~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/memcontrol-v1.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 
  3 #include <linux/memcontrol.h>
  4 #include <linux/swap.h>
  5 #include <linux/mm_inline.h>
  6 #include <linux/pagewalk.h>
  7 #include <linux/backing-dev.h>
  8 #include <linux/swap_cgroup.h>
  9 #include <linux/eventfd.h>
 10 #include <linux/poll.h>
 11 #include <linux/sort.h>
 12 #include <linux/file.h>
 13 #include <linux/seq_buf.h>
 14 
 15 #include "internal.h"
 16 #include "swap.h"
 17 #include "memcontrol-v1.h"
 18 
 19 /*
 20  * Cgroups above their limits are maintained in a RB-Tree, independent of
 21  * their hierarchy representation
 22  */
 23 
 24 struct mem_cgroup_tree_per_node {
 25         struct rb_root rb_root;
 26         struct rb_node *rb_rightmost;
 27         spinlock_t lock;
 28 };
 29 
 30 struct mem_cgroup_tree {
 31         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 32 };
 33 
 34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 35 
 36 /*
 37  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
 38  * limit reclaim to prevent infinite loops, if they ever occur.
 39  */
 40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 42 
 43 /* Stuffs for move charges at task migration. */
 44 /*
 45  * Types of charges to be moved.
 46  */
 47 #define MOVE_ANON       0x1ULL
 48 #define MOVE_FILE       0x2ULL
 49 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 50 
 51 /* "mc" and its members are protected by cgroup_mutex */
 52 static struct move_charge_struct {
 53         spinlock_t        lock; /* for from, to */
 54         struct mm_struct  *mm;
 55         struct mem_cgroup *from;
 56         struct mem_cgroup *to;
 57         unsigned long flags;
 58         unsigned long precharge;
 59         unsigned long moved_charge;
 60         unsigned long moved_swap;
 61         struct task_struct *moving_task;        /* a task moving charges */
 62         wait_queue_head_t waitq;                /* a waitq for other context */
 63 } mc = {
 64         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 65         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 66 };
 67 
 68 /* for OOM */
 69 struct mem_cgroup_eventfd_list {
 70         struct list_head list;
 71         struct eventfd_ctx *eventfd;
 72 };
 73 
 74 /*
 75  * cgroup_event represents events which userspace want to receive.
 76  */
 77 struct mem_cgroup_event {
 78         /*
 79          * memcg which the event belongs to.
 80          */
 81         struct mem_cgroup *memcg;
 82         /*
 83          * eventfd to signal userspace about the event.
 84          */
 85         struct eventfd_ctx *eventfd;
 86         /*
 87          * Each of these stored in a list by the cgroup.
 88          */
 89         struct list_head list;
 90         /*
 91          * register_event() callback will be used to add new userspace
 92          * waiter for changes related to this event.  Use eventfd_signal()
 93          * on eventfd to send notification to userspace.
 94          */
 95         int (*register_event)(struct mem_cgroup *memcg,
 96                               struct eventfd_ctx *eventfd, const char *args);
 97         /*
 98          * unregister_event() callback will be called when userspace closes
 99          * the eventfd or on cgroup removing.  This callback must be set,
100          * if you want provide notification functionality.
101          */
102         void (*unregister_event)(struct mem_cgroup *memcg,
103                                  struct eventfd_ctx *eventfd);
104         /*
105          * All fields below needed to unregister event when
106          * userspace closes eventfd.
107          */
108         poll_table pt;
109         wait_queue_head_t *wqh;
110         wait_queue_entry_t wait;
111         struct work_struct remove;
112 };
113 
114 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
115 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
116 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
117 
118 enum {
119         RES_USAGE,
120         RES_LIMIT,
121         RES_MAX_USAGE,
122         RES_FAILCNT,
123         RES_SOFT_LIMIT,
124 };
125 
126 #ifdef CONFIG_LOCKDEP
127 static struct lockdep_map memcg_oom_lock_dep_map = {
128         .name = "memcg_oom_lock",
129 };
130 #endif
131 
132 DEFINE_SPINLOCK(memcg_oom_lock);
133 
134 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
135                                          struct mem_cgroup_tree_per_node *mctz,
136                                          unsigned long new_usage_in_excess)
137 {
138         struct rb_node **p = &mctz->rb_root.rb_node;
139         struct rb_node *parent = NULL;
140         struct mem_cgroup_per_node *mz_node;
141         bool rightmost = true;
142 
143         if (mz->on_tree)
144                 return;
145 
146         mz->usage_in_excess = new_usage_in_excess;
147         if (!mz->usage_in_excess)
148                 return;
149         while (*p) {
150                 parent = *p;
151                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
152                                         tree_node);
153                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
154                         p = &(*p)->rb_left;
155                         rightmost = false;
156                 } else {
157                         p = &(*p)->rb_right;
158                 }
159         }
160 
161         if (rightmost)
162                 mctz->rb_rightmost = &mz->tree_node;
163 
164         rb_link_node(&mz->tree_node, parent, p);
165         rb_insert_color(&mz->tree_node, &mctz->rb_root);
166         mz->on_tree = true;
167 }
168 
169 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
170                                          struct mem_cgroup_tree_per_node *mctz)
171 {
172         if (!mz->on_tree)
173                 return;
174 
175         if (&mz->tree_node == mctz->rb_rightmost)
176                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
177 
178         rb_erase(&mz->tree_node, &mctz->rb_root);
179         mz->on_tree = false;
180 }
181 
182 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
183                                        struct mem_cgroup_tree_per_node *mctz)
184 {
185         unsigned long flags;
186 
187         spin_lock_irqsave(&mctz->lock, flags);
188         __mem_cgroup_remove_exceeded(mz, mctz);
189         spin_unlock_irqrestore(&mctz->lock, flags);
190 }
191 
192 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
193 {
194         unsigned long nr_pages = page_counter_read(&memcg->memory);
195         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
196         unsigned long excess = 0;
197 
198         if (nr_pages > soft_limit)
199                 excess = nr_pages - soft_limit;
200 
201         return excess;
202 }
203 
204 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
205 {
206         unsigned long excess;
207         struct mem_cgroup_per_node *mz;
208         struct mem_cgroup_tree_per_node *mctz;
209 
210         if (lru_gen_enabled()) {
211                 if (soft_limit_excess(memcg))
212                         lru_gen_soft_reclaim(memcg, nid);
213                 return;
214         }
215 
216         mctz = soft_limit_tree.rb_tree_per_node[nid];
217         if (!mctz)
218                 return;
219         /*
220          * Necessary to update all ancestors when hierarchy is used.
221          * because their event counter is not touched.
222          */
223         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
224                 mz = memcg->nodeinfo[nid];
225                 excess = soft_limit_excess(memcg);
226                 /*
227                  * We have to update the tree if mz is on RB-tree or
228                  * mem is over its softlimit.
229                  */
230                 if (excess || mz->on_tree) {
231                         unsigned long flags;
232 
233                         spin_lock_irqsave(&mctz->lock, flags);
234                         /* if on-tree, remove it */
235                         if (mz->on_tree)
236                                 __mem_cgroup_remove_exceeded(mz, mctz);
237                         /*
238                          * Insert again. mz->usage_in_excess will be updated.
239                          * If excess is 0, no tree ops.
240                          */
241                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
242                         spin_unlock_irqrestore(&mctz->lock, flags);
243                 }
244         }
245 }
246 
247 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
248 {
249         struct mem_cgroup_tree_per_node *mctz;
250         struct mem_cgroup_per_node *mz;
251         int nid;
252 
253         for_each_node(nid) {
254                 mz = memcg->nodeinfo[nid];
255                 mctz = soft_limit_tree.rb_tree_per_node[nid];
256                 if (mctz)
257                         mem_cgroup_remove_exceeded(mz, mctz);
258         }
259 }
260 
261 static struct mem_cgroup_per_node *
262 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263 {
264         struct mem_cgroup_per_node *mz;
265 
266 retry:
267         mz = NULL;
268         if (!mctz->rb_rightmost)
269                 goto done;              /* Nothing to reclaim from */
270 
271         mz = rb_entry(mctz->rb_rightmost,
272                       struct mem_cgroup_per_node, tree_node);
273         /*
274          * Remove the node now but someone else can add it back,
275          * we will to add it back at the end of reclaim to its correct
276          * position in the tree.
277          */
278         __mem_cgroup_remove_exceeded(mz, mctz);
279         if (!soft_limit_excess(mz->memcg) ||
280             !css_tryget(&mz->memcg->css))
281                 goto retry;
282 done:
283         return mz;
284 }
285 
286 static struct mem_cgroup_per_node *
287 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
288 {
289         struct mem_cgroup_per_node *mz;
290 
291         spin_lock_irq(&mctz->lock);
292         mz = __mem_cgroup_largest_soft_limit_node(mctz);
293         spin_unlock_irq(&mctz->lock);
294         return mz;
295 }
296 
297 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
298                                    pg_data_t *pgdat,
299                                    gfp_t gfp_mask,
300                                    unsigned long *total_scanned)
301 {
302         struct mem_cgroup *victim = NULL;
303         int total = 0;
304         int loop = 0;
305         unsigned long excess;
306         unsigned long nr_scanned;
307         struct mem_cgroup_reclaim_cookie reclaim = {
308                 .pgdat = pgdat,
309         };
310 
311         excess = soft_limit_excess(root_memcg);
312 
313         while (1) {
314                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
315                 if (!victim) {
316                         loop++;
317                         if (loop >= 2) {
318                                 /*
319                                  * If we have not been able to reclaim
320                                  * anything, it might because there are
321                                  * no reclaimable pages under this hierarchy
322                                  */
323                                 if (!total)
324                                         break;
325                                 /*
326                                  * We want to do more targeted reclaim.
327                                  * excess >> 2 is not to excessive so as to
328                                  * reclaim too much, nor too less that we keep
329                                  * coming back to reclaim from this cgroup
330                                  */
331                                 if (total >= (excess >> 2) ||
332                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
333                                         break;
334                         }
335                         continue;
336                 }
337                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
338                                         pgdat, &nr_scanned);
339                 *total_scanned += nr_scanned;
340                 if (!soft_limit_excess(root_memcg))
341                         break;
342         }
343         mem_cgroup_iter_break(root_memcg, victim);
344         return total;
345 }
346 
347 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
348                                             gfp_t gfp_mask,
349                                             unsigned long *total_scanned)
350 {
351         unsigned long nr_reclaimed = 0;
352         struct mem_cgroup_per_node *mz, *next_mz = NULL;
353         unsigned long reclaimed;
354         int loop = 0;
355         struct mem_cgroup_tree_per_node *mctz;
356         unsigned long excess;
357 
358         if (lru_gen_enabled())
359                 return 0;
360 
361         if (order > 0)
362                 return 0;
363 
364         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
365 
366         /*
367          * Do not even bother to check the largest node if the root
368          * is empty. Do it lockless to prevent lock bouncing. Races
369          * are acceptable as soft limit is best effort anyway.
