1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/rwsem.h> 26 #include <linux/pagemap.h> 27 #include <linux/rmap.h> 28 #include <linux/spinlock.h> 29 #include <linux/xxhash.h> 30 #include <linux/delay.h> 31 #include <linux/kthread.h> 32 #include <linux/wait.h> 33 #include <linux/slab.h> 34 #include <linux/rbtree.h> 35 #include <linux/memory.h> 36 #include <linux/mmu_notifier.h> 37 #include <linux/swap.h> 38 #include <linux/ksm.h> 39 #include <linux/hashtable.h> 40 #include <linux/freezer.h> 41 #include <linux/oom.h> 42 #include <linux/numa.h> 43 #include <linux/pagewalk.h> 44 45 #include <asm/tlbflush.h> 46 #include "internal.h" 47 #include "mm_slot.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/ksm.h> 51 52 #ifdef CONFIG_NUMA 53 #define NUMA(x) (x) 54 #define DO_NUMA(x) do { (x); } while (0) 55 #else 56 #define NUMA(x) (0) 57 #define DO_NUMA(x) do { } while (0) 58 #endif 59 60 typedef u8 rmap_age_t; 61 62 /** 63 * DOC: Overview 64 * 65 * A few notes about the KSM scanning process, 66 * to make it easier to understand the data structures below: 67 * 68 * In order to reduce excessive scanning, KSM sorts the memory pages by their 69 * contents into a data structure that holds pointers to the pages' locations. 70 * 71 * Since the contents of the pages may change at any moment, KSM cannot just 72 * insert the pages into a normal sorted tree and expect it to find anything. 73 * Therefore KSM uses two data structures - the stable and the unstable tree. 74 * 75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 76 * by their contents. Because each such page is write-protected, searching on 77 * this tree is fully assured to be working (except when pages are unmapped), 78 * and therefore this tree is called the stable tree. 79 * 80 * The stable tree node includes information required for reverse 81 * mapping from a KSM page to virtual addresses that map this page. 82 * 83 * In order to avoid large latencies of the rmap walks on KSM pages, 84 * KSM maintains two types of nodes in the stable tree: 85 * 86 * * the regular nodes that keep the reverse mapping structures in a 87 * linked list 88 * * the "chains" that link nodes ("dups") that represent the same 89 * write protected memory content, but each "dup" corresponds to a 90 * different KSM page copy of that content 91 * 92 * Internally, the regular nodes, "dups" and "chains" are represented 93 * using the same struct ksm_stable_node structure. 94 * 95 * In addition to the stable tree, KSM uses a second data structure called the 96 * unstable tree: this tree holds pointers to pages which have been found to 97 * be "unchanged for a period of time". The unstable tree sorts these pages 98 * by their contents, but since they are not write-protected, KSM cannot rely 99 * upon the unstable tree to work correctly - the unstable tree is liable to 100 * be corrupted as its contents are modified, and so it is called unstable. 101 * 102 * KSM solves this problem by several techniques: 103 * 104 * 1) The unstable tree is flushed every time KSM completes scanning all 105 * memory areas, and then the tree is rebuilt again from the beginning. 106 * 2) KSM will only insert into the unstable tree, pages whose hash value 107 * has not changed since the previous scan of all memory areas. 108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 109 * colors of the nodes and not on their contents, assuring that even when 110 * the tree gets "corrupted" it won't get out of balance, so scanning time 111 * remains the same (also, searching and inserting nodes in an rbtree uses 112 * the same algorithm, so we have no overhead when we flush and rebuild). 113 * 4) KSM never flushes the stable tree, which means that even if it were to 114 * take 10 attempts to find a page in the unstable tree, once it is found, 115 * it is secured in the stable tree. (When we scan a new page, we first 116 * compare it against the stable tree, and then against the unstable tree.) 117 * 118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 119 * stable trees and multiple unstable trees: one of each for each NUMA node. 120 */ 121 122 /** 123 * struct ksm_mm_slot - ksm information per mm that is being scanned 124 * @slot: hash lookup from mm to mm_slot 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 126 */ 127 struct ksm_mm_slot { 128 struct mm_slot slot; 129 struct ksm_rmap_item *rmap_list; 130 }; 131 132 /** 133 * struct ksm_scan - cursor for scanning 134 * @mm_slot: the current mm_slot we are scanning 135 * @address: the next address inside that to be scanned 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list 137 * @seqnr: count of completed full scans (needed when removing unstable node) 138 * 139 * There is only the one ksm_scan instance of this cursor structure. 140 */ 141 struct ksm_scan { 142 struct ksm_mm_slot *mm_slot; 143 unsigned long address; 144 struct ksm_rmap_item **rmap_list; 145 unsigned long seqnr; 146 }; 147 148 /** 149 * struct ksm_stable_node - node of the stable rbtree 150 * @node: rb node of this ksm page in the stable tree 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 153 * @list: linked into migrate_nodes, pending placement in the proper node tree 154 * @hlist: hlist head of rmap_items using this ksm page 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 156 * @chain_prune_time: time of the last full garbage collection 157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 159 */ 160 struct ksm_stable_node { 161 union { 162 struct rb_node node; /* when node of stable tree */ 163 struct { /* when listed for migration */ 164 struct list_head *head; 165 struct { 166 struct hlist_node hlist_dup; 167 struct list_head list; 168 }; 169 }; 170 }; 171 struct hlist_head hlist; 172 union { 173 unsigned long kpfn; 174 unsigned long chain_prune_time; 175 }; 176 /* 177 * STABLE_NODE_CHAIN can be any negative number in 178 * rmap_hlist_len negative range, but better not -1 to be able 179 * to reliably detect underflows. 180 */ 181 #define STABLE_NODE_CHAIN -1024 182 int rmap_hlist_len; 183 #ifdef CONFIG_NUMA 184 int nid; 185 #endif 186 }; 187 188 /** 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 192 * @nid: NUMA node id of unstable tree in which linked (may not match page) 193 * @mm: the memory structure this rmap_item is pointing into 194 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 195 * @oldchecksum: previous checksum of the page at that virtual address 196 * @node: rb node of this rmap_item in the unstable tree 197 * @head: pointer to stable_node heading this list in the stable tree 198 * @hlist: link into hlist of rmap_items hanging off that stable_node 199 * @age: number of scan iterations since creation 200 * @remaining_skips: how many scans to skip 201 */ 202 struct ksm_rmap_item { 203 struct ksm_rmap_item *rmap_list; 204 union { 205 struct anon_vma *anon_vma; /* when stable */ 206 #ifdef CONFIG_NUMA 207 int nid; /* when node of unstable tree */ 208 #endif 209 }; 210 struct mm_struct *mm; 211 unsigned long address; /* + low bits used for flags below */ 212 unsigned int oldchecksum; /* when unstable */ 213 rmap_age_t age; 214 rmap_age_t remaining_skips; 215 union { 216 struct rb_node node; /* when node of unstable tree */ 217 struct { /* when listed from stable tree */ 218 struct ksm_stable_node *head; 219 struct hlist_node hlist; 220 }; 221 }; 222 }; 223 224 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 225 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 226 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 227 228 /* The stable and unstable tree heads */ 229 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 230 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 231 static struct rb_root *root_stable_tree = one_stable_tree; 232 static struct rb_root *root_unstable_tree = one_unstable_tree; 233 234 /* Recently migrated nodes of stable tree, pending proper placement */ 235 static LIST_HEAD(migrate_nodes); 236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 237 238 #define MM_SLOTS_HASH_BITS 10 239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 240 241 static struct ksm_mm_slot ksm_mm_head = { 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 243 }; 244 static struct ksm_scan ksm_scan = { 245 .mm_slot = &ksm_mm_head, 246 }; 247 248 static struct kmem_cache *rmap_item_cache; 249 static struct kmem_cache *stable_node_cache; 250 static struct kmem_cache *mm_slot_cache; 251 252 /* Default number of pages to scan per batch */ 253 #define DEFAULT_PAGES_TO_SCAN 100 254 255 /* The number of pages scanned */ 256 static unsigned long ksm_pages_scanned; 257 258 /* The number of nodes in the stable tree */ 259 static unsigned long ksm_pages_shared; 260 261 /* The number of page slots additionally sharing those nodes */ 262 static unsigned long ksm_pages_sharing; 263 264 /* The number of nodes in the unstable tree */ 265 static unsigned long ksm_pages_unshared; 266 267 /* The number of rmap_items in use: to calculate pages_volatile */ 268 static unsigned long ksm_rmap_items; 269 270 /* The number of stable_node chains */ 271 static unsigned long ksm_stable_node_chains; 272 273 /* The number of stable_node dups linked to the stable_node chains */ 274 static unsigned long ksm_stable_node_dups; 275 276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 278 279 /* Maximum number of page slots sharing a stable node */ 280 static int ksm_max_page_sharing = 256; 281 282 /* Number of pages ksmd should scan in one batch */ 283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 284 285 /* Milliseconds ksmd should sleep between batches */ 286 static unsigned int ksm_thread_sleep_millisecs = 20; 287 288 /* Checksum of an empty (zeroed) page */ 289 static unsigned int zero_checksum __read_mostly; 290 291 /* Whether to merge empty (zeroed) pages with actual zero pages */ 292 static bool ksm_use_zero_pages __read_mostly; 293 294 /* Skip pages that couldn't be de-duplicated previously */ 295 /* Default to true at least temporarily, for testing */ 296 static bool ksm_smart_scan = true; 297 298 /* The number of zero pages which is placed by KSM */ 299 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0); 300 301 /* The number of pages that have been skipped due to "smart scanning" */ 302 static unsigned long ksm_pages_skipped; 303 304 /* Don't scan more than max pages per batch. */ 305 static unsigned long ksm_advisor_max_pages_to_scan = 30000; 306 307 /* Min CPU for scanning pages per scan */ 308 #define KSM_ADVISOR_MIN_CPU 10 309 310 /* Max CPU for scanning pages per scan */ 311 static unsigned int ksm_advisor_max_cpu = 70; 312 313 /* Target scan time in seconds to analyze all KSM candidate pages. */ 314 static unsigned long ksm_advisor_target_scan_time = 200; 315 316 /* Exponentially weighted moving average. */ 317 #define EWMA_WEIGHT 30 318 319 /** 320 * struct advisor_ctx - metadata for KSM advisor 321 * @start_scan: start time of the current scan 322 * @scan_time: scan time of previous scan 323 * @change: change in percent to pages_to_scan parameter 324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan 325 */ 326 struct advisor_ctx { 327 ktime_t start_scan; 328 unsigned long scan_time; 329 unsigned long change; 330 unsigned long long cpu_time; 331 }; 332 static struct advisor_ctx advisor_ctx; 333 334 /* Define different advisor's */ 335 enum ksm_advisor_type { 336 KSM_ADVISOR_NONE, 337 KSM_ADVISOR_SCAN_TIME, 338 }; 339 static enum ksm_advisor_type ksm_advisor; 340 341 #ifdef CONFIG_SYSFS 342 /* 343 * Only called through the sysfs control interface: 344 */ 345 346 /* At least scan this many pages per batch. */ 347 static unsigned long ksm_advisor_min_pages_to_scan = 500; 348 349 static void set_advisor_defaults(void) 350 { 351 if (ksm_advisor == KSM_ADVISOR_NONE) { 352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { 354 advisor_ctx = (const struct advisor_ctx){ 0 }; 355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; 356 } 357 } 358 #endif /* CONFIG_SYSFS */ 359 360 static inline void advisor_start_scan(void) 361 { 362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 363 advisor_ctx.start_scan = ktime_get(); 364 } 365 366 /* 367 * Use previous scan time if available, otherwise use current scan time as an 368 * approximation for the previous scan time. 369 */ 370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, 371 unsigned long scan_time) 372 { 373 return ctx->scan_time ? ctx->scan_time : scan_time; 374 } 375 376 /* Calculate exponential weighted moving average */ 377 static unsigned long ewma(unsigned long prev, unsigned long curr) 378 { 379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; 380 } 381 382 /* 383 * The scan time advisor is based on the current scan rate and the target 384 * scan rate. 385 * 386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) 387 * 388 * To avoid perturbations it calculates a change factor of previous changes. 389 * A new change factor is calculated for each iteration and it uses an 390 * exponentially weighted moving average. The new pages_to_scan value is 391 * multiplied with that change factor: 392 * 393 * new_pages_to_scan *= change facor 394 * 395 * The new_pages_to_scan value is limited by the cpu min and max values. It 396 * calculates the cpu percent for the last scan and calculates the new 397 * estimated cpu percent cost for the next scan. That value is capped by the 398 * cpu min and max setting. 399 * 400 * In addition the new pages_to_scan value is capped by the max and min 401 * limits. 