~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/memory.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 
  2 // SPDX-License-Identifier: GPL-2.0-only
  3 /*
  4  *  linux/mm/memory.c
  5  *
  6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7  */
  8 
  9 /*
 10  * demand-loading started 01.12.91 - seems it is high on the list of
 11  * things wanted, and it should be easy to implement. - Linus
 12  */
 13 
 14 /*
 15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 16  * pages started 02.12.91, seems to work. - Linus.
 17  *
 18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 19  * would have taken more than the 6M I have free, but it worked well as
 20  * far as I could see.
 21  *
 22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 23  */
 24 
 25 /*
 26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
 27  * thought has to go into this. Oh, well..
 28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 29  *              Found it. Everything seems to work now.
 30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
 31  */
 32 
 33 /*
 34  * 05.04.94  -  Multi-page memory management added for v1.1.
 35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
 36  *
 37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 38  *              (Gerhard.Wichert@pdb.siemens.de)
 39  *
 40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 41  */
 42 
 43 #include <linux/kernel_stat.h>
 44 #include <linux/mm.h>
 45 #include <linux/mm_inline.h>
 46 #include <linux/sched/mm.h>
 47 #include <linux/sched/coredump.h>
 48 #include <linux/sched/numa_balancing.h>
 49 #include <linux/sched/task.h>
 50 #include <linux/hugetlb.h>
 51 #include <linux/mman.h>
 52 #include <linux/swap.h>
 53 #include <linux/highmem.h>
 54 #include <linux/pagemap.h>
 55 #include <linux/memremap.h>
 56 #include <linux/kmsan.h>
 57 #include <linux/ksm.h>
 58 #include <linux/rmap.h>
 59 #include <linux/export.h>
 60 #include <linux/delayacct.h>
 61 #include <linux/init.h>
 62 #include <linux/pfn_t.h>
 63 #include <linux/writeback.h>
 64 #include <linux/memcontrol.h>
 65 #include <linux/mmu_notifier.h>
 66 #include <linux/swapops.h>
 67 #include <linux/elf.h>
 68 #include <linux/gfp.h>
 69 #include <linux/migrate.h>
 70 #include <linux/string.h>
 71 #include <linux/memory-tiers.h>
 72 #include <linux/debugfs.h>
 73 #include <linux/userfaultfd_k.h>
 74 #include <linux/dax.h>
 75 #include <linux/oom.h>
 76 #include <linux/numa.h>
 77 #include <linux/perf_event.h>
 78 #include <linux/ptrace.h>
 79 #include <linux/vmalloc.h>
 80 #include <linux/sched/sysctl.h>
 81 
 82 #include <trace/events/kmem.h>
 83 
 84 #include <asm/io.h>
 85 #include <asm/mmu_context.h>
 86 #include <asm/pgalloc.h>
 87 #include <linux/uaccess.h>
 88 #include <asm/tlb.h>
 89 #include <asm/tlbflush.h>
 90 
 91 #include "pgalloc-track.h"
 92 #include "internal.h"
 93 #include "swap.h"
 94 
 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
 97 #endif
 98 
 99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117         if (!userfaultfd_wp(vmf->vma))
118                 return false;
119         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120                 return false;
121 
122         return pte_marker_uffd_wp(vmf->orig_pte);
123 }
124 
125 /*
126  * A number of key systems in x86 including ioremap() rely on the assumption
127  * that high_memory defines the upper bound on direct map memory, then end
128  * of ZONE_NORMAL.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141                                         1;
142 #else
143                                         2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149         /*
150          * Transitioning a PTE from 'old' to 'young' can be expensive on
151          * some architectures, even if it's performed in hardware. By
152          * default, "false" means prefaulted entries will be 'young'.