370          */
371         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
372                 return 0;
373 
374         /*
375          * This loop can run a while, specially if mem_cgroup's continuously
376          * keep exceeding their soft limit and putting the system under
377          * pressure
378          */
379         do {
380                 if (next_mz)
381                         mz = next_mz;
382                 else
383                         mz = mem_cgroup_largest_soft_limit_node(mctz);
384                 if (!mz)
385                         break;
386 
387                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
388                                                     gfp_mask, total_scanned);
389                 nr_reclaimed += reclaimed;
390                 spin_lock_irq(&mctz->lock);
391 
392                 /*
393                  * If we failed to reclaim anything from this memory cgroup
394                  * it is time to move on to the next cgroup
395                  */
396                 next_mz = NULL;
397                 if (!reclaimed)
398                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
399 
400                 excess = soft_limit_excess(mz->memcg);
401                 /*
402                  * One school of thought says that we should not add
403                  * back the node to the tree if reclaim returns 0.
404                  * But our reclaim could return 0, simply because due
405                  * to priority we are exposing a smaller subset of
406                  * memory to reclaim from. Consider this as a longer
407                  * term TODO.
408                  */
409                 /* If excess == 0, no tree ops */
410                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
411                 spin_unlock_irq(&mctz->lock);
412                 css_put(&mz->memcg->css);
413                 loop++;
414                 /*
415                  * Could not reclaim anything and there are no more
416                  * mem cgroups to try or we seem to be looping without
417                  * reclaiming anything.
418                  */
419                 if (!nr_reclaimed &&
420                         (next_mz == NULL ||
421                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
422                         break;
423         } while (!nr_reclaimed);
424         if (next_mz)
425                 css_put(&next_mz->memcg->css);
426         return nr_reclaimed;
427 }
428 
429 /*
430  * A routine for checking "mem" is under move_account() or not.
431  *
432  * Checking a cgroup is mc.from or mc.to or under hierarchy of
433  * moving cgroups. This is for waiting at high-memory pressure
434  * caused by "move".
435  */
436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
437 {
438         struct mem_cgroup *from;
439         struct mem_cgroup *to;
440         bool ret = false;
441         /*
442          * Unlike task_move routines, we access mc.to, mc.from not under
443          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
444          */
445         spin_lock(&mc.lock);
446         from = mc.from;
447         to = mc.to;
448         if (!from)
449                 goto unlock;
450 
451         ret = mem_cgroup_is_descendant(from, memcg) ||
452                 mem_cgroup_is_descendant(to, memcg);
453 unlock:
454         spin_unlock(&mc.lock);
455         return ret;
456 }
457 
458 bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
459 {
460         if (mc.moving_task && current != mc.moving_task) {
461                 if (mem_cgroup_under_move(memcg)) {
462                         DEFINE_WAIT(wait);
463                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
464                         /* moving charge context might have finished. */
465                         if (mc.moving_task)
466                                 schedule();
467                         finish_wait(&mc.waitq, &wait);
468                         return true;
469                 }
470         }
471         return false;
472 }
473 
474 /**
475  * folio_memcg_lock - Bind a folio to its memcg.
476  * @folio: The folio.
477  *
478  * This function prevents unlocked LRU folios from being moved to
479  * another cgroup.
480  *
481  * It ensures lifetime of the bound memcg.  The caller is responsible
482  * for the lifetime of the folio.
483  */
484 void folio_memcg_lock(struct folio *folio)
485 {
486         struct mem_cgroup *memcg;
487         unsigned long flags;
488 
489         /*
490          * The RCU lock is held throughout the transaction.  The fast
491          * path can get away without acquiring the memcg->move_lock
492          * because page moving starts with an RCU grace period.
493          */
494         rcu_read_lock();
495 
496         if (mem_cgroup_disabled())
497                 return;
498 again:
499         memcg = folio_memcg(folio);
500         if (unlikely(!memcg))
501                 return;
502 
503 #ifdef CONFIG_PROVE_LOCKING
504         local_irq_save(flags);
505         might_lock(&memcg->move_lock);
506         local_irq_restore(flags);
507 #endif
508 
509         if (atomic_read(&memcg->moving_account) <= 0)
510                 return;
511 
512         spin_lock_irqsave(&memcg->move_lock, flags);
513         if (memcg != folio_memcg(folio)) {
514                 spin_unlock_irqrestore(&memcg->move_lock, flags);
515                 goto again;
516         }
517 
518         /*
519          * When charge migration first begins, we can have multiple
520          * critical sections holding the fast-path RCU lock and one
521          * holding the slowpath move_lock. Track the task who has the
522          * move_lock for folio_memcg_unlock().
523          */
524         memcg->move_lock_task = current;
525         memcg->move_lock_flags = flags;
526 }
527 
528 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
529 {
530         if (memcg && memcg->move_lock_task == current) {
531                 unsigned long flags = memcg->move_lock_flags;
532 
533                 memcg->move_lock_task = NULL;
534                 memcg->move_lock_flags = 0;
535 
536                 spin_unlock_irqrestore(&memcg->move_lock, flags);
537         }
538 
539         rcu_read_unlock();
540 }
541 
542 /**
543  * folio_memcg_unlock - Release the binding between a folio and its memcg.
544  * @folio: The folio.
545  *
546  * This releases the binding created by folio_memcg_lock().  This does
547  * not change the accounting of this folio to its memcg, but it does
548  * permit others to change it.
549  */
550 void folio_memcg_unlock(struct folio *folio)
551 {
552         __folio_memcg_unlock(folio_memcg(folio));
553 }
554 
555 #ifdef CONFIG_SWAP
556 /**
557  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
558  * @entry: swap entry to be moved
559  * @from:  mem_cgroup which the entry is moved from
560  * @to:  mem_cgroup which the entry is moved to
561  *
562  * It succeeds only when the swap_cgroup's record for this entry is the same
563  * as the mem_cgroup's id of @from.
564  *
565  * Returns 0 on success, -EINVAL on failure.
566  *
567  * The caller must have charged to @to, IOW, called page_counter_charge() about
568  * both res and memsw, and called css_get().
569  */
570 static int mem_cgroup_move_swap_account(swp_entry_t entry,
571                                 struct mem_cgroup *from, struct mem_cgroup *to)
572 {
573         unsigned short old_id, new_id;
574 
575         old_id = mem_cgroup_id(from);
576         new_id = mem_cgroup_id(to);
577 
578         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
579                 mod_memcg_state(from, MEMCG_SWAP, -1);
580                 mod_memcg_state(to, MEMCG_SWAP, 1);
581                 return 0;
582         }
583         return -EINVAL;
584 }
585 #else
586 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
587                                 struct mem_cgroup *from, struct mem_cgroup *to)
588 {
589         return -EINVAL;
590 }
591 #endif
592 
593 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
594                                 struct cftype *cft)
595 {
596         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
597 }
598 
599 #ifdef CONFIG_MMU
600 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
601                                  struct cftype *cft, u64 val)
602 {
603         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
604 
605         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
606                      "Please report your usecase to linux-mm@kvack.org if you "
607                      "depend on this functionality.\n");
608 
609         if (val & ~MOVE_MASK)
610                 return -EINVAL;
611 
612         /*
613          * No kind of locking is needed in here, because ->can_attach() will
614          * check this value once in the beginning of the process, and then carry
615          * on with stale data. This means that changes to this value will only
616          * affect task migrations starting after the change.
617          */
618         memcg->move_charge_at_immigrate = val;
619         return 0;
620 }
621 #else
622 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
623                                  struct cftype *cft, u64 val)
624 {
625         return -ENOSYS;
626 }
627 #endif
628 
629 #ifdef CONFIG_MMU
630 /* Handlers for move charge at task migration. */
631 static int mem_cgroup_do_precharge(unsigned long count)
632 {
633         int ret;
634 
635         /* Try a single bulk charge without reclaim first, kswapd may wake */
636         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
637         if (!ret) {
638                 mc.precharge += count;
639                 return ret;
640         }
641 
642         /* Try charges one by one with reclaim, but do not retry */
643         while (count--) {
644                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
645                 if (ret)
646                         return ret;
647                 mc.precharge++;
648                 cond_resched();
649         }
650         return 0;
651 }
652 
653 union mc_target {
654         struct folio    *folio;
655         swp_entry_t     ent;
656 };
657 
658 enum mc_target_type {
659         MC_TARGET_NONE = 0,
660         MC_TARGET_PAGE,
661         MC_TARGET_SWAP,
662         MC_TARGET_DEVICE,
663 };
664 
665 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
666                                                 unsigned long addr, pte_t ptent)
667 {
668         struct page *page = vm_normal_page(vma, addr, ptent);
669 
670         if (!page)
671                 return NULL;
672         if (PageAnon(page)) {
673                 if (!(mc.flags & MOVE_ANON))
674                         return NULL;
675         } else {
676                 if (!(mc.flags & MOVE_FILE))
677                         return NULL;
678         }
679         get_page(page);
680 
681         return page;
682 }
683 
684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
686                         pte_t ptent, swp_entry_t *entry)
687 {
688         struct page *page = NULL;
689         swp_entry_t ent = pte_to_swp_entry(ptent);
690 
691         if (!(mc.flags & MOVE_ANON))
692                 return NULL;
693 
694         /*
695          * Handle device private pages that are not accessible by the CPU, but
696          * stored as special swap entries in the page table.
697          */
698         if (is_device_private_entry(ent)) {
699                 page = pfn_swap_entry_to_page(ent);
700                 if (!get_page_unless_zero(page))
701                         return NULL;
702                 return page;
703         }
704 
705         if (non_swap_entry(ent))
706                 return NULL;
707 
708         /*
709          * Because swap_cache_get_folio() updates some statistics counter,
710          * we call find_get_page() with swapper_space directly.
711          */
712         page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
713         entry->val = ent.val;
714 
715         return page;
716 }
717 #else
718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
719                         pte_t ptent, swp_entry_t *entry)
720 {
721         return NULL;
722 }
723 #endif
724 
725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
726                         unsigned long addr, pte_t ptent)
727 {
728         unsigned long index;
729         struct folio *folio;
730 
731         if (!vma->vm_file) /* anonymous vma */
732                 return NULL;
733         if (!(mc.flags & MOVE_FILE))
734                 return NULL;
735 
736         /* folio is moved even if it's not RSS of this task(page-faulted). */
737         /* shmem/tmpfs may report page out on swap: account for that too. */
738         index = linear_page_index(vma, addr);
739         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
740         if (IS_ERR(folio))
741                 return NULL;
742         return folio_file_page(folio, index);
743 }
744 
745 /**
746  * mem_cgroup_move_account - move account of the folio
747  * @folio: The folio.
748  * @compound: charge the page as compound or small page
749  * @from: mem_cgroup which the folio is moved from.
750  * @to: mem_cgroup which the folio is moved to. @from != @to.
751  *
752  * The folio must be locked and not on the LRU.
753  *
754  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
755  * from old cgroup.
