_across_nodes) {
2515                         struct ksm_stable_node *stable_node, *next;
2516                         struct folio *folio;
2517 
2518                         list_for_each_entry_safe(stable_node, next,
2519                                                  &migrate_nodes, list) {
2520                                 folio = ksm_get_folio(stable_node,
2521                                                       KSM_GET_FOLIO_NOLOCK);
2522                                 if (folio)
2523                                         folio_put(folio);
2524                                 cond_resched();
2525                         }
2526                 }
2527 
2528                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2529                         root_unstable_tree[nid] = RB_ROOT;
2530 
2531                 spin_lock(&ksm_mmlist_lock);
2532                 slot = list_entry(mm_slot->slot.mm_node.next,
2533                                   struct mm_slot, mm_node);
2534                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2535                 ksm_scan.mm_slot = mm_slot;
2536                 spin_unlock(&ksm_mmlist_lock);
2537                 /*
2538                  * Although we tested list_empty() above, a racing __ksm_exit
2539                  * of the last mm on the list may have removed it since then.
2540                  */
2541                 if (mm_slot == &ksm_mm_head)
2542                         return NULL;
2543 next_mm:
2544                 ksm_scan.address = 0;
2545                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2546         }
2547 
2548         slot = &mm_slot->slot;
2549         mm = slot->mm;
2550         vma_iter_init(&vmi, mm, ksm_scan.address);
2551 
2552         mmap_read_lock(mm);
2553         if (ksm_test_exit(mm))
2554                 goto no_vmas;
2555 
2556         for_each_vma(vmi, vma) {
2557                 if (!(vma->vm_flags & VM_MERGEABLE))
2558                         continue;
2559                 if (ksm_scan.address < vma->vm_start)
2560                         ksm_scan.address = vma->vm_start;
2561                 if (!vma->anon_vma)
2562                         ksm_scan.address = vma->vm_end;
2563 
2564                 while (ksm_scan.address < vma->vm_end) {
2565                         if (ksm_test_exit(mm))
2566                                 break;
2567                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2568                         if (IS_ERR_OR_NULL(*page)) {
2569                                 ksm_scan.address += PAGE_SIZE;
2570                                 cond_resched();
2571                                 continue;
2572                         }
2573                         if (is_zone_device_page(*page))
2574                                 goto next_page;
2575                         if (PageAnon(*page)) {
2576                                 flush_anon_page(vma, *page, ksm_scan.address);
2577                                 flush_dcache_page(*page);
2578                                 rmap_item = get_next_rmap_item(mm_slot,
2579                                         ksm_scan.rmap_list, ksm_scan.address);
2580                                 if (rmap_item) {
2581                                         ksm_scan.rmap_list =
2582                                                         &rmap_item->rmap_list;
2583 
2584                                         if (should_skip_rmap_item(*page, rmap_item))
2585                                                 goto next_page;
2586 
2587                                         ksm_scan.address += PAGE_SIZE;
2588                                 } else
2589                                         put_page(*page);
2590                                 mmap_read_unlock(mm);
2591                                 return rmap_item;
2592                         }
2593 next_page:
2594                         put_page(*page);
2595                         ksm_scan.address += PAGE_SIZE;
2596                         cond_resched();
2597                 }
2598         }
2599 
2600         if (ksm_test_exit(mm)) {
2601 no_vmas:
2602                 ksm_scan.address = 0;
2603                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2604         }
2605         /*
2606          * Nuke all the rmap_items that are above this current rmap:
2607          * because there were no VM_MERGEABLE vmas with such addresses.
2608          */
2609         remove_trailing_rmap_items(ksm_scan.rmap_list);
2610 
2611         spin_lock(&ksm_mmlist_lock);
2612         slot = list_entry(mm_slot->slot.mm_node.next,
2613                           struct mm_slot, mm_node);
2614         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2615         if (ksm_scan.address == 0) {
2616                 /*
2617                  * We've completed a full scan of all vmas, holding mmap_lock
2618                  * throughout, and found no VM_MERGEABLE: so do the same as
2619                  * __ksm_exit does to remove this mm from all our lists now.
2620                  * This applies either when cleaning up after __ksm_exit
2621                  * (but beware: we can reach here even before __ksm_exit),
2622                  * or when all VM_MERGEABLE areas have been unmapped (and
2623                  * mmap_lock then protects against race with MADV_MERGEABLE).
2624                  */
2625                 hash_del(&mm_slot->slot.hash);
2626                 list_del(&mm_slot->slot.mm_node);
2627                 spin_unlock(&ksm_mmlist_lock);
2628 
2629                 mm_slot_free(mm_slot_cache, mm_slot);
2630                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2631                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2632                 mmap_read_unlock(mm);
2633                 mmdrop(mm);
2634         } else {
2635                 mmap_read_unlock(mm);
2636                 /*
2637                  * mmap_read_unlock(mm) first because after
2638                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2639                  * already have been freed under us by __ksm_exit()
2640                  * because the "mm_slot" is still hashed and
2641                  * ksm_scan.mm_slot doesn't point to it anymore.
2642                  */
2643                 spin_unlock(&ksm_mmlist_lock);
2644         }
2645 
2646         /* Repeat until we've completed scanning the whole list */
2647         mm_slot = ksm_scan.mm_slot;
2648         if (mm_slot != &ksm_mm_head)
2649                 goto next_mm;
2650 
2651         advisor_stop_scan();
2652 
2653         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2654         ksm_scan.seqnr++;
2655         return NULL;
2656 }
2657 
2658 /**
2659  * ksm_do_scan  - the ksm scanner main worker function.