153          */
154         return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160         randomize_va_space = 0;
161         return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175         zero_pfn = page_to_pfn(ZERO_PAGE(0));
176         return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182         trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190                            unsigned long addr)
191 {
192         pgtable_t token = pmd_pgtable(*pmd);
193         pmd_clear(pmd);
194         pte_free_tlb(tlb, token, addr);
195         mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199                                 unsigned long addr, unsigned long end,
200                                 unsigned long floor, unsigned long ceiling)
201 {
202         pmd_t *pmd;
203         unsigned long next;
204         unsigned long start;
205 
206         start = addr;
207         pmd = pmd_offset(pud, addr);
208         do {
209                 next = pmd_addr_end(addr, end);
210                 if (pmd_none_or_clear_bad(pmd))
211                         continue;
212                 free_pte_range(tlb, pmd, addr);
213         } while (pmd++, addr = next, addr != end);
214 
215         start &= PUD_MASK;
216         if (start < floor)
217                 return;
218         if (ceiling) {
219                 ceiling &= PUD_MASK;
220                 if (!ceiling)
221                         return;
222         }
223         if (end - 1 > ceiling - 1)
224                 return;
225 
226         pmd = pmd_offset(pud, start);
227         pud_clear(pud);
228         pmd_free_tlb(tlb, pmd, start);
229         mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233                                 unsigned long addr, unsigned long end,
234                                 unsigned long floor, unsigned long ceiling)
235 {
236         pud_t *pud;
237         unsigned long next;
238         unsigned long start;
239 
240         start = addr;
241         pud = pud_offset(p4d, addr);
242         do {
243                 next = pud_addr_end(addr, end);
244                 if (pud_none_or_clear_bad(pud))
245                         continue;
246                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247         } while (pud++, addr = next, addr != end);
248 
249         start &= P4D_MASK;
250         if (start < floor)
251                 return;
252         if (ceiling) {
253                 ceiling &= P4D_MASK;
254                 if (!ceiling)
255                         return;
256         }
257         if (end - 1 > ceiling - 1)
258                 return;
259 
260         pud = pud_offset(p4d, start);
261         p4d_clear(p4d);
262         pud_free_tlb(tlb, pud, start);
263         mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267                                 unsigned long addr, unsigned long end,
268                                 unsigned long floor, unsigned long ceiling)
269 {
270         p4d_t *p4d;
271         unsigned long next;
272         unsigned long start;
273 
274         start = addr;
275         p4d = p4d_offset(pgd, addr);
276         do {
277                 next = p4d_addr_end(addr, end);
278                 if (p4d_none_or_clear_bad(p4d))
279                         continue;
280                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281         } while (p4d++, addr = next, addr != end);
282 
283         start &= PGDIR_MASK;
284         if (start < floor)
285                 return;
286         if (ceiling) {
287                 ceiling &= PGDIR_MASK;
288                 if (!ceiling)
289                         return;
290         }
291         if (end - 1 > ceiling - 1)
292                 return;
293 
294         p4d = p4d_offset(pgd, start);
295         pgd_clear(pgd);
296         p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303                         unsigned long addr, unsigned long end,
304                         unsigned long floor, unsigned long ceiling)
305 {
306         pgd_t *pgd;
307         unsigned long next;
308 
309         /*
310          * The next few lines have given us lots of grief...
311          *
312          * Why are we testing PMD* at this top level?  Because often
313          * there will be no work to do at all, and we'd prefer not to
314          * go all the way down to the bottom just to discover that.
315          *
316          * Why all these "- 1"s?  Because 0 represents both the bottom
317          * of the address space and the top of it (using -1 for the
318          * top wouldn't help much: the masks would do the wrong thing).
319          * The rule is that addr 0 and floor 0 refer to the bottom of
320          * the address space, but end 0 and ceiling 0 refer to the top
321          * Comparisons need to use "end - 1" and "ceiling - 1" (though
322          * that end 0 case should be mythical).
323          *
324          * Wherever addr is brought up or ceiling brought down, we must
325          * be careful to reject "the opposite 0" before it confuses the
326          * subsequent tests.  But what about where end is brought down
327          * by PMD_SIZE below? no, end can't go down to 0 there.
328          *
329          * Whereas we round start (addr) and ceiling down, by different
330          * masks at different levels, in order to test whether a table
331          * now has no other vmas using it, so can be freed, we don't
332          * bother to round floor or end up - the tests don't need that.