756  */
757 static int mem_cgroup_move_account(struct folio *folio,
758                                    bool compound,
759                                    struct mem_cgroup *from,
760                                    struct mem_cgroup *to)
761 {
762         struct lruvec *from_vec, *to_vec;
763         struct pglist_data *pgdat;
764         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
765         int nid, ret;
766 
767         VM_BUG_ON(from == to);
768         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
769         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
770         VM_BUG_ON(compound && !folio_test_large(folio));
771 
772         ret = -EINVAL;
773         if (folio_memcg(folio) != from)
774                 goto out;
775 
776         pgdat = folio_pgdat(folio);
777         from_vec = mem_cgroup_lruvec(from, pgdat);
778         to_vec = mem_cgroup_lruvec(to, pgdat);
779 
780         folio_memcg_lock(folio);
781 
782         if (folio_test_anon(folio)) {
783                 if (folio_mapped(folio)) {
784                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
785                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
786                         if (folio_test_pmd_mappable(folio)) {
787                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
788                                                    -nr_pages);
789                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
790                                                    nr_pages);
791                         }
792                 }
793         } else {
794                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
795                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
796 
797                 if (folio_test_swapbacked(folio)) {
798                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
799                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
800                 }
801 
802                 if (folio_mapped(folio)) {
803                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
804                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
805                 }
806 
807                 if (folio_test_dirty(folio)) {
808                         struct address_space *mapping = folio_mapping(folio);
809 
810                         if (mapping_can_writeback(mapping)) {
811                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
812                                                    -nr_pages);
813                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
814                                                    nr_pages);
815                         }
816                 }
817         }
818 
819 #ifdef CONFIG_SWAP
820         if (folio_test_swapcache(folio)) {
821                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
822                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
823         }
824 #endif
825         if (folio_test_writeback(folio)) {
826                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
827                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
828         }
829 
830         /*
831          * All state has been migrated, let's switch to the new memcg.
832          *
833          * It is safe to change page's memcg here because the page
834          * is referenced, charged, isolated, and locked: we can't race
835          * with (un)charging, migration, LRU putback, or anything else
836          * that would rely on a stable page's memory cgroup.
837          *
838          * Note that folio_memcg_lock is a memcg lock, not a page lock,
839          * to save space. As soon as we switch page's memory cgroup to a
840          * new memcg that isn't locked, the above state can change
841          * concurrently again. Make sure we're truly done with it.
842          */
843         smp_mb();
844 
845         css_get(&to->css);
846         css_put(&from->css);
847 
848         folio->memcg_data = (unsigned long)to;
849 
850         __folio_memcg_unlock(from);
851 
852         ret = 0;
853         nid = folio_nid(folio);
854 
855         local_irq_disable();
856         mem_cgroup_charge_statistics(to, nr_pages);
857         memcg1_check_events(to, nid);
858         mem_cgroup_charge_statistics(from, -nr_pages);
859         memcg1_check_events(from, nid);
860         local_irq_enable();
861 out:
862         return ret;
863 }
864 
865 /**
866  * get_mctgt_type - get target type of moving charge
867  * @vma: the vma the pte to be checked belongs
868  * @addr: the address corresponding to the pte to be checked
869  * @ptent: the pte to be checked
870  * @target: the pointer the target page or swap ent will be stored(can be NULL)
871  *
872  * Context: Called with pte lock held.
873  * Return:
874  * * MC_TARGET_NONE - If the pte is not a target for move charge.
875  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
876  *   move charge. If @target is not NULL, the folio is stored in target->folio
877  *   with extra refcnt taken (Caller should release it).
878  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
879  *   target for charge migration.  If @target is not NULL, the entry is
880  *   stored in target->ent.
881  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
882  *   thus not on the lru.  For now such page is charged like a regular page
883  *   would be as it is just special memory taking the place of a regular page.
884  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
885  */
886 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
887                 unsigned long addr, pte_t ptent, union mc_target *target)
888 {
889         struct page *page = NULL;
890         struct folio *folio;
891         enum mc_target_type ret = MC_TARGET_NONE;
892         swp_entry_t ent = { .val = 0 };
893 
894         if (pte_present(ptent))
895                 page = mc_handle_present_pte(vma, addr, ptent);
896         else if (pte_none_mostly(ptent))
897                 /*
898                  * PTE markers should be treated as a none pte here, separated
899                  * from other swap handling below.
900                  */
901                 page = mc_handle_file_pte(vma, addr, ptent);
902         else if (is_swap_pte(ptent))
903                 page = mc_handle_swap_pte(vma, ptent, &ent);
904 
905         if (page)
906                 folio = page_folio(page);
907         if (target && page) {
908                 if (!folio_trylock(folio)) {
909                         folio_put(folio);
910                         return ret;
911                 }
912                 /*
913                  * page_mapped() must be stable during the move. This
914                  * pte is locked, so if it's present, the page cannot
915                  * become unmapped. If it isn't, we have only partial
916                  * control over the mapped state: the page lock will
917                  * prevent new faults against pagecache and swapcache,
918                  * so an unmapped page cannot become mapped. However,
919                  * if the page is already mapped elsewhere, it can
920                  * unmap, and there is nothing we can do about it.
921                  * Alas, skip moving the page in this case.
922                  */
923                 if (!pte_present(ptent) && page_mapped(page)) {
924                         folio_unlock(folio);
925                         folio_put(folio);
926                         return ret;
927                 }
928         }
929 
930         if (!page && !ent.val)
931                 return ret;
932         if (page) {
933                 /*
934                  * Do only loose check w/o serialization.
935                  * mem_cgroup_move_account() checks the page is valid or
936                  * not under LRU exclusion.
937                  */
938                 if (folio_memcg(folio) == mc.from) {
939                         ret = MC_TARGET_PAGE;
940                         if (folio_is_device_private(folio) ||
941                             folio_is_device_coherent(folio))
942                                 ret = MC_TARGET_DEVICE;
943                         if (target)
944                                 target->folio = folio;
945                 }
946                 if (!ret || !target) {
947                         if (target)
948                                 folio_unlock(folio);
949                         folio_put(folio);
950                 }
951         }
952         /*
953          * There is a swap entry and a page doesn't exist or isn't charged.
954          * But we cannot move a tail-page in a THP.
955          */
956         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
957             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
958                 ret = MC_TARGET_SWAP;
959                 if (target)
960                         target->ent = ent;
961         }
962         return ret;
963 }
964 
965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
966 /*
967  * We don't consider PMD mapped swapping or file mapped pages because THP does
968  * not support them for now.
969  * Caller should make sure that pmd_trans_huge(pmd) is true.
970  */
971 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
972                 unsigned long addr, pmd_t pmd, union mc_target *target)
973 {
974         struct page *page = NULL;
975         struct folio *folio;
976         enum mc_target_type ret = MC_TARGET_NONE;
977 
978         if (unlikely(is_swap_pmd(pmd))) {
979                 VM_BUG_ON(thp_migration_supported() &&
980                                   !is_pmd_migration_entry(pmd));
981                 return ret;
982         }
983         page = pmd_page(pmd);
984         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
985         folio = page_folio(page);
986         if (!(mc.flags & MOVE_ANON))
987                 return ret;
988         if (folio_memcg(folio) == mc.from) {
989                 ret = MC_TARGET_PAGE;
990                 if (target) {
991                         folio_get(folio);
992                         if (!folio_trylock(folio)) {
993                                 folio_put(folio);
994                                 return MC_TARGET_NONE;
995                         }
996                         target->folio = folio;
997                 }
998         }
999         return ret;
1000 }
1001 #else
1002 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
1003                 unsigned long addr, pmd_t pmd, union mc_target *target)
1004 {
1005         return MC_TARGET_NONE;
1006 }
1007 #endif
1008 
1009 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
1010                                         unsigned long addr, unsigned long end,
1011                                         struct mm_walk *walk)
1012 {
1013         struct vm_area_struct *vma = walk->vma;
1014         pte_t *pte;
1015         spinlock_t *ptl;
1016 
1017         ptl = pmd_trans_huge_lock(pmd, vma);
1018         if (ptl) {
1019                 /*
1020                  * Note their can not be MC_TARGET_DEVICE for now as we do not
1021                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
1022                  * this might change.
1023                  */
1024                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
1025                         mc.precharge += HPAGE_PMD_NR;
1026                 spin_unlock(ptl);
1027                 return 0;
1028         }
1029 
1030         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1031         if (!pte)
1032                 return 0;
1033         for (; addr != end; pte++, addr += PAGE_SIZE)
1034                 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
1035                         mc.precharge++; /* increment precharge temporarily */
1036         pte_unmap_unlock(pte - 1, ptl);
1037         cond_resched();
1038 
1039         return 0;
1040 }
1041 
1042 static const struct mm_walk_ops precharge_walk_ops = {
1043         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
1044         .walk_lock      = PGWALK_RDLOCK,
1045 };
1046 
1047 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
1048 {
1049         unsigned long precharge;
1050 
1051         mmap_read_lock(mm);
1052         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
1053         mmap_read_unlock(mm);
1054 
1055         precharge = mc.precharge;
1056         mc.precharge = 0;
1057 
1058         return precharge;
1059 }
1060 
1061 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
1062 {
1063         unsigned long precharge = mem_cgroup_count_precharge(mm);
1064 
1065         VM_BUG_ON(mc.moving_task);
1066         mc.moving_task = current;
1067         return mem_cgroup_do_precharge(precharge);
1068 }
1069 
1070 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
1071 static void __mem_cgroup_clear_mc(void)
1072 {
1073         struct mem_cgroup *from = mc.from;
1074         struct mem_cgroup *to = mc.to;
1075 
1076         /* we must uncharge all the leftover precharges from mc.to */
1077         if (mc.precharge) {
1078                 mem_cgroup_cancel_charge(mc.to, mc.precharge);
1079                 mc.precharge = 0;
1080         }
1081         /*
1082          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
1083          * we must uncharge here.
1084          */
1085         if (mc.moved_charge) {
1086                 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
1087                 mc.moved_charge = 0;
1088         }
1089         /* we must fixup refcnts and charges */
1090         if (mc.moved_swap) {
1091                 /* uncharge swap account from the old cgroup */
1092                 if (!mem_cgroup_is_root(mc.from))
1093                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
1094 
1095                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
1096 
1097                 /*
1098                  * we charged both to->memory and to->memsw, so we
1099                  * should uncharge to->memory.
1100                  */
1101                 if (!mem_cgroup_is_root(mc.to))
1102                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
1103 
1104                 mc.moved_swap = 0;
1105         }
1106         memcg1_oom_recover(from);
1107         memcg1_oom_recover(to);
1108         wake_up_all(&mc.waitq);
1109 }
1110 
1111 static void mem_cgroup_clear_mc(void)
1112 {
1113         struct mm_struct *mm = mc.mm;
1114 
1115         /*
1116          * we must clear moving_task before waking up waiters at the end of
1117          * task migration.
1118          */
1119         mc.moving_task = NULL;
1120         __mem_cgroup_clear_mc();
1121         spin_lock(&mc.lock);
1122         mc.from = NULL;
1123         mc.to = NULL;
1124         mc.mm = NULL;
1125         spin_unlock(&mc.lock);
1126 
1127         mmput(mm);
1128 }
1129 
1130 int memcg1_can_attach(struct cgroup_taskset *tset)
1131 {
1132         struct cgroup_subsys_state *css;
1133         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
1134         struct mem_cgroup *from;
1135         struct task_struct *leader, *p;
1136         struct mm_struct *mm;
1137         unsigned long move_flags;
1138         int ret = 0;
1139 
1140         /* charge immigration isn't supported on the default hierarchy */
1141         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1142                 return 0;
1143 
1144         /*
1145          * Multi-process migrations only happen on the default hierarchy
1146          * where charge immigration is not used.  Perform charge
1147          * immigration if @tset contains a leader and whine if there are
1148          * multiple.
