~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/madvise.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *      linux/mm/madvise.c
  4  *
  5  * Copyright (C) 1999  Linus Torvalds
  6  * Copyright (C) 2002  Christoph Hellwig
  7  */
  8 
  9 #include <linux/mman.h>
 10 #include <linux/pagemap.h>
 11 #include <linux/syscalls.h>
 12 #include <linux/mempolicy.h>
 13 #include <linux/page-isolation.h>
 14 #include <linux/page_idle.h>
 15 #include <linux/userfaultfd_k.h>
 16 #include <linux/hugetlb.h>
 17 #include <linux/falloc.h>
 18 #include <linux/fadvise.h>
 19 #include <linux/sched.h>
 20 #include <linux/sched/mm.h>
 21 #include <linux/mm_inline.h>
 22 #include <linux/string.h>
 23 #include <linux/uio.h>
 24 #include <linux/ksm.h>
 25 #include <linux/fs.h>
 26 #include <linux/file.h>
 27 #include <linux/blkdev.h>
 28 #include <linux/backing-dev.h>
 29 #include <linux/pagewalk.h>
 30 #include <linux/swap.h>
 31 #include <linux/swapops.h>
 32 #include <linux/shmem_fs.h>
 33 #include <linux/mmu_notifier.h>
 34 
 35 #include <asm/tlb.h>
 36 
 37 #include "internal.h"
 38 #include "swap.h"
 39 
 40 struct madvise_walk_private {
 41         struct mmu_gather *tlb;
 42         bool pageout;
 43 };
 44 
 45 /*
 46  * Any behaviour which results in changes to the vma->vm_flags needs to
 47  * take mmap_lock for writing. Others, which simply traverse vmas, need
 48  * to only take it for reading.
 49  */
 50 static int madvise_need_mmap_write(int behavior)
 51 {
 52         switch (behavior) {
 53         case MADV_REMOVE:
 54         case MADV_WILLNEED:
 55         case MADV_DONTNEED:
 56         case MADV_DONTNEED_LOCKED:
 57         case MADV_COLD:
 58         case MADV_PAGEOUT:
 59         case MADV_FREE:
 60         case MADV_POPULATE_READ:
 61         case MADV_POPULATE_WRITE:
 62         case MADV_COLLAPSE:
 63                 return 0;
 64         default:
 65                 /* be safe, default to 1. list exceptions explicitly */
 66                 return 1;
 67         }
 68 }
 69 
 70 #ifdef CONFIG_ANON_VMA_NAME
 71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
 72 {
 73         struct anon_vma_name *anon_name;
 74         size_t count;
 75 
 76         /* Add 1 for NUL terminator at the end of the anon_name->name */
 77         count = strlen(name) + 1;
 78         anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
 79         if (anon_name) {
 80                 kref_init(&anon_name->kref);
 81                 memcpy(anon_name->name, name, count);
 82         }
 83 
 84         return anon_name;
 85 }
 86 
 87 void anon_vma_name_free(struct kref *kref)
 88 {
 89         struct anon_vma_name *anon_name =
 90                         container_of(kref, struct anon_vma_name, kref);
 91         kfree(anon_name);
 92 }
 93 
 94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
 95 {
 96         mmap_assert_locked(vma->vm_mm);
 97 
 98         return vma->anon_name;
 99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103                                  struct anon_vma_name *anon_name)
104 {
105         struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107         if (!anon_name) {
108                 vma->anon_name = NULL;
109                 anon_vma_name_put(orig_name);
110                 return 0;
111         }
112 
113         if (anon_vma_name_eq(orig_name, anon_name))
114                 return 0;
115 
116         vma->anon_name = anon_vma_name_reuse(anon_name);
117         anon_vma_name_put(orig_name);
118 
119         return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123                                  struct anon_vma_name *anon_name)
124 {
125         if (anon_name)
126                 return -EINVAL;
127 
128         return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138                               struct vm_area_struct **prev, unsigned long start,
139                               unsigned long end, unsigned long new_flags,
140                               struct anon_vma_name *anon_name)
141 {
142         struct mm_struct *mm = vma->vm_mm;
143         int error;
144         VMA_ITERATOR(vmi, mm, start);
145 
146         if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
147                 *prev = vma;
148                 return 0;
149         }
150 
151         vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
152                                     anon_name);
153         if (IS_ERR(vma))
154                 return PTR_ERR(vma);
155 
156         *prev = vma;
157 
158         /* vm_flags is protected by the mmap_lock held in write mode. */
159         vma_start_write(vma);
160         vm_flags_reset(vma, new_flags);
161         if (!vma->vm_file || vma_is_anon_shmem(vma)) {
162                 error = replace_anon_vma_name(vma, anon_name);
163                 if (error)
164                         return error;
165         }
166 
167         return 0;
168 }
169 
170 #ifdef CONFIG_SWAP
171 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
172                 unsigned long end, struct mm_walk *walk)
173 {
174         struct vm_area_struct *vma = walk->private;
175         struct swap_iocb *splug = NULL;
176         pte_t *ptep = NULL;
177         spinlock_t *ptl;
178         unsigned long addr;
179 
180         for (addr = start; addr < end; addr += PAGE_SIZE) {
181                 pte_t pte;
182                 swp_entry_t entry;
183                 struct folio *folio;
184 
185                 if (!ptep++) {
186                         ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
187                         if (!ptep)
188                                 break;
189                 }
190 
191                 pte = ptep_get(ptep);
192                 if (!is_swap_pte(pte))
193                         continue;
194                 entry = pte_to_swp_entry(pte);
195                 if (unlikely(non_swap_entry(entry)))
196                         continue;
197 
198                 pte_unmap_unlock(ptep, ptl);
199                 ptep = NULL;
200 
201                 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
202                                              vma, addr, &splug);
203                 if (folio)
204                         folio_put(folio);
205         }
206 
207         if (ptep)
208                 pte_unmap_unlock(ptep, ptl);
209         swap_read_unplug(splug);
210         cond_resched();
211 
212         return 0;
213 }
214 
215 static const struct mm_walk_ops swapin_walk_ops = {
216         .pmd_entry              = swapin_walk_pmd_entry,
217         .walk_lock              = PGWALK_RDLOCK,
218 };
219 
220 static void shmem_swapin_range(struct vm_area_struct *vma,
221                 unsigned long start, unsigned long end,
222                 struct address_space *mapping)
223 {
224         XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
225         pgoff_t end_index = linear_page_index(vma, end) - 1;
226         struct folio *folio;
227         struct swap_iocb *splug = NULL;
228 
229         rcu_read_lock();
230         xas_for_each(&xas, folio, end_index) {
231                 unsigned long addr;
232                 swp_entry_t entry;
233 
234                 if (!xa_is_value(folio))
235                         continue;
236                 entry = radix_to_swp_entry(folio);
237                 /* There might be swapin error entries in shmem mapping. */
238                 if (non_swap_entry(entry))
239                         continue;
240 
241                 addr = vma->vm_start +
242                         ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
243                 xas_pause(&xas);
244                 rcu_read_unlock();
245 
246                 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
247                                              vma, addr, &splug);
248                 if (folio)
249                         folio_put(folio);
250 
251                 rcu_read_lock();
252         }
253         rcu_read_unlock();
254         swap_read_unplug(splug);
255 }
256 #endif          /* CONFIG_SWAP */
257 
258 /*
259  * Schedule all required I/O operations.  Do not wait for completion.
