1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!userfaultfd_wp(vmf->vma)) 118 return false; 119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 120 return false; 121 122 return pte_marker_uffd_wp(vmf->orig_pte); 123 } 124 125 /* 126 * A number of key systems in x86 including ioremap() rely on the assumption 127 * that high_memory defines the upper bound on direct map memory, then end 128 * of ZONE_NORMAL. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 struct unlink_vma_file_batch vb; 369 370 do { 371 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; 373 374 /* 375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 376 * be 0. This will underflow and is okay. 377 */ 378 next = mas_find(mas, ceiling - 1); 379 if (unlikely(xa_is_zero(next))) 380 next = NULL; 381 382 /* 383 * Hide vma from rmap and truncate_pagecache before freeing 384 * pgtables 385 */ 386 if (mm_wr_locked) 387 vma_start_write(vma); 388 unlink_anon_vmas(vma); 389 390 if (is_vm_hugetlb_page(vma)) { 391 unlink_file_vma(vma); 392 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 393 floor, next ? next->vm_start : ceiling); 394 } else { 395 unlink_file_vma_batch_init(&vb); 396 unlink_file_vma_batch_add(&vb, vma); 397 398 /* 399 * Optimization: gather nearby vmas into one call down 400 */ 401 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 402 && !is_vm_hugetlb_page(next)) { 403 vma = next; 404 next = mas_find(mas, ceiling - 1); 405 if (unlikely(xa_is_zero(next))) 406 next = NULL; 407 if (mm_wr_locked) 408 vma_start_write(vma); 409 unlink_anon_vmas(vma); 410 unlink_file_vma_batch_add(&vb, vma); 411 } 412 unlink_file_vma_batch_final(&vb); 413 free_pgd_range(tlb, addr, vma->vm_end, 414 floor, next ? next->vm_start : ceiling); 415 } 416 vma = next; 417 } while (vma); 418 } 419 420 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 421 { 422 spinlock_t *ptl = pmd_lock(mm, pmd); 423 424 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 425 mm_inc_nr_ptes(mm); 426 /* 427 * Ensure all pte setup (eg. pte page lock and page clearing) are 428 * visible before the pte is made visible to other CPUs by being 429 * put into page tables. 430 * 431 * The other side of the story is the pointer chasing in the page 432 * table walking code (when walking the page table without locking; 433 * ie. most of the time). Fortunately, these data accesses consist 434 * of a chain of data-dependent loads, meaning most CPUs (alpha 435 * being the notable exception) will already guarantee loads are 436 * seen in-order. See the alpha page table accessors for the 437 * smp_rmb() barriers in page table walking code. 438 */ 439 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 440 pmd_populate(mm, pmd, *pte); 441 *pte = NULL; 442 } 443 spin_unlock(ptl); 444 } 445 446 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 447 { 448 pgtable_t new = pte_alloc_one(mm); 449 if (!new) 450 return -ENOMEM; 451 452 pmd_install(mm, pmd, &new); 453 if (new) 454 pte_free(mm, new); 455 return 0; 456 } 457 458 int __pte_alloc_kernel(pmd_t *pmd) 459 { 460 pte_t *new = pte_alloc_one_kernel(&init_mm); 461 if (!new) 462 return -ENOMEM; 463 464 spin_lock(&init_mm.page_table_lock); 465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 466 smp_wmb(); /* See comment in pmd_install() */ 467 pmd_populate_kernel(&init_mm, pmd, new); 468 new = NULL; 469 } 470 spin_unlock(&init_mm.page_table_lock); 471 if (new) 472 pte_free_kernel(&init_mm, new); 473 return 0; 474 } 475 476 static inline void init_rss_vec(int *rss) 477 { 478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 479 } 480 481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 482 { 483 int i; 484 485 for (i = 0; i < NR_MM_COUNTERS; i++) 486 if (rss[i]) 487 add_mm_counter(mm, i, rss[i]); 488 } 489 490 /* 491 * This function is called to print an error when a bad pte 492 * is found. For example, we might have a PFN-mapped pte in 493 * a region that doesn't allow it. 494 * 495 * The calling function must still handle the error. 496 */ 497 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 498 pte_t pte, struct page *page) 499 { 500 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 501 p4d_t *p4d = p4d_offset(pgd, addr); 502 pud_t *pud = pud_offset(p4d, addr); 503 pmd_t *pmd = pmd_offset(pud, addr); 504 struct address_space *mapping; 505 pgoff_t index; 506 static unsigned long resume; 507 static unsigned long nr_shown; 508 static unsigned long nr_unshown; 509 510 /* 511 * Allow a burst of 60 reports, then keep quiet for that minute; 512 * or allow a steady drip of one report per second. 513 */ 514 if (nr_shown == 60) { 515 if (time_before(jiffies, resume)) { 516 nr_unshown++; 517 return; 518 } 519 if (nr_unshown) { 520 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 521 nr_unshown); 522 nr_unshown = 0; 523 } 524 nr_shown = 0; 525 } 526 if (nr_shown++ == 0) 527 resume = jiffies + 60 * HZ; 528 529 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 530 index = linear_page_index(vma, addr); 531 532 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 533 current->comm, 534 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 535 if (page) 536 dump_page(page, "bad pte"); 537 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 538 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 539 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 540 vma->vm_file, 541 vma->vm_ops ? vma->vm_ops->fault : NULL, 542 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 543 mapping ? mapping->a_ops->read_folio : NULL); 544 dump_stack(); 545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 546 } 547 548 /* 549 * vm_normal_page -- This function gets the "struct page" associated with a pte. 550 * 551 * "Special" mappings do not wish to be associated with a "struct page" (either 552 * it doesn't exist, or it exists but they don't want to touch it). In this 553 * case, NULL is returned here. "Normal" mappings do have a struct page. 554 * 555 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 556 * pte bit, in which case this function is trivial. Secondly, an architecture 557 * may not have a spare pte bit, which requires a more complicated scheme, 558 * described below. 559 * 560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 561 * special mapping (even if there are underlying and valid "struct pages"). 562 * COWed pages of a VM_PFNMAP are always normal. 563 * 564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 567 * mapping will always honor the rule 568 * 569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 570 * 571 * And for normal mappings this is false. 572 * 573 * This restricts such mappings to be a linear translation from virtual address 574 * to pfn. To get around this restriction, we allow arbitrary mappings so long 575 * as the vma is not a COW mapping; in that case, we know that all ptes are 576 * special (because none can have been COWed). 577 * 578 * 579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 580 * 581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 582 * page" backing, however the difference is that _all_ pages with a struct 583 * page (that is, those where pfn_valid is true) are refcounted and considered 584 * normal pages by the VM. The only exception are zeropages, which are 585 * *never* refcounted. 586 * 587 * The disadvantage is that pages are refcounted (which can be slower and 588 * simply not an option for some PFNMAP users). The advantage is that we 589 * don't have to follow the strict linearity rule of PFNMAP mappings in 590 * order to support COWable mappings. 591 * 592 */ 593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 594 pte_t pte) 595 { 596 unsigned long pfn = pte_pfn(pte); 597 598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 599 if (likely(!pte_special(pte))) 600 goto check_pfn; 601 if (vma->vm_ops && vma->vm_ops->find_special_page) 602 return vma->vm_ops->find_special_page(vma, addr); 603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 604 return NULL; 605 if (is_zero_pfn(pfn)) 606 return NULL; 607 if (pte_devmap(pte)) 608 /* 609 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 610 * and will have refcounts incremented on their struct pages 611 * when they are inserted into PTEs, thus they are safe to 612 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 613 * do not have refcounts. Example of legacy ZONE_DEVICE is 614 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 615 */ 616 return NULL; 617 618 print_bad_pte(vma, addr, pte, NULL); 619 return NULL; 620 } 621 622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 623 624 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 625 if (vma->vm_flags & VM_MIXEDMAP) { 626 if (!pfn_valid(pfn)) 627 return NULL; 628 if (is_zero_pfn(pfn)) 629 return NULL; 630 goto out; 631 } else { 632 unsigned long off; 633 off = (addr - vma->vm_start) >> PAGE_SHIFT; 634 if (pfn == vma->vm_pgoff + off) 635 return NULL; 636 if (!is_cow_mapping(vma->vm_flags)) 637 return NULL; 638 } 639 } 640 641 if (is_zero_pfn(pfn)) 642 return NULL; 643 644 check_pfn: 645 if (unlikely(pfn > highest_memmap_pfn)) { 646 print_bad_pte(vma, addr, pte, NULL); 647 return NULL; 648 } 649 650 /* 651 * NOTE! We still have PageReserved() pages in the page tables. 652 * eg. VDSO mappings can cause them to exist. 653 */ 654 out: 655 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 656 return pfn_to_page(pfn); 657 } 658 659 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 660 pte_t pte) 661 { 662 struct page *page = vm_normal_page(vma, addr, pte); 663 664 if (page) 665 return page_folio(page); 666 return NULL; 667 } 668 669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 670 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 671 pmd_t pmd) 672 { 673 unsigned long pfn = pmd_pfn(pmd); 674 675 /* 676 * There is no pmd_special() but there may be special pmds, e.g. 677 * in a direct-access (dax) mapping, so let's just replicate the 678 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 679 */ 680 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 681 if (vma->vm_flags & VM_MIXEDMAP) { 682 if (!pfn_valid(pfn)) 683 return NULL; 684 goto out; 685 } else { 686 unsigned long off; 687 off = (addr - vma->vm_start) >> PAGE_SHIFT; 688 if (pfn == vma->vm_pgoff + off) 689 return NULL; 690 if (!is_cow_mapping(vma->vm_flags)) 691 return NULL; 692 } 693 } 694 695 if (pmd_devmap(pmd)) 696 return NULL; 697 if (is_huge_zero_pmd(pmd)) 698 return NULL; 699 if (unlikely(pfn > highest_memmap_pfn)) 700 return NULL; 701 702 /* 703 * NOTE! We still have PageReserved() pages in the page tables. 704 * eg. VDSO mappings can cause them to exist. 705 */ 706 out: 707 return pfn_to_page(pfn); 708 } 709 710 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 711 unsigned long addr, pmd_t pmd) 712 { 713 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 714 715 if (page) 716 return page_folio(page); 717 return NULL; 718 } 719 #endif 720 721 static void restore_exclusive_pte(struct vm_area_struct *vma, 722 struct page *page, unsigned long address, 723 pte_t *ptep) 724 { 725 struct folio *folio = page_folio(page); 726 pte_t orig_pte; 727 pte_t pte; 728 swp_entry_t entry; 729 730 orig_pte = ptep_get(ptep); 731 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 732 if (pte_swp_soft_dirty(orig_pte)) 733 pte = pte_mksoft_dirty(pte); 734 735 entry = pte_to_swp_entry(orig_pte); 736 if (pte_swp_uffd_wp(orig_pte)) 737 pte = pte_mkuffd_wp(pte); 738 else if (is_writable_device_exclusive_entry(entry)) 739 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 740 741 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 742 PageAnonExclusive(page)), folio); 743 744 /* 745 * No need to take a page reference as one was already 746 * created when the swap entry was made. 747 */ 748 if (folio_test_anon(folio)) 749 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 750 else 751 /* 752 * Currently device exclusive access only supports anonymous 753 * memory so the entry shouldn't point to a filebacked page. 754 */ 755 WARN_ON_ONCE(1); 756 757 set_pte_at(vma->vm_mm, address, ptep, pte); 758 759 /* 760 * No need to invalidate - it was non-present before. However 761 * secondary CPUs may have mappings that need invalidating. 762 */ 763 update_mmu_cache(vma, address, ptep); 764 } 765 766 /* 767 * Tries to restore an exclusive pte if the page lock can be acquired without 768 * sleeping. 769 */ 770 static int 771 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 772 unsigned long addr) 773 { 774 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 775 struct page *page = pfn_swap_entry_to_page(entry); 776 777 if (trylock_page(page)) { 778 restore_exclusive_pte(vma, page, addr, src_pte); 779 unlock_page(page); 780 return 0; 781 } 782 783 return -EBUSY; 784 } 785 786 /* 787 * copy one vm_area from one task to the other. Assumes the page tables 788 * already present in the new task to be cleared in the whole range 789 * covered by this vma. 790 */ 791 792 static unsigned long 793 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 794 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 795 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 796 { 797 unsigned long vm_flags = dst_vma->vm_flags; 798 pte_t orig_pte = ptep_get(src_pte); 799 pte_t pte = orig_pte; 800 struct folio *folio; 801 struct page *page; 802 swp_entry_t entry = pte_to_swp_entry(orig_pte); 803 804 if (likely(!non_swap_entry(entry))) { 805 if (swap_duplicate(entry) < 0) 806 return -EIO; 807 808 /* make sure dst_mm is on swapoff's mmlist. */ 809 if (unlikely(list_empty(&dst_mm->mmlist))) { 810 spin_lock(&mmlist_lock); 811 if (list_empty(&dst_mm->mmlist)) 812 list_add(&dst_mm->mmlist, 813 &src_mm->mmlist); 814 spin_unlock(&mmlist_lock); 815 } 816 /* Mark the swap entry as shared. */ 817 if (pte_swp_exclusive(orig_pte)) { 818 pte = pte_swp_clear_exclusive(orig_pte); 819 set_pte_at(src_mm, addr, src_pte, pte); 820 } 821 rss[MM_SWAPENTS]++; 822 } else if (is_migration_entry(entry)) { 823 folio = pfn_swap_entry_folio(entry); 824 825 rss[mm_counter(folio)]++; 826 827 if (!is_readable_migration_entry(entry) && 828 is_cow_mapping(vm_flags)) { 829 /* 830 * COW mappings require pages in both parent and child 831 * to be set to read. A previously exclusive entry is 832 * now shared. 833 */ 834 entry = make_readable_migration_entry( 835 swp_offset(entry)); 836 pte = swp_entry_to_pte(entry); 837 if (pte_swp_soft_dirty(orig_pte)) 838 pte = pte_swp_mksoft_dirty(pte); 839 if (pte_swp_uffd_wp(orig_pte)) 840 pte = pte_swp_mkuffd_wp(pte); 841 set_pte_at(src_mm, addr, src_pte, pte); 842 } 843 } else if (is_device_private_entry(entry)) { 844 page = pfn_swap_entry_to_page(entry); 845 folio = page_folio(page); 846 847 /* 848 * Update rss count even for unaddressable pages, as 849 * they should treated just like normal pages in this 850 * respect. 851 * 852 * We will likely want to have some new rss counters 853 * for unaddressable pages, at some point. But for now 854 * keep things as they are. 855 */ 856 folio_get(folio); 857 rss[mm_counter(folio)]++; 858 /* Cannot fail as these pages cannot get pinned. */ 859 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 860 861 /* 862 * We do not preserve soft-dirty information, because so 863 * far, checkpoint/restore is the only feature that 864 * requires that. And checkpoint/restore does not work 865 * when a device driver is involved (you cannot easily 866 * save and restore device driver state). 867 */ 868 if (is_writable_device_private_entry(entry) && 869 is_cow_mapping(vm_flags)) { 870 entry = make_readable_device_private_entry( 871 swp_offset(entry)); 872 pte = swp_entry_to_pte(entry); 873 if (pte_swp_uffd_wp(orig_pte)) 874 pte = pte_swp_mkuffd_wp(pte); 875 set_pte_at(src_mm, addr, src_pte, pte); 876 } 877 } else if (is_device_exclusive_entry(entry)) { 878 /* 879 * Make device exclusive entries present by restoring the 880 * original entry then copying as for a present pte. Device 881 * exclusive entries currently only support private writable 882 * (ie. COW) mappings. 883 */ 884 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 885 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 886 return -EBUSY; 887 return -ENOENT; 888 } else if (is_pte_marker_entry(entry)) { 889 pte_marker marker = copy_pte_marker(entry, dst_vma); 890 891 if (marker) 892 set_pte_at(dst_mm, addr, dst_pte, 893 make_pte_marker(marker)); 894 return 0; 895 } 896 if (!userfaultfd_wp(dst_vma)) 897 pte = pte_swp_clear_uffd_wp(pte); 898 set_pte_at(dst_mm, addr, dst_pte, pte); 899 return 0; 900 } 901 902 /* 903 * Copy a present and normal page. 904 * 905 * NOTE! The usual case is that this isn't required; 906 * instead, the caller can just increase the page refcount 907 * and re-use the pte the traditional way. 908 * 909 * And if we need a pre-allocated page but don't yet have 910 * one, return a negative error to let the preallocation 911 * code know so that it can do so outside the page table 912 * lock. 913 */ 914 static inline int 915 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 916 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 917 struct folio **prealloc, struct page *page) 918 { 919 struct folio *new_folio; 920 pte_t pte; 921 922 new_folio = *prealloc; 923 if (!new_folio) 924 return -EAGAIN; 925 926 /* 927 * We have a prealloc page, all good! Take it 928 * over and copy the page & arm it. 929 */ 930 *prealloc = NULL; 931 copy_user_highpage(&new_folio->page, page, addr, src_vma); 932 __folio_mark_uptodate(new_folio); 933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 934 folio_add_lru_vma(new_folio, dst_vma); 935 rss[MM_ANONPAGES]++; 936 937 /* All done, just insert the new page copy in the child */ 938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 941 /* Uffd-wp needs to be delivered to dest pte as well */ 942 pte = pte_mkuffd_wp(pte); 943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 944 return 0; 945 } 946 947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 949 pte_t pte, unsigned long addr, int nr) 950 { 951 struct mm_struct *src_mm = src_vma->vm_mm; 952 953 /* If it's a COW mapping, write protect it both processes. */ 954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 955 wrprotect_ptes(src_mm, addr, src_pte, nr); 956 pte = pte_wrprotect(pte); 957 } 958 959 /* If it's a shared mapping, mark it clean in the child. */ 960 if (src_vma->vm_flags & VM_SHARED) 961 pte = pte_mkclean(pte); 962 pte = pte_mkold(pte); 963 964 if (!userfaultfd_wp(dst_vma)) 965 pte = pte_clear_uffd_wp(pte); 966 967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 968 } 969 970 /* 971 * Copy one present PTE, trying to batch-process subsequent PTEs that map 972 * consecutive pages of the same folio by copying them as well. 973 * 974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 975 * Otherwise, returns the number of copied PTEs (at least 1). 976 */ 977 static inline int 978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 980 int max_nr, int *rss, struct folio **prealloc) 981 { 982 struct page *page; 983 struct folio *folio; 984 bool any_writable; 985 fpb_t flags = 0; 986 int err, nr; 987 988 page = vm_normal_page(src_vma, addr, pte); 989 if (unlikely(!page)) 990 goto copy_pte; 991 992 folio = page_folio(page); 993 994 /* 995 * If we likely have to copy, just don't bother with batching. Make 996 * sure that the common "small folio" case is as fast as possible 997 * by keeping the batching logic separate. 998 */ 999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1000 if (src_vma->vm_flags & VM_SHARED) 1001 flags |= FPB_IGNORE_DIRTY; 1002 if (!vma_soft_dirty_enabled(src_vma)) 1003 flags |= FPB_IGNORE_SOFT_DIRTY; 1004 1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1006 &any_writable, NULL, NULL); 1007 folio_ref_add(folio, nr); 1008 if (folio_test_anon(folio)) { 1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1010 nr, src_vma))) { 1011 folio_ref_sub(folio, nr); 1012 return -EAGAIN; 1013 } 1014 rss[MM_ANONPAGES] += nr; 1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1016 } else { 1017 folio_dup_file_rmap_ptes(folio, page, nr); 1018 rss[mm_counter_file(folio)] += nr; 1019 } 1020 if (any_writable) 1021 pte = pte_mkwrite(pte, src_vma); 1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1023 addr, nr); 1024 return nr; 1025 } 1026 1027 folio_get(folio); 1028 if (folio_test_anon(folio)) { 1029 /* 1030 * If this page may have been pinned by the parent process, 1031 * copy the page immediately for the child so that we'll always 1032 * guarantee the pinned page won't be randomly replaced in the 1033 * future. 1034 */ 1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1036 /* Page may be pinned, we have to copy. */ 1037 folio_put(folio); 1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1039 addr, rss, prealloc, page); 1040 return err ? err : 1; 1041 } 1042 rss[MM_ANONPAGES]++; 1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1044 } else { 1045 folio_dup_file_rmap_pte(folio, page); 1046 rss[mm_counter_file(folio)]++; 1047 } 1048 1049 copy_pte: 1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1051 return 1; 1052 } 1053 1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1056 { 1057 struct folio *new_folio; 1058 1059 if (need_zero) 1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1061 else 1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1063 addr, false); 1064 1065 if (!new_folio) 1066 return NULL; 1067 1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1069 folio_put(new_folio); 1070 return NULL; 1071 } 1072 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1073 1074 return new_folio; 1075 } 1076 1077 static int 1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1080 unsigned long end) 1081 { 1082 struct mm_struct *dst_mm = dst_vma->vm_mm; 1083 struct mm_struct *src_mm = src_vma->vm_mm; 1084 pte_t *orig_src_pte, *orig_dst_pte; 1085 pte_t *src_pte, *dst_pte; 1086 pte_t ptent; 1087 spinlock_t *src_ptl, *dst_ptl; 1088 int progress, max_nr, ret = 0; 1089 int rss[NR_MM_COUNTERS]; 1090 swp_entry_t entry = (swp_entry_t){0}; 1091 struct folio *prealloc = NULL; 1092 int nr; 1093 1094 again: 1095 progress = 0; 1096 init_rss_vec(rss); 1097 1098 /* 1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1100 * error handling here, assume that exclusive mmap_lock on dst and src 1101 * protects anon from unexpected THP transitions; with shmem and file 1102 * protected by mmap_lock-less collapse skipping areas with anon_vma 1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1104 * can remove such assumptions later, but this is good enough for now. 1105 */ 1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1107 if (!dst_pte) { 1108 ret = -ENOMEM; 1109 goto out; 1110 } 1111 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1112 if (!src_pte) { 1113 pte_unmap_unlock(dst_pte, dst_ptl); 1114 /* ret == 0 */ 1115 goto out; 1116 } 1117 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1118 orig_src_pte = src_pte; 1119 orig_dst_pte = dst_pte; 1120 arch_enter_lazy_mmu_mode(); 1121 1122 do { 1123 nr = 1; 1124 1125 /* 1126 * We are holding two locks at this point - either of them 1127 * could generate latencies in another task on another CPU. 1128 */ 1129 if (progress >= 32) { 1130 progress = 0; 1131 if (need_resched() || 1132 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1133 break; 1134 } 1135 ptent = ptep_get(src_pte); 1136 if (pte_none(ptent)) { 1137 progress++; 1138 continue; 1139 } 1140 if (unlikely(!pte_present(ptent))) { 1141 ret = copy_nonpresent_pte(dst_mm, src_mm, 1142 dst_pte, src_pte, 1143 dst_vma, src_vma, 1144 addr, rss); 1145 if (ret == -EIO) { 1146 entry = pte_to_swp_entry(ptep_get(src_pte)); 1147 break; 1148 } else if (ret == -EBUSY) { 1149 break; 1150 } else if (!ret) { 1151 progress += 8; 1152 continue; 1153 } 1154 ptent = ptep_get(src_pte); 1155 VM_WARN_ON_ONCE(!pte_present(ptent)); 1156 1157 /* 1158 * Device exclusive entry restored, continue by copying 1159 * the now present pte. 1160 */ 1161 WARN_ON_ONCE(ret != -ENOENT); 1162 } 1163 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1164 max_nr = (end - addr) / PAGE_SIZE; 1165 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1166 ptent, addr, max_nr, rss, &prealloc); 1167 /* 1168 * If we need a pre-allocated page for this pte, drop the 1169 * locks, allocate, and try again. 