~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/memory.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 
  2 // SPDX-License-Identifier: GPL-2.0-only
  3 /*
  4  *  linux/mm/memory.c
  5  *
  6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7  */
  8 
  9 /*
 10  * demand-loading started 01.12.91 - seems it is high on the list of
 11  * things wanted, and it should be easy to implement. - Linus
 12  */
 13 
 14 /*
 15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 16  * pages started 02.12.91, seems to work. - Linus.
 17  *
 18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 19  * would have taken more than the 6M I have free, but it worked well as
 20  * far as I could see.
 21  *
 22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 23  */
 24 
 25 /*
 26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
 27  * thought has to go into this. Oh, well..
 28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 29  *              Found it. Everything seems to work now.
 30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
 31  */
 32 
 33 /*
 34  * 05.04.94  -  Multi-page memory management added for v1.1.
 35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
 36  *
 37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 38  *              (Gerhard.Wichert@pdb.siemens.de)
 39  *
 40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 41  */
 42 
 43 #include <linux/kernel_stat.h>
 44 #include <linux/mm.h>
 45 #include <linux/mm_inline.h>
 46 #include <linux/sched/mm.h>
 47 #include <linux/sched/coredump.h>
 48 #include <linux/sched/numa_balancing.h>
 49 #include <linux/sched/task.h>
 50 #include <linux/hugetlb.h>
 51 #include <linux/mman.h>
 52 #include <linux/swap.h>
 53 #include <linux/highmem.h>
 54 #include <linux/pagemap.h>
 55 #include <linux/memremap.h>
 56 #include <linux/kmsan.h>
 57 #include <linux/ksm.h>
 58 #include <linux/rmap.h>
 59 #include <linux/export.h>
 60 #include <linux/delayacct.h>
 61 #include <linux/init.h>
 62 #include <linux/pfn_t.h>
 63 #include <linux/writeback.h>
 64 #include <linux/memcontrol.h>
 65 #include <linux/mmu_notifier.h>
 66 #include <linux/swapops.h>
 67 #include <linux/elf.h>
 68 #include <linux/gfp.h>
 69 #include <linux/migrate.h>
 70 #include <linux/string.h>
 71 #include <linux/memory-tiers.h>
 72 #include <linux/debugfs.h>
 73 #include <linux/userfaultfd_k.h>
 74 #include <linux/dax.h>
 75 #include <linux/oom.h>
 76 #include <linux/numa.h>
 77 #include <linux/perf_event.h>
 78 #include <linux/ptrace.h>
 79 #include <linux/vmalloc.h>
 80 #include <linux/sched/sysctl.h>
 81 
 82 #include <trace/events/kmem.h>
 83 
 84 #include <asm/io.h>
 85 #include <asm/mmu_context.h>
 86 #include <asm/pgalloc.h>
 87 #include <linux/uaccess.h>
 88 #include <asm/tlb.h>
 89 #include <asm/tlbflush.h>
 90 
 91 #include "pgalloc-track.h"
 92 #include "internal.h"
 93 #include "swap.h"
 94 
 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
 97 #endif
 98 
 99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117         if (!userfaultfd_wp(vmf->vma))
118                 return false;
119         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120                 return false;
121 
122         return pte_marker_uffd_wp(vmf->orig_pte);
123 }
124 
125 /*
126  * A number of key systems in x86 including ioremap() rely on the assumption
127  * that high_memory defines the upper bound on direct map memory, then end
128  * of ZONE_NORMAL.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141                                         1;
142 #else
143                                         2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149         /*
150          * Transitioning a PTE from 'old' to 'young' can be expensive on
151          * some architectures, even if it's performed in hardware. By
152          * default, "false" means prefaulted entries will be 'young'.
153          */
154         return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160         randomize_va_space = 0;
161         return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175         zero_pfn = page_to_pfn(ZERO_PAGE(0));
176         return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182         trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190                            unsigned long addr)
191 {
192         pgtable_t token = pmd_pgtable(*pmd);
193         pmd_clear(pmd);
194         pte_free_tlb(tlb, token, addr);
195         mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199                                 unsigned long addr, unsigned long end,
200                                 unsigned long floor, unsigned long ceiling)
201 {
202         pmd_t *pmd;
203         unsigned long next;
204         unsigned long start;
205 
206         start = addr;
207         pmd = pmd_offset(pud, addr);
208         do {
209                 next = pmd_addr_end(addr, end);
210                 if (pmd_none_or_clear_bad(pmd))
211                         continue;
212                 free_pte_range(tlb, pmd, addr);
213         } while (pmd++, addr = next, addr != end);
214 
215         start &= PUD_MASK;
216         if (start < floor)
217                 return;
218         if (ceiling) {
219                 ceiling &= PUD_MASK;
220                 if (!ceiling)
221                         return;
222         }
223         if (end - 1 > ceiling - 1)
224                 return;
225 
226         pmd = pmd_offset(pud, start);
227         pud_clear(pud);
228         pmd_free_tlb(tlb, pmd, start);
229         mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233                                 unsigned long addr, unsigned long end,
234                                 unsigned long floor, unsigned long ceiling)
235 {
236         pud_t *pud;
237         unsigned long next;
238         unsigned long start;
239 
240         start = addr;
241         pud = pud_offset(p4d, addr);
242         do {
243                 next = pud_addr_end(addr, end);
244                 if (pud_none_or_clear_bad(pud))
245                         continue;
246                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247         } while (pud++, addr = next, addr != end);
248 
249         start &= P4D_MASK;
250         if (start < floor)
251                 return;
252         if (ceiling) {
253                 ceiling &= P4D_MASK;
254                 if (!ceiling)
255                         return;
256         }
257         if (end - 1 > ceiling - 1)
258                 return;
259 
260         pud = pud_offset(p4d, start);
261         p4d_clear(p4d);
262         pud_free_tlb(tlb, pud, start);
263         mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267                                 unsigned long addr, unsigned long end,
268                                 unsigned long floor, unsigned long ceiling)
269 {
270         p4d_t *p4d;
271         unsigned long next;
272         unsigned long start;
273 
274         start = addr;
275         p4d = p4d_offset(pgd, addr);
276         do {
277                 next = p4d_addr_end(addr, end);
278                 if (p4d_none_or_clear_bad(p4d))
279                         continue;
280                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281         } while (p4d++, addr = next, addr != end);
282 
283         start &= PGDIR_MASK;
284         if (start < floor)
285                 return;
286         if (ceiling) {
287                 ceiling &= PGDIR_MASK;
288                 if (!ceiling)
289                         return;
290         }
291         if (end - 1 > ceiling - 1)
292                 return;
293 
294         p4d = p4d_offset(pgd, start);
295         pgd_clear(pgd);
296         p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303                         unsigned long addr, unsigned long end,
304                         unsigned long floor, unsigned long ceiling)
305 {
306         pgd_t *pgd;
307         unsigned long next;
308 
309         /*
310          * The next few lines have given us lots of grief...
311          *
312          * Why are we testing PMD* at this top level?  Because often
313          * there will be no work to do at all, and we'd prefer not to
314          * go all the way down to the bottom just to discover that.
315          *
316          * Why all these "- 1"s?  Because 0 represents both the bottom
317          * of the address space and the top of it (using -1 for the
318          * top wouldn't help much: the masks would do the wrong thing).
319          * The rule is that addr 0 and floor 0 refer to the bottom of
320          * the address space, but end 0 and ceiling 0 refer to the top
321          * Comparisons need to use "end - 1" and "ceiling - 1" (though
322          * that end 0 case should be mythical).
323          *
324          * Wherever addr is brought up or ceiling brought down, we must
325          * be careful to reject "the opposite 0" before it confuses the
326          * subsequent tests.  But what about where end is brought down
327          * by PMD_SIZE below? no, end can't go down to 0 there.
328          *
329          * Whereas we round start (addr) and ceiling down, by different
330          * masks at different levels, in order to test whether a table
331          * now has no other vmas using it, so can be freed, we don't
332          * bother to round floor or end up - the tests don't need that.
333          */
334 
335         addr &= PMD_MASK;
336         if (addr < floor) {
337                 addr += PMD_SIZE;
338                 if (!addr)
339                         return;
340         }
341         if (ceiling) {
342                 ceiling &= PMD_MASK;
343                 if (!ceiling)
344                         return;
345         }
346         if (end - 1 > ceiling - 1)
347                 end -= PMD_SIZE;
348         if (addr > end - 1)
349                 return;
350         /*
351          * We add page table cache pages with PAGE_SIZE,
352          * (see pte_free_tlb()), flush the tlb if we need
353          */
354         tlb_change_page_size(tlb, PAGE_SIZE);
355         pgd = pgd_offset(tlb->mm, addr);
356         do {
357                 next = pgd_addr_end(addr, end);
358                 if (pgd_none_or_clear_bad(pgd))
359                         continue;
360                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361         } while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365                    struct vm_area_struct *vma, unsigned long floor,
366                    unsigned long ceiling, bool mm_wr_locked)
367 {
368         struct unlink_vma_file_batch vb;
369 
370         do {
371                 unsigned long addr = vma->vm_start;
372                 struct vm_area_struct *next;
373 
374                 /*
375                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376                  * be 0.  This will underflow and is okay.
377                  */
378                 next = mas_find(mas, ceiling - 1);
379                 if (unlikely(xa_is_zero(next)))
380                         next = NULL;
381 
382                 /*
383                  * Hide vma from rmap and truncate_pagecache before freeing
384                  * pgtables
385                  */
386                 if (mm_wr_locked)
387                         vma_start_write(vma);
388                 unlink_anon_vmas(vma);
389 
390                 if (is_vm_hugetlb_page(vma)) {
391                         unlink_file_vma(vma);
392                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
393                                 floor, next ? next->vm_start : ceiling);
394                 } else {
395                         unlink_file_vma_batch_init(&vb);
396                         unlink_file_vma_batch_add(&vb, vma);
397 
398                         /*
399                          * Optimization: gather nearby vmas into one call down
400                          */
401                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
402                                && !is_vm_hugetlb_page(next)) {
403                                 vma = next;
404                                 next = mas_find(mas, ceiling - 1);
405                                 if (unlikely(xa_is_zero(next)))
406                                         next = NULL;
407                                 if (mm_wr_locked)
408                                         vma_start_write(vma);
409                                 unlink_anon_vmas(vma);
410                                 unlink_file_vma_batch_add(&vb, vma);
411                         }
412                         unlink_file_vma_batch_final(&vb);
413                         free_pgd_range(tlb, addr, vma->vm_end,
414                                 floor, next ? next->vm_start : ceiling);
415                 }
416                 vma = next;
417         } while (vma);
418 }
419 
420 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421 {
422         spinlock_t *ptl = pmd_lock(mm, pmd);
423 
424         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
425                 mm_inc_nr_ptes(mm);
426                 /*
427                  * Ensure all pte setup (eg. pte page lock and page clearing) are
428                  * visible before the pte is made visible to other CPUs by being
429                  * put into page tables.
430                  *
431                  * The other side of the story is the pointer chasing in the page
432                  * table walking code (when walking the page table without locking;
433                  * ie. most of the time). Fortunately, these data accesses consist
434                  * of a chain of data-dependent loads, meaning most CPUs (alpha
435                  * being the notable exception) will already guarantee loads are
436                  * seen in-order. See the alpha page table accessors for the
437                  * smp_rmb() barriers in page table walking code.
438                  */
439                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
440                 pmd_populate(mm, pmd, *pte);
441                 *pte = NULL;
442         }
443         spin_unlock(ptl);
444 }
445 
446 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447 {
448         pgtable_t new = pte_alloc_one(mm);
449         if (!new)
450                 return -ENOMEM;
451 
452         pmd_install(mm, pmd, &new);
453         if (new)
454                 pte_free(mm, new);
455         return 0;
456 }
457 
458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460         pte_t *new = pte_alloc_one_kernel(&init_mm);
461         if (!new)
462                 return -ENOMEM;
463 
464         spin_lock(&init_mm.page_table_lock);
465         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
466                 smp_wmb(); /* See comment in pmd_install() */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484 
485         for (i = 0; i < NR_MM_COUNTERS; i++)
486                 if (rss[i])
487                         add_mm_counter(mm, i, rss[i]);
488 }
489 
490 /*
491  * This function is called to print an error when a bad pte
492  * is found. For example, we might have a PFN-mapped pte in
493  * a region that doesn't allow it.
494  *
495  * The calling function must still handle the error.
496  */
497 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
498                           pte_t pte, struct page *page)
499 {
500         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
501         p4d_t *p4d = p4d_offset(pgd, addr);
502         pud_t *pud = pud_offset(p4d, addr);
503         pmd_t *pmd = pmd_offset(pud, addr);
504         struct address_space *mapping;
505         pgoff_t index;
506         static unsigned long resume;
507         static unsigned long nr_shown;
508         static unsigned long nr_unshown;
509 
510         /*
511          * Allow a burst of 60 reports, then keep quiet for that minute;
512          * or allow a steady drip of one report per second.
513          */
514         if (nr_shown == 60) {
515                 if (time_before(jiffies, resume)) {
516                         nr_unshown++;
517                         return;
518                 }
519                 if (nr_unshown) {
520                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521                                  nr_unshown);
522                         nr_unshown = 0;
523                 }
524                 nr_shown = 0;
525         }
526         if (nr_shown++ == 0)
527                 resume = jiffies + 60 * HZ;
528 
529         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
530         index = linear_page_index(vma, addr);
531 
532         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
533                  current->comm,
534                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
535         if (page)
536                 dump_page(page, "bad pte");
537         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
538                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
539         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540                  vma->vm_file,
541                  vma->vm_ops ? vma->vm_ops->fault : NULL,
542                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
543                  mapping ? mapping->a_ops->read_folio : NULL);
544         dump_stack();
545         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
546 }
547 
548 /*
549  * vm_normal_page -- This function gets the "struct page" associated with a pte.
550  *
551  * "Special" mappings do not wish to be associated with a "struct page" (either
552  * it doesn't exist, or it exists but they don't want to touch it). In this
553  * case, NULL is returned here. "Normal" mappings do have a struct page.
554  *
555  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556  * pte bit, in which case this function is trivial. Secondly, an architecture
557  * may not have a spare pte bit, which requires a more complicated scheme,
558  * described below.
559  *
560  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561  * special mapping (even if there are underlying and valid "struct pages").
562  * COWed pages of a VM_PFNMAP are always normal.
563  *
564  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567  * mapping will always honor the rule
568  *
569  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570  *
571  * And for normal mappings this is false.
572  *
573  * This restricts such mappings to be a linear translation from virtual address
574  * to pfn. To get around this restriction, we allow arbitrary mappings so long
575  * as the vma is not a COW mapping; in that case, we know that all ptes are
576  * special (because none can have been COWed).
577  *
578  *
579  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580  *
581  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582  * page" backing, however the difference is that _all_ pages with a struct
583  * page (that is, those where pfn_valid is true) are refcounted and considered
584  * normal pages by the VM. The only exception are zeropages, which are
585  * *never* refcounted.
586  *
587  * The disadvantage is that pages are refcounted (which can be slower and
588  * simply not an option for some PFNMAP users). The advantage is that we
589  * don't have to follow the strict linearity rule of PFNMAP mappings in
590  * order to support COWable mappings.
591  *
592  */
593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594                             pte_t pte)
595 {
596         unsigned long pfn = pte_pfn(pte);
597 
598         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599                 if (likely(!pte_special(pte)))
600                         goto check_pfn;
601                 if (vma->vm_ops && vma->vm_ops->find_special_page)
602                         return vma->vm_ops->find_special_page(vma, addr);
603                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604                         return NULL;
605                 if (is_zero_pfn(pfn))
606                         return NULL;
607                 if (pte_devmap(pte))
608                 /*
609                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
610                  * and will have refcounts incremented on their struct pages
611                  * when they are inserted into PTEs, thus they are safe to
612                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
613                  * do not have refcounts. Example of legacy ZONE_DEVICE is
614                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615                  */
616                         return NULL;
617 
618                 print_bad_pte(vma, addr, pte, NULL);
619                 return NULL;
620         }
621 
622         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623 
624         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
625                 if (vma->vm_flags & VM_MIXEDMAP) {
626                         if (!pfn_valid(pfn))
627                                 return NULL;
628                         if (is_zero_pfn(pfn))
629                                 return NULL;
630                         goto out;
631                 } else {
632                         unsigned long off;
633                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
634                         if (pfn == vma->vm_pgoff + off)
635                                 return NULL;
636                         if (!is_cow_mapping(vma->vm_flags))
637                                 return NULL;
638                 }
639         }
640 
641         if (is_zero_pfn(pfn))
642                 return NULL;
643 
644 check_pfn:
645         if (unlikely(pfn > highest_memmap_pfn)) {
646                 print_bad_pte(vma, addr, pte, NULL);
647                 return NULL;
648         }
649 
650         /*
651          * NOTE! We still have PageReserved() pages in the page tables.
652          * eg. VDSO mappings can cause them to exist.
653          */
654 out:
655         VM_WARN_ON_ONCE(is_zero_pfn(pfn));
656         return pfn_to_page(pfn);
657 }
658 
659 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
660                             pte_t pte)
661 {
662         struct page *page = vm_normal_page(vma, addr, pte);
663 
664         if (page)
665                 return page_folio(page);
666         return NULL;
667 }
668 
669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
670 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
671                                 pmd_t pmd)
672 {
673         unsigned long pfn = pmd_pfn(pmd);
674 
675         /*
676          * There is no pmd_special() but there may be special pmds, e.g.
677          * in a direct-access (dax) mapping, so let's just replicate the
678          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
679          */
680         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
681                 if (vma->vm_flags & VM_MIXEDMAP) {
682                         if (!pfn_valid(pfn))
683                                 return NULL;
684                         goto out;
685                 } else {
686                         unsigned long off;
687                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
688                         if (pfn == vma->vm_pgoff + off)
689                                 return NULL;
690                         if (!is_cow_mapping(vma->vm_flags))
691                                 return NULL;
692                 }
693         }
694 
695         if (pmd_devmap(pmd))
696                 return NULL;
697         if (is_huge_zero_pmd(pmd))
698                 return NULL;
699         if (unlikely(pfn > highest_memmap_pfn))
700                 return NULL;
701 
702         /*
703          * NOTE! We still have PageReserved() pages in the page tables.
704          * eg. VDSO mappings can cause them to exist.
705          */
706 out:
707         return pfn_to_page(pfn);
708 }
709 
710 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
711                                   unsigned long addr, pmd_t pmd)
712 {
713         struct page *page = vm_normal_page_pmd(vma, addr, pmd);
714 
715         if (page)
716                 return page_folio(page);
717         return NULL;
718 }
719 #endif
720 
721 static void restore_exclusive_pte(struct vm_area_struct *vma,
722                                   struct page *page, unsigned long address,
723                                   pte_t *ptep)
724 {
725         struct folio *folio = page_folio(page);
726         pte_t orig_pte;
727         pte_t pte;
728         swp_entry_t entry;
729 
730         orig_pte = ptep_get(ptep);
731         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
732         if (pte_swp_soft_dirty(orig_pte))
733                 pte = pte_mksoft_dirty(pte);
734 
735         entry = pte_to_swp_entry(orig_pte);
736         if (pte_swp_uffd_wp(orig_pte))
737                 pte = pte_mkuffd_wp(pte);
738         else if (is_writable_device_exclusive_entry(entry))
739                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
740 
741         VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
742                                            PageAnonExclusive(page)), folio);
743 
744         /*
745          * No need to take a page reference as one was already
746          * created when the swap entry was made.
747          */
748         if (folio_test_anon(folio))
749                 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
750         else
751                 /*
752                  * Currently device exclusive access only supports anonymous
753                  * memory so the entry shouldn't point to a filebacked page.
754                  */
755                 WARN_ON_ONCE(1);
756 
757         set_pte_at(vma->vm_mm, address, ptep, pte);
758 
759         /*
760          * No need to invalidate - it was non-present before. However
761          * secondary CPUs may have mappings that need invalidating.
762          */
763         update_mmu_cache(vma, address, ptep);
764 }
765 
766 /*
767  * Tries to restore an exclusive pte if the page lock can be acquired without
768  * sleeping.
769  */
770 static int
771 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
772                         unsigned long addr)
773 {
774         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
775         struct page *page = pfn_swap_entry_to_page(entry);
776 
777         if (trylock_page(page)) {
778                 restore_exclusive_pte(vma, page, addr, src_pte);
779                 unlock_page(page);
780                 return 0;
781         }
782 
783         return -EBUSY;
784 }
785 
786 /*
787  * copy one vm_area from one task to the other. Assumes the page tables
788  * already present in the new task to be cleared in the whole range
789  * covered by this vma.
790  */
791 
792 static unsigned long
793 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
794                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
795                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
796 {
797         unsigned long vm_flags = dst_vma->vm_flags;
798         pte_t orig_pte = ptep_get(src_pte);
799         pte_t pte = orig_pte;
800         struct folio *folio;
801         struct page *page;
802         swp_entry_t entry = pte_to_swp_entry(orig_pte);
803 
804         if (likely(!non_swap_entry(entry))) {
805                 if (swap_duplicate(entry) < 0)
806                         return -EIO;
807 
808                 /* make sure dst_mm is on swapoff's mmlist. */
809                 if (unlikely(list_empty(&dst_mm->mmlist))) {
810                         spin_lock(&mmlist_lock);
811                         if (list_empty(&dst_mm->mmlist))
812                                 list_add(&dst_mm->mmlist,
813                                                 &src_mm->mmlist);
814                         spin_unlock(&mmlist_lock);
815                 }
816                 /* Mark the swap entry as shared. */
817                 if (pte_swp_exclusive(orig_pte)) {
818                         pte = pte_swp_clear_exclusive(orig_pte);
819                         set_pte_at(src_mm, addr, src_pte, pte);
820                 }
821                 rss[MM_SWAPENTS]++;
822         } else if (is_migration_entry(entry)) {
823                 folio = pfn_swap_entry_folio(entry);
824 
825                 rss[mm_counter(folio)]++;
826 
827                 if (!is_readable_migration_entry(entry) &&
828                                 is_cow_mapping(vm_flags)) {
829                         /*
830                          * COW mappings require pages in both parent and child
831                          * to be set to read. A previously exclusive entry is
832                          * now shared.
833                          */
834                         entry = make_readable_migration_entry(
835                                                         swp_offset(entry));
836                         pte = swp_entry_to_pte(entry);
837                         if (pte_swp_soft_dirty(orig_pte))
838                                 pte = pte_swp_mksoft_dirty(pte);
839                         if (pte_swp_uffd_wp(orig_pte))
840                                 pte = pte_swp_mkuffd_wp(pte);
841                         set_pte_at(src_mm, addr, src_pte, pte);
842                 }
843         } else if (is_device_private_entry(entry)) {
844                 page = pfn_swap_entry_to_page(entry);
845                 folio = page_folio(page);
846 
847                 /*
848                  * Update rss count even for unaddressable pages, as
849                  * they should treated just like normal pages in this
850                  * respect.
851                  *
852                  * We will likely want to have some new rss counters
853                  * for unaddressable pages, at some point. But for now
854                  * keep things as they are.
855                  */
856                 folio_get(folio);
857                 rss[mm_counter(folio)]++;
858                 /* Cannot fail as these pages cannot get pinned. */
859                 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
860 
861                 /*
862                  * We do not preserve soft-dirty information, because so
863                  * far, checkpoint/restore is the only feature that
864                  * requires that. And checkpoint/restore does not work
865                  * when a device driver is involved (you cannot easily
866                  * save and restore device driver state).
867                  */
868                 if (is_writable_device_private_entry(entry) &&
869                     is_cow_mapping(vm_flags)) {
870                         entry = make_readable_device_private_entry(
871                                                         swp_offset(entry));
872                         pte = swp_entry_to_pte(entry);
873                         if (pte_swp_uffd_wp(orig_pte))
874                                 pte = pte_swp_mkuffd_wp(pte);
875                         set_pte_at(src_mm, addr, src_pte, pte);
876                 }
877         } else if (is_device_exclusive_entry(entry)) {
878                 /*
879                  * Make device exclusive entries present by restoring the
880                  * original entry then copying as for a present pte. Device
881                  * exclusive entries currently only support private writable
882                  * (ie. COW) mappings.
883                  */
884                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
885                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
886                         return -EBUSY;
887                 return -ENOENT;
888         } else if (is_pte_marker_entry(entry)) {
889                 pte_marker marker = copy_pte_marker(entry, dst_vma);
890 
891                 if (marker)
892                         set_pte_at(dst_mm, addr, dst_pte,
893                                    make_pte_marker(marker));
894                 return 0;
895         }
896         if (!userfaultfd_wp(dst_vma))
897                 pte = pte_swp_clear_uffd_wp(pte);
898         set_pte_at(dst_mm, addr, dst_pte, pte);
899         return 0;
900 }
901 
902 /*
903  * Copy a present and normal page.
904  *
905  * NOTE! The usual case is that this isn't required;
906  * instead, the caller can just increase the page refcount
907  * and re-use the pte the traditional way.
908  *
909  * And if we need a pre-allocated page but don't yet have
910  * one, return a negative error to let the preallocation
911  * code know so that it can do so outside the page table
912  * lock.
913  */
914 static inline int
915 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
916                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
917                   struct folio **prealloc, struct page *page)
918 {
919         struct folio *new_folio;
920         pte_t pte;
921 
922         new_folio = *prealloc;
923         if (!new_folio)
924                 return -EAGAIN;
925 
926         /*
927          * We have a prealloc page, all good!  Take it
928          * over and copy the page & arm it.