260  */
261 static long madvise_willneed(struct vm_area_struct *vma,
262                              struct vm_area_struct **prev,
263                              unsigned long start, unsigned long end)
264 {
265         struct mm_struct *mm = vma->vm_mm;
266         struct file *file = vma->vm_file;
267         loff_t offset;
268 
269         *prev = vma;
270 #ifdef CONFIG_SWAP
271         if (!file) {
272                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
273                 lru_add_drain(); /* Push any new pages onto the LRU now */
274                 return 0;
275         }
276 
277         if (shmem_mapping(file->f_mapping)) {
278                 shmem_swapin_range(vma, start, end, file->f_mapping);
279                 lru_add_drain(); /* Push any new pages onto the LRU now */
280                 return 0;
281         }
282 #else
283         if (!file)
284                 return -EBADF;
285 #endif
286 
287         if (IS_DAX(file_inode(file))) {
288                 /* no bad return value, but ignore advice */
289                 return 0;
290         }
291 
292         /*
293          * Filesystem's fadvise may need to take various locks.  We need to
294          * explicitly grab a reference because the vma (and hence the
295          * vma's reference to the file) can go away as soon as we drop
296          * mmap_lock.
297          */
298         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
299         get_file(file);
300         offset = (loff_t)(start - vma->vm_start)
301                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
302         mmap_read_unlock(mm);
303         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
304         fput(file);
305         mmap_read_lock(mm);
306         return 0;
307 }
308 
309 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
310 {
311         if (!vma->vm_file)
312                 return false;
313         /*
314          * paging out pagecache only for non-anonymous mappings that correspond
315          * to the files the calling process could (if tried) open for writing;
316          * otherwise we'd be including shared non-exclusive mappings, which
317          * opens a side channel.
318          */
319         return inode_owner_or_capable(&nop_mnt_idmap,
320                                       file_inode(vma->vm_file)) ||
321                file_permission(vma->vm_file, MAY_WRITE) == 0;
322 }
323 
324 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
325                                           struct folio *folio, pte_t *ptep,
326                                           pte_t pte, bool *any_young,
327                                           bool *any_dirty)
328 {
329         const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
330         int max_nr = (end - addr) / PAGE_SIZE;
331 
332         return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
333                                any_young, any_dirty);
334 }
335 
336 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
337                                 unsigned long addr, unsigned long end,
338                                 struct mm_walk *walk)
339 {
340         struct madvise_walk_private *private = walk->private;
341         struct mmu_gather *tlb = private->tlb;
342         bool pageout = private->pageout;
343         struct mm_struct *mm = tlb->mm;
344         struct vm_area_struct *vma = walk->vma;
345         pte_t *start_pte, *pte, ptent;
346         spinlock_t *ptl;
347         struct folio *folio = NULL;
348         LIST_HEAD(folio_list);
349         bool pageout_anon_only_filter;
350         unsigned int batch_count = 0;
351         int nr;
352 
353         if (fatal_signal_pending(current))
354                 return -EINTR;
355 
356         pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
357                                         !can_do_file_pageout(vma);
358 
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360         if (pmd_trans_huge(*pmd)) {
361                 pmd_t orig_pmd;
362                 unsigned long next = pmd_addr_end(addr, end);
363 
364                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
365                 ptl = pmd_trans_huge_lock(pmd, vma);
366                 if (!ptl)
367                         return 0;
368 
369                 orig_pmd = *pmd;
370                 if (is_huge_zero_pmd(orig_pmd))
371                         goto huge_unlock;
372 
373                 if (unlikely(!pmd_present(orig_pmd))) {
374                         VM_BUG_ON(thp_migration_supported() &&
375                                         !is_pmd_migration_entry(orig_pmd));
376                         goto huge_unlock;
377                 }
378 
379                 folio = pmd_folio(orig_pmd);
380 
381                 /* Do not interfere with other mappings of this folio */
382                 if (folio_likely_mapped_shared(folio))
383                         goto huge_unlock;
384 
385                 if (pageout_anon_only_filter && !folio_test_anon(folio))
386                         goto huge_unlock;
387 
388                 if (next - addr != HPAGE_PMD_SIZE) {
389                         int err;
390 
391                         folio_get(folio);
392                         spin_unlock(ptl);
393                         folio_lock(folio);
394                         err = split_folio(folio);
395                         folio_unlock(folio);
396                         folio_put(folio);
397                         if (!err)
398                                 goto regular_folio;
399                         return 0;
400                 }
401 
402                 if (!pageout && pmd_young(orig_pmd)) {
403                         pmdp_invalidate(vma, addr, pmd);
404                         orig_pmd = pmd_mkold(orig_pmd);
405 
406                         set_pmd_at(mm, addr, pmd, orig_pmd);
407                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
408                 }
409 
410                 folio_clear_referenced(folio);
411                 folio_test_clear_young(folio);
412                 if (folio_test_active(folio))
413                         folio_set_workingset(folio);
414                 if (pageout) {
415                         if (folio_isolate_lru(folio)) {
416                                 if (folio_test_unevictable(folio))
417                                         folio_putback_lru(folio);
418                                 else
419                                         list_add(&folio->lru, &folio_list);
420                         }
421                 } else
422                         folio_deactivate(folio);
423 huge_unlock:
424                 spin_unlock(ptl);
425                 if (pageout)
426                         reclaim_pages(&folio_list);
427                 return 0;
428         }
429 
430 regular_folio:
431 #endif
432         tlb_change_page_size(tlb, PAGE_SIZE);
433 restart:
434         start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
435         if (!start_pte)
436                 return 0;
437         flush_tlb_batched_pending(mm);
438         arch_enter_lazy_mmu_mode();
439         for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
440                 nr = 1;
441                 ptent = ptep_get(pte);
442 
443                 if (++batch_count == SWAP_CLUSTER_MAX) {
444                         batch_count = 0;
445                         if (need_resched()) {
446                                 arch_leave_lazy_mmu_mode();
447                                 pte_unmap_unlock(start_pte, ptl);
448                                 cond_resched();
449                                 goto restart;
450                         }
451                 }
452 
453                 if (pte_none(ptent))
454                         continue;
455 
456                 if (!pte_present(ptent))
457                         continue;
458 
459                 folio = vm_normal_folio(vma, addr, ptent);
460                 if (!folio || folio_is_zone_device(folio))
461                         continue;
462 
463                 /*
464                  * If we encounter a large folio, only split it if it is not
465                  * fully mapped within the range we are operating on. Otherwise
466                  * leave it as is so that it can be swapped out whole. If we
467                  * fail to split a folio, leave it in place and advance to the
468                  * next pte in the range.