1170 */ 1171 if (unlikely(ret == -EAGAIN)) 1172 break; 1173 if (unlikely(prealloc)) { 1174 /* 1175 * pre-alloc page cannot be reused by next time so as 1176 * to strictly follow mempolicy (e.g., alloc_page_vma() 1177 * will allocate page according to address). This 1178 * could only happen if one pinned pte changed. 1179 */ 1180 folio_put(prealloc); 1181 prealloc = NULL; 1182 } 1183 nr = ret; 1184 progress += 8 * nr; 1185 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1186 addr != end); 1187 1188 arch_leave_lazy_mmu_mode(); 1189 pte_unmap_unlock(orig_src_pte, src_ptl); 1190 add_mm_rss_vec(dst_mm, rss); 1191 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1192 cond_resched(); 1193 1194 if (ret == -EIO) { 1195 VM_WARN_ON_ONCE(!entry.val); 1196 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1197 ret = -ENOMEM; 1198 goto out; 1199 } 1200 entry.val = 0; 1201 } else if (ret == -EBUSY) { 1202 goto out; 1203 } else if (ret == -EAGAIN) { 1204 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1205 if (!prealloc) 1206 return -ENOMEM; 1207 } else if (ret < 0) { 1208 VM_WARN_ON_ONCE(1); 1209 } 1210 1211 /* We've captured and resolved the error. Reset, try again. */ 1212 ret = 0; 1213 1214 if (addr != end) 1215 goto again; 1216 out: 1217 if (unlikely(prealloc)) 1218 folio_put(prealloc); 1219 return ret; 1220 } 1221 1222 static inline int 1223 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1224 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1225 unsigned long end) 1226 { 1227 struct mm_struct *dst_mm = dst_vma->vm_mm; 1228 struct mm_struct *src_mm = src_vma->vm_mm; 1229 pmd_t *src_pmd, *dst_pmd; 1230 unsigned long next; 1231 1232 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1233 if (!dst_pmd) 1234 return -ENOMEM; 1235 src_pmd = pmd_offset(src_pud, addr); 1236 do { 1237 next = pmd_addr_end(addr, end); 1238 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1239 || pmd_devmap(*src_pmd)) { 1240 int err; 1241 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1242 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1243 addr, dst_vma, src_vma); 1244 if (err == -ENOMEM) 1245 return -ENOMEM; 1246 if (!err) 1247 continue; 1248 /* fall through */ 1249 } 1250 if (pmd_none_or_clear_bad(src_pmd)) 1251 continue; 1252 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1253 addr, next)) 1254 return -ENOMEM; 1255 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1256 return 0; 1257 } 1258 1259 static inline int 1260 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1261 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1262 unsigned long end) 1263 { 1264 struct mm_struct *dst_mm = dst_vma->vm_mm; 1265 struct mm_struct *src_mm = src_vma->vm_mm; 1266 pud_t *src_pud, *dst_pud; 1267 unsigned long next; 1268 1269 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1270 if (!dst_pud) 1271 return -ENOMEM; 1272 src_pud = pud_offset(src_p4d, addr); 1273 do { 1274 next = pud_addr_end(addr, end); 1275 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1276 int err; 1277 1278 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1279 err = copy_huge_pud(dst_mm, src_mm, 1280 dst_pud, src_pud, addr, src_vma); 1281 if (err == -ENOMEM) 1282 return -ENOMEM; 1283 if (!err) 1284 continue; 1285 /* fall through */ 1286 } 1287 if (pud_none_or_clear_bad(src_pud)) 1288 continue; 1289 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1290 addr, next)) 1291 return -ENOMEM; 1292 } while (dst_pud++, src_pud++, addr = next, addr != end); 1293 return 0; 1294 } 1295 1296 static inline int 1297 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1298 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1299 unsigned long end) 1300 { 1301 struct mm_struct *dst_mm = dst_vma->vm_mm; 1302 p4d_t *src_p4d, *dst_p4d; 1303 unsigned long next; 1304 1305 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1306 if (!dst_p4d) 1307 return -ENOMEM; 1308 src_p4d = p4d_offset(src_pgd, addr); 1309 do { 1310 next = p4d_addr_end(addr, end); 1311 if (p4d_none_or_clear_bad(src_p4d)) 1312 continue; 1313 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1314 addr, next)) 1315 return -ENOMEM; 1316 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1317 return 0; 1318 } 1319 1320 /* 1321 * Return true if the vma needs to copy the pgtable during this fork(). Return 1322 * false when we can speed up fork() by allowing lazy page faults later until 1323 * when the child accesses the memory range. 1324 */ 1325 static bool 1326 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1327 { 1328 /* 1329 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1330 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1331 * contains uffd-wp protection information, that's something we can't 1332 * retrieve from page cache, and skip copying will lose those info. 1333 */ 1334 if (userfaultfd_wp(dst_vma)) 1335 return true; 1336 1337 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1338 return true; 1339 1340 if (src_vma->anon_vma) 1341 return true; 1342 1343 /* 1344 * Don't copy ptes where a page fault will fill them correctly. Fork 1345 * becomes much lighter when there are big shared or private readonly 1346 * mappings. The tradeoff is that copy_page_range is more efficient 1347 * than faulting. 1348 */ 1349 return false; 1350 } 1351 1352 int 1353 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1354 { 1355 pgd_t *src_pgd, *dst_pgd; 1356 unsigned long next; 1357 unsigned long addr = src_vma->vm_start; 1358 unsigned long end = src_vma->vm_end; 1359 struct mm_struct *dst_mm = dst_vma->vm_mm; 1360 struct mm_struct *src_mm = src_vma->vm_mm; 1361 struct mmu_notifier_range range; 1362 bool is_cow; 1363 int ret; 1364 1365 if (!vma_needs_copy(dst_vma, src_vma)) 1366 return 0; 1367 1368 if (is_vm_hugetlb_page(src_vma)) 1369 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1370 1371 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1372 /* 1373 * We do not free on error cases below as remove_vma 1374 * gets called on error from higher level routine 1375 */ 1376 ret = track_pfn_copy(src_vma); 1377 if (ret) 1378 return ret; 1379 } 1380 1381 /* 1382 * We need to invalidate the secondary MMU mappings only when 1383 * there could be a permission downgrade on the ptes of the 1384 * parent mm. And a permission downgrade will only happen if 1385 * is_cow_mapping() returns true. 1386 */ 1387 is_cow = is_cow_mapping(src_vma->vm_flags); 1388 1389 if (is_cow) { 1390 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1391 0, src_mm, addr, end); 1392 mmu_notifier_invalidate_range_start(&range); 1393 /* 1394 * Disabling preemption is not needed for the write side, as 1395 * the read side doesn't spin, but goes to the mmap_lock. 1396 * 1397 * Use the raw variant of the seqcount_t write API to avoid 1398 * lockdep complaining about preemptibility. 1399 */ 1400 vma_assert_write_locked(src_vma); 1401 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1402 } 1403 1404 ret = 0; 1405 dst_pgd = pgd_offset(dst_mm, addr); 1406 src_pgd = pgd_offset(src_mm, addr); 1407 do { 1408 next = pgd_addr_end(addr, end); 1409 if (pgd_none_or_clear_bad(src_pgd)) 1410 continue; 1411 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1412 addr, next))) { 1413 untrack_pfn_clear(dst_vma); 1414 ret = -ENOMEM; 1415 break; 1416 } 1417 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1418 1419 if (is_cow) { 1420 raw_write_seqcount_end(&src_mm->write_protect_seq); 1421 mmu_notifier_invalidate_range_end(&range); 1422 } 1423 return ret; 1424 } 1425 1426 /* Whether we should zap all COWed (private) pages too */ 1427 static inline bool should_zap_cows(struct zap_details *details) 1428 { 1429 /* By default, zap all pages */ 1430 if (!details) 1431 return true; 1432 1433 /* Or, we zap COWed pages only if the caller wants to */ 1434 return details->even_cows; 1435 } 1436 1437 /* Decides whether we should zap this folio with the folio pointer specified */ 1438 static inline bool should_zap_folio(struct zap_details *details, 1439 struct folio *folio) 1440 { 1441 /* If we can make a decision without *folio.. */ 1442 if (should_zap_cows(details)) 1443 return true; 1444 1445 /* Otherwise we should only zap non-anon folios */ 1446 return !folio_test_anon(folio); 1447 } 1448 1449 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1450 { 1451 if (!details) 1452 return false; 1453 1454 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1455 } 1456 1457 /* 1458 * This function makes sure that we'll replace the none pte with an uffd-wp 1459 * swap special pte marker when necessary. Must be with the pgtable lock held. 1460 */ 1461 static inline void 1462 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1463 unsigned long addr, pte_t *pte, int nr, 1464 struct zap_details *details, pte_t pteval) 1465 { 1466 /* Zap on anonymous always means dropping everything */ 1467 if (vma_is_anonymous(vma)) 1468 return; 1469 1470 if (zap_drop_file_uffd_wp(details)) 1471 return; 1472 1473 for (;;) { 1474 /* the PFN in the PTE is irrelevant. */ 1475 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1476 if (--nr == 0) 1477 break; 1478 pte++; 1479 addr += PAGE_SIZE; 1480 } 1481 } 1482 1483 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1484 struct vm_area_struct *vma, struct folio *folio, 1485 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1486 unsigned long addr, struct zap_details *details, int *rss, 1487 bool *force_flush, bool *force_break) 1488 { 1489 struct mm_struct *mm = tlb->mm; 1490 bool delay_rmap = false; 1491 1492 if (!folio_test_anon(folio)) { 1493 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1494 if (pte_dirty(ptent)) { 1495 folio_mark_dirty(folio); 1496 if (tlb_delay_rmap(tlb)) { 1497 delay_rmap = true; 1498 *force_flush = true; 1499 } 1500 } 1501 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1502 folio_mark_accessed(folio); 1503 rss[mm_counter(folio)] -= nr; 1504 } else { 1505 /* We don't need up-to-date accessed/dirty bits. */ 1506 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1507 rss[MM_ANONPAGES] -= nr; 1508 } 1509 /* Checking a single PTE in a batch is sufficient. */ 1510 arch_check_zapped_pte(vma, ptent); 1511 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1512 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1513 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1514 ptent); 1515 1516 if (!delay_rmap) { 1517 folio_remove_rmap_ptes(folio, page, nr, vma); 1518 1519 if (unlikely(folio_mapcount(folio) < 0)) 1520 print_bad_pte(vma, addr, ptent, page); 1521 } 1522 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1523 *force_flush = true; 1524 *force_break = true; 1525 } 1526 } 1527 1528 /* 1529 * Zap or skip at least one present PTE, trying to batch-process subsequent 1530 * PTEs that map consecutive pages of the same folio. 1531 * 1532 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1533 */ 1534 static inline int zap_present_ptes(struct mmu_gather *tlb, 1535 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1536 unsigned int max_nr, unsigned long addr, 1537 struct zap_details *details, int *rss, bool *force_flush, 1538 bool *force_break) 1539 { 1540 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1541 struct mm_struct *mm = tlb->mm; 1542 struct folio *folio; 1543 struct page *page; 1544 int nr; 1545 1546 page = vm_normal_page(vma, addr, ptent); 1547 if (!page) { 1548 /* We don't need up-to-date accessed/dirty bits. */ 1549 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1550 arch_check_zapped_pte(vma, ptent); 1551 tlb_remove_tlb_entry(tlb, pte, addr); 1552 if (userfaultfd_pte_wp(vma, ptent)) 1553 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1554 details, ptent); 1555 ksm_might_unmap_zero_page(mm, ptent); 1556 return 1; 1557 } 1558 1559 folio = page_folio(page); 1560 if (unlikely(!should_zap_folio(details, folio))) 1561 return 1; 1562 1563 /* 1564 * Make sure that the common "small folio" case is as fast as possible 1565 * by keeping the batching logic separate. 1566 */ 1567 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1568 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1569 NULL, NULL, NULL); 1570 1571 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1572 addr, details, rss, force_flush, 1573 force_break); 1574 return nr; 1575 } 1576 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1577 details, rss, force_flush, force_break); 1578 return 1; 1579 } 1580 1581 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1582 struct vm_area_struct *vma, pmd_t *pmd, 1583 unsigned long addr, unsigned long end, 1584 struct zap_details *details) 1585 { 1586 bool force_flush = false, force_break = false; 1587 struct mm_struct *mm = tlb->mm; 1588 int rss[NR_MM_COUNTERS]; 1589 spinlock_t *ptl; 1590 pte_t *start_pte; 1591 pte_t *pte; 1592 swp_entry_t entry; 1593 int nr; 1594 1595 tlb_change_page_size(tlb, PAGE_SIZE); 1596 init_rss_vec(rss); 1597 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1598 if (!pte) 1599 return addr; 1600 1601 flush_tlb_batched_pending(mm); 1602 arch_enter_lazy_mmu_mode(); 1603 do { 1604 pte_t ptent = ptep_get(pte); 1605 struct folio *folio; 1606 struct page *page; 1607 int max_nr; 1608 1609 nr = 1; 1610 if (pte_none(ptent)) 1611 continue; 1612 1613 if (need_resched()) 1614 break; 1615 1616 if (pte_present(ptent)) { 1617 max_nr = (end - addr) / PAGE_SIZE; 1618 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1619 addr, details, rss, &force_flush, 1620 &force_break); 1621 if (unlikely(force_break)) { 1622 addr += nr * PAGE_SIZE; 1623 break; 1624 } 1625 continue; 1626 } 1627 1628 entry = pte_to_swp_entry(ptent); 1629 if (is_device_private_entry(entry) || 1630 is_device_exclusive_entry(entry)) { 1631 page = pfn_swap_entry_to_page(entry); 1632 folio = page_folio(page); 1633 if (unlikely(!should_zap_folio(details, folio))) 1634 continue; 1635 /* 1636 * Both device private/exclusive mappings should only 1637 * work with anonymous page so far, so we don't need to 1638 * consider uffd-wp bit when zap. For more information, 1639 * see zap_install_uffd_wp_if_needed(). 1640 */ 1641 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1642 rss[mm_counter(folio)]--; 1643 if (is_device_private_entry(entry)) 1644 folio_remove_rmap_pte(folio, page, vma); 1645 folio_put(folio); 1646 } else if (!non_swap_entry(entry)) { 1647 max_nr = (end - addr) / PAGE_SIZE; 1648 nr = swap_pte_batch(pte, max_nr, ptent); 1649 /* Genuine swap entries, hence a private anon pages */ 1650 if (!should_zap_cows(details)) 1651 continue; 1652 rss[MM_SWAPENTS] -= nr; 1653 free_swap_and_cache_nr(entry, nr); 1654 } else if (is_migration_entry(entry)) { 1655 folio = pfn_swap_entry_folio(entry); 1656 if (!should_zap_folio(details, folio)) 1657 continue; 1658 rss[mm_counter(folio)]--; 1659 } else if (pte_marker_entry_uffd_wp(entry)) { 1660 /* 1661 * For anon: always drop the marker; for file: only 1662 * drop the marker if explicitly requested. 1663 */ 1664 if (!vma_is_anonymous(vma) && 1665 !zap_drop_file_uffd_wp(details)) 1666 continue; 1667 } else if (is_hwpoison_entry(entry) || 1668 is_poisoned_swp_entry(entry)) { 1669 if (!should_zap_cows(details)) 1670 continue; 1671 } else { 1672 /* We should have covered all the swap entry types */ 1673 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1674 WARN_ON_ONCE(1); 1675 } 1676 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1677 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1678 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1679 1680 add_mm_rss_vec(mm, rss); 1681 arch_leave_lazy_mmu_mode(); 1682 1683 /* Do the actual TLB flush before dropping ptl */ 1684 if (force_flush) { 1685 tlb_flush_mmu_tlbonly(tlb); 1686 tlb_flush_rmaps(tlb, vma); 1687 } 1688 pte_unmap_unlock(start_pte, ptl); 1689 1690 /* 1691 * If we forced a TLB flush (either due to running out of 1692 * batch buffers or because we needed to flush dirty TLB 1693 * entries before releasing the ptl), free the batched 1694 * memory too. Come back again if we didn't do everything. 1695 */ 1696 if (force_flush) 1697 tlb_flush_mmu(tlb); 1698 1699 return addr; 1700 } 1701 1702 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1703 struct vm_area_struct *vma, pud_t *pud, 1704 unsigned long addr, unsigned long end, 1705 struct zap_details *details) 1706 { 1707 pmd_t *pmd; 1708 unsigned long next; 1709 1710 pmd = pmd_offset(pud, addr); 1711 do { 1712 next = pmd_addr_end(addr, end); 1713 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1714 if (next - addr != HPAGE_PMD_SIZE) 1715 __split_huge_pmd(vma, pmd, addr, false, NULL); 1716 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1717 addr = next; 1718 continue; 1719 } 1720 /* fall through */ 1721 } else if (details && details->single_folio && 1722 folio_test_pmd_mappable(details->single_folio) && 1723 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1724 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1725 /* 1726 * Take and drop THP pmd lock so that we cannot return 1727 * prematurely, while zap_huge_pmd() has cleared *pmd, 1728 * but not yet decremented compound_mapcount(). 1729 */ 1730 spin_unlock(ptl); 1731 } 1732 if (pmd_none(*pmd)) { 1733 addr = next; 1734 continue; 1735 } 1736 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1737 if (addr != next) 1738 pmd--; 1739 } while (pmd++, cond_resched(), addr != end); 1740 1741 return addr; 1742 } 1743 1744 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1745 struct vm_area_struct *vma, p4d_t *p4d, 1746 unsigned long addr, unsigned long end, 1747 struct zap_details *details) 1748 { 1749 pud_t *pud; 1750 unsigned long next; 1751 1752 pud = pud_offset(p4d, addr); 1753 do { 1754 next = pud_addr_end(addr, end); 1755 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1756 if (next - addr != HPAGE_PUD_SIZE) { 1757 mmap_assert_locked(tlb->mm); 1758 split_huge_pud(vma, pud, addr); 1759 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1760 goto next; 1761 /* fall through */ 1762 } 1763 if (pud_none_or_clear_bad(pud)) 1764 continue; 1765 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1766 next: 1767 cond_resched(); 1768 } while (pud++, addr = next, addr != end); 1769 1770 return addr; 1771 } 1772 1773 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1774 struct vm_area_struct *vma, pgd_t *pgd, 1775 unsigned long addr, unsigned long end, 1776 struct zap_details *details) 1777 { 1778 p4d_t *p4d; 1779 unsigned long next; 1780 1781 p4d = p4d_offset(pgd, addr); 1782 do { 1783 next = p4d_addr_end(addr, end); 1784 if (p4d_none_or_clear_bad(p4d)) 1785 continue; 1786 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1787 } while (p4d++, addr = next, addr != end); 1788 1789 return addr; 1790 } 1791 1792 void unmap_page_range(struct mmu_gather *tlb, 1793 struct vm_area_struct *vma, 1794 unsigned long addr, unsigned long end, 1795 struct zap_details *details) 1796 { 1797 pgd_t *pgd; 1798 unsigned long next; 1799 1800 BUG_ON(addr >= end); 1801 tlb_start_vma(tlb, vma); 1802 pgd = pgd_offset(vma->vm_mm, addr); 1803 do { 1804 next = pgd_addr_end(addr, end); 1805 if (pgd_none_or_clear_bad(pgd)) 1806 continue; 1807 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1808 } while (pgd++, addr = next, addr != end); 1809 tlb_end_vma(tlb, vma); 1810 } 1811 1812 1813 static void unmap_single_vma(struct mmu_gather *tlb, 1814 struct vm_area_struct *vma, unsigned long start_addr, 1815 unsigned long end_addr, 1816 struct zap_details *details, bool mm_wr_locked) 1817 { 1818 unsigned long start = max(vma->vm_start, start_addr); 1819 unsigned long end; 1820 1821 if (start >= vma->vm_end) 1822 return; 1823 end = min(vma->vm_end, end_addr); 1824 if (end <= vma->vm_start) 1825 return; 1826 1827 if (vma->vm_file) 1828 uprobe_munmap(vma, start, end); 1829 1830 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1831 untrack_pfn(vma, 0, 0, mm_wr_locked); 1832 1833 if (start != end) { 1834 if (unlikely(is_vm_hugetlb_page(vma))) { 1835 /* 1836 * It is undesirable to test vma->vm_file as it 1837 * should be non-null for valid hugetlb area. 1838 * However, vm_file will be NULL in the error 1839 * cleanup path of mmap_region. When 1840 * hugetlbfs ->mmap method fails, 1841 * mmap_region() nullifies vma->vm_file 1842 * before calling this function to clean up. 1843 * Since no pte has actually been setup, it is 1844 * safe to do nothing in this case. 1845 */ 1846 if (vma->vm_file) { 1847 zap_flags_t zap_flags = details ? 1848 details->zap_flags : 0; 1849 __unmap_hugepage_range(tlb, vma, start, end, 1850 NULL, zap_flags); 1851 } 1852 } else 1853 unmap_page_range(tlb, vma, start, end, details); 1854 } 1855 } 1856 1857 /** 1858 * unmap_vmas - unmap a range of memory covered by a list of vma's 1859 * @tlb: address of the caller's struct mmu_gather 1860 * @mas: the maple state 1861 * @vma: the starting vma 1862 * @start_addr: virtual address at which to start unmapping 1863 * @end_addr: virtual address at which to end unmapping 1864 * @tree_end: The maximum index to check 1865 * @mm_wr_locked: lock flag 1866 * 1867 * Unmap all pages in the vma list. 1868 * 1869 * Only addresses between `start' and `end' will be unmapped. 1870 * 1871 * The VMA list must be sorted in ascending virtual address order. 1872 * 1873 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1874 * range after unmap_vmas() returns. So the only responsibility here is to 1875 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1876 * drops the lock and schedules. 1877 */ 1878 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1879 struct vm_area_struct *vma, unsigned long start_addr, 1880 unsigned long end_addr, unsigned long tree_end, 1881 bool mm_wr_locked) 1882 { 1883 struct mmu_notifier_range range; 1884 struct zap_details details = { 1885 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1886 /* Careful - we need to zap private pages too! */ 1887 .even_cows = true, 1888 }; 1889 1890 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1891 start_addr, end_addr); 1892 mmu_notifier_invalidate_range_start(&range); 1893 do { 1894 unsigned long start = start_addr; 1895 unsigned long end = end_addr; 1896 hugetlb_zap_begin(vma, &start, &end); 1897 unmap_single_vma(tlb, vma, start, end, &details, 1898 mm_wr_locked); 1899 hugetlb_zap_end(vma, &details); 1900 vma = mas_find(mas, tree_end - 1); 1901 } while (vma && likely(!xa_is_zero(vma))); 1902 mmu_notifier_invalidate_range_end(&range); 1903 } 1904 1905 /** 1906 * zap_page_range_single - remove user pages in a given range 1907 * @vma: vm_area_struct holding the applicable pages 1908 * @address: starting address of pages to zap 1909 * @size: number of bytes to zap 1910 * @details: details of shared cache invalidation 1911 * 1912 * The range must fit into one VMA. 1913 */ 1914 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1915 unsigned long size, struct zap_details *details) 1916 { 1917 const unsigned long end = address + size; 1918 struct mmu_notifier_range range; 1919 struct mmu_gather tlb; 1920 1921 lru_add_drain(); 1922 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1923 address, end); 1924 hugetlb_zap_begin(vma, &range.start, &range.end); 1925 tlb_gather_mmu(&tlb, vma->vm_mm); 1926 update_hiwater_rss(vma->vm_mm); 1927 mmu_notifier_invalidate_range_start(&range); 1928 /* 1929 * unmap 'address-end' not 'range.start-range.end' as range 1930 * could have been expanded for hugetlb pmd sharing. 1931 */ 1932 unmap_single_vma(&tlb, vma, address, end, details, false); 1933 mmu_notifier_invalidate_range_end(&range); 1934 tlb_finish_mmu(&tlb); 1935 hugetlb_zap_end(vma, details); 1936 } 1937 1938 /** 1939 * zap_vma_ptes - remove ptes mapping the vma 1940 * @vma: vm_area_struct holding ptes to be zapped 1941 * @address: starting address of pages to zap 1942 * @size: number of bytes to zap 1943 * 1944 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1945 * 1946 * The entire address range must be fully contained within the vma. 1947 * 1948 */ 1949 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1950 unsigned long size) 1951 { 1952 if (!range_in_vma(vma, address, address + size) || 1953 !