929          */
930         *prealloc = NULL;
931         copy_user_highpage(&new_folio->page, page, addr, src_vma);
932         __folio_mark_uptodate(new_folio);
933         folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934         folio_add_lru_vma(new_folio, dst_vma);
935         rss[MM_ANONPAGES]++;
936 
937         /* All done, just insert the new page copy in the child */
938         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941                 /* Uffd-wp needs to be delivered to dest pte as well */
942                 pte = pte_mkuffd_wp(pte);
943         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944         return 0;
945 }
946 
947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948                 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949                 pte_t pte, unsigned long addr, int nr)
950 {
951         struct mm_struct *src_mm = src_vma->vm_mm;
952 
953         /* If it's a COW mapping, write protect it both processes. */
954         if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955                 wrprotect_ptes(src_mm, addr, src_pte, nr);
956                 pte = pte_wrprotect(pte);
957         }
958 
959         /* If it's a shared mapping, mark it clean in the child. */
960         if (src_vma->vm_flags & VM_SHARED)
961                 pte = pte_mkclean(pte);
962         pte = pte_mkold(pte);
963 
964         if (!userfaultfd_wp(dst_vma))
965                 pte = pte_clear_uffd_wp(pte);
966 
967         set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968 }
969 
970 /*
971  * Copy one present PTE, trying to batch-process subsequent PTEs that map
972  * consecutive pages of the same folio by copying them as well.
973  *
974  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975  * Otherwise, returns the number of copied PTEs (at least 1).
976  */
977 static inline int
978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979                  pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980                  int max_nr, int *rss, struct folio **prealloc)
981 {
982         struct page *page;
983         struct folio *folio;
984         bool any_writable;
985         fpb_t flags = 0;
986         int err, nr;
987 
988         page = vm_normal_page(src_vma, addr, pte);
989         if (unlikely(!page))
990                 goto copy_pte;
991 
992         folio = page_folio(page);
993 
994         /*
995          * If we likely have to copy, just don't bother with batching. Make
996          * sure that the common "small folio" case is as fast as possible
997          * by keeping the batching logic separate.
998          */
999         if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000                 if (src_vma->vm_flags & VM_SHARED)
1001                         flags |= FPB_IGNORE_DIRTY;
1002                 if (!vma_soft_dirty_enabled(src_vma))
1003                         flags |= FPB_IGNORE_SOFT_DIRTY;
1004 
1005                 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006                                      &any_writable, NULL, NULL);
1007                 folio_ref_add(folio, nr);
1008                 if (folio_test_anon(folio)) {
1009                         if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010                                                                   nr, src_vma))) {
1011                                 folio_ref_sub(folio, nr);
1012                                 return -EAGAIN;
1013                         }
1014                         rss[MM_ANONPAGES] += nr;
1015                         VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016                 } else {
1017                         folio_dup_file_rmap_ptes(folio, page, nr);
1018                         rss[mm_counter_file(folio)] += nr;
1019                 }
1020                 if (any_writable)
1021                         pte = pte_mkwrite(pte, src_vma);
1022                 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023                                     addr, nr);
1024                 return nr;
1025         }
1026 
1027         folio_get(folio);
1028         if (folio_test_anon(folio)) {
1029                 /*
1030                  * If this page may have been pinned by the parent process,
1031                  * copy the page immediately for the child so that we'll always
1032                  * guarantee the pinned page won't be randomly replaced in the
1033                  * future.
1034                  */
1035                 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036                         /* Page may be pinned, we have to copy. */
1037                         folio_put(folio);
1038                         err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039                                                 addr, rss, prealloc, page);
1040                         return err ? err : 1;
1041                 }
1042                 rss[MM_ANONPAGES]++;
1043                 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044         } else {
1045                 folio_dup_file_rmap_pte(folio, page);
1046                 rss[mm_counter_file(folio)]++;
1047         }
1048 
1049 copy_pte:
1050         __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051         return 1;
1052 }
1053 
1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055                 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056 {
1057         struct folio *new_folio;
1058 
1059         if (need_zero)
1060                 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061         else
1062                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1063                                             addr, false);
1064 
1065         if (!new_folio)
1066                 return NULL;
1067 
1068         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069                 folio_put(new_folio);
1070                 return NULL;
1071         }
1072         folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073 
1074         return new_folio;
1075 }
1076 
1077 static int
1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080                unsigned long end)
1081 {
1082         struct mm_struct *dst_mm = dst_vma->vm_mm;
1083         struct mm_struct *src_mm = src_vma->vm_mm;
1084         pte_t *orig_src_pte, *orig_dst_pte;
1085         pte_t *src_pte, *dst_pte;
1086         pte_t ptent;
1087         spinlock_t *src_ptl, *dst_ptl;
1088         int progress, max_nr, ret = 0;
1089         int rss[NR_MM_COUNTERS];
1090         swp_entry_t entry = (swp_entry_t){0};
1091         struct folio *prealloc = NULL;
1092         int nr;
1093 
1094 again:
1095         progress = 0;
1096         init_rss_vec(rss);
1097 
1098         /*
1099          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100          * error handling here, assume that exclusive mmap_lock on dst and src
1101          * protects anon from unexpected THP transitions; with shmem and file
1102          * protected by mmap_lock-less collapse skipping areas with anon_vma
1103          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1104          * can remove such assumptions later, but this is good enough for now.
1105          */
1106         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107         if (!dst_pte) {
1108                 ret = -ENOMEM;
1109                 goto out;
1110         }
1111         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1112         if (!src_pte) {
1113                 pte_unmap_unlock(dst_pte, dst_ptl);
1114                 /* ret == 0 */
1115                 goto out;
1116         }
1117         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118         orig_src_pte = src_pte;
1119         orig_dst_pte = dst_pte;
1120         arch_enter_lazy_mmu_mode();
1121 
1122         do {
1123                 nr = 1;
1124 
1125                 /*
1126                  * We are holding two locks at this point - either of them
1127                  * could generate latencies in another task on another CPU.
1128                  */
1129                 if (progress >= 32) {
1130                         progress = 0;
1131                         if (need_resched() ||
1132                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1133                                 break;
1134                 }
1135                 ptent = ptep_get(src_pte);
1136                 if (pte_none(ptent)) {
1137                         progress++;
1138                         continue;
1139                 }
1140                 if (unlikely(!pte_present(ptent))) {
1141                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1142                                                   dst_pte, src_pte,
1143                                                   dst_vma, src_vma,
1144                                                   addr, rss);
1145                         if (ret == -EIO) {
1146                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1147                                 break;
1148                         } else if (ret == -EBUSY) {
1149                                 break;
1150                         } else if (!ret) {
1151                                 progress += 8;
1152                                 continue;
1153                         }
1154                         ptent = ptep_get(src_pte);
1155                         VM_WARN_ON_ONCE(!pte_present(ptent));
1156 
1157                         /*
1158                          * Device exclusive entry restored, continue by copying
1159                          * the now present pte.
1160                          */
1161                         WARN_ON_ONCE(ret != -ENOENT);
1162                 }
1163                 /* copy_present_ptes() will clear `*prealloc' if consumed */
1164                 max_nr = (end - addr) / PAGE_SIZE;
1165                 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1166                                         ptent, addr, max_nr, rss, &prealloc);
1167                 /*
1168                  * If we need a pre-allocated page for this pte, drop the
1169                  * locks, allocate, and try again.
1170                  */
1171                 if (unlikely(ret == -EAGAIN))
1172                         break;
1173                 if (unlikely(prealloc)) {
1174                         /*
1175                          * pre-alloc page cannot be reused by next time so as
1176                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1177                          * will allocate page according to address).  This
1178                          * could only happen if one pinned pte changed.
1179                          */
1180                         folio_put(prealloc);
1181                         prealloc = NULL;
1182                 }
1183                 nr = ret;
1184                 progress += 8 * nr;
1185         } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1186                  addr != end);
1187 
1188         arch_leave_lazy_mmu_mode();
1189         pte_unmap_unlock(orig_src_pte, src_ptl);
1190         add_mm_rss_vec(dst_mm, rss);
1191         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1192         cond_resched();
1193 
1194         if (ret == -EIO) {
1195                 VM_WARN_ON_ONCE(!entry.val);
1196                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1197                         ret = -ENOMEM;
1198                         goto out;
1199                 }
1200                 entry.val = 0;
1201         } else if (ret == -EBUSY) {
1202                 goto out;
1203         } else if (ret ==  -EAGAIN) {
1204                 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1205                 if (!prealloc)
1206                         return -ENOMEM;
1207         } else if (ret < 0) {
1208                 VM_WARN_ON_ONCE(1);
1209         }
1210 
1211         /* We've captured and resolved the error. Reset, try again. */
1212         ret = 0;
1213 
1214         if (addr != end)
1215                 goto again;
1216 out:
1217         if (unlikely(prealloc))
1218                 folio_put(prealloc);
1219         return ret;
1220 }
1221 
1222 static inline int
1223 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1224                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1225                unsigned long end)
1226 {
1227         struct mm_struct *dst_mm = dst_vma->vm_mm;
1228         struct mm_struct *src_mm = src_vma->vm_mm;
1229         pmd_t *src_pmd, *dst_pmd;
1230         unsigned long next;
1231 
1232         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1233         if (!dst_pmd)
1234                 return -ENOMEM;
1235         src_pmd = pmd_offset(src_pud, addr);
1236         do {
1237                 next = pmd_addr_end(addr, end);
1238                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1239                         || pmd_devmap(*src_pmd)) {
1240                         int err;
1241                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1242                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1243                                             addr, dst_vma, src_vma);
1244                         if (err == -ENOMEM)
1245                                 return -ENOMEM;
1246                         if (!err)
1247                                 continue;
1248                         /* fall through */
1249                 }
1250                 if (pmd_none_or_clear_bad(src_pmd))
1251                         continue;
1252                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1253                                    addr, next))
1254                         return -ENOMEM;
1255         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1256         return 0;
1257 }
1258 
1259 static inline int
1260 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1261                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1262                unsigned long end)
1263 {
1264         struct mm_struct *dst_mm = dst_vma->vm_mm;
1265         struct mm_struct *src_mm = src_vma->vm_mm;
1266         pud_t *src_pud, *dst_pud;
1267         unsigned long next;
1268 
1269         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1270         if (!dst_pud)
1271                 return -ENOMEM;
1272         src_pud = pud_offset(src_p4d, addr);
1273         do {
1274                 next = pud_addr_end(addr, end);
1275                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1276                         int err;
1277 
1278                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1279                         err = copy_huge_pud(dst_mm, src_mm,
1280                                             dst_pud, src_pud, addr, src_vma);
1281                         if (err == -ENOMEM)
1282                                 return -ENOMEM;
1283                         if (!err)
1284                                 continue;
1285                         /* fall through */
1286                 }
1287                 if (pud_none_or_clear_bad(src_pud))
1288                         continue;
1289                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1290                                    addr, next))
1291                         return -ENOMEM;
1292         } while (dst_pud++, src_pud++, addr = next, addr != end);
1293         return 0;
1294 }
1295 
1296 static inline int
1297 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1298                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1299                unsigned long end)
1300 {
1301         struct mm_struct *dst_mm = dst_vma->vm_mm;
1302         p4d_t *src_p4d, *dst_p4d;
1303         unsigned long next;
1304 
1305         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1306         if (!dst_p4d)
1307                 return -ENOMEM;
1308         src_p4d = p4d_offset(src_pgd, addr);
1309         do {
1310                 next = p4d_addr_end(addr, end);
1311                 if (p4d_none_or_clear_bad(src_p4d))
1312                         continue;
1313                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1314                                    addr, next))
1315                         return -ENOMEM;
1316         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1317         return 0;
1318 }
1319 
1320 /*
1321  * Return true if the vma needs to copy the pgtable during this fork().  Return
1322  * false when we can speed up fork() by allowing lazy page faults later until
1323  * when the child accesses the memory range.
1324  */
1325 static bool
1326 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1327 {
1328         /*
1329          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1330          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1331          * contains uffd-wp protection information, that's something we can't
1332          * retrieve from page cache, and skip copying will lose those info.
1333          */
1334         if (userfaultfd_wp(dst_vma))
1335                 return true;
1336 
1337         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1338                 return true;
1339 
1340         if (src_vma->anon_vma)
1341                 return true;
1342 
1343         /*
1344          * Don't copy ptes where a page fault will fill them correctly.  Fork
1345          * becomes much lighter when there are big shared or private readonly
1346          * mappings. The tradeoff is that copy_page_range is more efficient
1347          * than faulting.
1348          */
1349         return false;
1350 }
1351 
1352 int
1353 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1354 {
1355         pgd_t *src_pgd, *dst_pgd;
1356         unsigned long next;
1357         unsigned long addr = src_vma->vm_start;
1358         unsigned long end = src_vma->vm_end;
1359         struct mm_struct *dst_mm = dst_vma->vm_mm;
1360         struct mm_struct *src_mm = src_vma->vm_mm;
1361         struct mmu_notifier_range range;
1362         bool is_cow;
1363         int ret;
1364 
1365         if (!vma_needs_copy(dst_vma, src_vma))
1366                 return 0;
1367 
1368         if (is_vm_hugetlb_page(src_vma))
1369                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1370 
1371         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1372                 /*
1373                  * We do not free on error cases below as remove_vma
1374                  * gets called on error from higher level routine
1375                  */
1376                 ret = track_pfn_copy(src_vma);
1377                 if (ret)
1378                         return ret;
1379         }
1380 
1381         /*
1382          * We need to invalidate the secondary MMU mappings only when
1383          * there could be a permission downgrade on the ptes of the
1384          * parent mm. And a permission downgrade will only happen if
1385          * is_cow_mapping() returns true.
1386          */
1387         is_cow = is_cow_mapping(src_vma->vm_flags);
1388 
1389         if (is_cow) {
1390                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1391                                         0, src_mm, addr, end);
1392                 mmu_notifier_invalidate_range_start(&range);
1393                 /*
1394                  * Disabling preemption is not needed for the write side, as
1395                  * the read side doesn't spin, but goes to the mmap_lock.
1396                  *
1397                  * Use the raw variant of the seqcount_t write API to avoid
1398                  * lockdep complaining about preemptibility.
1399                  */
1400                 vma_assert_write_locked(src_vma);
1401                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1402         }
1403 
1404         ret = 0;
1405         dst_pgd = pgd_offset(dst_mm, addr);
1406         src_pgd = pgd_offset(src_mm, addr);
1407         do {
1408                 next = pgd_addr_end(addr, end);
1409                 if (pgd_none_or_clear_bad(src_pgd))
1410                         continue;
1411                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1412                                             addr, next))) {
1413                         untrack_pfn_clear(dst_vma);
1414                         ret = -ENOMEM;
1415                         break;
1416                 }
1417         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1418 
1419         if (is_cow) {
1420                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1421                 mmu_notifier_invalidate_range_end(&range);
1422         }
1423         return ret;
1424 }
1425 
1426 /* Whether we should zap all COWed (private) pages too */
1427 static inline bool should_zap_cows(struct zap_details *details)
1428 {
1429         /* By default, zap all pages */
1430         if (!details)
1431                 return true;
1432 
1433         /* Or, we zap COWed pages only if the caller wants to */
1434         return details->even_cows;
1435 }
1436 
1437 /* Decides whether we should zap this folio with the folio pointer specified */
1438 static inline bool should_zap_folio(struct zap_details *details,
1439                                     struct folio *folio)
1440 {
1441         /* If we can make a decision without *folio.. */
1442         if (should_zap_cows(details))
1443                 return true;
1444 
1445         /* Otherwise we should only zap non-anon folios */
1446         return !folio_test_anon(folio);
1447 }
1448 
1449 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1450 {
1451         if (!details)
1452                 return false;
1453 
1454         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1455 }
1456 
1457 /*
1458  * This function makes sure that we'll replace the none pte with an uffd-wp
1459  * swap special pte marker when necessary. Must be with the pgtable lock held.
1460  */
1461 static inline void
1462 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1463                               unsigned long addr, pte_t *pte, int nr,
1464                               struct zap_details *details, pte_t pteval)
1465 {
1466         /* Zap on anonymous always means dropping everything */
1467         if (vma_is_anonymous(vma))
1468                 return;
1469 
1470         if (zap_drop_file_uffd_wp(details))
1471                 return;
1472 
1473         for (;;) {
1474                 /* the PFN in the PTE is irrelevant. */
1475                 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1476                 if (--nr == 0)
1477                         break;
1478                 pte++;
1479                 addr += PAGE_SIZE;
1480         }
1481 }
1482 
1483 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1484                 struct vm_area_struct *vma, struct folio *folio,
1485                 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1486                 unsigned long addr, struct zap_details *details, int *rss,
1487                 bool *force_flush, bool *force_break)
1488 {
1489         struct mm_struct *mm = tlb->mm;
1490         bool delay_rmap = false;
1491 
1492         if (!folio_test_anon(folio)) {
1493                 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1494                 if (pte_dirty(ptent)) {
1495                         folio_mark_dirty(folio);
1496                         if (tlb_delay_rmap(tlb)) {
1497                                 delay_rmap = true;
1498                                 *force_flush = true;
1499                         }
1500                 }
1501                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1502                         folio_mark_accessed(folio);
1503                 rss[mm_counter(folio)] -= nr;
1504         } else {
1505                 /* We don't need up-to-date accessed/dirty bits. */
1506                 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1507                 rss[MM_ANONPAGES] -= nr;
1508         }
1509         /* Checking a single PTE in a batch is sufficient. */
1510         arch_check_zapped_pte(vma, ptent);
1511         tlb_remove_tlb_entries(tlb, pte, nr, addr);
1512         if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1513                 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1514                                               ptent);
1515 
1516         if (!delay_rmap) {
1517                 folio_remove_rmap_ptes(folio, page, nr, vma);
1518 
1519                 if (unlikely(folio_mapcount(folio) < 0))
1520                         print_bad_pte(vma, addr, ptent, page);
1521         }
1522         if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1523                 *force_flush = true;
1524                 *force_break = true;
1525         }
1526 }
1527 
1528 /*
1529  * Zap or skip at least one present PTE, trying to batch-process subsequent
1530  * PTEs that map consecutive pages of the same folio.
1531  *
1532  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1533  */
1534 static inline int zap_present_ptes(struct mmu_gather *tlb,
1535                 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1536                 unsigned int max_nr, unsigned long addr,
1537                 struct zap_details *details, int *rss, bool *force_flush,
1538                 bool *force_break)
1539 {
1540         const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1541         struct mm_struct *mm = tlb->mm;
1542         struct folio *folio;
1543         struct page *page;
1544         int nr;
1545 
1546         page = vm_normal_page(vma, addr, ptent);
1547         if (!page) {
1548                 /* We don't need up-to-date accessed/dirty bits. */
1549                 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1550                 arch_check_zapped_pte(vma, ptent);
1551                 tlb_remove_tlb_entry(tlb, pte, addr);
1552                 if (userfaultfd_pte_wp(vma, ptent))
1553                         zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1554                                                       details, ptent);
1555                 ksm_might_unmap_zero_page(mm, ptent);
1556                 return 1;
1557         }
1558 
1559         folio = page_folio(page);
1560         if (unlikely(!should_zap_folio(details, folio)))
1561                 return 1;
1562 
1563         /*
1564          * Make sure that the common "small folio" case is as fast as possible
1565          * by keeping the batching logic separate.
1566          */
1567         if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1568                 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1569                                      NULL, NULL, NULL);
1570 
1571                 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1572                                        addr, details, rss, force_flush,
1573                                        force_break);
1574                 return nr;
1575         }
1576         zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1577                                details, rss, force_flush, force_break);
1578         return 1;
1579 }
1580 
1581 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1582                                 struct vm_area_struct *vma, pmd_t *pmd,
1583                                 unsigned long addr, unsigned long end,
1584                                 struct zap_details *details)
1585 {
1586         bool force_flush = false, force_break = false;
1587         struct mm_struct *mm = tlb->mm;
1588         int rss[NR_MM_COUNTERS];
1589         spinlock_t *ptl;
1590         pte_t *start_pte;
1591         pte_t *pte;
1592         swp_entry_t entry;
1593         int nr;
1594 
1595         tlb_change_page_size(tlb, PAGE_SIZE);
1596         init_rss_vec(rss);
1597         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1598         if (!pte)
1599                 return addr;
1600 
1601         flush_tlb_batched_pending(mm);
1602         arch_enter_lazy_mmu_mode();
1603         do {
1604                 pte_t ptent = ptep_get(pte);
1605                 struct folio *folio;
1606                 struct page *page;
1607                 int max_nr;
1608 
1609                 nr = 1;
1610                 if (pte_none(ptent))
1611                         continue;
1612 
1613                 if (need_resched())
1614                         break;
1615 
1616                 if (pte_present(ptent)) {
1617                         max_nr = (end - addr) / PAGE_SIZE;
1618                         nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1619                                               addr, details, rss, &force_flush,
1620                                               &force_break);
1621                         if (unlikely(force_break)) {
1622                                 addr += nr * PAGE_SIZE;
1623                                 break;
1624                         }
1625                         continue;
1626                 }
1627 
1628                 entry = pte_to_swp_entry(ptent);
1629                 if (is_device_private_entry(entry) ||
1630                     is_device_exclusive_entry(entry)) {
1631                         page = pfn_swap_entry_to_page(entry);
1632                         folio = page_folio(page);
1633                         if (unlikely(!should_zap_folio(details, folio)))
1634                                 continue;
1635                         /*
1636                          * Both device private/exclusive mappings should only
1637                          * work with anonymous page so far, so we don't need to
1638                          * consider uffd-wp bit when zap. For more information,
1639                          * see zap_install_uffd_wp_if_needed().
1640                          */
1641                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1642                         rss[mm_counter(folio)]--;
1643                         if (is_device_private_entry(entry))
1644                                 folio_remove_rmap_pte(folio, page, vma);
1645                         folio_put(folio);
1646                 } else if (!non_swap_entry(entry)) {
1647                         max_nr = (end - addr) / PAGE_SIZE;
1648                         nr = swap_pte_batch(pte, max_nr, ptent);
1649                         /* Genuine swap entries, hence a private anon pages */
1650                         if (!should_zap_cows(details))
1651                                 continue;
1652                         rss[MM_SWAPENTS] -= nr;
1653                         free_swap_and_cache_nr(entry, nr);
1654                 } else if (is_migration_entry(entry)) {
1655                         folio = pfn_swap_entry_folio(entry);
1656                         if (!should_zap_folio(details, folio))
1657                                 continue;
1658                         rss[mm_counter(folio)]--;
1659                 } else if (pte_marker_entry_uffd_wp(entry)) {
1660                         /*
1661                          * For anon: always drop the marker; for file: only
1662                          * drop the marker if explicitly requested.
1663                          */
1664                         if (!vma_is_anonymous(vma) &&
1665                             !zap_drop_file_uffd_wp(details))
1666                                 continue;
1667                 } else if (is_hwpoison_entry(entry) ||
1668                            is_poisoned_swp_entry(entry)) {
1669                         if (!should_zap_cows(details))
1670                                 continue;
1671                 } else {
1672                         /* We should have covered all the swap entry types */
1673                         pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1674                         WARN_ON_ONCE(1);
1675                 }
1676                 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1677                 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1678         } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1679 
1680         add_mm_rss_vec(mm, rss);
1681         arch_leave_lazy_mmu_mode();
1682 
1683         /* Do the actual TLB flush before dropping ptl */
1684         if (force_flush) {
1685                 tlb_flush_mmu_tlbonly(tlb);
1686                 tlb_flush_rmaps(tlb, vma);
1687         }
1688         pte_unmap_unlock(start_pte, ptl);
1689 
1690         /*
1691          * If we forced a TLB flush (either due to running out of
1692          * batch buffers or because we needed to flush dirty TLB
1693          * entries before releasing the ptl), free the batched
1694          * memory too. Come back again if we didn't do everything.
1695          */
1696         if (force_flush)
1697                 tlb_flush_mmu(tlb);
1698 
1699         return addr;
1700 }
1701 
1702 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1703                                 struct vm_area_struct *vma, pud_t *pud,
1704                                 unsigned long addr, unsigned long end,
1705                                 struct zap_details *details)
1706 {
1707         pmd_t *pmd;
1708         unsigned long next;
1709 
1710         pmd = pmd_offset(pud, addr);
1711         do {
1712                 next = pmd_addr_end(addr, end);
1713                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1714                         if (next - addr != HPAGE_PMD_SIZE)
1715                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1716                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1717                                 addr = next;
1718                                 continue;
1719                         }
1720                         /* fall through */
1721                 } else if (details && details->single_folio &&
1722                            folio_test_pmd_mappable(details->single_folio) &&
1723                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1724                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1725                         /*
1726                          * Take and drop THP pmd lock so that we cannot return
1727                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1728                          * but not yet decremented compound_mapcount().