2660  * @scan_npages:  number of pages we want to scan before we return.
2661  */
2662 static void ksm_do_scan(unsigned int scan_npages)
2663 {
2664         struct ksm_rmap_item *rmap_item;
2665         struct page *page;
2666 
2667         while (scan_npages-- && likely(!freezing(current))) {
2668                 cond_resched();
2669                 rmap_item = scan_get_next_rmap_item(&page);
2670                 if (!rmap_item)
2671                         return;
2672                 cmp_and_merge_page(page, rmap_item);
2673                 put_page(page);
2674                 ksm_pages_scanned++;
2675         }
2676 }
2677 
2678 static int ksmd_should_run(void)
2679 {
2680         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2681 }
2682 
2683 static int ksm_scan_thread(void *nothing)
2684 {
2685         unsigned int sleep_ms;
2686 
2687         set_freezable();
2688         set_user_nice(current, 5);
2689 
2690         while (!kthread_should_stop()) {
2691                 mutex_lock(&ksm_thread_mutex);
2692                 wait_while_offlining();
2693                 if (ksmd_should_run())
2694                         ksm_do_scan(ksm_thread_pages_to_scan);
2695                 mutex_unlock(&ksm_thread_mutex);
2696 
2697                 if (ksmd_should_run()) {
2698                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2699                         wait_event_freezable_timeout(ksm_iter_wait,
2700                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2701                                 msecs_to_jiffies(sleep_ms));
2702                 } else {
2703                         wait_event_freezable(ksm_thread_wait,
2704                                 ksmd_should_run() || kthread_should_stop());
2705                 }
2706         }
2707         return 0;
2708 }
2709 
2710 static void __ksm_add_vma(struct vm_area_struct *vma)
2711 {
2712         unsigned long vm_flags = vma->vm_flags;
2713 
2714         if (vm_flags & VM_MERGEABLE)
2715                 return;
2716 
2717         if (vma_ksm_compatible(vma))
2718                 vm_flags_set(vma, VM_MERGEABLE);
2719 }
2720 
2721 static int __ksm_del_vma(struct vm_area_struct *vma)
2722 {
2723         int err;
2724 
2725         if (!(vma->vm_flags & VM_MERGEABLE))
2726                 return 0;
2727 
2728         if (vma->anon_vma) {
2729                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2730                 if (err)
2731                         return err;
2732         }
2733 
2734         vm_flags_clear(vma, VM_MERGEABLE);
2735         return 0;
2736 }
2737 /**
2738  * ksm_add_vma - Mark vma as mergeable if compatible
2739  *
2740  * @vma:  Pointer to vma
2741  */
2742 void ksm_add_vma(struct vm_area_struct *vma)
2743 {
2744         struct mm_struct *mm = vma->vm_mm;
2745 
2746         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2747                 __ksm_add_vma(vma);
2748 }
2749 
2750 static void ksm_add_vmas(struct mm_struct *mm)
2751 {
2752         struct vm_area_struct *vma;
2753 
2754         VMA_ITERATOR(vmi, mm, 0);
2755         for_each_vma(vmi, vma)
2756                 __ksm_add_vma(vma);
2757 }
2758 
2759 static int ksm_del_vmas(struct mm_struct *mm)
2760 {
2761         struct vm_area_struct *vma;
2762         int err;
2763 
2764         VMA_ITERATOR(vmi, mm, 0);
2765         for_each_vma(vmi, vma) {
2766                 err = __ksm_del_vma(vma);
2767                 if (err)
2768                         return err;
2769         }
2770         return 0;
2771 }
2772 
2773 /**
2774  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2775  *                        compatible VMA's
2776  *
2777  * @mm:  Pointer to mm
2778  *
2779  * Returns 0 on success, otherwise error code
2780  */
2781 int ksm_enable_merge_any(struct mm_struct *mm)
2782 {
2783         int err;
2784 
2785         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2786                 return 0;
2787 
2788         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2789                 err = __ksm_enter(mm);
2790                 if (err)
2791                         return err;
2792         }
2793 
2794         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2795         ksm_add_vmas(mm);
2796 
2797         return 0;
2798 }
2799 
2800 /**
2801  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2802  *                         previously enabled via ksm_enable_merge_any().
2803  *
2804  * Disabling merging implies unmerging any merged pages, like setting
2805  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2806  * merging on all compatible VMA's remains enabled.