(vma->vm_flags & VM_PFNMAP)) 1954 return; 1955 1956 zap_page_range_single(vma, address, size, NULL); 1957 } 1958 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1959 1960 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1961 { 1962 pgd_t *pgd; 1963 p4d_t *p4d; 1964 pud_t *pud; 1965 pmd_t *pmd; 1966 1967 pgd = pgd_offset(mm, addr); 1968 p4d = p4d_alloc(mm, pgd, addr); 1969 if (!p4d) 1970 return NULL; 1971 pud = pud_alloc(mm, p4d, addr); 1972 if (!pud) 1973 return NULL; 1974 pmd = pmd_alloc(mm, pud, addr); 1975 if (!pmd) 1976 return NULL; 1977 1978 VM_BUG_ON(pmd_trans_huge(*pmd)); 1979 return pmd; 1980 } 1981 1982 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1983 spinlock_t **ptl) 1984 { 1985 pmd_t *pmd = walk_to_pmd(mm, addr); 1986 1987 if (!pmd) 1988 return NULL; 1989 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1990 } 1991 1992 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 1993 { 1994 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 1995 /* 1996 * Whoever wants to forbid the zeropage after some zeropages 1997 * might already have been mapped has to scan the page tables and 1998 * bail out on any zeropages. Zeropages in COW mappings can 1999 * be unshared using FAULT_FLAG_UNSHARE faults. 2000 */ 2001 if (mm_forbids_zeropage(vma->vm_mm)) 2002 return false; 2003 /* zeropages in COW mappings are common and unproblematic. */ 2004 if (is_cow_mapping(vma->vm_flags)) 2005 return true; 2006 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2007 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2008 return true; 2009 /* 2010 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2011 * find the shared zeropage and longterm-pin it, which would 2012 * be problematic as soon as the zeropage gets replaced by a different 2013 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2014 * now differ to what GUP looked up. FSDAX is incompatible to 2015 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2016 * check_vma_flags). 2017 */ 2018 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2019 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2020 } 2021 2022 static int validate_page_before_insert(struct vm_area_struct *vma, 2023 struct page *page) 2024 { 2025 struct folio *folio = page_folio(page); 2026 2027 if (!folio_ref_count(folio)) 2028 return -EINVAL; 2029 if (unlikely(is_zero_folio(folio))) { 2030 if (!vm_mixed_zeropage_allowed(vma)) 2031 return -EINVAL; 2032 return 0; 2033 } 2034 if (folio_test_anon(folio) || folio_test_slab(folio) || 2035 page_has_type(page)) 2036 return -EINVAL; 2037 flush_dcache_folio(folio); 2038 return 0; 2039 } 2040 2041 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2042 unsigned long addr, struct page *page, pgprot_t prot) 2043 { 2044 struct folio *folio = page_folio(page); 2045 pte_t pteval; 2046 2047 if (!pte_none(ptep_get(pte))) 2048 return -EBUSY; 2049 /* Ok, finally just insert the thing.. */ 2050 pteval = mk_pte(page, prot); 2051 if (unlikely(is_zero_folio(folio))) { 2052 pteval = pte_mkspecial(pteval); 2053 } else { 2054 folio_get(folio); 2055 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2056 folio_add_file_rmap_pte(folio, page, vma); 2057 } 2058 set_pte_at(vma->vm_mm, addr, pte, pteval); 2059 return 0; 2060 } 2061 2062 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2063 struct page *page, pgprot_t prot) 2064 { 2065 int retval; 2066 pte_t *pte; 2067 spinlock_t *ptl; 2068 2069 retval = validate_page_before_insert(vma, page); 2070 if (retval) 2071 goto out; 2072 retval = -ENOMEM; 2073 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2074 if (!pte) 2075 goto out; 2076 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2077 pte_unmap_unlock(pte, ptl); 2078 out: 2079 return retval; 2080 } 2081 2082 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2083 unsigned long addr, struct page *page, pgprot_t prot) 2084 { 2085 int err; 2086 2087 err = validate_page_before_insert(vma, page); 2088 if (err) 2089 return err; 2090 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2091 } 2092 2093 /* insert_pages() amortizes the cost of spinlock operations 2094 * when inserting pages in a loop. 2095 */ 2096 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2097 struct page **pages, unsigned long *num, pgprot_t prot) 2098 { 2099 pmd_t *pmd = NULL; 2100 pte_t *start_pte, *pte; 2101 spinlock_t *pte_lock; 2102 struct mm_struct *const mm = vma->vm_mm; 2103 unsigned long curr_page_idx = 0; 2104 unsigned long remaining_pages_total = *num; 2105 unsigned long pages_to_write_in_pmd; 2106 int ret; 2107 more: 2108 ret = -EFAULT; 2109 pmd = walk_to_pmd(mm, addr); 2110 if (!pmd) 2111 goto out; 2112 2113 pages_to_write_in_pmd = min_t(unsigned long, 2114 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2115 2116 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2117 ret = -ENOMEM; 2118 if (pte_alloc(mm, pmd)) 2119 goto out; 2120 2121 while (pages_to_write_in_pmd) { 2122 int pte_idx = 0; 2123 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2124 2125 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2126 if (!start_pte) { 2127 ret = -EFAULT; 2128 goto out; 2129 } 2130 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2131 int err = insert_page_in_batch_locked(vma, pte, 2132 addr, pages[curr_page_idx], prot); 2133 if (unlikely(err)) { 2134 pte_unmap_unlock(start_pte, pte_lock); 2135 ret = err; 2136 remaining_pages_total -= pte_idx; 2137 goto out; 2138 } 2139 addr += PAGE_SIZE; 2140 ++curr_page_idx; 2141 } 2142 pte_unmap_unlock(start_pte, pte_lock); 2143 pages_to_write_in_pmd -= batch_size; 2144 remaining_pages_total -= batch_size; 2145 } 2146 if (remaining_pages_total) 2147 goto more; 2148 ret = 0; 2149 out: 2150 *num = remaining_pages_total; 2151 return ret; 2152 } 2153 2154 /** 2155 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2156 * @vma: user vma to map to 2157 * @addr: target start user address of these pages 2158 * @pages: source kernel pages 2159 * @num: in: number of pages to map. out: number of pages that were *not* 2160 * mapped. (0 means all pages were successfully mapped). 2161 * 2162 * Preferred over vm_insert_page() when inserting multiple pages. 2163 * 2164 * In case of error, we may have mapped a subset of the provided 2165 * pages. It is the caller's responsibility to account for this case. 2166 * 2167 * The same restrictions apply as in vm_insert_page(). 2168 */ 2169 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2170 struct page **pages, unsigned long *num) 2171 { 2172 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2173 2174 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2175 return -EFAULT; 2176 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2177 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2178 BUG_ON(vma->vm_flags & VM_PFNMAP); 2179 vm_flags_set(vma, VM_MIXEDMAP); 2180 } 2181 /* Defer page refcount checking till we're about to map that page. */ 2182 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2183 } 2184 EXPORT_SYMBOL(vm_insert_pages); 2185 2186 /** 2187 * vm_insert_page - insert single page into user vma 2188 * @vma: user vma to map to 2189 * @addr: target user address of this page 2190 * @page: source kernel page 2191 * 2192 * This allows drivers to insert individual pages they've allocated 2193 * into a user vma. The zeropage is supported in some VMAs, 2194 * see vm_mixed_zeropage_allowed(). 2195 * 2196 * The page has to be a nice clean _individual_ kernel allocation. 2197 * If you allocate a compound page, you need to have marked it as 2198 * such (__GFP_COMP), or manually just split the page up yourself 2199 * (see split_page()). 2200 * 2201 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2202 * took an arbitrary page protection parameter. This doesn't allow 2203 * that. Your vma protection will have to be set up correctly, which 2204 * means that if you want a shared writable mapping, you'd better 2205 * ask for a shared writable mapping! 2206 * 2207 * The page does not need to be reserved. 2208 * 2209 * Usually this function is called from f_op->mmap() handler 2210 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2211 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2212 * function from other places, for example from page-fault handler. 2213 * 2214 * Return: %0 on success, negative error code otherwise. 2215 */ 2216 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2217 struct page *page) 2218 { 2219 if (addr < vma->vm_start || addr >= vma->vm_end) 2220 return -EFAULT; 2221 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2222 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2223 BUG_ON(vma->vm_flags & VM_PFNMAP); 2224 vm_flags_set(vma, VM_MIXEDMAP); 2225 } 2226 return insert_page(vma, addr, page, vma->vm_page_prot); 2227 } 2228 EXPORT_SYMBOL(vm_insert_page); 2229 2230 /* 2231 * __vm_map_pages - maps range of kernel pages into user vma 2232 * @vma: user vma to map to 2233 * @pages: pointer to array of source kernel pages 2234 * @num: number of pages in page array 2235 * @offset: user's requested vm_pgoff 2236 * 2237 * This allows drivers to map range of kernel pages into a user vma. 2238 * The zeropage is supported in some VMAs, see 2239 * vm_mixed_zeropage_allowed(). 2240 * 2241 * Return: 0 on success and error code otherwise. 2242 */ 2243 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2244 unsigned long num, unsigned long offset) 2245 { 2246 unsigned long count = vma_pages(vma); 2247 unsigned long uaddr = vma->vm_start; 2248 int ret, i; 2249 2250 /* Fail if the user requested offset is beyond the end of the object */ 2251 if (offset >= num) 2252 return -ENXIO; 2253 2254 /* Fail if the user requested size exceeds available object size */ 2255 if (count > num - offset) 2256 return -ENXIO; 2257 2258 for (i = 0; i < count; i++) { 2259 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2260 if (ret < 0) 2261 return ret; 2262 uaddr += PAGE_SIZE; 2263 } 2264 2265 return 0; 2266 } 2267 2268 /** 2269 * vm_map_pages - maps range of kernel pages starts with non zero offset 2270 * @vma: user vma to map to 2271 * @pages: pointer to array of source kernel pages 2272 * @num: number of pages in page array 2273 * 2274 * Maps an object consisting of @num pages, catering for the user's 2275 * requested vm_pgoff 2276 * 2277 * If we fail to insert any page into the vma, the function will return 2278 * immediately leaving any previously inserted pages present. Callers 2279 * from the mmap handler may immediately return the error as their caller 2280 * will destroy the vma, removing any successfully inserted pages. Other 2281 * callers should make their own arrangements for calling unmap_region(). 2282 * 2283 * Context: Process context. Called by mmap handlers. 2284 * Return: 0 on success and error code otherwise. 2285 */ 2286 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2287 unsigned long num) 2288 { 2289 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2290 } 2291 EXPORT_SYMBOL(vm_map_pages); 2292 2293 /** 2294 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2295 * @vma: user vma to map to 2296 * @pages: pointer to array of source kernel pages 2297 * @num: number of pages in page array 2298 * 2299 * Similar to vm_map_pages(), except that it explicitly sets the offset 2300 * to 0. This function is intended for the drivers that did not consider 2301 * vm_pgoff. 2302 * 2303 * Context: Process context. Called by mmap handlers. 2304 * Return: 0 on success and error code otherwise. 2305 */ 2306 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2307 unsigned long num) 2308 { 2309 return __vm_map_pages(vma, pages, num, 0); 2310 } 2311 EXPORT_SYMBOL(vm_map_pages_zero); 2312 2313 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2314 pfn_t pfn, pgprot_t prot, bool mkwrite) 2315 { 2316 struct mm_struct *mm = vma->vm_mm; 2317 pte_t *pte, entry; 2318 spinlock_t *ptl; 2319 2320 pte = get_locked_pte(mm, addr, &ptl); 2321 if (!pte) 2322 return VM_FAULT_OOM; 2323 entry = ptep_get(pte); 2324 if (!pte_none(entry)) { 2325 if (mkwrite) { 2326 /* 2327 * For read faults on private mappings the PFN passed 2328 * in may not match the PFN we have mapped if the 2329 * mapped PFN is a writeable COW page. In the mkwrite 2330 * case we are creating a writable PTE for a shared 2331 * mapping and we expect the PFNs to match. If they 2332 * don't match, we are likely racing with block 2333 * allocation and mapping invalidation so just skip the 2334 * update. 2335 */ 2336 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2337 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2338 goto out_unlock; 2339 } 2340 entry = pte_mkyoung(entry); 2341 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2342 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2343 update_mmu_cache(vma, addr, pte); 2344 } 2345 goto out_unlock; 2346 } 2347 2348 /* Ok, finally just insert the thing.. */ 2349 if (pfn_t_devmap(pfn)) 2350 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2351 else 2352 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2353 2354 if (mkwrite) { 2355 entry = pte_mkyoung(entry); 2356 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2357 } 2358 2359 set_pte_at(mm, addr, pte, entry); 2360 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2361 2362 out_unlock: 2363 pte_unmap_unlock(pte, ptl); 2364 return VM_FAULT_NOPAGE; 2365 } 2366 2367 /** 2368 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2369 * @vma: user vma to map to 2370 * @addr: target user address of this page 2371 * @pfn: source kernel pfn 2372 * @pgprot: pgprot flags for the inserted page 2373 * 2374 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2375 * to override pgprot on a per-page basis. 2376 * 2377 * This only makes sense for IO mappings, and it makes no sense for 2378 * COW mappings. In general, using multiple vmas is preferable; 2379 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2380 * impractical. 2381 * 2382 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2383 * caching- and encryption bits different than those of @vma->vm_page_prot, 2384 * because the caching- or encryption mode may not be known at mmap() time. 2385 * 2386 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2387 * to set caching and encryption bits for those vmas (except for COW pages). 2388 * This is ensured by core vm only modifying these page table entries using 2389 * functions that don't touch caching- or encryption bits, using pte_modify() 2390 * if needed. (See for example mprotect()). 2391 * 2392 * Also when new page-table entries are created, this is only done using the 2393 * fault() callback, and never using the value of vma->vm_page_prot, 2394 * except for page-table entries that point to anonymous pages as the result 2395 * of COW. 2396 * 2397 * Context: Process context. May allocate using %GFP_KERNEL. 2398 * Return: vm_fault_t value. 2399 */ 2400 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2401 unsigned long pfn, pgprot_t pgprot) 2402 { 2403 /* 2404 * Technically, architectures with pte_special can avoid all these 2405 * restrictions (same for remap_pfn_range). However we would like 2406 * consistency in testing and feature parity among all, so we should 2407 * try to keep these invariants in place for everybody. 2408 */ 2409 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2410 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2411 (VM_PFNMAP|VM_MIXEDMAP)); 2412 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2413 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2414 2415 if (addr < vma->vm_start || addr >= vma->vm_end) 2416 return VM_FAULT_SIGBUS; 2417 2418 if (!pfn_modify_allowed(pfn, pgprot)) 2419 return VM_FAULT_SIGBUS; 2420 2421 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2422 2423 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2424 false); 2425 } 2426 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2427 2428 /** 2429 * vmf_insert_pfn - insert single pfn into user vma 2430 * @vma: user vma to map to 2431 * @addr: target user address of this page 2432 * @pfn: source kernel pfn 2433 * 2434 * Similar to vm_insert_page, this allows drivers to insert individual pages 2435 * they've allocated into a user vma. Same comments apply. 2436 * 2437 * This function should only be called from a vm_ops->fault handler, and 2438 * in that case the handler should return the result of this function. 2439 * 2440 * vma cannot be a COW mapping. 2441 * 2442 * As this is called only for pages that do not currently exist, we 2443 * do not need to flush old virtual caches or the TLB. 2444 * 2445 * Context: Process context. May allocate using %GFP_KERNEL. 2446 * Return: vm_fault_t value. 2447 */ 2448 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2449 unsigned long pfn) 2450 { 2451 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2452 } 2453 EXPORT_SYMBOL(vmf_insert_pfn); 2454 2455 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2456 { 2457 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2458 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2459 return false; 2460 /* these checks mirror the abort conditions in vm_normal_page */ 2461 if (vma->vm_flags & VM_MIXEDMAP) 2462 return true; 2463 if (pfn_t_devmap(pfn)) 2464 return true; 2465 if (pfn_t_special(pfn)) 2466 return true; 2467 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2468 return true; 2469 return false; 2470 } 2471 2472 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2473 unsigned long addr, pfn_t pfn, bool mkwrite) 2474 { 2475 pgprot_t pgprot = vma->vm_page_prot; 2476 int err; 2477 2478 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2479 return VM_FAULT_SIGBUS; 2480 2481 if (addr < vma->vm_start || addr >= vma->vm_end) 2482 return VM_FAULT_SIGBUS; 2483 2484 track_pfn_insert(vma, &pgprot, pfn); 2485 2486 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2487 return VM_FAULT_SIGBUS; 2488 2489 /* 2490 * If we don't have pte special, then we have to use the pfn_valid() 2491 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2492 * refcount the page if pfn_valid is true (hence insert_page rather 2493 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2494 * without pte special, it would there be refcounted as a normal page. 2495 */ 2496 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2497 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2498 struct page *page; 2499 2500 /* 2501 * At this point we are committed to insert_page() 2502 * regardless of whether the caller specified flags that 2503 * result in pfn_t_has_page() == false. 2504 */ 2505 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2506 err = insert_page(vma, addr, page, pgprot); 2507 } else { 2508 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2509 } 2510 2511 if (err == -ENOMEM) 2512 return VM_FAULT_OOM; 2513 if (err < 0 && err != -EBUSY) 2514 return VM_FAULT_SIGBUS; 2515 2516 return VM_FAULT_NOPAGE; 2517 } 2518 2519 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2520 pfn_t pfn) 2521 { 2522 return __vm_insert_mixed(vma, addr, pfn, false); 2523 } 2524 EXPORT_SYMBOL(vmf_insert_mixed); 2525 2526 /* 2527 * If the insertion of PTE failed because someone else already added a 2528 * different entry in the mean time, we treat that as success as we assume 2529 * the same entry was actually inserted. 2530 */ 2531 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2532 unsigned long addr, pfn_t pfn) 2533 { 2534 return __vm_insert_mixed(vma, addr, pfn, true); 2535 } 2536 2537 /* 2538 * maps a range of physical memory into the requested pages. the old 2539 * mappings are removed. any references to nonexistent pages results 2540 * in null mappings (currently treated as "copy-on-access") 2541 */ 2542 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2543 unsigned long addr, unsigned long end, 2544 unsigned long pfn, pgprot_t prot) 2545 { 2546 pte_t *pte, *mapped_pte; 2547 spinlock_t *ptl; 2548 int err = 0; 2549 2550 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2551 if (!pte) 2552 return -ENOMEM; 2553 arch_enter_lazy_mmu_mode(); 2554 do { 2555 BUG_ON(!pte_none(ptep_get(pte))); 2556 if (!pfn_modify_allowed(pfn, prot)) { 2557 err = -EACCES; 2558 break; 2559 } 2560 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2561 pfn++; 2562 } while (pte++, addr += PAGE_SIZE, addr != end); 2563 arch_leave_lazy_mmu_mode(); 2564 pte_unmap_unlock(mapped_pte, ptl); 2565 return err; 2566 } 2567 2568 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2569 unsigned long addr, unsigned long end, 2570 unsigned long pfn, pgprot_t prot) 2571 { 2572 pmd_t *pmd; 2573 unsigned long next; 2574 int err; 2575 2576 pfn -= addr >> PAGE_SHIFT; 2577 pmd = pmd_alloc(mm, pud, addr); 2578 if (!pmd) 2579 return -ENOMEM; 2580 VM_BUG_ON(pmd_trans_huge(*pmd)); 2581 do { 2582 next = pmd_addr_end(addr, end); 2583 err = remap_pte_range(mm, pmd, addr, next, 2584 pfn + (addr >> PAGE_SHIFT), prot); 2585 if (err) 2586 return err; 2587 } while (pmd++, addr = next, addr != end); 2588 return 0; 2589 } 2590 2591 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2592 unsigned long addr, unsigned long end, 2593 unsigned long pfn, pgprot_t prot) 2594 { 2595 pud_t *pud; 2596 unsigned long next; 2597 int err; 2598 2599 pfn -= addr >> PAGE_SHIFT; 2600 pud = pud_alloc(mm, p4d, addr); 2601 if (!pud) 2602 return -ENOMEM; 2603 do { 2604 next = pud_addr_end(addr, end); 2605 err = remap_pmd_range(mm, pud, addr, next, 2606 pfn + (addr >> PAGE_SHIFT), prot); 2607 if (err) 2608 return err; 2609 } while (pud++, addr = next, addr != end); 2610 return 0; 2611 } 2612 2613 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2614 unsigned long addr, unsigned long end, 2615 unsigned long pfn, pgprot_t prot) 2616 { 2617 p4d_t *p4d; 2618 unsigned long next; 2619 int err; 2620 2621 pfn -= addr >> PAGE_SHIFT; 2622 p4d = p4d_alloc(mm, pgd, addr); 2623 if (!p4d) 2624 return -ENOMEM; 2625 do { 2626 next = p4d_addr_end(addr, end); 2627 err = remap_pud_range(mm, p4d, addr, next, 2628 pfn + (addr >> PAGE_SHIFT), prot); 2629 if (err) 2630 return err; 2631 } while (p4d++, addr = next, addr != end); 2632 return 0; 2633 } 2634 2635 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2636 unsigned long pfn, unsigned long size, pgprot_t prot) 2637 { 2638 pgd_t *pgd; 2639 unsigned long next; 2640 unsigned long end = addr + PAGE_ALIGN(size); 2641 struct mm_struct *mm = vma->vm_mm; 2642 int err; 2643 2644 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2645 return -EINVAL; 2646 2647 /* 2648 * Physically remapped pages are special. Tell the 2649 * rest of the world about it: 2650 * VM_IO tells people not to look at these pages 2651 * (accesses can have side effects). 2652 * VM_PFNMAP tells the core MM that the base pages are just 2653 * raw PFN mappings, and do not have a "struct page" associated 2654 * with them. 2655 * VM_DONTEXPAND 2656 * Disable vma merging and expanding with mremap(). 2657 * VM_DONTDUMP 2658 * Omit vma from core dump, even when VM_IO turned off. 2659 * 2660 * There's a horrible special case to handle copy-on-write 2661 * behaviour that some programs depend on. We mark the "original" 2662 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2663 * See vm_normal_page() for details. 2664 */ 2665 if (is_cow_mapping(vma->vm_flags)) { 2666 if (addr != vma->vm_start || end != vma->vm_end) 2667 return -EINVAL; 2668 vma->vm_pgoff = pfn; 2669 } 2670 2671 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2672 2673 BUG_ON(addr >= end); 2674 pfn -= addr >> PAGE_SHIFT; 2675 pgd = pgd_offset(mm, addr); 2676 flush_cache_range(vma, addr, end); 2677 do { 2678 next = pgd_addr_end(addr, end); 2679 err = remap_p4d_range(mm, pgd, addr, next, 2680 pfn + (addr >> PAGE_SHIFT), prot); 2681 if (err) 2682 return err; 2683 } while (pgd++, addr = next, addr != end); 2684 2685 return 0; 2686 } 2687 2688 /* 2689 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2690 * must have pre-validated the caching bits of the pgprot_t. 2691 */ 2692 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2693 unsigned long pfn, unsigned long size, pgprot_t prot) 2694 { 2695 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2696 2697 if (!error) 2698 return 0; 2699 2700 /* 2701 * A partial pfn range mapping is dangerous: it does not 2702 * maintain page reference counts, and callers may free 2703 * pages due to the error. So zap it early. 