469                  */
470                 if (folio_test_large(folio)) {
471                         bool any_young;
472 
473                         nr = madvise_folio_pte_batch(addr, end, folio, pte,
474                                                      ptent, &any_young, NULL);
475                         if (any_young)
476                                 ptent = pte_mkyoung(ptent);
477 
478                         if (nr < folio_nr_pages(folio)) {
479                                 int err;
480 
481                                 if (folio_likely_mapped_shared(folio))
482                                         continue;
483                                 if (pageout_anon_only_filter && !folio_test_anon(folio))
484                                         continue;
485                                 if (!folio_trylock(folio))
486                                         continue;
487                                 folio_get(folio);
488                                 arch_leave_lazy_mmu_mode();
489                                 pte_unmap_unlock(start_pte, ptl);
490                                 start_pte = NULL;
491                                 err = split_folio(folio);
492                                 folio_unlock(folio);
493                                 folio_put(folio);
494                                 start_pte = pte =
495                                         pte_offset_map_lock(mm, pmd, addr, &ptl);
496                                 if (!start_pte)
497                                         break;
498                                 arch_enter_lazy_mmu_mode();
499                                 if (!err)
500                                         nr = 0;
501                                 continue;
502                         }
503                 }
504 
505                 /*
506                  * Do not interfere with other mappings of this folio and
507                  * non-LRU folio. If we have a large folio at this point, we
508                  * know it is fully mapped so if its mapcount is the same as its
509                  * number of pages, it must be exclusive.
510                  */
511                 if (!folio_test_lru(folio) ||
512                     folio_mapcount(folio) != folio_nr_pages(folio))
513                         continue;
514 
515                 if (pageout_anon_only_filter && !folio_test_anon(folio))
516                         continue;
517 
518                 if (!pageout && pte_young(ptent)) {
519                         clear_young_dirty_ptes(vma, addr, pte, nr,
520                                                CYDP_CLEAR_YOUNG);
521                         tlb_remove_tlb_entries(tlb, pte, nr, addr);
522                 }
523 
524                 /*
525                  * We are deactivating a folio for accelerating reclaiming.
526                  * VM couldn't reclaim the folio unless we clear PG_young.
527                  * As a side effect, it makes confuse idle-page tracking
528                  * because they will miss recent referenced history.
529                  */
530                 folio_clear_referenced(folio);
531                 folio_test_clear_young(folio);
532                 if (folio_test_active(folio))
533                         folio_set_workingset(folio);
534                 if (pageout) {
535                         if (folio_isolate_lru(folio)) {
536                                 if (folio_test_unevictable(folio))
537                                         folio_putback_lru(folio);
538                                 else
539                                         list_add(&folio->lru, &folio_list);
540                         }
541                 } else
542                         folio_deactivate(folio);
543         }
544 
545         if (start_pte) {
546                 arch_leave_lazy_mmu_mode();
547                 pte_unmap_unlock(start_pte, ptl);
548         }
549         if (pageout)
550                 reclaim_pages(&folio_list);
551         cond_resched();
552 
553         return 0;
554 }
555 
556 static const struct mm_walk_ops cold_walk_ops = {
557         .pmd_entry = madvise_cold_or_pageout_pte_range,
558         .walk_lock = PGWALK_RDLOCK,
559 };
560 
561 static void madvise_cold_page_range(struct mmu_gather *tlb,
562                              struct vm_area_struct *vma,
563                              unsigned long addr, unsigned long end)
564 {
565         struct madvise_walk_private walk_private = {
566                 .pageout = false,
567                 .tlb = tlb,
568         };
569 
570         tlb_start_vma(tlb, vma);
571         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
572         tlb_end_vma(tlb, vma);
573 }
574 
575 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
576 {
577         return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
578 }
579 
580 static long madvise_cold(struct vm_area_struct *vma,
581                         struct vm_area_struct **prev,
582                         unsigned long start_addr, unsigned long end_addr)
583 {
584         struct mm_struct *mm = vma->vm_mm;
585         struct mmu_gather tlb;
586 
587         *prev = vma;
588         if (!can_madv_lru_vma(vma))
589                 return -EINVAL;
590 
591         lru_add_drain();
592         tlb_gather_mmu(&tlb, mm);
593         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
594         tlb_finish_mmu(&tlb);
595 
596         return 0;
597 }
598 
599 static void madvise_pageout_page_range(struct mmu_gather *tlb,
600                              struct vm_area_struct *vma,
601                              unsigned long addr, unsigned long end)
602 {
603         struct madvise_walk_private walk_private = {
604                 .pageout = true,
605                 .tlb = tlb,
606         };
607 
608         tlb_start_vma(tlb, vma);
609         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
610         tlb_end_vma(tlb, vma);
611 }
612 
613 static long madvise_pageout(struct vm_area_struct *vma,
614                         struct vm_area_struct **prev,
615                         unsigned long start_addr, unsigned long end_addr)
616 {
617         struct mm_struct *mm = vma->vm_mm;
618         struct mmu_gather tlb;
619 
620         *prev = vma;
621         if (!can_madv_lru_vma(vma))
622                 return -EINVAL;
623 
624         /*
625          * If the VMA belongs to a private file mapping, there can be private
626          * dirty pages which can be paged out if even this process is neither
627          * owner nor write capable of the file. We allow private file mappings
628          * further to pageout dirty anon pages.