2807  *
2808  * @mm: Pointer to mm
2809  *
2810  * Returns 0 on success, otherwise error code
2811  */
2812 int ksm_disable_merge_any(struct mm_struct *mm)
2813 {
2814         int err;
2815 
2816         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2817                 return 0;
2818 
2819         err = ksm_del_vmas(mm);
2820         if (err) {
2821                 ksm_add_vmas(mm);
2822                 return err;
2823         }
2824 
2825         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2826         return 0;
2827 }
2828 
2829 int ksm_disable(struct mm_struct *mm)
2830 {
2831         mmap_assert_write_locked(mm);
2832 
2833         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2834                 return 0;
2835         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2836                 return ksm_disable_merge_any(mm);
2837         return ksm_del_vmas(mm);
2838 }
2839 
2840 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2841                 unsigned long end, int advice, unsigned long *vm_flags)
2842 {
2843         struct mm_struct *mm = vma->vm_mm;
2844         int err;
2845 
2846         switch (advice) {
2847         case MADV_MERGEABLE:
2848                 if (vma->vm_flags & VM_MERGEABLE)
2849                         return 0;
2850                 if (!vma_ksm_compatible(vma))
2851                         return 0;
2852 
2853                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2854                         err = __ksm_enter(mm);
2855                         if (err)
2856                                 return err;
2857                 }
2858 
2859                 *vm_flags |= VM_MERGEABLE;
2860                 break;
2861 
2862         case MADV_UNMERGEABLE:
2863                 if (!(*vm_flags & VM_MERGEABLE))
2864                         return 0;               /* just ignore the advice */
2865 
2866                 if (vma->anon_vma) {
2867                         err = unmerge_ksm_pages(vma, start, end, true);
2868                         if (err)
2869                                 return err;
2870                 }
2871 
2872                 *vm_flags &= ~VM_MERGEABLE;
2873                 break;
2874         }
2875 
2876         return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(ksm_madvise);
2879 
2880 int __ksm_enter(struct mm_struct *mm)
2881 {
2882         struct ksm_mm_slot *mm_slot;
2883         struct mm_slot *slot;
2884         int needs_wakeup;
2885 
2886         mm_slot = mm_slot_alloc(mm_slot_cache);
2887         if (!mm_slot)
2888                 return -ENOMEM;
2889 
2890         slot = &mm_slot->slot;
2891 
2892         /* Check ksm_run too?  Would need tighter locking */
2893         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2894 
2895         spin_lock(&ksm_mmlist_lock);
2896         mm_slot_insert(mm_slots_hash, mm, slot);
2897         /*
2898          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2899          * insert just behind the scanning cursor, to let the area settle
2900          * down a little; when fork is followed by immediate exec, we don't
2901          * want ksmd to waste time setting up and tearing down an rmap_list.
2902          *
2903          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2904          * scanning cursor, otherwise KSM pages in newly forked mms will be
2905          * missed: then we might as well insert at the end of the list.
2906          */
2907         if (ksm_run & KSM_RUN_UNMERGE)
2908                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2909         else
2910                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2911         spin_unlock(&ksm_mmlist_lock);
2912 
2913         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2914         mmgrab(mm);
2915 
2916         if (needs_wakeup)
2917                 wake_up_interruptible(&ksm_thread_wait);
2918 
2919         trace_ksm_enter(mm);
2920         return 0;
2921 }
2922 
2923 void __ksm_exit(struct mm_struct *mm)
2924 {
2925         struct ksm_mm_slot *mm_slot;
2926         struct mm_slot *slot;
2927         int easy_to_free = 0;
2928 
2929         /*
2930          * This process is exiting: if it's straightforward (as is the
2931          * case when ksmd was never running), free mm_slot immediately.
2932          * But if it's at the cursor or has rmap_items linked to it, use
2933          * mmap_lock to synchronize with any break_cows before pagetables
2934          * are freed, and leave the mm_slot on the list for ksmd to free.
2935          * Beware: ksm may already have noticed it exiting and freed the slot.
2936          */
2937 
2938         spin_lock(&ksm_mmlist_lock);
2939         slot = mm_slot_lookup(mm_slots_hash, mm);
2940         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2941         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2942                 if (!mm_slot->rmap_list) {
2943                         hash_del(&slot->hash);
2944                         list_del(&slot->mm_node);
2945                         easy_to_free = 1;
2946                 } else {
2947                         list_move(&slot->mm_node,
2948                                   &ksm_scan.mm_slot->slot.mm_node);
2949                 }
2950         }
2951         spin_unlock(&ksm_mmlist_lock);
2952 
2953         if (easy_to_free) {
2954                 mm_slot_free(mm_slot_cache, mm_slot);
2955                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2956                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2957                 mmdrop(mm);
2958         } else if (mm_slot) {
2959                 mmap_write_lock(mm);
2960                 mmap_write_unlock(mm);
2961         }
2962 
2963         trace_ksm_exit(mm);
2964 }
2965 
2966 struct folio *ksm_might_need_to_copy(struct folio *folio,
2967                         struct vm_area_struct *vma, unsigned long addr)
2968 {
2969         struct page *page = folio_page(folio, 0);
2970         struct anon_vma *anon_vma = folio_anon_vma(folio);
2971         struct folio *new_folio;
2972 
2973         if (folio_test_large(folio))
2974                 return folio;
2975 
2976         if (folio_test_ksm(folio)) {
2977                 if (folio_stable_node(folio) &&
2978                     !(ksm_run & KSM_RUN_UNMERGE))
2979                         return folio;   /* no need to copy it */
2980         } else if (!anon_vma) {
2981                 return folio;           /* no need to copy it */
2982         } else if (folio->index == linear_page_index(vma, addr) &&
2983                         anon_vma->root == vma->anon_vma->root) {
2984                 return folio;           /* still no need to copy it */
2985         }
2986         if (PageHWPoison(page))
2987                 return ERR_PTR(-EHWPOISON);
2988         if (!folio_test_uptodate(folio))
2989                 return folio;           /* let do_swap_page report the error */
2990 
2991         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
2992         if (new_folio &&
2993             mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2994                 folio_put(new_folio);
2995                 new_folio = NULL;
2996         }
2997         if (new_folio) {
2998                 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2999                                                                 addr, vma)) {
3000                         folio_put(new_folio);
3001                         return ERR_PTR(-EHWPOISON);
3002                 }
3003                 folio_set_dirty(new_folio);
3004                 __folio_mark_uptodate(new_folio);
3005                 __folio_set_locked(new_folio);
3006 #ifdef CONFIG_SWAP
3007                 count_vm_event(KSM_SWPIN_COPY);
3008 #endif
3009         }
3010 
3011         return new_folio;
3012 }
3013 
3014 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3015 {
3016         struct ksm_stable_node *stable_node;
3017         struct ksm_rmap_item *rmap_item;
3018         int search_new_forks = 0;
3019 
3020         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3021 
3022         /*
3023          * Rely on the page lock to protect against concurrent modifications
3024          * to that page's node of the stable tree.