1149          */
1150         p = NULL;
1151         cgroup_taskset_for_each_leader(leader, css, tset) {
1152                 WARN_ON_ONCE(p);
1153                 p = leader;
1154                 memcg = mem_cgroup_from_css(css);
1155         }
1156         if (!p)
1157                 return 0;
1158 
1159         /*
1160          * We are now committed to this value whatever it is. Changes in this
1161          * tunable will only affect upcoming migrations, not the current one.
1162          * So we need to save it, and keep it going.
1163          */
1164         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1165         if (!move_flags)
1166                 return 0;
1167 
1168         from = mem_cgroup_from_task(p);
1169 
1170         VM_BUG_ON(from == memcg);
1171 
1172         mm = get_task_mm(p);
1173         if (!mm)
1174                 return 0;
1175         /* We move charges only when we move a owner of the mm */
1176         if (mm->owner == p) {
1177                 VM_BUG_ON(mc.from);
1178                 VM_BUG_ON(mc.to);
1179                 VM_BUG_ON(mc.precharge);
1180                 VM_BUG_ON(mc.moved_charge);
1181                 VM_BUG_ON(mc.moved_swap);
1182 
1183                 spin_lock(&mc.lock);
1184                 mc.mm = mm;
1185                 mc.from = from;
1186                 mc.to = memcg;
1187                 mc.flags = move_flags;
1188                 spin_unlock(&mc.lock);
1189                 /* We set mc.moving_task later */
1190 
1191                 ret = mem_cgroup_precharge_mc(mm);
1192                 if (ret)
1193                         mem_cgroup_clear_mc();
1194         } else {
1195                 mmput(mm);
1196         }
1197         return ret;
1198 }
1199 
1200 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1201 {
1202         if (mc.to)
1203                 mem_cgroup_clear_mc();
1204 }
1205 
1206 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
1207                                 unsigned long addr, unsigned long end,
1208                                 struct mm_walk *walk)
1209 {
1210         int ret = 0;
1211         struct vm_area_struct *vma = walk->vma;
1212         pte_t *pte;
1213         spinlock_t *ptl;
1214         enum mc_target_type target_type;
1215         union mc_target target;
1216         struct folio *folio;
1217 
1218         ptl = pmd_trans_huge_lock(pmd, vma);
1219         if (ptl) {
1220                 if (mc.precharge < HPAGE_PMD_NR) {
1221                         spin_unlock(ptl);
1222                         return 0;
1223                 }
1224                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
1225                 if (target_type == MC_TARGET_PAGE) {
1226                         folio = target.folio;
1227                         if (folio_isolate_lru(folio)) {
1228                                 if (!mem_cgroup_move_account(folio, true,
1229                                                              mc.from, mc.to)) {
1230                                         mc.precharge -= HPAGE_PMD_NR;
1231                                         mc.moved_charge += HPAGE_PMD_NR;
1232                                 }
1233                                 folio_putback_lru(folio);
1234                         }
1235                         folio_unlock(folio);
1236                         folio_put(folio);
1237                 } else if (target_type == MC_TARGET_DEVICE) {
1238                         folio = target.folio;
1239                         if (!mem_cgroup_move_account(folio, true,
1240                                                      mc.from, mc.to)) {
1241                                 mc.precharge -= HPAGE_PMD_NR;
1242                                 mc.moved_charge += HPAGE_PMD_NR;
1243                         }
1244                         folio_unlock(folio);
1245                         folio_put(folio);
1246                 }
1247                 spin_unlock(ptl);
1248                 return 0;
1249         }
1250 
1251 retry:
1252         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1253         if (!pte)
1254                 return 0;
1255         for (; addr != end; addr += PAGE_SIZE) {
1256                 pte_t ptent = ptep_get(pte++);
1257                 bool device = false;
1258                 swp_entry_t ent;
1259 
1260                 if (!mc.precharge)
1261                         break;
1262 
1263                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
1264                 case MC_TARGET_DEVICE:
1265                         device = true;
1266                         fallthrough;
1267                 case MC_TARGET_PAGE:
1268                         folio = target.folio;
1269                         /*
1270                          * We can have a part of the split pmd here. Moving it
1271                          * can be done but it would be too convoluted so simply
1272                          * ignore such a partial THP and keep it in original
1273                          * memcg. There should be somebody mapping the head.
1274                          */
1275                         if (folio_test_large(folio))
1276                                 goto put;
1277                         if (!device && !folio_isolate_lru(folio))
1278                                 goto put;
1279                         if (!mem_cgroup_move_account(folio, false,
1280                                                 mc.from, mc.to)) {
1281                                 mc.precharge--;
1282                                 /* we uncharge from mc.from later. */
1283                                 mc.moved_charge++;
1284                         }
1285                         if (!device)
1286                                 folio_putback_lru(folio);
1287 put:                    /* get_mctgt_type() gets & locks the page */
1288                         folio_unlock(folio);
1289                         folio_put(folio);
1290                         break;
1291                 case MC_TARGET_SWAP:
1292                         ent = target.ent;
1293                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
1294                                 mc.precharge--;
1295                                 mem_cgroup_id_get_many(mc.to, 1);
1296                                 /* we fixup other refcnts and charges later. */
1297                                 mc.moved_swap++;
1298                         }
1299                         break;
1300                 default:
1301                         break;
1302                 }
1303         }
1304         pte_unmap_unlock(pte - 1, ptl);
1305         cond_resched();
1306 
1307         if (addr != end) {
1308                 /*
1309                  * We have consumed all precharges we got in can_attach().
1310                  * We try charge one by one, but don't do any additional
1311                  * charges to mc.to if we have failed in charge once in attach()
1312                  * phase.
1313                  */
1314                 ret = mem_cgroup_do_precharge(1);
1315                 if (!ret)
1316                         goto retry;
1317         }
1318 
1319         return ret;
1320 }
1321 
1322 static const struct mm_walk_ops charge_walk_ops = {
1323         .pmd_entry      = mem_cgroup_move_charge_pte_range,
1324         .walk_lock      = PGWALK_RDLOCK,
1325 };
1326 
1327 static void mem_cgroup_move_charge(void)
1328 {
1329         lru_add_drain_all();
1330         /*
1331          * Signal folio_memcg_lock() to take the memcg's move_lock
1332          * while we're moving its pages to another memcg. Then wait
1333          * for already started RCU-only updates to finish.
1334          */
1335         atomic_inc(&mc.from->moving_account);
1336         synchronize_rcu();
1337 retry:
1338         if (unlikely(!mmap_read_trylock(mc.mm))) {
1339                 /*
1340                  * Someone who are holding the mmap_lock might be waiting in
1341                  * waitq. So we cancel all extra charges, wake up all waiters,
1342                  * and retry. Because we cancel precharges, we might not be able
1343                  * to move enough charges, but moving charge is a best-effort
1344                  * feature anyway, so it wouldn't be a big problem.
1345                  */
1346                 __mem_cgroup_clear_mc();
1347                 cond_resched();
1348                 goto retry;
1349         }
1350         /*
1351          * When we have consumed all precharges and failed in doing
1352          * additional charge, the page walk just aborts.
1353          */
1354         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
1355         mmap_read_unlock(mc.mm);
1356         atomic_dec(&mc.from->moving_account);
1357 }
1358 
1359 void memcg1_move_task(void)
1360 {
1361         if (mc.to) {
1362                 mem_cgroup_move_charge();
1363                 mem_cgroup_clear_mc();
1364         }
1365 }
1366 
1367 #else   /* !CONFIG_MMU */
1368 int memcg1_can_attach(struct cgroup_taskset *tset)
1369 {
1370         return 0;
1371 }
1372 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1373 {
1374 }
1375 void memcg1_move_task(void)
1376 {
1377 }
1378 #endif
1379 
1380 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
1381 {
1382         struct mem_cgroup_threshold_ary *t;
1383         unsigned long usage;
1384         int i;
1385 
1386         rcu_read_lock();
1387         if (!swap)
1388                 t = rcu_dereference(memcg->thresholds.primary);
1389         else
1390                 t = rcu_dereference(memcg->memsw_thresholds.primary);
1391 
1392         if (!t)
1393                 goto unlock;
1394 
1395         usage = mem_cgroup_usage(memcg, swap);
1396 
1397         /*
1398          * current_threshold points to threshold just below or equal to usage.
1399          * If it's not true, a threshold was crossed after last
1400          * call of __mem_cgroup_threshold().
1401          */
1402         i = t->current_threshold;
1403 
1404         /*
1405          * Iterate backward over array of thresholds starting from
1406          * current_threshold and check if a threshold is crossed.
1407          * If none of thresholds below usage is crossed, we read
1408          * only one element of the array here.
1409          */
1410         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
1411                 eventfd_signal(t->entries[i].eventfd);
1412 
1413         /* i = current_threshold + 1 */
1414         i++;
1415 
1416         /*
1417          * Iterate forward over array of thresholds starting from
1418          * current_threshold+1 and check if a threshold is crossed.
1419          * If none of thresholds above usage is crossed, we read
1420          * only one element of the array here.
1421          */
1422         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
1423                 eventfd_signal(t->entries[i].eventfd);
1424 
1425         /* Update current_threshold */
1426         t->current_threshold = i - 1;
1427 unlock:
1428         rcu_read_unlock();
1429 }
1430 
1431 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
1432 {
1433         while (memcg) {
1434                 __mem_cgroup_threshold(memcg, false);
1435                 if (do_memsw_account())
1436                         __mem_cgroup_threshold(memcg, true);
1437 
1438                 memcg = parent_mem_cgroup(memcg);
1439         }
1440 }
1441 
1442 /*
1443  * Check events in order.