629          */
630         if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
631                                 (vma->vm_flags & VM_MAYSHARE)))
632                 return 0;
633 
634         lru_add_drain();
635         tlb_gather_mmu(&tlb, mm);
636         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
637         tlb_finish_mmu(&tlb);
638 
639         return 0;
640 }
641 
642 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
643                                 unsigned long end, struct mm_walk *walk)
644 
645 {
646         const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
647         struct mmu_gather *tlb = walk->private;
648         struct mm_struct *mm = tlb->mm;
649         struct vm_area_struct *vma = walk->vma;
650         spinlock_t *ptl;
651         pte_t *start_pte, *pte, ptent;
652         struct folio *folio;
653         int nr_swap = 0;
654         unsigned long next;
655         int nr, max_nr;
656 
657         next = pmd_addr_end(addr, end);
658         if (pmd_trans_huge(*pmd))
659                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
660                         return 0;
661 
662         tlb_change_page_size(tlb, PAGE_SIZE);
663         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
664         if (!start_pte)
665                 return 0;
666         flush_tlb_batched_pending(mm);
667         arch_enter_lazy_mmu_mode();
668         for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
669                 nr = 1;
670                 ptent = ptep_get(pte);
671 
672                 if (pte_none(ptent))
673                         continue;
674                 /*
675                  * If the pte has swp_entry, just clear page table to
676                  * prevent swap-in which is more expensive rather than
677                  * (page allocation + zeroing).
678                  */
679                 if (!pte_present(ptent)) {
680                         swp_entry_t entry;
681 
682                         entry = pte_to_swp_entry(ptent);
683                         if (!non_swap_entry(entry)) {
684                                 max_nr = (end - addr) / PAGE_SIZE;
685                                 nr = swap_pte_batch(pte, max_nr, ptent);
686                                 nr_swap -= nr;
687                                 free_swap_and_cache_nr(entry, nr);
688                                 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
689                         } else if (is_hwpoison_entry(entry) ||
690                                    is_poisoned_swp_entry(entry)) {
691                                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
692                         }
693                         continue;
694                 }
695 
696                 folio = vm_normal_folio(vma, addr, ptent);
697                 if (!folio || folio_is_zone_device(folio))
698                         continue;
699 
700                 /*
701                  * If we encounter a large folio, only split it if it is not
702                  * fully mapped within the range we are operating on. Otherwise
703                  * leave it as is so that it can be marked as lazyfree. If we
704                  * fail to split a folio, leave it in place and advance to the
705                  * next pte in the range.
706                  */
707                 if (folio_test_large(folio)) {
708                         bool any_young, any_dirty;
709 
710                         nr = madvise_folio_pte_batch(addr, end, folio, pte,
711                                                      ptent, &any_young, &any_dirty);
712 
713                         if (nr < folio_nr_pages(folio)) {
714                                 int err;
715 
716                                 if (folio_likely_mapped_shared(folio))
717                                         continue;
718                                 if (!folio_trylock(folio))
719                                         continue;
720                                 folio_get(folio);
721                                 arch_leave_lazy_mmu_mode();
722                                 pte_unmap_unlock(start_pte, ptl);
723                                 start_pte = NULL;
724                                 err = split_folio(folio);
725                                 folio_unlock(folio);
726                                 folio_put(folio);
727                                 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
728                                 start_pte = pte;
729                                 if (!start_pte)
730                                         break;
731                                 arch_enter_lazy_mmu_mode();
732                                 if (!err)
733                                         nr = 0;
734                                 continue;
735                         }
736 
737                         if (any_young)
738                                 ptent = pte_mkyoung(ptent);
739                         if (any_dirty)
740                                 ptent = pte_mkdirty(ptent);
741                 }
742 
743                 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
744                         if (!folio_trylock(folio))
745                                 continue;
746                         /*
747                          * If we have a large folio at this point, we know it is
748                          * fully mapped so if its mapcount is the same as its
749                          * number of pages, it must be exclusive.
750                          */
751                         if (folio_mapcount(folio) != folio_nr_pages(folio)) {
752                                 folio_unlock(folio);
753                                 continue;
754                         }
755 
756                         if (folio_test_swapcache(folio) &&
757                             !folio_free_swap(folio)) {
758                                 folio_unlock(folio);
759                                 continue;
760                         }
761 
762                         folio_clear_dirty(folio);
763                         folio_unlock(folio);
764                 }
765 
766                 if (pte_young(ptent) || pte_dirty(ptent)) {
767                         clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
768                         tlb_remove_tlb_entries(tlb, pte, nr, addr);
769                 }
770                 folio_mark_lazyfree(folio);
771         }
772 
773         if (nr_swap)
774                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
775         if (start_pte) {
776                 arch_leave_lazy_mmu_mode();
777                 pte_unmap_unlock(start_pte, ptl);
778         }
779         cond_resched();
780 
781         return 0;
782 }
783 
784 static const struct mm_walk_ops madvise_free_walk_ops = {
785         .pmd_entry              = madvise_free_pte_range,
786         .walk_lock              = PGWALK_RDLOCK,
787 };
788 
789 static int madvise_free_single_vma(struct vm_area_struct *vma,
790                         unsigned long start_addr, unsigned long end_addr)
791 {
792         struct mm_struct *mm = vma->vm_mm;
793         struct mmu_notifier_range range;
794         struct mmu_gather tlb;
795 
796         /* MADV_FREE works for only anon vma at the moment */
797         if (!vma_is_anonymous(vma))
798                 return -EINVAL;
799 
800         range.start = max(vma->vm_start, start_addr);
801         if (range.start >= vma->vm_end)
802                 return -EINVAL;
803         range.end = min(vma->vm_end, end_addr);
804         if (range.end <= vma->vm_start)
805                 return -EINVAL;
806         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
807                                 range.start, range.end);
808 
809         lru_add_drain();
810         tlb_gather_mmu(&tlb, mm);
811         update_hiwater_rss(mm);
812 
813         mmu_notifier_invalidate_range_start(&range);
814         tlb_start_vma(&tlb, vma);
815         walk_page_range(vma->vm_mm, range.start, range.end,
816                         &madvise_free_walk_ops, &tlb);
817         tlb_end_vma(&tlb, vma);
818         mmu_notifier_invalidate_range_end(&range);
819         tlb_finish_mmu(&tlb);
820 
821         return 0;
822 }
823 
824 /*
825  * Application no longer needs these pages.  If the pages are dirty,
826  * it's OK to just throw them away.  The app will be more careful about
827  * data it wants to keep.  Be sure to free swap resources too.  The
828  * zap_page_range_single call sets things up for shrink_active_list to actually
829  * free these pages later if no one else has touched them in the meantime,
830  * although we could add these pages to a global reuse list for
831  * shrink_active_list to pick up before reclaiming other pages.