1729                          */
1730                         spin_unlock(ptl);
1731                 }
1732                 if (pmd_none(*pmd)) {
1733                         addr = next;
1734                         continue;
1735                 }
1736                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1737                 if (addr != next)
1738                         pmd--;
1739         } while (pmd++, cond_resched(), addr != end);
1740 
1741         return addr;
1742 }
1743 
1744 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1745                                 struct vm_area_struct *vma, p4d_t *p4d,
1746                                 unsigned long addr, unsigned long end,
1747                                 struct zap_details *details)
1748 {
1749         pud_t *pud;
1750         unsigned long next;
1751 
1752         pud = pud_offset(p4d, addr);
1753         do {
1754                 next = pud_addr_end(addr, end);
1755                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1756                         if (next - addr != HPAGE_PUD_SIZE) {
1757                                 mmap_assert_locked(tlb->mm);
1758                                 split_huge_pud(vma, pud, addr);
1759                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1760                                 goto next;
1761                         /* fall through */
1762                 }
1763                 if (pud_none_or_clear_bad(pud))
1764                         continue;
1765                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1766 next:
1767                 cond_resched();
1768         } while (pud++, addr = next, addr != end);
1769 
1770         return addr;
1771 }
1772 
1773 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1774                                 struct vm_area_struct *vma, pgd_t *pgd,
1775                                 unsigned long addr, unsigned long end,
1776                                 struct zap_details *details)
1777 {
1778         p4d_t *p4d;
1779         unsigned long next;
1780 
1781         p4d = p4d_offset(pgd, addr);
1782         do {
1783                 next = p4d_addr_end(addr, end);
1784                 if (p4d_none_or_clear_bad(p4d))
1785                         continue;
1786                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1787         } while (p4d++, addr = next, addr != end);
1788 
1789         return addr;
1790 }
1791 
1792 void unmap_page_range(struct mmu_gather *tlb,
1793                              struct vm_area_struct *vma,
1794                              unsigned long addr, unsigned long end,
1795                              struct zap_details *details)
1796 {
1797         pgd_t *pgd;
1798         unsigned long next;
1799 
1800         BUG_ON(addr >= end);
1801         tlb_start_vma(tlb, vma);
1802         pgd = pgd_offset(vma->vm_mm, addr);
1803         do {
1804                 next = pgd_addr_end(addr, end);
1805                 if (pgd_none_or_clear_bad(pgd))
1806                         continue;
1807                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1808         } while (pgd++, addr = next, addr != end);
1809         tlb_end_vma(tlb, vma);
1810 }
1811 
1812 
1813 static void unmap_single_vma(struct mmu_gather *tlb,
1814                 struct vm_area_struct *vma, unsigned long start_addr,
1815                 unsigned long end_addr,
1816                 struct zap_details *details, bool mm_wr_locked)
1817 {
1818         unsigned long start = max(vma->vm_start, start_addr);
1819         unsigned long end;
1820 
1821         if (start >= vma->vm_end)
1822                 return;
1823         end = min(vma->vm_end, end_addr);
1824         if (end <= vma->vm_start)
1825                 return;
1826 
1827         if (vma->vm_file)
1828                 uprobe_munmap(vma, start, end);
1829 
1830         if (unlikely(vma->vm_flags & VM_PFNMAP))
1831                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1832 
1833         if (start != end) {
1834                 if (unlikely(is_vm_hugetlb_page(vma))) {
1835                         /*
1836                          * It is undesirable to test vma->vm_file as it
1837                          * should be non-null for valid hugetlb area.
1838                          * However, vm_file will be NULL in the error
1839                          * cleanup path of mmap_region. When
1840                          * hugetlbfs ->mmap method fails,
1841                          * mmap_region() nullifies vma->vm_file
1842                          * before calling this function to clean up.
1843                          * Since no pte has actually been setup, it is
1844                          * safe to do nothing in this case.
1845                          */
1846                         if (vma->vm_file) {
1847                                 zap_flags_t zap_flags = details ?
1848                                     details->zap_flags : 0;
1849                                 __unmap_hugepage_range(tlb, vma, start, end,
1850                                                              NULL, zap_flags);
1851                         }
1852                 } else
1853                         unmap_page_range(tlb, vma, start, end, details);
1854         }
1855 }
1856 
1857 /**
1858  * unmap_vmas - unmap a range of memory covered by a list of vma's
1859  * @tlb: address of the caller's struct mmu_gather
1860  * @mas: the maple state
1861  * @vma: the starting vma
1862  * @start_addr: virtual address at which to start unmapping
1863  * @end_addr: virtual address at which to end unmapping
1864  * @tree_end: The maximum index to check
1865  * @mm_wr_locked: lock flag
1866  *
1867  * Unmap all pages in the vma list.
1868  *
1869  * Only addresses between `start' and `end' will be unmapped.
1870  *
1871  * The VMA list must be sorted in ascending virtual address order.
1872  *
1873  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1874  * range after unmap_vmas() returns.  So the only responsibility here is to
1875  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1876  * drops the lock and schedules.
1877  */
1878 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1879                 struct vm_area_struct *vma, unsigned long start_addr,
1880                 unsigned long end_addr, unsigned long tree_end,
1881                 bool mm_wr_locked)
1882 {
1883         struct mmu_notifier_range range;
1884         struct zap_details details = {
1885                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1886                 /* Careful - we need to zap private pages too! */
1887                 .even_cows = true,
1888         };
1889 
1890         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1891                                 start_addr, end_addr);
1892         mmu_notifier_invalidate_range_start(&range);
1893         do {
1894                 unsigned long start = start_addr;
1895                 unsigned long end = end_addr;
1896                 hugetlb_zap_begin(vma, &start, &end);
1897                 unmap_single_vma(tlb, vma, start, end, &details,
1898                                  mm_wr_locked);
1899                 hugetlb_zap_end(vma, &details);
1900                 vma = mas_find(mas, tree_end - 1);
1901         } while (vma && likely(!xa_is_zero(vma)));
1902         mmu_notifier_invalidate_range_end(&range);
1903 }
1904 
1905 /**
1906  * zap_page_range_single - remove user pages in a given range
1907  * @vma: vm_area_struct holding the applicable pages
1908  * @address: starting address of pages to zap
1909  * @size: number of bytes to zap
1910  * @details: details of shared cache invalidation
1911  *
1912  * The range must fit into one VMA.
1913  */
1914 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1915                 unsigned long size, struct zap_details *details)
1916 {
1917         const unsigned long end = address + size;
1918         struct mmu_notifier_range range;
1919         struct mmu_gather tlb;
1920 
1921         lru_add_drain();
1922         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1923                                 address, end);
1924         hugetlb_zap_begin(vma, &range.start, &range.end);
1925         tlb_gather_mmu(&tlb, vma->vm_mm);
1926         update_hiwater_rss(vma->vm_mm);
1927         mmu_notifier_invalidate_range_start(&range);
1928         /*
1929          * unmap 'address-end' not 'range.start-range.end' as range
1930          * could have been expanded for hugetlb pmd sharing.
1931          */
1932         unmap_single_vma(&tlb, vma, address, end, details, false);
1933         mmu_notifier_invalidate_range_end(&range);
1934         tlb_finish_mmu(&tlb);
1935         hugetlb_zap_end(vma, details);
1936 }
1937 
1938 /**
1939  * zap_vma_ptes - remove ptes mapping the vma
1940  * @vma: vm_area_struct holding ptes to be zapped
1941  * @address: starting address of pages to zap
1942  * @size: number of bytes to zap
1943  *
1944  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1945  *
1946  * The entire address range must be fully contained within the vma.
1947  *
1948  */
1949 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1950                 unsigned long size)
1951 {
1952         if (!range_in_vma(vma, address, address + size) ||
1953                         !(vma->vm_flags & VM_PFNMAP))
1954                 return;
1955 
1956         zap_page_range_single(vma, address, size, NULL);
1957 }
1958 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1959 
1960 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1961 {
1962         pgd_t *pgd;
1963         p4d_t *p4d;
1964         pud_t *pud;
1965         pmd_t *pmd;
1966 
1967         pgd = pgd_offset(mm, addr);
1968         p4d = p4d_alloc(mm, pgd, addr);
1969         if (!p4d)
1970                 return NULL;
1971         pud = pud_alloc(mm, p4d, addr);
1972         if (!pud)
1973                 return NULL;
1974         pmd = pmd_alloc(mm, pud, addr);
1975         if (!pmd)
1976                 return NULL;
1977 
1978         VM_BUG_ON(pmd_trans_huge(*pmd));
1979         return pmd;
1980 }
1981 
1982 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983                         spinlock_t **ptl)
1984 {
1985         pmd_t *pmd = walk_to_pmd(mm, addr);
1986 
1987         if (!pmd)
1988                 return NULL;
1989         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1990 }
1991 
1992 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
1993 {
1994         VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
1995         /*
1996          * Whoever wants to forbid the zeropage after some zeropages
1997          * might already have been mapped has to scan the page tables and
1998          * bail out on any zeropages. Zeropages in COW mappings can
1999          * be unshared using FAULT_FLAG_UNSHARE faults.
2000          */
2001         if (mm_forbids_zeropage(vma->vm_mm))
2002                 return false;
2003         /* zeropages in COW mappings are common and unproblematic. */
2004         if (is_cow_mapping(vma->vm_flags))
2005                 return true;
2006         /* Mappings that do not allow for writable PTEs are unproblematic. */
2007         if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2008                 return true;
2009         /*
2010          * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2011          * find the shared zeropage and longterm-pin it, which would
2012          * be problematic as soon as the zeropage gets replaced by a different
2013          * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2014          * now differ to what GUP looked up. FSDAX is incompatible to
2015          * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2016          * check_vma_flags).
2017          */
2018         return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2019                (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2020 }
2021 
2022 static int validate_page_before_insert(struct vm_area_struct *vma,
2023                                        struct page *page)
2024 {
2025         struct folio *folio = page_folio(page);
2026 
2027         if (!folio_ref_count(folio))
2028                 return -EINVAL;
2029         if (unlikely(is_zero_folio(folio))) {
2030                 if (!vm_mixed_zeropage_allowed(vma))
2031                         return -EINVAL;
2032                 return 0;
2033         }
2034         if (folio_test_anon(folio) || folio_test_slab(folio) ||
2035             page_has_type(page))
2036                 return -EINVAL;
2037         flush_dcache_folio(folio);
2038         return 0;
2039 }
2040 
2041 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2042                         unsigned long addr, struct page *page, pgprot_t prot)
2043 {
2044         struct folio *folio = page_folio(page);
2045         pte_t pteval;
2046 
2047         if (!pte_none(ptep_get(pte)))
2048                 return -EBUSY;
2049         /* Ok, finally just insert the thing.. */
2050         pteval = mk_pte(page, prot);
2051         if (unlikely(is_zero_folio(folio))) {
2052                 pteval = pte_mkspecial(pteval);
2053         } else {
2054                 folio_get(folio);
2055                 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2056                 folio_add_file_rmap_pte(folio, page, vma);
2057         }
2058         set_pte_at(vma->vm_mm, addr, pte, pteval);
2059         return 0;
2060 }
2061 
2062 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2063                         struct page *page, pgprot_t prot)
2064 {
2065         int retval;
2066         pte_t *pte;
2067         spinlock_t *ptl;
2068 
2069         retval = validate_page_before_insert(vma, page);
2070         if (retval)
2071                 goto out;
2072         retval = -ENOMEM;
2073         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2074         if (!pte)
2075                 goto out;
2076         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2077         pte_unmap_unlock(pte, ptl);
2078 out:
2079         return retval;
2080 }
2081 
2082 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2083                         unsigned long addr, struct page *page, pgprot_t prot)
2084 {
2085         int err;
2086 
2087         err = validate_page_before_insert(vma, page);
2088         if (err)
2089                 return err;
2090         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2091 }
2092 
2093 /* insert_pages() amortizes the cost of spinlock operations
2094  * when inserting pages in a loop.
2095  */
2096 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2097                         struct page **pages, unsigned long *num, pgprot_t prot)
2098 {
2099         pmd_t *pmd = NULL;
2100         pte_t *start_pte, *pte;
2101         spinlock_t *pte_lock;
2102         struct mm_struct *const mm = vma->vm_mm;
2103         unsigned long curr_page_idx = 0;
2104         unsigned long remaining_pages_total = *num;
2105         unsigned long pages_to_write_in_pmd;
2106         int ret;
2107 more:
2108         ret = -EFAULT;
2109         pmd = walk_to_pmd(mm, addr);
2110         if (!pmd)
2111                 goto out;
2112 
2113         pages_to_write_in_pmd = min_t(unsigned long,
2114                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2115 
2116         /* Allocate the PTE if necessary; takes PMD lock once only. */
2117         ret = -ENOMEM;
2118         if (pte_alloc(mm, pmd))
2119                 goto out;
2120 
2121         while (pages_to_write_in_pmd) {
2122                 int pte_idx = 0;
2123                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2124 
2125                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2126                 if (!start_pte) {
2127                         ret = -EFAULT;
2128                         goto out;
2129                 }
2130                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2131                         int err = insert_page_in_batch_locked(vma, pte,
2132                                 addr, pages[curr_page_idx], prot);
2133                         if (unlikely(err)) {
2134                                 pte_unmap_unlock(start_pte, pte_lock);
2135                                 ret = err;
2136                                 remaining_pages_total -= pte_idx;
2137                                 goto out;
2138                         }
2139                         addr += PAGE_SIZE;
2140                         ++curr_page_idx;
2141                 }
2142                 pte_unmap_unlock(start_pte, pte_lock);
2143                 pages_to_write_in_pmd -= batch_size;
2144                 remaining_pages_total -= batch_size;
2145         }
2146         if (remaining_pages_total)
2147                 goto more;
2148         ret = 0;
2149 out:
2150         *num = remaining_pages_total;
2151         return ret;
2152 }
2153 
2154 /**
2155  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2156  * @vma: user vma to map to
2157  * @addr: target start user address of these pages
2158  * @pages: source kernel pages
2159  * @num: in: number of pages to map. out: number of pages that were *not*
2160  * mapped. (0 means all pages were successfully mapped).
2161  *
2162  * Preferred over vm_insert_page() when inserting multiple pages.
2163  *
2164  * In case of error, we may have mapped a subset of the provided
2165  * pages. It is the caller's responsibility to account for this case.
2166  *
2167  * The same restrictions apply as in vm_insert_page().
2168  */
2169 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2170                         struct page **pages, unsigned long *num)
2171 {
2172         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2173 
2174         if (addr < vma->vm_start || end_addr >= vma->vm_end)
2175                 return -EFAULT;
2176         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2177                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2178                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2179                 vm_flags_set(vma, VM_MIXEDMAP);
2180         }
2181         /* Defer page refcount checking till we're about to map that page. */
2182         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2183 }
2184 EXPORT_SYMBOL(vm_insert_pages);
2185 
2186 /**
2187  * vm_insert_page - insert single page into user vma
2188  * @vma: user vma to map to
2189  * @addr: target user address of this page
2190  * @page: source kernel page
2191  *
2192  * This allows drivers to insert individual pages they've allocated
2193  * into a user vma. The zeropage is supported in some VMAs,
2194  * see vm_mixed_zeropage_allowed().
2195  *
2196  * The page has to be a nice clean _individual_ kernel allocation.
2197  * If you allocate a compound page, you need to have marked it as
2198  * such (__GFP_COMP), or manually just split the page up yourself
2199  * (see split_page()).
2200  *
2201  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2202  * took an arbitrary page protection parameter. This doesn't allow
2203  * that. Your vma protection will have to be set up correctly, which
2204  * means that if you want a shared writable mapping, you'd better
2205  * ask for a shared writable mapping!
2206  *
2207  * The page does not need to be reserved.
2208  *
2209  * Usually this function is called from f_op->mmap() handler
2210  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2211  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2212  * function from other places, for example from page-fault handler.
2213  *
2214  * Return: %0 on success, negative error code otherwise.
2215  */
2216 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2217                         struct page *page)
2218 {
2219         if (addr < vma->vm_start || addr >= vma->vm_end)
2220                 return -EFAULT;
2221         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2222                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2223                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2224                 vm_flags_set(vma, VM_MIXEDMAP);
2225         }
2226         return insert_page(vma, addr, page, vma->vm_page_prot);
2227 }
2228 EXPORT_SYMBOL(vm_insert_page);
2229 
2230 /*
2231  * __vm_map_pages - maps range of kernel pages into user vma
2232  * @vma: user vma to map to
2233  * @pages: pointer to array of source kernel pages
2234  * @num: number of pages in page array
2235  * @offset: user's requested vm_pgoff
2236  *
2237  * This allows drivers to map range of kernel pages into a user vma.
2238  * The zeropage is supported in some VMAs, see
2239  * vm_mixed_zeropage_allowed().
2240  *
2241  * Return: 0 on success and error code otherwise.
2242  */
2243 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2244                                 unsigned long num, unsigned long offset)
2245 {
2246         unsigned long count = vma_pages(vma);
2247         unsigned long uaddr = vma->vm_start;
2248         int ret, i;
2249 
2250         /* Fail if the user requested offset is beyond the end of the object */
2251         if (offset >= num)
2252                 return -ENXIO;
2253 
2254         /* Fail if the user requested size exceeds available object size */
2255         if (count > num - offset)
2256                 return -ENXIO;
2257 
2258         for (i = 0; i < count; i++) {
2259                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2260                 if (ret < 0)
2261                         return ret;
2262                 uaddr += PAGE_SIZE;
2263         }
2264 
2265         return 0;
2266 }
2267 
2268 /**
2269  * vm_map_pages - maps range of kernel pages starts with non zero offset
2270  * @vma: user vma to map to
2271  * @pages: pointer to array of source kernel pages
2272  * @num: number of pages in page array
2273  *
2274  * Maps an object consisting of @num pages, catering for the user's
2275  * requested vm_pgoff
2276  *
2277  * If we fail to insert any page into the vma, the function will return
2278  * immediately leaving any previously inserted pages present.  Callers
2279  * from the mmap handler may immediately return the error as their caller
2280  * will destroy the vma, removing any successfully inserted pages. Other
2281  * callers should make their own arrangements for calling unmap_region().
2282  *
2283  * Context: Process context. Called by mmap handlers.
2284  * Return: 0 on success and error code otherwise.
2285  */
2286 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2287                                 unsigned long num)
2288 {
2289         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2290 }
2291 EXPORT_SYMBOL(vm_map_pages);
2292 
2293 /**
2294  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2295  * @vma: user vma to map to
2296  * @pages: pointer to array of source kernel pages
2297  * @num: number of pages in page array
2298  *
2299  * Similar to vm_map_pages(), except that it explicitly sets the offset
2300  * to 0. This function is intended for the drivers that did not consider
2301  * vm_pgoff.
2302  *
2303  * Context: Process context. Called by mmap handlers.
2304  * Return: 0 on success and error code otherwise.
2305  */
2306 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2307                                 unsigned long num)
2308 {
2309         return __vm_map_pages(vma, pages, num, 0);
2310 }
2311 EXPORT_SYMBOL(vm_map_pages_zero);
2312 
2313 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2314                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2315 {
2316         struct mm_struct *mm = vma->vm_mm;
2317         pte_t *pte, entry;
2318         spinlock_t *ptl;
2319 
2320         pte = get_locked_pte(mm, addr, &ptl);
2321         if (!pte)
2322                 return VM_FAULT_OOM;
2323         entry = ptep_get(pte);
2324         if (!pte_none(entry)) {
2325                 if (mkwrite) {
2326                         /*
2327                          * For read faults on private mappings the PFN passed
2328                          * in may not match the PFN we have mapped if the
2329                          * mapped PFN is a writeable COW page.  In the mkwrite
2330                          * case we are creating a writable PTE for a shared
2331                          * mapping and we expect the PFNs to match. If they
2332                          * don't match, we are likely racing with block
2333                          * allocation and mapping invalidation so just skip the
2334                          * update.
2335                          */
2336                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2337                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2338                                 goto out_unlock;
2339                         }
2340                         entry = pte_mkyoung(entry);
2341                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2342                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2343                                 update_mmu_cache(vma, addr, pte);
2344                 }
2345                 goto out_unlock;
2346         }
2347 
2348         /* Ok, finally just insert the thing.. */
2349         if (pfn_t_devmap(pfn))
2350                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2351         else
2352                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2353 
2354         if (mkwrite) {
2355                 entry = pte_mkyoung(entry);
2356                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2357         }
2358 
2359         set_pte_at(mm, addr, pte, entry);
2360         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2361 
2362 out_unlock:
2363         pte_unmap_unlock(pte, ptl);
2364         return VM_FAULT_NOPAGE;
2365 }
2366 
2367 /**
2368  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2369  * @vma: user vma to map to
2370  * @addr: target user address of this page
2371  * @pfn: source kernel pfn
2372  * @pgprot: pgprot flags for the inserted page
2373  *
2374  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2375  * to override pgprot on a per-page basis.
2376  *
2377  * This only makes sense for IO mappings, and it makes no sense for
2378  * COW mappings.  In general, using multiple vmas is preferable;
2379  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2380  * impractical.
2381  *
2382  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2383  * caching- and encryption bits different than those of @vma->vm_page_prot,
2384  * because the caching- or encryption mode may not be known at mmap() time.
2385  *
2386  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2387  * to set caching and encryption bits for those vmas (except for COW pages).
2388  * This is ensured by core vm only modifying these page table entries using
2389  * functions that don't touch caching- or encryption bits, using pte_modify()
2390  * if needed. (See for example mprotect()).
2391  *
2392  * Also when new page-table entries are created, this is only done using the
2393  * fault() callback, and never using the value of vma->vm_page_prot,
2394  * except for page-table entries that point to anonymous pages as the result
2395  * of COW.
2396  *
2397  * Context: Process context.  May allocate using %GFP_KERNEL.
2398  * Return: vm_fault_t value.
2399  */
2400 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2401                         unsigned long pfn, pgprot_t pgprot)
2402 {
2403         /*
2404          * Technically, architectures with pte_special can avoid all these
2405          * restrictions (same for remap_pfn_range).  However we would like
2406          * consistency in testing and feature parity among all, so we should
2407          * try to keep these invariants in place for everybody.
2408          */
2409         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2410         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2411                                                 (VM_PFNMAP|VM_MIXEDMAP));
2412         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2413         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2414 
2415         if (addr < vma->vm_start || addr >= vma->vm_end)
2416                 return VM_FAULT_SIGBUS;
2417 
2418         if (!pfn_modify_allowed(pfn, pgprot))
2419                 return VM_FAULT_SIGBUS;
2420 
2421         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2422 
2423         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2424                         false);
2425 }
2426 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2427 
2428 /**
2429  * vmf_insert_pfn - insert single pfn into user vma
2430  * @vma: user vma to map to
2431  * @addr: target user address of this page
2432  * @pfn: source kernel pfn
2433  *
2434  * Similar to vm_insert_page, this allows drivers to insert individual pages
2435  * they've allocated into a user vma. Same comments apply.
2436  *
2437  * This function should only be called from a vm_ops->fault handler, and
2438  * in that case the handler should return the result of this function.
2439  *
2440  * vma cannot be a COW mapping.
2441  *
2442  * As this is called only for pages that do not currently exist, we
2443  * do not need to flush old virtual caches or the TLB.
2444  *
2445  * Context: Process context.  May allocate using %GFP_KERNEL.
2446  * Return: vm_fault_t value.
2447  */
2448 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2449                         unsigned long pfn)
2450 {
2451         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2452 }
2453 EXPORT_SYMBOL(vmf_insert_pfn);
2454 
2455 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2456 {
2457         if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2458             (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2459                 return false;
2460         /* these checks mirror the abort conditions in vm_normal_page */
2461         if (vma->vm_flags & VM_MIXEDMAP)
2462                 return true;
2463         if (pfn_t_devmap(pfn))
2464                 return true;
2465         if (pfn_t_special(pfn))
2466                 return true;
2467         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2468                 return true;
2469         return false;
2470 }
2471 
2472 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2473                 unsigned long addr, pfn_t pfn, bool mkwrite)
2474 {
2475         pgprot_t pgprot = vma->vm_page_prot;
2476         int err;
2477 
2478         if (!vm_mixed_ok(vma, pfn, mkwrite))
2479                 return VM_FAULT_SIGBUS;
2480 
2481         if (addr < vma->vm_start || addr >= vma->vm_end)
2482                 return VM_FAULT_SIGBUS;
2483 
2484         track_pfn_insert(vma, &pgprot, pfn);
2485 
2486         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2487                 return VM_FAULT_SIGBUS;
2488 
2489         /*
2490          * If we don't have pte special, then we have to use the pfn_valid()
2491          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2492          * refcount the page if pfn_valid is true (hence insert_page rather
2493          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2494          * without pte special, it would there be refcounted as a normal page.
2495          */
2496         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2497             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2498                 struct page *page;
2499 
2500                 /*
2501                  * At this point we are committed to insert_page()
2502                  * regardless of whether the caller specified flags that
2503                  * result in pfn_t_has_page() == false.
2504                  */
2505                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2506                 err = insert_page(vma, addr, page, pgprot);
2507         } else {
2508                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2509         }
2510 
2511         if (err == -ENOMEM)
2512                 return VM_FAULT_OOM;
2513         if (err < 0 && err != -EBUSY)
2514                 return VM_FAULT_SIGBUS;
2515 
2516         return VM_FAULT_NOPAGE;
2517 }
2518 
2519 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2520                 pfn_t pfn)
2521 {
2522         return __vm_insert_mixed(vma, addr, pfn, false);
2523 }
2524 EXPORT_SYMBOL(vmf_insert_mixed);
2525 
2526 /*
2527  *  If the insertion of PTE failed because someone else already added a
2528  *  different entry in the mean time, we treat that as success as we assume
2529  *  the same entry was actually inserted.