402 */ 403 static void scan_time_advisor(void) 404 { 405 unsigned int cpu_percent; 406 unsigned long cpu_time; 407 unsigned long cpu_time_diff; 408 unsigned long cpu_time_diff_ms; 409 unsigned long pages; 410 unsigned long per_page_cost; 411 unsigned long factor; 412 unsigned long change; 413 unsigned long last_scan_time; 414 unsigned long scan_time; 415 416 /* Convert scan time to seconds */ 417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), 418 MSEC_PER_SEC); 419 scan_time = scan_time ? scan_time : 1; 420 421 /* Calculate CPU consumption of ksmd background thread */ 422 cpu_time = task_sched_runtime(current); 423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time; 424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; 425 426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); 427 cpu_percent = cpu_percent ? cpu_percent : 1; 428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time); 429 430 /* Calculate scan time as percentage of target scan time */ 431 factor = ksm_advisor_target_scan_time * 100 / scan_time; 432 factor = factor ? factor : 1; 433 434 /* 435 * Calculate scan time as percentage of last scan time and use 436 * exponentially weighted average to smooth it 437 */ 438 change = scan_time * 100 / last_scan_time; 439 change = change ? change : 1; 440 change = ewma(advisor_ctx.change, change); 441 442 /* Calculate new scan rate based on target scan rate. */ 443 pages = ksm_thread_pages_to_scan * 100 / factor; 444 /* Update pages_to_scan by weighted change percentage. */ 445 pages = pages * change / 100; 446 447 /* Cap new pages_to_scan value */ 448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent; 449 per_page_cost = per_page_cost ? per_page_cost : 1; 450 451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu); 452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); 453 pages = min(pages, ksm_advisor_max_pages_to_scan); 454 455 /* Update advisor context */ 456 advisor_ctx.change = change; 457 advisor_ctx.scan_time = scan_time; 458 advisor_ctx.cpu_time = cpu_time; 459 460 ksm_thread_pages_to_scan = pages; 461 trace_ksm_advisor(scan_time, pages, cpu_percent); 462 } 463 464 static void advisor_stop_scan(void) 465 { 466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 467 scan_time_advisor(); 468 } 469 470 #ifdef CONFIG_NUMA 471 /* Zeroed when merging across nodes is not allowed */ 472 static unsigned int ksm_merge_across_nodes = 1; 473 static int ksm_nr_node_ids = 1; 474 #else 475 #define ksm_merge_across_nodes 1U 476 #define ksm_nr_node_ids 1 477 #endif 478 479 #define KSM_RUN_STOP 0 480 #define KSM_RUN_MERGE 1 481 #define KSM_RUN_UNMERGE 2 482 #define KSM_RUN_OFFLINE 4 483 static unsigned long ksm_run = KSM_RUN_STOP; 484 static void wait_while_offlining(void); 485 486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 488 static DEFINE_MUTEX(ksm_thread_mutex); 489 static DEFINE_SPINLOCK(ksm_mmlist_lock); 490 491 static int __init ksm_slab_init(void) 492 { 493 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0); 494 if (!rmap_item_cache) 495 goto out; 496 497 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0); 498 if (!stable_node_cache) 499 goto out_free1; 500 501 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0); 502 if (!mm_slot_cache) 503 goto out_free2; 504 505 return 0; 506 507 out_free2: 508 kmem_cache_destroy(stable_node_cache); 509 out_free1: 510 kmem_cache_destroy(rmap_item_cache); 511 out: 512 return -ENOMEM; 513 } 514 515 static void __init ksm_slab_free(void) 516 { 517 kmem_cache_destroy(mm_slot_cache); 518 kmem_cache_destroy(stable_node_cache); 519 kmem_cache_destroy(rmap_item_cache); 520 mm_slot_cache = NULL; 521 } 522 523 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 524 { 525 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 526 } 527 528 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 529 { 530 return dup->head == STABLE_NODE_DUP_HEAD; 531 } 532 533 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 534 struct ksm_stable_node *chain) 535 { 536 VM_BUG_ON(is_stable_node_dup(dup)); 537 dup->head = STABLE_NODE_DUP_HEAD; 538 VM_BUG_ON(!is_stable_node_chain(chain)); 539 hlist_add_head(&dup->hlist_dup, &chain->hlist); 540 ksm_stable_node_dups++; 541 } 542 543 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 544 { 545 VM_BUG_ON(!is_stable_node_dup(dup)); 546 hlist_del(&dup->hlist_dup); 547 ksm_stable_node_dups--; 548 } 549 550 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 551 { 552 VM_BUG_ON(is_stable_node_chain(dup)); 553 if (is_stable_node_dup(dup)) 554 __stable_node_dup_del(dup); 555 else 556 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 557 #ifdef CONFIG_DEBUG_VM 558 dup->head = NULL; 559 #endif 560 } 561 562 static inline struct ksm_rmap_item *alloc_rmap_item(void) 563 { 564 struct ksm_rmap_item *rmap_item; 565 566 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 567 __GFP_NORETRY | __GFP_NOWARN); 568 if (rmap_item) 569 ksm_rmap_items++; 570 return rmap_item; 571 } 572 573 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 574 { 575 ksm_rmap_items--; 576 rmap_item->mm->ksm_rmap_items--; 577 rmap_item->mm = NULL; /* debug safety */ 578 kmem_cache_free(rmap_item_cache, rmap_item); 579 } 580 581 static inline struct ksm_stable_node *alloc_stable_node(void) 582 { 583 /* 584 * The allocation can take too long with GFP_KERNEL when memory is under 585 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 586 * grants access to memory reserves, helping to avoid this problem. 587 */ 588 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 589 } 590 591 static inline void free_stable_node(struct ksm_stable_node *stable_node) 592 { 593 VM_BUG_ON(stable_node->rmap_hlist_len && 594 !is_stable_node_chain(stable_node)); 595 kmem_cache_free(stable_node_cache, stable_node); 596 } 597 598 /* 599 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 600 * page tables after it has passed through ksm_exit() - which, if necessary, 601 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 602 * a special flag: they can just back out as soon as mm_users goes to zero. 603 * ksm_test_exit() is used throughout to make this test for exit: in some 604 * places for correctness, in some places just to avoid unnecessary work. 605 */ 606 static inline bool ksm_test_exit(struct mm_struct *mm) 607 { 608 return atomic_read(&mm->mm_users) == 0; 609 } 610 611 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 612 struct mm_walk *walk) 613 { 614 struct page *page = NULL; 615 spinlock_t *ptl; 616 pte_t *pte; 617 pte_t ptent; 618 int ret; 619 620 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 621 if (!pte) 622 return 0; 623 ptent = ptep_get(pte); 624 if (pte_present(ptent)) { 625 page = vm_normal_page(walk->vma, addr, ptent); 626 } else if (!pte_none(ptent)) { 627 swp_entry_t entry = pte_to_swp_entry(ptent); 628 629 /* 630 * As KSM pages remain KSM pages until freed, no need to wait 631 * here for migration to end. 632 */ 633 if (is_migration_entry(entry)) 634 page = pfn_swap_entry_to_page(entry); 635 } 636 /* return 1 if the page is an normal ksm page or KSM-placed zero page */ 637 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent); 638 pte_unmap_unlock(pte, ptl); 639 return ret; 640 } 641 642 static const struct mm_walk_ops break_ksm_ops = { 643 .pmd_entry = break_ksm_pmd_entry, 644 .walk_lock = PGWALK_RDLOCK, 645 }; 646 647 static const struct mm_walk_ops break_ksm_lock_vma_ops = { 648 .pmd_entry = break_ksm_pmd_entry, 649 .walk_lock = PGWALK_WRLOCK, 650 }; 651 652 /* 653 * We use break_ksm to break COW on a ksm page by triggering unsharing, 654 * such that the ksm page will get replaced by an exclusive anonymous page. 655 * 656 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 657 * in case the application has unmapped and remapped mm,addr meanwhile. 658 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 659 * mmap of /dev/mem, where we would not want to touch it. 660 * 661 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 662 * of the process that owns 'vma'. We also do not want to enforce 663 * protection keys here anyway. 664 */ 665 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 666 { 667 vm_fault_t ret = 0; 668 const struct mm_walk_ops *ops = lock_vma ? 669 &break_ksm_lock_vma_ops : &break_ksm_ops; 670 671 do { 672 int ksm_page; 673 674 cond_resched(); 675 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL); 676 if (WARN_ON_ONCE(ksm_page < 0)) 677 return ksm_page; 678 if (!ksm_page) 679 return 0; 680 ret = handle_mm_fault(vma, addr, 681 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 682 NULL); 683 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 684 /* 685 * We must loop until we no longer find a KSM page because 686 * handle_mm_fault() may back out if there's any difficulty e.g. if 687 * pte accessed bit gets updated concurrently. 688 * 689 * VM_FAULT_SIGBUS could occur if we race with truncation of the 690 * backing file, which also invalidates anonymous pages: that's 691 * okay, that truncation will have unmapped the PageKsm for us. 692 * 693 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 694 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 695 * current task has TIF_MEMDIE set, and will be OOM killed on return 696 * to user; and ksmd, having no mm, would never be chosen for that. 697 * 698 * But if the mm is in a limited mem_cgroup, then the fault may fail 699 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 700 * even ksmd can fail in this way - though it's usually breaking ksm 701 * just to undo a merge it made a moment before, so unlikely to oom. 702 * 703 * That's a pity: we might therefore have more kernel pages allocated 704 * than we're counting as nodes in the stable tree; but ksm_do_scan 705 * will retry to break_cow on each pass, so should recover the page 706 * in due course. The important thing is to not let VM_MERGEABLE 707 * be cleared while any such pages might remain in the area. 708 */ 709 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 710 } 711 712 static bool vma_ksm_compatible(struct vm_area_struct *vma) 713 { 714 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 715 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 716 VM_MIXEDMAP| VM_DROPPABLE)) 717 return false; /* just ignore the advice */ 718 719 if (vma_is_dax(vma)) 720 return false; 721 722 #ifdef VM_SAO 723 if (vma->vm_flags & VM_SAO) 724 return false; 725 #endif 726 #ifdef VM_SPARC_ADI 727 if (vma->vm_flags & VM_SPARC_ADI) 728 return false; 729 #endif 730 731 return true; 732 } 733 734 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 735 unsigned long addr) 736 { 737 struct vm_area_struct *vma; 738 if (ksm_test_exit(mm)) 739 return NULL; 740 vma = vma_lookup(mm, addr); 741 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 742 return NULL; 743 return vma; 744 } 745 746 static void break_cow(struct ksm_rmap_item *rmap_item) 747 { 748 struct mm_struct *mm = rmap_item->mm; 749 unsigned long addr = rmap_item->address; 750 struct vm_area_struct *vma; 751 752 /* 753 * It is not an accident that whenever we want to break COW 754 * to undo, we also need to drop a reference to the anon_vma. 755 */ 756 put_anon_vma(rmap_item->anon_vma); 757 758 mmap_read_lock(mm); 759 vma = find_mergeable_vma(mm, addr); 760 if (vma) 761 break_ksm(vma, addr, false); 762 mmap_read_unlock(mm); 763 } 764 765 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 766 { 767 struct mm_struct *mm = rmap_item->mm; 768 unsigned long addr = rmap_item->address; 769 struct vm_area_struct *vma; 770 struct page *page; 771 772 mmap_read_lock(mm); 773 vma = find_mergeable_vma(mm, addr); 774 if (!vma) 775 goto out; 776 777 page = follow_page(vma, addr, FOLL_GET); 778 if (IS_ERR_OR_NULL(page)) 779 goto out; 780 if (is_zone_device_page(page)) 781 goto out_putpage; 782 if (PageAnon(page)) { 783 flush_anon_page(vma, page, addr); 784 flush_dcache_page(page); 785 } else { 786 out_putpage: 787 put_page(page); 788 out: 789 page = NULL; 790 } 791 mmap_read_unlock(mm); 792 return page; 793 } 794 795 /* 796 * This helper is used for getting right index into array of tree roots. 797 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 798 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 799 * every node has its own stable and unstable tree. 800 */ 801 static inline int get_kpfn_nid(unsigned long kpfn) 802 { 803 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 804 } 805 806 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 807 struct rb_root *root) 808 { 809 struct ksm_stable_node *chain = alloc_stable_node(); 810 VM_BUG_ON(is_stable_node_chain(dup)); 811 if (likely(chain)) { 812 INIT_HLIST_HEAD(&chain->hlist); 813 chain->chain_prune_time = jiffies; 814 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 815 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 816 chain->nid = NUMA_NO_NODE; /* debug */ 817 #endif 818 ksm_stable_node_chains++; 819 820 /* 821 * Put the stable node chain in the first dimension of 822 * the stable tree and at the same time remove the old 823 * stable node. 824 */ 825 rb_replace_node(&dup->node, &chain->node, root); 826 827 /* 828 * Move the old stable node to the second dimension 829 * queued in the hlist_dup. The invariant is that all 830 * dup stable_nodes in the chain->hlist point to pages 831 * that are write protected and have the exact same 832 * content. 833 */ 834 stable_node_chain_add_dup(dup, chain); 835 } 836 return chain; 837 } 838 839 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 840 struct rb_root *root) 841 { 842 rb_erase(&chain->node, root); 843 free_stable_node(chain); 844 ksm_stable_node_chains--; 845 } 846 847 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 848 { 849 struct ksm_rmap_item *rmap_item; 850 851 /* check it's not STABLE_NODE_CHAIN or negative */ 852 BUG_ON(stable_node->rmap_hlist_len < 0); 853 854 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 855 if (rmap_item->hlist.next) { 856 ksm_pages_sharing--; 857 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 858 } else { 859 ksm_pages_shared--; 860 } 861 862 rmap_item->mm->ksm_merging_pages--; 863 864 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 865 stable_node->rmap_hlist_len--; 866 put_anon_vma(rmap_item->anon_vma); 867 rmap_item->address &= PAGE_MASK; 868 cond_resched(); 869 } 870 871 /* 872 * We need the second aligned pointer of the migrate_nodes 873 * list_head to stay clear from the rb_parent_color union 874 * (aligned and different than any node) and also different 875 * from &migrate_nodes. This will verify that future list.h changes 876 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 877 */ 878 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 879 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 880 881 trace_ksm_remove_ksm_page(stable_node->kpfn); 882 if (stable_node->head == &migrate_nodes) 883 list_del(&stable_node->list); 884 else 885 stable_node_dup_del(stable_node); 886 free_stable_node(stable_node); 887 } 888 889 enum ksm_get_folio_flags { 890 KSM_GET_FOLIO_NOLOCK, 891 KSM_GET_FOLIO_LOCK, 892 KSM_GET_FOLIO_TRYLOCK 893 }; 894 895 /* 896 * ksm_get_folio: checks if the page indicated by the stable node 897 * is still its ksm page, despite having held no reference to it. 898 * In which case we can trust the content of the page, and it 899 * returns the gotten page; but if the page has now been zapped, 900 * remove the stale node from the stable tree and return NULL. 901 * But beware, the stable node's page might be being migrated. 