1444  *
1445  */
1446 void memcg1_check_events(struct mem_cgroup *memcg, int nid)
1447 {
1448         if (IS_ENABLED(CONFIG_PREEMPT_RT))
1449                 return;
1450 
1451         /* threshold event is triggered in finer grain than soft limit */
1452         if (unlikely(mem_cgroup_event_ratelimit(memcg,
1453                                                 MEM_CGROUP_TARGET_THRESH))) {
1454                 bool do_softlimit;
1455 
1456                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1457                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
1458                 mem_cgroup_threshold(memcg);
1459                 if (unlikely(do_softlimit))
1460                         memcg1_update_tree(memcg, nid);
1461         }
1462 }
1463 
1464 static int compare_thresholds(const void *a, const void *b)
1465 {
1466         const struct mem_cgroup_threshold *_a = a;
1467         const struct mem_cgroup_threshold *_b = b;
1468 
1469         if (_a->threshold > _b->threshold)
1470                 return 1;
1471 
1472         if (_a->threshold < _b->threshold)
1473                 return -1;
1474 
1475         return 0;
1476 }
1477 
1478 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
1479 {
1480         struct mem_cgroup_eventfd_list *ev;
1481 
1482         spin_lock(&memcg_oom_lock);
1483 
1484         list_for_each_entry(ev, &memcg->oom_notify, list)
1485                 eventfd_signal(ev->eventfd);
1486 
1487         spin_unlock(&memcg_oom_lock);
1488         return 0;
1489 }
1490 
1491 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
1492 {
1493         struct mem_cgroup *iter;
1494 
1495         for_each_mem_cgroup_tree(iter, memcg)
1496                 mem_cgroup_oom_notify_cb(iter);
1497 }
1498 
1499 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1500         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
1501 {
1502         struct mem_cgroup_thresholds *thresholds;
1503         struct mem_cgroup_threshold_ary *new;
1504         unsigned long threshold;
1505         unsigned long usage;
1506         int i, size, ret;
1507 
1508         ret = page_counter_memparse(args, "-1", &threshold);
1509         if (ret)
1510                 return ret;
1511 
1512         mutex_lock(&memcg->thresholds_lock);
1513 
1514         if (type == _MEM) {
1515                 thresholds = &memcg->thresholds;
1516                 usage = mem_cgroup_usage(memcg, false);
1517         } else if (type == _MEMSWAP) {
1518                 thresholds = &memcg->memsw_thresholds;
1519                 usage = mem_cgroup_usage(memcg, true);
1520         } else
1521                 BUG();
1522 
1523         /* Check if a threshold crossed before adding a new one */
1524         if (thresholds->primary)
1525                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1526 
1527         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
1528 
1529         /* Allocate memory for new array of thresholds */
1530         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
1531         if (!new) {
1532                 ret = -ENOMEM;
1533                 goto unlock;
1534         }
1535         new->size = size;
1536 
1537         /* Copy thresholds (if any) to new array */
1538         if (thresholds->primary)
1539                 memcpy(new->entries, thresholds->primary->entries,
1540                        flex_array_size(new, entries, size - 1));
1541 
1542         /* Add new threshold */
1543         new->entries[size - 1].eventfd = eventfd;
1544         new->entries[size - 1].threshold = threshold;
1545 
1546         /* Sort thresholds. Registering of new threshold isn't time-critical */
1547         sort(new->entries, size, sizeof(*new->entries),
1548                         compare_thresholds, NULL);
1549 
1550         /* Find current threshold */
1551         new->current_threshold = -1;
1552         for (i = 0; i < size; i++) {
1553                 if (new->entries[i].threshold <= usage) {
1554                         /*
1555                          * new->current_threshold will not be used until
1556                          * rcu_assign_pointer(), so it's safe to increment
1557                          * it here.
1558                          */
1559                         ++new->current_threshold;
1560                 } else
1561                         break;
1562         }
1563 
1564         /* Free old spare buffer and save old primary buffer as spare */
1565         kfree(thresholds->spare);
1566         thresholds->spare = thresholds->primary;
1567 
1568         rcu_assign_pointer(thresholds->primary, new);
1569 
1570         /* To be sure that nobody uses thresholds */
1571         synchronize_rcu();
1572 
1573 unlock:
1574         mutex_unlock(&memcg->thresholds_lock);
1575 
1576         return ret;
1577 }
1578 
1579 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1580         struct eventfd_ctx *eventfd, const char *args)
1581 {
1582         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
1583 }
1584 
1585 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
1586         struct eventfd_ctx *eventfd, const char *args)
1587 {
1588         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
1589 }
1590 
1591 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1592         struct eventfd_ctx *eventfd, enum res_type type)
1593 {
1594         struct mem_cgroup_thresholds *thresholds;
1595         struct mem_cgroup_threshold_ary *new;
1596         unsigned long usage;
1597         int i, j, size, entries;
1598 
1599         mutex_lock(&memcg->thresholds_lock);
1600 
1601         if (type == _MEM) {
1602                 thresholds = &memcg->thresholds;
1603                 usage = mem_cgroup_usage(memcg, false);
1604         } else if (type == _MEMSWAP) {
1605                 thresholds = &memcg->memsw_thresholds;
1606                 usage = mem_cgroup_usage(memcg, true);
1607         } else
1608                 BUG();
1609 
1610         if (!thresholds->primary)
1611                 goto unlock;
1612 
1613         /* Check if a threshold crossed before removing */
1614         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1615 
1616         /* Calculate new number of threshold */
1617         size = entries = 0;
1618         for (i = 0; i < thresholds->primary->size; i++) {
1619                 if (thresholds->primary->entries[i].eventfd != eventfd)
1620                         size++;
1621                 else
1622                         entries++;
1623         }
1624 
1625         new = thresholds->spare;
1626 
1627         /* If no items related to eventfd have been cleared, nothing to do */
1628         if (!entries)
1629                 goto unlock;
1630 
1631         /* Set thresholds array to NULL if we don't have thresholds */
1632         if (!size) {
1633                 kfree(new);
1634                 new = NULL;
1635                 goto swap_buffers;
1636         }
1637 
1638         new->size = size;
1639 
1640         /* Copy thresholds and find current threshold */
1641         new->current_threshold = -1;
1642         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
1643                 if (thresholds->primary->entries[i].eventfd == eventfd)
1644                         continue;
1645 
1646                 new->entries[j] = thresholds->primary->entries[i];
1647                 if (new->entries[j].threshold <= usage) {
1648                         /*
1649                          * new->current_threshold will not be used
1650                          * until rcu_assign_pointer(), so it's safe to increment
1651                          * it here.
1652                          */
1653                         ++new->current_threshold;
1654                 }
1655                 j++;
1656         }
1657 
1658 swap_buffers:
1659         /* Swap primary and spare array */
1660         thresholds->spare = thresholds->primary;
1661 
1662         rcu_assign_pointer(thresholds->primary, new);
1663 
1664         /* To be sure that nobody uses thresholds */
1665         synchronize_rcu();
1666 
1667         /* If all events are unregistered, free the spare array */
1668         if (!new) {
1669                 kfree(thresholds->spare);
1670                 thresholds->spare = NULL;
1671         }
1672 unlock:
1673         mutex_unlock(&memcg->thresholds_lock);
1674 }
1675 
1676 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1677         struct eventfd_ctx *eventfd)
1678 {
1679         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
1680 }
1681 
1682 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1683         struct eventfd_ctx *eventfd)
1684 {
1685         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
1686 }
1687 
1688 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
1689         struct eventfd_ctx *eventfd, const char *args)
1690 {
1691         struct mem_cgroup_eventfd_list *event;
1692 
1693         event = kmalloc(sizeof(*event), GFP_KERNEL);
1694         if (!event)
1695                 return -ENOMEM;
1696 
1697         spin_lock(&memcg_oom_lock);
1698 
1699         event->eventfd = eventfd;
1700         list_add(&event->list, &memcg->oom_notify);
1701 
1702         /* already in OOM ? */
1703         if (memcg->under_oom)
1704                 eventfd_signal(eventfd);
1705         spin_unlock(&memcg_oom_lock);
1706 
1707         return 0;
1708 }
1709 
1710 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
1711         struct eventfd_ctx *eventfd)
1712 {
1713         struct mem_cgroup_eventfd_list *ev, *tmp;
1714 
1715         spin_lock(&memcg_oom_lock);
1716 
1717         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
1718                 if (ev->eventfd == eventfd) {
1719                         list_del(&ev->list);
1720                         kfree(ev);
1721                 }
1722         }
1723 
1724         spin_unlock(&memcg_oom_lock);
1725 }
1726 
1727 /*
1728  * DO NOT USE IN NEW FILES.
1729  *
1730  * "cgroup.event_control" implementation.
1731  *
1732  * This is way over-engineered.  It tries to support fully configurable
1733  * events for each user.  Such level of flexibility is completely
1734  * unnecessary especially in the light of the planned unified hierarchy.
1735  *
1736  * Please deprecate this and replace with something simpler if at all
1737  * possible.
1738  */
1739 
1740 /*
1741  * Unregister event and free resources.
1742  *
1743  * Gets called from workqueue.
1744  */
1745 static void memcg_event_remove(struct work_struct *work)
1746 {
1747         struct mem_cgroup_event *event =
1748                 container_of(work, struct mem_cgroup_event, remove);
1749         struct mem_cgroup *memcg = event->memcg;
1750 
1751         remove_wait_queue(event->wqh, &event->wait);
1752 
1753         event->unregister_event(memcg, event->eventfd);
1754 
1755         /* Notify userspace the event is going away. */
1756         eventfd_signal(event->eventfd);
1757 
1758         eventfd_ctx_put(event->eventfd);
1759         kfree(event);
1760         css_put(&memcg->css);
1761 }
1762 
1763 /*
1764  * Gets called on EPOLLHUP on eventfd when user closes it.
1765  *
1766  * Called with wqh->lock held and interrupts disabled.
1767  */
1768 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
1769                             int sync, void *key)
1770 {
1771         struct mem_cgroup_event *event =
1772                 container_of(wait, struct mem_cgroup_event, wait);
1773         struct mem_cgroup *memcg = event->memcg;
1774         __poll_t flags = key_to_poll(key);
1775 
1776         if (flags & EPOLLHUP) {
1777                 /*
1778                  * If the event has been detached at cgroup removal, we
1779                  * can simply return knowing the other side will cleanup
1780                  * for us.
1781                  *
1782                  * We can't race against event freeing since the other
1783                  * side will require wqh->lock via remove_wait_queue(),
1784                  * which we hold.
1785                  */
1786                 spin_lock(&memcg->event_list_lock);
1787                 if (!list_empty(&event->list)) {
1788                         list_del_init(&event->list);
1789                         /*
1790                          * We are in atomic context, but cgroup_event_remove()
1791                          * may sleep, so we have to call it in workqueue.
1792                          */
1793                         schedule_work(&event->remove);
1794                 }
1795                 spin_unlock(&memcg->event_list_lock);
1796         }
1797 
1798         return 0;
1799 }
1800 
1801 static void memcg_event_ptable_queue_proc(struct file *file,
1802                 wait_queue_head_t *wqh, poll_table *pt)
1803 {
1804         struct mem_cgroup_event *event =
1805                 container_of(pt, struct mem_cgroup_event, pt);
1806 
1807         event->wqh = wqh;
1808         add_wait_queue(wqh, &event->wait);
1809 }
1810 
1811 /*
1812  * DO NOT USE IN NEW FILES.
1813  *
1814  * Parse input and register new cgroup event handler.
1815  *
1816  * Input must be in format '<event_fd> <control_fd> <args>'.
1817  * Interpretation of args is defined by control file implementation.