832  *
833  * NB: This interface discards data rather than pushes it out to swap,
834  * as some implementations do.  This has performance implications for
835  * applications like large transactional databases which want to discard
836  * pages in anonymous maps after committing to backing store the data
837  * that was kept in them.  There is no reason to write this data out to
838  * the swap area if the application is discarding it.
839  *
840  * An interface that causes the system to free clean pages and flush
841  * dirty pages is already available as msync(MS_INVALIDATE).
842  */
843 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
844                                         unsigned long start, unsigned long end)
845 {
846         zap_page_range_single(vma, start, end - start, NULL);
847         return 0;
848 }
849 
850 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
851                                             unsigned long start,
852                                             unsigned long *end,
853                                             int behavior)
854 {
855         if (!is_vm_hugetlb_page(vma)) {
856                 unsigned int forbidden = VM_PFNMAP;
857 
858                 if (behavior != MADV_DONTNEED_LOCKED)
859                         forbidden |= VM_LOCKED;
860 
861                 return !(vma->vm_flags & forbidden);
862         }
863 
864         if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
865                 return false;
866         if (start & ~huge_page_mask(hstate_vma(vma)))
867                 return false;
868 
869         /*
870          * Madvise callers expect the length to be rounded up to PAGE_SIZE
871          * boundaries, and may be unaware that this VMA uses huge pages.
872          * Avoid unexpected data loss by rounding down the number of
873          * huge pages freed.
874          */
875         *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
876 
877         return true;
878 }
879 
880 static long madvise_dontneed_free(struct vm_area_struct *vma,
881                                   struct vm_area_struct **prev,
882                                   unsigned long start, unsigned long end,
883                                   int behavior)
884 {
885         struct mm_struct *mm = vma->vm_mm;
886 
887         *prev = vma;
888         if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
889                 return -EINVAL;
890 
891         if (start == end)
892                 return 0;
893 
894         if (!userfaultfd_remove(vma, start, end)) {
895                 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
896 
897                 mmap_read_lock(mm);
898                 vma = vma_lookup(mm, start);
899                 if (!vma)
900                         return -ENOMEM;
901                 /*
902                  * Potential end adjustment for hugetlb vma is OK as
903                  * the check below keeps end within vma.
904                  */
905                 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
906                                                      behavior))
907                         return -EINVAL;
908                 if (end > vma->vm_end) {
909                         /*
910                          * Don't fail if end > vma->vm_end. If the old
911                          * vma was split while the mmap_lock was
912                          * released the effect of the concurrent
913                          * operation may not cause madvise() to
914                          * have an undefined result. There may be an
915                          * adjacent next vma that we'll walk
916                          * next. userfaultfd_remove() will generate an
917                          * UFFD_EVENT_REMOVE repetition on the
918                          * end-vma->vm_end range, but the manager can
919                          * handle a repetition fine.
920                          */
921                         end = vma->vm_end;
922                 }
923                 VM_WARN_ON(start >= end);
924         }
925 
926         if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
927                 return madvise_dontneed_single_vma(vma, start, end);
928         else if (behavior == MADV_FREE)
929                 return madvise_free_single_vma(vma, start, end);
930         else
931                 return -EINVAL;
932 }
933 
934 static long madvise_populate(struct mm_struct *mm, unsigned long start,
935                 unsigned long end, int behavior)
936 {
937         const bool write = behavior == MADV_POPULATE_WRITE;
938         int locked = 1;
939         long pages;
940 
941         while (start < end) {
942                 /* Populate (prefault) page tables readable/writable. */
943                 pages = faultin_page_range(mm, start, end, write, &locked);
944                 if (!locked) {
945                         mmap_read_lock(mm);
946                         locked = 1;
947                 }
948                 if (pages < 0) {
949                         switch (pages) {
950                         case -EINTR:
951                                 return -EINTR;
952                         case -EINVAL: /* Incompatible mappings / permissions. */
953                                 return -EINVAL;
954                         case -EHWPOISON:
955                                 return -EHWPOISON;
956                         case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
957                                 return -EFAULT;
958                         default:
959                                 pr_warn_once("%s: unhandled return value: %ld\n",
960                                              __func__, pages);
961                                 fallthrough;
962                         case -ENOMEM: /* No VMA or out of memory. */
963                                 return -ENOMEM;
964                         }
965                 }
966                 start += pages * PAGE_SIZE;
967         }
968         return 0;
969 }
970 
971 /*
972  * Application wants to free up the pages and associated backing store.
973  * This is effectively punching a hole into the middle of a file.