902 * 903 * You would expect the stable_node to hold a reference to the ksm page. 904 * But if it increments the page's count, swapping out has to wait for 905 * ksmd to come around again before it can free the page, which may take 906 * seconds or even minutes: much too unresponsive. So instead we use a 907 * "keyhole reference": access to the ksm page from the stable node peeps 908 * out through its keyhole to see if that page still holds the right key, 909 * pointing back to this stable node. This relies on freeing a PageAnon 910 * page to reset its page->mapping to NULL, and relies on no other use of 911 * a page to put something that might look like our key in page->mapping. 912 * is on its way to being freed; but it is an anomaly to bear in mind. 913 */ 914 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node, 915 enum ksm_get_folio_flags flags) 916 { 917 struct folio *folio; 918 void *expected_mapping; 919 unsigned long kpfn; 920 921 expected_mapping = (void *)((unsigned long)stable_node | 922 PAGE_MAPPING_KSM); 923 again: 924 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 925 folio = pfn_folio(kpfn); 926 if (READ_ONCE(folio->mapping) != expected_mapping) 927 goto stale; 928 929 /* 930 * We cannot do anything with the page while its refcount is 0. 931 * Usually 0 means free, or tail of a higher-order page: in which 932 * case this node is no longer referenced, and should be freed; 933 * however, it might mean that the page is under page_ref_freeze(). 934 * The __remove_mapping() case is easy, again the node is now stale; 935 * the same is in reuse_ksm_page() case; but if page is swapcache 936 * in folio_migrate_mapping(), it might still be our page, 937 * in which case it's essential to keep the node. 938 */ 939 while (!folio_try_get(folio)) { 940 /* 941 * Another check for page->mapping != expected_mapping would 942 * work here too. We have chosen the !PageSwapCache test to 943 * optimize the common case, when the page is or is about to 944 * be freed: PageSwapCache is cleared (under spin_lock_irq) 945 * in the ref_freeze section of __remove_mapping(); but Anon 946 * folio->mapping reset to NULL later, in free_pages_prepare(). 947 */ 948 if (!folio_test_swapcache(folio)) 949 goto stale; 950 cpu_relax(); 951 } 952 953 if (READ_ONCE(folio->mapping) != expected_mapping) { 954 folio_put(folio); 955 goto stale; 956 } 957 958 if (flags == KSM_GET_FOLIO_TRYLOCK) { 959 if (!folio_trylock(folio)) { 960 folio_put(folio); 961 return ERR_PTR(-EBUSY); 962 } 963 } else if (flags == KSM_GET_FOLIO_LOCK) 964 folio_lock(folio); 965 966 if (flags != KSM_GET_FOLIO_NOLOCK) { 967 if (READ_ONCE(folio->mapping) != expected_mapping) { 968 folio_unlock(folio); 969 folio_put(folio); 970 goto stale; 971 } 972 } 973 return folio; 974 975 stale: 976 /* 977 * We come here from above when page->mapping or !PageSwapCache 978 * suggests that the node is stale; but it might be under migration. 979 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 980 * before checking whether node->kpfn has been changed. 981 */ 982 smp_rmb(); 983 if (READ_ONCE(stable_node->kpfn) != kpfn) 984 goto again; 985 remove_node_from_stable_tree(stable_node); 986 return NULL; 987 } 988 989 /* 990 * Removing rmap_item from stable or unstable tree. 991 * This function will clean the information from the stable/unstable tree. 992 */ 993 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 994 { 995 if (rmap_item->address & STABLE_FLAG) { 996 struct ksm_stable_node *stable_node; 997 struct folio *folio; 998 999 stable_node = rmap_item->head; 1000 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1001 if (!folio) 1002 goto out; 1003 1004 hlist_del(&rmap_item->hlist); 1005 folio_unlock(folio); 1006 folio_put(folio); 1007 1008 if (!hlist_empty(&stable_node->hlist)) 1009 ksm_pages_sharing--; 1010 else 1011 ksm_pages_shared--; 1012 1013 rmap_item->mm->ksm_merging_pages--; 1014 1015 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 1016 stable_node->rmap_hlist_len--; 1017 1018 put_anon_vma(rmap_item->anon_vma); 1019 rmap_item->head = NULL; 1020 rmap_item->address &= PAGE_MASK; 1021 1022 } else if (rmap_item->address & UNSTABLE_FLAG) { 1023 unsigned char age; 1024 /* 1025 * Usually ksmd can and must skip the rb_erase, because 1026 * root_unstable_tree was already reset to RB_ROOT. 1027 * But be careful when an mm is exiting: do the rb_erase 1028 * if this rmap_item was inserted by this scan, rather 1029 * than left over from before. 1030 */ 1031 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 1032 BUG_ON(age > 1); 1033 if (!age) 1034 rb_erase(&rmap_item->node, 1035 root_unstable_tree + NUMA(rmap_item->nid)); 1036 ksm_pages_unshared--; 1037 rmap_item->address &= PAGE_MASK; 1038 } 1039 out: 1040 cond_resched(); /* we're called from many long loops */ 1041 } 1042 1043 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 1044 { 1045 while (*rmap_list) { 1046 struct ksm_rmap_item *rmap_item = *rmap_list; 1047 *rmap_list = rmap_item->rmap_list; 1048 remove_rmap_item_from_tree(rmap_item); 1049 free_rmap_item(rmap_item); 1050 } 1051 } 1052 1053 /* 1054 * Though it's very tempting to unmerge rmap_items from stable tree rather 1055 * than check every pte of a given vma, the locking doesn't quite work for 1056 * that - an rmap_item is assigned to the stable tree after inserting ksm 1057 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 1058 * rmap_items from parent to child at fork time (so as not to waste time 1059 * if exit comes before the next scan reaches it). 1060 * 1061 * Similarly, although we'd like to remove rmap_items (so updating counts 1062 * and freeing memory) when unmerging an area, it's easier to leave that 1063 * to the next pass of ksmd - consider, for example, how ksmd might be 1064 * in cmp_and_merge_page on one of the rmap_items we would be removing. 1065 */ 1066 static int unmerge_ksm_pages(struct vm_area_struct *vma, 1067 unsigned long start, unsigned long end, bool lock_vma) 1068 { 1069 unsigned long addr; 1070 int err = 0; 1071 1072 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 1073 if (ksm_test_exit(vma->vm_mm)) 1074 break; 1075 if (signal_pending(current)) 1076 err = -ERESTARTSYS; 1077 else 1078 err = break_ksm(vma, addr, lock_vma); 1079 } 1080 return err; 1081 } 1082 1083 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 1084 { 1085 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 1086 } 1087 1088 static inline struct ksm_stable_node *page_stable_node(struct page *page) 1089 { 1090 return folio_stable_node(page_folio(page)); 1091 } 1092 1093 static inline void folio_set_stable_node(struct folio *folio, 1094 struct ksm_stable_node *stable_node) 1095 { 1096 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio); 1097 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 1098 } 1099 1100 #ifdef CONFIG_SYSFS 1101 /* 1102 * Only called through the sysfs control interface: 1103 */ 1104 static int remove_stable_node(struct ksm_stable_node *stable_node) 1105 { 1106 struct folio *folio; 1107 int err; 1108 1109 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1110 if (!folio) { 1111 /* 1112 * ksm_get_folio did remove_node_from_stable_tree itself. 1113 */ 1114 return 0; 1115 } 1116 1117 /* 1118 * Page could be still mapped if this races with __mmput() running in 1119 * between ksm_exit() and exit_mmap(). Just refuse to let 1120 * merge_across_nodes/max_page_sharing be switched. 1121 */ 1122 err = -EBUSY; 1123 if (!folio_mapped(folio)) { 1124 /* 1125 * The stable node did not yet appear stale to ksm_get_folio(), 1126 * since that allows for an unmapped ksm folio to be recognized 1127 * right up until it is freed; but the node is safe to remove. 1128 * This folio might be in an LRU cache waiting to be freed, 1129 * or it might be in the swapcache (perhaps under writeback), 1130 * or it might have been removed from swapcache a moment ago. 1131 */ 1132 folio_set_stable_node(folio, NULL); 1133 remove_node_from_stable_tree(stable_node); 1134 err = 0; 1135 } 1136 1137 folio_unlock(folio); 1138 folio_put(folio); 1139 return err; 1140 } 1141 1142 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 1143 struct rb_root *root) 1144 { 1145 struct ksm_stable_node *dup; 1146 struct hlist_node *hlist_safe; 1147 1148 if (!is_stable_node_chain(stable_node)) { 1149 VM_BUG_ON(is_stable_node_dup(stable_node)); 1150 if (remove_stable_node(stable_node)) 1151 return true; 1152 else 1153 return false; 1154 } 1155 1156 hlist_for_each_entry_safe(dup, hlist_safe, 1157 &stable_node->hlist, hlist_dup) { 1158 VM_BUG_ON(!is_stable_node_dup(dup)); 1159 if (remove_stable_node(dup)) 1160 return true; 1161 } 1162 BUG_ON(!hlist_empty(&stable_node->hlist)); 1163 free_stable_node_chain(stable_node, root); 1164 return false; 1165 } 1166 1167 static int remove_all_stable_nodes(void) 1168 { 1169 struct ksm_stable_node *stable_node, *next; 1170 int nid; 1171 int err = 0; 1172 1173 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1174 while (root_stable_tree[nid].rb_node) { 1175 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1176 struct ksm_stable_node, node); 1177 if (remove_stable_node_chain(stable_node, 1178 root_stable_tree + nid)) { 1179 err = -EBUSY; 1180 break; /* proceed to next nid */ 1181 } 1182 cond_resched(); 1183 } 1184 } 1185 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1186 if (remove_stable_node(stable_node)) 1187 err = -EBUSY; 1188 cond_resched(); 1189 } 1190 return err; 1191 } 1192 1193 static int unmerge_and_remove_all_rmap_items(void) 1194 { 1195 struct ksm_mm_slot *mm_slot; 1196 struct mm_slot *slot; 1197 struct mm_struct *mm; 1198 struct vm_area_struct *vma; 1199 int err = 0; 1200 1201 spin_lock(&ksm_mmlist_lock); 1202 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1203 struct mm_slot, mm_node); 1204 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1205 spin_unlock(&ksm_mmlist_lock); 1206 1207 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1208 mm_slot = ksm_scan.mm_slot) { 1209 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1210 1211 mm = mm_slot->slot.mm; 1212 mmap_read_lock(mm); 1213 1214 /* 1215 * Exit right away if mm is exiting to avoid lockdep issue in 1216 * the maple tree 1217 */ 1218 if (ksm_test_exit(mm)) 1219 goto mm_exiting; 1220 1221 for_each_vma(vmi, vma) { 1222 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1223 continue; 1224 err = unmerge_ksm_pages(vma, 1225 vma->vm_start, vma->vm_end, false); 1226 if (err) 1227 goto error; 1228 } 1229 1230 mm_exiting: 1231 remove_trailing_rmap_items(&mm_slot->rmap_list); 1232 mmap_read_unlock(mm); 1233 1234 spin_lock(&ksm_mmlist_lock); 1235 slot = list_entry(mm_slot->slot.mm_node.next, 1236 struct mm_slot, mm_node); 1237 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1238 if (ksm_test_exit(mm)) { 1239 hash_del(&mm_slot->slot.hash); 1240 list_del(&mm_slot->slot.mm_node); 1241 spin_unlock(&ksm_mmlist_lock); 1242 1243 mm_slot_free(mm_slot_cache, mm_slot); 1244 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1245 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1246 mmdrop(mm); 1247 } else 1248 spin_unlock(&ksm_mmlist_lock); 1249 } 1250 1251 /* Clean up stable nodes, but don't worry if some are still busy */ 1252 remove_all_stable_nodes(); 1253 ksm_scan.seqnr = 0; 1254 return 0; 1255 1256 error: 1257 mmap_read_unlock(mm); 1258 spin_lock(&ksm_mmlist_lock); 1259 ksm_scan.mm_slot = &ksm_mm_head; 1260 spin_unlock(&ksm_mmlist_lock); 1261 return err; 1262 } 1263 #endif /* CONFIG_SYSFS */ 1264 1265 static u32 calc_checksum(struct page *page) 1266 { 1267 u32 checksum; 1268 void *addr = kmap_local_page(page); 1269 checksum = xxhash(addr, PAGE_SIZE, 0); 1270 kunmap_local(addr); 1271 return checksum; 1272 } 1273 1274 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio, 1275 pte_t *orig_pte) 1276 { 1277 struct mm_struct *mm = vma->vm_mm; 1278 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0); 1279 int swapped; 1280 int err = -EFAULT; 1281 struct mmu_notifier_range range; 1282 bool anon_exclusive; 1283 pte_t entry; 1284 1285 if (WARN_ON_ONCE(folio_test_large(folio))) 1286 return err; 1287 1288 pvmw.address = page_address_in_vma(&folio->page, vma); 1289 if (pvmw.address == -EFAULT) 1290 goto out; 1291 1292 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1293 pvmw.address + PAGE_SIZE); 1294 mmu_notifier_invalidate_range_start(&range); 1295 1296 if (!page_vma_mapped_walk(&pvmw)) 1297 goto out_mn; 1298 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1299 goto out_unlock; 1300 1301 anon_exclusive = PageAnonExclusive(&folio->page); 1302 entry = ptep_get(pvmw.pte); 1303 if (pte_write(entry) || pte_dirty(entry) || 1304 anon_exclusive || mm_tlb_flush_pending(mm)) { 1305 swapped = folio_test_swapcache(folio); 1306 flush_cache_page(vma, pvmw.address, folio_pfn(folio)); 1307 /* 1308 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1309 * take any lock, therefore the check that we are going to make 1310 * with the pagecount against the mapcount is racy and 1311 * O_DIRECT can happen right after the check. 1312 * So we clear the pte and flush the tlb before the check 1313 * this assure us that no O_DIRECT can happen after the check 1314 * or in the middle of the check. 1315 * 1316 * No need to notify as we are downgrading page table to read 1317 * only not changing it to point to a new page. 1318 * 1319 * See Documentation/mm/mmu_notifier.rst 1320 */ 1321 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1322 /* 1323 * Check that no O_DIRECT or similar I/O is in progress on the 1324 * page 1325 */ 1326 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) { 1327 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1328 goto out_unlock; 1329 } 1330 1331 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 1332 if (anon_exclusive && 1333 folio_try_share_anon_rmap_pte(folio, &folio->page)) { 1334 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1335 goto out_unlock; 1336 } 1337 1338 if (pte_dirty(entry)) 1339 folio_mark_dirty(folio); 1340 entry = pte_mkclean(entry); 1341 1342 if (pte_write(entry)) 1343 entry = pte_wrprotect(entry); 1344 1345 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1346 } 1347 *orig_pte = entry; 1348 err = 0; 1349 1350 out_unlock: 1351 page_vma_mapped_walk_done(&pvmw); 1352 out_mn: 1353 mmu_notifier_invalidate_range_end(&range); 1354 out: 1355 return err; 1356 } 1357 1358 /** 1359 * replace_page - replace page in vma by new ksm page 1360 * @vma: vma that holds the pte pointing to page 1361 * @page: the page we are replacing by kpage 1362 * @kpage: the ksm page we replace page by 1363 * @orig_pte: the original value of the pte 1364 * 1365 * Returns 0 on success, -EFAULT on failure. 