3025          */
3026         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3027 
3028         stable_node = folio_stable_node(folio);
3029         if (!stable_node)
3030                 return;
3031 again:
3032         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3033                 struct anon_vma *anon_vma = rmap_item->anon_vma;
3034                 struct anon_vma_chain *vmac;
3035                 struct vm_area_struct *vma;
3036 
3037                 cond_resched();
3038                 if (!anon_vma_trylock_read(anon_vma)) {
3039                         if (rwc->try_lock) {
3040                                 rwc->contended = true;
3041                                 return;
3042                         }
3043                         anon_vma_lock_read(anon_vma);
3044                 }
3045                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3046                                                0, ULONG_MAX) {
3047                         unsigned long addr;
3048 
3049                         cond_resched();
3050                         vma = vmac->vma;
3051 
3052                         /* Ignore the stable/unstable/sqnr flags */
3053                         addr = rmap_item->address & PAGE_MASK;
3054 
3055                         if (addr < vma->vm_start || addr >= vma->vm_end)
3056                                 continue;
3057                         /*
3058                          * Initially we examine only the vma which covers this
3059                          * rmap_item; but later, if there is still work to do,
3060                          * we examine covering vmas in other mms: in case they
3061                          * were forked from the original since ksmd passed.
3062                          */
3063                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3064                                 continue;
3065 
3066                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3067                                 continue;
3068 
3069                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3070                                 anon_vma_unlock_read(anon_vma);
3071                                 return;
3072                         }
3073                         if (rwc->done && rwc->done(folio)) {
3074                                 anon_vma_unlock_read(anon_vma);
3075                                 return;
3076                         }
3077                 }
3078                 anon_vma_unlock_read(anon_vma);
3079         }
3080         if (!search_new_forks++)
3081                 goto again;
3082 }
3083 
3084 #ifdef CONFIG_MEMORY_FAILURE
3085 /*
3086  * Collect processes when the error hit an ksm page.
3087  */
3088 void collect_procs_ksm(struct folio *folio, struct page *page,
3089                 struct list_head *to_kill, int force_early)
3090 {
3091         struct ksm_stable_node *stable_node;
3092         struct ksm_rmap_item *rmap_item;
3093         struct vm_area_struct *vma;
3094         struct task_struct *tsk;
3095 
3096         stable_node = folio_stable_node(folio);
3097         if (!stable_node)
3098                 return;
3099         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3100                 struct anon_vma *av = rmap_item->anon_vma;
3101 
3102                 anon_vma_lock_read(av);
3103                 rcu_read_lock();
3104                 for_each_process(tsk) {
3105                         struct anon_vma_chain *vmac;
3106                         unsigned long addr;
3107                         struct task_struct *t =
3108                                 task_early_kill(tsk, force_early);
3109                         if (!t)
3110                                 continue;
3111                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3112                                                        ULONG_MAX)
3113                         {
3114                                 vma = vmac->vma;
3115                                 if (vma->vm_mm == t->mm) {
3116                                         addr = rmap_item->address & PAGE_MASK;
3117                                         add_to_kill_ksm(t, page, vma, to_kill,
3118                                                         addr);
3119                                 }
3120                         }
3121                 }
3122                 rcu_read_unlock();
3123                 anon_vma_unlock_read(av);
3124         }
3125 }
3126 #endif
3127 
3128 #ifdef CONFIG_MIGRATION
3129 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3130 {
3131         struct ksm_stable_node *stable_node;
3132 
3133         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3134         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3135         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3136 
3137         stable_node = folio_stable_node(folio);
3138         if (stable_node) {
3139                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3140                 stable_node->kpfn = folio_pfn(newfolio);
3141                 /*
3142                  * newfolio->mapping was set in advance; now we need smp_wmb()
3143                  * to make sure that the new stable_node->kpfn is visible
3144                  * to ksm_get_folio() before it can see that folio->mapping
3145                  * has gone stale (or that folio_test_swapcache has been cleared).