2704 */ 2705 zap_page_range_single(vma, addr, size, NULL); 2706 return error; 2707 } 2708 2709 /** 2710 * remap_pfn_range - remap kernel memory to userspace 2711 * @vma: user vma to map to 2712 * @addr: target page aligned user address to start at 2713 * @pfn: page frame number of kernel physical memory address 2714 * @size: size of mapping area 2715 * @prot: page protection flags for this mapping 2716 * 2717 * Note: this is only safe if the mm semaphore is held when called. 2718 * 2719 * Return: %0 on success, negative error code otherwise. 2720 */ 2721 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2722 unsigned long pfn, unsigned long size, pgprot_t prot) 2723 { 2724 int err; 2725 2726 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2727 if (err) 2728 return -EINVAL; 2729 2730 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2731 if (err) 2732 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2733 return err; 2734 } 2735 EXPORT_SYMBOL(remap_pfn_range); 2736 2737 /** 2738 * vm_iomap_memory - remap memory to userspace 2739 * @vma: user vma to map to 2740 * @start: start of the physical memory to be mapped 2741 * @len: size of area 2742 * 2743 * This is a simplified io_remap_pfn_range() for common driver use. The 2744 * driver just needs to give us the physical memory range to be mapped, 2745 * we'll figure out the rest from the vma information. 2746 * 2747 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2748 * whatever write-combining details or similar. 2749 * 2750 * Return: %0 on success, negative error code otherwise. 2751 */ 2752 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2753 { 2754 unsigned long vm_len, pfn, pages; 2755 2756 /* Check that the physical memory area passed in looks valid */ 2757 if (start + len < start) 2758 return -EINVAL; 2759 /* 2760 * You *really* shouldn't map things that aren't page-aligned, 2761 * but we've historically allowed it because IO memory might 2762 * just have smaller alignment. 2763 */ 2764 len += start & ~PAGE_MASK; 2765 pfn = start >> PAGE_SHIFT; 2766 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2767 if (pfn + pages < pfn) 2768 return -EINVAL; 2769 2770 /* We start the mapping 'vm_pgoff' pages into the area */ 2771 if (vma->vm_pgoff > pages) 2772 return -EINVAL; 2773 pfn += vma->vm_pgoff; 2774 pages -= vma->vm_pgoff; 2775 2776 /* Can we fit all of the mapping? */ 2777 vm_len = vma->vm_end - vma->vm_start; 2778 if (vm_len >> PAGE_SHIFT > pages) 2779 return -EINVAL; 2780 2781 /* Ok, let it rip */ 2782 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2783 } 2784 EXPORT_SYMBOL(vm_iomap_memory); 2785 2786 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2787 unsigned long addr, unsigned long end, 2788 pte_fn_t fn, void *data, bool create, 2789 pgtbl_mod_mask *mask) 2790 { 2791 pte_t *pte, *mapped_pte; 2792 int err = 0; 2793 spinlock_t *ptl; 2794 2795 if (create) { 2796 mapped_pte = pte = (mm == &init_mm) ? 2797 pte_alloc_kernel_track(pmd, addr, mask) : 2798 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2799 if (!pte) 2800 return -ENOMEM; 2801 } else { 2802 mapped_pte = pte = (mm == &init_mm) ? 2803 pte_offset_kernel(pmd, addr) : 2804 pte_offset_map_lock(mm, pmd, addr, &ptl); 2805 if (!pte) 2806 return -EINVAL; 2807 } 2808 2809 arch_enter_lazy_mmu_mode(); 2810 2811 if (fn) { 2812 do { 2813 if (create || !pte_none(ptep_get(pte))) { 2814 err = fn(pte++, addr, data); 2815 if (err) 2816 break; 2817 } 2818 } while (addr += PAGE_SIZE, addr != end); 2819 } 2820 *mask |= PGTBL_PTE_MODIFIED; 2821 2822 arch_leave_lazy_mmu_mode(); 2823 2824 if (mm != &init_mm) 2825 pte_unmap_unlock(mapped_pte, ptl); 2826 return err; 2827 } 2828 2829 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2830 unsigned long addr, unsigned long end, 2831 pte_fn_t fn, void *data, bool create, 2832 pgtbl_mod_mask *mask) 2833 { 2834 pmd_t *pmd; 2835 unsigned long next; 2836 int err = 0; 2837 2838 BUG_ON(pud_leaf(*pud)); 2839 2840 if (create) { 2841 pmd = pmd_alloc_track(mm, pud, addr, mask); 2842 if (!pmd) 2843 return -ENOMEM; 2844 } else { 2845 pmd = pmd_offset(pud, addr); 2846 } 2847 do { 2848 next = pmd_addr_end(addr, end); 2849 if (pmd_none(*pmd) && !create) 2850 continue; 2851 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2852 return -EINVAL; 2853 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2854 if (!create) 2855 continue; 2856 pmd_clear_bad(pmd); 2857 } 2858 err = apply_to_pte_range(mm, pmd, addr, next, 2859 fn, data, create, mask); 2860 if (err) 2861 break; 2862 } while (pmd++, addr = next, addr != end); 2863 2864 return err; 2865 } 2866 2867 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2868 unsigned long addr, unsigned long end, 2869 pte_fn_t fn, void *data, bool create, 2870 pgtbl_mod_mask *mask) 2871 { 2872 pud_t *pud; 2873 unsigned long next; 2874 int err = 0; 2875 2876 if (create) { 2877 pud = pud_alloc_track(mm, p4d, addr, mask); 2878 if (!pud) 2879 return -ENOMEM; 2880 } else { 2881 pud = pud_offset(p4d, addr); 2882 } 2883 do { 2884 next = pud_addr_end(addr, end); 2885 if (pud_none(*pud) && !create) 2886 continue; 2887 if (WARN_ON_ONCE(pud_leaf(*pud))) 2888 return -EINVAL; 2889 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2890 if (!create) 2891 continue; 2892 pud_clear_bad(pud); 2893 } 2894 err = apply_to_pmd_range(mm, pud, addr, next, 2895 fn, data, create, mask); 2896 if (err) 2897 break; 2898 } while (pud++, addr = next, addr != end); 2899 2900 return err; 2901 } 2902 2903 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2904 unsigned long addr, unsigned long end, 2905 pte_fn_t fn, void *data, bool create, 2906 pgtbl_mod_mask *mask) 2907 { 2908 p4d_t *p4d; 2909 unsigned long next; 2910 int err = 0; 2911 2912 if (create) { 2913 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2914 if (!p4d) 2915 return -ENOMEM; 2916 } else { 2917 p4d = p4d_offset(pgd, addr); 2918 } 2919 do { 2920 next = p4d_addr_end(addr, end); 2921 if (p4d_none(*p4d) && !create) 2922 continue; 2923 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2924 return -EINVAL; 2925 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2926 if (!create) 2927 continue; 2928 p4d_clear_bad(p4d); 2929 } 2930 err = apply_to_pud_range(mm, p4d, addr, next, 2931 fn, data, create, mask); 2932 if (err) 2933 break; 2934 } while (p4d++, addr = next, addr != end); 2935 2936 return err; 2937 } 2938 2939 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2940 unsigned long size, pte_fn_t fn, 2941 void *data, bool create) 2942 { 2943 pgd_t *pgd; 2944 unsigned long start = addr, next; 2945 unsigned long end = addr + size; 2946 pgtbl_mod_mask mask = 0; 2947 int err = 0; 2948 2949 if (WARN_ON(addr >= end)) 2950 return -EINVAL; 2951 2952 pgd = pgd_offset(mm, addr); 2953 do { 2954 next = pgd_addr_end(addr, end); 2955 if (pgd_none(*pgd) && !create) 2956 continue; 2957 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2958 return -EINVAL; 2959 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2960 if (!create) 2961 continue; 2962 pgd_clear_bad(pgd); 2963 } 2964 err = apply_to_p4d_range(mm, pgd, addr, next, 2965 fn, data, create, &mask); 2966 if (err) 2967 break; 2968 } while (pgd++, addr = next, addr != end); 2969 2970 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2971 arch_sync_kernel_mappings(start, start + size); 2972 2973 return err; 2974 } 2975 2976 /* 2977 * Scan a region of virtual memory, filling in page tables as necessary 2978 * and calling a provided function on each leaf page table. 2979 */ 2980 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2981 unsigned long size, pte_fn_t fn, void *data) 2982 { 2983 return __apply_to_page_range(mm, addr, size, fn, data, true); 2984 } 2985 EXPORT_SYMBOL_GPL(apply_to_page_range); 2986 2987 /* 2988 * Scan a region of virtual memory, calling a provided function on 2989 * each leaf page table where it exists. 2990 * 2991 * Unlike apply_to_page_range, this does _not_ fill in page tables 2992 * where they are absent. 2993 */ 2994 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2995 unsigned long size, pte_fn_t fn, void *data) 2996 { 2997 return __apply_to_page_range(mm, addr, size, fn, data, false); 2998 } 2999 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 3000 3001 /* 3002 * handle_pte_fault chooses page fault handler according to an entry which was 3003 * read non-atomically. Before making any commitment, on those architectures 3004 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3005 * parts, do_swap_page must check under lock before unmapping the pte and 3006 * proceeding (but do_wp_page is only called after already making such a check; 3007 * and do_anonymous_page can safely check later on). 3008 */ 3009 static inline int pte_unmap_same(struct vm_fault *vmf) 3010 { 3011 int same = 1; 3012 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3013 if (sizeof(pte_t) > sizeof(unsigned long)) { 3014 spin_lock(vmf->ptl); 3015 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3016 spin_unlock(vmf->ptl); 3017 } 3018 #endif 3019 pte_unmap(vmf->pte); 3020 vmf->pte = NULL; 3021 return same; 3022 } 3023 3024 /* 3025 * Return: 3026 * 0: copied succeeded 3027 * -EHWPOISON: copy failed due to hwpoison in source page 3028 * -EAGAIN: copied failed (some other reason) 3029 */ 3030 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3031 struct vm_fault *vmf) 3032 { 3033 int ret; 3034 void *kaddr; 3035 void __user *uaddr; 3036 struct vm_area_struct *vma = vmf->vma; 3037 struct mm_struct *mm = vma->vm_mm; 3038 unsigned long addr = vmf->address; 3039 3040 if (likely(src)) { 3041 if (copy_mc_user_highpage(dst, src, addr, vma)) 3042 return -EHWPOISON; 3043 return 0; 3044 } 3045 3046 /* 3047 * If the source page was a PFN mapping, we don't have 3048 * a "struct page" for it. We do a best-effort copy by 3049 * just copying from the original user address. If that 3050 * fails, we just zero-fill it. Live with it. 3051 */ 3052 kaddr = kmap_local_page(dst); 3053 pagefault_disable(); 3054 uaddr = (void __user *)(addr & PAGE_MASK); 3055 3056 /* 3057 * On architectures with software "accessed" bits, we would 3058 * take a double page fault, so mark it accessed here. 3059 */ 3060 vmf->pte = NULL; 3061 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3062 pte_t entry; 3063 3064 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3065 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3066 /* 3067 * Other thread has already handled the fault 3068 * and update local tlb only 3069 */ 3070 if (vmf->pte) 3071 update_mmu_tlb(vma, addr, vmf->pte); 3072 ret = -EAGAIN; 3073 goto pte_unlock; 3074 } 3075 3076 entry = pte_mkyoung(vmf->orig_pte); 3077 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3078 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3079 } 3080 3081 /* 3082 * This really shouldn't fail, because the page is there 3083 * in the page tables. But it might just be unreadable, 3084 * in which case we just give up and fill the result with 3085 * zeroes. 3086 */ 3087 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3088 if (vmf->pte) 3089 goto warn; 3090 3091 /* Re-validate under PTL if the page is still mapped */ 3092 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3093 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3094 /* The PTE changed under us, update local tlb */ 3095 if (vmf->pte) 3096 update_mmu_tlb(vma, addr, vmf->pte); 3097 ret = -EAGAIN; 3098 goto pte_unlock; 3099 } 3100 3101 /* 3102 * The same page can be mapped back since last copy attempt. 3103 * Try to copy again under PTL. 3104 */ 3105 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3106 /* 3107 * Give a warn in case there can be some obscure 3108 * use-case 3109 */ 3110 warn: 3111 WARN_ON_ONCE(1); 3112 clear_page(kaddr); 3113 } 3114 } 3115 3116 ret = 0; 3117 3118 pte_unlock: 3119 if (vmf->pte) 3120 pte_unmap_unlock(vmf->pte, vmf->ptl); 3121 pagefault_enable(); 3122 kunmap_local(kaddr); 3123 flush_dcache_page(dst); 3124 3125 return ret; 3126 } 3127 3128 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3129 { 3130 struct file *vm_file = vma->vm_file; 3131 3132 if (vm_file) 3133 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3134 3135 /* 3136 * Special mappings (e.g. VDSO) do not have any file so fake 3137 * a default GFP_KERNEL for them. 3138 */ 3139 return GFP_KERNEL; 3140 } 3141 3142 /* 3143 * Notify the address space that the page is about to become writable so that 3144 * it can prohibit this or wait for the page to get into an appropriate state. 3145 * 3146 * We do this without the lock held, so that it can sleep if it needs to. 3147 */ 3148 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3149 { 3150 vm_fault_t ret; 3151 unsigned int old_flags = vmf->flags; 3152 3153 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3154 3155 if (vmf->vma->vm_file && 3156 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3157 return VM_FAULT_SIGBUS; 3158 3159 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3160 /* Restore original flags so that caller is not surprised */ 3161 vmf->flags = old_flags; 3162 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3163 return ret; 3164 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3165 folio_lock(folio); 3166 if (!folio->mapping) { 3167 folio_unlock(folio); 3168 return 0; /* retry */ 3169 } 3170 ret |= VM_FAULT_LOCKED; 3171 } else 3172 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3173 return ret; 3174 } 3175 3176 /* 3177 * Handle dirtying of a page in shared file mapping on a write fault. 3178 * 3179 * The function expects the page to be locked and unlocks it. 3180 */ 3181 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3182 { 3183 struct vm_area_struct *vma = vmf->vma; 3184 struct address_space *mapping; 3185 struct folio *folio = page_folio(vmf->page); 3186 bool dirtied; 3187 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3188 3189 dirtied = folio_mark_dirty(folio); 3190 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3191 /* 3192 * Take a local copy of the address_space - folio.mapping may be zeroed 3193 * by truncate after folio_unlock(). The address_space itself remains 3194 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3195 * release semantics to prevent the compiler from undoing this copying. 3196 */ 3197 mapping = folio_raw_mapping(folio); 3198 folio_unlock(folio); 3199 3200 if (!page_mkwrite) 3201 file_update_time(vma->vm_file); 3202 3203 /* 3204 * Throttle page dirtying rate down to writeback speed. 3205 * 3206 * mapping may be NULL here because some device drivers do not 3207 * set page.mapping but still dirty their pages 3208 * 3209 * Drop the mmap_lock before waiting on IO, if we can. The file 3210 * is pinning the mapping, as per above. 3211 */ 3212 if ((dirtied || page_mkwrite) && mapping) { 3213 struct file *fpin; 3214 3215 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3216 balance_dirty_pages_ratelimited(mapping); 3217 if (fpin) { 3218 fput(fpin); 3219 return VM_FAULT_COMPLETED; 3220 } 3221 } 3222 3223 return 0; 3224 } 3225 3226 /* 3227 * Handle write page faults for pages that can be reused in the current vma 3228 * 3229 * This can happen either due to the mapping being with the VM_SHARED flag, 3230 * or due to us being the last reference standing to the page. In either 3231 * case, all we need to do here is to mark the page as writable and update 3232 * any related book-keeping. 3233 */ 3234 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3235 __releases(vmf->ptl) 3236 { 3237 struct vm_area_struct *vma = vmf->vma; 3238 pte_t entry; 3239 3240 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3241 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3242 3243 if (folio) { 3244 VM_BUG_ON(folio_test_anon(folio) && 3245 !PageAnonExclusive(vmf->page)); 3246 /* 3247 * Clear the folio's cpupid information as the existing 3248 * information potentially belongs to a now completely 3249 * unrelated process. 3250 */ 3251 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3252 } 3253 3254 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3255 entry = pte_mkyoung(vmf->orig_pte); 3256 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3257 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3258 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3259 pte_unmap_unlock(vmf->pte, vmf->ptl); 3260 count_vm_event(PGREUSE); 3261 } 3262 3263 /* 3264 * We could add a bitflag somewhere, but for now, we know that all 3265 * vm_ops that have a ->map_pages have been audited and don't need 3266 * the mmap_lock to be held. 3267 */ 3268 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3269 { 3270 struct vm_area_struct *vma = vmf->vma; 3271 3272 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3273 return 0; 3274 vma_end_read(vma); 3275 return VM_FAULT_RETRY; 3276 } 3277 3278 /** 3279 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3280 * @vmf: The vm_fault descriptor passed from the fault handler. 3281 * 3282 * When preparing to insert an anonymous page into a VMA from a 3283 * fault handler, call this function rather than anon_vma_prepare(). 3284 * If this vma does not already have an associated anon_vma and we are 3285 * only protected by the per-VMA lock, the caller must retry with the 3286 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3287 * determine if this VMA can share its anon_vma, and that's not safe to 3288 * do with only the per-VMA lock held for this VMA. 3289 * 3290 * Return: 0 if fault handling can proceed. Any other value should be 3291 * returned to the caller. 3292 */ 3293 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3294 { 3295 struct vm_area_struct *vma = vmf->vma; 3296 vm_fault_t ret = 0; 3297 3298 if (likely(vma->anon_vma)) 3299 return 0; 3300 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3301 if (!mmap_read_trylock(vma->vm_mm)) 3302 return VM_FAULT_RETRY; 3303 } 3304 if (__anon_vma_prepare(vma)) 3305 ret = VM_FAULT_OOM; 3306 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3307 mmap_read_unlock(vma->vm_mm); 3308 return ret; 3309 } 3310 3311 /* 3312 * Handle the case of a page which we actually need to copy to a new page, 3313 * either due to COW or unsharing. 3314 * 3315 * Called with mmap_lock locked and the old page referenced, but 3316 * without the ptl held. 3317 * 3318 * High level logic flow: 3319 * 3320 * - Allocate a page, copy the content of the old page to the new one. 3321 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3322 * - Take the PTL. If the pte changed, bail out and release the allocated page 3323 * - If the pte is still the way we remember it, update the page table and all 3324 * relevant references. This includes dropping the reference the page-table 3325 * held to the old page, as well as updating the rmap. 3326 * - In any case, unlock the PTL and drop the reference we took to the old page. 3327 */ 3328 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3329 { 3330 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3331 struct vm_area_struct *vma = vmf->vma; 3332 struct mm_struct *mm = vma->vm_mm; 3333 struct folio *old_folio = NULL; 3334 struct folio *new_folio = NULL; 3335 pte_t entry; 3336 int page_copied = 0; 3337 struct mmu_notifier_range range; 3338 vm_fault_t ret; 3339 bool pfn_is_zero; 3340 3341 delayacct_wpcopy_start(); 3342 3343 if (vmf->page) 3344 old_folio = page_folio(vmf->page); 3345 ret = vmf_anon_prepare(vmf); 3346 if (unlikely(ret)) 3347 goto out; 3348 3349 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3350 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3351 if (!new_folio) 3352 goto oom; 3353 3354 if (!pfn_is_zero) { 3355 int err; 3356 3357 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3358 if (err) { 3359 /* 3360 * COW failed, if the fault was solved by other, 3361 * it's fine. If not, userspace would re-fault on 3362 * the same address and we will handle the fault 3363 * from the second attempt. 3364 * The -EHWPOISON case will not be retried. 3365 */ 3366 folio_put(new_folio); 3367 if (old_folio) 3368 folio_put(old_folio); 3369 3370 delayacct_wpcopy_end(); 3371 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3372 } 3373 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3374 } 3375 3376 __folio_mark_uptodate(new_folio); 3377 3378 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3379 vmf->address & PAGE_MASK, 3380 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3381 mmu_notifier_invalidate_range_start(&range); 3382 3383 /* 3384 * Re-check the pte - we dropped the lock 3385 */ 3386 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3387 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3388 if (old_folio) { 3389 if (!folio_test_anon(old_folio)) { 3390 dec_mm_counter(mm, mm_counter_file(old_folio)); 3391 inc_mm_counter(mm, MM_ANONPAGES); 3392 } 3393 } else { 3394 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3395 inc_mm_counter(mm, MM_ANONPAGES); 3396 } 3397 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3398 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3399 entry = pte_sw_mkyoung(entry); 3400 if (unlikely(unshare)) { 3401 if (pte_soft_dirty(vmf->orig_pte)) 3402 entry = pte_mksoft_dirty(entry); 3403 if (pte_uffd_wp(vmf->orig_pte)) 3404 entry = pte_mkuffd_wp(entry); 3405 } else { 3406 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3407 } 3408 3409 /* 3410 * Clear the pte entry and flush it first, before updating the 3411 * pte with the new entry, to keep TLBs on different CPUs in 3412 * sync. This code used to set the new PTE then flush TLBs, but 3413 * that left a window where the new PTE could be loaded into 3414 * some TLBs while the old PTE remains in others. 3415 */ 3416 ptep_clear_flush(vma, vmf->address, vmf->pte); 3417 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3418 folio_add_lru_vma(new_folio, vma); 3419 BUG_ON(unshare && pte_write(entry)); 3420 set_pte_at(mm, vmf->address, vmf->pte, entry); 3421 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3422 if (old_folio) { 3423 /* 3424 * Only after switching the pte to the new page may 3425 * we remove the mapcount here. Otherwise another 3426 * process may come and find the rmap count decremented 3427 * before the pte is switched to the new page, and 3428 * "reuse" the old page writing into it while our pte 3429 * here still points into it and can be read by other 3430 * threads. 3431 * 3432 * The critical issue is to order this 3433 * folio_remove_rmap_pte() with the ptp_clear_flush 3434 * above. Those stores are ordered by (if nothing else,) 3435 * the barrier present in the atomic_add_negative 3436 * in folio_remove_rmap_pte(); 3437 * 3438 * Then the TLB flush in ptep_clear_flush ensures that 3439 * no process can access the old page before the 3440 * decremented mapcount is visible. And the old page 3441 * cannot be reused until after the decremented 3442 * mapcount is visible. So transitively, TLBs to 3443 * old page will be flushed before it can be reused. 3444 */ 3445 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3446 } 3447 3448 /* Free the old page.. */ 3449 new_folio = old_folio; 3450 page_copied = 1; 3451 pte_unmap_unlock(vmf->pte, vmf->ptl); 3452 } else if (vmf->pte) { 3453 update_mmu_tlb(vma, vmf->address, vmf->pte); 3454 pte_unmap_unlock(vmf->pte, vmf->ptl); 3455 } 3456 3457 mmu_notifier_invalidate_range_end(&range); 3458 3459 if (new_folio) 3460 folio_put(new_folio); 3461 if (old_folio) { 3462 if (page_copied) 3463 free_swap_cache(old_folio); 3464 folio_put(old_folio); 3465 } 3466 3467 delayacct_wpcopy_end(); 3468 return 0; 3469 oom: 3470 ret = VM_FAULT_OOM; 3471 out: 3472 if (old_folio) 3473 folio_put(old_folio); 3474 3475 delayacct_wpcopy_end(); 3476 return ret; 3477 } 3478 3479 /** 3480 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3481 * writeable once the page is prepared 3482 * 3483 * @vmf: structure describing the fault 3484 * @folio: the folio of vmf->page 3485 * 3486 * This function handles all that is needed to finish a write page fault in a 3487 * shared mapping due to PTE being read-only once the mapped page is prepared. 