1366 */ 1367 static int replace_page(struct vm_area_struct *vma, struct page *page, 1368 struct page *kpage, pte_t orig_pte) 1369 { 1370 struct folio *kfolio = page_folio(kpage); 1371 struct mm_struct *mm = vma->vm_mm; 1372 struct folio *folio; 1373 pmd_t *pmd; 1374 pmd_t pmde; 1375 pte_t *ptep; 1376 pte_t newpte; 1377 spinlock_t *ptl; 1378 unsigned long addr; 1379 int err = -EFAULT; 1380 struct mmu_notifier_range range; 1381 1382 addr = page_address_in_vma(page, vma); 1383 if (addr == -EFAULT) 1384 goto out; 1385 1386 pmd = mm_find_pmd(mm, addr); 1387 if (!pmd) 1388 goto out; 1389 /* 1390 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1391 * without holding anon_vma lock for write. So when looking for a 1392 * genuine pmde (in which to find pte), test present and !THP together. 1393 */ 1394 pmde = pmdp_get_lockless(pmd); 1395 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1396 goto out; 1397 1398 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1399 addr + PAGE_SIZE); 1400 mmu_notifier_invalidate_range_start(&range); 1401 1402 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1403 if (!ptep) 1404 goto out_mn; 1405 if (!pte_same(ptep_get(ptep), orig_pte)) { 1406 pte_unmap_unlock(ptep, ptl); 1407 goto out_mn; 1408 } 1409 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1410 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), 1411 kfolio); 1412 1413 /* 1414 * No need to check ksm_use_zero_pages here: we can only have a 1415 * zero_page here if ksm_use_zero_pages was enabled already. 1416 */ 1417 if (!is_zero_pfn(page_to_pfn(kpage))) { 1418 folio_get(kfolio); 1419 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); 1420 newpte = mk_pte(kpage, vma->vm_page_prot); 1421 } else { 1422 /* 1423 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1424 * we can easily track all KSM-placed zero pages by checking if 1425 * the dirty bit in zero page's PTE is set. 1426 */ 1427 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1428 ksm_map_zero_page(mm); 1429 /* 1430 * We're replacing an anonymous page with a zero page, which is 1431 * not anonymous. We need to do proper accounting otherwise we 1432 * will get wrong values in /proc, and a BUG message in dmesg 1433 * when tearing down the mm. 1434 */ 1435 dec_mm_counter(mm, MM_ANONPAGES); 1436 } 1437 1438 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1439 /* 1440 * No need to notify as we are replacing a read only page with another 1441 * read only page with the same content. 1442 * 1443 * See Documentation/mm/mmu_notifier.rst 1444 */ 1445 ptep_clear_flush(vma, addr, ptep); 1446 set_pte_at(mm, addr, ptep, newpte); 1447 1448 folio = page_folio(page); 1449 folio_remove_rmap_pte(folio, page, vma); 1450 if (!folio_mapped(folio)) 1451 folio_free_swap(folio); 1452 folio_put(folio); 1453 1454 pte_unmap_unlock(ptep, ptl); 1455 err = 0; 1456 out_mn: 1457 mmu_notifier_invalidate_range_end(&range); 1458 out: 1459 return err; 1460 } 1461 1462 /* 1463 * try_to_merge_one_page - take two pages and merge them into one 1464 * @vma: the vma that holds the pte pointing to page 1465 * @page: the PageAnon page that we want to replace with kpage 1466 * @kpage: the PageKsm page that we want to map instead of page, 1467 * or NULL the first time when we want to use page as kpage. 1468 * 1469 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1470 */ 1471 static int try_to_merge_one_page(struct vm_area_struct *vma, 1472 struct page *page, struct page *kpage) 1473 { 1474 pte_t orig_pte = __pte(0); 1475 int err = -EFAULT; 1476 1477 if (page == kpage) /* ksm page forked */ 1478 return 0; 1479 1480 if (!PageAnon(page)) 1481 goto out; 1482 1483 /* 1484 * We need the page lock to read a stable PageSwapCache in 1485 * write_protect_page(). We use trylock_page() instead of 1486 * lock_page() because we don't want to wait here - we 1487 * prefer to continue scanning and merging different pages, 1488 * then come back to this page when it is unlocked. 1489 */ 1490 if (!trylock_page(page)) 1491 goto out; 1492 1493 if (PageTransCompound(page)) { 1494 if (split_huge_page(page)) 1495 goto out_unlock; 1496 } 1497 1498 /* 1499 * If this anonymous page is mapped only here, its pte may need 1500 * to be write-protected. If it's mapped elsewhere, all of its 1501 * ptes are necessarily already write-protected. But in either 1502 * case, we need to lock and check page_count is not raised. 1503 */ 1504 if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) { 1505 if (!kpage) { 1506 /* 1507 * While we hold page lock, upgrade page from 1508 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1509 * stable_tree_insert() will update stable_node. 1510 */ 1511 folio_set_stable_node(page_folio(page), NULL); 1512 mark_page_accessed(page); 1513 /* 1514 * Page reclaim just frees a clean page with no dirty 1515 * ptes: make sure that the ksm page would be swapped. 1516 */ 1517 if (!PageDirty(page)) 1518 SetPageDirty(page); 1519 err = 0; 1520 } else if (pages_identical(page, kpage)) 1521 err = replace_page(vma, page, kpage, orig_pte); 1522 } 1523 1524 out_unlock: 1525 unlock_page(page); 1526 out: 1527 return err; 1528 } 1529 1530 /* 1531 * This function returns 0 if the pages were merged or if they are 1532 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise. 1533 */ 1534 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item, 1535 struct page *page) 1536 { 1537 struct mm_struct *mm = rmap_item->mm; 1538 int err = -EFAULT; 1539 1540 /* 1541 * Same checksum as an empty page. We attempt to merge it with the 1542 * appropriate zero page if the user enabled this via sysfs. 1543 */ 1544 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) { 1545 struct vm_area_struct *vma; 1546 1547 mmap_read_lock(mm); 1548 vma = find_mergeable_vma(mm, rmap_item->address); 1549 if (vma) { 1550 err = try_to_merge_one_page(vma, page, 1551 ZERO_PAGE(rmap_item->address)); 1552 trace_ksm_merge_one_page( 1553 page_to_pfn(ZERO_PAGE(rmap_item->address)), 1554 rmap_item, mm, err); 1555 } else { 1556 /* 1557 * If the vma is out of date, we do not need to 1558 * continue. 1559 */ 1560 err = 0; 1561 } 1562 mmap_read_unlock(mm); 1563 } 1564 1565 return err; 1566 } 1567 1568 /* 1569 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1570 * but no new kernel page is allocated: kpage must already be a ksm page. 1571 * 1572 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1573 */ 1574 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1575 struct page *page, struct page *kpage) 1576 { 1577 struct mm_struct *mm = rmap_item->mm; 1578 struct vm_area_struct *vma; 1579 int err = -EFAULT; 1580 1581 mmap_read_lock(mm); 1582 vma = find_mergeable_vma(mm, rmap_item->address); 1583 if (!vma) 1584 goto out; 1585 1586 err = try_to_merge_one_page(vma, page, kpage); 1587 if (err) 1588 goto out; 1589 1590 /* Unstable nid is in union with stable anon_vma: remove first */ 1591 remove_rmap_item_from_tree(rmap_item); 1592 1593 /* Must get reference to anon_vma while still holding mmap_lock */ 1594 rmap_item->anon_vma = vma->anon_vma; 1595 get_anon_vma(vma->anon_vma); 1596 out: 1597 mmap_read_unlock(mm); 1598 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1599 rmap_item, mm, err); 1600 return err; 1601 } 1602 1603 /* 1604 * try_to_merge_two_pages - take two identical pages and prepare them 1605 * to be merged into one page. 1606 * 1607 * This function returns the kpage if we successfully merged two identical 1608 * pages into one ksm page, NULL otherwise. 1609 * 1610 * Note that this function upgrades page to ksm page: if one of the pages 1611 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1612 */ 1613 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1614 struct page *page, 1615 struct ksm_rmap_item *tree_rmap_item, 1616 struct page *tree_page) 1617 { 1618 int err; 1619 1620 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1621 if (!err) { 1622 err = try_to_merge_with_ksm_page(tree_rmap_item, 1623 tree_page, page); 1624 /* 1625 * If that fails, we have a ksm page with only one pte 1626 * pointing to it: so break it. 1627 */ 1628 if (err) 1629 break_cow(rmap_item); 1630 } 1631 return err ? NULL : page; 1632 } 1633 1634 static __always_inline 1635 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1636 { 1637 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1638 /* 1639 * Check that at least one mapping still exists, otherwise 1640 * there's no much point to merge and share with this 1641 * stable_node, as the underlying tree_page of the other 1642 * sharer is going to be freed soon. 1643 */ 1644 return stable_node->rmap_hlist_len && 1645 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1646 } 1647 1648 static __always_inline 1649 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1650 { 1651 return __is_page_sharing_candidate(stable_node, 0); 1652 } 1653 1654 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1655 struct ksm_stable_node **_stable_node, 1656 struct rb_root *root, 1657 bool prune_stale_stable_nodes) 1658 { 1659 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1660 struct hlist_node *hlist_safe; 1661 struct folio *folio, *tree_folio = NULL; 1662 int found_rmap_hlist_len; 1663 1664 if (!prune_stale_stable_nodes || 1665 time_before(jiffies, stable_node->chain_prune_time + 1666 msecs_to_jiffies( 1667 ksm_stable_node_chains_prune_millisecs))) 1668 prune_stale_stable_nodes = false; 1669 else 1670 stable_node->chain_prune_time = jiffies; 1671 1672 hlist_for_each_entry_safe(dup, hlist_safe, 1673 &stable_node->hlist, hlist_dup) { 1674 cond_resched(); 1675 /* 1676 * We must walk all stable_node_dup to prune the stale 1677 * stable nodes during lookup. 1678 * 1679 * ksm_get_folio can drop the nodes from the 1680 * stable_node->hlist if they point to freed pages 1681 * (that's why we do a _safe walk). The "dup" 1682 * stable_node parameter itself will be freed from 1683 * under us if it returns NULL. 1684 */ 1685 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK); 1686 if (!folio) 1687 continue; 1688 /* Pick the best candidate if possible. */ 1689 if (!found || (is_page_sharing_candidate(dup) && 1690 (!is_page_sharing_candidate(found) || 1691 dup->rmap_hlist_len > found_rmap_hlist_len))) { 1692 if (found) 1693 folio_put(tree_folio); 1694 found = dup; 1695 found_rmap_hlist_len = found->rmap_hlist_len; 1696 tree_folio = folio; 1697 /* skip put_page for found candidate */ 1698 if (!prune_stale_stable_nodes && 1699 is_page_sharing_candidate(found)) 1700 break; 1701 continue; 1702 } 1703 folio_put(folio); 1704 } 1705 1706 if (found) { 1707 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) { 1708 /* 1709 * If there's not just one entry it would 1710 * corrupt memory, better BUG_ON. In KSM 1711 * context with no lock held it's not even 1712 * fatal. 1713 */ 1714 BUG_ON(stable_node->hlist.first->next); 1715 1716 /* 1717 * There's just one entry and it is below the 1718 * deduplication limit so drop the chain. 1719 */ 1720 rb_replace_node(&stable_node->node, &found->node, 1721 root); 1722 free_stable_node(stable_node); 1723 ksm_stable_node_chains--; 1724 ksm_stable_node_dups--; 1725 /* 1726 * NOTE: the caller depends on the stable_node 1727 * to be equal to stable_node_dup if the chain 1728 * was collapsed. 1729 */ 1730 *_stable_node = found; 1731 /* 1732 * Just for robustness, as stable_node is 1733 * otherwise left as a stable pointer, the 1734 * compiler shall optimize it away at build 1735 * time. 1736 */ 1737 stable_node = NULL; 1738 } else if (stable_node->hlist.first != &found->hlist_dup && 1739 __is_page_sharing_candidate(found, 1)) { 1740 /* 1741 * If the found stable_node dup can accept one 1742 * more future merge (in addition to the one 1743 * that is underway) and is not at the head of 1744 * the chain, put it there so next search will 1745 * be quicker in the !prune_stale_stable_nodes 1746 * case. 1747 * 1748 * NOTE: it would be inaccurate to use nr > 1 1749 * instead of checking the hlist.first pointer 1750 * directly, because in the 1751 * prune_stale_stable_nodes case "nr" isn't 1752 * the position of the found dup in the chain, 1753 * but the total number of dups in the chain. 1754 */ 1755 hlist_del(&found->hlist_dup); 1756 hlist_add_head(&found->hlist_dup, 1757 &stable_node->hlist); 1758 } 1759 } else { 1760 /* Its hlist must be empty if no one found. */ 1761 free_stable_node_chain(stable_node, root); 1762 } 1763 1764 *_stable_node_dup = found; 1765 return tree_folio; 1766 } 1767 1768 /* 1769 * Like for ksm_get_folio, this function can free the *_stable_node and 1770 * *_stable_node_dup if the returned tree_page is NULL. 1771 * 1772 * It can also free and overwrite *_stable_node with the found 1773 * stable_node_dup if the chain is collapsed (in which case 1774 * *_stable_node will be equal to *_stable_node_dup like if the chain 1775 * never existed). It's up to the caller to verify tree_page is not 1776 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1777 * 1778 * *_stable_node_dup is really a second output parameter of this 1779 * function and will be overwritten in all cases, the caller doesn't 1780 * need to initialize it. 1781 */ 1782 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1783 struct ksm_stable_node **_stable_node, 1784 struct rb_root *root, 1785 bool prune_stale_stable_nodes) 1786 { 1787 struct ksm_stable_node *stable_node = *_stable_node; 1788 1789 if (!is_stable_node_chain(stable_node)) { 1790 *_stable_node_dup = stable_node; 1791 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK); 1792 } 1793 return stable_node_dup(_stable_node_dup, _stable_node, root, 1794 prune_stale_stable_nodes); 1795 } 1796 1797 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d, 1798 struct ksm_stable_node **s_n, 1799 struct rb_root *root) 1800 { 1801 return __stable_node_chain(s_n_d, s_n, root, true); 1802 } 1803 1804 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d, 1805 struct ksm_stable_node **s_n, 1806 struct rb_root *root) 1807 { 1808 return __stable_node_chain(s_n_d, s_n, root, false); 1809 } 1810 1811 /* 1812 * stable_tree_search - search for page inside the stable tree 1813 * 1814 * This function checks if there is a page inside the stable tree 1815 * with identical content to the page that we are scanning right now. 1816 * 1817 * This function returns the stable tree node of identical content if found, 1818 * NULL otherwise. 