2530  */
2531 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2532                 unsigned long addr, pfn_t pfn)
2533 {
2534         return __vm_insert_mixed(vma, addr, pfn, true);
2535 }
2536 
2537 /*
2538  * maps a range of physical memory into the requested pages. the old
2539  * mappings are removed. any references to nonexistent pages results
2540  * in null mappings (currently treated as "copy-on-access")
2541  */
2542 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2543                         unsigned long addr, unsigned long end,
2544                         unsigned long pfn, pgprot_t prot)
2545 {
2546         pte_t *pte, *mapped_pte;
2547         spinlock_t *ptl;
2548         int err = 0;
2549 
2550         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2551         if (!pte)
2552                 return -ENOMEM;
2553         arch_enter_lazy_mmu_mode();
2554         do {
2555                 BUG_ON(!pte_none(ptep_get(pte)));
2556                 if (!pfn_modify_allowed(pfn, prot)) {
2557                         err = -EACCES;
2558                         break;
2559                 }
2560                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2561                 pfn++;
2562         } while (pte++, addr += PAGE_SIZE, addr != end);
2563         arch_leave_lazy_mmu_mode();
2564         pte_unmap_unlock(mapped_pte, ptl);
2565         return err;
2566 }
2567 
2568 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2569                         unsigned long addr, unsigned long end,
2570                         unsigned long pfn, pgprot_t prot)
2571 {
2572         pmd_t *pmd;
2573         unsigned long next;
2574         int err;
2575 
2576         pfn -= addr >> PAGE_SHIFT;
2577         pmd = pmd_alloc(mm, pud, addr);
2578         if (!pmd)
2579                 return -ENOMEM;
2580         VM_BUG_ON(pmd_trans_huge(*pmd));
2581         do {
2582                 next = pmd_addr_end(addr, end);
2583                 err = remap_pte_range(mm, pmd, addr, next,
2584                                 pfn + (addr >> PAGE_SHIFT), prot);
2585                 if (err)
2586                         return err;
2587         } while (pmd++, addr = next, addr != end);
2588         return 0;
2589 }
2590 
2591 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2592                         unsigned long addr, unsigned long end,
2593                         unsigned long pfn, pgprot_t prot)
2594 {
2595         pud_t *pud;
2596         unsigned long next;
2597         int err;
2598 
2599         pfn -= addr >> PAGE_SHIFT;
2600         pud = pud_alloc(mm, p4d, addr);
2601         if (!pud)
2602                 return -ENOMEM;
2603         do {
2604                 next = pud_addr_end(addr, end);
2605                 err = remap_pmd_range(mm, pud, addr, next,
2606                                 pfn + (addr >> PAGE_SHIFT), prot);
2607                 if (err)
2608                         return err;
2609         } while (pud++, addr = next, addr != end);
2610         return 0;
2611 }
2612 
2613 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2614                         unsigned long addr, unsigned long end,
2615                         unsigned long pfn, pgprot_t prot)
2616 {
2617         p4d_t *p4d;
2618         unsigned long next;
2619         int err;
2620 
2621         pfn -= addr >> PAGE_SHIFT;
2622         p4d = p4d_alloc(mm, pgd, addr);
2623         if (!p4d)
2624                 return -ENOMEM;
2625         do {
2626                 next = p4d_addr_end(addr, end);
2627                 err = remap_pud_range(mm, p4d, addr, next,
2628                                 pfn + (addr >> PAGE_SHIFT), prot);
2629                 if (err)
2630                         return err;
2631         } while (p4d++, addr = next, addr != end);
2632         return 0;
2633 }
2634 
2635 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2636                 unsigned long pfn, unsigned long size, pgprot_t prot)
2637 {
2638         pgd_t *pgd;
2639         unsigned long next;
2640         unsigned long end = addr + PAGE_ALIGN(size);
2641         struct mm_struct *mm = vma->vm_mm;
2642         int err;
2643 
2644         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2645                 return -EINVAL;
2646 
2647         /*
2648          * Physically remapped pages are special. Tell the
2649          * rest of the world about it:
2650          *   VM_IO tells people not to look at these pages
2651          *      (accesses can have side effects).
2652          *   VM_PFNMAP tells the core MM that the base pages are just
2653          *      raw PFN mappings, and do not have a "struct page" associated
2654          *      with them.
2655          *   VM_DONTEXPAND
2656          *      Disable vma merging and expanding with mremap().
2657          *   VM_DONTDUMP
2658          *      Omit vma from core dump, even when VM_IO turned off.
2659          *
2660          * There's a horrible special case to handle copy-on-write
2661          * behaviour that some programs depend on. We mark the "original"
2662          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2663          * See vm_normal_page() for details.
2664          */
2665         if (is_cow_mapping(vma->vm_flags)) {
2666                 if (addr != vma->vm_start || end != vma->vm_end)
2667                         return -EINVAL;
2668                 vma->vm_pgoff = pfn;
2669         }
2670 
2671         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2672 
2673         BUG_ON(addr >= end);
2674         pfn -= addr >> PAGE_SHIFT;
2675         pgd = pgd_offset(mm, addr);
2676         flush_cache_range(vma, addr, end);
2677         do {
2678                 next = pgd_addr_end(addr, end);
2679                 err = remap_p4d_range(mm, pgd, addr, next,
2680                                 pfn + (addr >> PAGE_SHIFT), prot);
2681                 if (err)
2682                         return err;
2683         } while (pgd++, addr = next, addr != end);
2684 
2685         return 0;
2686 }
2687 
2688 /*
2689  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2690  * must have pre-validated the caching bits of the pgprot_t.
2691  */
2692 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2693                 unsigned long pfn, unsigned long size, pgprot_t prot)
2694 {
2695         int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2696 
2697         if (!error)
2698                 return 0;
2699 
2700         /*
2701          * A partial pfn range mapping is dangerous: it does not
2702          * maintain page reference counts, and callers may free
2703          * pages due to the error. So zap it early.
2704          */
2705         zap_page_range_single(vma, addr, size, NULL);
2706         return error;
2707 }
2708 
2709 /**
2710  * remap_pfn_range - remap kernel memory to userspace
2711  * @vma: user vma to map to
2712  * @addr: target page aligned user address to start at
2713  * @pfn: page frame number of kernel physical memory address
2714  * @size: size of mapping area
2715  * @prot: page protection flags for this mapping
2716  *
2717  * Note: this is only safe if the mm semaphore is held when called.
2718  *
2719  * Return: %0 on success, negative error code otherwise.
2720  */
2721 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2722                     unsigned long pfn, unsigned long size, pgprot_t prot)
2723 {
2724         int err;
2725 
2726         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2727         if (err)
2728                 return -EINVAL;
2729 
2730         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2731         if (err)
2732                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2733         return err;
2734 }
2735 EXPORT_SYMBOL(remap_pfn_range);
2736 
2737 /**
2738  * vm_iomap_memory - remap memory to userspace
2739  * @vma: user vma to map to
2740  * @start: start of the physical memory to be mapped
2741  * @len: size of area
2742  *
2743  * This is a simplified io_remap_pfn_range() for common driver use. The
2744  * driver just needs to give us the physical memory range to be mapped,
2745  * we'll figure out the rest from the vma information.
2746  *
2747  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2748  * whatever write-combining details or similar.
2749  *
2750  * Return: %0 on success, negative error code otherwise.
2751  */
2752 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2753 {
2754         unsigned long vm_len, pfn, pages;
2755 
2756         /* Check that the physical memory area passed in looks valid */
2757         if (start + len < start)
2758                 return -EINVAL;
2759         /*
2760          * You *really* shouldn't map things that aren't page-aligned,
2761          * but we've historically allowed it because IO memory might
2762          * just have smaller alignment.
2763          */
2764         len += start & ~PAGE_MASK;
2765         pfn = start >> PAGE_SHIFT;
2766         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2767         if (pfn + pages < pfn)
2768                 return -EINVAL;
2769 
2770         /* We start the mapping 'vm_pgoff' pages into the area */
2771         if (vma->vm_pgoff > pages)
2772                 return -EINVAL;
2773         pfn += vma->vm_pgoff;
2774         pages -= vma->vm_pgoff;
2775 
2776         /* Can we fit all of the mapping? */
2777         vm_len = vma->vm_end - vma->vm_start;
2778         if (vm_len >> PAGE_SHIFT > pages)
2779                 return -EINVAL;
2780 
2781         /* Ok, let it rip */
2782         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2783 }
2784 EXPORT_SYMBOL(vm_iomap_memory);
2785 
2786 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2787                                      unsigned long addr, unsigned long end,
2788                                      pte_fn_t fn, void *data, bool create,
2789                                      pgtbl_mod_mask *mask)
2790 {
2791         pte_t *pte, *mapped_pte;
2792         int err = 0;
2793         spinlock_t *ptl;
2794 
2795         if (create) {
2796                 mapped_pte = pte = (mm == &init_mm) ?
2797                         pte_alloc_kernel_track(pmd, addr, mask) :
2798                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2799                 if (!pte)
2800                         return -ENOMEM;
2801         } else {
2802                 mapped_pte = pte = (mm == &init_mm) ?
2803                         pte_offset_kernel(pmd, addr) :
2804                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2805                 if (!pte)
2806                         return -EINVAL;
2807         }
2808 
2809         arch_enter_lazy_mmu_mode();
2810 
2811         if (fn) {
2812                 do {
2813                         if (create || !pte_none(ptep_get(pte))) {
2814                                 err = fn(pte++, addr, data);
2815                                 if (err)
2816                                         break;
2817                         }
2818                 } while (addr += PAGE_SIZE, addr != end);
2819         }
2820         *mask |= PGTBL_PTE_MODIFIED;
2821 
2822         arch_leave_lazy_mmu_mode();
2823 
2824         if (mm != &init_mm)
2825                 pte_unmap_unlock(mapped_pte, ptl);
2826         return err;
2827 }
2828 
2829 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2830                                      unsigned long addr, unsigned long end,
2831                                      pte_fn_t fn, void *data, bool create,
2832                                      pgtbl_mod_mask *mask)
2833 {
2834         pmd_t *pmd;
2835         unsigned long next;
2836         int err = 0;
2837 
2838         BUG_ON(pud_leaf(*pud));
2839 
2840         if (create) {
2841                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2842                 if (!pmd)
2843                         return -ENOMEM;
2844         } else {
2845                 pmd = pmd_offset(pud, addr);
2846         }
2847         do {
2848                 next = pmd_addr_end(addr, end);
2849                 if (pmd_none(*pmd) && !create)
2850                         continue;
2851                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2852                         return -EINVAL;
2853                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2854                         if (!create)
2855                                 continue;
2856                         pmd_clear_bad(pmd);
2857                 }
2858                 err = apply_to_pte_range(mm, pmd, addr, next,
2859                                          fn, data, create, mask);
2860                 if (err)
2861                         break;
2862         } while (pmd++, addr = next, addr != end);
2863 
2864         return err;
2865 }
2866 
2867 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2868                                      unsigned long addr, unsigned long end,
2869                                      pte_fn_t fn, void *data, bool create,
2870                                      pgtbl_mod_mask *mask)
2871 {
2872         pud_t *pud;
2873         unsigned long next;
2874         int err = 0;
2875 
2876         if (create) {
2877                 pud = pud_alloc_track(mm, p4d, addr, mask);
2878                 if (!pud)
2879                         return -ENOMEM;
2880         } else {
2881                 pud = pud_offset(p4d, addr);
2882         }
2883         do {
2884                 next = pud_addr_end(addr, end);
2885                 if (pud_none(*pud) && !create)
2886                         continue;
2887                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2888                         return -EINVAL;
2889                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2890                         if (!create)
2891                                 continue;
2892                         pud_clear_bad(pud);
2893                 }
2894                 err = apply_to_pmd_range(mm, pud, addr, next,
2895                                          fn, data, create, mask);
2896                 if (err)
2897                         break;
2898         } while (pud++, addr = next, addr != end);
2899 
2900         return err;
2901 }
2902 
2903 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2904                                      unsigned long addr, unsigned long end,
2905                                      pte_fn_t fn, void *data, bool create,
2906                                      pgtbl_mod_mask *mask)
2907 {
2908         p4d_t *p4d;
2909         unsigned long next;
2910         int err = 0;
2911 
2912         if (create) {
2913                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2914                 if (!p4d)
2915                         return -ENOMEM;
2916         } else {
2917                 p4d = p4d_offset(pgd, addr);
2918         }
2919         do {
2920                 next = p4d_addr_end(addr, end);
2921                 if (p4d_none(*p4d) && !create)
2922                         continue;
2923                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2924                         return -EINVAL;
2925                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2926                         if (!create)
2927                                 continue;
2928                         p4d_clear_bad(p4d);
2929                 }
2930                 err = apply_to_pud_range(mm, p4d, addr, next,
2931                                          fn, data, create, mask);
2932                 if (err)
2933                         break;
2934         } while (p4d++, addr = next, addr != end);
2935 
2936         return err;
2937 }
2938 
2939 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2940                                  unsigned long size, pte_fn_t fn,
2941                                  void *data, bool create)
2942 {
2943         pgd_t *pgd;
2944         unsigned long start = addr, next;
2945         unsigned long end = addr + size;
2946         pgtbl_mod_mask mask = 0;
2947         int err = 0;
2948 
2949         if (WARN_ON(addr >= end))
2950                 return -EINVAL;
2951 
2952         pgd = pgd_offset(mm, addr);
2953         do {
2954                 next = pgd_addr_end(addr, end);
2955                 if (pgd_none(*pgd) && !create)
2956                         continue;
2957                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2958                         return -EINVAL;
2959                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2960                         if (!create)
2961                                 continue;
2962                         pgd_clear_bad(pgd);
2963                 }
2964                 err = apply_to_p4d_range(mm, pgd, addr, next,
2965                                          fn, data, create, &mask);
2966                 if (err)
2967                         break;
2968         } while (pgd++, addr = next, addr != end);
2969 
2970         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2971                 arch_sync_kernel_mappings(start, start + size);
2972 
2973         return err;
2974 }
2975 
2976 /*
2977  * Scan a region of virtual memory, filling in page tables as necessary
2978  * and calling a provided function on each leaf page table.
2979  */
2980 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2981                         unsigned long size, pte_fn_t fn, void *data)
2982 {
2983         return __apply_to_page_range(mm, addr, size, fn, data, true);
2984 }
2985 EXPORT_SYMBOL_GPL(apply_to_page_range);
2986 
2987 /*
2988  * Scan a region of virtual memory, calling a provided function on
2989  * each leaf page table where it exists.
2990  *
2991  * Unlike apply_to_page_range, this does _not_ fill in page tables
2992  * where they are absent.
2993  */
2994 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2995                                  unsigned long size, pte_fn_t fn, void *data)
2996 {
2997         return __apply_to_page_range(mm, addr, size, fn, data, false);
2998 }
2999 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3000 
3001 /*
3002  * handle_pte_fault chooses page fault handler according to an entry which was
3003  * read non-atomically.  Before making any commitment, on those architectures
3004  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3005  * parts, do_swap_page must check under lock before unmapping the pte and
3006  * proceeding (but do_wp_page is only called after already making such a check;
3007  * and do_anonymous_page can safely check later on).
3008  */
3009 static inline int pte_unmap_same(struct vm_fault *vmf)
3010 {
3011         int same = 1;
3012 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3013         if (sizeof(pte_t) > sizeof(unsigned long)) {
3014                 spin_lock(vmf->ptl);
3015                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3016                 spin_unlock(vmf->ptl);
3017         }
3018 #endif
3019         pte_unmap(vmf->pte);
3020         vmf->pte = NULL;
3021         return same;
3022 }
3023 
3024 /*
3025  * Return:
3026  *      0:              copied succeeded
3027  *      -EHWPOISON:     copy failed due to hwpoison in source page
3028  *      -EAGAIN:        copied failed (some other reason)
3029  */
3030 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3031                                       struct vm_fault *vmf)
3032 {
3033         int ret;
3034         void *kaddr;
3035         void __user *uaddr;
3036         struct vm_area_struct *vma = vmf->vma;
3037         struct mm_struct *mm = vma->vm_mm;
3038         unsigned long addr = vmf->address;
3039 
3040         if (likely(src)) {
3041                 if (copy_mc_user_highpage(dst, src, addr, vma))
3042                         return -EHWPOISON;
3043                 return 0;
3044         }
3045 
3046         /*
3047          * If the source page was a PFN mapping, we don't have
3048          * a "struct page" for it. We do a best-effort copy by
3049          * just copying from the original user address. If that
3050          * fails, we just zero-fill it. Live with it.
3051          */
3052         kaddr = kmap_local_page(dst);
3053         pagefault_disable();
3054         uaddr = (void __user *)(addr & PAGE_MASK);
3055 
3056         /*
3057          * On architectures with software "accessed" bits, we would
3058          * take a double page fault, so mark it accessed here.
3059          */
3060         vmf->pte = NULL;
3061         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3062                 pte_t entry;
3063 
3064                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3065                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3066                         /*
3067                          * Other thread has already handled the fault
3068                          * and update local tlb only
3069                          */
3070                         if (vmf->pte)
3071                                 update_mmu_tlb(vma, addr, vmf->pte);
3072                         ret = -EAGAIN;
3073                         goto pte_unlock;
3074                 }
3075 
3076                 entry = pte_mkyoung(vmf->orig_pte);
3077                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3078                         update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3079         }
3080 
3081         /*
3082          * This really shouldn't fail, because the page is there
3083          * in the page tables. But it might just be unreadable,
3084          * in which case we just give up and fill the result with
3085          * zeroes.
3086          */
3087         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3088                 if (vmf->pte)
3089                         goto warn;
3090 
3091                 /* Re-validate under PTL if the page is still mapped */
3092                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3093                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3094                         /* The PTE changed under us, update local tlb */
3095                         if (vmf->pte)
3096                                 update_mmu_tlb(vma, addr, vmf->pte);
3097                         ret = -EAGAIN;
3098                         goto pte_unlock;
3099                 }
3100 
3101                 /*
3102                  * The same page can be mapped back since last copy attempt.
3103                  * Try to copy again under PTL.
3104                  */
3105                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3106                         /*
3107                          * Give a warn in case there can be some obscure
3108                          * use-case
3109                          */
3110 warn:
3111                         WARN_ON_ONCE(1);
3112                         clear_page(kaddr);
3113                 }
3114         }
3115 
3116         ret = 0;
3117 
3118 pte_unlock:
3119         if (vmf->pte)
3120                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3121         pagefault_enable();
3122         kunmap_local(kaddr);
3123         flush_dcache_page(dst);
3124 
3125         return ret;
3126 }
3127 
3128 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3129 {
3130         struct file *vm_file = vma->vm_file;
3131 
3132         if (vm_file)
3133                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3134 
3135         /*
3136          * Special mappings (e.g. VDSO) do not have any file so fake
3137          * a default GFP_KERNEL for them.
3138          */
3139         return GFP_KERNEL;
3140 }
3141 
3142 /*
3143  * Notify the address space that the page is about to become writable so that
3144  * it can prohibit this or wait for the page to get into an appropriate state.
3145  *
3146  * We do this without the lock held, so that it can sleep if it needs to.
3147  */
3148 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3149 {
3150         vm_fault_t ret;
3151         unsigned int old_flags = vmf->flags;
3152 
3153         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3154 
3155         if (vmf->vma->vm_file &&
3156             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3157                 return VM_FAULT_SIGBUS;
3158 
3159         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3160         /* Restore original flags so that caller is not surprised */
3161         vmf->flags = old_flags;
3162         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3163                 return ret;
3164         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3165                 folio_lock(folio);
3166                 if (!folio->mapping) {
3167                         folio_unlock(folio);
3168                         return 0; /* retry */
3169                 }
3170                 ret |= VM_FAULT_LOCKED;
3171         } else
3172                 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3173         return ret;
3174 }
3175 
3176 /*
3177  * Handle dirtying of a page in shared file mapping on a write fault.
3178  *
3179  * The function expects the page to be locked and unlocks it.
3180  */
3181 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3182 {
3183         struct vm_area_struct *vma = vmf->vma;
3184         struct address_space *mapping;
3185         struct folio *folio = page_folio(vmf->page);
3186         bool dirtied;
3187         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3188 
3189         dirtied = folio_mark_dirty(folio);
3190         VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3191         /*
3192          * Take a local copy of the address_space - folio.mapping may be zeroed
3193          * by truncate after folio_unlock().   The address_space itself remains
3194          * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3195          * release semantics to prevent the compiler from undoing this copying.
3196          */
3197         mapping = folio_raw_mapping(folio);
3198         folio_unlock(folio);
3199 
3200         if (!page_mkwrite)
3201                 file_update_time(vma->vm_file);
3202 
3203         /*
3204          * Throttle page dirtying rate down to writeback speed.
3205          *
3206          * mapping may be NULL here because some device drivers do not
3207          * set page.mapping but still dirty their pages
3208          *
3209          * Drop the mmap_lock before waiting on IO, if we can. The file
3210          * is pinning the mapping, as per above.
3211          */
3212         if ((dirtied || page_mkwrite) && mapping) {
3213                 struct file *fpin;
3214 
3215                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3216                 balance_dirty_pages_ratelimited(mapping);
3217                 if (fpin) {
3218                         fput(fpin);
3219                         return VM_FAULT_COMPLETED;
3220                 }
3221         }
3222 
3223         return 0;
3224 }
3225 
3226 /*
3227  * Handle write page faults for pages that can be reused in the current vma
3228  *
3229  * This can happen either due to the mapping being with the VM_SHARED flag,
3230  * or due to us being the last reference standing to the page. In either
3231  * case, all we need to do here is to mark the page as writable and update
3232  * any related book-keeping.
3233  */
3234 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3235         __releases(vmf->ptl)
3236 {
3237         struct vm_area_struct *vma = vmf->vma;
3238         pte_t entry;
3239 
3240         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3241         VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3242 
3243         if (folio) {
3244                 VM_BUG_ON(folio_test_anon(folio) &&
3245                           !PageAnonExclusive(vmf->page));
3246                 /*
3247                  * Clear the folio's cpupid information as the existing
3248                  * information potentially belongs to a now completely
3249                  * unrelated process.
3250                  */
3251                 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3252         }
3253 
3254         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3255         entry = pte_mkyoung(vmf->orig_pte);
3256         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3257         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3258                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3259         pte_unmap_unlock(vmf->pte, vmf->ptl);
3260         count_vm_event(PGREUSE);
3261 }
3262 
3263 /*
3264  * We could add a bitflag somewhere, but for now, we know that all
3265  * vm_ops that have a ->map_pages have been audited and don't need
3266  * the mmap_lock to be held.
3267  */
3268 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3269 {
3270         struct vm_area_struct *vma = vmf->vma;
3271 
3272         if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3273                 return 0;
3274         vma_end_read(vma);
3275         return VM_FAULT_RETRY;
3276 }
3277 
3278 /**
3279  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3280  * @vmf: The vm_fault descriptor passed from the fault handler.
3281  *
3282  * When preparing to insert an anonymous page into a VMA from a
3283  * fault handler, call this function rather than anon_vma_prepare().
3284  * If this vma does not already have an associated anon_vma and we are
3285  * only protected by the per-VMA lock, the caller must retry with the
3286  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3287  * determine if this VMA can share its anon_vma, and that's not safe to
3288  * do with only the per-VMA lock held for this VMA.
3289  *
3290  * Return: 0 if fault handling can proceed.  Any other value should be
3291  * returned to the caller.
3292  */
3293 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3294 {
3295         struct vm_area_struct *vma = vmf->vma;
3296         vm_fault_t ret = 0;
3297 
3298         if (likely(vma->anon_vma))
3299                 return 0;
3300         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3301                 if (!mmap_read_trylock(vma->vm_mm))
3302                         return VM_FAULT_RETRY;
3303         }
3304         if (__anon_vma_prepare(vma))
3305                 ret = VM_FAULT_OOM;
3306         if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3307                 mmap_read_unlock(vma->vm_mm);
3308         return ret;
3309 }
3310 
3311 /*
3312  * Handle the case of a page which we actually need to copy to a new page,
3313  * either due to COW or unsharing.
3314  *
3315  * Called with mmap_lock locked and the old page referenced, but
3316  * without the ptl held.
3317  *
3318  * High level logic flow:
3319  *
3320  * - Allocate a page, copy the content of the old page to the new one.
3321  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3322  * - Take the PTL. If the pte changed, bail out and release the allocated page
3323  * - If the pte is still the way we remember it, update the page table and all
3324  *   relevant references. This includes dropping the reference the page-table
3325  *   held to the old page, as well as updating the rmap.
3326  * - In any case, unlock the PTL and drop the reference we took to the old page.
3327  */
3328 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3329 {
3330         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3331         struct vm_area_struct *vma = vmf->vma;
3332         struct mm_struct *mm = vma->vm_mm;
3333         struct folio *old_folio = NULL;
3334         struct folio *new_folio = NULL;
3335         pte_t entry;
3336         int page_copied = 0;
3337         struct mmu_notifier_range range;
3338         vm_fault_t ret;
3339         bool pfn_is_zero;
3340 
3341         delayacct_wpcopy_start();
3342 
3343         if (vmf->page)
3344                 old_folio = page_folio(vmf->page);
3345         ret = vmf_anon_prepare(vmf);
3346         if (unlikely(ret))
3347                 goto out;
3348 
3349         pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3350         new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3351         if (!new_folio)
3352                 goto oom;
3353 
3354         if (!pfn_is_zero) {
3355                 int err;
3356 
3357                 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3358                 if (err) {
3359                         /*
3360                          * COW failed, if the fault was solved by other,
3361                          * it's fine. If not, userspace would re-fault on
3362                          * the same address and we will handle the fault
3363                          * from the second attempt.
3364                          * The -EHWPOISON case will not be retried.