974  */
975 static long madvise_remove(struct vm_area_struct *vma,
976                                 struct vm_area_struct **prev,
977                                 unsigned long start, unsigned long end)
978 {
979         loff_t offset;
980         int error;
981         struct file *f;
982         struct mm_struct *mm = vma->vm_mm;
983 
984         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
985 
986         if (vma->vm_flags & VM_LOCKED)
987                 return -EINVAL;
988 
989         f = vma->vm_file;
990 
991         if (!f || !f->f_mapping || !f->f_mapping->host) {
992                         return -EINVAL;
993         }
994 
995         if (!vma_is_shared_maywrite(vma))
996                 return -EACCES;
997 
998         offset = (loff_t)(start - vma->vm_start)
999                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1000 
1001         /*
1002          * Filesystem's fallocate may need to take i_rwsem.  We need to
1003          * explicitly grab a reference because the vma (and hence the
1004          * vma's reference to the file) can go away as soon as we drop
1005          * mmap_lock.
1006          */
1007         get_file(f);
1008         if (userfaultfd_remove(vma, start, end)) {
1009                 /* mmap_lock was not released by userfaultfd_remove() */
1010                 mmap_read_unlock(mm);
1011         }
1012         error = vfs_fallocate(f,
1013                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1014                                 offset, end - start);
1015         fput(f);
1016         mmap_read_lock(mm);
1017         return error;
1018 }
1019 
1020 /*
1021  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1022  * will handle splitting a vm area into separate areas, each area with its own
1023  * behavior.
1024  */
1025 static int madvise_vma_behavior(struct vm_area_struct *vma,
1026                                 struct vm_area_struct **prev,
1027                                 unsigned long start, unsigned long end,
1028                                 unsigned long behavior)
1029 {
1030         int error;
1031         struct anon_vma_name *anon_name;
1032         unsigned long new_flags = vma->vm_flags;
1033 
1034         switch (behavior) {
1035         case MADV_REMOVE:
1036                 return madvise_remove(vma, prev, start, end);
1037         case MADV_WILLNEED:
1038                 return madvise_willneed(vma, prev, start, end);
1039         case MADV_COLD:
1040                 return madvise_cold(vma, prev, start, end);
1041         case MADV_PAGEOUT:
1042                 return madvise_pageout(vma, prev, start, end);
1043         case MADV_FREE:
1044         case MADV_DONTNEED:
1045         case MADV_DONTNEED_LOCKED:
1046                 return madvise_dontneed_free(vma, prev, start, end, behavior);
1047         case MADV_NORMAL:
1048                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1049                 break;
1050         case MADV_SEQUENTIAL:
1051                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1052                 break;
1053         case MADV_RANDOM:
1054                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1055                 break;
1056         case MADV_DONTFORK:
1057                 new_flags |= VM_DONTCOPY;
1058                 break;
1059         case MADV_DOFORK:
1060                 if (vma->vm_flags & VM_IO)
1061                         return -EINVAL;
1062                 new_flags &= ~VM_DONTCOPY;
1063                 break;
1064         case MADV_WIPEONFORK:
1065                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1066                 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1067                         return -EINVAL;
1068                 new_flags |= VM_WIPEONFORK;
1069                 break;
1070         case MADV_KEEPONFORK:
1071                 if (vma->vm_flags & VM_DROPPABLE)
1072                         return -EINVAL;
1073                 new_flags &= ~VM_WIPEONFORK;
1074                 break;
1075         case MADV_DONTDUMP:
1076                 new_flags |= VM_DONTDUMP;
1077                 break;
1078         case MADV_DODUMP:
1079                 if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
1080                     (vma->vm_flags & VM_DROPPABLE))
1081                         return -EINVAL;
1082                 new_flags &= ~VM_DONTDUMP;
1083                 break;
1084         case MADV_MERGEABLE:
1085         case MADV_UNMERGEABLE:
1086                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1087                 if (error)
1088                         goto out;
1089                 break;
1090         case MADV_HUGEPAGE:
1091         case MADV_NOHUGEPAGE:
1092                 error = hugepage_madvise(vma, &new_flags, behavior);
1093                 if (error)
1094                         goto out;
1095                 break;
1096         case MADV_COLLAPSE:
1097                 return madvise_collapse(vma, prev, start, end);
1098         }
1099 
1100         anon_name = anon_vma_name(vma);
1101         anon_vma_name_get(anon_name);
1102         error = madvise_update_vma(vma, prev, start, end, new_flags,
1103                                    anon_name);
1104         anon_vma_name_put(anon_name);
1105 
1106 out:
1107         /*
1108          * madvise() returns EAGAIN if kernel resources, such as
1109          * slab, are temporarily unavailable.
1110          */
1111         if (error == -ENOMEM)
1112                 error = -EAGAIN;
1113         return error;
1114 }
1115 
1116 #ifdef CONFIG_MEMORY_FAILURE
1117 /*
1118  * Error injection support for memory error handling.
1119  */
1120 static int madvise_inject_error(int behavior,
1121                 unsigned long start, unsigned long end)
1122 {
1123         unsigned long size;
1124 
1125         if (!capable(CAP_SYS_ADMIN))
1126                 return -EPERM;
1127 
1128 
1129         for (; start < end; start += size) {
1130                 unsigned long pfn;
1131                 struct page *page;
1132                 int ret;
1133 
1134                 ret = get_user_pages_fast(start, 1, 0, &page);
1135                 if (ret != 1)
1136                         return ret;
1137                 pfn = page_to_pfn(page);
1138 
1139                 /*
1140                  * When soft offlining hugepages, after migrating the page
1141                  * we dissolve it, therefore in the second loop "page" will
1142                  * no longer be a compound page.