1819 */ 1820 static struct page *stable_tree_search(struct page *page) 1821 { 1822 int nid; 1823 struct rb_root *root; 1824 struct rb_node **new; 1825 struct rb_node *parent; 1826 struct ksm_stable_node *stable_node, *stable_node_dup; 1827 struct ksm_stable_node *page_node; 1828 struct folio *folio; 1829 1830 folio = page_folio(page); 1831 page_node = folio_stable_node(folio); 1832 if (page_node && page_node->head != &migrate_nodes) { 1833 /* ksm page forked */ 1834 folio_get(folio); 1835 return &folio->page; 1836 } 1837 1838 nid = get_kpfn_nid(folio_pfn(folio)); 1839 root = root_stable_tree + nid; 1840 again: 1841 new = &root->rb_node; 1842 parent = NULL; 1843 1844 while (*new) { 1845 struct folio *tree_folio; 1846 int ret; 1847 1848 cond_resched(); 1849 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1850 tree_folio = chain_prune(&stable_node_dup, &stable_node, root); 1851 if (!tree_folio) { 1852 /* 1853 * If we walked over a stale stable_node, 1854 * ksm_get_folio() will call rb_erase() and it 1855 * may rebalance the tree from under us. So 1856 * restart the search from scratch. Returning 1857 * NULL would be safe too, but we'd generate 1858 * false negative insertions just because some 1859 * stable_node was stale. 1860 */ 1861 goto again; 1862 } 1863 1864 ret = memcmp_pages(page, &tree_folio->page); 1865 folio_put(tree_folio); 1866 1867 parent = *new; 1868 if (ret < 0) 1869 new = &parent->rb_left; 1870 else if (ret > 0) 1871 new = &parent->rb_right; 1872 else { 1873 if (page_node) { 1874 VM_BUG_ON(page_node->head != &migrate_nodes); 1875 /* 1876 * If the mapcount of our migrated KSM folio is 1877 * at most 1, we can merge it with another 1878 * KSM folio where we know that we have space 1879 * for one more mapping without exceeding the 1880 * ksm_max_page_sharing limit: see 1881 * chain_prune(). This way, we can avoid adding 1882 * this stable node to the chain. 1883 */ 1884 if (folio_mapcount(folio) > 1) 1885 goto chain_append; 1886 } 1887 1888 if (!is_page_sharing_candidate(stable_node_dup)) { 1889 /* 1890 * If the stable_node is a chain and 1891 * we got a payload match in memcmp 1892 * but we cannot merge the scanned 1893 * page in any of the existing 1894 * stable_node dups because they're 1895 * all full, we need to wait the 1896 * scanned page to find itself a match 1897 * in the unstable tree to create a 1898 * brand new KSM page to add later to 1899 * the dups of this stable_node. 1900 */ 1901 return NULL; 1902 } 1903 1904 /* 1905 * Lock and unlock the stable_node's page (which 1906 * might already have been migrated) so that page 1907 * migration is sure to notice its raised count. 1908 * It would be more elegant to return stable_node 1909 * than kpage, but that involves more changes. 1910 */ 1911 tree_folio = ksm_get_folio(stable_node_dup, 1912 KSM_GET_FOLIO_TRYLOCK); 1913 1914 if (PTR_ERR(tree_folio) == -EBUSY) 1915 return ERR_PTR(-EBUSY); 1916 1917 if (unlikely(!tree_folio)) 1918 /* 1919 * The tree may have been rebalanced, 1920 * so re-evaluate parent and new. 1921 */ 1922 goto again; 1923 folio_unlock(tree_folio); 1924 1925 if (get_kpfn_nid(stable_node_dup->kpfn) != 1926 NUMA(stable_node_dup->nid)) { 1927 folio_put(tree_folio); 1928 goto replace; 1929 } 1930 return &tree_folio->page; 1931 } 1932 } 1933 1934 if (!page_node) 1935 return NULL; 1936 1937 list_del(&page_node->list); 1938 DO_NUMA(page_node->nid = nid); 1939 rb_link_node(&page_node->node, parent, new); 1940 rb_insert_color(&page_node->node, root); 1941 out: 1942 if (is_page_sharing_candidate(page_node)) { 1943 folio_get(folio); 1944 return &folio->page; 1945 } else 1946 return NULL; 1947 1948 replace: 1949 /* 1950 * If stable_node was a chain and chain_prune collapsed it, 1951 * stable_node has been updated to be the new regular 1952 * stable_node. A collapse of the chain is indistinguishable 1953 * from the case there was no chain in the stable 1954 * rbtree. Otherwise stable_node is the chain and 1955 * stable_node_dup is the dup to replace. 1956 */ 1957 if (stable_node_dup == stable_node) { 1958 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1959 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1960 /* there is no chain */ 1961 if (page_node) { 1962 VM_BUG_ON(page_node->head != &migrate_nodes); 1963 list_del(&page_node->list); 1964 DO_NUMA(page_node->nid = nid); 1965 rb_replace_node(&stable_node_dup->node, 1966 &page_node->node, 1967 root); 1968 if (is_page_sharing_candidate(page_node)) 1969 folio_get(folio); 1970 else 1971 folio = NULL; 1972 } else { 1973 rb_erase(&stable_node_dup->node, root); 1974 folio = NULL; 1975 } 1976 } else { 1977 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1978 __stable_node_dup_del(stable_node_dup); 1979 if (page_node) { 1980 VM_BUG_ON(page_node->head != &migrate_nodes); 1981 list_del(&page_node->list); 1982 DO_NUMA(page_node->nid = nid); 1983 stable_node_chain_add_dup(page_node, stable_node); 1984 if (is_page_sharing_candidate(page_node)) 1985 folio_get(folio); 1986 else 1987 folio = NULL; 1988 } else { 1989 folio = NULL; 1990 } 1991 } 1992 stable_node_dup->head = &migrate_nodes; 1993 list_add(&stable_node_dup->list, stable_node_dup->head); 1994 return &folio->page; 1995 1996 chain_append: 1997 /* 1998 * If stable_node was a chain and chain_prune collapsed it, 1999 * stable_node has been updated to be the new regular 2000 * stable_node. A collapse of the chain is indistinguishable 2001 * from the case there was no chain in the stable 2002 * rbtree. Otherwise stable_node is the chain and 2003 * stable_node_dup is the dup to replace. 2004 */ 2005 if (stable_node_dup == stable_node) { 2006 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 2007 /* chain is missing so create it */ 2008 stable_node = alloc_stable_node_chain(stable_node_dup, 2009 root); 2010 if (!stable_node) 2011 return NULL; 2012 } 2013 /* 2014 * Add this stable_node dup that was 2015 * migrated to the stable_node chain 2016 * of the current nid for this page 2017 * content. 2018 */ 2019 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 2020 VM_BUG_ON(page_node->head != &migrate_nodes); 2021 list_del(&page_node->list); 2022 DO_NUMA(page_node->nid = nid); 2023 stable_node_chain_add_dup(page_node, stable_node); 2024 goto out; 2025 } 2026 2027 /* 2028 * stable_tree_insert - insert stable tree node pointing to new ksm page 2029 * into the stable tree. 2030 * 2031 * This function returns the stable tree node just allocated on success, 2032 * NULL otherwise. 2033 */ 2034 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio) 2035 { 2036 int nid; 2037 unsigned long kpfn; 2038 struct rb_root *root; 2039 struct rb_node **new; 2040 struct rb_node *parent; 2041 struct ksm_stable_node *stable_node, *stable_node_dup; 2042 bool need_chain = false; 2043 2044 kpfn = folio_pfn(kfolio); 2045 nid = get_kpfn_nid(kpfn); 2046 root = root_stable_tree + nid; 2047 again: 2048 parent = NULL; 2049 new = &root->rb_node; 2050 2051 while (*new) { 2052 struct folio *tree_folio; 2053 int ret; 2054 2055 cond_resched(); 2056 stable_node = rb_entry(*new, struct ksm_stable_node, node); 2057 tree_folio = chain(&stable_node_dup, &stable_node, root); 2058 if (!tree_folio) { 2059 /* 2060 * If we walked over a stale stable_node, 2061 * ksm_get_folio() will call rb_erase() and it 2062 * may rebalance the tree from under us. So 2063 * restart the search from scratch. Returning 2064 * NULL would be safe too, but we'd generate 2065 * false negative insertions just because some 2066 * stable_node was stale. 2067 */ 2068 goto again; 2069 } 2070 2071 ret = memcmp_pages(&kfolio->page, &tree_folio->page); 2072 folio_put(tree_folio); 2073 2074 parent = *new; 2075 if (ret < 0) 2076 new = &parent->rb_left; 2077 else if (ret > 0) 2078 new = &parent->rb_right; 2079 else { 2080 need_chain = true; 2081 break; 2082 } 2083 } 2084 2085 stable_node_dup = alloc_stable_node(); 2086 if (!stable_node_dup) 2087 return NULL; 2088 2089 INIT_HLIST_HEAD(&stable_node_dup->hlist); 2090 stable_node_dup->kpfn = kpfn; 2091 stable_node_dup->rmap_hlist_len = 0; 2092 DO_NUMA(stable_node_dup->nid = nid); 2093 if (!need_chain) { 2094 rb_link_node(&stable_node_dup->node, parent, new); 2095 rb_insert_color(&stable_node_dup->node, root); 2096 } else { 2097 if (!is_stable_node_chain(stable_node)) { 2098 struct ksm_stable_node *orig = stable_node; 2099 /* chain is missing so create it */ 2100 stable_node = alloc_stable_node_chain(orig, root); 2101 if (!stable_node) { 2102 free_stable_node(stable_node_dup); 2103 return NULL; 2104 } 2105 } 2106 stable_node_chain_add_dup(stable_node_dup, stable_node); 2107 } 2108 2109 folio_set_stable_node(kfolio, stable_node_dup); 2110 2111 return stable_node_dup; 2112 } 2113 2114 /* 2115 * unstable_tree_search_insert - search for identical page, 2116 * else insert rmap_item into the unstable tree. 2117 * 2118 * This function searches for a page in the unstable tree identical to the 2119 * page currently being scanned; and if no identical page is found in the 2120 * tree, we insert rmap_item as a new object into the unstable tree. 2121 * 2122 * This function returns pointer to rmap_item found to be identical 2123 * to the currently scanned page, NULL otherwise. 2124 * 2125 * This function does both searching and inserting, because they share 2126 * the same walking algorithm in an rbtree. 2127 */ 2128 static 2129 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2130 struct page *page, 2131 struct page **tree_pagep) 2132 { 2133 struct rb_node **new; 2134 struct rb_root *root; 2135 struct rb_node *parent = NULL; 2136 int nid; 2137 2138 nid = get_kpfn_nid(page_to_pfn(page)); 2139 root = root_unstable_tree + nid; 2140 new = &root->rb_node; 2141 2142 while (*new) { 2143 struct ksm_rmap_item *tree_rmap_item; 2144 struct page *tree_page; 2145 int ret; 2146 2147 cond_resched(); 2148 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2149 tree_page = get_mergeable_page(tree_rmap_item); 2150 if (!tree_page) 2151 return NULL; 2152 2153 /* 2154 * Don't substitute a ksm page for a forked page. 2155 */ 2156 if (page == tree_page) { 2157 put_page(tree_page); 2158 return NULL; 2159 } 2160 2161 ret = memcmp_pages(page, tree_page); 2162 2163 parent = *new; 2164 if (ret < 0) { 2165 put_page(tree_page); 2166 new = &parent->rb_left; 2167 } else if (ret > 0) { 2168 put_page(tree_page); 2169 new = &parent->rb_right; 2170 } else if (!ksm_merge_across_nodes && 2171 page_to_nid(tree_page) != nid) { 2172 /* 2173 * If tree_page has been migrated to another NUMA node, 2174 * it will be flushed out and put in the right unstable 2175 * tree next time: only merge with it when across_nodes. 2176 */ 2177 put_page(tree_page); 2178 return NULL; 2179 } else { 2180 *tree_pagep = tree_page; 2181 return tree_rmap_item; 2182 } 2183 } 2184 2185 rmap_item->address |= UNSTABLE_FLAG; 2186 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2187 DO_NUMA(rmap_item->nid = nid); 2188 rb_link_node(&rmap_item->node, parent, new); 2189 rb_insert_color(&rmap_item->node, root); 2190 2191 ksm_pages_unshared++; 2192 return NULL; 2193 } 2194 2195 /* 2196 * stable_tree_append - add another rmap_item to the linked list of 2197 * rmap_items hanging off a given node of the stable tree, all sharing 2198 * the same ksm page. 2199 */ 2200 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2201 struct ksm_stable_node *stable_node, 2202 bool max_page_sharing_bypass) 2203 { 2204 /* 2205 * rmap won't find this mapping if we don't insert the 2206 * rmap_item in the right stable_node 2207 * duplicate. page_migration could break later if rmap breaks, 2208 * so we can as well crash here. We really need to check for 2209 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2210 * for other negative values as an underflow if detected here 2211 * for the first time (and not when decreasing rmap_hlist_len) 2212 * would be sign of memory corruption in the stable_node. 2213 */ 2214 BUG_ON(stable_node->rmap_hlist_len < 0); 2215 2216 stable_node->rmap_hlist_len++; 2217 if (!max_page_sharing_bypass) 2218 /* possibly non fatal but unexpected overflow, only warn */ 2219 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2220 ksm_max_page_sharing); 2221 2222 rmap_item->head = stable_node; 2223 rmap_item->address |= STABLE_FLAG; 2224 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2225 2226 if (rmap_item->hlist.next) 2227 ksm_pages_sharing++; 2228 else 2229 ksm_pages_shared++; 2230 2231 rmap_item->mm->ksm_merging_pages++; 2232 } 2233 2234 /* 2235 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2236 * if not, compare checksum to previous and if it's the same, see if page can 2237 * be inserted into the unstable tree, or merged with a page already there and 2238 * both transferred to the stable tree. 2239 * 2240 * @page: the page that we are searching identical page to. 2241 * @rmap_item: the reverse mapping into the virtual address of this page 2242 */ 2243 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2244 { 2245 struct ksm_rmap_item *tree_rmap_item; 2246 struct page *tree_page = NULL; 2247 struct ksm_stable_node *stable_node; 2248 struct page *kpage; 2249 unsigned int checksum; 2250 int err; 2251 bool max_page_sharing_bypass = false; 2252 2253 stable_node = page_stable_node(page); 2254 if (stable_node) { 2255 if (stable_node->head != &migrate_nodes && 2256 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2257 NUMA(stable_node->nid)) { 2258 stable_node_dup_del(stable_node); 2259 stable_node->head = &migrate_nodes; 2260 list_add(&stable_node->list, stable_node->head); 2261 } 2262 if (stable_node->head != &migrate_nodes && 2263 rmap_item->head == stable_node) 2264 return; 2265 /* 2266 * If it's a KSM fork, allow it to go over the sharing limit 2267 * without warnings. 2268 */ 2269 if (!is_page_sharing_candidate(stable_node)) 2270 max_page_sharing_bypass = true; 2271 } else { 2272 remove_rmap_item_from_tree(rmap_item); 2273 2274 /* 2275 * If the hash value of the page has changed from the last time 2276 * we calculated it, this page is changing frequently: therefore we 2277 * don't want to insert it in the unstable tree, and we don't want 2278 * to waste our time searching for something identical to it there. 