1818  */
1819 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1820                                          char *buf, size_t nbytes, loff_t off)
1821 {
1822         struct cgroup_subsys_state *css = of_css(of);
1823         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1824         struct mem_cgroup_event *event;
1825         struct cgroup_subsys_state *cfile_css;
1826         unsigned int efd, cfd;
1827         struct fd efile;
1828         struct fd cfile;
1829         struct dentry *cdentry;
1830         const char *name;
1831         char *endp;
1832         int ret;
1833 
1834         if (IS_ENABLED(CONFIG_PREEMPT_RT))
1835                 return -EOPNOTSUPP;
1836 
1837         buf = strstrip(buf);
1838 
1839         efd = simple_strtoul(buf, &endp, 10);
1840         if (*endp != ' ')
1841                 return -EINVAL;
1842         buf = endp + 1;
1843 
1844         cfd = simple_strtoul(buf, &endp, 10);
1845         if (*endp == '\0')
1846                 buf = endp;
1847         else if (*endp == ' ')
1848                 buf = endp + 1;
1849         else
1850                 return -EINVAL;
1851 
1852         event = kzalloc(sizeof(*event), GFP_KERNEL);
1853         if (!event)
1854                 return -ENOMEM;
1855 
1856         event->memcg = memcg;
1857         INIT_LIST_HEAD(&event->list);
1858         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1859         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1860         INIT_WORK(&event->remove, memcg_event_remove);
1861 
1862         efile = fdget(efd);
1863         if (!efile.file) {
1864                 ret = -EBADF;
1865                 goto out_kfree;
1866         }
1867 
1868         event->eventfd = eventfd_ctx_fileget(efile.file);
1869         if (IS_ERR(event->eventfd)) {
1870                 ret = PTR_ERR(event->eventfd);
1871                 goto out_put_efile;
1872         }
1873 
1874         cfile = fdget(cfd);
1875         if (!cfile.file) {
1876                 ret = -EBADF;
1877                 goto out_put_eventfd;
1878         }
1879 
1880         /* the process need read permission on control file */
1881         /* AV: shouldn't we check that it's been opened for read instead? */
1882         ret = file_permission(cfile.file, MAY_READ);
1883         if (ret < 0)
1884                 goto out_put_cfile;
1885 
1886         /*
1887          * The control file must be a regular cgroup1 file. As a regular cgroup
1888          * file can't be renamed, it's safe to access its name afterwards.
1889          */
1890         cdentry = cfile.file->f_path.dentry;
1891         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1892                 ret = -EINVAL;
1893                 goto out_put_cfile;
1894         }
1895 
1896         /*
1897          * Determine the event callbacks and set them in @event.  This used
1898          * to be done via struct cftype but cgroup core no longer knows
1899          * about these events.  The following is crude but the whole thing
1900          * is for compatibility anyway.
1901          *
1902          * DO NOT ADD NEW FILES.
1903          */
1904         name = cdentry->d_name.name;
1905 
1906         if (!strcmp(name, "memory.usage_in_bytes")) {
1907                 event->register_event = mem_cgroup_usage_register_event;
1908                 event->unregister_event = mem_cgroup_usage_unregister_event;
1909         } else if (!strcmp(name, "memory.oom_control")) {
1910                 event->register_event = mem_cgroup_oom_register_event;
1911                 event->unregister_event = mem_cgroup_oom_unregister_event;
1912         } else if (!strcmp(name, "memory.pressure_level")) {
1913                 event->register_event = vmpressure_register_event;
1914                 event->unregister_event = vmpressure_unregister_event;
1915         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1916                 event->register_event = memsw_cgroup_usage_register_event;
1917                 event->unregister_event = memsw_cgroup_usage_unregister_event;
1918         } else {
1919                 ret = -EINVAL;
1920                 goto out_put_cfile;
1921         }
1922 
1923         /*
1924          * Verify @cfile should belong to @css.  Also, remaining events are
1925          * automatically removed on cgroup destruction but the removal is
1926          * asynchronous, so take an extra ref on @css.
1927          */
1928         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1929                                                &memory_cgrp_subsys);
1930         ret = -EINVAL;
1931         if (IS_ERR(cfile_css))
1932                 goto out_put_cfile;
1933         if (cfile_css != css) {
1934                 css_put(cfile_css);
1935                 goto out_put_cfile;
1936         }
1937 
1938         ret = event->register_event(memcg, event->eventfd, buf);
1939         if (ret)
1940                 goto out_put_css;
1941 
1942         vfs_poll(efile.file, &event->pt);
1943 
1944         spin_lock_irq(&memcg->event_list_lock);
1945         list_add(&event->list, &memcg->event_list);
1946         spin_unlock_irq(&memcg->event_list_lock);
1947 
1948         fdput(cfile);
1949         fdput(efile);
1950 
1951         return nbytes;
1952 
1953 out_put_css:
1954         css_put(css);
1955 out_put_cfile:
1956         fdput(cfile);
1957 out_put_eventfd:
1958         eventfd_ctx_put(event->eventfd);
1959 out_put_efile:
1960         fdput(efile);
1961 out_kfree:
1962         kfree(event);
1963 
1964         return ret;
1965 }
1966 
1967 void memcg1_memcg_init(struct mem_cgroup *memcg)
1968 {
1969         INIT_LIST_HEAD(&memcg->oom_notify);
1970         mutex_init(&memcg->thresholds_lock);
1971         spin_lock_init(&memcg->move_lock);
1972         INIT_LIST_HEAD(&memcg->event_list);
1973         spin_lock_init(&memcg->event_list_lock);
1974 }
1975 
1976 void memcg1_css_offline(struct mem_cgroup *memcg)
1977 {
1978         struct mem_cgroup_event *event, *tmp;
1979 
1980         /*
1981          * Unregister events and notify userspace.
1982          * Notify userspace about cgroup removing only after rmdir of cgroup
1983          * directory to avoid race between userspace and kernelspace.
1984          */
1985         spin_lock_irq(&memcg->event_list_lock);
1986         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1987                 list_del_init(&event->list);
1988                 schedule_work(&event->remove);
1989         }
1990         spin_unlock_irq(&memcg->event_list_lock);
1991 }
1992 
1993 /*
1994  * Check OOM-Killer is already running under our hierarchy.
1995  * If someone is running, return false.
1996  */
1997 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1998 {
1999         struct mem_cgroup *iter, *failed = NULL;
2000 
2001         spin_lock(&memcg_oom_lock);
2002 
2003         for_each_mem_cgroup_tree(iter, memcg) {
2004                 if (iter->oom_lock) {
2005                         /*
2006                          * this subtree of our hierarchy is already locked
2007                          * so we cannot give a lock.
2008                          */
2009                         failed = iter;
2010                         mem_cgroup_iter_break(memcg, iter);
2011                         break;
2012                 } else
2013                         iter->oom_lock = true;
2014         }
2015 
2016         if (failed) {
2017                 /*
2018                  * OK, we failed to lock the whole subtree so we have
2019                  * to clean up what we set up to the failing subtree
2020                  */
2021                 for_each_mem_cgroup_tree(iter, memcg) {
2022                         if (iter == failed) {
2023                                 mem_cgroup_iter_break(memcg, iter);
2024                                 break;
2025                         }
2026                         iter->oom_lock = false;
2027                 }
2028         } else
2029                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2030 
2031         spin_unlock(&memcg_oom_lock);
2032 
2033         return !failed;
2034 }
2035 
2036 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2037 {
2038         struct mem_cgroup *iter;
2039 
2040         spin_lock(&memcg_oom_lock);
2041         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
2042         for_each_mem_cgroup_tree(iter, memcg)
2043                 iter->oom_lock = false;
2044         spin_unlock(&memcg_oom_lock);
2045 }
2046 
2047 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2048 {
2049         struct mem_cgroup *iter;
2050 
2051         spin_lock(&memcg_oom_lock);
2052         for_each_mem_cgroup_tree(iter, memcg)
2053                 iter->under_oom++;
2054         spin_unlock(&memcg_oom_lock);
2055 }
2056 
2057 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2058 {
2059         struct mem_cgroup *iter;
2060 
2061         /*
2062          * Be careful about under_oom underflows because a child memcg
2063          * could have been added after mem_cgroup_mark_under_oom.
2064          */
2065         spin_lock(&memcg_oom_lock);
2066         for_each_mem_cgroup_tree(iter, memcg)
2067                 if (iter->under_oom > 0)
2068                         iter->under_oom--;
2069         spin_unlock(&memcg_oom_lock);
2070 }
2071 
2072 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2073 
2074 struct oom_wait_info {
2075         struct mem_cgroup *memcg;
2076         wait_queue_entry_t      wait;
2077 };
2078 
2079 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
2080         unsigned mode, int sync, void *arg)
2081 {
2082         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2083         struct mem_cgroup *oom_wait_memcg;
2084         struct oom_wait_info *oom_wait_info;
2085 
2086         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2087         oom_wait_memcg = oom_wait_info->memcg;
2088 
2089         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2090             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
2091                 return 0;
2092         return autoremove_wake_function(wait, mode, sync, arg);
2093 }
2094 
2095 void memcg1_oom_recover(struct mem_cgroup *memcg)
2096 {
2097         /*
2098          * For the following lockless ->under_oom test, the only required
2099          * guarantee is that it must see the state asserted by an OOM when
2100          * this function is called as a result of userland actions
2101          * triggered by the notification of the OOM.  This is trivially
2102          * achieved by invoking mem_cgroup_mark_under_oom() before
2103          * triggering notification.
2104          */
2105         if (memcg && memcg->under_oom)
2106                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2107 }
2108 
2109 /**
2110  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2111  * @handle: actually kill/wait or just clean up the OOM state
2112  *
2113  * This has to be called at the end of a page fault if the memcg OOM
2114  * handler was enabled.
2115  *
2116  * Memcg supports userspace OOM handling where failed allocations must
2117  * sleep on a waitqueue until the userspace task resolves the
2118  * situation.  Sleeping directly in the charge context with all kinds
2119  * of locks held is not a good idea, instead we remember an OOM state
2120  * in the task and mem_cgroup_oom_synchronize() has to be called at
2121  * the end of the page fault to complete the OOM handling.
2122  *
2123  * Returns %true if an ongoing memcg OOM situation was detected and
2124  * completed, %false otherwise.
2125  */
2126 bool mem_cgroup_oom_synchronize(bool handle)
2127 {
2128         struct mem_cgroup *memcg = current->memcg_in_oom;
2129         struct oom_wait_info owait;
2130         bool locked;
2131 
2132         /* OOM is global, do not handle */
2133         if (!memcg)
2134                 return false;
2135 
2136         if (!handle)
2137                 goto cleanup;
2138 
2139         owait.memcg = memcg;
2140         owait.wait.flags = 0;
2141         owait.wait.func = memcg_oom_wake_function;
2142         owait.wait.private = current;
2143         INIT_LIST_HEAD(&owait.wait.entry);
2144 
2145         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2146         mem_cgroup_mark_under_oom(memcg);
2147 
2148         locked = mem_cgroup_oom_trylock(memcg);
2149 
2150         if (locked)
2151                 mem_cgroup_oom_notify(memcg);
2152 
2153         schedule();
2154         mem_cgroup_unmark_under_oom(memcg);
2155         finish_wait(&memcg_oom_waitq, &owait.wait);
2156 
2157         if (locked)
2158                 mem_cgroup_oom_unlock(memcg);
2159 cleanup:
2160         current->memcg_in_oom = NULL;
2161         css_put(&memcg->css);
2162         return true;
2163 }
2164 
2165 
2166 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
2167 {
2168         /*
2169          * We are in the middle of the charge context here, so we
2170          * don't want to block when potentially sitting on a callstack
2171          * that holds all kinds of filesystem and mm locks.
2172          *
2173          * cgroup1 allows disabling the OOM killer and waiting for outside
2174          * handling until the charge can succeed; remember the context and put
2175          * the task to sleep at the end of the page fault when all locks are
2176          * released.
2177          *
2178          * On the other hand, in-kernel OOM killer allows for an async victim
2179          * memory reclaim (oom_reaper) and that means that we are not solely
2180          * relying on the oom victim to make a forward progress and we can
2181          * invoke the oom killer here.
2182          *
2183          * Please note that mem_cgroup_out_of_memory might fail to find a
2184          * victim and then we have to bail out from the charge path.