3488 * It handles locking of PTE and modifying it. 3489 * 3490 * The function expects the page to be locked or other protection against 3491 * concurrent faults / writeback (such as DAX radix tree locks). 3492 * 3493 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3494 * we acquired PTE lock. 3495 */ 3496 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3497 { 3498 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3499 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3500 &vmf->ptl); 3501 if (!vmf->pte) 3502 return VM_FAULT_NOPAGE; 3503 /* 3504 * We might have raced with another page fault while we released the 3505 * pte_offset_map_lock. 3506 */ 3507 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3508 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3509 pte_unmap_unlock(vmf->pte, vmf->ptl); 3510 return VM_FAULT_NOPAGE; 3511 } 3512 wp_page_reuse(vmf, folio); 3513 return 0; 3514 } 3515 3516 /* 3517 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3518 * mapping 3519 */ 3520 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3521 { 3522 struct vm_area_struct *vma = vmf->vma; 3523 3524 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3525 vm_fault_t ret; 3526 3527 pte_unmap_unlock(vmf->pte, vmf->ptl); 3528 ret = vmf_can_call_fault(vmf); 3529 if (ret) 3530 return ret; 3531 3532 vmf->flags |= FAULT_FLAG_MKWRITE; 3533 ret = vma->vm_ops->pfn_mkwrite(vmf); 3534 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3535 return ret; 3536 return finish_mkwrite_fault(vmf, NULL); 3537 } 3538 wp_page_reuse(vmf, NULL); 3539 return 0; 3540 } 3541 3542 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3543 __releases(vmf->ptl) 3544 { 3545 struct vm_area_struct *vma = vmf->vma; 3546 vm_fault_t ret = 0; 3547 3548 folio_get(folio); 3549 3550 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3551 vm_fault_t tmp; 3552 3553 pte_unmap_unlock(vmf->pte, vmf->ptl); 3554 tmp = vmf_can_call_fault(vmf); 3555 if (tmp) { 3556 folio_put(folio); 3557 return tmp; 3558 } 3559 3560 tmp = do_page_mkwrite(vmf, folio); 3561 if (unlikely(!tmp || (tmp & 3562 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3563 folio_put(folio); 3564 return tmp; 3565 } 3566 tmp = finish_mkwrite_fault(vmf, folio); 3567 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3568 folio_unlock(folio); 3569 folio_put(folio); 3570 return tmp; 3571 } 3572 } else { 3573 wp_page_reuse(vmf, folio); 3574 folio_lock(folio); 3575 } 3576 ret |= fault_dirty_shared_page(vmf); 3577 folio_put(folio); 3578 3579 return ret; 3580 } 3581 3582 static bool wp_can_reuse_anon_folio(struct folio *folio, 3583 struct vm_area_struct *vma) 3584 { 3585 /* 3586 * We could currently only reuse a subpage of a large folio if no 3587 * other subpages of the large folios are still mapped. However, 3588 * let's just consistently not reuse subpages even if we could 3589 * reuse in that scenario, and give back a large folio a bit 3590 * sooner. 3591 */ 3592 if (folio_test_large(folio)) 3593 return false; 3594 3595 /* 3596 * We have to verify under folio lock: these early checks are 3597 * just an optimization to avoid locking the folio and freeing 3598 * the swapcache if there is little hope that we can reuse. 3599 * 3600 * KSM doesn't necessarily raise the folio refcount. 3601 */ 3602 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3603 return false; 3604 if (!folio_test_lru(folio)) 3605 /* 3606 * We cannot easily detect+handle references from 3607 * remote LRU caches or references to LRU folios. 3608 */ 3609 lru_add_drain(); 3610 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3611 return false; 3612 if (!folio_trylock(folio)) 3613 return false; 3614 if (folio_test_swapcache(folio)) 3615 folio_free_swap(folio); 3616 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3617 folio_unlock(folio); 3618 return false; 3619 } 3620 /* 3621 * Ok, we've got the only folio reference from our mapping 3622 * and the folio is locked, it's dark out, and we're wearing 3623 * sunglasses. Hit it. 3624 */ 3625 folio_move_anon_rmap(folio, vma); 3626 folio_unlock(folio); 3627 return true; 3628 } 3629 3630 /* 3631 * This routine handles present pages, when 3632 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3633 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3634 * (FAULT_FLAG_UNSHARE) 3635 * 3636 * It is done by copying the page to a new address and decrementing the 3637 * shared-page counter for the old page. 3638 * 3639 * Note that this routine assumes that the protection checks have been 3640 * done by the caller (the low-level page fault routine in most cases). 3641 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3642 * done any necessary COW. 3643 * 3644 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3645 * though the page will change only once the write actually happens. This 3646 * avoids a few races, and potentially makes it more efficient. 3647 * 3648 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3649 * but allow concurrent faults), with pte both mapped and locked. 3650 * We return with mmap_lock still held, but pte unmapped and unlocked. 3651 */ 3652 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3653 __releases(vmf->ptl) 3654 { 3655 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3656 struct vm_area_struct *vma = vmf->vma; 3657 struct folio *folio = NULL; 3658 pte_t pte; 3659 3660 if (likely(!unshare)) { 3661 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3662 if (!userfaultfd_wp_async(vma)) { 3663 pte_unmap_unlock(vmf->pte, vmf->ptl); 3664 return handle_userfault(vmf, VM_UFFD_WP); 3665 } 3666 3667 /* 3668 * Nothing needed (cache flush, TLB invalidations, 3669 * etc.) because we're only removing the uffd-wp bit, 3670 * which is completely invisible to the user. 3671 */ 3672 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3673 3674 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3675 /* 3676 * Update this to be prepared for following up CoW 3677 * handling 3678 */ 3679 vmf->orig_pte = pte; 3680 } 3681 3682 /* 3683 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3684 * is flushed in this case before copying. 3685 */ 3686 if (unlikely(userfaultfd_wp(vmf->vma) && 3687 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3688 flush_tlb_page(vmf->vma, vmf->address); 3689 } 3690 3691 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3692 3693 if (vmf->page) 3694 folio = page_folio(vmf->page); 3695 3696 /* 3697 * Shared mapping: we are guaranteed to have VM_WRITE and 3698 * FAULT_FLAG_WRITE set at this point. 3699 */ 3700 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3701 /* 3702 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3703 * VM_PFNMAP VMA. 3704 * 3705 * We should not cow pages in a shared writeable mapping. 3706 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3707 */ 3708 if (!vmf->page) 3709 return wp_pfn_shared(vmf); 3710 return wp_page_shared(vmf, folio); 3711 } 3712 3713 /* 3714 * Private mapping: create an exclusive anonymous page copy if reuse 3715 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3716 * 3717 * If we encounter a page that is marked exclusive, we must reuse 3718 * the page without further checks. 3719 */ 3720 if (folio && folio_test_anon(folio) && 3721 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3722 if (!PageAnonExclusive(vmf->page)) 3723 SetPageAnonExclusive(vmf->page); 3724 if (unlikely(unshare)) { 3725 pte_unmap_unlock(vmf->pte, vmf->ptl); 3726 return 0; 3727 } 3728 wp_page_reuse(vmf, folio); 3729 return 0; 3730 } 3731 /* 3732 * Ok, we need to copy. Oh, well.. 3733 */ 3734 if (folio) 3735 folio_get(folio); 3736 3737 pte_unmap_unlock(vmf->pte, vmf->ptl); 3738 #ifdef CONFIG_KSM 3739 if (folio && folio_test_ksm(folio)) 3740 count_vm_event(COW_KSM); 3741 #endif 3742 return wp_page_copy(vmf); 3743 } 3744 3745 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3746 unsigned long start_addr, unsigned long end_addr, 3747 struct zap_details *details) 3748 { 3749 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3750 } 3751 3752 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3753 pgoff_t first_index, 3754 pgoff_t last_index, 3755 struct zap_details *details) 3756 { 3757 struct vm_area_struct *vma; 3758 pgoff_t vba, vea, zba, zea; 3759 3760 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3761 vba = vma->vm_pgoff; 3762 vea = vba + vma_pages(vma) - 1; 3763 zba = max(first_index, vba); 3764 zea = min(last_index, vea); 3765 3766 unmap_mapping_range_vma(vma, 3767 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3768 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3769 details); 3770 } 3771 } 3772 3773 /** 3774 * unmap_mapping_folio() - Unmap single folio from processes. 3775 * @folio: The locked folio to be unmapped. 3776 * 3777 * Unmap this folio from any userspace process which still has it mmaped. 3778 * Typically, for efficiency, the range of nearby pages has already been 3779 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3780 * truncation or invalidation holds the lock on a folio, it may find that 3781 * the page has been remapped again: and then uses unmap_mapping_folio() 3782 * to unmap it finally. 3783 */ 3784 void unmap_mapping_folio(struct folio *folio) 3785 { 3786 struct address_space *mapping = folio->mapping; 3787 struct zap_details details = { }; 3788 pgoff_t first_index; 3789 pgoff_t last_index; 3790 3791 VM_BUG_ON(!folio_test_locked(folio)); 3792 3793 first_index = folio->index; 3794 last_index = folio_next_index(folio) - 1; 3795 3796 details.even_cows = false; 3797 details.single_folio = folio; 3798 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3799 3800 i_mmap_lock_read(mapping); 3801 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3802 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3803 last_index, &details); 3804 i_mmap_unlock_read(mapping); 3805 } 3806 3807 /** 3808 * unmap_mapping_pages() - Unmap pages from processes. 3809 * @mapping: The address space containing pages to be unmapped. 3810 * @start: Index of first page to be unmapped. 3811 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3812 * @even_cows: Whether to unmap even private COWed pages. 3813 * 3814 * Unmap the pages in this address space from any userspace process which 3815 * has them mmaped. Generally, you want to remove COWed pages as well when 3816 * a file is being truncated, but not when invalidating pages from the page 3817 * cache. 3818 */ 3819 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3820 pgoff_t nr, bool even_cows) 3821 { 3822 struct zap_details details = { }; 3823 pgoff_t first_index = start; 3824 pgoff_t last_index = start + nr - 1; 3825 3826 details.even_cows = even_cows; 3827 if (last_index < first_index) 3828 last_index = ULONG_MAX; 3829 3830 i_mmap_lock_read(mapping); 3831 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3832 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3833 last_index, &details); 3834 i_mmap_unlock_read(mapping); 3835 } 3836 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3837 3838 /** 3839 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3840 * address_space corresponding to the specified byte range in the underlying 3841 * file. 3842 * 3843 * @mapping: the address space containing mmaps to be unmapped. 3844 * @holebegin: byte in first page to unmap, relative to the start of 3845 * the underlying file. This will be rounded down to a PAGE_SIZE 3846 * boundary. Note that this is different from truncate_pagecache(), which 3847 * must keep the partial page. In contrast, we must get rid of 3848 * partial pages. 3849 * @holelen: size of prospective hole in bytes. This will be rounded 3850 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3851 * end of the file. 3852 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3853 * but 0 when invalidating pagecache, don't throw away private data. 3854 */ 3855 void unmap_mapping_range(struct address_space *mapping, 3856 loff_t const holebegin, loff_t const holelen, int even_cows) 3857 { 3858 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3859 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3860 3861 /* Check for overflow. */ 3862 if (sizeof(holelen) > sizeof(hlen)) { 3863 long long holeend = 3864 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3865 if (holeend & ~(long long)ULONG_MAX) 3866 hlen = ULONG_MAX - hba + 1; 3867 } 3868 3869 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3870 } 3871 EXPORT_SYMBOL(unmap_mapping_range); 3872 3873 /* 3874 * Restore a potential device exclusive pte to a working pte entry 3875 */ 3876 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3877 { 3878 struct folio *folio = page_folio(vmf->page); 3879 struct vm_area_struct *vma = vmf->vma; 3880 struct mmu_notifier_range range; 3881 vm_fault_t ret; 3882 3883 /* 3884 * We need a reference to lock the folio because we don't hold 3885 * the PTL so a racing thread can remove the device-exclusive 3886 * entry and unmap it. If the folio is free the entry must 3887 * have been removed already. If it happens to have already 3888 * been re-allocated after being freed all we do is lock and 3889 * unlock it. 3890 */ 3891 if (!folio_try_get(folio)) 3892 return 0; 3893 3894 ret = folio_lock_or_retry(folio, vmf); 3895 if (ret) { 3896 folio_put(folio); 3897 return ret; 3898 } 3899 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3900 vma->vm_mm, vmf->address & PAGE_MASK, 3901 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3902 mmu_notifier_invalidate_range_start(&range); 3903 3904 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3905 &vmf->ptl); 3906 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3907 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3908 3909 if (vmf->pte) 3910 pte_unmap_unlock(vmf->pte, vmf->ptl); 3911 folio_unlock(folio); 3912 folio_put(folio); 3913 3914 mmu_notifier_invalidate_range_end(&range); 3915 return 0; 3916 } 3917 3918 static inline bool should_try_to_free_swap(struct folio *folio, 3919 struct vm_area_struct *vma, 3920 unsigned int fault_flags) 3921 { 3922 if (!folio_test_swapcache(folio)) 3923 return false; 3924 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3925 folio_test_mlocked(folio)) 3926 return true; 3927 /* 3928 * If we want to map a page that's in the swapcache writable, we 3929 * have to detect via the refcount if we're really the exclusive 3930 * user. Try freeing the swapcache to get rid of the swapcache 3931 * reference only in case it's likely that we'll be the exlusive user. 3932 */ 3933 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3934 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 3935 } 3936 3937 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3938 { 3939 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3940 vmf->address, &vmf->ptl); 3941 if (!vmf->pte) 3942 return 0; 3943 /* 3944 * Be careful so that we will only recover a special uffd-wp pte into a 3945 * none pte. Otherwise it means the pte could have changed, so retry. 3946 * 3947 * This should also cover the case where e.g. the pte changed 3948 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3949 * So is_pte_marker() check is not enough to safely drop the pte. 3950 */ 3951 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3952 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3953 pte_unmap_unlock(vmf->pte, vmf->ptl); 3954 return 0; 3955 } 3956 3957 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3958 { 3959 if (vma_is_anonymous(vmf->vma)) 3960 return do_anonymous_page(vmf); 3961 else 3962 return do_fault(vmf); 3963 } 3964 3965 /* 3966 * This is actually a page-missing access, but with uffd-wp special pte 3967 * installed. It means this pte was wr-protected before being unmapped. 3968 */ 3969 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3970 { 3971 /* 3972 * Just in case there're leftover special ptes even after the region 3973 * got unregistered - we can simply clear them. 3974 */ 3975 if (unlikely(!userfaultfd_wp(vmf->vma))) 3976 return pte_marker_clear(vmf); 3977 3978 return do_pte_missing(vmf); 3979 } 3980 3981 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3982 { 3983 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3984 unsigned long marker = pte_marker_get(entry); 3985 3986 /* 3987 * PTE markers should never be empty. If anything weird happened, 3988 * the best thing to do is to kill the process along with its mm. 3989 */ 3990 if (WARN_ON_ONCE(!marker)) 3991 return VM_FAULT_SIGBUS; 3992 3993 /* Higher priority than uffd-wp when data corrupted */ 3994 if (marker & PTE_MARKER_POISONED) 3995 return VM_FAULT_HWPOISON; 3996 3997 if (pte_marker_entry_uffd_wp(entry)) 3998 return pte_marker_handle_uffd_wp(vmf); 3999 4000 /* This is an unknown pte marker */ 4001 return VM_FAULT_SIGBUS; 4002 } 4003 4004 /* 4005 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4006 * but allow concurrent faults), and pte mapped but not yet locked. 4007 * We return with pte unmapped and unlocked. 4008 * 4009 * We return with the mmap_lock locked or unlocked in the same cases 4010 * as does filemap_fault(). 4011 */ 4012 vm_fault_t do_swap_page(struct vm_fault *vmf) 4013 { 4014 struct vm_area_struct *vma = vmf->vma; 4015 struct folio *swapcache, *folio = NULL; 4016 struct page *page; 4017 struct swap_info_struct *si = NULL; 4018 rmap_t rmap_flags = RMAP_NONE; 4019 bool need_clear_cache = false; 4020 bool exclusive = false; 4021 swp_entry_t entry; 4022 pte_t pte; 4023 vm_fault_t ret = 0; 4024 void *shadow = NULL; 4025 int nr_pages; 4026 unsigned long page_idx; 4027 unsigned long address; 4028 pte_t *ptep; 4029 4030 if (!pte_unmap_same(vmf)) 4031 goto out; 4032 4033 entry = pte_to_swp_entry(vmf->orig_pte); 4034 if (unlikely(non_swap_entry(entry))) { 4035 if (is_migration_entry(entry)) { 4036 migration_entry_wait(vma->vm_mm, vmf->pmd, 4037 vmf->address); 4038 } else if (is_device_exclusive_entry(entry)) { 4039 vmf->page = pfn_swap_entry_to_page(entry); 4040 ret = remove_device_exclusive_entry(vmf); 4041 } else if (is_device_private_entry(entry)) { 4042 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4043 /* 4044 * migrate_to_ram is not yet ready to operate 4045 * under VMA lock. 4046 */ 4047 vma_end_read(vma); 4048 ret = VM_FAULT_RETRY; 4049 goto out; 4050 } 4051 4052 vmf->page = pfn_swap_entry_to_page(entry); 4053 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4054 vmf->address, &vmf->ptl); 4055 if (unlikely(!vmf->pte || 4056 !pte_same(ptep_get(vmf->pte), 4057 vmf->orig_pte))) 4058 goto unlock; 4059 4060 /* 4061 * Get a page reference while we know the page can't be 4062 * freed. 4063 */ 4064 get_page(vmf->page); 4065 pte_unmap_unlock(vmf->pte, vmf->ptl); 4066 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4067 put_page(vmf->page); 4068 } else if (is_hwpoison_entry(entry)) { 4069 ret = VM_FAULT_HWPOISON; 4070 } else if (is_pte_marker_entry(entry)) { 4071 ret = handle_pte_marker(vmf); 4072 } else { 4073 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4074 ret = VM_FAULT_SIGBUS; 4075 } 4076 goto out; 4077 } 4078 4079 /* Prevent swapoff from happening to us. */ 4080 si = get_swap_device(entry); 4081 if (unlikely(!si)) 4082 goto out; 4083 4084 folio = swap_cache_get_folio(entry, vma, vmf->address); 4085 if (folio) 4086 page = folio_file_page(folio, swp_offset(entry)); 4087 swapcache = folio; 4088 4089 if (!folio) { 4090 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4091 __swap_count(entry) == 1) { 4092 /* 4093 * Prevent parallel swapin from proceeding with 4094 * the cache flag. Otherwise, another thread may 4095 * finish swapin first, free the entry, and swapout 4096 * reusing the same entry. It's undetectable as 4097 * pte_same() returns true due to entry reuse. 4098 */ 4099 if (swapcache_prepare(entry)) { 4100 /* Relax a bit to prevent rapid repeated page faults */ 4101 schedule_timeout_uninterruptible(1); 4102 goto out; 4103 } 4104 need_clear_cache = true; 4105 4106 /* skip swapcache */ 4107 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 4108 vma, vmf->address, false); 4109 page = &folio->page; 4110 if (folio) { 4111 __folio_set_locked(folio); 4112 __folio_set_swapbacked(folio); 4113 4114 if (mem_cgroup_swapin_charge_folio(folio, 4115 vma->vm_mm, GFP_KERNEL, 4116 entry)) { 4117 ret = VM_FAULT_OOM; 4118 goto out_page; 4119 } 4120 mem_cgroup_swapin_uncharge_swap(entry); 4121 4122 shadow = get_shadow_from_swap_cache(entry); 4123 if (shadow) 4124 workingset_refault(folio, shadow); 4125 4126 folio_add_lru(folio); 4127 4128 /* To provide entry to swap_read_folio() */ 4129 folio->swap = entry; 4130 swap_read_folio(folio, NULL); 4131 folio->private = NULL; 4132 } 4133 } else { 4134 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4135 vmf); 4136 if (page) 4137 folio = page_folio(page); 4138 swapcache = folio; 4139 } 4140 4141 if (!folio) { 4142 /* 4143 * Back out if somebody else faulted in this pte 4144 * while we released the pte lock. 4145 */ 4146 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4147 vmf->address, &vmf->ptl); 4148 if (likely(vmf->pte && 4149 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4150 ret = VM_FAULT_OOM; 4151 goto unlock; 4152 } 4153 4154 /* Had to read the page from swap area: Major fault */ 4155 ret = VM_FAULT_MAJOR; 4156 count_vm_event(PGMAJFAULT); 4157 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4158 } else if (PageHWPoison(page)) { 4159 /* 4160 * hwpoisoned dirty swapcache pages are kept for killing 4161 * owner processes (which may be unknown at hwpoison time) 4162 */ 4163 ret = VM_FAULT_HWPOISON; 4164 goto out_release; 4165 } 4166 4167 ret |= folio_lock_or_retry(folio, vmf); 4168 if (ret & VM_FAULT_RETRY) 4169 goto out_release; 4170 4171 if (swapcache) { 4172 /* 4173 * Make sure folio_free_swap() or swapoff did not release the 4174 * swapcache from under us. The page pin, and pte_same test 4175 * below, are not enough to exclude that. Even if it is still 4176 * swapcache, we need to check that the page's swap has not 4177 * changed. 4178 */ 4179 if (unlikely(!folio_test_swapcache(folio) || 4180 page_swap_entry(page).val != entry.val)) 4181 goto out_page; 4182 4183 /* 4184 * KSM sometimes has to copy on read faults, for example, if 4185 * page->index of !PageKSM() pages would be nonlinear inside the 4186 * anon VMA -- PageKSM() is lost on actual swapout. 4187 */ 4188 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4189 if (unlikely(!folio)) { 4190 ret = VM_FAULT_OOM; 4191 folio = swapcache; 4192 goto out_page; 4193 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4194 ret = VM_FAULT_HWPOISON; 4195 folio = swapcache; 4196 goto out_page; 4197 } 4198 if (folio != swapcache) 4199 page = folio_page(folio, 0); 4200 4201 /* 4202 * If we want to map a page that's in the swapcache writable, we 4203 * have to detect via the refcount if we're really the exclusive 4204 * owner. Try removing the extra reference from the local LRU 4205 * caches if required. 