1143                  */
1144                 size = page_size(compound_head(page));
1145 
1146                 if (behavior == MADV_SOFT_OFFLINE) {
1147                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1148                                  pfn, start);
1149                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1150                 } else {
1151                         pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1152                                  pfn, start);
1153                         ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1154                         if (ret == -EOPNOTSUPP)
1155                                 ret = 0;
1156                 }
1157 
1158                 if (ret)
1159                         return ret;
1160         }
1161 
1162         return 0;
1163 }
1164 #endif
1165 
1166 static bool
1167 madvise_behavior_valid(int behavior)
1168 {
1169         switch (behavior) {
1170         case MADV_DOFORK:
1171         case MADV_DONTFORK:
1172         case MADV_NORMAL:
1173         case MADV_SEQUENTIAL:
1174         case MADV_RANDOM:
1175         case MADV_REMOVE:
1176         case MADV_WILLNEED:
1177         case MADV_DONTNEED:
1178         case MADV_DONTNEED_LOCKED:
1179         case MADV_FREE:
1180         case MADV_COLD:
1181         case MADV_PAGEOUT:
1182         case MADV_POPULATE_READ:
1183         case MADV_POPULATE_WRITE:
1184 #ifdef CONFIG_KSM
1185         case MADV_MERGEABLE:
1186         case MADV_UNMERGEABLE:
1187 #endif
1188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1189         case MADV_HUGEPAGE:
1190         case MADV_NOHUGEPAGE:
1191         case MADV_COLLAPSE:
1192 #endif
1193         case MADV_DONTDUMP:
1194         case MADV_DODUMP:
1195         case MADV_WIPEONFORK:
1196         case MADV_KEEPONFORK:
1197 #ifdef CONFIG_MEMORY_FAILURE
1198         case MADV_SOFT_OFFLINE:
1199         case MADV_HWPOISON:
1200 #endif
1201                 return true;
1202 
1203         default:
1204                 return false;
1205         }
1206 }
1207 
1208 static bool process_madvise_behavior_valid(int behavior)
1209 {
1210         switch (behavior) {
1211         case MADV_COLD:
1212         case MADV_PAGEOUT:
1213         case MADV_WILLNEED:
1214         case MADV_COLLAPSE:
1215                 return true;
1216         default:
1217                 return false;
1218         }
1219 }
1220 
1221 /*
1222  * Walk the vmas in range [start,end), and call the visit function on each one.
1223  * The visit function will get start and end parameters that cover the overlap
1224  * between the current vma and the original range.  Any unmapped regions in the
1225  * original range will result in this function returning -ENOMEM while still
1226  * calling the visit function on all of the existing vmas in the range.
1227  * Must be called with the mmap_lock held for reading or writing.
1228  */
1229 static
1230 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1231                       unsigned long end, unsigned long arg,
1232                       int (*visit)(struct vm_area_struct *vma,
1233                                    struct vm_area_struct **prev, unsigned long start,
1234                                    unsigned long end, unsigned long arg))
1235 {
1236         struct vm_area_struct *vma;
1237         struct vm_area_struct *prev;
1238         unsigned long tmp;
1239         int unmapped_error = 0;
1240 
1241         /*
1242          * If the interval [start,end) covers some unmapped address
1243          * ranges, just ignore them, but return -ENOMEM at the end.
1244          * - different from the way of handling in mlock etc.
1245          */
1246         vma = find_vma_prev(mm, start, &prev);
1247         if (vma && start > vma->vm_start)
1248                 prev = vma;
1249 
1250         for (;;) {
1251                 int error;
1252 
1253                 /* Still start < end. */
1254                 if (!vma)
1255                         return -ENOMEM;
1256 
1257                 /* Here start < (end|vma->vm_end). */
1258                 if (start < vma->vm_start) {
1259                         unmapped_error = -ENOMEM;
1260                         start = vma->vm_start;
1261                         if (start >= end)
1262                                 break;
1263                 }
1264 
1265                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1266                 tmp = vma->vm_end;
1267                 if (end < tmp)
1268                         tmp = end;
1269 
1270                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1271                 error = visit(vma, &prev, start, tmp, arg);
1272                 if (error)
1273                         return error;
1274                 start = tmp;
1275                 if (prev && start < prev->vm_end)
1276                         start = prev->vm_end;
1277                 if (start >= end)
1278                         break;
1279                 if (prev)
1280                         vma = find_vma(mm, prev->vm_end);
1281                 else    /* madvise_remove dropped mmap_lock */
1282                         vma = find_vma(mm, start);
1283         }
1284 
1285         return unmapped_error;
1286 }
1287 
1288 #ifdef CONFIG_ANON_VMA_NAME
1289 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1290                                  struct vm_area_struct **prev,
1291                                  unsigned long start, unsigned long end,
1292                                  unsigned long anon_name)
1293 {
1294         int error;
1295 
1296         /* Only anonymous mappings can be named */
1297         if (vma->vm_file && !vma_is_anon_shmem(vma))
1298                 return -EBADF;
1299 
1300         error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1301                                    (struct anon_vma_name *)anon_name);
1302 
1303         /*
1304          * madvise() returns EAGAIN if kernel resources, such as
1305          * slab, are temporarily unavailable.
1306          */
1307         if (error == -ENOMEM)
1308                 error = -EAGAIN;
1309         return error;
1310 }
1311 
1312 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1313                           unsigned long len_in, struct anon_vma_name *anon_name)
1314 {
1315         unsigned long end;
1316         unsigned long len;
1317 
1318         if (start & ~PAGE_MASK)
1319                 return -EINVAL;
1320         len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1321 
1322         /* Check to see whether len was rounded up from small -ve to zero */
1323         if (len_in && !len)
1324                 return -EINVAL;
1325 
1326         end = start + len;
1327         if (end < start)
1328                 return -EINVAL;
1329 
1330         if (end == start)
1331                 return 0;
1332 
1333         return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1334                                  madvise_vma_anon_name);
1335 }
1336 #endif /* CONFIG_ANON_VMA_NAME */
1337 /*
1338  * The madvise(2) system call.
1339  *
1340  * Applications can use madvise() to advise the kernel how it should
1341  * handle paging I/O in this VM area.  The idea is to help the kernel
1342  * use appropriate read-ahead and caching techniques.  The information
1343  * provided is advisory only, and can be safely disregarded by the
1344  * kernel without affecting the correct operation of the application.
1345  *
1346  * behavior values:
1347  *  MADV_NORMAL - the default behavior is to read clusters.  This
1348  *              results in some read-ahead and read-behind.
1349  *  MADV_RANDOM - the system should read the minimum amount of data
1350  *              on any access, since it is unlikely that the appli-
1351  *              cation will need more than what it asks for.
1352  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1353  *              once, so they can be aggressively read ahead, and
1354  *              can be freed soon after they are accessed.
1355  *  MADV_WILLNEED - the application is notifying the system to read
1356  *              some pages ahead.
1357  *  MADV_DONTNEED - the application is finished with the given range,
1358  *              so the kernel can free resources associated with it.