2279 */ 2280 checksum = calc_checksum(page); 2281 if (rmap_item->oldchecksum != checksum) { 2282 rmap_item->oldchecksum = checksum; 2283 return; 2284 } 2285 2286 if (!try_to_merge_with_zero_page(rmap_item, page)) 2287 return; 2288 } 2289 2290 /* We first start with searching the page inside the stable tree */ 2291 kpage = stable_tree_search(page); 2292 if (kpage == page && rmap_item->head == stable_node) { 2293 put_page(kpage); 2294 return; 2295 } 2296 2297 remove_rmap_item_from_tree(rmap_item); 2298 2299 if (kpage) { 2300 if (PTR_ERR(kpage) == -EBUSY) 2301 return; 2302 2303 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2304 if (!err) { 2305 /* 2306 * The page was successfully merged: 2307 * add its rmap_item to the stable tree. 2308 */ 2309 lock_page(kpage); 2310 stable_tree_append(rmap_item, page_stable_node(kpage), 2311 max_page_sharing_bypass); 2312 unlock_page(kpage); 2313 } 2314 put_page(kpage); 2315 return; 2316 } 2317 2318 tree_rmap_item = 2319 unstable_tree_search_insert(rmap_item, page, &tree_page); 2320 if (tree_rmap_item) { 2321 bool split; 2322 2323 kpage = try_to_merge_two_pages(rmap_item, page, 2324 tree_rmap_item, tree_page); 2325 /* 2326 * If both pages we tried to merge belong to the same compound 2327 * page, then we actually ended up increasing the reference 2328 * count of the same compound page twice, and split_huge_page 2329 * failed. 2330 * Here we set a flag if that happened, and we use it later to 2331 * try split_huge_page again. Since we call put_page right 2332 * afterwards, the reference count will be correct and 2333 * split_huge_page should succeed. 2334 */ 2335 split = PageTransCompound(page) 2336 && compound_head(page) == compound_head(tree_page); 2337 put_page(tree_page); 2338 if (kpage) { 2339 /* 2340 * The pages were successfully merged: insert new 2341 * node in the stable tree and add both rmap_items. 2342 */ 2343 lock_page(kpage); 2344 stable_node = stable_tree_insert(page_folio(kpage)); 2345 if (stable_node) { 2346 stable_tree_append(tree_rmap_item, stable_node, 2347 false); 2348 stable_tree_append(rmap_item, stable_node, 2349 false); 2350 } 2351 unlock_page(kpage); 2352 2353 /* 2354 * If we fail to insert the page into the stable tree, 2355 * we will have 2 virtual addresses that are pointing 2356 * to a ksm page left outside the stable tree, 2357 * in which case we need to break_cow on both. 2358 */ 2359 if (!stable_node) { 2360 break_cow(tree_rmap_item); 2361 break_cow(rmap_item); 2362 } 2363 } else if (split) { 2364 /* 2365 * We are here if we tried to merge two pages and 2366 * failed because they both belonged to the same 2367 * compound page. We will split the page now, but no 2368 * merging will take place. 2369 * We do not want to add the cost of a full lock; if 2370 * the page is locked, it is better to skip it and 2371 * perhaps try again later. 2372 */ 2373 if (!trylock_page(page)) 2374 return; 2375 split_huge_page(page); 2376 unlock_page(page); 2377 } 2378 } 2379 } 2380 2381 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2382 struct ksm_rmap_item **rmap_list, 2383 unsigned long addr) 2384 { 2385 struct ksm_rmap_item *rmap_item; 2386 2387 while (*rmap_list) { 2388 rmap_item = *rmap_list; 2389 if ((rmap_item->address & PAGE_MASK) == addr) 2390 return rmap_item; 2391 if (rmap_item->address > addr) 2392 break; 2393 *rmap_list = rmap_item->rmap_list; 2394 remove_rmap_item_from_tree(rmap_item); 2395 free_rmap_item(rmap_item); 2396 } 2397 2398 rmap_item = alloc_rmap_item(); 2399 if (rmap_item) { 2400 /* It has already been zeroed */ 2401 rmap_item->mm = mm_slot->slot.mm; 2402 rmap_item->mm->ksm_rmap_items++; 2403 rmap_item->address = addr; 2404 rmap_item->rmap_list = *rmap_list; 2405 *rmap_list = rmap_item; 2406 } 2407 return rmap_item; 2408 } 2409 2410 /* 2411 * Calculate skip age for the ksm page age. The age determines how often 2412 * de-duplicating has already been tried unsuccessfully. If the age is 2413 * smaller, the scanning of this page is skipped for less scans. 2414 * 2415 * @age: rmap_item age of page 2416 */ 2417 static unsigned int skip_age(rmap_age_t age) 2418 { 2419 if (age <= 3) 2420 return 1; 2421 if (age <= 5) 2422 return 2; 2423 if (age <= 8) 2424 return 4; 2425 2426 return 8; 2427 } 2428 2429 /* 2430 * Determines if a page should be skipped for the current scan. 2431 * 2432 * @page: page to check 2433 * @rmap_item: associated rmap_item of page 2434 */ 2435 static bool should_skip_rmap_item(struct page *page, 2436 struct ksm_rmap_item *rmap_item) 2437 { 2438 rmap_age_t age; 2439 2440 if (!ksm_smart_scan) 2441 return false; 2442 2443 /* 2444 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2445 * will essentially ignore them, but we still have to process them 2446 * properly. 2447 */ 2448 if (PageKsm(page)) 2449 return false; 2450 2451 age = rmap_item->age; 2452 if (age != U8_MAX) 2453 rmap_item->age++; 2454 2455 /* 2456 * Smaller ages are not skipped, they need to get a chance to go 2457 * through the different phases of the KSM merging. 2458 */ 2459 if (age < 3) 2460 return false; 2461 2462 /* 2463 * Are we still allowed to skip? If not, then don't skip it 2464 * and determine how much more often we are allowed to skip next. 2465 */ 2466 if (!rmap_item->remaining_skips) { 2467 rmap_item->remaining_skips = skip_age(age); 2468 return false; 2469 } 2470 2471 /* Skip this page */ 2472 ksm_pages_skipped++; 2473 rmap_item->remaining_skips--; 2474 remove_rmap_item_from_tree(rmap_item); 2475 return true; 2476 } 2477 2478 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2479 { 2480 struct mm_struct *mm; 2481 struct ksm_mm_slot *mm_slot; 2482 struct mm_slot *slot; 2483 struct vm_area_struct *vma; 2484 struct ksm_rmap_item *rmap_item; 2485 struct vma_iterator vmi; 2486 int nid; 2487 2488 if (list_empty(&ksm_mm_head.slot.mm_node)) 2489 return NULL; 2490 2491 mm_slot = ksm_scan.mm_slot; 2492 if (mm_slot == &ksm_mm_head) { 2493 advisor_start_scan(); 2494 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2495 2496 /* 2497 * A number of pages can hang around indefinitely in per-cpu 2498 * LRU cache, raised page count preventing write_protect_page 2499 * from merging them. Though it doesn't really matter much, 2500 * it is puzzling to see some stuck in pages_volatile until 2501 * other activity jostles them out, and they also prevented 2502 * LTP's KSM test from succeeding deterministically; so drain 2503 * them here (here rather than on entry to ksm_do_scan(), 2504 * so we don't IPI too often when pages_to_scan is set low). 2505 */ 2506 lru_add_drain_all(); 2507 2508 /* 2509 * Whereas stale stable_nodes on the stable_tree itself 2510 * get pruned in the regular course of stable_tree_search(), 2511 * those moved out to the migrate_nodes list can accumulate: 2512 * so prune them once before each full scan. 2513 */ 2514 if (!ksm_merge_across_nodes) { 2515 struct ksm_stable_node *stable_node, *next; 2516 struct folio *folio; 2517 2518 list_for_each_entry_safe(stable_node, next, 2519 &migrate_nodes, list) { 2520 folio = ksm_get_folio(stable_node, 2521 KSM_GET_FOLIO_NOLOCK); 2522 if (folio) 2523 folio_put(folio); 2524 cond_resched(); 2525 } 2526 } 2527 2528 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2529 root_unstable_tree[nid] = RB_ROOT; 2530 2531 spin_lock(&ksm_mmlist_lock); 2532 slot = list_entry(mm_slot->slot.mm_node.next, 2533 struct mm_slot, mm_node); 2534 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2535 ksm_scan.mm_slot = mm_slot; 2536 spin_unlock(&ksm_mmlist_lock); 2537 /* 2538 * Although we tested list_empty() above, a racing __ksm_exit 2539 * of the last mm on the list may have removed it since then. 2540 */ 2541 if (mm_slot == &ksm_mm_head) 2542 return NULL; 2543 next_mm: 2544 ksm_scan.address = 0; 2545 ksm_scan.rmap_list = &mm_slot->rmap_list; 2546 } 2547 2548 slot = &mm_slot->slot; 2549 mm = slot->mm; 2550 vma_iter_init(&vmi, mm, ksm_scan.address); 2551 2552 mmap_read_lock(mm); 2553 if (ksm_test_exit(mm)) 2554 goto no_vmas; 2555 2556 for_each_vma(vmi, vma) { 2557 if (!(vma->vm_flags & VM_MERGEABLE)) 2558 continue; 2559 if (ksm_scan.address < vma->vm_start) 2560 ksm_scan.address = vma->vm_start; 2561 if (!vma->anon_vma) 2562 ksm_scan.address = vma->vm_end; 2563 2564 while (ksm_scan.address < vma->vm_end) { 2565 if (ksm_test_exit(mm)) 2566 break; 2567 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2568 if (IS_ERR_OR_NULL(*page)) { 2569 ksm_scan.address += PAGE_SIZE; 2570 cond_resched(); 2571 continue; 2572 } 2573 if (is_zone_device_page(*page)) 2574 goto next_page; 2575 if (PageAnon(*page)) { 2576 flush_anon_page(vma, *page, ksm_scan.address); 2577 flush_dcache_page(*page); 2578 rmap_item = get_next_rmap_item(mm_slot, 2579 ksm_scan.rmap_list, ksm_scan.address); 2580 if (rmap_item) { 2581 ksm_scan.rmap_list = 2582 &rmap_item->rmap_list; 2583 2584 if (should_skip_rmap_item(*page, rmap_item)) 2585 goto next_page; 2586 2587 ksm_scan.address += PAGE_SIZE; 2588 } else 2589 put_page(*page); 2590 mmap_read_unlock(mm); 2591 return rmap_item; 2592 } 2593 next_page: 2594 put_page(*page); 2595 ksm_scan.address += PAGE_SIZE; 2596 cond_resched(); 2597 } 2598 } 2599 2600 if (ksm_test_exit(mm)) { 2601 no_vmas: 2602 ksm_scan.address = 0; 2603 ksm_scan.rmap_list = &mm_slot->rmap_list; 2604 } 2605 /* 2606 * Nuke all the rmap_items that are above this current rmap: 2607 * because there were no VM_MERGEABLE vmas with such addresses. 2608 */ 2609 remove_trailing_rmap_items(ksm_scan.rmap_list); 2610 2611 spin_lock(&ksm_mmlist_lock); 2612 slot = list_entry(mm_slot->slot.mm_node.next, 2613 struct mm_slot, mm_node); 2614 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2615 if (ksm_scan.address == 0) { 2616 /* 2617 * We've completed a full scan of all vmas, holding mmap_lock 2618 * throughout, and found no VM_MERGEABLE: so do the same as 2619 * __ksm_exit does to remove this mm from all our lists now. 2620 * This applies either when cleaning up after __ksm_exit 2621 * (but beware: we can reach here even before __ksm_exit), 2622 * or when all VM_MERGEABLE areas have been unmapped (and 2623 * mmap_lock then protects against race with MADV_MERGEABLE). 2624 */ 2625 hash_del(&mm_slot->slot.hash); 2626 list_del(&mm_slot->slot.mm_node); 2627 spin_unlock(&ksm_mmlist_lock); 2628 2629 mm_slot_free(mm_slot_cache, mm_slot); 2630 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2631 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2632 mmap_read_unlock(mm); 2633 mmdrop(mm); 2634 } else { 2635 mmap_read_unlock(mm); 2636 /* 2637 * mmap_read_unlock(mm) first because after 2638 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2639 * already have been freed under us by __ksm_exit() 2640 * because the "mm_slot" is still hashed and 2641 * ksm_scan.mm_slot doesn't point to it anymore. 2642 */ 2643 spin_unlock(&ksm_mmlist_lock); 2644 } 2645 2646 /* Repeat until we've completed scanning the whole list */ 2647 mm_slot = ksm_scan.mm_slot; 2648 if (mm_slot != &ksm_mm_head) 2649 goto next_mm; 2650 2651 advisor_stop_scan(); 2652 2653 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2654 ksm_scan.seqnr++; 2655 return NULL; 2656 } 2657 2658 /** 2659 * ksm_do_scan - the ksm scanner main worker function. 2660 * @scan_npages: number of pages we want to scan before we return. 2661 */ 2662 static void ksm_do_scan(unsigned int scan_npages) 2663 { 2664 struct ksm_rmap_item *rmap_item; 2665 struct page *page; 2666 2667 while (scan_npages-- && likely(!freezing(current))) { 2668 cond_resched(); 2669 rmap_item = scan_get_next_rmap_item(&page); 2670 if (!rmap_item) 2671 return; 2672 cmp_and_merge_page(page, rmap_item); 2673 put_page(page); 2674 ksm_pages_scanned++; 2675 } 2676 } 2677 2678 static int ksmd_should_run(void) 2679 { 2680 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2681 } 2682 2683 static int ksm_scan_thread(void *nothing) 2684 { 2685 unsigned int sleep_ms; 2686 2687 set_freezable(); 2688 set_user_nice(current, 5); 2689 2690 while (!kthread_should_stop()) { 2691 mutex_lock(&ksm_thread_mutex); 2692 wait_while_offlining(); 2693 if (ksmd_should_run()) 2694 ksm_do_scan(ksm_thread_pages_to_scan); 2695 mutex_unlock(&ksm_thread_mutex); 2696 2697 if (ksmd_should_run()) { 2698 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2699 wait_event_freezable_timeout(ksm_iter_wait, 2700 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2701 msecs_to_jiffies(sleep_ms)); 2702 } else { 2703 wait_event_freezable(ksm_thread_wait, 2704 ksmd_should_run() || kthread_should_stop()); 2705 } 2706 } 2707 return 0; 2708 } 2709 2710 static void __ksm_add_vma(struct vm_area_struct *vma) 2711 { 2712 unsigned long vm_flags = vma->vm_flags; 2713 2714 if (vm_flags & VM_MERGEABLE) 2715 return; 2716 2717 if (vma_ksm_compatible(vma)) 2718 vm_flags_set(vma, VM_MERGEABLE); 2719 } 2720 2721 static int __ksm_del_vma(struct vm_area_struct *vma) 2722 { 2723 int err; 2724 2725 if (!(vma->vm_flags & VM_MERGEABLE)) 2726 return 0; 2727 2728 if (vma->anon_vma) { 2729 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2730 if (err) 2731 return err; 2732 } 2733 2734 vm_flags_clear(vma, VM_MERGEABLE); 2735 return 0; 2736 } 2737 /** 2738 * ksm_add_vma - Mark vma as mergeable if compatible 2739 * 2740 * @vma: Pointer to vma 2741 */ 2742 void ksm_add_vma(struct vm_area_struct *vma) 2743 { 2744 struct mm_struct *mm = vma->vm_mm; 2745 2746 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2747 __ksm_add_vma(vma); 2748 } 2749 2750 static void ksm_add_vmas(struct mm_struct *mm) 2751 { 2752 struct vm_area_struct *vma; 2753 2754 VMA_ITERATOR(vmi, mm, 0); 2755 for_each_vma(vmi, vma) 2756 __ksm_add_vma(vma); 2757 } 2758 2759 static int ksm_del_vmas(struct mm_struct *mm) 2760 { 2761 struct vm_area_struct *vma; 2762 int err; 2763 2764 VMA_ITERATOR(vmi, mm, 0); 2765 for_each_vma(vmi, vma) { 2766 err = __ksm_del_vma(vma); 2767 if (err) 2768 return err; 2769 } 2770 return 0; 2771 } 2772 2773 /** 2774 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2775 * compatible VMA's 2776 * 2777 * @mm: Pointer to mm 2778 * 2779 * Returns 0 on success, otherwise error code 2780 */ 2781 int ksm_enable_merge_any(struct mm_struct *mm) 2782 { 2783 int err; 2784 2785 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2786 return 0; 2787 2788 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2789 err = __ksm_enter(mm); 2790 if (err) 2791 return err; 2792 } 2793 2794 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2795 ksm_add_vmas(mm); 2796 2797 return 0; 2798 } 2799 2800 /** 2801 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2802 * previously enabled via ksm_enable_merge_any(). 2803 * 2804 * Disabling merging implies unmerging any merged pages, like setting 2805 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2806 * merging on all compatible VMA's remains enabled. 