3365                          */
3366                         folio_put(new_folio);
3367                         if (old_folio)
3368                                 folio_put(old_folio);
3369 
3370                         delayacct_wpcopy_end();
3371                         return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3372                 }
3373                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3374         }
3375 
3376         __folio_mark_uptodate(new_folio);
3377 
3378         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3379                                 vmf->address & PAGE_MASK,
3380                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3381         mmu_notifier_invalidate_range_start(&range);
3382 
3383         /*
3384          * Re-check the pte - we dropped the lock
3385          */
3386         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3387         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3388                 if (old_folio) {
3389                         if (!folio_test_anon(old_folio)) {
3390                                 dec_mm_counter(mm, mm_counter_file(old_folio));
3391                                 inc_mm_counter(mm, MM_ANONPAGES);
3392                         }
3393                 } else {
3394                         ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3395                         inc_mm_counter(mm, MM_ANONPAGES);
3396                 }
3397                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3398                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3399                 entry = pte_sw_mkyoung(entry);
3400                 if (unlikely(unshare)) {
3401                         if (pte_soft_dirty(vmf->orig_pte))
3402                                 entry = pte_mksoft_dirty(entry);
3403                         if (pte_uffd_wp(vmf->orig_pte))
3404                                 entry = pte_mkuffd_wp(entry);
3405                 } else {
3406                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3407                 }
3408 
3409                 /*
3410                  * Clear the pte entry and flush it first, before updating the
3411                  * pte with the new entry, to keep TLBs on different CPUs in
3412                  * sync. This code used to set the new PTE then flush TLBs, but
3413                  * that left a window where the new PTE could be loaded into
3414                  * some TLBs while the old PTE remains in others.
3415                  */
3416                 ptep_clear_flush(vma, vmf->address, vmf->pte);
3417                 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3418                 folio_add_lru_vma(new_folio, vma);
3419                 BUG_ON(unshare && pte_write(entry));
3420                 set_pte_at(mm, vmf->address, vmf->pte, entry);
3421                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3422                 if (old_folio) {
3423                         /*
3424                          * Only after switching the pte to the new page may
3425                          * we remove the mapcount here. Otherwise another
3426                          * process may come and find the rmap count decremented
3427                          * before the pte is switched to the new page, and
3428                          * "reuse" the old page writing into it while our pte
3429                          * here still points into it and can be read by other
3430                          * threads.
3431                          *
3432                          * The critical issue is to order this
3433                          * folio_remove_rmap_pte() with the ptp_clear_flush
3434                          * above. Those stores are ordered by (if nothing else,)
3435                          * the barrier present in the atomic_add_negative
3436                          * in folio_remove_rmap_pte();
3437                          *
3438                          * Then the TLB flush in ptep_clear_flush ensures that
3439                          * no process can access the old page before the
3440                          * decremented mapcount is visible. And the old page
3441                          * cannot be reused until after the decremented
3442                          * mapcount is visible. So transitively, TLBs to
3443                          * old page will be flushed before it can be reused.
3444                          */
3445                         folio_remove_rmap_pte(old_folio, vmf->page, vma);
3446                 }
3447 
3448                 /* Free the old page.. */
3449                 new_folio = old_folio;
3450                 page_copied = 1;
3451                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3452         } else if (vmf->pte) {
3453                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3454                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3455         }
3456 
3457         mmu_notifier_invalidate_range_end(&range);
3458 
3459         if (new_folio)
3460                 folio_put(new_folio);
3461         if (old_folio) {
3462                 if (page_copied)
3463                         free_swap_cache(old_folio);
3464                 folio_put(old_folio);
3465         }
3466 
3467         delayacct_wpcopy_end();
3468         return 0;
3469 oom:
3470         ret = VM_FAULT_OOM;
3471 out:
3472         if (old_folio)
3473                 folio_put(old_folio);
3474 
3475         delayacct_wpcopy_end();
3476         return ret;
3477 }
3478 
3479 /**
3480  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3481  *                        writeable once the page is prepared
3482  *
3483  * @vmf: structure describing the fault
3484  * @folio: the folio of vmf->page
3485  *
3486  * This function handles all that is needed to finish a write page fault in a
3487  * shared mapping due to PTE being read-only once the mapped page is prepared.
3488  * It handles locking of PTE and modifying it.
3489  *
3490  * The function expects the page to be locked or other protection against
3491  * concurrent faults / writeback (such as DAX radix tree locks).
3492  *
3493  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3494  * we acquired PTE lock.
3495  */
3496 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3497 {
3498         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3499         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3500                                        &vmf->ptl);
3501         if (!vmf->pte)
3502                 return VM_FAULT_NOPAGE;
3503         /*
3504          * We might have raced with another page fault while we released the
3505          * pte_offset_map_lock.
3506          */
3507         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3508                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3509                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3510                 return VM_FAULT_NOPAGE;
3511         }
3512         wp_page_reuse(vmf, folio);
3513         return 0;
3514 }
3515 
3516 /*
3517  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3518  * mapping
3519  */
3520 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3521 {
3522         struct vm_area_struct *vma = vmf->vma;
3523 
3524         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3525                 vm_fault_t ret;
3526 
3527                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3528                 ret = vmf_can_call_fault(vmf);
3529                 if (ret)
3530                         return ret;
3531 
3532                 vmf->flags |= FAULT_FLAG_MKWRITE;
3533                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3534                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3535                         return ret;
3536                 return finish_mkwrite_fault(vmf, NULL);
3537         }
3538         wp_page_reuse(vmf, NULL);
3539         return 0;
3540 }
3541 
3542 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3543         __releases(vmf->ptl)
3544 {
3545         struct vm_area_struct *vma = vmf->vma;
3546         vm_fault_t ret = 0;
3547 
3548         folio_get(folio);
3549 
3550         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3551                 vm_fault_t tmp;
3552 
3553                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3554                 tmp = vmf_can_call_fault(vmf);
3555                 if (tmp) {
3556                         folio_put(folio);
3557                         return tmp;
3558                 }
3559 
3560                 tmp = do_page_mkwrite(vmf, folio);
3561                 if (unlikely(!tmp || (tmp &
3562                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3563                         folio_put(folio);
3564                         return tmp;
3565                 }
3566                 tmp = finish_mkwrite_fault(vmf, folio);
3567                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3568                         folio_unlock(folio);
3569                         folio_put(folio);
3570                         return tmp;
3571                 }
3572         } else {
3573                 wp_page_reuse(vmf, folio);
3574                 folio_lock(folio);
3575         }
3576         ret |= fault_dirty_shared_page(vmf);
3577         folio_put(folio);
3578 
3579         return ret;
3580 }
3581 
3582 static bool wp_can_reuse_anon_folio(struct folio *folio,
3583                                     struct vm_area_struct *vma)
3584 {
3585         /*
3586          * We could currently only reuse a subpage of a large folio if no
3587          * other subpages of the large folios are still mapped. However,
3588          * let's just consistently not reuse subpages even if we could
3589          * reuse in that scenario, and give back a large folio a bit
3590          * sooner.
3591          */
3592         if (folio_test_large(folio))
3593                 return false;
3594 
3595         /*
3596          * We have to verify under folio lock: these early checks are
3597          * just an optimization to avoid locking the folio and freeing
3598          * the swapcache if there is little hope that we can reuse.
3599          *
3600          * KSM doesn't necessarily raise the folio refcount.
3601          */
3602         if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3603                 return false;
3604         if (!folio_test_lru(folio))
3605                 /*
3606                  * We cannot easily detect+handle references from
3607                  * remote LRU caches or references to LRU folios.
3608                  */
3609                 lru_add_drain();
3610         if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3611                 return false;
3612         if (!folio_trylock(folio))
3613                 return false;
3614         if (folio_test_swapcache(folio))
3615                 folio_free_swap(folio);
3616         if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3617                 folio_unlock(folio);
3618                 return false;
3619         }
3620         /*
3621          * Ok, we've got the only folio reference from our mapping
3622          * and the folio is locked, it's dark out, and we're wearing
3623          * sunglasses. Hit it.
3624          */
3625         folio_move_anon_rmap(folio, vma);
3626         folio_unlock(folio);
3627         return true;
3628 }
3629 
3630 /*
3631  * This routine handles present pages, when
3632  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3633  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3634  *   (FAULT_FLAG_UNSHARE)
3635  *
3636  * It is done by copying the page to a new address and decrementing the
3637  * shared-page counter for the old page.
3638  *
3639  * Note that this routine assumes that the protection checks have been
3640  * done by the caller (the low-level page fault routine in most cases).
3641  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3642  * done any necessary COW.
3643  *
3644  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3645  * though the page will change only once the write actually happens. This
3646  * avoids a few races, and potentially makes it more efficient.
3647  *
3648  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3649  * but allow concurrent faults), with pte both mapped and locked.
3650  * We return with mmap_lock still held, but pte unmapped and unlocked.
3651  */
3652 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3653         __releases(vmf->ptl)
3654 {
3655         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3656         struct vm_area_struct *vma = vmf->vma;
3657         struct folio *folio = NULL;
3658         pte_t pte;
3659 
3660         if (likely(!unshare)) {
3661                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3662                         if (!userfaultfd_wp_async(vma)) {
3663                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3664                                 return handle_userfault(vmf, VM_UFFD_WP);
3665                         }
3666 
3667                         /*
3668                          * Nothing needed (cache flush, TLB invalidations,
3669                          * etc.) because we're only removing the uffd-wp bit,
3670                          * which is completely invisible to the user.
3671                          */
3672                         pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3673 
3674                         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3675                         /*
3676                          * Update this to be prepared for following up CoW
3677                          * handling
3678                          */
3679                         vmf->orig_pte = pte;
3680                 }
3681 
3682                 /*
3683                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3684                  * is flushed in this case before copying.
3685                  */
3686                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3687                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3688                         flush_tlb_page(vmf->vma, vmf->address);
3689         }
3690 
3691         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3692 
3693         if (vmf->page)
3694                 folio = page_folio(vmf->page);
3695 
3696         /*
3697          * Shared mapping: we are guaranteed to have VM_WRITE and
3698          * FAULT_FLAG_WRITE set at this point.
3699          */
3700         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3701                 /*
3702                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3703                  * VM_PFNMAP VMA.
3704                  *
3705                  * We should not cow pages in a shared writeable mapping.
3706                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3707                  */
3708                 if (!vmf->page)
3709                         return wp_pfn_shared(vmf);
3710                 return wp_page_shared(vmf, folio);
3711         }
3712 
3713         /*
3714          * Private mapping: create an exclusive anonymous page copy if reuse
3715          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3716          *
3717          * If we encounter a page that is marked exclusive, we must reuse
3718          * the page without further checks.
3719          */
3720         if (folio && folio_test_anon(folio) &&
3721             (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3722                 if (!PageAnonExclusive(vmf->page))
3723                         SetPageAnonExclusive(vmf->page);
3724                 if (unlikely(unshare)) {
3725                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3726                         return 0;
3727                 }
3728                 wp_page_reuse(vmf, folio);
3729                 return 0;
3730         }
3731         /*
3732          * Ok, we need to copy. Oh, well..
3733          */
3734         if (folio)
3735                 folio_get(folio);
3736 
3737         pte_unmap_unlock(vmf->pte, vmf->ptl);
3738 #ifdef CONFIG_KSM
3739         if (folio && folio_test_ksm(folio))
3740                 count_vm_event(COW_KSM);
3741 #endif
3742         return wp_page_copy(vmf);
3743 }
3744 
3745 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3746                 unsigned long start_addr, unsigned long end_addr,
3747                 struct zap_details *details)
3748 {
3749         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3750 }
3751 
3752 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3753                                             pgoff_t first_index,
3754                                             pgoff_t last_index,
3755                                             struct zap_details *details)
3756 {
3757         struct vm_area_struct *vma;
3758         pgoff_t vba, vea, zba, zea;
3759 
3760         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3761                 vba = vma->vm_pgoff;
3762                 vea = vba + vma_pages(vma) - 1;
3763                 zba = max(first_index, vba);
3764                 zea = min(last_index, vea);
3765 
3766                 unmap_mapping_range_vma(vma,
3767                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3768                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3769                                 details);
3770         }
3771 }
3772 
3773 /**
3774  * unmap_mapping_folio() - Unmap single folio from processes.
3775  * @folio: The locked folio to be unmapped.
3776  *
3777  * Unmap this folio from any userspace process which still has it mmaped.
3778  * Typically, for efficiency, the range of nearby pages has already been
3779  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3780  * truncation or invalidation holds the lock on a folio, it may find that
3781  * the page has been remapped again: and then uses unmap_mapping_folio()
3782  * to unmap it finally.
3783  */
3784 void unmap_mapping_folio(struct folio *folio)
3785 {
3786         struct address_space *mapping = folio->mapping;
3787         struct zap_details details = { };
3788         pgoff_t first_index;
3789         pgoff_t last_index;
3790 
3791         VM_BUG_ON(!folio_test_locked(folio));
3792 
3793         first_index = folio->index;
3794         last_index = folio_next_index(folio) - 1;
3795 
3796         details.even_cows = false;
3797         details.single_folio = folio;
3798         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3799 
3800         i_mmap_lock_read(mapping);
3801         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3802                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3803                                          last_index, &details);
3804         i_mmap_unlock_read(mapping);
3805 }
3806 
3807 /**
3808  * unmap_mapping_pages() - Unmap pages from processes.
3809  * @mapping: The address space containing pages to be unmapped.
3810  * @start: Index of first page to be unmapped.
3811  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3812  * @even_cows: Whether to unmap even private COWed pages.
3813  *
3814  * Unmap the pages in this address space from any userspace process which
3815  * has them mmaped.  Generally, you want to remove COWed pages as well when
3816  * a file is being truncated, but not when invalidating pages from the page
3817  * cache.
3818  */
3819 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3820                 pgoff_t nr, bool even_cows)
3821 {
3822         struct zap_details details = { };
3823         pgoff_t first_index = start;
3824         pgoff_t last_index = start + nr - 1;
3825 
3826         details.even_cows = even_cows;
3827         if (last_index < first_index)
3828                 last_index = ULONG_MAX;
3829 
3830         i_mmap_lock_read(mapping);
3831         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3832                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3833                                          last_index, &details);
3834         i_mmap_unlock_read(mapping);
3835 }
3836 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3837 
3838 /**
3839  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3840  * address_space corresponding to the specified byte range in the underlying
3841  * file.
3842  *
3843  * @mapping: the address space containing mmaps to be unmapped.
3844  * @holebegin: byte in first page to unmap, relative to the start of
3845  * the underlying file.  This will be rounded down to a PAGE_SIZE
3846  * boundary.  Note that this is different from truncate_pagecache(), which
3847  * must keep the partial page.  In contrast, we must get rid of
3848  * partial pages.
3849  * @holelen: size of prospective hole in bytes.  This will be rounded
3850  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3851  * end of the file.
3852  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3853  * but 0 when invalidating pagecache, don't throw away private data.
3854  */
3855 void unmap_mapping_range(struct address_space *mapping,
3856                 loff_t const holebegin, loff_t const holelen, int even_cows)
3857 {
3858         pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3859         pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3860 
3861         /* Check for overflow. */
3862         if (sizeof(holelen) > sizeof(hlen)) {
3863                 long long holeend =
3864                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3865                 if (holeend & ~(long long)ULONG_MAX)
3866                         hlen = ULONG_MAX - hba + 1;
3867         }
3868 
3869         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3870 }
3871 EXPORT_SYMBOL(unmap_mapping_range);
3872 
3873 /*
3874  * Restore a potential device exclusive pte to a working pte entry
3875  */
3876 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3877 {
3878         struct folio *folio = page_folio(vmf->page);
3879         struct vm_area_struct *vma = vmf->vma;
3880         struct mmu_notifier_range range;
3881         vm_fault_t ret;
3882 
3883         /*
3884          * We need a reference to lock the folio because we don't hold
3885          * the PTL so a racing thread can remove the device-exclusive
3886          * entry and unmap it. If the folio is free the entry must
3887          * have been removed already. If it happens to have already
3888          * been re-allocated after being freed all we do is lock and
3889          * unlock it.
3890          */
3891         if (!folio_try_get(folio))
3892                 return 0;
3893 
3894         ret = folio_lock_or_retry(folio, vmf);
3895         if (ret) {
3896                 folio_put(folio);
3897                 return ret;
3898         }
3899         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3900                                 vma->vm_mm, vmf->address & PAGE_MASK,
3901                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3902         mmu_notifier_invalidate_range_start(&range);
3903 
3904         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3905                                 &vmf->ptl);
3906         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3907                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3908 
3909         if (vmf->pte)
3910                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3911         folio_unlock(folio);
3912         folio_put(folio);
3913 
3914         mmu_notifier_invalidate_range_end(&range);
3915         return 0;
3916 }
3917 
3918 static inline bool should_try_to_free_swap(struct folio *folio,
3919                                            struct vm_area_struct *vma,
3920                                            unsigned int fault_flags)
3921 {
3922         if (!folio_test_swapcache(folio))
3923                 return false;
3924         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3925             folio_test_mlocked(folio))
3926                 return true;
3927         /*
3928          * If we want to map a page that's in the swapcache writable, we
3929          * have to detect via the refcount if we're really the exclusive
3930          * user. Try freeing the swapcache to get rid of the swapcache
3931          * reference only in case it's likely that we'll be the exlusive user.
3932          */
3933         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3934                 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3935 }
3936 
3937 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3938 {
3939         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3940                                        vmf->address, &vmf->ptl);
3941         if (!vmf->pte)
3942                 return 0;
3943         /*
3944          * Be careful so that we will only recover a special uffd-wp pte into a
3945          * none pte.  Otherwise it means the pte could have changed, so retry.
3946          *
3947          * This should also cover the case where e.g. the pte changed
3948          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3949          * So is_pte_marker() check is not enough to safely drop the pte.
3950          */
3951         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3952                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3953         pte_unmap_unlock(vmf->pte, vmf->ptl);
3954         return 0;
3955 }
3956 
3957 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3958 {
3959         if (vma_is_anonymous(vmf->vma))
3960                 return do_anonymous_page(vmf);
3961         else
3962                 return do_fault(vmf);
3963 }
3964 
3965 /*
3966  * This is actually a page-missing access, but with uffd-wp special pte
3967  * installed.  It means this pte was wr-protected before being unmapped.
3968  */
3969 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3970 {
3971         /*
3972          * Just in case there're leftover special ptes even after the region
3973          * got unregistered - we can simply clear them.
3974          */
3975         if (unlikely(!userfaultfd_wp(vmf->vma)))
3976                 return pte_marker_clear(vmf);
3977 
3978         return do_pte_missing(vmf);
3979 }
3980 
3981 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3982 {
3983         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3984         unsigned long marker = pte_marker_get(entry);
3985 
3986         /*
3987          * PTE markers should never be empty.  If anything weird happened,
3988          * the best thing to do is to kill the process along with its mm.
3989          */
3990         if (WARN_ON_ONCE(!marker))
3991                 return VM_FAULT_SIGBUS;
3992 
3993         /* Higher priority than uffd-wp when data corrupted */
3994         if (marker & PTE_MARKER_POISONED)
3995                 return VM_FAULT_HWPOISON;
3996 
3997         if (pte_marker_entry_uffd_wp(entry))
3998                 return pte_marker_handle_uffd_wp(vmf);
3999 
4000         /* This is an unknown pte marker */
4001         return VM_FAULT_SIGBUS;
4002 }
4003 
4004 /*
4005  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4006  * but allow concurrent faults), and pte mapped but not yet locked.
4007  * We return with pte unmapped and unlocked.
4008  *
4009  * We return with the mmap_lock locked or unlocked in the same cases
4010  * as does filemap_fault().
4011  */
4012 vm_fault_t do_swap_page(struct vm_fault *vmf)
4013 {
4014         struct vm_area_struct *vma = vmf->vma;
4015         struct folio *swapcache, *folio = NULL;
4016         struct page *page;
4017         struct swap_info_struct *si = NULL;
4018         rmap_t rmap_flags = RMAP_NONE;
4019         bool need_clear_cache = false;
4020         bool exclusive = false;
4021         swp_entry_t entry;
4022         pte_t pte;
4023         vm_fault_t ret = 0;
4024         void *shadow = NULL;
4025         int nr_pages;
4026         unsigned long page_idx;
4027         unsigned long address;
4028         pte_t *ptep;
4029 
4030         if (!pte_unmap_same(vmf))
4031                 goto out;
4032 
4033         entry = pte_to_swp_entry(vmf->orig_pte);
4034         if (unlikely(non_swap_entry(entry))) {
4035                 if (is_migration_entry(entry)) {
4036                         migration_entry_wait(vma->vm_mm, vmf->pmd,
4037                                              vmf->address);
4038                 } else if (is_device_exclusive_entry(entry)) {
4039                         vmf->page = pfn_swap_entry_to_page(entry);
4040                         ret = remove_device_exclusive_entry(vmf);
4041                 } else if (is_device_private_entry(entry)) {
4042                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4043                                 /*
4044                                  * migrate_to_ram is not yet ready to operate
4045                                  * under VMA lock.
4046                                  */
4047                                 vma_end_read(vma);
4048                                 ret = VM_FAULT_RETRY;
4049                                 goto out;
4050                         }
4051 
4052                         vmf->page = pfn_swap_entry_to_page(entry);
4053                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4054                                         vmf->address, &vmf->ptl);
4055                         if (unlikely(!vmf->pte ||
4056                                      !pte_same(ptep_get(vmf->pte),
4057                                                         vmf->orig_pte)))
4058                                 goto unlock;
4059 
4060                         /*
4061                          * Get a page reference while we know the page can't be
4062                          * freed.
4063                          */
4064                         get_page(vmf->page);
4065                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4066                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4067                         put_page(vmf->page);
4068                 } else if (is_hwpoison_entry(entry)) {
4069                         ret = VM_FAULT_HWPOISON;
4070                 } else if (is_pte_marker_entry(entry)) {
4071                         ret = handle_pte_marker(vmf);
4072                 } else {
4073                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4074                         ret = VM_FAULT_SIGBUS;
4075                 }
4076                 goto out;
4077         }
4078 
4079         /* Prevent swapoff from happening to us. */
4080         si = get_swap_device(entry);
4081         if (unlikely(!si))
4082                 goto out;
4083 
4084         folio = swap_cache_get_folio(entry, vma, vmf->address);
4085         if (folio)
4086                 page = folio_file_page(folio, swp_offset(entry));
4087         swapcache = folio;
4088 
4089         if (!folio) {
4090                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4091                     __swap_count(entry) == 1) {
4092                         /*
4093                          * Prevent parallel swapin from proceeding with
4094                          * the cache flag. Otherwise, another thread may
4095                          * finish swapin first, free the entry, and swapout
4096                          * reusing the same entry. It's undetectable as
4097                          * pte_same() returns true due to entry reuse.
4098                          */
4099                         if (swapcache_prepare(entry)) {
4100                                 /* Relax a bit to prevent rapid repeated page faults */
4101                                 schedule_timeout_uninterruptible(1);
4102                                 goto out;
4103                         }
4104                         need_clear_cache = true;
4105 
4106                         /* skip swapcache */
4107                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4108                                                 vma, vmf->address, false);
4109                         page = &folio->page;
4110                         if (folio) {
4111                                 __folio_set_locked(folio);
4112                                 __folio_set_swapbacked(folio);
4113 
4114                                 if (mem_cgroup_swapin_charge_folio(folio,
4115                                                         vma->vm_mm, GFP_KERNEL,
4116                                                         entry)) {
4117                                         ret = VM_FAULT_OOM;
4118                                         goto out_page;
4119                                 }
4120                                 mem_cgroup_swapin_uncharge_swap(entry);
4121 
4122                                 shadow = get_shadow_from_swap_cache(entry);
4123                                 if (shadow)
4124                                         workingset_refault(folio, shadow);
4125 
4126                                 folio_add_lru(folio);
4127 
4128                                 /* To provide entry to swap_read_folio() */
4129                                 folio->swap = entry;
4130                                 swap_read_folio(folio, NULL);
4131                                 folio->private = NULL;
4132                         }
4133                 } else {
4134                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4135                                                 vmf);
4136                         if (page)
4137                                 folio = page_folio(page);
4138                         swapcache = folio;
4139                 }
4140 
4141                 if (!folio) {
4142                         /*
4143                          * Back out if somebody else faulted in this pte
4144                          * while we released the pte lock.
4145                          */
4146                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4147                                         vmf->address, &vmf->ptl);
4148                         if (likely(vmf->pte &&
4149                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4150                                 ret = VM_FAULT_OOM;
4151                         goto unlock;
4152                 }
4153 
4154                 /* Had to read the page from swap area: Major fault */
4155                 ret = VM_FAULT_MAJOR;
4156                 count_vm_event(PGMAJFAULT);
4157                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4158         } else if (PageHWPoison(page)) {
4159                 /*
4160                  * hwpoisoned dirty swapcache pages are kept for killing
4161                  * owner processes (which may be unknown at hwpoison time)
4162                  */
4163                 ret = VM_FAULT_HWPOISON;
4164                 goto out_release;
4165         }
4166 
4167         ret |= folio_lock_or_retry(folio, vmf);
4168         if (ret & VM_FAULT_RETRY)
4169                 goto out_release;
4170 
4171         if (swapcache) {
4172                 /*
4173                  * Make sure folio_free_swap() or swapoff did not release the
4174                  * swapcache from under us.  The page pin, and pte_same test
4175                  * below, are not enough to exclude that.  Even if it is still
4176                  * swapcache, we need to check that the page's swap has not
4177                  * changed.
4178                  */
4179                 if (unlikely(!folio_test_swapcache(folio) ||
4180                              page_swap_entry(page).val != entry.val))
4181                         goto out_page;
4182 
4183                 /*
4184                  * KSM sometimes has to copy on read faults, for example, if
4185                  * page->index of !PageKSM() pages would be nonlinear inside the
4186                  * anon VMA -- PageKSM() is lost on actual swapout.