2185          */
2186         if (READ_ONCE(memcg->oom_kill_disable)) {
2187                 if (current->in_user_fault) {
2188                         css_get(&memcg->css);
2189                         current->memcg_in_oom = memcg;
2190                 }
2191                 return false;
2192         }
2193 
2194         mem_cgroup_mark_under_oom(memcg);
2195 
2196         *locked = mem_cgroup_oom_trylock(memcg);
2197 
2198         if (*locked)
2199                 mem_cgroup_oom_notify(memcg);
2200 
2201         mem_cgroup_unmark_under_oom(memcg);
2202 
2203         return true;
2204 }
2205 
2206 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
2207 {
2208         if (locked)
2209                 mem_cgroup_oom_unlock(memcg);
2210 }
2211 
2212 static DEFINE_MUTEX(memcg_max_mutex);
2213 
2214 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2215                                  unsigned long max, bool memsw)
2216 {
2217         bool enlarge = false;
2218         bool drained = false;
2219         int ret;
2220         bool limits_invariant;
2221         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2222 
2223         do {
2224                 if (signal_pending(current)) {
2225                         ret = -EINTR;
2226                         break;
2227                 }
2228 
2229                 mutex_lock(&memcg_max_mutex);
2230                 /*
2231                  * Make sure that the new limit (memsw or memory limit) doesn't
2232                  * break our basic invariant rule memory.max <= memsw.max.
2233                  */
2234                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
2235                                            max <= memcg->memsw.max;
2236                 if (!limits_invariant) {
2237                         mutex_unlock(&memcg_max_mutex);
2238                         ret = -EINVAL;
2239                         break;
2240                 }
2241                 if (max > counter->max)
2242                         enlarge = true;
2243                 ret = page_counter_set_max(counter, max);
2244                 mutex_unlock(&memcg_max_mutex);
2245 
2246                 if (!ret)
2247                         break;
2248 
2249                 if (!drained) {
2250                         drain_all_stock(memcg);
2251                         drained = true;
2252                         continue;
2253                 }
2254 
2255                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2256                                 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
2257                         ret = -EBUSY;
2258                         break;
2259                 }
2260         } while (true);
2261 
2262         if (!ret && enlarge)
2263                 memcg1_oom_recover(memcg);
2264 
2265         return ret;
2266 }
2267 
2268 /*
2269  * Reclaims as many pages from the given memcg as possible.
2270  *
2271  * Caller is responsible for holding css reference for memcg.
2272  */
2273 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2274 {
2275         int nr_retries = MAX_RECLAIM_RETRIES;
2276 
2277         /* we call try-to-free pages for make this cgroup empty */
2278         lru_add_drain_all();
2279 
2280         drain_all_stock(memcg);
2281 
2282         /* try to free all pages in this cgroup */
2283         while (nr_retries && page_counter_read(&memcg->memory)) {
2284                 if (signal_pending(current))
2285                         return -EINTR;
2286 
2287                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2288                                                   MEMCG_RECLAIM_MAY_SWAP, NULL))
2289                         nr_retries--;
2290         }
2291 
2292         return 0;
2293 }
2294 
2295 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2296                                             char *buf, size_t nbytes,
2297                                             loff_t off)
2298 {
2299         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2300 
2301         if (mem_cgroup_is_root(memcg))
2302                 return -EINVAL;
2303         return mem_cgroup_force_empty(memcg) ?: nbytes;
2304 }
2305 
2306 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2307                                      struct cftype *cft)
2308 {
2309         return 1;
2310 }
2311 
2312 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2313                                       struct cftype *cft, u64 val)
2314 {
2315         if (val == 1)
2316                 return 0;
2317 
2318         pr_warn_once("Non-hierarchical mode is deprecated. "
2319                      "Please report your usecase to linux-mm@kvack.org if you "
2320                      "depend on this functionality.\n");
2321 
2322         return -EINVAL;
2323 }
2324 
2325 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2326                                struct cftype *cft)
2327 {
2328         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2329         struct page_counter *counter;
2330 
2331         switch (MEMFILE_TYPE(cft->private)) {
2332         case _MEM:
2333                 counter = &memcg->memory;
2334                 break;
2335         case _MEMSWAP:
2336                 counter = &memcg->memsw;
2337                 break;
2338         case _KMEM:
2339                 counter = &memcg->kmem;
2340                 break;
2341         case _TCP:
2342                 counter = &memcg->tcpmem;
2343                 break;
2344         default:
2345                 BUG();
2346         }
2347 
2348         switch (MEMFILE_ATTR(cft->private)) {
2349         case RES_USAGE:
2350                 if (counter == &memcg->memory)
2351                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2352                 if (counter == &memcg->memsw)
2353                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2354                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2355         case RES_LIMIT:
2356                 return (u64)counter->max * PAGE_SIZE;
2357         case RES_MAX_USAGE:
2358                 return (u64)counter->watermark * PAGE_SIZE;
2359         case RES_FAILCNT:
2360                 return counter->failcnt;
2361         case RES_SOFT_LIMIT:
2362                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
2363         default:
2364                 BUG();
2365         }
2366 }
2367 
2368 /*
2369  * This function doesn't do anything useful. Its only job is to provide a read
2370  * handler for a file so that cgroup_file_mode() will add read permissions.
2371  */
2372 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
2373                                      __always_unused void *v)
2374 {
2375         return -EINVAL;
2376 }
2377 
2378 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2379 {
2380         int ret;
2381 
2382         mutex_lock(&memcg_max_mutex);
2383 
2384         ret = page_counter_set_max(&memcg->tcpmem, max);
2385         if (ret)
2386                 goto out;
2387 
2388         if (!memcg->tcpmem_active) {
2389                 /*
2390                  * The active flag needs to be written after the static_key
2391                  * update. This is what guarantees that the socket activation
2392                  * function is the last one to run. See mem_cgroup_sk_alloc()
2393                  * for details, and note that we don't mark any socket as
2394                  * belonging to this memcg until that flag is up.
2395                  *
2396                  * We need to do this, because static_keys will span multiple
2397                  * sites, but we can't control their order. If we mark a socket
2398                  * as accounted, but the accounting functions are not patched in
2399                  * yet, we'll lose accounting.
2400                  *
2401                  * We never race with the readers in mem_cgroup_sk_alloc(),
2402                  * because when this value change, the code to process it is not
2403                  * patched in yet.
2404                  */
2405                 static_branch_inc(&memcg_sockets_enabled_key);
2406                 memcg->tcpmem_active = true;
2407         }
2408 out:
2409         mutex_unlock(&memcg_max_mutex);
2410         return ret;
2411 }
2412 
2413 /*
2414  * The user of this function is...
2415  * RES_LIMIT.
2416  */
2417 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2418                                 char *buf, size_t nbytes, loff_t off)
2419 {
2420         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2421         unsigned long nr_pages;
2422         int ret;
2423 
2424         buf = strstrip(buf);
2425         ret = page_counter_memparse(buf, "-1", &nr_pages);
2426         if (ret)
2427                 return ret;
2428 
2429         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2430         case RES_LIMIT:
2431                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2432                         ret = -EINVAL;
2433                         break;
2434                 }
2435                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2436                 case _MEM:
2437                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2438                         break;
2439                 case _MEMSWAP:
2440                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2441                         break;
2442                 case _KMEM:
2443                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
2444                                      "Writing any value to this file has no effect. "
2445                                      "Please report your usecase to linux-mm@kvack.org if you "
2446                                      "depend on this functionality.\n");
2447                         ret = 0;
2448                         break;
2449                 case _TCP:
2450                         ret = memcg_update_tcp_max(memcg, nr_pages);
2451                         break;
2452                 }
2453                 break;
2454         case RES_SOFT_LIMIT:
2455                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2456                         ret = -EOPNOTSUPP;
2457                 } else {
2458                         WRITE_ONCE(memcg->soft_limit, nr_pages);
2459                         ret = 0;
2460                 }
2461                 break;
2462         }
2463         return ret ?: nbytes;
2464 }
2465 
2466 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2467                                 size_t nbytes, loff_t off)
2468 {
2469         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2470         struct page_counter *counter;
2471 
2472         switch (MEMFILE_TYPE(of_cft(of)->private)) {
2473         case _MEM:
2474                 counter = &memcg->memory;
2475                 break;
2476         case _MEMSWAP:
2477                 counter = &memcg->memsw;
2478                 break;
2479         case _KMEM:
2480                 counter = &memcg->kmem;
2481                 break;
2482         case _TCP:
2483                 counter = &memcg->tcpmem;
2484                 break;
2485         default:
2486                 BUG();
2487         }
2488 
2489         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2490         case RES_MAX_USAGE:
2491                 page_counter_reset_watermark(counter);
2492                 break;
2493         case RES_FAILCNT:
2494                 counter->failcnt = 0;
2495                 break;
2496         default:
2497                 BUG();
2498         }
2499 
2500         return nbytes;
2501 }
2502 
2503 #ifdef CONFIG_NUMA
2504 
2505 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
2506 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
2507 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
2508 
2509 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
2510                                 int nid, unsigned int lru_mask, bool tree)
2511 {
2512         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
2513         unsigned long nr = 0;
2514         enum lru_list lru;
2515 
2516         VM_BUG_ON((unsigned)nid >= nr_node_ids);
2517 
2518         for_each_lru(lru) {
2519                 if (!(BIT(lru) & lru_mask))
2520                         continue;
2521                 if (tree)
2522                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
2523                 else
2524                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
2525         }
2526         return nr;
2527 }
2528 
2529 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
2530                                              unsigned int lru_mask,
2531                                              bool tree)
2532 {
2533         unsigned long nr = 0;
2534         enum lru_list lru;
2535 
2536         for_each_lru(lru) {
2537                 if (!(BIT(lru) & lru_mask))
2538                         continue;
2539                 if (tree)
2540                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
2541                 else
2542                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
2543         }
2544         return nr;
2545 }
2546 
2547 static int memcg_numa_stat_show(struct seq_file *m, void *v)
2548 {
2549         struct numa_stat {
2550                 const char *name;
2551                 unsigned int lru_mask;
2552         };
2553 
2554         static const struct numa_stat stats[] = {
2555                 { "total", LRU_ALL },
2556                 { "file", LRU_ALL_FILE },
2557                 { "anon", LRU_ALL_ANON },
2558                 { "unevictable", BIT(LRU_UNEVICTABLE) },
2559         };
2560         const struct numa_stat *stat;
2561         int nid;
2562         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
2563 
2564         mem_cgroup_flush_stats(memcg);
2565 
2566         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2567                 seq_printf(m, "%s=%lu", stat->name,
2568                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2569                                                    false));
2570                 for_each_node_state(nid, N_MEMORY)
2571                         seq_printf(m, " N%d=%lu", nid,
2572                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
2573                                                         stat->lru_mask, false));
2574                 seq_putc(m, '\n');
2575         }
2576 
2577         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2578 
2579                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