2807 * 2808 * @mm: Pointer to mm 2809 * 2810 * Returns 0 on success, otherwise error code 2811 */ 2812 int ksm_disable_merge_any(struct mm_struct *mm) 2813 { 2814 int err; 2815 2816 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2817 return 0; 2818 2819 err = ksm_del_vmas(mm); 2820 if (err) { 2821 ksm_add_vmas(mm); 2822 return err; 2823 } 2824 2825 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2826 return 0; 2827 } 2828 2829 int ksm_disable(struct mm_struct *mm) 2830 { 2831 mmap_assert_write_locked(mm); 2832 2833 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2834 return 0; 2835 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2836 return ksm_disable_merge_any(mm); 2837 return ksm_del_vmas(mm); 2838 } 2839 2840 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2841 unsigned long end, int advice, unsigned long *vm_flags) 2842 { 2843 struct mm_struct *mm = vma->vm_mm; 2844 int err; 2845 2846 switch (advice) { 2847 case MADV_MERGEABLE: 2848 if (vma->vm_flags & VM_MERGEABLE) 2849 return 0; 2850 if (!vma_ksm_compatible(vma)) 2851 return 0; 2852 2853 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2854 err = __ksm_enter(mm); 2855 if (err) 2856 return err; 2857 } 2858 2859 *vm_flags |= VM_MERGEABLE; 2860 break; 2861 2862 case MADV_UNMERGEABLE: 2863 if (!(*vm_flags & VM_MERGEABLE)) 2864 return 0; /* just ignore the advice */ 2865 2866 if (vma->anon_vma) { 2867 err = unmerge_ksm_pages(vma, start, end, true); 2868 if (err) 2869 return err; 2870 } 2871 2872 *vm_flags &= ~VM_MERGEABLE; 2873 break; 2874 } 2875 2876 return 0; 2877 } 2878 EXPORT_SYMBOL_GPL(ksm_madvise); 2879 2880 int __ksm_enter(struct mm_struct *mm) 2881 { 2882 struct ksm_mm_slot *mm_slot; 2883 struct mm_slot *slot; 2884 int needs_wakeup; 2885 2886 mm_slot = mm_slot_alloc(mm_slot_cache); 2887 if (!mm_slot) 2888 return -ENOMEM; 2889 2890 slot = &mm_slot->slot; 2891 2892 /* Check ksm_run too? Would need tighter locking */ 2893 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2894 2895 spin_lock(&ksm_mmlist_lock); 2896 mm_slot_insert(mm_slots_hash, mm, slot); 2897 /* 2898 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2899 * insert just behind the scanning cursor, to let the area settle 2900 * down a little; when fork is followed by immediate exec, we don't 2901 * want ksmd to waste time setting up and tearing down an rmap_list. 2902 * 2903 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2904 * scanning cursor, otherwise KSM pages in newly forked mms will be 2905 * missed: then we might as well insert at the end of the list. 2906 */ 2907 if (ksm_run & KSM_RUN_UNMERGE) 2908 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2909 else 2910 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2911 spin_unlock(&ksm_mmlist_lock); 2912 2913 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2914 mmgrab(mm); 2915 2916 if (needs_wakeup) 2917 wake_up_interruptible(&ksm_thread_wait); 2918 2919 trace_ksm_enter(mm); 2920 return 0; 2921 } 2922 2923 void __ksm_exit(struct mm_struct *mm) 2924 { 2925 struct ksm_mm_slot *mm_slot; 2926 struct mm_slot *slot; 2927 int easy_to_free = 0; 2928 2929 /* 2930 * This process is exiting: if it's straightforward (as is the 2931 * case when ksmd was never running), free mm_slot immediately. 2932 * But if it's at the cursor or has rmap_items linked to it, use 2933 * mmap_lock to synchronize with any break_cows before pagetables 2934 * are freed, and leave the mm_slot on the list for ksmd to free. 2935 * Beware: ksm may already have noticed it exiting and freed the slot. 2936 */ 2937 2938 spin_lock(&ksm_mmlist_lock); 2939 slot = mm_slot_lookup(mm_slots_hash, mm); 2940 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2941 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2942 if (!mm_slot->rmap_list) { 2943 hash_del(&slot->hash); 2944 list_del(&slot->mm_node); 2945 easy_to_free = 1; 2946 } else { 2947 list_move(&slot->mm_node, 2948 &ksm_scan.mm_slot->slot.mm_node); 2949 } 2950 } 2951 spin_unlock(&ksm_mmlist_lock); 2952 2953 if (easy_to_free) { 2954 mm_slot_free(mm_slot_cache, mm_slot); 2955 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2956 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2957 mmdrop(mm); 2958 } else if (mm_slot) { 2959 mmap_write_lock(mm); 2960 mmap_write_unlock(mm); 2961 } 2962 2963 trace_ksm_exit(mm); 2964 } 2965 2966 struct folio *ksm_might_need_to_copy(struct folio *folio, 2967 struct vm_area_struct *vma, unsigned long addr) 2968 { 2969 struct page *page = folio_page(folio, 0); 2970 struct anon_vma *anon_vma = folio_anon_vma(folio); 2971 struct folio *new_folio; 2972 2973 if (folio_test_large(folio)) 2974 return folio; 2975 2976 if (folio_test_ksm(folio)) { 2977 if (folio_stable_node(folio) && 2978 !(ksm_run & KSM_RUN_UNMERGE)) 2979 return folio; /* no need to copy it */ 2980 } else if (!anon_vma) { 2981 return folio; /* no need to copy it */ 2982 } else if (folio->index == linear_page_index(vma, addr) && 2983 anon_vma->root == vma->anon_vma->root) { 2984 return folio; /* still no need to copy it */ 2985 } 2986 if (PageHWPoison(page)) 2987 return ERR_PTR(-EHWPOISON); 2988 if (!folio_test_uptodate(folio)) 2989 return folio; /* let do_swap_page report the error */ 2990 2991 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 2992 if (new_folio && 2993 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { 2994 folio_put(new_folio); 2995 new_folio = NULL; 2996 } 2997 if (new_folio) { 2998 if (copy_mc_user_highpage(folio_page(new_folio, 0), page, 2999 addr, vma)) { 3000 folio_put(new_folio); 3001 return ERR_PTR(-EHWPOISON); 3002 } 3003 folio_set_dirty(new_folio); 3004 __folio_mark_uptodate(new_folio); 3005 __folio_set_locked(new_folio); 3006 #ifdef CONFIG_SWAP 3007 count_vm_event(KSM_SWPIN_COPY); 3008 #endif 3009 } 3010 3011 return new_folio; 3012 } 3013 3014 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 3015 { 3016 struct ksm_stable_node *stable_node; 3017 struct ksm_rmap_item *rmap_item; 3018 int search_new_forks = 0; 3019 3020 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 3021 3022 /* 3023 * Rely on the page lock to protect against concurrent modifications 3024 * to that page's node of the stable tree. 3025 */ 3026 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3027 3028 stable_node = folio_stable_node(folio); 3029 if (!stable_node) 3030 return; 3031 again: 3032 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3033 struct anon_vma *anon_vma = rmap_item->anon_vma; 3034 struct anon_vma_chain *vmac; 3035 struct vm_area_struct *vma; 3036 3037 cond_resched(); 3038 if (!anon_vma_trylock_read(anon_vma)) { 3039 if (rwc->try_lock) { 3040 rwc->contended = true; 3041 return; 3042 } 3043 anon_vma_lock_read(anon_vma); 3044 } 3045 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 3046 0, ULONG_MAX) { 3047 unsigned long addr; 3048 3049 cond_resched(); 3050 vma = vmac->vma; 3051 3052 /* Ignore the stable/unstable/sqnr flags */ 3053 addr = rmap_item->address & PAGE_MASK; 3054 3055 if (addr < vma->vm_start || addr >= vma->vm_end) 3056 continue; 3057 /* 3058 * Initially we examine only the vma which covers this 3059 * rmap_item; but later, if there is still work to do, 3060 * we examine covering vmas in other mms: in case they 3061 * were forked from the original since ksmd passed. 3062 */ 3063 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 3064 continue; 3065 3066 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3067 continue; 3068 3069 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 3070 anon_vma_unlock_read(anon_vma); 3071 return; 3072 } 3073 if (rwc->done && rwc->done(folio)) { 3074 anon_vma_unlock_read(anon_vma); 3075 return; 3076 } 3077 } 3078 anon_vma_unlock_read(anon_vma); 3079 } 3080 if (!search_new_forks++) 3081 goto again; 3082 } 3083 3084 #ifdef CONFIG_MEMORY_FAILURE 3085 /* 3086 * Collect processes when the error hit an ksm page. 3087 */ 3088 void collect_procs_ksm(struct folio *folio, struct page *page, 3089 struct list_head *to_kill, int force_early) 3090 { 3091 struct ksm_stable_node *stable_node; 3092 struct ksm_rmap_item *rmap_item; 3093 struct vm_area_struct *vma; 3094 struct task_struct *tsk; 3095 3096 stable_node = folio_stable_node(folio); 3097 if (!stable_node) 3098 return; 3099 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3100 struct anon_vma *av = rmap_item->anon_vma; 3101 3102 anon_vma_lock_read(av); 3103 rcu_read_lock(); 3104 for_each_process(tsk) { 3105 struct anon_vma_chain *vmac; 3106 unsigned long addr; 3107 struct task_struct *t = 3108 task_early_kill(tsk, force_early); 3109 if (!t) 3110 continue; 3111 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3112 ULONG_MAX) 3113 { 3114 vma = vmac->vma; 3115 if (vma->vm_mm == t->mm) { 3116 addr = rmap_item->address & PAGE_MASK; 3117 add_to_kill_ksm(t, page, vma, to_kill, 3118 addr); 3119 } 3120 } 3121 } 3122 rcu_read_unlock(); 3123 anon_vma_unlock_read(av); 3124 } 3125 } 3126 #endif 3127 3128 #ifdef CONFIG_MIGRATION 3129 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3130 { 3131 struct ksm_stable_node *stable_node; 3132 3133 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3134 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3135 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3136 3137 stable_node = folio_stable_node(folio); 3138 if (stable_node) { 3139 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3140 stable_node->kpfn = folio_pfn(newfolio); 3141 /* 3142 * newfolio->mapping was set in advance; now we need smp_wmb() 3143 * to make sure that the new stable_node->kpfn is visible 3144 * to ksm_get_folio() before it can see that folio->mapping 3145 * has gone stale (or that folio_test_swapcache has been cleared). 3146 */ 3147 smp_wmb(); 3148 folio_set_stable_node(folio, NULL); 3149 } 3150 } 3151 #endif /* CONFIG_MIGRATION */ 3152 3153 #ifdef CONFIG_MEMORY_HOTREMOVE 3154 static void wait_while_offlining(void) 3155 { 3156 while (ksm_run & KSM_RUN_OFFLINE) { 3157 mutex_unlock(&ksm_thread_mutex); 3158 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3159 TASK_UNINTERRUPTIBLE); 3160 mutex_lock(&ksm_thread_mutex); 3161 } 3162 } 3163 3164 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3165 unsigned long start_pfn, 3166 unsigned long end_pfn) 3167 { 3168 if (stable_node->kpfn >= start_pfn && 3169 stable_node->kpfn < end_pfn) { 3170 /* 3171 * Don't ksm_get_folio, page has already gone: 3172 * which is why we keep kpfn instead of page* 3173 */ 3174 remove_node_from_stable_tree(stable_node); 3175 return true; 3176 } 3177 return false; 3178 } 3179 3180 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3181 unsigned long start_pfn, 3182 unsigned long end_pfn, 3183 struct rb_root *root) 3184 { 3185 struct ksm_stable_node *dup; 3186 struct hlist_node *hlist_safe; 3187 3188 if (!is_stable_node_chain(stable_node)) { 3189 VM_BUG_ON(is_stable_node_dup(stable_node)); 3190 return stable_node_dup_remove_range(stable_node, start_pfn, 3191 end_pfn); 3192 } 3193 3194 hlist_for_each_entry_safe(dup, hlist_safe, 3195 &stable_node->hlist, hlist_dup) { 3196 VM_BUG_ON(!is_stable_node_dup(dup)); 3197 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3198 } 3199 if (hlist_empty(&stable_node->hlist)) { 3200 free_stable_node_chain(stable_node, root); 3201 return true; /* notify caller that tree was rebalanced */ 3202 } else 3203 return false; 3204 } 3205 3206 static void ksm_check_stable_tree(unsigned long start_pfn, 3207 unsigned long end_pfn) 3208 { 3209 struct ksm_stable_node *stable_node, *next; 3210 struct rb_node *node; 3211 int nid; 3212 3213 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3214 node = rb_first(root_stable_tree + nid); 3215 while (node) { 3216 stable_node = rb_entry(node, struct ksm_stable_node, node); 3217 if (stable_node_chain_remove_range(stable_node, 3218 start_pfn, end_pfn, 3219 root_stable_tree + 3220 nid)) 3221 node = rb_first(root_stable_tree + nid); 3222 else 3223 node = rb_next(node); 3224 cond_resched(); 3225 } 3226 } 3227 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3228 if (stable_node->kpfn >= start_pfn && 3229 stable_node->kpfn < end_pfn) 3230 remove_node_from_stable_tree(stable_node); 3231 cond_resched(); 3232 } 3233 } 3234 3235 static int ksm_memory_callback(struct notifier_block *self, 3236 unsigned long action, void *arg) 3237 { 3238 struct memory_notify *mn = arg; 3239 3240 switch (action) { 3241 case MEM_GOING_OFFLINE: 3242 /* 3243 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3244 * and remove_all_stable_nodes() while memory is going offline: 3245 * it is unsafe for them to touch the stable tree at this time. 3246 * But unmerge_ksm_pages(), rmap lookups and other entry points 3247 * which do not need the ksm_thread_mutex are all safe. 3248 */ 3249 mutex_lock(&ksm_thread_mutex); 3250 ksm_run |= KSM_RUN_OFFLINE; 3251 mutex_unlock(&ksm_thread_mutex); 3252 break; 3253 3254 case MEM_OFFLINE: 3255 /* 3256 * Most of the work is done by page migration; but there might 3257 * be a few stable_nodes left over, still pointing to struct 3258 * pages which have been offlined: prune those from the tree, 3259 * otherwise ksm_get_folio() might later try to access a 3260 * non-existent struct page. 3261 */ 3262 ksm_check_stable_tree(mn->start_pfn, 3263 mn->start_pfn + mn->nr_pages); 3264 fallthrough; 3265 case MEM_CANCEL_OFFLINE: 3266 mutex_lock(&ksm_thread_mutex); 3267 ksm_run &= ~KSM_RUN_OFFLINE; 3268 mutex_unlock(&ksm_thread_mutex); 3269 3270 smp_mb(); /* wake_up_bit advises this */ 3271 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3272 break; 3273 } 3274 return NOTIFY_OK; 3275 } 3276 #else 3277 static void wait_while_offlining(void) 3278 { 3279 } 3280 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3281 3282 #ifdef CONFIG_PROC_FS 3283 long ksm_process_profit(struct mm_struct *mm) 3284 { 3285 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE - 3286 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3287 } 3288 #endif /* CONFIG_PROC_FS */ 3289 3290 #ifdef CONFIG_SYSFS 3291 /* 3292 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3293 */ 3294 3295 #define KSM_ATTR_RO(_name) \ 3296 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3297 #define KSM_ATTR(_name) \ 3298 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3299 3300 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3301 struct kobj_attribute *attr, char *buf) 3302 { 3303 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3304 } 3305 3306 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3307 struct kobj_attribute *attr, 3308 const char *buf, size_t count) 3309 { 3310 unsigned int msecs; 3311 int err; 3312 3313 err = kstrtouint(buf, 10, &msecs); 3314 if (err) 3315 return -EINVAL; 3316 3317 ksm_thread_sleep_millisecs = msecs; 3318 wake_up_interruptible(&ksm_iter_wait); 3319 3320 return count; 3321 } 3322 KSM_ATTR(sleep_millisecs); 3323 3324 static ssize_t pages_to_scan_show(struct kobject *kobj, 3325 struct kobj_attribute *attr, char *buf) 3326 { 3327 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3328 } 3329 3330 static ssize_t pages_to_scan_store(struct kobject *kobj, 3331 struct kobj_attribute *attr, 3332 const char *buf, size_t count) 3333 { 3334 unsigned int nr_pages; 3335 int err; 3336 3337 if (ksm_advisor != KSM_ADVISOR_NONE) 3338 return -EINVAL; 3339 3340 err = kstrtouint(buf, 10, &nr_pages); 3341 if (err) 3342 return -EINVAL; 3343 3344 ksm_thread_pages_to_scan = nr_pages; 3345 3346 return count; 3347 } 3348 KSM_ATTR(pages_to_scan); 3349 3350 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3351 char *buf) 3352 { 3353 return sysfs_emit(buf, "%lu\n", ksm_run); 3354 } 3355 3356 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3357 const char *buf, size_t count) 3358 { 3359 unsigned int flags; 3360 int err; 3361 3362 err = kstrtouint(buf, 10, &flags); 3363 if (err) 3364 return -EINVAL; 3365 if (flags > KSM_RUN_UNMERGE) 3366 return -EINVAL; 3367 3368 /* 3369 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3370 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3371 * breaking COW to free the pages_shared (but leaves mm_slots 3372 * on the list for when ksmd may be set running again). 