3146                  */
3147                 smp_wmb();
3148                 folio_set_stable_node(folio, NULL);
3149         }
3150 }
3151 #endif /* CONFIG_MIGRATION */
3152 
3153 #ifdef CONFIG_MEMORY_HOTREMOVE
3154 static void wait_while_offlining(void)
3155 {
3156         while (ksm_run & KSM_RUN_OFFLINE) {
3157                 mutex_unlock(&ksm_thread_mutex);
3158                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3159                             TASK_UNINTERRUPTIBLE);
3160                 mutex_lock(&ksm_thread_mutex);
3161         }
3162 }
3163 
3164 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3165                                          unsigned long start_pfn,
3166                                          unsigned long end_pfn)
3167 {
3168         if (stable_node->kpfn >= start_pfn &&
3169             stable_node->kpfn < end_pfn) {
3170                 /*
3171                  * Don't ksm_get_folio, page has already gone:
3172                  * which is why we keep kpfn instead of page*
3173                  */
3174                 remove_node_from_stable_tree(stable_node);
3175                 return true;
3176         }
3177         return false;
3178 }
3179 
3180 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3181                                            unsigned long start_pfn,
3182                                            unsigned long end_pfn,
3183                                            struct rb_root *root)
3184 {
3185         struct ksm_stable_node *dup;
3186         struct hlist_node *hlist_safe;
3187 
3188         if (!is_stable_node_chain(stable_node)) {
3189                 VM_BUG_ON(is_stable_node_dup(stable_node));
3190                 return stable_node_dup_remove_range(stable_node, start_pfn,
3191                                                     end_pfn);
3192         }
3193 
3194         hlist_for_each_entry_safe(dup, hlist_safe,
3195                                   &stable_node->hlist, hlist_dup) {
3196                 VM_BUG_ON(!is_stable_node_dup(dup));
3197                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3198         }
3199         if (hlist_empty(&stable_node->hlist)) {
3200                 free_stable_node_chain(stable_node, root);
3201                 return true; /* notify caller that tree was rebalanced */
3202         } else
3203                 return false;
3204 }
3205 
3206 static void ksm_check_stable_tree(unsigned long start_pfn,
3207                                   unsigned long end_pfn)
3208 {
3209         struct ksm_stable_node *stable_node, *next;
3210         struct rb_node *node;
3211         int nid;
3212 
3213         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3214                 node = rb_first(root_stable_tree + nid);
3215                 while (node) {
3216                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3217                         if (stable_node_chain_remove_range(stable_node,
3218                                                            start_pfn, end_pfn,
3219                                                            root_stable_tree +
3220                                                            nid))
3221                                 node = rb_first(root_stable_tree + nid);
3222                         else
3223                                 node = rb_next(node);
3224                         cond_resched();
3225                 }
3226         }
3227         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3228                 if (stable_node->kpfn >= start_pfn &&
3229                     stable_node->kpfn < end_pfn)
3230                         remove_node_from_stable_tree(stable_node);
3231                 cond_resched();
3232         }
3233 }
3234 
3235 static int ksm_memory_callback(struct notifier_block *self,
3236                                unsigned long action, void *arg)
3237 {
3238         struct memory_notify *mn = arg;
3239 
3240         switch (action) {
3241         case MEM_GOING_OFFLINE:
3242                 /*
3243                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3244                  * and remove_all_stable_nodes() while memory is going offline:
3245                  * it is unsafe for them to touch the stable tree at this time.
3246                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3247                  * which do not need the ksm_thread_mutex are all safe.
3248                  */
3249                 mutex_lock(&ksm_thread_mutex);
3250                 ksm_run |= KSM_RUN_OFFLINE;
3251                 mutex_unlock(&ksm_thread_mutex);
3252                 break;
3253 
3254         case MEM_OFFLINE:
3255                 /*
3256                  * Most of the work is done by page migration; but there might
3257                  * be a few stable_nodes left over, still pointing to struct
3258                  * pages which have been offlined: prune those from the tree,
3259                  * otherwise ksm_get_folio() might later try to access a
3260                  * non-existent struct page.
3261                  */
3262                 ksm_check_stable_tree(mn->start_pfn,
3263                                       mn->start_pfn + mn->nr_pages);
3264                 fallthrough;
3265         case MEM_CANCEL_OFFLINE:
3266                 mutex_lock(&ksm_thread_mutex);
3267                 ksm_run &= ~KSM_RUN_OFFLINE;
3268                 mutex_unlock(&ksm_thread_mutex);
3269 
3270                 smp_mb();       /* wake_up_bit advises this */
3271                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3272                 break;
3273         }
3274         return NOTIFY_OK;
3275 }
3276 #else
3277 static void wait_while_offlining(void)
3278 {
3279 }
3280 #endif /* CONFIG_MEMORY_HOTREMOVE */
3281 
3282 #ifdef CONFIG_PROC_FS
3283 long ksm_process_profit(struct mm_struct *mm)
3284 {
3285         return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3286                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3287 }
3288 #endif /* CONFIG_PROC_FS */
3289 
3290 #ifdef CONFIG_SYSFS
3291 /*
3292  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3293  */
3294 
3295 #define KSM_ATTR_RO(_name) \
3296         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3297 #define KSM_ATTR(_name) \
3298         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3299 
3300 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3301                                     struct kobj_attribute *attr, char *buf)
3302 {
3303         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3304 }
3305 
3306 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3307                                      struct kobj_attribute *attr,
3308                                      const char *buf, size_t count)
3309 {
3310         unsigned int msecs;
3311         int err;
3312 
3313         err = kstrtouint(buf, 10, &msecs);
3314         if (err)
3315                 return -EINVAL;
3316 
3317         ksm_thread_sleep_millisecs = msecs;
3318         wake_up_interruptible(&ksm_iter_wait);
3319 
3320         return count;
3321 }
3322 KSM_ATTR(sleep_millisecs);
3323 
3324 static ssize_t pages_to_scan_show(struct kobject *kobj,
3325                                   struct kobj_attribute *attr, char *buf)
3326 {
3327         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3328 }
3329 
3330 static ssize_t pages_to_scan_store(struct kobject *kobj,
3331                                    struct kobj_attribute *attr,
3332                                    const char *buf, size_t count)
3333 {
3334         unsigned int nr_pages;
3335         int err;
3336 
3337         if (ksm_advisor != KSM_ADVISOR_NONE)
3338                 return -EINVAL;
3339 
3340         err = kstrtouint(buf, 10, &nr_pages);
3341         if (err)
3342                 return -EINVAL;
3343 
3344         ksm_thread_pages_to_scan = nr_pages;
3345 
3346         return count;
3347 }
3348 KSM_ATTR(pages_to_scan);
3349 
3350 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3351                         char *buf)
3352 {
3353         return sysfs_emit(buf, "%lu\n", ksm_run);
3354 }
3355 
3356 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3357                          const char *buf, size_t count)
3358 {
3359         unsigned int flags;
3360         int err;
3361 
3362         err = kstrtouint(buf, 10, &flags);
3363         if (err)
3364                 return -EINVAL;
3365         if (flags > KSM_RUN_UNMERGE)
3366                 return -EINVAL;
3367 
3368         /*
3369          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3370          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3371          * breaking COW to free the pages_shared (but leaves mm_slots
3372          * on the list for when ksmd may be set running again).