4187                  */
4188                 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4189                 if (unlikely(!folio)) {
4190                         ret = VM_FAULT_OOM;
4191                         folio = swapcache;
4192                         goto out_page;
4193                 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4194                         ret = VM_FAULT_HWPOISON;
4195                         folio = swapcache;
4196                         goto out_page;
4197                 }
4198                 if (folio != swapcache)
4199                         page = folio_page(folio, 0);
4200 
4201                 /*
4202                  * If we want to map a page that's in the swapcache writable, we
4203                  * have to detect via the refcount if we're really the exclusive
4204                  * owner. Try removing the extra reference from the local LRU
4205                  * caches if required.
4206                  */
4207                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4208                     !folio_test_ksm(folio) && !folio_test_lru(folio))
4209                         lru_add_drain();
4210         }
4211 
4212         folio_throttle_swaprate(folio, GFP_KERNEL);
4213 
4214         /*
4215          * Back out if somebody else already faulted in this pte.
4216          */
4217         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4218                         &vmf->ptl);
4219         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4220                 goto out_nomap;
4221 
4222         if (unlikely(!folio_test_uptodate(folio))) {
4223                 ret = VM_FAULT_SIGBUS;
4224                 goto out_nomap;
4225         }
4226 
4227         nr_pages = 1;
4228         page_idx = 0;
4229         address = vmf->address;
4230         ptep = vmf->pte;
4231         if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4232                 int nr = folio_nr_pages(folio);
4233                 unsigned long idx = folio_page_idx(folio, page);
4234                 unsigned long folio_start = address - idx * PAGE_SIZE;
4235                 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4236                 pte_t *folio_ptep;
4237                 pte_t folio_pte;
4238 
4239                 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4240                         goto check_folio;
4241                 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4242                         goto check_folio;
4243 
4244                 folio_ptep = vmf->pte - idx;
4245                 folio_pte = ptep_get(folio_ptep);
4246                 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4247                     swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4248                         goto check_folio;
4249 
4250                 page_idx = idx;
4251                 address = folio_start;
4252                 ptep = folio_ptep;
4253                 nr_pages = nr;
4254                 entry = folio->swap;
4255                 page = &folio->page;
4256         }
4257 
4258 check_folio:
4259         /*
4260          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4261          * must never point at an anonymous page in the swapcache that is
4262          * PG_anon_exclusive. Sanity check that this holds and especially, that
4263          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4264          * check after taking the PT lock and making sure that nobody
4265          * concurrently faulted in this page and set PG_anon_exclusive.
4266          */
4267         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4268         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4269 
4270         /*
4271          * Check under PT lock (to protect against concurrent fork() sharing
4272          * the swap entry concurrently) for certainly exclusive pages.
4273          */
4274         if (!folio_test_ksm(folio)) {
4275                 exclusive = pte_swp_exclusive(vmf->orig_pte);
4276                 if (folio != swapcache) {
4277                         /*
4278                          * We have a fresh page that is not exposed to the
4279                          * swapcache -> certainly exclusive.
4280                          */
4281                         exclusive = true;
4282                 } else if (exclusive && folio_test_writeback(folio) &&
4283                           data_race(si->flags & SWP_STABLE_WRITES)) {
4284                         /*
4285                          * This is tricky: not all swap backends support
4286                          * concurrent page modifications while under writeback.
4287                          *
4288                          * So if we stumble over such a page in the swapcache
4289                          * we must not set the page exclusive, otherwise we can
4290                          * map it writable without further checks and modify it
4291                          * while still under writeback.
4292                          *
4293                          * For these problematic swap backends, simply drop the
4294                          * exclusive marker: this is perfectly fine as we start
4295                          * writeback only if we fully unmapped the page and
4296                          * there are no unexpected references on the page after
4297                          * unmapping succeeded. After fully unmapped, no
4298                          * further GUP references (FOLL_GET and FOLL_PIN) can
4299                          * appear, so dropping the exclusive marker and mapping
4300                          * it only R/O is fine.
4301                          */
4302                         exclusive = false;
4303                 }
4304         }
4305 
4306         /*
4307          * Some architectures may have to restore extra metadata to the page
4308          * when reading from swap. This metadata may be indexed by swap entry
4309          * so this must be called before swap_free().
4310          */
4311         arch_swap_restore(folio_swap(entry, folio), folio);
4312 
4313         /*
4314          * Remove the swap entry and conditionally try to free up the swapcache.
4315          * We're already holding a reference on the page but haven't mapped it
4316          * yet.
4317          */
4318         swap_free_nr(entry, nr_pages);
4319         if (should_try_to_free_swap(folio, vma, vmf->flags))
4320                 folio_free_swap(folio);
4321 
4322         add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4323         add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4324         pte = mk_pte(page, vma->vm_page_prot);
4325         if (pte_swp_soft_dirty(vmf->orig_pte))
4326                 pte = pte_mksoft_dirty(pte);
4327         if (pte_swp_uffd_wp(vmf->orig_pte))
4328                 pte = pte_mkuffd_wp(pte);
4329 
4330         /*
4331          * Same logic as in do_wp_page(); however, optimize for pages that are
4332          * certainly not shared either because we just allocated them without
4333          * exposing them to the swapcache or because the swap entry indicates
4334          * exclusivity.
4335          */
4336         if (!folio_test_ksm(folio) &&
4337             (exclusive || folio_ref_count(folio) == 1)) {
4338                 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4339                     !pte_needs_soft_dirty_wp(vma, pte)) {
4340                         pte = pte_mkwrite(pte, vma);
4341                         if (vmf->flags & FAULT_FLAG_WRITE) {
4342                                 pte = pte_mkdirty(pte);
4343                                 vmf->flags &= ~FAULT_FLAG_WRITE;
4344                         }
4345                 }
4346                 rmap_flags |= RMAP_EXCLUSIVE;
4347         }
4348         folio_ref_add(folio, nr_pages - 1);
4349         flush_icache_pages(vma, page, nr_pages);
4350         vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4351 
4352         /* ksm created a completely new copy */
4353         if (unlikely(folio != swapcache && swapcache)) {
4354                 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4355                 folio_add_lru_vma(folio, vma);
4356         } else if (!folio_test_anon(folio)) {
4357                 /*
4358                  * We currently only expect small !anon folios, which are either
4359                  * fully exclusive or fully shared. If we ever get large folios
4360                  * here, we have to be careful.
4361                  */
4362                 VM_WARN_ON_ONCE(folio_test_large(folio));
4363                 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4364                 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4365         } else {
4366                 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4367                                         rmap_flags);
4368         }
4369 
4370         VM_BUG_ON(!folio_test_anon(folio) ||
4371                         (pte_write(pte) && !PageAnonExclusive(page)));
4372         set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4373         arch_do_swap_page_nr(vma->vm_mm, vma, address,
4374                         pte, pte, nr_pages);
4375 
4376         folio_unlock(folio);
4377         if (folio != swapcache && swapcache) {
4378                 /*
4379                  * Hold the lock to avoid the swap entry to be reused
4380                  * until we take the PT lock for the pte_same() check
4381                  * (to avoid false positives from pte_same). For
4382                  * further safety release the lock after the swap_free
4383                  * so that the swap count won't change under a
4384                  * parallel locked swapcache.
4385                  */
4386                 folio_unlock(swapcache);
4387                 folio_put(swapcache);
4388         }
4389 
4390         if (vmf->flags & FAULT_FLAG_WRITE) {
4391                 ret |= do_wp_page(vmf);
4392                 if (ret & VM_FAULT_ERROR)
4393                         ret &= VM_FAULT_ERROR;
4394                 goto out;
4395         }
4396 
4397         /* No need to invalidate - it was non-present before */
4398         update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4399 unlock:
4400         if (vmf->pte)
4401                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4402 out:
4403         /* Clear the swap cache pin for direct swapin after PTL unlock */
4404         if (need_clear_cache)
4405                 swapcache_clear(si, entry);
4406         if (si)
4407                 put_swap_device(si);
4408         return ret;
4409 out_nomap:
4410         if (vmf->pte)
4411                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4412 out_page:
4413         folio_unlock(folio);
4414 out_release:
4415         folio_put(folio);
4416         if (folio != swapcache && swapcache) {
4417                 folio_unlock(swapcache);
4418                 folio_put(swapcache);
4419         }
4420         if (need_clear_cache)
4421                 swapcache_clear(si, entry);
4422         if (si)
4423                 put_swap_device(si);
4424         return ret;
4425 }
4426 
4427 static bool pte_range_none(pte_t *pte, int nr_pages)
4428 {
4429         int i;
4430 
4431         for (i = 0; i < nr_pages; i++) {
4432                 if (!pte_none(ptep_get_lockless(pte + i)))
4433                         return false;
4434         }
4435 
4436         return true;
4437 }
4438 
4439 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4440 {
4441         struct vm_area_struct *vma = vmf->vma;
4442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4443         unsigned long orders;
4444         struct folio *folio;
4445         unsigned long addr;
4446         pte_t *pte;
4447         gfp_t gfp;
4448         int order;
4449 
4450         /*
4451          * If uffd is active for the vma we need per-page fault fidelity to
4452          * maintain the uffd semantics.
4453          */
4454         if (unlikely(userfaultfd_armed(vma)))
4455                 goto fallback;
4456 
4457         /*
4458          * Get a list of all the (large) orders below PMD_ORDER that are enabled
4459          * for this vma. Then filter out the orders that can't be allocated over
4460          * the faulting address and still be fully contained in the vma.
4461          */
4462         orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4463                         TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4464         orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4465 
4466         if (!orders)
4467                 goto fallback;
4468 
4469         pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4470         if (!pte)
4471                 return ERR_PTR(-EAGAIN);
4472 
4473         /*
4474          * Find the highest order where the aligned range is completely
4475          * pte_none(). Note that all remaining orders will be completely
4476          * pte_none().
4477          */
4478         order = highest_order(orders);
4479         while (orders) {
4480                 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4481                 if (pte_range_none(pte + pte_index(addr), 1 << order))
4482                         break;
4483                 order = next_order(&orders, order);
4484         }
4485 
4486         pte_unmap(pte);
4487 
4488         if (!orders)
4489                 goto fallback;
4490 
4491         /* Try allocating the highest of the remaining orders. */
4492         gfp = vma_thp_gfp_mask(vma);
4493         while (orders) {
4494                 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4495                 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4496                 if (folio) {
4497                         if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4498                                 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4499                                 folio_put(folio);
4500                                 goto next;
4501                         }
4502                         folio_throttle_swaprate(folio, gfp);
4503                         folio_zero_user(folio, vmf->address);
4504                         return folio;
4505                 }
4506 next:
4507                 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4508                 order = next_order(&orders, order);
4509         }
4510 
4511 fallback:
4512 #endif
4513         return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4514 }
4515 
4516 /*
4517  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4518  * but allow concurrent faults), and pte mapped but not yet locked.
4519  * We return with mmap_lock still held, but pte unmapped and unlocked.
4520  */
4521 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4522 {
4523         struct vm_area_struct *vma = vmf->vma;
4524         unsigned long addr = vmf->address;
4525         struct folio *folio;
4526         vm_fault_t ret = 0;
4527         int nr_pages = 1;
4528         pte_t entry;
4529 
4530         /* File mapping without ->vm_ops ? */
4531         if (vma->vm_flags & VM_SHARED)
4532                 return VM_FAULT_SIGBUS;
4533 
4534         /*
4535          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4536          * be distinguished from a transient failure of pte_offset_map().
4537          */
4538         if (pte_alloc(vma->vm_mm, vmf->pmd))
4539                 return VM_FAULT_OOM;
4540 
4541         /* Use the zero-page for reads */
4542         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4543                         !mm_forbids_zeropage(vma->vm_mm)) {
4544                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4545                                                 vma->vm_page_prot));
4546                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4547                                 vmf->address, &vmf->ptl);
4548                 if (!vmf->pte)
4549                         goto unlock;
4550                 if (vmf_pte_changed(vmf)) {
4551                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4552                         goto unlock;
4553                 }
4554                 ret = check_stable_address_space(vma->vm_mm);
4555                 if (ret)
4556                         goto unlock;
4557                 /* Deliver the page fault to userland, check inside PT lock */
4558                 if (userfaultfd_missing(vma)) {
4559                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4560                         return handle_userfault(vmf, VM_UFFD_MISSING);
4561                 }
4562                 goto setpte;
4563         }
4564 
4565         /* Allocate our own private page. */
4566         ret = vmf_anon_prepare(vmf);
4567         if (ret)
4568                 return ret;
4569         /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4570         folio = alloc_anon_folio(vmf);
4571         if (IS_ERR(folio))
4572                 return 0;
4573         if (!folio)
4574                 goto oom;
4575 
4576         nr_pages = folio_nr_pages(folio);
4577         addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4578 
4579         /*
4580          * The memory barrier inside __folio_mark_uptodate makes sure that
4581          * preceding stores to the page contents become visible before
4582          * the set_pte_at() write.
4583          */
4584         __folio_mark_uptodate(folio);
4585 
4586         entry = mk_pte(&folio->page, vma->vm_page_prot);
4587         entry = pte_sw_mkyoung(entry);
4588         if (vma->vm_flags & VM_WRITE)
4589                 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4590 
4591         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4592         if (!vmf->pte)
4593                 goto release;
4594         if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4595                 update_mmu_tlb(vma, addr, vmf->pte);
4596                 goto release;
4597         } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4598                 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4599                 goto release;
4600         }
4601 
4602         ret = check_stable_address_space(vma->vm_mm);
4603         if (ret)
4604                 goto release;
4605 
4606         /* Deliver the page fault to userland, check inside PT lock */
4607         if (userfaultfd_missing(vma)) {
4608                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4609                 folio_put(folio);
4610                 return handle_userfault(vmf, VM_UFFD_MISSING);
4611         }
4612 
4613         folio_ref_add(folio, nr_pages - 1);
4614         add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4616         count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4617 #endif
4618         folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4619         folio_add_lru_vma(folio, vma);
4620 setpte:
4621         if (vmf_orig_pte_uffd_wp(vmf))
4622                 entry = pte_mkuffd_wp(entry);
4623         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4624 
4625         /* No need to invalidate - it was non-present before */
4626         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4627 unlock:
4628         if (vmf->pte)
4629                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4630         return ret;
4631 release:
4632         folio_put(folio);
4633         goto unlock;
4634 oom:
4635         return VM_FAULT_OOM;
4636 }
4637 
4638 /*
4639  * The mmap_lock must have been held on entry, and may have been
4640  * released depending on flags and vma->vm_ops->fault() return value.
4641  * See filemap_fault() and __lock_page_retry().
4642  */
4643 static vm_fault_t __do_fault(struct vm_fault *vmf)
4644 {
4645         struct vm_area_struct *vma = vmf->vma;
4646         struct folio *folio;
4647         vm_fault_t ret;
4648 
4649         /*
4650          * Preallocate pte before we take page_lock because this might lead to
4651          * deadlocks for memcg reclaim which waits for pages under writeback:
4652          *                              lock_page(A)
4653          *                              SetPageWriteback(A)
4654          *                              unlock_page(A)
4655          * lock_page(B)
4656          *                              lock_page(B)
4657          * pte_alloc_one
4658          *   shrink_folio_list
4659          *     wait_on_page_writeback(A)
4660          *                              SetPageWriteback(B)
4661          *                              unlock_page(B)
4662          *                              # flush A, B to clear the writeback
4663          */
4664         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4665                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4666                 if (!vmf->prealloc_pte)
4667                         return VM_FAULT_OOM;
4668         }
4669 
4670         ret = vma->vm_ops->fault(vmf);
4671         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4672                             VM_FAULT_DONE_COW)))
4673                 return ret;
4674 
4675         folio = page_folio(vmf->page);
4676         if (unlikely(PageHWPoison(vmf->page))) {
4677                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4678                 if (ret & VM_FAULT_LOCKED) {
4679                         if (page_mapped(vmf->page))
4680                                 unmap_mapping_folio(folio);
4681                         /* Retry if a clean folio was removed from the cache. */
4682                         if (mapping_evict_folio(folio->mapping, folio))
4683                                 poisonret = VM_FAULT_NOPAGE;
4684                         folio_unlock(folio);
4685                 }
4686                 folio_put(folio);
4687                 vmf->page = NULL;
4688                 return poisonret;
4689         }
4690 
4691         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4692                 folio_lock(folio);
4693         else
4694                 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4695 
4696         return ret;
4697 }
4698 
4699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4700 static void deposit_prealloc_pte(struct vm_fault *vmf)
4701 {
4702         struct vm_area_struct *vma = vmf->vma;
4703 
4704         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4705         /*
4706          * We are going to consume the prealloc table,
4707          * count that as nr_ptes.
4708          */
4709         mm_inc_nr_ptes(vma->vm_mm);
4710         vmf->prealloc_pte = NULL;
4711 }
4712 
4713 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4714 {
4715         struct folio *folio = page_folio(page);
4716         struct vm_area_struct *vma = vmf->vma;
4717         bool write = vmf->flags & FAULT_FLAG_WRITE;
4718         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4719         pmd_t entry;
4720         vm_fault_t ret = VM_FAULT_FALLBACK;
4721 
4722         if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4723                 return ret;
4724 
4725         if (folio_order(folio) != HPAGE_PMD_ORDER)
4726                 return ret;
4727         page = &folio->page;
4728 
4729         /*
4730          * Just backoff if any subpage of a THP is corrupted otherwise
4731          * the corrupted page may mapped by PMD silently to escape the
4732          * check.  This kind of THP just can be PTE mapped.  Access to
4733          * the corrupted subpage should trigger SIGBUS as expected.
4734          */
4735         if (unlikely(folio_test_has_hwpoisoned(folio)))
4736                 return ret;
4737 
4738         /*
4739          * Archs like ppc64 need additional space to store information
4740          * related to pte entry. Use the preallocated table for that.
4741          */
4742         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4743                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4744                 if (!vmf->prealloc_pte)
4745                         return VM_FAULT_OOM;
4746         }
4747 
4748         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4749         if (unlikely(!pmd_none(*vmf->pmd)))
4750                 goto out;
4751 
4752         flush_icache_pages(vma, page, HPAGE_PMD_NR);
4753 
4754         entry = mk_huge_pmd(page, vma->vm_page_prot);
4755         if (write)
4756                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4757 
4758         add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4759         folio_add_file_rmap_pmd(folio, page, vma);
4760 
4761         /*
4762          * deposit and withdraw with pmd lock held
4763          */
4764         if (arch_needs_pgtable_deposit())
4765                 deposit_prealloc_pte(vmf);
4766 
4767         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4768 
4769         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4770 
4771         /* fault is handled */
4772         ret = 0;
4773         count_vm_event(THP_FILE_MAPPED);
4774 out:
4775         spin_unlock(vmf->ptl);
4776         return ret;
4777 }
4778 #else
4779 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4780 {
4781         return VM_FAULT_FALLBACK;
4782 }
4783 #endif
4784 
4785 /**
4786  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4787  * @vmf: Fault decription.
4788  * @folio: The folio that contains @page.
4789  * @page: The first page to create a PTE for.
4790  * @nr: The number of PTEs to create.
4791  * @addr: The first address to create a PTE for.
4792  */
4793 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4794                 struct page *page, unsigned int nr, unsigned long addr)
4795 {
4796         struct vm_area_struct *vma = vmf->vma;
4797         bool write = vmf->flags & FAULT_FLAG_WRITE;
4798         bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4799         pte_t entry;
4800 
4801         flush_icache_pages(vma, page, nr);
4802         entry = mk_pte(page, vma->vm_page_prot);
4803 
4804         if (prefault && arch_wants_old_prefaulted_pte())
4805                 entry = pte_mkold(entry);
4806         else
4807                 entry = pte_sw_mkyoung(entry);
4808 
4809         if (write)
4810                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4811         if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
4812                 entry = pte_mkuffd_wp(entry);
4813         /* copy-on-write page */
4814         if (write && !(vma->vm_flags & VM_SHARED)) {
4815                 VM_BUG_ON_FOLIO(nr != 1, folio);
4816                 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4817                 folio_add_lru_vma(folio, vma);
4818         } else {
4819                 folio_add_file_rmap_ptes(folio, page, nr, vma);
4820         }
4821         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4822 
4823         /* no need to invalidate: a not-present page won't be cached */
4824         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4825 }
4826 
4827 static bool vmf_pte_changed(struct vm_fault *vmf)
4828 {
4829         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4830                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4831 
4832         return !pte_none(ptep_get(vmf->pte));
4833 }
4834 
4835 /**
4836  * finish_fault - finish page fault once we have prepared the page to fault
4837  *
4838  * @vmf: structure describing the fault
4839  *
4840  * This function handles all that is needed to finish a page fault once the
4841  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4842  * given page, adds reverse page mapping, handles memcg charges and LRU
4843  * addition.
4844  *
4845  * The function expects the page to be locked and on success it consumes a
4846  * reference of a page being mapped (for the PTE which maps it).
4847  *
4848  * Return: %0 on success, %VM_FAULT_ code in case of error.
4849  */
4850 vm_fault_t finish_fault(struct vm_fault *vmf)
4851 {
4852         struct vm_area_struct *vma = vmf->vma;
4853         struct page *page;
4854         struct folio *folio;
4855         vm_fault_t ret;
4856         bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4857                       !(vma->vm_flags & VM_SHARED);
4858         int type, nr_pages;
4859         unsigned long addr = vmf->address;
4860 
4861         /* Did we COW the page? */
4862         if (is_cow)
4863                 page = vmf->cow_page;
4864         else
4865                 page = vmf->page;
4866 
4867         /*
4868          * check even for read faults because we might have lost our CoWed
4869          * page
4870          */
4871         if (!(vma->vm_flags & VM_SHARED)) {
4872                 ret = check_stable_address_space(vma->vm_mm);
4873                 if (ret)
4874                         return ret;
4875         }
4876 
4877         if (pmd_none(*vmf->pmd)) {
4878                 if (PageTransCompound(page)) {
4879                         ret = do_set_pmd(vmf, page);
4880                         if (ret != VM_FAULT_FALLBACK)
4881                                 return ret;
4882                 }
4883 
4884                 if (vmf->prealloc_pte)
4885                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4886                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4887                         return VM_FAULT_OOM;
4888         }
4889 
4890         folio = page_folio(page);
4891         nr_pages = folio_nr_pages(folio);
4892 
4893         /*
4894          * Using per-page fault to maintain the uffd semantics, and same
4895          * approach also applies to non-anonymous-shmem faults to avoid
4896          * inflating the RSS of the process.
4897          */
4898         if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
4899                 nr_pages = 1;
4900         } else if (nr_pages > 1) {
4901                 pgoff_t idx = folio_page_idx(folio, page);
4902                 /* The page offset of vmf->address within the VMA. */
4903                 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4904                 /* The index of the entry in the pagetable for fault page. */
4905                 pgoff_t pte_off = pte_index(vmf->address);
4906 
4907                 /*
4908                  * Fallback to per-page fault in case the folio size in page
4909                  * cache beyond the VMA limits and PMD pagetable limits.
4910                  */
4911                 if (unlikely(vma_off < idx ||
4912                             vma_off + (nr_pages - idx) > vma_pages(vma) ||
4913                             pte_off < idx ||
4914                             pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
4915                         nr_pages = 1;
4916                 } else {
4917                         /* Now we can set mappings for the whole large folio. */
4918                         addr = vmf->address - idx * PAGE_SIZE;
4919                         page = &folio->page;
4920                 }
4921         }
4922 
4923         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4924                                        addr, &vmf->ptl);
4925         if (!vmf->pte)
4926                 return VM_FAULT_NOPAGE;
4927 
4928         /* Re-check under ptl */
4929         if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
4930                 update_mmu_tlb(vma, addr, vmf->pte);
4931                 ret = VM_FAULT_NOPAGE;
4932                 goto unlock;
4933         } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4934                 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4935                 ret = VM_FAULT_NOPAGE;
4936                 goto unlock;
4937         }
4938 
4939         folio_ref_add(folio, nr_pages - 1);
4940         set_pte_range(vmf, folio, page, nr_pages, addr);
4941         type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
4942         add_mm_counter(vma->vm_mm, type, nr_pages);
4943         ret = 0;
4944 
4945 unlock:
4946         pte_unmap_unlock(vmf->pte, vmf->ptl);
4947         return ret;
4948 }
4949 
4950 static unsigned long fault_around_pages __read_mostly =
4951         65536 >> PAGE_SHIFT;
4952 
4953 #ifdef CONFIG_DEBUG_FS
4954 static int fault_around_bytes_get(void *data, u64 *val)
4955 {
4956         *val = fault_around_pages << PAGE_SHIFT;
4957         return 0;
4958 }
4959 
4960 /*
4961  * fault_around_bytes must be rounded down to the nearest page order as it's
4962  * what do_fault_around() expects to see.
4963  */
4964 static int fault_around_bytes_set(void *data, u64 val)
4965 {
4966         if (val / PAGE_SIZE > PTRS_PER_PTE)
4967                 return -EINVAL;
4968 
4969         /*
4970          * The minimum value is 1 page, however this results in no fault-around
4971          * at all. See should_fault_around().
4972          */
4973         val = max(val, PAGE_SIZE);
4974         fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4975 
4976         return 0;
4977 }
4978 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4979                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4980 
4981 static int __init fault_around_debugfs(void)
4982 {
4983         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4984                                    &fault_around_bytes_fops);
4985         return 0;
4986 }
4987 late_initcall(fault_around_debugfs);
4988 #endif
4989 
4990 /*
4991  * do_fault_around() tries to map few pages around the fault address. The hope
4992  * is that the pages will be needed soon and this will lower the number of
4993  * faults to handle.