4206 */ 4207 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4208 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4209 lru_add_drain(); 4210 } 4211 4212 folio_throttle_swaprate(folio, GFP_KERNEL); 4213 4214 /* 4215 * Back out if somebody else already faulted in this pte. 4216 */ 4217 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4218 &vmf->ptl); 4219 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4220 goto out_nomap; 4221 4222 if (unlikely(!folio_test_uptodate(folio))) { 4223 ret = VM_FAULT_SIGBUS; 4224 goto out_nomap; 4225 } 4226 4227 nr_pages = 1; 4228 page_idx = 0; 4229 address = vmf->address; 4230 ptep = vmf->pte; 4231 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4232 int nr = folio_nr_pages(folio); 4233 unsigned long idx = folio_page_idx(folio, page); 4234 unsigned long folio_start = address - idx * PAGE_SIZE; 4235 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4236 pte_t *folio_ptep; 4237 pte_t folio_pte; 4238 4239 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4240 goto check_folio; 4241 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4242 goto check_folio; 4243 4244 folio_ptep = vmf->pte - idx; 4245 folio_pte = ptep_get(folio_ptep); 4246 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4247 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4248 goto check_folio; 4249 4250 page_idx = idx; 4251 address = folio_start; 4252 ptep = folio_ptep; 4253 nr_pages = nr; 4254 entry = folio->swap; 4255 page = &folio->page; 4256 } 4257 4258 check_folio: 4259 /* 4260 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4261 * must never point at an anonymous page in the swapcache that is 4262 * PG_anon_exclusive. Sanity check that this holds and especially, that 4263 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4264 * check after taking the PT lock and making sure that nobody 4265 * concurrently faulted in this page and set PG_anon_exclusive. 4266 */ 4267 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4268 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4269 4270 /* 4271 * Check under PT lock (to protect against concurrent fork() sharing 4272 * the swap entry concurrently) for certainly exclusive pages. 4273 */ 4274 if (!folio_test_ksm(folio)) { 4275 exclusive = pte_swp_exclusive(vmf->orig_pte); 4276 if (folio != swapcache) { 4277 /* 4278 * We have a fresh page that is not exposed to the 4279 * swapcache -> certainly exclusive. 4280 */ 4281 exclusive = true; 4282 } else if (exclusive && folio_test_writeback(folio) && 4283 data_race(si->flags & SWP_STABLE_WRITES)) { 4284 /* 4285 * This is tricky: not all swap backends support 4286 * concurrent page modifications while under writeback. 4287 * 4288 * So if we stumble over such a page in the swapcache 4289 * we must not set the page exclusive, otherwise we can 4290 * map it writable without further checks and modify it 4291 * while still under writeback. 4292 * 4293 * For these problematic swap backends, simply drop the 4294 * exclusive marker: this is perfectly fine as we start 4295 * writeback only if we fully unmapped the page and 4296 * there are no unexpected references on the page after 4297 * unmapping succeeded. After fully unmapped, no 4298 * further GUP references (FOLL_GET and FOLL_PIN) can 4299 * appear, so dropping the exclusive marker and mapping 4300 * it only R/O is fine. 4301 */ 4302 exclusive = false; 4303 } 4304 } 4305 4306 /* 4307 * Some architectures may have to restore extra metadata to the page 4308 * when reading from swap. This metadata may be indexed by swap entry 4309 * so this must be called before swap_free(). 4310 */ 4311 arch_swap_restore(folio_swap(entry, folio), folio); 4312 4313 /* 4314 * Remove the swap entry and conditionally try to free up the swapcache. 4315 * We're already holding a reference on the page but haven't mapped it 4316 * yet. 4317 */ 4318 swap_free_nr(entry, nr_pages); 4319 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4320 folio_free_swap(folio); 4321 4322 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4323 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4324 pte = mk_pte(page, vma->vm_page_prot); 4325 if (pte_swp_soft_dirty(vmf->orig_pte)) 4326 pte = pte_mksoft_dirty(pte); 4327 if (pte_swp_uffd_wp(vmf->orig_pte)) 4328 pte = pte_mkuffd_wp(pte); 4329 4330 /* 4331 * Same logic as in do_wp_page(); however, optimize for pages that are 4332 * certainly not shared either because we just allocated them without 4333 * exposing them to the swapcache or because the swap entry indicates 4334 * exclusivity. 4335 */ 4336 if (!folio_test_ksm(folio) && 4337 (exclusive || folio_ref_count(folio) == 1)) { 4338 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4339 !pte_needs_soft_dirty_wp(vma, pte)) { 4340 pte = pte_mkwrite(pte, vma); 4341 if (vmf->flags & FAULT_FLAG_WRITE) { 4342 pte = pte_mkdirty(pte); 4343 vmf->flags &= ~FAULT_FLAG_WRITE; 4344 } 4345 } 4346 rmap_flags |= RMAP_EXCLUSIVE; 4347 } 4348 folio_ref_add(folio, nr_pages - 1); 4349 flush_icache_pages(vma, page, nr_pages); 4350 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4351 4352 /* ksm created a completely new copy */ 4353 if (unlikely(folio != swapcache && swapcache)) { 4354 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4355 folio_add_lru_vma(folio, vma); 4356 } else if (!folio_test_anon(folio)) { 4357 /* 4358 * We currently only expect small !anon folios, which are either 4359 * fully exclusive or fully shared. If we ever get large folios 4360 * here, we have to be careful. 4361 */ 4362 VM_WARN_ON_ONCE(folio_test_large(folio)); 4363 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4364 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4365 } else { 4366 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4367 rmap_flags); 4368 } 4369 4370 VM_BUG_ON(!folio_test_anon(folio) || 4371 (pte_write(pte) && !PageAnonExclusive(page))); 4372 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4373 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4374 pte, pte, nr_pages); 4375 4376 folio_unlock(folio); 4377 if (folio != swapcache && swapcache) { 4378 /* 4379 * Hold the lock to avoid the swap entry to be reused 4380 * until we take the PT lock for the pte_same() check 4381 * (to avoid false positives from pte_same). For 4382 * further safety release the lock after the swap_free 4383 * so that the swap count won't change under a 4384 * parallel locked swapcache. 4385 */ 4386 folio_unlock(swapcache); 4387 folio_put(swapcache); 4388 } 4389 4390 if (vmf->flags & FAULT_FLAG_WRITE) { 4391 ret |= do_wp_page(vmf); 4392 if (ret & VM_FAULT_ERROR) 4393 ret &= VM_FAULT_ERROR; 4394 goto out; 4395 } 4396 4397 /* No need to invalidate - it was non-present before */ 4398 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4399 unlock: 4400 if (vmf->pte) 4401 pte_unmap_unlock(vmf->pte, vmf->ptl); 4402 out: 4403 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4404 if (need_clear_cache) 4405 swapcache_clear(si, entry); 4406 if (si) 4407 put_swap_device(si); 4408 return ret; 4409 out_nomap: 4410 if (vmf->pte) 4411 pte_unmap_unlock(vmf->pte, vmf->ptl); 4412 out_page: 4413 folio_unlock(folio); 4414 out_release: 4415 folio_put(folio); 4416 if (folio != swapcache && swapcache) { 4417 folio_unlock(swapcache); 4418 folio_put(swapcache); 4419 } 4420 if (need_clear_cache) 4421 swapcache_clear(si, entry); 4422 if (si) 4423 put_swap_device(si); 4424 return ret; 4425 } 4426 4427 static bool pte_range_none(pte_t *pte, int nr_pages) 4428 { 4429 int i; 4430 4431 for (i = 0; i < nr_pages; i++) { 4432 if (!pte_none(ptep_get_lockless(pte + i))) 4433 return false; 4434 } 4435 4436 return true; 4437 } 4438 4439 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4440 { 4441 struct vm_area_struct *vma = vmf->vma; 4442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4443 unsigned long orders; 4444 struct folio *folio; 4445 unsigned long addr; 4446 pte_t *pte; 4447 gfp_t gfp; 4448 int order; 4449 4450 /* 4451 * If uffd is active for the vma we need per-page fault fidelity to 4452 * maintain the uffd semantics. 4453 */ 4454 if (unlikely(userfaultfd_armed(vma))) 4455 goto fallback; 4456 4457 /* 4458 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4459 * for this vma. Then filter out the orders that can't be allocated over 4460 * the faulting address and still be fully contained in the vma. 4461 */ 4462 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4463 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4464 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4465 4466 if (!orders) 4467 goto fallback; 4468 4469 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4470 if (!pte) 4471 return ERR_PTR(-EAGAIN); 4472 4473 /* 4474 * Find the highest order where the aligned range is completely 4475 * pte_none(). Note that all remaining orders will be completely 4476 * pte_none(). 4477 */ 4478 order = highest_order(orders); 4479 while (orders) { 4480 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4481 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4482 break; 4483 order = next_order(&orders, order); 4484 } 4485 4486 pte_unmap(pte); 4487 4488 if (!orders) 4489 goto fallback; 4490 4491 /* Try allocating the highest of the remaining orders. */ 4492 gfp = vma_thp_gfp_mask(vma); 4493 while (orders) { 4494 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4495 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4496 if (folio) { 4497 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4498 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4499 folio_put(folio); 4500 goto next; 4501 } 4502 folio_throttle_swaprate(folio, gfp); 4503 folio_zero_user(folio, vmf->address); 4504 return folio; 4505 } 4506 next: 4507 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4508 order = next_order(&orders, order); 4509 } 4510 4511 fallback: 4512 #endif 4513 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4514 } 4515 4516 /* 4517 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4518 * but allow concurrent faults), and pte mapped but not yet locked. 4519 * We return with mmap_lock still held, but pte unmapped and unlocked. 4520 */ 4521 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4522 { 4523 struct vm_area_struct *vma = vmf->vma; 4524 unsigned long addr = vmf->address; 4525 struct folio *folio; 4526 vm_fault_t ret = 0; 4527 int nr_pages = 1; 4528 pte_t entry; 4529 4530 /* File mapping without ->vm_ops ? */ 4531 if (vma->vm_flags & VM_SHARED) 4532 return VM_FAULT_SIGBUS; 4533 4534 /* 4535 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4536 * be distinguished from a transient failure of pte_offset_map(). 4537 */ 4538 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4539 return VM_FAULT_OOM; 4540 4541 /* Use the zero-page for reads */ 4542 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4543 !mm_forbids_zeropage(vma->vm_mm)) { 4544 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4545 vma->vm_page_prot)); 4546 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4547 vmf->address, &vmf->ptl); 4548 if (!vmf->pte) 4549 goto unlock; 4550 if (vmf_pte_changed(vmf)) { 4551 update_mmu_tlb(vma, vmf->address, vmf->pte); 4552 goto unlock; 4553 } 4554 ret = check_stable_address_space(vma->vm_mm); 4555 if (ret) 4556 goto unlock; 4557 /* Deliver the page fault to userland, check inside PT lock */ 4558 if (userfaultfd_missing(vma)) { 4559 pte_unmap_unlock(vmf->pte, vmf->ptl); 4560 return handle_userfault(vmf, VM_UFFD_MISSING); 4561 } 4562 goto setpte; 4563 } 4564 4565 /* Allocate our own private page. */ 4566 ret = vmf_anon_prepare(vmf); 4567 if (ret) 4568 return ret; 4569 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4570 folio = alloc_anon_folio(vmf); 4571 if (IS_ERR(folio)) 4572 return 0; 4573 if (!folio) 4574 goto oom; 4575 4576 nr_pages = folio_nr_pages(folio); 4577 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4578 4579 /* 4580 * The memory barrier inside __folio_mark_uptodate makes sure that 4581 * preceding stores to the page contents become visible before 4582 * the set_pte_at() write. 4583 */ 4584 __folio_mark_uptodate(folio); 4585 4586 entry = mk_pte(&folio->page, vma->vm_page_prot); 4587 entry = pte_sw_mkyoung(entry); 4588 if (vma->vm_flags & VM_WRITE) 4589 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4590 4591 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4592 if (!vmf->pte) 4593 goto release; 4594 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4595 update_mmu_tlb(vma, addr, vmf->pte); 4596 goto release; 4597 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4598 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4599 goto release; 4600 } 4601 4602 ret = check_stable_address_space(vma->vm_mm); 4603 if (ret) 4604 goto release; 4605 4606 /* Deliver the page fault to userland, check inside PT lock */ 4607 if (userfaultfd_missing(vma)) { 4608 pte_unmap_unlock(vmf->pte, vmf->ptl); 4609 folio_put(folio); 4610 return handle_userfault(vmf, VM_UFFD_MISSING); 4611 } 4612 4613 folio_ref_add(folio, nr_pages - 1); 4614 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4616 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4617 #endif 4618 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4619 folio_add_lru_vma(folio, vma); 4620 setpte: 4621 if (vmf_orig_pte_uffd_wp(vmf)) 4622 entry = pte_mkuffd_wp(entry); 4623 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4624 4625 /* No need to invalidate - it was non-present before */ 4626 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4627 unlock: 4628 if (vmf->pte) 4629 pte_unmap_unlock(vmf->pte, vmf->ptl); 4630 return ret; 4631 release: 4632 folio_put(folio); 4633 goto unlock; 4634 oom: 4635 return VM_FAULT_OOM; 4636 } 4637 4638 /* 4639 * The mmap_lock must have been held on entry, and may have been 4640 * released depending on flags and vma->vm_ops->fault() return value. 4641 * See filemap_fault() and __lock_page_retry(). 4642 */ 4643 static vm_fault_t __do_fault(struct vm_fault *vmf) 4644 { 4645 struct vm_area_struct *vma = vmf->vma; 4646 struct folio *folio; 4647 vm_fault_t ret; 4648 4649 /* 4650 * Preallocate pte before we take page_lock because this might lead to 4651 * deadlocks for memcg reclaim which waits for pages under writeback: 4652 * lock_page(A) 4653 * SetPageWriteback(A) 4654 * unlock_page(A) 4655 * lock_page(B) 4656 * lock_page(B) 4657 * pte_alloc_one 4658 * shrink_folio_list 4659 * wait_on_page_writeback(A) 4660 * SetPageWriteback(B) 4661 * unlock_page(B) 4662 * # flush A, B to clear the writeback 4663 */ 4664 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4665 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4666 if (!vmf->prealloc_pte) 4667 return VM_FAULT_OOM; 4668 } 4669 4670 ret = vma->vm_ops->fault(vmf); 4671 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4672 VM_FAULT_DONE_COW))) 4673 return ret; 4674 4675 folio = page_folio(vmf->page); 4676 if (unlikely(PageHWPoison(vmf->page))) { 4677 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4678 if (ret & VM_FAULT_LOCKED) { 4679 if (page_mapped(vmf->page)) 4680 unmap_mapping_folio(folio); 4681 /* Retry if a clean folio was removed from the cache. */ 4682 if (mapping_evict_folio(folio->mapping, folio)) 4683 poisonret = VM_FAULT_NOPAGE; 4684 folio_unlock(folio); 4685 } 4686 folio_put(folio); 4687 vmf->page = NULL; 4688 return poisonret; 4689 } 4690 4691 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4692 folio_lock(folio); 4693 else 4694 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4695 4696 return ret; 4697 } 4698 4699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4700 static void deposit_prealloc_pte(struct vm_fault *vmf) 4701 { 4702 struct vm_area_struct *vma = vmf->vma; 4703 4704 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4705 /* 4706 * We are going to consume the prealloc table, 4707 * count that as nr_ptes. 4708 */ 4709 mm_inc_nr_ptes(vma->vm_mm); 4710 vmf->prealloc_pte = NULL; 4711 } 4712 4713 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4714 { 4715 struct folio *folio = page_folio(page); 4716 struct vm_area_struct *vma = vmf->vma; 4717 bool write = vmf->flags & FAULT_FLAG_WRITE; 4718 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4719 pmd_t entry; 4720 vm_fault_t ret = VM_FAULT_FALLBACK; 4721 4722 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4723 return ret; 4724 4725 if (folio_order(folio) != HPAGE_PMD_ORDER) 4726 return ret; 4727 page = &folio->page; 4728 4729 /* 4730 * Just backoff if any subpage of a THP is corrupted otherwise 4731 * the corrupted page may mapped by PMD silently to escape the 4732 * check. This kind of THP just can be PTE mapped. Access to 4733 * the corrupted subpage should trigger SIGBUS as expected. 4734 */ 4735 if (unlikely(folio_test_has_hwpoisoned(folio))) 4736 return ret; 4737 4738 /* 4739 * Archs like ppc64 need additional space to store information 4740 * related to pte entry. Use the preallocated table for that. 4741 */ 4742 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4743 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4744 if (!vmf->prealloc_pte) 4745 return VM_FAULT_OOM; 4746 } 4747 4748 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4749 if (unlikely(!pmd_none(*vmf->pmd))) 4750 goto out; 4751 4752 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4753 4754 entry = mk_huge_pmd(page, vma->vm_page_prot); 4755 if (write) 4756 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4757 4758 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4759 folio_add_file_rmap_pmd(folio, page, vma); 4760 4761 /* 4762 * deposit and withdraw with pmd lock held 4763 */ 4764 if (arch_needs_pgtable_deposit()) 4765 deposit_prealloc_pte(vmf); 4766 4767 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4768 4769 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4770 4771 /* fault is handled */ 4772 ret = 0; 4773 count_vm_event(THP_FILE_MAPPED); 4774 out: 4775 spin_unlock(vmf->ptl); 4776 return ret; 4777 } 4778 #else 4779 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4780 { 4781 return VM_FAULT_FALLBACK; 4782 } 4783 #endif 4784 4785 /** 4786 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4787 * @vmf: Fault decription. 4788 * @folio: The folio that contains @page. 4789 * @page: The first page to create a PTE for. 4790 * @nr: The number of PTEs to create. 4791 * @addr: The first address to create a PTE for. 4792 */ 4793 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4794 struct page *page, unsigned int nr, unsigned long addr) 4795 { 4796 struct vm_area_struct *vma = vmf->vma; 4797 bool write = vmf->flags & FAULT_FLAG_WRITE; 4798 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 4799 pte_t entry; 4800 4801 flush_icache_pages(vma, page, nr); 4802 entry = mk_pte(page, vma->vm_page_prot); 4803 4804 if (prefault && arch_wants_old_prefaulted_pte()) 4805 entry = pte_mkold(entry); 4806 else 4807 entry = pte_sw_mkyoung(entry); 4808 4809 if (write) 4810 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4811 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 4812 entry = pte_mkuffd_wp(entry); 4813 /* copy-on-write page */ 4814 if (write && !(vma->vm_flags & VM_SHARED)) { 4815 VM_BUG_ON_FOLIO(nr != 1, folio); 4816 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4817 folio_add_lru_vma(folio, vma); 4818 } else { 4819 folio_add_file_rmap_ptes(folio, page, nr, vma); 4820 } 4821 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4822 4823 /* no need to invalidate: a not-present page won't be cached */ 4824 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4825 } 4826 4827 static bool vmf_pte_changed(struct vm_fault *vmf) 4828 { 4829 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4830 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4831 4832 return !pte_none(ptep_get(vmf->pte)); 4833 } 4834 4835 /** 4836 * finish_fault - finish page fault once we have prepared the page to fault 4837 * 4838 * @vmf: structure describing the fault 4839 * 4840 * This function handles all that is needed to finish a page fault once the 4841 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4842 * given page, adds reverse page mapping, handles memcg charges and LRU 4843 * addition. 4844 * 4845 * The function expects the page to be locked and on success it consumes a 4846 * reference of a page being mapped (for the PTE which maps it). 4847 * 4848 * Return: %0 on success, %VM_FAULT_ code in case of error. 4849 */ 4850 vm_fault_t finish_fault(struct vm_fault *vmf) 4851 { 4852 struct vm_area_struct *vma = vmf->vma; 4853 struct page *page; 4854 struct folio *folio; 4855 vm_fault_t ret; 4856 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 4857 !(vma->vm_flags & VM_SHARED); 4858 int type, nr_pages; 4859 unsigned long addr = vmf->address; 4860 4861 /* Did we COW the page? */ 4862 if (is_cow) 4863 page = vmf->cow_page; 4864 else 4865 page = vmf->page; 4866 4867 /* 4868 * check even for read faults because we might have lost our CoWed 4869 * page 4870 */ 4871 if (!(vma->vm_flags & VM_SHARED)) { 4872 ret = check_stable_address_space(vma->vm_mm); 4873 if (ret) 4874 return ret; 4875 } 4876 4877 if (pmd_none(*vmf->pmd)) { 4878 if (PageTransCompound(page)) { 4879 ret = do_set_pmd(vmf, page); 4880 if (ret != VM_FAULT_FALLBACK) 4881 return ret; 4882 } 4883 4884 if (vmf->prealloc_pte) 4885 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4886 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4887 return VM_FAULT_OOM; 4888 } 4889 4890 folio = page_folio(page); 4891 nr_pages = folio_nr_pages(folio); 4892 4893 /* 4894 * Using per-page fault to maintain the uffd semantics, and same 4895 * approach also applies to non-anonymous-shmem faults to avoid 4896 * inflating the RSS of the process. 4897 */ 4898 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) { 4899 nr_pages = 1; 4900 } else if (nr_pages > 1) { 4901 pgoff_t idx = folio_page_idx(folio, page); 4902 /* The page offset of vmf->address within the VMA. */ 4903 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4904 /* The index of the entry in the pagetable for fault page. */ 4905 pgoff_t pte_off = pte_index(vmf->address); 4906 4907 /* 4908 * Fallback to per-page fault in case the folio size in page 4909 * cache beyond the VMA limits and PMD pagetable limits. 4910 */ 4911 if (unlikely(vma_off < idx || 4912 vma_off + (nr_pages - idx) > vma_pages(vma) || 4913 pte_off < idx || 4914 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 4915 nr_pages = 1; 4916 } else { 4917 /* Now we can set mappings for the whole large folio. */ 4918 addr = vmf->address - idx * PAGE_SIZE; 4919 page = &folio->page; 4920 } 4921 } 4922 4923 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4924 addr, &vmf->ptl); 4925 if (!vmf->pte) 4926 return VM_FAULT_NOPAGE; 4927 4928 /* Re-check under ptl */ 4929 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 4930 update_mmu_tlb(vma, addr, vmf->pte); 4931 ret = VM_FAULT_NOPAGE; 4932 goto unlock; 4933 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4934 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4935 ret = VM_FAULT_NOPAGE; 4936 goto unlock; 4937 } 4938 4939 folio_ref_add(folio, nr_pages - 1); 4940 set_pte_range(vmf, folio, page, nr_pages, addr); 4941 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 4942 add_mm_counter(vma->vm_mm, type, nr_pages); 4943 ret = 0; 4944 4945 unlock: 4946 pte_unmap_unlock(vmf->pte, vmf->ptl); 4947 return ret; 4948 } 4949 4950 static unsigned long fault_around_pages __read_mostly = 4951 65536 >> PAGE_SHIFT; 4952 4953 #ifdef CONFIG_DEBUG_FS 4954 static int fault_around_bytes_get(void *data, u64 *val) 4955 { 4956 *val = fault_around_pages << PAGE_SHIFT; 4957 return 0; 4958 } 4959 4960 /* 4961 * fault_around_bytes must be rounded down to the nearest page order as it's 4962 * what do_fault_around() expects to see. 4963 */ 4964 static int fault_around_bytes_set(void *data, u64 val) 4965 { 4966 if (val / PAGE_SIZE > PTRS_PER_PTE) 4967 return -EINVAL; 4968 4969 /* 4970 * The minimum value is 1 page, however this results in no fault-around 4971 * at all. See should_fault_around(). 4972 */ 4973 val = max(val, PAGE_SIZE); 4974 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 4975 4976 return 0; 4977 } 4978 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4979 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4980 4981 static int __init fault_around_debugfs(void) 4982 { 4983 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4984 &fault_around_bytes_fops); 4985 return 0; 4986 } 4987 late_initcall(fault_around_debugfs); 4988 #endif 4989 4990 /* 4991 * do_fault_around() tries to map few pages around the fault address. The hope 4992 * is that the pages will be needed soon and this will lower the number of 4993 * faults to handle. 