333          */
334 
335         addr &= PMD_MASK;
336         if (addr < floor) {
337                 addr += PMD_SIZE;
338                 if (!addr)
339                         return;
340         }
341         if (ceiling) {
342                 ceiling &= PMD_MASK;
343                 if (!ceiling)
344                         return;
345         }
346         if (end - 1 > ceiling - 1)
347                 end -= PMD_SIZE;
348         if (addr > end - 1)
349                 return;
350         /*
351          * We add page table cache pages with PAGE_SIZE,
352          * (see pte_free_tlb()), flush the tlb if we need
353          */
354         tlb_change_page_size(tlb, PAGE_SIZE);
355         pgd = pgd_offset(tlb->mm, addr);
356         do {
357                 next = pgd_addr_end(addr, end);
358                 if (pgd_none_or_clear_bad(pgd))
359                         continue;
360                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361         } while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365                    struct vm_area_struct *vma, unsigned long floor,
366                    unsigned long ceiling, bool mm_wr_locked)
367 {
368         struct unlink_vma_file_batch vb;
369 
370         do {
371                 unsigned long addr = vma->vm_start;
372                 struct vm_area_struct *next;
373 
374                 /*
375                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376                  * be 0.  This will underflow and is okay.
377                  */
378                 next = mas_find(mas, ceiling - 1);
379                 if (unlikely(xa_is_zero(next)))
380                         next = NULL;
381 
382                 /*
383                  * Hide vma from rmap and truncate_pagecache before freeing
384                  * pgtables
385                  */
386                 if (mm_wr_locked)
387                         vma_start_write(vma);
388                 unlink_anon_vmas(vma);
389 
390                 if (is_vm_hugetlb_page(vma)) {
391                         unlink_file_vma(vma);
392                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
393                                 floor, next ? next->vm_start : ceiling);
394                 } else {
395                         unlink_file_vma_batch_init(&vb);
396                         unlink_file_vma_batch_add(&vb, vma);
397 
398                         /*
399                          * Optimization: gather nearby vmas into one call down
400                          */
401                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
402                                && !is_vm_hugetlb_page(next)) {
403                                 vma = next;
404                                 next = mas_find(mas, ceiling - 1);
405                                 if (unlikely(xa_is_zero(next)))
406                                         next = NULL;
407                                 if (mm_wr_locked)
408                                         vma_start_write(vma);
409                                 unlink_anon_vmas(vma);
410                                 unlink_file_vma_batch_add(&vb, vma);
411                         }
412                         unlink_file_vma_batch_final(&vb);
413                         free_pgd_range(tlb, addr, vma->vm_end,
414                                 floor, next ? next->vm_start : ceiling);
415                 }
416                 vma = next;
417         } while (vma);
418 }
419 
420 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421 {
422         spinlock_t *ptl = pmd_lock(mm, pmd);
423 
424         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
425                 mm_inc_nr_ptes(mm);
426                 /*
427                  * Ensure all pte setup (eg. pte page lock and page clearing) are
428                  * visible before the pte is made visible to other CPUs by being
429                  * put into page tables.
430                  *
431                  * The other side of the story is the pointer chasing in the page
432                  * table walking code (when walking the page table without locking;
433                  * ie. most of the time). Fortunately, these data accesses consist
434                  * of a chain of data-dependent loads, meaning most CPUs (alpha
435                  * being the notable exception) will already guarantee loads are
436                  * seen in-order. See the alpha page table accessors for the
437                  * smp_rmb() barriers in page table walking code.
438                  */
439                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
440                 pmd_populate(mm, pmd, *pte);
441                 *pte = NULL;
442         }
443         spin_unlock(ptl);
444 }
445 
446 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447 {
448         pgtable_t new = pte_alloc_one(mm);
449         if (!new)
450                 return -ENOMEM;
451 
452         pmd_install(mm, pmd, &new);
453         if (new)
454                 pte_free(mm, new);
455         return 0;
456 }
457 
458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460         pte_t *new = pte_alloc_one_kernel(&init_mm);
461         if (!new)
462                 return -ENOMEM;
463 
464         spin_lock(&init_mm.page_table_lock);
465         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
466                 smp_wmb(); /* See comment in pmd_install() */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484 
485         for (i = 0; i < NR_MM_COUNTERS; i++)
486                 if (rss[i])
487                         add_mm_counter(mm, i, rss[i]);
488 }
489 
490 /*
491  * This function is called to print an error when a bad pte
492  * is found. For example, we might have a PFN-mapped pte in
493  * a region that doesn't allow it.
494  *
495  * The calling function must still handle the error.
496  */
497 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
498                           pte_t pte, struct page *page)
499 {
500         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
501         p4d_t *p4d = p4d_offset(pgd, addr);
502         pud_t *pud = pud_offset(p4d, addr);
503         pmd_t *pmd = pmd_offset(pud, addr);
504         struct address_space *mapping;
505         pgoff_t index;
506         static unsigned long resume;
507         static unsigned long nr_shown;
508         static unsigned long nr_unshown;
509 
510         /*
511          * Allow a burst of 60 reports, then keep quiet for that minute;
512          * or allow a steady drip of one report per second.