4994  *
4995  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4996  * not ready to be mapped: not up-to-date, locked, etc.
4997  *
4998  * This function doesn't cross VMA or page table boundaries, in order to call
4999  * map_pages() and acquire a PTE lock only once.
5000  *
5001  * fault_around_pages defines how many pages we'll try to map.
5002  * do_fault_around() expects it to be set to a power of two less than or equal
5003  * to PTRS_PER_PTE.
5004  *
5005  * The virtual address of the area that we map is naturally aligned to
5006  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5007  * (and therefore to page order).  This way it's easier to guarantee
5008  * that we don't cross page table boundaries.
5009  */
5010 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5011 {
5012         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5013         pgoff_t pte_off = pte_index(vmf->address);
5014         /* The page offset of vmf->address within the VMA. */
5015         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5016         pgoff_t from_pte, to_pte;
5017         vm_fault_t ret;
5018 
5019         /* The PTE offset of the start address, clamped to the VMA. */
5020         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5021                        pte_off - min(pte_off, vma_off));
5022 
5023         /* The PTE offset of the end address, clamped to the VMA and PTE. */
5024         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5025                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5026 
5027         if (pmd_none(*vmf->pmd)) {
5028                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5029                 if (!vmf->prealloc_pte)
5030                         return VM_FAULT_OOM;
5031         }
5032 
5033         rcu_read_lock();
5034         ret = vmf->vma->vm_ops->map_pages(vmf,
5035                         vmf->pgoff + from_pte - pte_off,
5036                         vmf->pgoff + to_pte - pte_off);
5037         rcu_read_unlock();
5038 
5039         return ret;
5040 }
5041 
5042 /* Return true if we should do read fault-around, false otherwise */
5043 static inline bool should_fault_around(struct vm_fault *vmf)
5044 {
5045         /* No ->map_pages?  No way to fault around... */
5046         if (!vmf->vma->vm_ops->map_pages)
5047                 return false;
5048 
5049         if (uffd_disable_fault_around(vmf->vma))
5050                 return false;
5051 
5052         /* A single page implies no faulting 'around' at all. */
5053         return fault_around_pages > 1;
5054 }
5055 
5056 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5057 {
5058         vm_fault_t ret = 0;
5059         struct folio *folio;
5060 
5061         /*
5062          * Let's call ->map_pages() first and use ->fault() as fallback
5063          * if page by the offset is not ready to be mapped (cold cache or
5064          * something).
5065          */
5066         if (should_fault_around(vmf)) {
5067                 ret = do_fault_around(vmf);
5068                 if (ret)
5069                         return ret;
5070         }
5071 
5072         ret = vmf_can_call_fault(vmf);
5073         if (ret)
5074                 return ret;
5075 
5076         ret = __do_fault(vmf);
5077         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5078                 return ret;
5079 
5080         ret |= finish_fault(vmf);
5081         folio = page_folio(vmf->page);
5082         folio_unlock(folio);
5083         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5084                 folio_put(folio);
5085         return ret;
5086 }
5087 
5088 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5089 {
5090         struct vm_area_struct *vma = vmf->vma;
5091         struct folio *folio;
5092         vm_fault_t ret;
5093 
5094         ret = vmf_can_call_fault(vmf);
5095         if (!ret)
5096                 ret = vmf_anon_prepare(vmf);
5097         if (ret)
5098                 return ret;
5099 
5100         folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5101         if (!folio)
5102                 return VM_FAULT_OOM;
5103 
5104         vmf->cow_page = &folio->page;
5105 
5106         ret = __do_fault(vmf);
5107         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5108                 goto uncharge_out;
5109         if (ret & VM_FAULT_DONE_COW)
5110                 return ret;
5111 
5112         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
5113         __folio_mark_uptodate(folio);
5114 
5115         ret |= finish_fault(vmf);
5116         unlock_page(vmf->page);
5117         put_page(vmf->page);
5118         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5119                 goto uncharge_out;
5120         return ret;
5121 uncharge_out:
5122         folio_put(folio);
5123         return ret;
5124 }
5125 
5126 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5127 {
5128         struct vm_area_struct *vma = vmf->vma;
5129         vm_fault_t ret, tmp;
5130         struct folio *folio;
5131 
5132         ret = vmf_can_call_fault(vmf);
5133         if (ret)
5134                 return ret;
5135 
5136         ret = __do_fault(vmf);
5137         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5138                 return ret;
5139 
5140         folio = page_folio(vmf->page);
5141 
5142         /*
5143          * Check if the backing address space wants to know that the page is
5144          * about to become writable
5145          */
5146         if (vma->vm_ops->page_mkwrite) {
5147                 folio_unlock(folio);
5148                 tmp = do_page_mkwrite(vmf, folio);
5149                 if (unlikely(!tmp ||
5150                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5151                         folio_put(folio);
5152                         return tmp;
5153                 }
5154         }
5155 
5156         ret |= finish_fault(vmf);
5157         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5158                                         VM_FAULT_RETRY))) {
5159                 folio_unlock(folio);
5160                 folio_put(folio);
5161                 return ret;
5162         }
5163 
5164         ret |= fault_dirty_shared_page(vmf);
5165         return ret;
5166 }
5167 
5168 /*
5169  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5170  * but allow concurrent faults).
5171  * The mmap_lock may have been released depending on flags and our
5172  * return value.  See filemap_fault() and __folio_lock_or_retry().
5173  * If mmap_lock is released, vma may become invalid (for example
5174  * by other thread calling munmap()).
5175  */
5176 static vm_fault_t do_fault(struct vm_fault *vmf)
5177 {
5178         struct vm_area_struct *vma = vmf->vma;
5179         struct mm_struct *vm_mm = vma->vm_mm;
5180         vm_fault_t ret;
5181 
5182         /*
5183          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5184          */
5185         if (!vma->vm_ops->fault) {
5186                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5187                                                vmf->address, &vmf->ptl);
5188                 if (unlikely(!vmf->pte))
5189                         ret = VM_FAULT_SIGBUS;
5190                 else {
5191                         /*
5192                          * Make sure this is not a temporary clearing of pte
5193                          * by holding ptl and checking again. A R/M/W update
5194                          * of pte involves: take ptl, clearing the pte so that
5195                          * we don't have concurrent modification by hardware
5196                          * followed by an update.
5197                          */
5198                         if (unlikely(pte_none(ptep_get(vmf->pte))))
5199                                 ret = VM_FAULT_SIGBUS;
5200                         else
5201                                 ret = VM_FAULT_NOPAGE;
5202 
5203                         pte_unmap_unlock(vmf->pte, vmf->ptl);
5204                 }
5205         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5206                 ret = do_read_fault(vmf);
5207         else if (!(vma->vm_flags & VM_SHARED))
5208                 ret = do_cow_fault(vmf);
5209         else
5210                 ret = do_shared_fault(vmf);
5211 
5212         /* preallocated pagetable is unused: free it */
5213         if (vmf->prealloc_pte) {
5214                 pte_free(vm_mm, vmf->prealloc_pte);
5215                 vmf->prealloc_pte = NULL;
5216         }
5217         return ret;
5218 }
5219 
5220 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5221                       unsigned long addr, int page_nid, int *flags)
5222 {
5223         struct vm_area_struct *vma = vmf->vma;
5224 
5225         /* Record the current PID acceesing VMA */
5226         vma_set_access_pid_bit(vma);
5227 
5228         count_vm_numa_event(NUMA_HINT_FAULTS);
5229         if (page_nid == numa_node_id()) {
5230                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5231                 *flags |= TNF_FAULT_LOCAL;
5232         }
5233 
5234         return mpol_misplaced(folio, vmf, addr);
5235 }
5236 
5237 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5238                                         unsigned long fault_addr, pte_t *fault_pte,
5239                                         bool writable)
5240 {
5241         pte_t pte, old_pte;
5242 
5243         old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5244         pte = pte_modify(old_pte, vma->vm_page_prot);
5245         pte = pte_mkyoung(pte);
5246         if (writable)
5247                 pte = pte_mkwrite(pte, vma);
5248         ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5249         update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5250 }
5251 
5252 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5253                                        struct folio *folio, pte_t fault_pte,
5254                                        bool ignore_writable, bool pte_write_upgrade)
5255 {
5256         int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5257         unsigned long start, end, addr = vmf->address;
5258         unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5259         unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5260         pte_t *start_ptep;
5261 
5262         /* Stay within the VMA and within the page table. */
5263         start = max3(addr_start, pt_start, vma->vm_start);
5264         end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5265                    vma->vm_end);
5266         start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5267 
5268         /* Restore all PTEs' mapping of the large folio */
5269         for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5270                 pte_t ptent = ptep_get(start_ptep);
5271                 bool writable = false;
5272 
5273                 if (!pte_present(ptent) || !pte_protnone(ptent))
5274                         continue;
5275 
5276                 if (pfn_folio(pte_pfn(ptent)) != folio)
5277                         continue;
5278 
5279                 if (!ignore_writable) {
5280                         ptent = pte_modify(ptent, vma->vm_page_prot);
5281                         writable = pte_write(ptent);
5282                         if (!writable && pte_write_upgrade &&
5283                             can_change_pte_writable(vma, addr, ptent))
5284                                 writable = true;
5285                 }
5286 
5287                 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5288         }
5289 }
5290 
5291 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5292 {
5293         struct vm_area_struct *vma = vmf->vma;
5294         struct folio *folio = NULL;
5295         int nid = NUMA_NO_NODE;
5296         bool writable = false, ignore_writable = false;
5297         bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5298         int last_cpupid;
5299         int target_nid;
5300         pte_t pte, old_pte;
5301         int flags = 0, nr_pages;
5302 
5303         /*
5304          * The pte cannot be used safely until we verify, while holding the page
5305          * table lock, that its contents have not changed during fault handling.
5306          */
5307         spin_lock(vmf->ptl);
5308         /* Read the live PTE from the page tables: */
5309         old_pte = ptep_get(vmf->pte);
5310 
5311         if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5312                 pte_unmap_unlock(vmf->pte, vmf->ptl);
5313                 return 0;
5314         }
5315 
5316         pte = pte_modify(old_pte, vma->vm_page_prot);
5317 
5318         /*
5319          * Detect now whether the PTE could be writable; this information
5320          * is only valid while holding the PT lock.
5321          */
5322         writable = pte_write(pte);
5323         if (!writable && pte_write_upgrade &&
5324             can_change_pte_writable(vma, vmf->address, pte))
5325                 writable = true;
5326 
5327         folio = vm_normal_folio(vma, vmf->address, pte);
5328         if (!folio || folio_is_zone_device(folio))
5329                 goto out_map;
5330 
5331         /*
5332          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5333          * much anyway since they can be in shared cache state. This misses
5334          * the case where a mapping is writable but the process never writes
5335          * to it but pte_write gets cleared during protection updates and
5336          * pte_dirty has unpredictable behaviour between PTE scan updates,
5337          * background writeback, dirty balancing and application behaviour.
5338          */
5339         if (!writable)
5340                 flags |= TNF_NO_GROUP;
5341 
5342         /*
5343          * Flag if the folio is shared between multiple address spaces. This
5344          * is later used when determining whether to group tasks together
5345          */
5346         if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5347                 flags |= TNF_SHARED;
5348 
5349         nid = folio_nid(folio);
5350         nr_pages = folio_nr_pages(folio);
5351         /*
5352          * For memory tiering mode, cpupid of slow memory page is used
5353          * to record page access time.  So use default value.
5354          */
5355         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5356             !node_is_toptier(nid))
5357                 last_cpupid = (-1 & LAST_CPUPID_MASK);
5358         else
5359                 last_cpupid = folio_last_cpupid(folio);
5360         target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5361         if (target_nid == NUMA_NO_NODE)
5362                 goto out_map;
5363         if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5364                 flags |= TNF_MIGRATE_FAIL;
5365                 goto out_map;
5366         }
5367         /* The folio is isolated and isolation code holds a folio reference. */
5368         pte_unmap_unlock(vmf->pte, vmf->ptl);
5369         writable = false;
5370         ignore_writable = true;
5371 
5372         /* Migrate to the requested node */
5373         if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5374                 nid = target_nid;
5375                 flags |= TNF_MIGRATED;
5376                 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5377                 return 0;
5378         }
5379 
5380         flags |= TNF_MIGRATE_FAIL;
5381         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5382                                        vmf->address, &vmf->ptl);
5383         if (unlikely(!vmf->pte))
5384                 return 0;
5385         if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5386                 pte_unmap_unlock(vmf->pte, vmf->ptl);
5387                 return 0;
5388         }
5389 out_map:
5390         /*
5391          * Make it present again, depending on how arch implements
5392          * non-accessible ptes, some can allow access by kernel mode.
5393          */
5394         if (folio && folio_test_large(folio))
5395                 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5396                                            pte_write_upgrade);
5397         else
5398                 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5399                                             writable);
5400         pte_unmap_unlock(vmf->pte, vmf->ptl);
5401 
5402         if (nid != NUMA_NO_NODE)
5403                 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5404         return 0;
5405 }
5406 
5407 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5408 {
5409         struct vm_area_struct *vma = vmf->vma;
5410         if (vma_is_anonymous(vma))
5411                 return do_huge_pmd_anonymous_page(vmf);
5412         if (vma->vm_ops->huge_fault)
5413                 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5414         return VM_FAULT_FALLBACK;
5415 }
5416 
5417 /* `inline' is required to avoid gcc 4.1.2 build error */
5418 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5419 {
5420         struct vm_area_struct *vma = vmf->vma;
5421         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5422         vm_fault_t ret;
5423 
5424         if (vma_is_anonymous(vma)) {
5425                 if (likely(!unshare) &&
5426                     userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5427                         if (userfaultfd_wp_async(vmf->vma))
5428                                 goto split;
5429                         return handle_userfault(vmf, VM_UFFD_WP);
5430                 }
5431                 return do_huge_pmd_wp_page(vmf);
5432         }
5433 
5434         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5435                 if (vma->vm_ops->huge_fault) {
5436                         ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5437                         if (!(ret & VM_FAULT_FALLBACK))
5438                                 return ret;
5439                 }
5440         }
5441 
5442 split:
5443         /* COW or write-notify handled on pte level: split pmd. */
5444         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5445 
5446         return VM_FAULT_FALLBACK;
5447 }
5448 
5449 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5450 {
5451 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
5452         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5453         struct vm_area_struct *vma = vmf->vma;
5454         /* No support for anonymous transparent PUD pages yet */
5455         if (vma_is_anonymous(vma))
5456                 return VM_FAULT_FALLBACK;
5457         if (vma->vm_ops->huge_fault)
5458                 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5460         return VM_FAULT_FALLBACK;
5461 }
5462 
5463 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5464 {
5465 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
5466         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5467         struct vm_area_struct *vma = vmf->vma;
5468         vm_fault_t ret;
5469 
5470         /* No support for anonymous transparent PUD pages yet */
5471         if (vma_is_anonymous(vma))
5472                 goto split;
5473         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5474                 if (vma->vm_ops->huge_fault) {
5475                         ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5476                         if (!(ret & VM_FAULT_FALLBACK))
5477                                 return ret;
5478                 }
5479         }
5480 split:
5481         /* COW or write-notify not handled on PUD level: split pud.*/
5482         __split_huge_pud(vma, vmf->pud, vmf->address);
5483 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5484         return VM_FAULT_FALLBACK;
5485 }
5486 
5487 /*
5488  * These routines also need to handle stuff like marking pages dirty
5489  * and/or accessed for architectures that don't do it in hardware (most
5490  * RISC architectures).  The early dirtying is also good on the i386.
5491  *
5492  * There is also a hook called "update_mmu_cache()" that architectures
5493  * with external mmu caches can use to update those (ie the Sparc or
5494  * PowerPC hashed page tables that act as extended TLBs).
5495  *
5496  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5497  * concurrent faults).
5498  *
5499  * The mmap_lock may have been released depending on flags and our return value.
5500  * See filemap_fault() and __folio_lock_or_retry().
5501  */
5502 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5503 {
5504         pte_t entry;
5505 
5506         if (unlikely(pmd_none(*vmf->pmd))) {
5507                 /*
5508                  * Leave __pte_alloc() until later: because vm_ops->fault may
5509                  * want to allocate huge page, and if we expose page table
5510                  * for an instant, it will be difficult to retract from
5511                  * concurrent faults and from rmap lookups.
5512                  */
5513                 vmf->pte = NULL;
5514                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5515         } else {
5516                 /*
5517                  * A regular pmd is established and it can't morph into a huge
5518                  * pmd by anon khugepaged, since that takes mmap_lock in write
5519                  * mode; but shmem or file collapse to THP could still morph
5520                  * it into a huge pmd: just retry later if so.
5521                  */
5522                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5523                                                  vmf->address, &vmf->ptl);
5524                 if (unlikely(!vmf->pte))
5525                         return 0;
5526                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5527                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5528 
5529                 if (pte_none(vmf->orig_pte)) {
5530                         pte_unmap(vmf->pte);
5531                         vmf->pte = NULL;
5532                 }
5533         }
5534 
5535         if (!vmf->pte)
5536                 return do_pte_missing(vmf);
5537 
5538         if (!pte_present(vmf->orig_pte))
5539                 return do_swap_page(vmf);
5540 
5541         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5542                 return do_numa_page(vmf);
5543 
5544         spin_lock(vmf->ptl);
5545         entry = vmf->orig_pte;
5546         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5547                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5548                 goto unlock;
5549         }
5550         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5551                 if (!pte_write(entry))
5552                         return do_wp_page(vmf);
5553                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5554                         entry = pte_mkdirty(entry);
5555         }
5556         entry = pte_mkyoung(entry);
5557         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5558                                 vmf->flags & FAULT_FLAG_WRITE)) {
5559                 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5560                                 vmf->pte, 1);
5561         } else {
5562                 /* Skip spurious TLB flush for retried page fault */
5563                 if (vmf->flags & FAULT_FLAG_TRIED)
5564                         goto unlock;
5565                 /*
5566                  * This is needed only for protection faults but the arch code
5567                  * is not yet telling us if this is a protection fault or not.
5568                  * This still avoids useless tlb flushes for .text page faults
5569                  * with threads.
5570                  */
5571                 if (vmf->flags & FAULT_FLAG_WRITE)
5572                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5573                                                      vmf->pte);
5574         }
5575 unlock:
5576         pte_unmap_unlock(vmf->pte, vmf->ptl);
5577         return 0;
5578 }
5579 
5580 /*
5581  * On entry, we hold either the VMA lock or the mmap_lock
5582  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5583  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5584  * and __folio_lock_or_retry().
5585  */
5586 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5587                 unsigned long address, unsigned int flags)
5588 {
5589         struct vm_fault vmf = {
5590                 .vma = vma,
5591                 .address = address & PAGE_MASK,
5592                 .real_address = address,
5593                 .flags = flags,
5594                 .pgoff = linear_page_index(vma, address),
5595                 .gfp_mask = __get_fault_gfp_mask(vma),
5596         };
5597         struct mm_struct *mm = vma->vm_mm;
5598         unsigned long vm_flags = vma->vm_flags;
5599         pgd_t *pgd;
5600         p4d_t *p4d;
5601         vm_fault_t ret;
5602 
5603         pgd = pgd_offset(mm, address);
5604         p4d = p4d_alloc(mm, pgd, address);
5605         if (!p4d)
5606                 return VM_FAULT_OOM;
5607 
5608         vmf.pud = pud_alloc(mm, p4d, address);
5609         if (!vmf.pud)
5610                 return VM_FAULT_OOM;
5611 retry_pud:
5612         if (pud_none(*vmf.pud) &&
5613             thp_vma_allowable_order(vma, vm_flags,
5614                                 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5615                 ret = create_huge_pud(&vmf);
5616                 if (!(ret & VM_FAULT_FALLBACK))
5617                         return ret;
5618         } else {
5619                 pud_t orig_pud = *vmf.pud;
5620 
5621                 barrier();
5622                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5623 
5624                         /*
5625                          * TODO once we support anonymous PUDs: NUMA case and
5626                          * FAULT_FLAG_UNSHARE handling.
5627                          */
5628                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5629                                 ret = wp_huge_pud(&vmf, orig_pud);
5630                                 if (!(ret & VM_FAULT_FALLBACK))
5631                                         return ret;
5632                         } else {
5633                                 huge_pud_set_accessed(&vmf, orig_pud);
5634                                 return 0;
5635                         }
5636                 }
5637         }
5638 
5639         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5640         if (!vmf.pmd)
5641                 return VM_FAULT_OOM;
5642 
5643         /* Huge pud page fault raced with pmd_alloc? */
5644         if (pud_trans_unstable(vmf.pud))
5645                 goto retry_pud;
5646 
5647         if (pmd_none(*vmf.pmd) &&
5648             thp_vma_allowable_order(vma, vm_flags,
5649                                 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5650                 ret = create_huge_pmd(&vmf);
5651                 if (!(ret & VM_FAULT_FALLBACK))
5652                         return ret;
5653         } else {
5654                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5655 
5656                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5657                         VM_BUG_ON(thp_migration_supported() &&
5658                                           !is_pmd_migration_entry(vmf.orig_pmd));
5659                         if (is_pmd_migration_entry(vmf.orig_pmd))
5660                                 pmd_migration_entry_wait(mm, vmf.pmd);
5661                         return 0;
5662                 }
5663                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5664                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5665                                 return do_huge_pmd_numa_page(&vmf);
5666 
5667                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5668                             !pmd_write(vmf.orig_pmd)) {
5669                                 ret = wp_huge_pmd(&vmf);
5670                                 if (!(ret & VM_FAULT_FALLBACK))
5671                                         return ret;
5672                         } else {
5673                                 huge_pmd_set_accessed(&vmf);
5674                                 return 0;
5675                         }
5676                 }
5677         }
5678 
5679         return handle_pte_fault(&vmf);
5680 }
5681 
5682 /**
5683  * mm_account_fault - Do page fault accounting
5684  * @mm: mm from which memcg should be extracted. It can be NULL.
5685  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5686  *        of perf event counters, but we'll still do the per-task accounting to
5687  *        the task who triggered this page fault.
5688  * @address: the faulted address.
5689  * @flags: the fault flags.
5690  * @ret: the fault retcode.
5691  *
5692  * This will take care of most of the page fault accounting.  Meanwhile, it
5693  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5694  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5695  * still be in per-arch page fault handlers at the entry of page fault.
5696  */
5697 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5698                                     unsigned long address, unsigned int flags,
5699                                     vm_fault_t ret)
5700 {
5701         bool major;
5702 
5703         /* Incomplete faults will be accounted upon completion. */
5704         if (ret & VM_FAULT_RETRY)
5705                 return;
5706 
5707         /*
5708          * To preserve the behavior of older kernels, PGFAULT counters record
5709          * both successful and failed faults, as opposed to perf counters,
5710          * which ignore failed cases.
5711          */
5712         count_vm_event(PGFAULT);
5713         count_memcg_event_mm(mm, PGFAULT);
5714 
5715         /*
5716          * Do not account for unsuccessful faults (e.g. when the address wasn't
5717          * valid).  That includes arch_vma_access_permitted() failing before
5718          * reaching here. So this is not a "this many hardware page faults"
5719          * counter.  We should use the hw profiling for that.
5720          */
5721         if (ret & VM_FAULT_ERROR)
5722                 return;
5723 
5724         /*
5725          * We define the fault as a major fault when the final successful fault
5726          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5727          * handle it immediately previously).
5728          */
5729         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5730 
5731         if (major)
5732                 current->maj_flt++;
5733         else
5734                 current->min_flt++;
5735 
5736         /*
5737          * If the fault is done for GUP, regs will be NULL.  We only do the
5738          * accounting for the per thread fault counters who triggered the
5739          * fault, and we skip the perf event updates.
5740          */
5741         if (!regs)
5742                 return;
5743 
5744         if (major)
5745                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5746         else
5747                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5748 }
5749 
5750 #ifdef CONFIG_LRU_GEN
5751 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5752 {
5753         /* the LRU algorithm only applies to accesses with recency */
5754         current->in_lru_fault = vma_has_recency(vma);
5755 }
5756 
5757 static void lru_gen_exit_fault(void)
5758 {
5759         current->in_lru_fault = false;
5760 }
5761 #else
5762 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5763 {
5764 }
5765 
5766 static void lru_gen_exit_fault(void)
5767 {
5768 }
5769 #endif /* CONFIG_LRU_GEN */
5770 
5771 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5772                                        unsigned int *flags)
5773 {
5774         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5775                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5776                         return VM_FAULT_SIGSEGV;
5777                 /*
5778                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5779                  * just treat it like an ordinary read-fault otherwise.
5780                  */
5781                 if (!is_cow_mapping(vma->vm_flags))
5782                         *flags &= ~FAULT_FLAG_UNSHARE;
5783         } else if (*flags & FAULT_FLAG_WRITE) {
5784                 /* Write faults on read-only mappings are impossible ... */
5785                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5786                         return VM_FAULT_SIGSEGV;
5787                 /* ... and FOLL_FORCE only applies to COW mappings. */
5788                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5789                                  !is_cow_mapping(vma->vm_flags)))
5790                         return VM_FAULT_SIGSEGV;
5791         }
5792 #ifdef CONFIG_PER_VMA_LOCK
5793         /*
5794          * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5795          * the assumption that lock is dropped on VM_FAULT_RETRY.