2580                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2581                                                    true));
2582                 for_each_node_state(nid, N_MEMORY)
2583                         seq_printf(m, " N%d=%lu", nid,
2584                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
2585                                                         stat->lru_mask, true));
2586                 seq_putc(m, '\n');
2587         }
2588 
2589         return 0;
2590 }
2591 #endif /* CONFIG_NUMA */
2592 
2593 static const unsigned int memcg1_stats[] = {
2594         NR_FILE_PAGES,
2595         NR_ANON_MAPPED,
2596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2597         NR_ANON_THPS,
2598 #endif
2599         NR_SHMEM,
2600         NR_FILE_MAPPED,
2601         NR_FILE_DIRTY,
2602         NR_WRITEBACK,
2603         WORKINGSET_REFAULT_ANON,
2604         WORKINGSET_REFAULT_FILE,
2605 #ifdef CONFIG_SWAP
2606         MEMCG_SWAP,
2607         NR_SWAPCACHE,
2608 #endif
2609 };
2610 
2611 static const char *const memcg1_stat_names[] = {
2612         "cache",
2613         "rss",
2614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2615         "rss_huge",
2616 #endif
2617         "shmem",
2618         "mapped_file",
2619         "dirty",
2620         "writeback",
2621         "workingset_refault_anon",
2622         "workingset_refault_file",
2623 #ifdef CONFIG_SWAP
2624         "swap",
2625         "swapcached",
2626 #endif
2627 };
2628 
2629 /* Universal VM events cgroup1 shows, original sort order */
2630 static const unsigned int memcg1_events[] = {
2631         PGPGIN,
2632         PGPGOUT,
2633         PGFAULT,
2634         PGMAJFAULT,
2635 };
2636 
2637 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
2638 {
2639         unsigned long memory, memsw;
2640         struct mem_cgroup *mi;
2641         unsigned int i;
2642 
2643         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
2644 
2645         mem_cgroup_flush_stats(memcg);
2646 
2647         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2648                 unsigned long nr;
2649 
2650                 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
2651                 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
2652         }
2653 
2654         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2655                 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
2656                                memcg_events_local(memcg, memcg1_events[i]));
2657 
2658         for (i = 0; i < NR_LRU_LISTS; i++)
2659                 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
2660                                memcg_page_state_local(memcg, NR_LRU_BASE + i) *
2661                                PAGE_SIZE);
2662 
2663         /* Hierarchical information */
2664         memory = memsw = PAGE_COUNTER_MAX;
2665         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
2666                 memory = min(memory, READ_ONCE(mi->memory.max));
2667                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
2668         }
2669         seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
2670                        (u64)memory * PAGE_SIZE);
2671         seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
2672                        (u64)memsw * PAGE_SIZE);
2673 
2674         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2675                 unsigned long nr;
2676 
2677                 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
2678                 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
2679                                (u64)nr);
2680         }
2681 
2682         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2683                 seq_buf_printf(s, "total_%s %llu\n",
2684                                vm_event_name(memcg1_events[i]),
2685                                (u64)memcg_events(memcg, memcg1_events[i]));
2686 
2687         for (i = 0; i < NR_LRU_LISTS; i++)
2688                 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
2689                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
2690                                PAGE_SIZE);
2691 
2692 #ifdef CONFIG_DEBUG_VM
2693         {
2694                 pg_data_t *pgdat;
2695                 struct mem_cgroup_per_node *mz;
2696                 unsigned long anon_cost = 0;
2697                 unsigned long file_cost = 0;
2698 
2699                 for_each_online_pgdat(pgdat) {
2700                         mz = memcg->nodeinfo[pgdat->node_id];
2701 
2702                         anon_cost += mz->lruvec.anon_cost;
2703                         file_cost += mz->lruvec.file_cost;
2704                 }
2705                 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
2706                 seq_buf_printf(s, "file_cost %lu\n", file_cost);
2707         }
2708 #endif
2709 }
2710 
2711 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
2712                                       struct cftype *cft)
2713 {
2714         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2715 
2716         return mem_cgroup_swappiness(memcg);
2717 }
2718 
2719 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
2720                                        struct cftype *cft, u64 val)
2721 {
2722         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2723 
2724         if (val > MAX_SWAPPINESS)
2725                 return -EINVAL;
2726 
2727         if (!mem_cgroup_is_root(memcg))
2728                 WRITE_ONCE(memcg->swappiness, val);
2729         else
2730                 WRITE_ONCE(vm_swappiness, val);
2731 
2732         return 0;
2733 }
2734 
2735 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
2736 {
2737         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
2738 
2739         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
2740         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
2741         seq_printf(sf, "oom_kill %lu\n",
2742                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
2743         return 0;
2744 }
2745 
2746 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
2747         struct cftype *cft, u64 val)
2748 {
2749         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2750 
2751         /* cannot set to root cgroup and only 0 and 1 are allowed */
2752         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
2753                 return -EINVAL;
2754 
2755         WRITE_ONCE(memcg->oom_kill_disable, val);
2756         if (!val)
2757                 memcg1_oom_recover(memcg);
2758 
2759         return 0;
2760 }
2761 
2762 #ifdef CONFIG_SLUB_DEBUG
2763 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2764 {
2765         /*
2766          * Deprecated.
2767          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2768          */
2769         return 0;
2770 }
2771 #endif
2772 
2773 struct cftype mem_cgroup_legacy_files[] = {
2774         {
2775                 .name = "usage_in_bytes",
2776                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2777                 .read_u64 = mem_cgroup_read_u64,
2778         },
2779         {
2780                 .name = "max_usage_in_bytes",
2781                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2782                 .write = mem_cgroup_reset,
2783                 .read_u64 = mem_cgroup_read_u64,
2784         },
2785         {
2786                 .name = "limit_in_bytes",
2787                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2788                 .write = mem_cgroup_write,
2789                 .read_u64 = mem_cgroup_read_u64,
2790         },
2791         {
2792                 .name = "soft_limit_in_bytes",
2793                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2794                 .write = mem_cgroup_write,
2795                 .read_u64 = mem_cgroup_read_u64,
2796         },
2797         {
2798                 .name = "failcnt",
2799                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2800                 .write = mem_cgroup_reset,
2801                 .read_u64 = mem_cgroup_read_u64,
2802         },
2803         {
2804                 .name = "stat",
2805                 .seq_show = memory_stat_show,
2806         },
2807         {
2808                 .name = "force_empty",
2809                 .write = mem_cgroup_force_empty_write,
2810         },
2811         {
2812                 .name = "use_hierarchy",
2813                 .write_u64 = mem_cgroup_hierarchy_write,
2814                 .read_u64 = mem_cgroup_hierarchy_read,
2815         },
2816         {
2817                 .name = "cgroup.event_control",         /* XXX: for compat */
2818                 .write = memcg_write_event_control,
2819                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
2820         },
2821         {
2822                 .name = "swappiness",
2823                 .read_u64 = mem_cgroup_swappiness_read,
2824                 .write_u64 = mem_cgroup_swappiness_write,
2825         },
2826         {
2827                 .name = "move_charge_at_immigrate",
2828                 .read_u64 = mem_cgroup_move_charge_read,
2829                 .write_u64 = mem_cgroup_move_charge_write,
2830         },
2831         {
2832                 .name = "oom_control",
2833                 .seq_show = mem_cgroup_oom_control_read,
2834                 .write_u64 = mem_cgroup_oom_control_write,
2835         },
2836         {
2837                 .name = "pressure_level",
2838                 .seq_show = mem_cgroup_dummy_seq_show,
2839         },
2840 #ifdef CONFIG_NUMA
2841         {
2842                 .name = "numa_stat",
2843                 .seq_show = memcg_numa_stat_show,
2844         },
2845 #endif
2846         {
2847                 .name = "kmem.limit_in_bytes",
2848                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2849                 .write = mem_cgroup_write,
2850                 .read_u64 = mem_cgroup_read_u64,
2851         },
2852         {
2853                 .name = "kmem.usage_in_bytes",
2854                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2855                 .read_u64 = mem_cgroup_read_u64,
2856         },
2857         {
2858                 .name = "kmem.failcnt",
2859                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
2860                 .write = mem_cgroup_reset,
2861                 .read_u64 = mem_cgroup_read_u64,
2862         },
2863         {
2864                 .name = "kmem.max_usage_in_bytes",
2865                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2866                 .write = mem_cgroup_reset,
2867                 .read_u64 = mem_cgroup_read_u64,
2868         },
2869 #ifdef CONFIG_SLUB_DEBUG
2870         {
2871                 .name = "kmem.slabinfo",
2872                 .seq_show = mem_cgroup_slab_show,
2873         },
2874 #endif
2875         {
2876                 .name = "kmem.tcp.limit_in_bytes",
2877                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2878                 .write = mem_cgroup_write,
2879                 .read_u64 = mem_cgroup_read_u64,
2880         },
2881         {
2882                 .name = "kmem.tcp.usage_in_bytes",
2883                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2884                 .read_u64 = mem_cgroup_read_u64,
2885         },
2886         {
2887                 .name = "kmem.tcp.failcnt",
2888                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2889                 .write = mem_cgroup_reset,
2890                 .read_u64 = mem_cgroup_read_u64,
2891         },
2892         {
2893                 .name = "kmem.tcp.max_usage_in_bytes",
2894                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2895                 .write = mem_cgroup_reset,
2896                 .read_u64 = mem_cgroup_read_u64,
2897         },
2898         { },    /* terminate */
2899 };
2900 
2901 struct cftype memsw_files[] = {
2902         {
2903                 .name = "memsw.usage_in_bytes",
2904                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2905                 .read_u64 = mem_cgroup_read_u64,
2906         },
2907         {
2908                 .name = "memsw.max_usage_in_bytes",
2909                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2910                 .write = mem_cgroup_reset,
2911                 .read_u64 = mem_cgroup_read_u64,
2912         },
2913         {
2914                 .name = "memsw.limit_in_bytes",
2915                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2916                 .write = mem_cgroup_write,
2917                 .read_u64 = mem_cgroup_read_u64,
2918         },
2919         {
2920                 .name = "memsw.failcnt",
2921                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2922                 .write = mem_cgroup_reset,
2923                 .read_u64 = mem_cgroup_read_u64,
2924         },
2925         { },    /* terminate */
2926 };
2927 
2928 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2929 {
2930         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2931                 if (nr_pages > 0)
2932                         page_counter_charge(&memcg->kmem, nr_pages);
2933                 else
2934                         page_counter_uncharge(&memcg->kmem, -nr_pages);
2935         }
2936 }
2937 
2938 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2939                          gfp_t gfp_mask)
2940 {
2941         struct page_counter *fail;
2942 
2943         if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2944                 memcg->tcpmem_pressure = 0;
2945                 return true;
2946         }
2947         memcg->tcpmem_pressure = 1;
2948         if (gfp_mask & __GFP_NOFAIL) {
2949                 page_counter_charge(&memcg->tcpmem, nr_pages);
2950                 return true;
2951         }
2952         return false;
2953 }
2954 
2955 static int __init memcg1_init(void)
2956 {
2957         int node;
2958 
2959         for_each_node(node) {
2960                 struct mem_cgroup_tree_per_node *rtpn;
2961 
2962                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2963 
2964                 rtpn->rb_root = RB_ROOT;
2965                 rtpn->rb_rightmost = NULL;
2966                 spin_lock_init(&rtpn->lock);
2967                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2968         }
2969 
2970         return 0;
2971 }
2972 subsys_initcall(memcg1_init);
2973 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php