3373          */
3374 
3375         mutex_lock(&ksm_thread_mutex);
3376         wait_while_offlining();
3377         if (ksm_run != flags) {
3378                 ksm_run = flags;
3379                 if (flags & KSM_RUN_UNMERGE) {
3380                         set_current_oom_origin();
3381                         err = unmerge_and_remove_all_rmap_items();
3382                         clear_current_oom_origin();
3383                         if (err) {
3384                                 ksm_run = KSM_RUN_STOP;
3385                                 count = err;
3386                         }
3387                 }
3388         }
3389         mutex_unlock(&ksm_thread_mutex);
3390 
3391         if (flags & KSM_RUN_MERGE)
3392                 wake_up_interruptible(&ksm_thread_wait);
3393 
3394         return count;
3395 }
3396 KSM_ATTR(run);
3397 
3398 #ifdef CONFIG_NUMA
3399 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3400                                        struct kobj_attribute *attr, char *buf)
3401 {
3402         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3403 }
3404 
3405 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3406                                    struct kobj_attribute *attr,
3407                                    const char *buf, size_t count)
3408 {
3409         int err;
3410         unsigned long knob;
3411 
3412         err = kstrtoul(buf, 10, &knob);
3413         if (err)
3414                 return err;
3415         if (knob > 1)
3416                 return -EINVAL;
3417 
3418         mutex_lock(&ksm_thread_mutex);
3419         wait_while_offlining();
3420         if (ksm_merge_across_nodes != knob) {
3421                 if (ksm_pages_shared || remove_all_stable_nodes())
3422                         err = -EBUSY;
3423                 else if (root_stable_tree == one_stable_tree) {
3424                         struct rb_root *buf;
3425                         /*
3426                          * This is the first time that we switch away from the
3427                          * default of merging across nodes: must now allocate
3428                          * a buffer to hold as many roots as may be needed.
3429                          * Allocate stable and unstable together:
3430                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3431                          */
3432                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3433                                       GFP_KERNEL);
3434                         /* Let us assume that RB_ROOT is NULL is zero */
3435                         if (!buf)
3436                                 err = -ENOMEM;
3437                         else {
3438                                 root_stable_tree = buf;
3439                                 root_unstable_tree = buf + nr_node_ids;
3440                                 /* Stable tree is empty but not the unstable */
3441                                 root_unstable_tree[0] = one_unstable_tree[0];
3442                         }
3443                 }
3444                 if (!err) {
3445                         ksm_merge_across_nodes = knob;
3446                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3447                 }
3448         }
3449         mutex_unlock(&ksm_thread_mutex);
3450 
3451         return err ? err : count;
3452 }
3453 KSM_ATTR(merge_across_nodes);
3454 #endif
3455 
3456 static ssize_t use_zero_pages_show(struct kobject *kobj,
3457                                    struct kobj_attribute *attr, char *buf)
3458 {
3459         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3460 }
3461 static ssize_t use_zero_pages_store(struct kobject *kobj,
3462                                    struct kobj_attribute *attr,
3463                                    const char *buf, size_t count)
3464 {
3465         int err;
3466         bool value;
3467 
3468         err = kstrtobool(buf, &value);
3469         if (err)
3470                 return -EINVAL;
3471 
3472         ksm_use_zero_pages = value;
3473 
3474         return count;
3475 }
3476 KSM_ATTR(use_zero_pages);
3477 
3478 static ssize_t max_page_sharing_show(struct kobject *kobj,
3479                                      struct kobj_attribute *attr, char *buf)
3480 {
3481         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3482 }
3483 
3484 static ssize_t max_page_sharing_store(struct kobject *kobj,
3485                                       struct kobj_attribute *attr,
3486                                       const char *buf, size_t count)
3487 {
3488         int err;
3489         int knob;
3490 
3491         err = kstrtoint(buf, 10, &knob);
3492         if (err)
3493                 return err;
3494         /*
3495          * When a KSM page is created it is shared by 2 mappings. This
3496          * being a signed comparison, it implicitly verifies it's not
3497          * negative.