5796          */
5797         if (WARN_ON_ONCE((*flags &
5798                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5799                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5800                 return VM_FAULT_SIGSEGV;
5801 #endif
5802 
5803         return 0;
5804 }
5805 
5806 /*
5807  * By the time we get here, we already hold the mm semaphore
5808  *
5809  * The mmap_lock may have been released depending on flags and our
5810  * return value.  See filemap_fault() and __folio_lock_or_retry().
5811  */
5812 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5813                            unsigned int flags, struct pt_regs *regs)
5814 {
5815         /* If the fault handler drops the mmap_lock, vma may be freed */
5816         struct mm_struct *mm = vma->vm_mm;
5817         vm_fault_t ret;
5818         bool is_droppable;
5819 
5820         __set_current_state(TASK_RUNNING);
5821 
5822         ret = sanitize_fault_flags(vma, &flags);
5823         if (ret)
5824                 goto out;
5825 
5826         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5827                                             flags & FAULT_FLAG_INSTRUCTION,
5828                                             flags & FAULT_FLAG_REMOTE)) {
5829                 ret = VM_FAULT_SIGSEGV;
5830                 goto out;
5831         }
5832 
5833         is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
5834 
5835         /*
5836          * Enable the memcg OOM handling for faults triggered in user
5837          * space.  Kernel faults are handled more gracefully.
5838          */
5839         if (flags & FAULT_FLAG_USER)
5840                 mem_cgroup_enter_user_fault();
5841 
5842         lru_gen_enter_fault(vma);
5843 
5844         if (unlikely(is_vm_hugetlb_page(vma)))
5845                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5846         else
5847                 ret = __handle_mm_fault(vma, address, flags);
5848 
5849         /*
5850          * Warning: It is no longer safe to dereference vma-> after this point,
5851          * because mmap_lock might have been dropped by __handle_mm_fault(), so
5852          * vma might be destroyed from underneath us.
5853          */
5854 
5855         lru_gen_exit_fault();
5856 
5857         /* If the mapping is droppable, then errors due to OOM aren't fatal. */
5858         if (is_droppable)
5859                 ret &= ~VM_FAULT_OOM;
5860 
5861         if (flags & FAULT_FLAG_USER) {
5862                 mem_cgroup_exit_user_fault();
5863                 /*
5864                  * The task may have entered a memcg OOM situation but
5865                  * if the allocation error was handled gracefully (no
5866                  * VM_FAULT_OOM), there is no need to kill anything.
5867                  * Just clean up the OOM state peacefully.
5868                  */
5869                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5870                         mem_cgroup_oom_synchronize(false);
5871         }
5872 out:
5873         mm_account_fault(mm, regs, address, flags, ret);
5874 
5875         return ret;
5876 }
5877 EXPORT_SYMBOL_GPL(handle_mm_fault);
5878 
5879 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5880 #include <linux/extable.h>
5881 
5882 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5883 {
5884         if (likely(mmap_read_trylock(mm)))
5885                 return true;
5886 
5887         if (regs && !user_mode(regs)) {
5888                 unsigned long ip = exception_ip(regs);
5889                 if (!search_exception_tables(ip))
5890                         return false;
5891         }
5892 
5893         return !mmap_read_lock_killable(mm);
5894 }
5895 
5896 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5897 {
5898         /*
5899          * We don't have this operation yet.
5900          *
5901          * It should be easy enough to do: it's basically a
5902          *    atomic_long_try_cmpxchg_acquire()
5903          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5904          * it also needs the proper lockdep magic etc.
5905          */
5906         return false;
5907 }
5908 
5909 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5910 {
5911         mmap_read_unlock(mm);
5912         if (regs && !user_mode(regs)) {
5913                 unsigned long ip = exception_ip(regs);
5914                 if (!search_exception_tables(ip))
5915                         return false;
5916         }
5917         return !mmap_write_lock_killable(mm);
5918 }
5919 
5920 /*
5921  * Helper for page fault handling.
5922  *
5923  * This is kind of equivalend to "mmap_read_lock()" followed
5924  * by "find_extend_vma()", except it's a lot more careful about
5925  * the locking (and will drop the lock on failure).
5926  *
5927  * For example, if we have a kernel bug that causes a page
5928  * fault, we don't want to just use mmap_read_lock() to get
5929  * the mm lock, because that would deadlock if the bug were
5930  * to happen while we're holding the mm lock for writing.
5931  *
5932  * So this checks the exception tables on kernel faults in
5933  * order to only do this all for instructions that are actually
5934  * expected to fault.
5935  *
5936  * We can also actually take the mm lock for writing if we
5937  * need to extend the vma, which helps the VM layer a lot.
5938  */
5939 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5940                         unsigned long addr, struct pt_regs *regs)
5941 {
5942         struct vm_area_struct *vma;
5943 
5944         if (!get_mmap_lock_carefully(mm, regs))
5945                 return NULL;
5946 
5947         vma = find_vma(mm, addr);
5948         if (likely(vma && (vma->vm_start <= addr)))
5949                 return vma;
5950 
5951         /*
5952          * Well, dang. We might still be successful, but only
5953          * if we can extend a vma to do so.
5954          */
5955         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5956                 mmap_read_unlock(mm);
5957                 return NULL;
5958         }
5959 
5960         /*
5961          * We can try to upgrade the mmap lock atomically,
5962          * in which case we can continue to use the vma
5963          * we already looked up.
5964          *
5965          * Otherwise we'll have to drop the mmap lock and
5966          * re-take it, and also look up the vma again,
5967          * re-checking it.
5968          */
5969         if (!mmap_upgrade_trylock(mm)) {
5970                 if (!upgrade_mmap_lock_carefully(mm, regs))
5971                         return NULL;
5972 
5973                 vma = find_vma(mm, addr);
5974                 if (!vma)
5975                         goto fail;
5976                 if (vma->vm_start <= addr)
5977                         goto success;
5978                 if (!(vma->vm_flags & VM_GROWSDOWN))
5979                         goto fail;
5980         }
5981 
5982         if (expand_stack_locked(vma, addr))
5983                 goto fail;
5984 
5985 success:
5986         mmap_write_downgrade(mm);
5987         return vma;
5988 
5989 fail:
5990         mmap_write_unlock(mm);
5991         return NULL;
5992 }
5993 #endif
5994 
5995 #ifdef CONFIG_PER_VMA_LOCK
5996 /*
5997  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5998  * stable and not isolated. If the VMA is not found or is being modified the
5999  * function returns NULL.
6000  */
6001 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6002                                           unsigned long address)
6003 {
6004         MA_STATE(mas, &mm->mm_mt, address, address);
6005         struct vm_area_struct *vma;
6006 
6007         rcu_read_lock();
6008 retry:
6009         vma = mas_walk(&mas);
6010         if (!vma)
6011                 goto inval;
6012 
6013         if (!vma_start_read(vma))
6014                 goto inval;
6015 
6016         /* Check since vm_start/vm_end might change before we lock the VMA */
6017         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6018                 goto inval_end_read;
6019 
6020         /* Check if the VMA got isolated after we found it */
6021         if (vma->detached) {
6022                 vma_end_read(vma);
6023                 count_vm_vma_lock_event(VMA_LOCK_MISS);
6024                 /* The area was replaced with another one */
6025                 goto retry;
6026         }
6027 
6028         rcu_read_unlock();
6029         return vma;
6030 
6031 inval_end_read:
6032         vma_end_read(vma);
6033 inval:
6034         rcu_read_unlock();
6035         count_vm_vma_lock_event(VMA_LOCK_ABORT);
6036         return NULL;
6037 }
6038 #endif /* CONFIG_PER_VMA_LOCK */
6039 
6040 #ifndef __PAGETABLE_P4D_FOLDED
6041 /*
6042  * Allocate p4d page table.
6043  * We've already handled the fast-path in-line.
6044  */
6045 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6046 {
6047         p4d_t *new = p4d_alloc_one(mm, address);
6048         if (!new)
6049                 return -ENOMEM;
6050 
6051         spin_lock(&mm->page_table_lock);
6052         if (pgd_present(*pgd)) {        /* Another has populated it */
6053                 p4d_free(mm, new);
6054         } else {
6055                 smp_wmb(); /* See comment in pmd_install() */
6056                 pgd_populate(mm, pgd, new);
6057         }
6058         spin_unlock(&mm->page_table_lock);
6059         return 0;
6060 }
6061 #endif /* __PAGETABLE_P4D_FOLDED */
6062 
6063 #ifndef __PAGETABLE_PUD_FOLDED
6064 /*
6065  * Allocate page upper directory.
6066  * We've already handled the fast-path in-line.
6067  */
6068 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6069 {
6070         pud_t *new = pud_alloc_one(mm, address);
6071         if (!new)
6072                 return -ENOMEM;
6073 
6074         spin_lock(&mm->page_table_lock);
6075         if (!p4d_present(*p4d)) {
6076                 mm_inc_nr_puds(mm);
6077                 smp_wmb(); /* See comment in pmd_install() */
6078                 p4d_populate(mm, p4d, new);
6079         } else  /* Another has populated it */
6080                 pud_free(mm, new);
6081         spin_unlock(&mm->page_table_lock);
6082         return 0;
6083 }
6084 #endif /* __PAGETABLE_PUD_FOLDED */
6085 
6086 #ifndef __PAGETABLE_PMD_FOLDED
6087 /*
6088  * Allocate page middle directory.
6089  * We've already handled the fast-path in-line.
6090  */
6091 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6092 {
6093         spinlock_t *ptl;
6094         pmd_t *new = pmd_alloc_one(mm, address);
6095         if (!new)
6096                 return -ENOMEM;
6097 
6098         ptl = pud_lock(mm, pud);
6099         if (!pud_present(*pud)) {
6100                 mm_inc_nr_pmds(mm);
6101                 smp_wmb(); /* See comment in pmd_install() */
6102                 pud_populate(mm, pud, new);
6103         } else {        /* Another has populated it */
6104                 pmd_free(mm, new);
6105         }
6106         spin_unlock(ptl);
6107         return 0;
6108 }
6109 #endif /* __PAGETABLE_PMD_FOLDED */
6110 
6111 /**
6112  * follow_pte - look up PTE at a user virtual address
6113  * @vma: the memory mapping
6114  * @address: user virtual address
6115  * @ptepp: location to store found PTE
6116  * @ptlp: location to store the lock for the PTE
6117  *
6118  * On a successful return, the pointer to the PTE is stored in @ptepp;
6119  * the corresponding lock is taken and its location is stored in @ptlp.
6120  *
6121  * The contents of the PTE are only stable until @ptlp is released using
6122  * pte_unmap_unlock(). This function will fail if the PTE is non-present.
6123  * Present PTEs may include PTEs that map refcounted pages, such as
6124  * anonymous folios in COW mappings.
6125  *
6126  * Callers must be careful when relying on PTE content after
6127  * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
6128  * callers must protect against invalidation with MMU notifiers; otherwise
6129  * access to the PFN at a later point in time can trigger use-after-free.
6130  *
6131  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6132  * should be taken for read.
6133  *
6134  * This function must not be used to modify PTE content.
6135  *
6136  * Return: zero on success, -ve otherwise.
6137  */
6138 int follow_pte(struct vm_area_struct *vma, unsigned long address,
6139                pte_t **ptepp, spinlock_t **ptlp)
6140 {
6141         struct mm_struct *mm = vma->vm_mm;
6142         pgd_t *pgd;
6143         p4d_t *p4d;
6144         pud_t *pud;
6145         pmd_t *pmd;
6146         pte_t *ptep;
6147 
6148         mmap_assert_locked(mm);
6149         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6150                 goto out;
6151 
6152         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6153                 goto out;
6154 
6155         pgd = pgd_offset(mm, address);
6156         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
6157                 goto out;
6158 
6159         p4d = p4d_offset(pgd, address);
6160         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
6161                 goto out;
6162 
6163         pud = pud_offset(p4d, address);
6164         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
6165                 goto out;
6166 
6167         pmd = pmd_offset(pud, address);
6168         VM_BUG_ON(pmd_trans_huge(*pmd));
6169 
6170         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
6171         if (!ptep)
6172                 goto out;
6173         if (!pte_present(ptep_get(ptep)))
6174                 goto unlock;
6175         *ptepp = ptep;
6176         return 0;
6177 unlock:
6178         pte_unmap_unlock(ptep, *ptlp);
6179 out:
6180         return -EINVAL;
6181 }
6182 EXPORT_SYMBOL_GPL(follow_pte);
6183 
6184 #ifdef CONFIG_HAVE_IOREMAP_PROT
6185 /**
6186  * generic_access_phys - generic implementation for iomem mmap access
6187  * @vma: the vma to access
6188  * @addr: userspace address, not relative offset within @vma
6189  * @buf: buffer to read/write
6190  * @len: length of transfer
6191  * @write: set to FOLL_WRITE when writing, otherwise reading
6192  *
6193  * This is a generic implementation for &vm_operations_struct.access for an
6194  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6195  * not page based.
6196  */
6197 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6198                         void *buf, int len, int write)
6199 {
6200         resource_size_t phys_addr;
6201         unsigned long prot = 0;
6202         void __iomem *maddr;
6203         pte_t *ptep, pte;
6204         spinlock_t *ptl;
6205         int offset = offset_in_page(addr);
6206         int ret = -EINVAL;
6207 
6208 retry:
6209         if (follow_pte(vma, addr, &ptep, &ptl))
6210                 return -EINVAL;
6211         pte = ptep_get(ptep);
6212         pte_unmap_unlock(ptep, ptl);
6213 
6214         prot = pgprot_val(pte_pgprot(pte));
6215         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6216 
6217         if ((write & FOLL_WRITE) && !pte_write(pte))
6218                 return -EINVAL;
6219 
6220         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6221         if (!maddr)
6222                 return -ENOMEM;
6223 
6224         if (follow_pte(vma, addr, &ptep, &ptl))
6225                 goto out_unmap;
6226 
6227         if (!pte_same(pte, ptep_get(ptep))) {
6228                 pte_unmap_unlock(ptep, ptl);
6229                 iounmap(maddr);
6230 
6231                 goto retry;
6232         }
6233 
6234         if (write)
6235                 memcpy_toio(maddr + offset, buf, len);
6236         else
6237                 memcpy_fromio(buf, maddr + offset, len);
6238         ret = len;
6239         pte_unmap_unlock(ptep, ptl);
6240 out_unmap:
6241         iounmap(maddr);
6242 
6243         return ret;
6244 }
6245 EXPORT_SYMBOL_GPL(generic_access_phys);
6246 #endif
6247 
6248 /*
6249  * Access another process' address space as given in mm.
6250  */
6251 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6252                               void *buf, int len, unsigned int gup_flags)
6253 {
6254         void *old_buf = buf;
6255         int write = gup_flags & FOLL_WRITE;
6256 
6257         if (mmap_read_lock_killable(mm))
6258                 return 0;
6259 
6260         /* Untag the address before looking up the VMA */
6261         addr = untagged_addr_remote(mm, addr);
6262 
6263         /* Avoid triggering the temporary warning in __get_user_pages */
6264         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6265                 return 0;
6266 
6267         /* ignore errors, just check how much was successfully transferred */
6268         while (len) {
6269                 int bytes, offset;
6270                 void *maddr;
6271                 struct vm_area_struct *vma = NULL;
6272                 struct page *page = get_user_page_vma_remote(mm, addr,
6273                                                              gup_flags, &vma);
6274 
6275                 if (IS_ERR(page)) {
6276                         /* We might need to expand the stack to access it */
6277                         vma = vma_lookup(mm, addr);
6278                         if (!vma) {
6279                                 vma = expand_stack(mm, addr);
6280 
6281                                 /* mmap_lock was dropped on failure */
6282                                 if (!vma)
6283                                         return buf - old_buf;
6284 
6285                                 /* Try again if stack expansion worked */
6286                                 continue;
6287                         }
6288 
6289                         /*
6290                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
6291                          * we can access using slightly different code.
6292                          */
6293                         bytes = 0;
6294 #ifdef CONFIG_HAVE_IOREMAP_PROT
6295                         if (vma->vm_ops && vma->vm_ops->access)
6296                                 bytes = vma->vm_ops->access(vma, addr, buf,
6297                                                             len, write);
6298 #endif
6299                         if (bytes <= 0)
6300                                 break;
6301                 } else {
6302                         bytes = len;
6303                         offset = addr & (PAGE_SIZE-1);
6304                         if (bytes > PAGE_SIZE-offset)
6305                                 bytes = PAGE_SIZE-offset;
6306 
6307                         maddr = kmap_local_page(page);
6308                         if (write) {
6309                                 copy_to_user_page(vma, page, addr,
6310                                                   maddr + offset, buf, bytes);
6311                                 set_page_dirty_lock(page);
6312                         } else {
6313                                 copy_from_user_page(vma, page, addr,
6314                                                     buf, maddr + offset, bytes);
6315                         }
6316                         unmap_and_put_page(page, maddr);
6317                 }
6318                 len -= bytes;
6319                 buf += bytes;
6320                 addr += bytes;
6321         }
6322         mmap_read_unlock(mm);
6323 
6324         return buf - old_buf;
6325 }
6326 
6327 /**
6328  * access_remote_vm - access another process' address space
6329  * @mm:         the mm_struct of the target address space
6330  * @addr:       start address to access
6331  * @buf:        source or destination buffer
6332  * @len:        number of bytes to transfer
6333  * @gup_flags:  flags modifying lookup behaviour
6334  *
6335  * The caller must hold a reference on @mm.
6336  *
6337  * Return: number of bytes copied from source to destination.
6338  */
6339 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6340                 void *buf, int len, unsigned int gup_flags)
6341 {
6342         return __access_remote_vm(mm, addr, buf, len, gup_flags);
6343 }
6344 
6345 /*
6346  * Access another process' address space.
6347  * Source/target buffer must be kernel space,
6348  * Do not walk the page table directly, use get_user_pages
6349  */
6350 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6351                 void *buf, int len, unsigned int gup_flags)
6352 {
6353         struct mm_struct *mm;
6354         int ret;
6355 
6356         mm = get_task_mm(tsk);
6357         if (!mm)
6358                 return 0;
6359 
6360         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6361 
6362         mmput(mm);
6363 
6364         return ret;
6365 }
6366 EXPORT_SYMBOL_GPL(access_process_vm);
6367 
6368 /*
6369  * Print the name of a VMA.
6370  */
6371 void print_vma_addr(char *prefix, unsigned long ip)
6372 {
6373         struct mm_struct *mm = current->mm;
6374         struct vm_area_struct *vma;
6375 
6376         /*
6377          * we might be running from an atomic context so we cannot sleep
6378          */
6379         if (!mmap_read_trylock(mm))
6380                 return;
6381 
6382         vma = vma_lookup(mm, ip);
6383         if (vma && vma->vm_file) {
6384                 struct file *f = vma->vm_file;
6385                 ip -= vma->vm_start;
6386                 ip += vma->vm_pgoff << PAGE_SHIFT;
6387                 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6388                                 vma->vm_start,
6389                                 vma->vm_end - vma->vm_start);
6390         }
6391         mmap_read_unlock(mm);
6392 }
6393 
6394 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6395 void __might_fault(const char *file, int line)
6396 {
6397         if (pagefault_disabled())
6398                 return;
6399         __might_sleep(file, line);
6400 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6401         if (current->mm)
6402                 might_lock_read(&current->mm->mmap_lock);
6403 #endif
6404 }
6405 EXPORT_SYMBOL(__might_fault);
6406 #endif
6407 
6408 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6409 /*
6410  * Process all subpages of the specified huge page with the specified
6411  * operation.  The target subpage will be processed last to keep its
6412  * cache lines hot.
6413  */
6414 static inline int process_huge_page(
6415         unsigned long addr_hint, unsigned int nr_pages,
6416         int (*process_subpage)(unsigned long addr, int idx, void *arg),
6417         void *arg)
6418 {
6419         int i, n, base, l, ret;
6420         unsigned long addr = addr_hint &
6421                 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6422 
6423         /* Process target subpage last to keep its cache lines hot */
6424         might_sleep();
6425         n = (addr_hint - addr) / PAGE_SIZE;
6426         if (2 * n <= nr_pages) {
6427                 /* If target subpage in first half of huge page */
6428                 base = 0;
6429                 l = n;
6430                 /* Process subpages at the end of huge page */
6431                 for (i = nr_pages - 1; i >= 2 * n; i--) {
6432                         cond_resched();
6433                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6434                         if (ret)
6435                                 return ret;
6436                 }
6437         } else {
6438                 /* If target subpage in second half of huge page */
6439                 base = nr_pages - 2 * (nr_pages - n);
6440                 l = nr_pages - n;
6441                 /* Process subpages at the begin of huge page */
6442                 for (i = 0; i < base; i++) {
6443                         cond_resched();
6444                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6445                         if (ret)
6446                                 return ret;
6447                 }
6448         }
6449         /*
6450          * Process remaining subpages in left-right-left-right pattern
6451          * towards the target subpage
6452          */
6453         for (i = 0; i < l; i++) {
6454                 int left_idx = base + i;
6455                 int right_idx = base + 2 * l - 1 - i;
6456 
6457                 cond_resched();
6458                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6459                 if (ret)
6460                         return ret;
6461                 cond_resched();
6462                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6463                 if (ret)
6464                         return ret;
6465         }
6466         return 0;
6467 }
6468 
6469 static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6470                                 unsigned int nr_pages)
6471 {
6472         int i;
6473 
6474         might_sleep();
6475         for (i = 0; i < nr_pages; i++) {
6476                 cond_resched();
6477                 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6478         }
6479 }
6480 
6481 static int clear_subpage(unsigned long addr, int idx, void *arg)
6482 {
6483         struct folio *folio = arg;
6484 
6485         clear_user_highpage(folio_page(folio, idx), addr);
6486         return 0;
6487 }
6488 
6489 /**
6490  * folio_zero_user - Zero a folio which will be mapped to userspace.
6491  * @folio: The folio to zero.
6492  * @addr_hint: The address will be accessed or the base address if uncelar.
6493  */
6494 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6495 {
6496         unsigned int nr_pages = folio_nr_pages(folio);
6497 
6498         if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6499                 clear_gigantic_page(folio, addr_hint, nr_pages);
6500         else
6501                 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6502 }
6503 
6504 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6505                                    unsigned long addr,
6506                                    struct vm_area_struct *vma,
6507                                    unsigned int nr_pages)
6508 {
6509         int i;
6510         struct page *dst_page;
6511         struct page *src_page;
6512 
6513         for (i = 0; i < nr_pages; i++) {
6514                 dst_page = folio_page(dst, i);
6515                 src_page = folio_page(src, i);
6516 
6517                 cond_resched();
6518                 if (copy_mc_user_highpage(dst_page, src_page,
6519                                           addr + i*PAGE_SIZE, vma))
6520                         return -EHWPOISON;
6521         }
6522         return 0;
6523 }
6524 
6525 struct copy_subpage_arg {
6526         struct folio *dst;
6527         struct folio *src;
6528         struct vm_area_struct *vma;
6529 };
6530 
6531 static int copy_subpage(unsigned long addr, int idx, void *arg)
6532 {
6533         struct copy_subpage_arg *copy_arg = arg;
6534         struct page *dst = folio_page(copy_arg->dst, idx);
6535         struct page *src = folio_page(copy_arg->src, idx);
6536 
6537         if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6538                 return -EHWPOISON;
6539         return 0;
6540 }
6541 
6542 int copy_user_large_folio(struct folio *dst, struct folio *src,
6543                           unsigned long addr_hint, struct vm_area_struct *vma)
6544 {
6545         unsigned int nr_pages = folio_nr_pages(dst);
6546         struct copy_subpage_arg arg = {
6547                 .dst = dst,
6548                 .src = src,
6549                 .vma = vma,
6550         };
6551 
6552         if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6553                 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6554 
6555         return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6556 }
6557 
6558 long copy_folio_from_user(struct folio *dst_folio,
6559                            const void __user *usr_src,
6560                            bool allow_pagefault)
6561 {
6562         void *kaddr;
6563         unsigned long i, rc = 0;
6564         unsigned int nr_pages = folio_nr_pages(dst_folio);
6565         unsigned long ret_val = nr_pages * PAGE_SIZE;
6566         struct page *subpage;
6567 
6568         for (i = 0; i < nr_pages; i++) {
6569                 subpage = folio_page(dst_folio, i);
6570                 kaddr = kmap_local_page(subpage);
6571                 if (!allow_pagefault)
6572                         pagefault_disable();
6573                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6574                 if (!allow_pagefault)
6575                         pagefault_enable();
6576                 kunmap_local(kaddr);
6577 
6578                 ret_val -= (PAGE_SIZE - rc);
6579                 if (rc)
6580                         break;
6581 
6582                 flush_dcache_page(subpage);
6583 
6584                 cond_resched();
6585         }
6586         return ret_val;
6587 }
6588 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6589 
6590 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6591 
6592 static struct kmem_cache *page_ptl_cachep;
6593 
6594 void __init ptlock_cache_init(void)
6595 {
6596         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6597                         SLAB_PANIC, NULL);
6598 }
6599 
6600 bool ptlock_alloc(struct ptdesc *ptdesc)
6601 {
6602         spinlock_t *ptl;
6603 
6604         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6605         if (!ptl)
6606                 return false;
6607         ptdesc->ptl = ptl;
6608         return true;
6609 }
6610 
6611 void ptlock_free(struct ptdesc *ptdesc)
6612 {
6613         kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6614 }
6615 #endif
6616 
6617 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6618 {
6619         if (is_vm_hugetlb_page(vma))
6620                 hugetlb_vma_lock_read(vma);
6621 }
6622 
6623 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6624 {
6625         if (is_vm_hugetlb_page(vma))
6626                 hugetlb_vma_unlock_read(vma);
6627 }
6628 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php