4994 * 4995 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4996 * not ready to be mapped: not up-to-date, locked, etc. 4997 * 4998 * This function doesn't cross VMA or page table boundaries, in order to call 4999 * map_pages() and acquire a PTE lock only once. 5000 * 5001 * fault_around_pages defines how many pages we'll try to map. 5002 * do_fault_around() expects it to be set to a power of two less than or equal 5003 * to PTRS_PER_PTE. 5004 * 5005 * The virtual address of the area that we map is naturally aligned to 5006 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5007 * (and therefore to page order). This way it's easier to guarantee 5008 * that we don't cross page table boundaries. 5009 */ 5010 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5011 { 5012 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5013 pgoff_t pte_off = pte_index(vmf->address); 5014 /* The page offset of vmf->address within the VMA. */ 5015 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5016 pgoff_t from_pte, to_pte; 5017 vm_fault_t ret; 5018 5019 /* The PTE offset of the start address, clamped to the VMA. */ 5020 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5021 pte_off - min(pte_off, vma_off)); 5022 5023 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5024 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5025 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5026 5027 if (pmd_none(*vmf->pmd)) { 5028 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5029 if (!vmf->prealloc_pte) 5030 return VM_FAULT_OOM; 5031 } 5032 5033 rcu_read_lock(); 5034 ret = vmf->vma->vm_ops->map_pages(vmf, 5035 vmf->pgoff + from_pte - pte_off, 5036 vmf->pgoff + to_pte - pte_off); 5037 rcu_read_unlock(); 5038 5039 return ret; 5040 } 5041 5042 /* Return true if we should do read fault-around, false otherwise */ 5043 static inline bool should_fault_around(struct vm_fault *vmf) 5044 { 5045 /* No ->map_pages? No way to fault around... */ 5046 if (!vmf->vma->vm_ops->map_pages) 5047 return false; 5048 5049 if (uffd_disable_fault_around(vmf->vma)) 5050 return false; 5051 5052 /* A single page implies no faulting 'around' at all. */ 5053 return fault_around_pages > 1; 5054 } 5055 5056 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5057 { 5058 vm_fault_t ret = 0; 5059 struct folio *folio; 5060 5061 /* 5062 * Let's call ->map_pages() first and use ->fault() as fallback 5063 * if page by the offset is not ready to be mapped (cold cache or 5064 * something). 5065 */ 5066 if (should_fault_around(vmf)) { 5067 ret = do_fault_around(vmf); 5068 if (ret) 5069 return ret; 5070 } 5071 5072 ret = vmf_can_call_fault(vmf); 5073 if (ret) 5074 return ret; 5075 5076 ret = __do_fault(vmf); 5077 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5078 return ret; 5079 5080 ret |= finish_fault(vmf); 5081 folio = page_folio(vmf->page); 5082 folio_unlock(folio); 5083 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5084 folio_put(folio); 5085 return ret; 5086 } 5087 5088 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5089 { 5090 struct vm_area_struct *vma = vmf->vma; 5091 struct folio *folio; 5092 vm_fault_t ret; 5093 5094 ret = vmf_can_call_fault(vmf); 5095 if (!ret) 5096 ret = vmf_anon_prepare(vmf); 5097 if (ret) 5098 return ret; 5099 5100 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5101 if (!folio) 5102 return VM_FAULT_OOM; 5103 5104 vmf->cow_page = &folio->page; 5105 5106 ret = __do_fault(vmf); 5107 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5108 goto uncharge_out; 5109 if (ret & VM_FAULT_DONE_COW) 5110 return ret; 5111 5112 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 5113 __folio_mark_uptodate(folio); 5114 5115 ret |= finish_fault(vmf); 5116 unlock_page(vmf->page); 5117 put_page(vmf->page); 5118 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5119 goto uncharge_out; 5120 return ret; 5121 uncharge_out: 5122 folio_put(folio); 5123 return ret; 5124 } 5125 5126 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5127 { 5128 struct vm_area_struct *vma = vmf->vma; 5129 vm_fault_t ret, tmp; 5130 struct folio *folio; 5131 5132 ret = vmf_can_call_fault(vmf); 5133 if (ret) 5134 return ret; 5135 5136 ret = __do_fault(vmf); 5137 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5138 return ret; 5139 5140 folio = page_folio(vmf->page); 5141 5142 /* 5143 * Check if the backing address space wants to know that the page is 5144 * about to become writable 5145 */ 5146 if (vma->vm_ops->page_mkwrite) { 5147 folio_unlock(folio); 5148 tmp = do_page_mkwrite(vmf, folio); 5149 if (unlikely(!tmp || 5150 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5151 folio_put(folio); 5152 return tmp; 5153 } 5154 } 5155 5156 ret |= finish_fault(vmf); 5157 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5158 VM_FAULT_RETRY))) { 5159 folio_unlock(folio); 5160 folio_put(folio); 5161 return ret; 5162 } 5163 5164 ret |= fault_dirty_shared_page(vmf); 5165 return ret; 5166 } 5167 5168 /* 5169 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5170 * but allow concurrent faults). 5171 * The mmap_lock may have been released depending on flags and our 5172 * return value. See filemap_fault() and __folio_lock_or_retry(). 5173 * If mmap_lock is released, vma may become invalid (for example 5174 * by other thread calling munmap()). 5175 */ 5176 static vm_fault_t do_fault(struct vm_fault *vmf) 5177 { 5178 struct vm_area_struct *vma = vmf->vma; 5179 struct mm_struct *vm_mm = vma->vm_mm; 5180 vm_fault_t ret; 5181 5182 /* 5183 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5184 */ 5185 if (!vma->vm_ops->fault) { 5186 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5187 vmf->address, &vmf->ptl); 5188 if (unlikely(!vmf->pte)) 5189 ret = VM_FAULT_SIGBUS; 5190 else { 5191 /* 5192 * Make sure this is not a temporary clearing of pte 5193 * by holding ptl and checking again. A R/M/W update 5194 * of pte involves: take ptl, clearing the pte so that 5195 * we don't have concurrent modification by hardware 5196 * followed by an update. 5197 */ 5198 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5199 ret = VM_FAULT_SIGBUS; 5200 else 5201 ret = VM_FAULT_NOPAGE; 5202 5203 pte_unmap_unlock(vmf->pte, vmf->ptl); 5204 } 5205 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5206 ret = do_read_fault(vmf); 5207 else if (!(vma->vm_flags & VM_SHARED)) 5208 ret = do_cow_fault(vmf); 5209 else 5210 ret = do_shared_fault(vmf); 5211 5212 /* preallocated pagetable is unused: free it */ 5213 if (vmf->prealloc_pte) { 5214 pte_free(vm_mm, vmf->prealloc_pte); 5215 vmf->prealloc_pte = NULL; 5216 } 5217 return ret; 5218 } 5219 5220 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf, 5221 unsigned long addr, int page_nid, int *flags) 5222 { 5223 struct vm_area_struct *vma = vmf->vma; 5224 5225 /* Record the current PID acceesing VMA */ 5226 vma_set_access_pid_bit(vma); 5227 5228 count_vm_numa_event(NUMA_HINT_FAULTS); 5229 if (page_nid == numa_node_id()) { 5230 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5231 *flags |= TNF_FAULT_LOCAL; 5232 } 5233 5234 return mpol_misplaced(folio, vmf, addr); 5235 } 5236 5237 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5238 unsigned long fault_addr, pte_t *fault_pte, 5239 bool writable) 5240 { 5241 pte_t pte, old_pte; 5242 5243 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5244 pte = pte_modify(old_pte, vma->vm_page_prot); 5245 pte = pte_mkyoung(pte); 5246 if (writable) 5247 pte = pte_mkwrite(pte, vma); 5248 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5249 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5250 } 5251 5252 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5253 struct folio *folio, pte_t fault_pte, 5254 bool ignore_writable, bool pte_write_upgrade) 5255 { 5256 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5257 unsigned long start, end, addr = vmf->address; 5258 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5259 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5260 pte_t *start_ptep; 5261 5262 /* Stay within the VMA and within the page table. */ 5263 start = max3(addr_start, pt_start, vma->vm_start); 5264 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5265 vma->vm_end); 5266 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5267 5268 /* Restore all PTEs' mapping of the large folio */ 5269 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5270 pte_t ptent = ptep_get(start_ptep); 5271 bool writable = false; 5272 5273 if (!pte_present(ptent) || !pte_protnone(ptent)) 5274 continue; 5275 5276 if (pfn_folio(pte_pfn(ptent)) != folio) 5277 continue; 5278 5279 if (!ignore_writable) { 5280 ptent = pte_modify(ptent, vma->vm_page_prot); 5281 writable = pte_write(ptent); 5282 if (!writable && pte_write_upgrade && 5283 can_change_pte_writable(vma, addr, ptent)) 5284 writable = true; 5285 } 5286 5287 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5288 } 5289 } 5290 5291 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5292 { 5293 struct vm_area_struct *vma = vmf->vma; 5294 struct folio *folio = NULL; 5295 int nid = NUMA_NO_NODE; 5296 bool writable = false, ignore_writable = false; 5297 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5298 int last_cpupid; 5299 int target_nid; 5300 pte_t pte, old_pte; 5301 int flags = 0, nr_pages; 5302 5303 /* 5304 * The pte cannot be used safely until we verify, while holding the page 5305 * table lock, that its contents have not changed during fault handling. 5306 */ 5307 spin_lock(vmf->ptl); 5308 /* Read the live PTE from the page tables: */ 5309 old_pte = ptep_get(vmf->pte); 5310 5311 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5312 pte_unmap_unlock(vmf->pte, vmf->ptl); 5313 return 0; 5314 } 5315 5316 pte = pte_modify(old_pte, vma->vm_page_prot); 5317 5318 /* 5319 * Detect now whether the PTE could be writable; this information 5320 * is only valid while holding the PT lock. 5321 */ 5322 writable = pte_write(pte); 5323 if (!writable && pte_write_upgrade && 5324 can_change_pte_writable(vma, vmf->address, pte)) 5325 writable = true; 5326 5327 folio = vm_normal_folio(vma, vmf->address, pte); 5328 if (!folio || folio_is_zone_device(folio)) 5329 goto out_map; 5330 5331 /* 5332 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5333 * much anyway since they can be in shared cache state. This misses 5334 * the case where a mapping is writable but the process never writes 5335 * to it but pte_write gets cleared during protection updates and 5336 * pte_dirty has unpredictable behaviour between PTE scan updates, 5337 * background writeback, dirty balancing and application behaviour. 5338 */ 5339 if (!writable) 5340 flags |= TNF_NO_GROUP; 5341 5342 /* 5343 * Flag if the folio is shared between multiple address spaces. This 5344 * is later used when determining whether to group tasks together 5345 */ 5346 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5347 flags |= TNF_SHARED; 5348 5349 nid = folio_nid(folio); 5350 nr_pages = folio_nr_pages(folio); 5351 /* 5352 * For memory tiering mode, cpupid of slow memory page is used 5353 * to record page access time. So use default value. 5354 */ 5355 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 5356 !node_is_toptier(nid)) 5357 last_cpupid = (-1 & LAST_CPUPID_MASK); 5358 else 5359 last_cpupid = folio_last_cpupid(folio); 5360 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags); 5361 if (target_nid == NUMA_NO_NODE) 5362 goto out_map; 5363 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5364 flags |= TNF_MIGRATE_FAIL; 5365 goto out_map; 5366 } 5367 /* The folio is isolated and isolation code holds a folio reference. */ 5368 pte_unmap_unlock(vmf->pte, vmf->ptl); 5369 writable = false; 5370 ignore_writable = true; 5371 5372 /* Migrate to the requested node */ 5373 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 5374 nid = target_nid; 5375 flags |= TNF_MIGRATED; 5376 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5377 return 0; 5378 } 5379 5380 flags |= TNF_MIGRATE_FAIL; 5381 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5382 vmf->address, &vmf->ptl); 5383 if (unlikely(!vmf->pte)) 5384 return 0; 5385 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5386 pte_unmap_unlock(vmf->pte, vmf->ptl); 5387 return 0; 5388 } 5389 out_map: 5390 /* 5391 * Make it present again, depending on how arch implements 5392 * non-accessible ptes, some can allow access by kernel mode. 5393 */ 5394 if (folio && folio_test_large(folio)) 5395 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5396 pte_write_upgrade); 5397 else 5398 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5399 writable); 5400 pte_unmap_unlock(vmf->pte, vmf->ptl); 5401 5402 if (nid != NUMA_NO_NODE) 5403 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5404 return 0; 5405 } 5406 5407 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5408 { 5409 struct vm_area_struct *vma = vmf->vma; 5410 if (vma_is_anonymous(vma)) 5411 return do_huge_pmd_anonymous_page(vmf); 5412 if (vma->vm_ops->huge_fault) 5413 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5414 return VM_FAULT_FALLBACK; 5415 } 5416 5417 /* `inline' is required to avoid gcc 4.1.2 build error */ 5418 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5419 { 5420 struct vm_area_struct *vma = vmf->vma; 5421 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5422 vm_fault_t ret; 5423 5424 if (vma_is_anonymous(vma)) { 5425 if (likely(!unshare) && 5426 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5427 if (userfaultfd_wp_async(vmf->vma)) 5428 goto split; 5429 return handle_userfault(vmf, VM_UFFD_WP); 5430 } 5431 return do_huge_pmd_wp_page(vmf); 5432 } 5433 5434 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5435 if (vma->vm_ops->huge_fault) { 5436 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5437 if (!(ret & VM_FAULT_FALLBACK)) 5438 return ret; 5439 } 5440 } 5441 5442 split: 5443 /* COW or write-notify handled on pte level: split pmd. */ 5444 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5445 5446 return VM_FAULT_FALLBACK; 5447 } 5448 5449 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5450 { 5451 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5452 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5453 struct vm_area_struct *vma = vmf->vma; 5454 /* No support for anonymous transparent PUD pages yet */ 5455 if (vma_is_anonymous(vma)) 5456 return VM_FAULT_FALLBACK; 5457 if (vma->vm_ops->huge_fault) 5458 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5460 return VM_FAULT_FALLBACK; 5461 } 5462 5463 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5464 { 5465 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5466 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5467 struct vm_area_struct *vma = vmf->vma; 5468 vm_fault_t ret; 5469 5470 /* No support for anonymous transparent PUD pages yet */ 5471 if (vma_is_anonymous(vma)) 5472 goto split; 5473 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5474 if (vma->vm_ops->huge_fault) { 5475 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5476 if (!(ret & VM_FAULT_FALLBACK)) 5477 return ret; 5478 } 5479 } 5480 split: 5481 /* COW or write-notify not handled on PUD level: split pud.*/ 5482 __split_huge_pud(vma, vmf->pud, vmf->address); 5483 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5484 return VM_FAULT_FALLBACK; 5485 } 5486 5487 /* 5488 * These routines also need to handle stuff like marking pages dirty 5489 * and/or accessed for architectures that don't do it in hardware (most 5490 * RISC architectures). The early dirtying is also good on the i386. 5491 * 5492 * There is also a hook called "update_mmu_cache()" that architectures 5493 * with external mmu caches can use to update those (ie the Sparc or 5494 * PowerPC hashed page tables that act as extended TLBs). 5495 * 5496 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5497 * concurrent faults). 5498 * 5499 * The mmap_lock may have been released depending on flags and our return value. 5500 * See filemap_fault() and __folio_lock_or_retry(). 5501 */ 5502 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5503 { 5504 pte_t entry; 5505 5506 if (unlikely(pmd_none(*vmf->pmd))) { 5507 /* 5508 * Leave __pte_alloc() until later: because vm_ops->fault may 5509 * want to allocate huge page, and if we expose page table 5510 * for an instant, it will be difficult to retract from 5511 * concurrent faults and from rmap lookups. 5512 */ 5513 vmf->pte = NULL; 5514 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5515 } else { 5516 /* 5517 * A regular pmd is established and it can't morph into a huge 5518 * pmd by anon khugepaged, since that takes mmap_lock in write 5519 * mode; but shmem or file collapse to THP could still morph 5520 * it into a huge pmd: just retry later if so. 5521 */ 5522 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5523 vmf->address, &vmf->ptl); 5524 if (unlikely(!vmf->pte)) 5525 return 0; 5526 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5527 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5528 5529 if (pte_none(vmf->orig_pte)) { 5530 pte_unmap(vmf->pte); 5531 vmf->pte = NULL; 5532 } 5533 } 5534 5535 if (!vmf->pte) 5536 return do_pte_missing(vmf); 5537 5538 if (!pte_present(vmf->orig_pte)) 5539 return do_swap_page(vmf); 5540 5541 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5542 return do_numa_page(vmf); 5543 5544 spin_lock(vmf->ptl); 5545 entry = vmf->orig_pte; 5546 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5547 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5548 goto unlock; 5549 } 5550 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5551 if (!pte_write(entry)) 5552 return do_wp_page(vmf); 5553 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5554 entry = pte_mkdirty(entry); 5555 } 5556 entry = pte_mkyoung(entry); 5557 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5558 vmf->flags & FAULT_FLAG_WRITE)) { 5559 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5560 vmf->pte, 1); 5561 } else { 5562 /* Skip spurious TLB flush for retried page fault */ 5563 if (vmf->flags & FAULT_FLAG_TRIED) 5564 goto unlock; 5565 /* 5566 * This is needed only for protection faults but the arch code 5567 * is not yet telling us if this is a protection fault or not. 5568 * This still avoids useless tlb flushes for .text page faults 5569 * with threads. 5570 */ 5571 if (vmf->flags & FAULT_FLAG_WRITE) 5572 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5573 vmf->pte); 5574 } 5575 unlock: 5576 pte_unmap_unlock(vmf->pte, vmf->ptl); 5577 return 0; 5578 } 5579 5580 /* 5581 * On entry, we hold either the VMA lock or the mmap_lock 5582 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5583 * the result, the mmap_lock is not held on exit. See filemap_fault() 5584 * and __folio_lock_or_retry(). 5585 */ 5586 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5587 unsigned long address, unsigned int flags) 5588 { 5589 struct vm_fault vmf = { 5590 .vma = vma, 5591 .address = address & PAGE_MASK, 5592 .real_address = address, 5593 .flags = flags, 5594 .pgoff = linear_page_index(vma, address), 5595 .gfp_mask = __get_fault_gfp_mask(vma), 5596 }; 5597 struct mm_struct *mm = vma->vm_mm; 5598 unsigned long vm_flags = vma->vm_flags; 5599 pgd_t *pgd; 5600 p4d_t *p4d; 5601 vm_fault_t ret; 5602 5603 pgd = pgd_offset(mm, address); 5604 p4d = p4d_alloc(mm, pgd, address); 5605 if (!p4d) 5606 return VM_FAULT_OOM; 5607 5608 vmf.pud = pud_alloc(mm, p4d, address); 5609 if (!vmf.pud) 5610 return VM_FAULT_OOM; 5611 retry_pud: 5612 if (pud_none(*vmf.pud) && 5613 thp_vma_allowable_order(vma, vm_flags, 5614 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5615 ret = create_huge_pud(&vmf); 5616 if (!(ret & VM_FAULT_FALLBACK)) 5617 return ret; 5618 } else { 5619 pud_t orig_pud = *vmf.pud; 5620 5621 barrier(); 5622 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5623 5624 /* 5625 * TODO once we support anonymous PUDs: NUMA case and 5626 * FAULT_FLAG_UNSHARE handling. 5627 */ 5628 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5629 ret = wp_huge_pud(&vmf, orig_pud); 5630 if (!(ret & VM_FAULT_FALLBACK)) 5631 return ret; 5632 } else { 5633 huge_pud_set_accessed(&vmf, orig_pud); 5634 return 0; 5635 } 5636 } 5637 } 5638 5639 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5640 if (!vmf.pmd) 5641 return VM_FAULT_OOM; 5642 5643 /* Huge pud page fault raced with pmd_alloc? */ 5644 if (pud_trans_unstable(vmf.pud)) 5645 goto retry_pud; 5646 5647 if (pmd_none(*vmf.pmd) && 5648 thp_vma_allowable_order(vma, vm_flags, 5649 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5650 ret = create_huge_pmd(&vmf); 5651 if (!(ret & VM_FAULT_FALLBACK)) 5652 return ret; 5653 } else { 5654 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5655 5656 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5657 VM_BUG_ON(thp_migration_supported() && 5658 !is_pmd_migration_entry(vmf.orig_pmd)); 5659 if (is_pmd_migration_entry(vmf.orig_pmd)) 5660 pmd_migration_entry_wait(mm, vmf.pmd); 5661 return 0; 5662 } 5663 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5664 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5665 return do_huge_pmd_numa_page(&vmf); 5666 5667 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5668 !pmd_write(vmf.orig_pmd)) { 5669 ret = wp_huge_pmd(&vmf); 5670 if (!(ret & VM_FAULT_FALLBACK)) 5671 return ret; 5672 } else { 5673 huge_pmd_set_accessed(&vmf); 5674 return 0; 5675 } 5676 } 5677 } 5678 5679 return handle_pte_fault(&vmf); 5680 } 5681 5682 /** 5683 * mm_account_fault - Do page fault accounting 5684 * @mm: mm from which memcg should be extracted. It can be NULL. 5685 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5686 * of perf event counters, but we'll still do the per-task accounting to 5687 * the task who triggered this page fault. 5688 * @address: the faulted address. 5689 * @flags: the fault flags. 5690 * @ret: the fault retcode. 5691 * 5692 * This will take care of most of the page fault accounting. Meanwhile, it 5693 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5694 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5695 * still be in per-arch page fault handlers at the entry of page fault. 5696 */ 5697 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5698 unsigned long address, unsigned int flags, 5699 vm_fault_t ret) 5700 { 5701 bool major; 5702 5703 /* Incomplete faults will be accounted upon completion. */ 5704 if (ret & VM_FAULT_RETRY) 5705 return; 5706 5707 /* 5708 * To preserve the behavior of older kernels, PGFAULT counters record 5709 * both successful and failed faults, as opposed to perf counters, 5710 * which ignore failed cases. 5711 */ 5712 count_vm_event(PGFAULT); 5713 count_memcg_event_mm(mm, PGFAULT); 5714 5715 /* 5716 * Do not account for unsuccessful faults (e.g. when the address wasn't 5717 * valid). That includes arch_vma_access_permitted() failing before 5718 * reaching here. So this is not a "this many hardware page faults" 5719 * counter. We should use the hw profiling for that. 5720 */ 5721 if (ret & VM_FAULT_ERROR) 5722 return; 5723 5724 /* 5725 * We define the fault as a major fault when the final successful fault 5726 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5727 * handle it immediately previously). 5728 */ 5729 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5730 5731 if (major) 5732 current->maj_flt++; 5733 else 5734 current->min_flt++; 5735 5736 /* 5737 * If the fault is done for GUP, regs will be NULL. We only do the 5738 * accounting for the per thread fault counters who triggered the 5739 * fault, and we skip the perf event updates. 5740 */ 5741 if (!regs) 5742 return; 5743 5744 if (major) 5745 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5746 else 5747 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5748 } 5749 5750 #ifdef CONFIG_LRU_GEN 5751 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5752 { 5753 /* the LRU algorithm only applies to accesses with recency */ 5754 current->in_lru_fault = vma_has_recency(vma); 5755 } 5756 5757 static void lru_gen_exit_fault(void) 5758 { 5759 current->in_lru_fault = false; 5760 } 5761 #else 5762 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5763 { 5764 } 5765 5766 static void lru_gen_exit_fault(void) 5767 { 5768 } 5769 #endif /* CONFIG_LRU_GEN */ 5770 5771 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5772 unsigned int *flags) 5773 { 5774 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5775 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5776 return VM_FAULT_SIGSEGV; 5777 /* 5778 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5779 * just treat it like an ordinary read-fault otherwise. 