3373 */ 3374 3375 mutex_lock(&ksm_thread_mutex); 3376 wait_while_offlining(); 3377 if (ksm_run != flags) { 3378 ksm_run = flags; 3379 if (flags & KSM_RUN_UNMERGE) { 3380 set_current_oom_origin(); 3381 err = unmerge_and_remove_all_rmap_items(); 3382 clear_current_oom_origin(); 3383 if (err) { 3384 ksm_run = KSM_RUN_STOP; 3385 count = err; 3386 } 3387 } 3388 } 3389 mutex_unlock(&ksm_thread_mutex); 3390 3391 if (flags & KSM_RUN_MERGE) 3392 wake_up_interruptible(&ksm_thread_wait); 3393 3394 return count; 3395 } 3396 KSM_ATTR(run); 3397 3398 #ifdef CONFIG_NUMA 3399 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3400 struct kobj_attribute *attr, char *buf) 3401 { 3402 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3403 } 3404 3405 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3406 struct kobj_attribute *attr, 3407 const char *buf, size_t count) 3408 { 3409 int err; 3410 unsigned long knob; 3411 3412 err = kstrtoul(buf, 10, &knob); 3413 if (err) 3414 return err; 3415 if (knob > 1) 3416 return -EINVAL; 3417 3418 mutex_lock(&ksm_thread_mutex); 3419 wait_while_offlining(); 3420 if (ksm_merge_across_nodes != knob) { 3421 if (ksm_pages_shared || remove_all_stable_nodes()) 3422 err = -EBUSY; 3423 else if (root_stable_tree == one_stable_tree) { 3424 struct rb_root *buf; 3425 /* 3426 * This is the first time that we switch away from the 3427 * default of merging across nodes: must now allocate 3428 * a buffer to hold as many roots as may be needed. 3429 * Allocate stable and unstable together: 3430 * MAXSMP NODES_SHIFT 10 will use 16kB. 3431 */ 3432 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3433 GFP_KERNEL); 3434 /* Let us assume that RB_ROOT is NULL is zero */ 3435 if (!buf) 3436 err = -ENOMEM; 3437 else { 3438 root_stable_tree = buf; 3439 root_unstable_tree = buf + nr_node_ids; 3440 /* Stable tree is empty but not the unstable */ 3441 root_unstable_tree[0] = one_unstable_tree[0]; 3442 } 3443 } 3444 if (!err) { 3445 ksm_merge_across_nodes = knob; 3446 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3447 } 3448 } 3449 mutex_unlock(&ksm_thread_mutex); 3450 3451 return err ? err : count; 3452 } 3453 KSM_ATTR(merge_across_nodes); 3454 #endif 3455 3456 static ssize_t use_zero_pages_show(struct kobject *kobj, 3457 struct kobj_attribute *attr, char *buf) 3458 { 3459 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3460 } 3461 static ssize_t use_zero_pages_store(struct kobject *kobj, 3462 struct kobj_attribute *attr, 3463 const char *buf, size_t count) 3464 { 3465 int err; 3466 bool value; 3467 3468 err = kstrtobool(buf, &value); 3469 if (err) 3470 return -EINVAL; 3471 3472 ksm_use_zero_pages = value; 3473 3474 return count; 3475 } 3476 KSM_ATTR(use_zero_pages); 3477 3478 static ssize_t max_page_sharing_show(struct kobject *kobj, 3479 struct kobj_attribute *attr, char *buf) 3480 { 3481 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3482 } 3483 3484 static ssize_t max_page_sharing_store(struct kobject *kobj, 3485 struct kobj_attribute *attr, 3486 const char *buf, size_t count) 3487 { 3488 int err; 3489 int knob; 3490 3491 err = kstrtoint(buf, 10, &knob); 3492 if (err) 3493 return err; 3494 /* 3495 * When a KSM page is created it is shared by 2 mappings. This 3496 * being a signed comparison, it implicitly verifies it's not 3497 * negative. 3498 */ 3499 if (knob < 2) 3500 return -EINVAL; 3501 3502 if (READ_ONCE(ksm_max_page_sharing) == knob) 3503 return count; 3504 3505 mutex_lock(&ksm_thread_mutex); 3506 wait_while_offlining(); 3507 if (ksm_max_page_sharing != knob) { 3508 if (ksm_pages_shared || remove_all_stable_nodes()) 3509 err = -EBUSY; 3510 else 3511 ksm_max_page_sharing = knob; 3512 } 3513 mutex_unlock(&ksm_thread_mutex); 3514 3515 return err ? err : count; 3516 } 3517 KSM_ATTR(max_page_sharing); 3518 3519 static ssize_t pages_scanned_show(struct kobject *kobj, 3520 struct kobj_attribute *attr, char *buf) 3521 { 3522 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3523 } 3524 KSM_ATTR_RO(pages_scanned); 3525 3526 static ssize_t pages_shared_show(struct kobject *kobj, 3527 struct kobj_attribute *attr, char *buf) 3528 { 3529 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3530 } 3531 KSM_ATTR_RO(pages_shared); 3532 3533 static ssize_t pages_sharing_show(struct kobject *kobj, 3534 struct kobj_attribute *attr, char *buf) 3535 { 3536 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3537 } 3538 KSM_ATTR_RO(pages_sharing); 3539 3540 static ssize_t pages_unshared_show(struct kobject *kobj, 3541 struct kobj_attribute *attr, char *buf) 3542 { 3543 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3544 } 3545 KSM_ATTR_RO(pages_unshared); 3546 3547 static ssize_t pages_volatile_show(struct kobject *kobj, 3548 struct kobj_attribute *attr, char *buf) 3549 { 3550 long ksm_pages_volatile; 3551 3552 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3553 - ksm_pages_sharing - ksm_pages_unshared; 3554 /* 3555 * It was not worth any locking to calculate that statistic, 3556 * but it might therefore sometimes be negative: conceal that. 3557 */ 3558 if (ksm_pages_volatile < 0) 3559 ksm_pages_volatile = 0; 3560 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3561 } 3562 KSM_ATTR_RO(pages_volatile); 3563 3564 static ssize_t pages_skipped_show(struct kobject *kobj, 3565 struct kobj_attribute *attr, char *buf) 3566 { 3567 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3568 } 3569 KSM_ATTR_RO(pages_skipped); 3570 3571 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3572 struct kobj_attribute *attr, char *buf) 3573 { 3574 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages)); 3575 } 3576 KSM_ATTR_RO(ksm_zero_pages); 3577 3578 static ssize_t general_profit_show(struct kobject *kobj, 3579 struct kobj_attribute *attr, char *buf) 3580 { 3581 long general_profit; 3582 3583 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE - 3584 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3585 3586 return sysfs_emit(buf, "%ld\n", general_profit); 3587 } 3588 KSM_ATTR_RO(general_profit); 3589 3590 static ssize_t stable_node_dups_show(struct kobject *kobj, 3591 struct kobj_attribute *attr, char *buf) 3592 { 3593 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3594 } 3595 KSM_ATTR_RO(stable_node_dups); 3596 3597 static ssize_t stable_node_chains_show(struct kobject *kobj, 3598 struct kobj_attribute *attr, char *buf) 3599 { 3600 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3601 } 3602 KSM_ATTR_RO(stable_node_chains); 3603 3604 static ssize_t 3605 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3606 struct kobj_attribute *attr, 3607 char *buf) 3608 { 3609 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3610 } 3611 3612 static ssize_t 3613 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3614 struct kobj_attribute *attr, 3615 const char *buf, size_t count) 3616 { 3617 unsigned int msecs; 3618 int err; 3619 3620 err = kstrtouint(buf, 10, &msecs); 3621 if (err) 3622 return -EINVAL; 3623 3624 ksm_stable_node_chains_prune_millisecs = msecs; 3625 3626 return count; 3627 } 3628 KSM_ATTR(stable_node_chains_prune_millisecs); 3629 3630 static ssize_t full_scans_show(struct kobject *kobj, 3631 struct kobj_attribute *attr, char *buf) 3632 { 3633 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3634 } 3635 KSM_ATTR_RO(full_scans); 3636 3637 static ssize_t smart_scan_show(struct kobject *kobj, 3638 struct kobj_attribute *attr, char *buf) 3639 { 3640 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3641 } 3642 3643 static ssize_t smart_scan_store(struct kobject *kobj, 3644 struct kobj_attribute *attr, 3645 const char *buf, size_t count) 3646 { 3647 int err; 3648 bool value; 3649 3650 err = kstrtobool(buf, &value); 3651 if (err) 3652 return -EINVAL; 3653 3654 ksm_smart_scan = value; 3655 return count; 3656 } 3657 KSM_ATTR(smart_scan); 3658 3659 static ssize_t advisor_mode_show(struct kobject *kobj, 3660 struct kobj_attribute *attr, char *buf) 3661 { 3662 const char *output; 3663 3664 if (ksm_advisor == KSM_ADVISOR_NONE) 3665 output = "[none] scan-time"; 3666 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 3667 output = "none [scan-time]"; 3668 3669 return sysfs_emit(buf, "%s\n", output); 3670 } 3671 3672 static ssize_t advisor_mode_store(struct kobject *kobj, 3673 struct kobj_attribute *attr, const char *buf, 3674 size_t count) 3675 { 3676 enum ksm_advisor_type curr_advisor = ksm_advisor; 3677 3678 if (sysfs_streq("scan-time", buf)) 3679 ksm_advisor = KSM_ADVISOR_SCAN_TIME; 3680 else if (sysfs_streq("none", buf)) 3681 ksm_advisor = KSM_ADVISOR_NONE; 3682 else 3683 return -EINVAL; 3684 3685 /* Set advisor default values */ 3686 if (curr_advisor != ksm_advisor) 3687 set_advisor_defaults(); 3688 3689 return count; 3690 } 3691 KSM_ATTR(advisor_mode); 3692 3693 static ssize_t advisor_max_cpu_show(struct kobject *kobj, 3694 struct kobj_attribute *attr, char *buf) 3695 { 3696 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); 3697 } 3698 3699 static ssize_t advisor_max_cpu_store(struct kobject *kobj, 3700 struct kobj_attribute *attr, 3701 const char *buf, size_t count) 3702 { 3703 int err; 3704 unsigned long value; 3705 3706 err = kstrtoul(buf, 10, &value); 3707 if (err) 3708 return -EINVAL; 3709 3710 ksm_advisor_max_cpu = value; 3711 return count; 3712 } 3713 KSM_ATTR(advisor_max_cpu); 3714 3715 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, 3716 struct kobj_attribute *attr, char *buf) 3717 { 3718 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); 3719 } 3720 3721 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, 3722 struct kobj_attribute *attr, 3723 const char *buf, size_t count) 3724 { 3725 int err; 3726 unsigned long value; 3727 3728 err = kstrtoul(buf, 10, &value); 3729 if (err) 3730 return -EINVAL; 3731 3732 ksm_advisor_min_pages_to_scan = value; 3733 return count; 3734 } 3735 KSM_ATTR(advisor_min_pages_to_scan); 3736 3737 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, 3738 struct kobj_attribute *attr, char *buf) 3739 { 3740 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); 3741 } 3742 3743 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, 3744 struct kobj_attribute *attr, 3745 const char *buf, size_t count) 3746 { 3747 int err; 3748 unsigned long value; 3749 3750 err = kstrtoul(buf, 10, &value); 3751 if (err) 3752 return -EINVAL; 3753 3754 ksm_advisor_max_pages_to_scan = value; 3755 return count; 3756 } 3757 KSM_ATTR(advisor_max_pages_to_scan); 3758 3759 static ssize_t advisor_target_scan_time_show(struct kobject *kobj, 3760 struct kobj_attribute *attr, char *buf) 3761 { 3762 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); 3763 } 3764 3765 static ssize_t advisor_target_scan_time_store(struct kobject *kobj, 3766 struct kobj_attribute *attr, 3767 const char *buf, size_t count) 3768 { 3769 int err; 3770 unsigned long value; 3771 3772 err = kstrtoul(buf, 10, &value); 3773 if (err) 3774 return -EINVAL; 3775 if (value < 1) 3776 return -EINVAL; 3777 3778 ksm_advisor_target_scan_time = value; 3779 return count; 3780 } 3781 KSM_ATTR(advisor_target_scan_time); 3782 3783 static struct attribute *ksm_attrs[] = { 3784 &sleep_millisecs_attr.attr, 3785 &pages_to_scan_attr.attr, 3786 &run_attr.attr, 3787 &pages_scanned_attr.attr, 3788 &pages_shared_attr.attr, 3789 &pages_sharing_attr.attr, 3790 &pages_unshared_attr.attr, 3791 &pages_volatile_attr.attr, 3792 &pages_skipped_attr.attr, 3793 &ksm_zero_pages_attr.attr, 3794 &full_scans_attr.attr, 3795 #ifdef CONFIG_NUMA 3796 &merge_across_nodes_attr.attr, 3797 #endif 3798 &max_page_sharing_attr.attr, 3799 &stable_node_chains_attr.attr, 3800 &stable_node_dups_attr.attr, 3801 &stable_node_chains_prune_millisecs_attr.attr, 3802 &use_zero_pages_attr.attr, 3803 &general_profit_attr.attr, 3804 &smart_scan_attr.attr, 3805 &advisor_mode_attr.attr, 3806 &advisor_max_cpu_attr.attr, 3807 &advisor_min_pages_to_scan_attr.attr, 3808 &advisor_max_pages_to_scan_attr.attr, 3809 &advisor_target_scan_time_attr.attr, 3810 NULL, 3811 }; 3812 3813 static const struct attribute_group ksm_attr_group = { 3814 .attrs = ksm_attrs, 3815 .name = "ksm", 3816 }; 3817 #endif /* CONFIG_SYSFS */ 3818 3819 static int __init ksm_init(void) 3820 { 3821 struct task_struct *ksm_thread; 3822 int err; 3823 3824 /* The correct value depends on page size and endianness */ 3825 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3826 /* Default to false for backwards compatibility */ 3827 ksm_use_zero_pages = false; 3828 3829 err = ksm_slab_init(); 3830 if (err) 3831 goto out; 3832 3833 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3834 if (IS_ERR(ksm_thread)) { 3835 pr_err("ksm: creating kthread failed\n"); 3836 err = PTR_ERR(ksm_thread); 3837 goto out_free; 3838 } 3839 3840 #ifdef CONFIG_SYSFS 3841 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3842 if (err) { 3843 pr_err("ksm: register sysfs failed\n"); 3844 kthread_stop(ksm_thread); 3845 goto out_free; 3846 } 3847 #else 3848 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3849 3850 #endif /* CONFIG_SYSFS */ 3851 3852 #ifdef CONFIG_MEMORY_HOTREMOVE 3853 /* There is no significance to this priority 100 */ 3854 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3855 #endif 3856 return 0; 3857 3858 out_free: 3859 ksm_slab_free(); 3860 out: 3861 return err; 3862 } 3863 subsys_initcall(ksm_init); 3864
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.