3498          */
3499         if (knob < 2)
3500                 return -EINVAL;
3501 
3502         if (READ_ONCE(ksm_max_page_sharing) == knob)
3503                 return count;
3504 
3505         mutex_lock(&ksm_thread_mutex);
3506         wait_while_offlining();
3507         if (ksm_max_page_sharing != knob) {
3508                 if (ksm_pages_shared || remove_all_stable_nodes())
3509                         err = -EBUSY;
3510                 else
3511                         ksm_max_page_sharing = knob;
3512         }
3513         mutex_unlock(&ksm_thread_mutex);
3514 
3515         return err ? err : count;
3516 }
3517 KSM_ATTR(max_page_sharing);
3518 
3519 static ssize_t pages_scanned_show(struct kobject *kobj,
3520                                   struct kobj_attribute *attr, char *buf)
3521 {
3522         return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3523 }
3524 KSM_ATTR_RO(pages_scanned);
3525 
3526 static ssize_t pages_shared_show(struct kobject *kobj,
3527                                  struct kobj_attribute *attr, char *buf)
3528 {
3529         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3530 }
3531 KSM_ATTR_RO(pages_shared);
3532 
3533 static ssize_t pages_sharing_show(struct kobject *kobj,
3534                                   struct kobj_attribute *attr, char *buf)
3535 {
3536         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3537 }
3538 KSM_ATTR_RO(pages_sharing);
3539 
3540 static ssize_t pages_unshared_show(struct kobject *kobj,
3541                                    struct kobj_attribute *attr, char *buf)
3542 {
3543         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3544 }
3545 KSM_ATTR_RO(pages_unshared);
3546 
3547 static ssize_t pages_volatile_show(struct kobject *kobj,
3548                                    struct kobj_attribute *attr, char *buf)
3549 {
3550         long ksm_pages_volatile;
3551 
3552         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3553                                 - ksm_pages_sharing - ksm_pages_unshared;
3554         /*
3555          * It was not worth any locking to calculate that statistic,
3556          * but it might therefore sometimes be negative: conceal that.
3557          */
3558         if (ksm_pages_volatile < 0)
3559                 ksm_pages_volatile = 0;
3560         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3561 }
3562 KSM_ATTR_RO(pages_volatile);
3563 
3564 static ssize_t pages_skipped_show(struct kobject *kobj,
3565                                   struct kobj_attribute *attr, char *buf)
3566 {
3567         return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3568 }
3569 KSM_ATTR_RO(pages_skipped);
3570 
3571 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3572                                 struct kobj_attribute *attr, char *buf)
3573 {
3574         return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3575 }
3576 KSM_ATTR_RO(ksm_zero_pages);
3577 
3578 static ssize_t general_profit_show(struct kobject *kobj,
3579                                    struct kobj_attribute *attr, char *buf)
3580 {
3581         long general_profit;
3582 
3583         general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3584                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3585 
3586         return sysfs_emit(buf, "%ld\n", general_profit);
3587 }
3588 KSM_ATTR_RO(general_profit);
3589 
3590 static ssize_t stable_node_dups_show(struct kobject *kobj,
3591                                      struct kobj_attribute *attr, char *buf)
3592 {
3593         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3594 }
3595 KSM_ATTR_RO(stable_node_dups);
3596 
3597 static ssize_t stable_node_chains_show(struct kobject *kobj,
3598                                        struct kobj_attribute *attr, char *buf)
3599 {
3600         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3601 }
3602 KSM_ATTR_RO(stable_node_chains);
3603 
3604 static ssize_t
3605 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3606                                         struct kobj_attribute *attr,
3607                                         char *buf)
3608 {
3609         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3610 }
3611 
3612 static ssize_t
3613 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3614                                          struct kobj_attribute *attr,
3615                                          const char *buf, size_t count)
3616 {
3617         unsigned int msecs;
3618         int err;
3619 
3620         err = kstrtouint(buf, 10, &msecs);
3621         if (err)
3622                 return -EINVAL;
3623 
3624         ksm_stable_node_chains_prune_millisecs = msecs;
3625 
3626         return count;
3627 }
3628 KSM_ATTR(stable_node_chains_prune_millisecs);
3629 
3630 static ssize_t full_scans_show(struct kobject *kobj,
3631                                struct kobj_attribute *attr, char *buf)
3632 {
3633         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3634 }
3635 KSM_ATTR_RO(full_scans);
3636 
3637 static ssize_t smart_scan_show(struct kobject *kobj,
3638                                struct kobj_attribute *attr, char *buf)
3639 {
3640         return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3641 }
3642 
3643 static ssize_t smart_scan_store(struct kobject *kobj,
3644                                 struct kobj_attribute *attr,
3645                                 const char *buf, size_t count)
3646 {
3647         int err;
3648         bool value;
3649 
3650         err = kstrtobool(buf, &value);
3651         if (err)
3652                 return -EINVAL;
3653 
3654         ksm_smart_scan = value;
3655         return count;
3656 }
3657 KSM_ATTR(smart_scan);
3658 
3659 static ssize_t advisor_mode_show(struct kobject *kobj,
3660                                  struct kobj_attribute *attr, char *buf)
3661 {
3662         const char *output;
3663 
3664         if (ksm_advisor == KSM_ADVISOR_NONE)
3665                 output = "[none] scan-time";
3666         else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3667                 output = "none [scan-time]";
3668 
3669         return sysfs_emit(buf, "%s\n", output);
3670 }
3671 
3672 static ssize_t advisor_mode_store(struct kobject *kobj,
3673                                   struct kobj_attribute *attr, const char *buf,
3674                                   size_t count)
3675 {