5780 */ 5781 if (!is_cow_mapping(vma->vm_flags)) 5782 *flags &= ~FAULT_FLAG_UNSHARE; 5783 } else if (*flags & FAULT_FLAG_WRITE) { 5784 /* Write faults on read-only mappings are impossible ... */ 5785 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5786 return VM_FAULT_SIGSEGV; 5787 /* ... and FOLL_FORCE only applies to COW mappings. */ 5788 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5789 !is_cow_mapping(vma->vm_flags))) 5790 return VM_FAULT_SIGSEGV; 5791 } 5792 #ifdef CONFIG_PER_VMA_LOCK 5793 /* 5794 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5795 * the assumption that lock is dropped on VM_FAULT_RETRY. 5796 */ 5797 if (WARN_ON_ONCE((*flags & 5798 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5799 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5800 return VM_FAULT_SIGSEGV; 5801 #endif 5802 5803 return 0; 5804 } 5805 5806 /* 5807 * By the time we get here, we already hold the mm semaphore 5808 * 5809 * The mmap_lock may have been released depending on flags and our 5810 * return value. See filemap_fault() and __folio_lock_or_retry(). 5811 */ 5812 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5813 unsigned int flags, struct pt_regs *regs) 5814 { 5815 /* If the fault handler drops the mmap_lock, vma may be freed */ 5816 struct mm_struct *mm = vma->vm_mm; 5817 vm_fault_t ret; 5818 bool is_droppable; 5819 5820 __set_current_state(TASK_RUNNING); 5821 5822 ret = sanitize_fault_flags(vma, &flags); 5823 if (ret) 5824 goto out; 5825 5826 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5827 flags & FAULT_FLAG_INSTRUCTION, 5828 flags & FAULT_FLAG_REMOTE)) { 5829 ret = VM_FAULT_SIGSEGV; 5830 goto out; 5831 } 5832 5833 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 5834 5835 /* 5836 * Enable the memcg OOM handling for faults triggered in user 5837 * space. Kernel faults are handled more gracefully. 5838 */ 5839 if (flags & FAULT_FLAG_USER) 5840 mem_cgroup_enter_user_fault(); 5841 5842 lru_gen_enter_fault(vma); 5843 5844 if (unlikely(is_vm_hugetlb_page(vma))) 5845 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5846 else 5847 ret = __handle_mm_fault(vma, address, flags); 5848 5849 /* 5850 * Warning: It is no longer safe to dereference vma-> after this point, 5851 * because mmap_lock might have been dropped by __handle_mm_fault(), so 5852 * vma might be destroyed from underneath us. 5853 */ 5854 5855 lru_gen_exit_fault(); 5856 5857 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 5858 if (is_droppable) 5859 ret &= ~VM_FAULT_OOM; 5860 5861 if (flags & FAULT_FLAG_USER) { 5862 mem_cgroup_exit_user_fault(); 5863 /* 5864 * The task may have entered a memcg OOM situation but 5865 * if the allocation error was handled gracefully (no 5866 * VM_FAULT_OOM), there is no need to kill anything. 5867 * Just clean up the OOM state peacefully. 5868 */ 5869 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5870 mem_cgroup_oom_synchronize(false); 5871 } 5872 out: 5873 mm_account_fault(mm, regs, address, flags, ret); 5874 5875 return ret; 5876 } 5877 EXPORT_SYMBOL_GPL(handle_mm_fault); 5878 5879 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5880 #include <linux/extable.h> 5881 5882 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5883 { 5884 if (likely(mmap_read_trylock(mm))) 5885 return true; 5886 5887 if (regs && !user_mode(regs)) { 5888 unsigned long ip = exception_ip(regs); 5889 if (!search_exception_tables(ip)) 5890 return false; 5891 } 5892 5893 return !mmap_read_lock_killable(mm); 5894 } 5895 5896 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5897 { 5898 /* 5899 * We don't have this operation yet. 5900 * 5901 * It should be easy enough to do: it's basically a 5902 * atomic_long_try_cmpxchg_acquire() 5903 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5904 * it also needs the proper lockdep magic etc. 5905 */ 5906 return false; 5907 } 5908 5909 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5910 { 5911 mmap_read_unlock(mm); 5912 if (regs && !user_mode(regs)) { 5913 unsigned long ip = exception_ip(regs); 5914 if (!search_exception_tables(ip)) 5915 return false; 5916 } 5917 return !mmap_write_lock_killable(mm); 5918 } 5919 5920 /* 5921 * Helper for page fault handling. 5922 * 5923 * This is kind of equivalend to "mmap_read_lock()" followed 5924 * by "find_extend_vma()", except it's a lot more careful about 5925 * the locking (and will drop the lock on failure). 5926 * 5927 * For example, if we have a kernel bug that causes a page 5928 * fault, we don't want to just use mmap_read_lock() to get 5929 * the mm lock, because that would deadlock if the bug were 5930 * to happen while we're holding the mm lock for writing. 5931 * 5932 * So this checks the exception tables on kernel faults in 5933 * order to only do this all for instructions that are actually 5934 * expected to fault. 5935 * 5936 * We can also actually take the mm lock for writing if we 5937 * need to extend the vma, which helps the VM layer a lot. 5938 */ 5939 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5940 unsigned long addr, struct pt_regs *regs) 5941 { 5942 struct vm_area_struct *vma; 5943 5944 if (!get_mmap_lock_carefully(mm, regs)) 5945 return NULL; 5946 5947 vma = find_vma(mm, addr); 5948 if (likely(vma && (vma->vm_start <= addr))) 5949 return vma; 5950 5951 /* 5952 * Well, dang. We might still be successful, but only 5953 * if we can extend a vma to do so. 5954 */ 5955 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5956 mmap_read_unlock(mm); 5957 return NULL; 5958 } 5959 5960 /* 5961 * We can try to upgrade the mmap lock atomically, 5962 * in which case we can continue to use the vma 5963 * we already looked up. 5964 * 5965 * Otherwise we'll have to drop the mmap lock and 5966 * re-take it, and also look up the vma again, 5967 * re-checking it. 5968 */ 5969 if (!mmap_upgrade_trylock(mm)) { 5970 if (!upgrade_mmap_lock_carefully(mm, regs)) 5971 return NULL; 5972 5973 vma = find_vma(mm, addr); 5974 if (!vma) 5975 goto fail; 5976 if (vma->vm_start <= addr) 5977 goto success; 5978 if (!(vma->vm_flags & VM_GROWSDOWN)) 5979 goto fail; 5980 } 5981 5982 if (expand_stack_locked(vma, addr)) 5983 goto fail; 5984 5985 success: 5986 mmap_write_downgrade(mm); 5987 return vma; 5988 5989 fail: 5990 mmap_write_unlock(mm); 5991 return NULL; 5992 } 5993 #endif 5994 5995 #ifdef CONFIG_PER_VMA_LOCK 5996 /* 5997 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5998 * stable and not isolated. If the VMA is not found or is being modified the 5999 * function returns NULL. 6000 */ 6001 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6002 unsigned long address) 6003 { 6004 MA_STATE(mas, &mm->mm_mt, address, address); 6005 struct vm_area_struct *vma; 6006 6007 rcu_read_lock(); 6008 retry: 6009 vma = mas_walk(&mas); 6010 if (!vma) 6011 goto inval; 6012 6013 if (!vma_start_read(vma)) 6014 goto inval; 6015 6016 /* Check since vm_start/vm_end might change before we lock the VMA */ 6017 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6018 goto inval_end_read; 6019 6020 /* Check if the VMA got isolated after we found it */ 6021 if (vma->detached) { 6022 vma_end_read(vma); 6023 count_vm_vma_lock_event(VMA_LOCK_MISS); 6024 /* The area was replaced with another one */ 6025 goto retry; 6026 } 6027 6028 rcu_read_unlock(); 6029 return vma; 6030 6031 inval_end_read: 6032 vma_end_read(vma); 6033 inval: 6034 rcu_read_unlock(); 6035 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6036 return NULL; 6037 } 6038 #endif /* CONFIG_PER_VMA_LOCK */ 6039 6040 #ifndef __PAGETABLE_P4D_FOLDED 6041 /* 6042 * Allocate p4d page table. 6043 * We've already handled the fast-path in-line. 6044 */ 6045 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6046 { 6047 p4d_t *new = p4d_alloc_one(mm, address); 6048 if (!new) 6049 return -ENOMEM; 6050 6051 spin_lock(&mm->page_table_lock); 6052 if (pgd_present(*pgd)) { /* Another has populated it */ 6053 p4d_free(mm, new); 6054 } else { 6055 smp_wmb(); /* See comment in pmd_install() */ 6056 pgd_populate(mm, pgd, new); 6057 } 6058 spin_unlock(&mm->page_table_lock); 6059 return 0; 6060 } 6061 #endif /* __PAGETABLE_P4D_FOLDED */ 6062 6063 #ifndef __PAGETABLE_PUD_FOLDED 6064 /* 6065 * Allocate page upper directory. 6066 * We've already handled the fast-path in-line. 6067 */ 6068 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6069 { 6070 pud_t *new = pud_alloc_one(mm, address); 6071 if (!new) 6072 return -ENOMEM; 6073 6074 spin_lock(&mm->page_table_lock); 6075 if (!p4d_present(*p4d)) { 6076 mm_inc_nr_puds(mm); 6077 smp_wmb(); /* See comment in pmd_install() */ 6078 p4d_populate(mm, p4d, new); 6079 } else /* Another has populated it */ 6080 pud_free(mm, new); 6081 spin_unlock(&mm->page_table_lock); 6082 return 0; 6083 } 6084 #endif /* __PAGETABLE_PUD_FOLDED */ 6085 6086 #ifndef __PAGETABLE_PMD_FOLDED 6087 /* 6088 * Allocate page middle directory. 6089 * We've already handled the fast-path in-line. 6090 */ 6091 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6092 { 6093 spinlock_t *ptl; 6094 pmd_t *new = pmd_alloc_one(mm, address); 6095 if (!new) 6096 return -ENOMEM; 6097 6098 ptl = pud_lock(mm, pud); 6099 if (!pud_present(*pud)) { 6100 mm_inc_nr_pmds(mm); 6101 smp_wmb(); /* See comment in pmd_install() */ 6102 pud_populate(mm, pud, new); 6103 } else { /* Another has populated it */ 6104 pmd_free(mm, new); 6105 } 6106 spin_unlock(ptl); 6107 return 0; 6108 } 6109 #endif /* __PAGETABLE_PMD_FOLDED */ 6110 6111 /** 6112 * follow_pte - look up PTE at a user virtual address 6113 * @vma: the memory mapping 6114 * @address: user virtual address 6115 * @ptepp: location to store found PTE 6116 * @ptlp: location to store the lock for the PTE 6117 * 6118 * On a successful return, the pointer to the PTE is stored in @ptepp; 6119 * the corresponding lock is taken and its location is stored in @ptlp. 6120 * 6121 * The contents of the PTE are only stable until @ptlp is released using 6122 * pte_unmap_unlock(). This function will fail if the PTE is non-present. 6123 * Present PTEs may include PTEs that map refcounted pages, such as 6124 * anonymous folios in COW mappings. 6125 * 6126 * Callers must be careful when relying on PTE content after 6127 * pte_unmap_unlock(). Especially if the PTE maps a refcounted page, 6128 * callers must protect against invalidation with MMU notifiers; otherwise 6129 * access to the PFN at a later point in time can trigger use-after-free. 6130 * 6131 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6132 * should be taken for read. 6133 * 6134 * This function must not be used to modify PTE content. 6135 * 6136 * Return: zero on success, -ve otherwise. 6137 */ 6138 int follow_pte(struct vm_area_struct *vma, unsigned long address, 6139 pte_t **ptepp, spinlock_t **ptlp) 6140 { 6141 struct mm_struct *mm = vma->vm_mm; 6142 pgd_t *pgd; 6143 p4d_t *p4d; 6144 pud_t *pud; 6145 pmd_t *pmd; 6146 pte_t *ptep; 6147 6148 mmap_assert_locked(mm); 6149 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6150 goto out; 6151 6152 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6153 goto out; 6154 6155 pgd = pgd_offset(mm, address); 6156 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 6157 goto out; 6158 6159 p4d = p4d_offset(pgd, address); 6160 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 6161 goto out; 6162 6163 pud = pud_offset(p4d, address); 6164 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 6165 goto out; 6166 6167 pmd = pmd_offset(pud, address); 6168 VM_BUG_ON(pmd_trans_huge(*pmd)); 6169 6170 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 6171 if (!ptep) 6172 goto out; 6173 if (!pte_present(ptep_get(ptep))) 6174 goto unlock; 6175 *ptepp = ptep; 6176 return 0; 6177 unlock: 6178 pte_unmap_unlock(ptep, *ptlp); 6179 out: 6180 return -EINVAL; 6181 } 6182 EXPORT_SYMBOL_GPL(follow_pte); 6183 6184 #ifdef CONFIG_HAVE_IOREMAP_PROT 6185 /** 6186 * generic_access_phys - generic implementation for iomem mmap access 6187 * @vma: the vma to access 6188 * @addr: userspace address, not relative offset within @vma 6189 * @buf: buffer to read/write 6190 * @len: length of transfer 6191 * @write: set to FOLL_WRITE when writing, otherwise reading 6192 * 6193 * This is a generic implementation for &vm_operations_struct.access for an 6194 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6195 * not page based. 6196 */ 6197 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6198 void *buf, int len, int write) 6199 { 6200 resource_size_t phys_addr; 6201 unsigned long prot = 0; 6202 void __iomem *maddr; 6203 pte_t *ptep, pte; 6204 spinlock_t *ptl; 6205 int offset = offset_in_page(addr); 6206 int ret = -EINVAL; 6207 6208 retry: 6209 if (follow_pte(vma, addr, &ptep, &ptl)) 6210 return -EINVAL; 6211 pte = ptep_get(ptep); 6212 pte_unmap_unlock(ptep, ptl); 6213 6214 prot = pgprot_val(pte_pgprot(pte)); 6215 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 6216 6217 if ((write & FOLL_WRITE) && !pte_write(pte)) 6218 return -EINVAL; 6219 6220 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6221 if (!maddr) 6222 return -ENOMEM; 6223 6224 if (follow_pte(vma, addr, &ptep, &ptl)) 6225 goto out_unmap; 6226 6227 if (!pte_same(pte, ptep_get(ptep))) { 6228 pte_unmap_unlock(ptep, ptl); 6229 iounmap(maddr); 6230 6231 goto retry; 6232 } 6233 6234 if (write) 6235 memcpy_toio(maddr + offset, buf, len); 6236 else 6237 memcpy_fromio(buf, maddr + offset, len); 6238 ret = len; 6239 pte_unmap_unlock(ptep, ptl); 6240 out_unmap: 6241 iounmap(maddr); 6242 6243 return ret; 6244 } 6245 EXPORT_SYMBOL_GPL(generic_access_phys); 6246 #endif 6247 6248 /* 6249 * Access another process' address space as given in mm. 6250 */ 6251 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6252 void *buf, int len, unsigned int gup_flags) 6253 { 6254 void *old_buf = buf; 6255 int write = gup_flags & FOLL_WRITE; 6256 6257 if (mmap_read_lock_killable(mm)) 6258 return 0; 6259 6260 /* Untag the address before looking up the VMA */ 6261 addr = untagged_addr_remote(mm, addr); 6262 6263 /* Avoid triggering the temporary warning in __get_user_pages */ 6264 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6265 return 0; 6266 6267 /* ignore errors, just check how much was successfully transferred */ 6268 while (len) { 6269 int bytes, offset; 6270 void *maddr; 6271 struct vm_area_struct *vma = NULL; 6272 struct page *page = get_user_page_vma_remote(mm, addr, 6273 gup_flags, &vma); 6274 6275 if (IS_ERR(page)) { 6276 /* We might need to expand the stack to access it */ 6277 vma = vma_lookup(mm, addr); 6278 if (!vma) { 6279 vma = expand_stack(mm, addr); 6280 6281 /* mmap_lock was dropped on failure */ 6282 if (!vma) 6283 return buf - old_buf; 6284 6285 /* Try again if stack expansion worked */ 6286 continue; 6287 } 6288 6289 /* 6290 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6291 * we can access using slightly different code. 6292 */ 6293 bytes = 0; 6294 #ifdef CONFIG_HAVE_IOREMAP_PROT 6295 if (vma->vm_ops && vma->vm_ops->access) 6296 bytes = vma->vm_ops->access(vma, addr, buf, 6297 len, write); 6298 #endif 6299 if (bytes <= 0) 6300 break; 6301 } else { 6302 bytes = len; 6303 offset = addr & (PAGE_SIZE-1); 6304 if (bytes > PAGE_SIZE-offset) 6305 bytes = PAGE_SIZE-offset; 6306 6307 maddr = kmap_local_page(page); 6308 if (write) { 6309 copy_to_user_page(vma, page, addr, 6310 maddr + offset, buf, bytes); 6311 set_page_dirty_lock(page); 6312 } else { 6313 copy_from_user_page(vma, page, addr, 6314 buf, maddr + offset, bytes); 6315 } 6316 unmap_and_put_page(page, maddr); 6317 } 6318 len -= bytes; 6319 buf += bytes; 6320 addr += bytes; 6321 } 6322 mmap_read_unlock(mm); 6323 6324 return buf - old_buf; 6325 } 6326 6327 /** 6328 * access_remote_vm - access another process' address space 6329 * @mm: the mm_struct of the target address space 6330 * @addr: start address to access 6331 * @buf: source or destination buffer 6332 * @len: number of bytes to transfer 6333 * @gup_flags: flags modifying lookup behaviour 6334 * 6335 * The caller must hold a reference on @mm. 6336 * 6337 * Return: number of bytes copied from source to destination. 6338 */ 6339 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6340 void *buf, int len, unsigned int gup_flags) 6341 { 6342 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6343 } 6344 6345 /* 6346 * Access another process' address space. 6347 * Source/target buffer must be kernel space, 6348 * Do not walk the page table directly, use get_user_pages 6349 */ 6350 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6351 void *buf, int len, unsigned int gup_flags) 6352 { 6353 struct mm_struct *mm; 6354 int ret; 6355 6356 mm = get_task_mm(tsk); 6357 if (!mm) 6358 return 0; 6359 6360 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6361 6362 mmput(mm); 6363 6364 return ret; 6365 } 6366 EXPORT_SYMBOL_GPL(access_process_vm); 6367 6368 /* 6369 * Print the name of a VMA. 6370 */ 6371 void print_vma_addr(char *prefix, unsigned long ip) 6372 { 6373 struct mm_struct *mm = current->mm; 6374 struct vm_area_struct *vma; 6375 6376 /* 6377 * we might be running from an atomic context so we cannot sleep 6378 */ 6379 if (!mmap_read_trylock(mm)) 6380 return; 6381 6382 vma = vma_lookup(mm, ip); 6383 if (vma && vma->vm_file) { 6384 struct file *f = vma->vm_file; 6385 ip -= vma->vm_start; 6386 ip += vma->vm_pgoff << PAGE_SHIFT; 6387 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6388 vma->vm_start, 6389 vma->vm_end - vma->vm_start); 6390 } 6391 mmap_read_unlock(mm); 6392 } 6393 6394 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6395 void __might_fault(const char *file, int line) 6396 { 6397 if (pagefault_disabled()) 6398 return; 6399 __might_sleep(file, line); 6400 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6401 if (current->mm) 6402 might_lock_read(¤t->mm->mmap_lock); 6403 #endif 6404 } 6405 EXPORT_SYMBOL(__might_fault); 6406 #endif 6407 6408 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6409 /* 6410 * Process all subpages of the specified huge page with the specified 6411 * operation. The target subpage will be processed last to keep its 6412 * cache lines hot. 6413 */ 6414 static inline int process_huge_page( 6415 unsigned long addr_hint, unsigned int nr_pages, 6416 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6417 void *arg) 6418 { 6419 int i, n, base, l, ret; 6420 unsigned long addr = addr_hint & 6421 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6422 6423 /* Process target subpage last to keep its cache lines hot */ 6424 might_sleep(); 6425 n = (addr_hint - addr) / PAGE_SIZE; 6426 if (2 * n <= nr_pages) { 6427 /* If target subpage in first half of huge page */ 6428 base = 0; 6429 l = n; 6430 /* Process subpages at the end of huge page */ 6431 for (i = nr_pages - 1; i >= 2 * n; i--) { 6432 cond_resched(); 6433 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6434 if (ret) 6435 return ret; 6436 } 6437 } else { 6438 /* If target subpage in second half of huge page */ 6439 base = nr_pages - 2 * (nr_pages - n); 6440 l = nr_pages - n; 6441 /* Process subpages at the begin of huge page */ 6442 for (i = 0; i < base; i++) { 6443 cond_resched(); 6444 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6445 if (ret) 6446 return ret; 6447 } 6448 } 6449 /* 6450 * Process remaining subpages in left-right-left-right pattern 6451 * towards the target subpage 6452 */ 6453 for (i = 0; i < l; i++) { 6454 int left_idx = base + i; 6455 int right_idx = base + 2 * l - 1 - i; 6456 6457 cond_resched(); 6458 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6459 if (ret) 6460 return ret; 6461 cond_resched(); 6462 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6463 if (ret) 6464 return ret; 6465 } 6466 return 0; 6467 } 6468 6469 static void clear_gigantic_page(struct folio *folio, unsigned long addr, 6470 unsigned int nr_pages) 6471 { 6472 int i; 6473 6474 might_sleep(); 6475 for (i = 0; i < nr_pages; i++) { 6476 cond_resched(); 6477 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 6478 } 6479 } 6480 6481 static int clear_subpage(unsigned long addr, int idx, void *arg) 6482 { 6483 struct folio *folio = arg; 6484 6485 clear_user_highpage(folio_page(folio, idx), addr); 6486 return 0; 6487 } 6488 6489 /** 6490 * folio_zero_user - Zero a folio which will be mapped to userspace. 6491 * @folio: The folio to zero. 6492 * @addr_hint: The address will be accessed or the base address if uncelar. 6493 */ 6494 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 6495 { 6496 unsigned int nr_pages = folio_nr_pages(folio); 6497 6498 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6499 clear_gigantic_page(folio, addr_hint, nr_pages); 6500 else 6501 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 6502 } 6503 6504 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6505 unsigned long addr, 6506 struct vm_area_struct *vma, 6507 unsigned int nr_pages) 6508 { 6509 int i; 6510 struct page *dst_page; 6511 struct page *src_page; 6512 6513 for (i = 0; i < nr_pages; i++) { 6514 dst_page = folio_page(dst, i); 6515 src_page = folio_page(src, i); 6516 6517 cond_resched(); 6518 if (copy_mc_user_highpage(dst_page, src_page, 6519 addr + i*PAGE_SIZE, vma)) 6520 return -EHWPOISON; 6521 } 6522 return 0; 6523 } 6524 6525 struct copy_subpage_arg { 6526 struct folio *dst; 6527 struct folio *src; 6528 struct vm_area_struct *vma; 6529 }; 6530 6531 static int copy_subpage(unsigned long addr, int idx, void *arg) 6532 { 6533 struct copy_subpage_arg *copy_arg = arg; 6534 struct page *dst = folio_page(copy_arg->dst, idx); 6535 struct page *src = folio_page(copy_arg->src, idx); 6536 6537 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 6538 return -EHWPOISON; 6539 return 0; 6540 } 6541 6542 int copy_user_large_folio(struct folio *dst, struct folio *src, 6543 unsigned long addr_hint, struct vm_area_struct *vma) 6544 { 6545 unsigned int nr_pages = folio_nr_pages(dst); 6546 struct copy_subpage_arg arg = { 6547 .dst = dst, 6548 .src = src, 6549 .vma = vma, 6550 }; 6551 6552 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6553 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 6554 6555 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 6556 } 6557 6558 long copy_folio_from_user(struct folio *dst_folio, 6559 const void __user *usr_src, 6560 bool allow_pagefault) 6561 { 6562 void *kaddr; 6563 unsigned long i, rc = 0; 6564 unsigned int nr_pages = folio_nr_pages(dst_folio); 6565 unsigned long ret_val = nr_pages * PAGE_SIZE; 6566 struct page *subpage; 6567 6568 for (i = 0; i < nr_pages; i++) { 6569 subpage = folio_page(dst_folio, i); 6570 kaddr = kmap_local_page(subpage); 6571 if (!allow_pagefault) 6572 pagefault_disable(); 6573 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6574 if (!allow_pagefault) 6575 pagefault_enable(); 6576 kunmap_local(kaddr); 6577 6578 ret_val -= (PAGE_SIZE - rc); 6579 if (rc) 6580 break; 6581 6582 flush_dcache_page(subpage); 6583 6584 cond_resched(); 6585 } 6586 return ret_val; 6587 } 6588 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6589 6590 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6591 6592 static struct kmem_cache *page_ptl_cachep; 6593 6594 void __init ptlock_cache_init(void) 6595 { 6596 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6597 SLAB_PANIC, NULL); 6598 } 6599 6600 bool ptlock_alloc(struct ptdesc *ptdesc) 6601 { 6602 spinlock_t *ptl; 6603 6604 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6605 if (!ptl) 6606 return false; 6607 ptdesc->ptl = ptl; 6608 return true; 6609 } 6610 6611 void ptlock_free(struct ptdesc *ptdesc) 6612 { 6613 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6614 } 6615 #endif 6616 6617 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6618 { 6619 if (is_vm_hugetlb_page(vma)) 6620 hugetlb_vma_lock_read(vma); 6621 } 6622 6623 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6624 { 6625 if (is_vm_hugetlb_page(vma)) 6626 hugetlb_vma_unlock_read(vma); 6627 } 6628
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.