1359  *  MADV_FREE - the application marks pages in the given range as lazy free,
1360  *              where actual purges are postponed until memory pressure happens.
1361  *  MADV_REMOVE - the application wants to free up the given range of
1362  *              pages and associated backing store.
1363  *  MADV_DONTFORK - omit this area from child's address space when forking:
1364  *              typically, to avoid COWing pages pinned by get_user_pages().
1365  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1366  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1367  *              range after a fork.
1368  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1369  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1370  *              were corrupted by unrecoverable hardware memory failure.
1371  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1372  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1373  *              this area with pages of identical content from other such areas.
1374  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1375  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1376  *              huge pages in the future. Existing pages might be coalesced and
1377  *              new pages might be allocated as THP.
1378  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1379  *              transparent huge pages so the existing pages will not be
1380  *              coalesced into THP and new pages will not be allocated as THP.
1381  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1382  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1383  *              from being included in its core dump.
1384  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1385  *  MADV_COLD - the application is not expected to use this memory soon,
1386  *              deactivate pages in this range so that they can be reclaimed
1387  *              easily if memory pressure happens.
1388  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1389  *              page out the pages in this range immediately.
1390  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1391  *              triggering read faults if required
1392  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1393  *              triggering write faults if required
1394  *
1395  * return values:
1396  *  zero    - success
1397  *  -EINVAL - start + len < 0, start is not page-aligned,
1398  *              "behavior" is not a valid value, or application
1399  *              is attempting to release locked or shared pages,
1400  *              or the specified address range includes file, Huge TLB,
1401  *              MAP_SHARED or VMPFNMAP range.
1402  *  -ENOMEM - addresses in the specified range are not currently
1403  *              mapped, or are outside the AS of the process.
1404  *  -EIO    - an I/O error occurred while paging in data.
1405  *  -EBADF  - map exists, but area maps something that isn't a file.
1406  *  -EAGAIN - a kernel resource was temporarily unavailable.
1407  *  -EPERM  - memory is sealed.
1408  */
1409 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1410 {
1411         unsigned long end;
1412         int error;
1413         int write;
1414         size_t len;
1415         struct blk_plug plug;
1416 
1417         if (!madvise_behavior_valid(behavior))
1418                 return -EINVAL;
1419 
1420         if (!PAGE_ALIGNED(start))
1421                 return -EINVAL;
1422         len = PAGE_ALIGN(len_in);
1423 
1424         /* Check to see whether len was rounded up from small -ve to zero */
1425         if (len_in && !len)
1426                 return -EINVAL;
1427 
1428         end = start + len;
1429         if (end < start)
1430                 return -EINVAL;
1431 
1432         if (end == start)
1433                 return 0;
1434 
1435 #ifdef CONFIG_MEMORY_FAILURE
1436         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1437                 return madvise_inject_error(behavior, start, start + len_in);
1438 #endif
1439 
1440         write = madvise_need_mmap_write(behavior);
1441         if (write) {
1442                 if (mmap_write_lock_killable(mm))
1443                         return -EINTR;
1444         } else {
1445                 mmap_read_lock(mm);
1446         }
1447 
1448         start = untagged_addr_remote(mm, start);
1449         end = start + len;
1450 
1451         /*
1452          * Check if the address range is sealed for do_madvise().
1453          * can_modify_mm_madv assumes we have acquired the lock on MM.
1454          */
1455         if (unlikely(!can_modify_mm_madv(mm, start, end, behavior))) {
1456                 error = -EPERM;
1457                 goto out;
1458         }
1459 
1460         blk_start_plug(&plug);
1461         switch (behavior) {
1462         case MADV_POPULATE_READ:
1463         case MADV_POPULATE_WRITE:
1464                 error = madvise_populate(mm, start, end, behavior);
1465                 break;
1466         default:
1467                 error = madvise_walk_vmas(mm, start, end, behavior,
1468                                           madvise_vma_behavior);
1469                 break;
1470         }
1471         blk_finish_plug(&plug);
1472 
1473 out:
1474         if (write)
1475                 mmap_write_unlock(mm);
1476         else
1477                 mmap_read_unlock(mm);
1478 
1479         return error;
1480 }
1481 
1482 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1483 {
1484         return do_madvise(current->mm, start, len_in, behavior);
1485 }
1486 
1487 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1488                 size_t, vlen, int, behavior, unsigned int, flags)
1489 {
1490         ssize_t ret;
1491         struct iovec iovstack[UIO_FASTIOV];
1492         struct iovec *iov = iovstack;
1493         struct iov_iter iter;
1494         struct task_struct *task;
1495         struct mm_struct *mm;
1496         size_t total_len;
1497         unsigned int f_flags;
1498 
1499         if (flags != 0) {
1500                 ret = -EINVAL;
1501                 goto out;
1502         }
1503 
1504         ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1505         if (ret < 0)
1506                 goto out;
1507 
1508         task = pidfd_get_task(pidfd, &f_flags);
1509         if (IS_ERR(task)) {
1510                 ret = PTR_ERR(task);
1511                 goto free_iov;
1512         }
1513 
1514         if (!process_madvise_behavior_valid(behavior)) {
1515                 ret = -EINVAL;
1516                 goto release_task;
1517         }
1518 
1519         /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1520         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1521         if (IS_ERR_OR_NULL(mm)) {
1522                 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1523                 goto release_task;
1524         }
1525 
1526         /*
1527          * Require CAP_SYS_NICE for influencing process performance. Note that
1528          * only non-destructive hints are currently supported.
1529          */
1530         if (!capable(CAP_SYS_NICE)) {
1531                 ret = -EPERM;
1532                 goto release_mm;
1533         }
1534 
1535         total_len = iov_iter_count(&iter);
1536 
1537         while (iov_iter_count(&iter)) {
1538                 ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter),
1539                                         iter_iov_len(&iter), behavior);
1540                 if (ret < 0)
1541                         break;
1542                 iov_iter_advance(&iter, iter_iov_len(&iter));
1543         }
1544 
1545         ret = (total_len - iov_iter_count(&iter)) ? : ret;
1546 
1547 release_mm:
1548         mmput(mm);
1549 release_task:
1550         put_task_struct(task);
1551 free_iov:
1552         kfree(iov);
1553 out:
1554         return ret;
1555 }
1556 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php