3676         enum ksm_advisor_type curr_advisor = ksm_advisor;
3677 
3678         if (sysfs_streq("scan-time", buf))
3679                 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3680         else if (sysfs_streq("none", buf))
3681                 ksm_advisor = KSM_ADVISOR_NONE;
3682         else
3683                 return -EINVAL;
3684 
3685         /* Set advisor default values */
3686         if (curr_advisor != ksm_advisor)
3687                 set_advisor_defaults();
3688 
3689         return count;
3690 }
3691 KSM_ATTR(advisor_mode);
3692 
3693 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3694                                     struct kobj_attribute *attr, char *buf)
3695 {
3696         return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3697 }
3698 
3699 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3700                                      struct kobj_attribute *attr,
3701                                      const char *buf, size_t count)
3702 {
3703         int err;
3704         unsigned long value;
3705 
3706         err = kstrtoul(buf, 10, &value);
3707         if (err)
3708                 return -EINVAL;
3709 
3710         ksm_advisor_max_cpu = value;
3711         return count;
3712 }
3713 KSM_ATTR(advisor_max_cpu);
3714 
3715 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3716                                         struct kobj_attribute *attr, char *buf)
3717 {
3718         return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3719 }
3720 
3721 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3722                                         struct kobj_attribute *attr,
3723                                         const char *buf, size_t count)
3724 {
3725         int err;
3726         unsigned long value;
3727 
3728         err = kstrtoul(buf, 10, &value);
3729         if (err)
3730                 return -EINVAL;
3731 
3732         ksm_advisor_min_pages_to_scan = value;
3733         return count;
3734 }
3735 KSM_ATTR(advisor_min_pages_to_scan);
3736 
3737 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3738                                         struct kobj_attribute *attr, char *buf)
3739 {
3740         return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3741 }
3742 
3743 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3744                                         struct kobj_attribute *attr,
3745                                         const char *buf, size_t count)
3746 {
3747         int err;
3748         unsigned long value;
3749 
3750         err = kstrtoul(buf, 10, &value);
3751         if (err)
3752                 return -EINVAL;
3753 
3754         ksm_advisor_max_pages_to_scan = value;
3755         return count;
3756 }
3757 KSM_ATTR(advisor_max_pages_to_scan);
3758 
3759 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3760                                              struct kobj_attribute *attr, char *buf)
3761 {
3762         return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3763 }
3764 
3765 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3766                                               struct kobj_attribute *attr,
3767                                               const char *buf, size_t count)
3768 {
3769         int err;
3770         unsigned long value;
3771 
3772         err = kstrtoul(buf, 10, &value);
3773         if (err)
3774                 return -EINVAL;
3775         if (value < 1)
3776                 return -EINVAL;
3777 
3778         ksm_advisor_target_scan_time = value;
3779         return count;
3780 }
3781 KSM_ATTR(advisor_target_scan_time);
3782 
3783 static struct attribute *ksm_attrs[] = {
3784         &sleep_millisecs_attr.attr,
3785         &pages_to_scan_attr.attr,
3786         &run_attr.attr,
3787         &pages_scanned_attr.attr,
3788         &pages_shared_attr.attr,
3789         &pages_sharing_attr.attr,
3790         &pages_unshared_attr.attr,
3791         &pages_volatile_attr.attr,
3792         &pages_skipped_attr.attr,
3793         &ksm_zero_pages_attr.attr,
3794         &full_scans_attr.attr,
3795 #ifdef CONFIG_NUMA
3796         &merge_across_nodes_attr.attr,
3797 #endif
3798         &max_page_sharing_attr.attr,
3799         &stable_node_chains_attr.attr,
3800         &stable_node_dups_attr.attr,
3801         &stable_node_chains_prune_millisecs_attr.attr,
3802         &use_zero_pages_attr.attr,
3803         &general_profit_attr.attr,
3804         &smart_scan_attr.attr,
3805         &advisor_mode_attr.attr,
3806         &advisor_max_cpu_attr.attr,
3807         &advisor_min_pages_to_scan_attr.attr,
3808         &advisor_max_pages_to_scan_attr.attr,
3809         &advisor_target_scan_time_attr.attr,
3810         NULL,
3811 };
3812 
3813 static const struct attribute_group ksm_attr_group = {
3814         .attrs = ksm_attrs,
3815         .name = "ksm",
3816 };
3817 #endif /* CONFIG_SYSFS */
3818 
3819 static int __init ksm_init(void)
3820 {
3821         struct task_struct *ksm_thread;
3822         int err;
3823 
3824         /* The correct value depends on page size and endianness */
3825         zero_checksum = calc_checksum(ZERO_PAGE(0));
3826         /* Default to false for backwards compatibility */
3827         ksm_use_zero_pages = false;
3828 
3829         err = ksm_slab_init();
3830         if (err)
3831                 goto out;
3832 
3833         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3834         if (IS_ERR(ksm_thread)) {
3835                 pr_err("ksm: creating kthread failed\n");
3836                 err = PTR_ERR(ksm_thread);
3837                 goto out_free;
3838         }
3839 
3840 #ifdef CONFIG_SYSFS
3841         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3842         if (err) {
3843                 pr_err("ksm: register sysfs failed\n");
3844                 kthread_stop(ksm_thread);
3845                 goto out_free;
3846         }
3847 #else
3848         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3849 
3850 #endif /* CONFIG_SYSFS */
3851 
3852 #ifdef CONFIG_MEMORY_HOTREMOVE
3853         /* There is no significance to this priority 100 */
3854         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3855 #endif
3856         return 0;
3857 
3858 out_free:
3859         ksm_slab_free();
3860 out:
3861         return err;
3862 }
3863 subsys_initcall(ksm_init);
3864 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php