513          */
514         if (nr_shown == 60) {
515                 if (time_before(jiffies, resume)) {
516                         nr_unshown++;
517                         return;
518                 }
519                 if (nr_unshown) {
520                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521                                  nr_unshown);
522                         nr_unshown = 0;
523                 }
524                 nr_shown = 0;
525         }
526         if (nr_shown++ == 0)
527                 resume = jiffies + 60 * HZ;
528 
529         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
530         index = linear_page_index(vma, addr);
531 
532         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
533                  current->comm,
534                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
535         if (page)
536                 dump_page(page, "bad pte");
537         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
538                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
539         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540                  vma->vm_file,
541                  vma->vm_ops ? vma->vm_ops->fault : NULL,
542                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
543                  mapping ? mapping->a_ops->read_folio : NULL);
544         dump_stack();
545         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
546 }
547 
548 /*
549  * vm_normal_page -- This function gets the "struct page" associated with a pte.
550  *
551  * "Special" mappings do not wish to be associated with a "struct page" (either
552  * it doesn't exist, or it exists but they don't want to touch it). In this
553  * case, NULL is returned here. "Normal" mappings do have a struct page.
554  *
555  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556  * pte bit, in which case this function is trivial. Secondly, an architecture
557  * may not have a spare pte bit, which requires a more complicated scheme,
558  * described below.
559  *
560  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561  * special mapping (even if there are underlying and valid "struct pages").
562  * COWed pages of a VM_PFNMAP are always normal.
563  *
564  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567  * mapping will always honor the rule
568  *
569  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570  *
571  * And for normal mappings this is false.
572  *
573  * This restricts such mappings to be a linear translation from virtual address
574  * to pfn. To get around this restriction, we allow arbitrary mappings so long
575  * as the vma is not a COW mapping; in that case, we know that all ptes are
576  * special (because none can have been COWed).
577  *
578  *
579  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580  *
581  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582  * page" backing, however the difference is that _all_ pages with a struct
583  * page (that is, those where pfn_valid is true) are refcounted and considered
584  * normal pages by the VM. The only exception are zeropages, which are
585  * *never* refcounted.
586  *
587  * The disadvantage is that pages are refcounted (which can be slower and
588  * simply not an option for some PFNMAP users). The advantage is that we
589  * don't have to follow the strict linearity rule of PFNMAP mappings in
590  * order to support COWable mappings.
591  *
592  */
593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594                             pte_t pte)
595 {
596         unsigned long pfn = pte_pfn(pte);
597 
598         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599                 if (likely(!pte_special(pte)))
600                         goto check_pfn;
601                 if (vma->vm_ops && vma->vm_ops->find_special_page)
602                         return vma->vm_ops->find_special_page(vma, addr);
603                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604                         return NULL;
605                 if (is_zero_pfn(pfn))
606                         return NULL;
607                 if (pte_devmap(pte))
608                 /*
609                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
610                  * and will have refcounts incremented on their struct pages
611                  * when they are inserted into PTEs, thus they are safe to
612                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
613                  * do not have refcounts. Example of legacy ZONE_DEVICE is
614                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615                  */
616                         return NULL;
617 
618                 print_bad_pte(vma, addr, pte, NULL);
619                 return NULL;
620         }
621 
622         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623 
624         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
625                 if (vma->vm_flags & VM_MIXEDMAP) {
626                         if (!pfn_valid(pfn))
627                                 return NULL;
628                         if (is_zero_pfn(pfn))
629                                 return NULL;
630                         goto out;
631                 } else {
632                         unsigned long off;
633                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
634                         if (pfn == vma->vm_pgoff + off)
635                                 return NULL;
636                         if (!is_cow_mapping(vma->vm_flags))
637                                 return NULL;
638                 }
639         }
640 
641         if (is_zero_pfn(pfn))
642                 return NULL;
643 
644 check_pfn:
645         if (unlikely(pfn > highest_memmap_pfn)) {
646                 print_bad_pte(vma, addr, pte, NULL);
647                 return NULL;
648         }
649 
650         /*
651          * NOTE! We still have PageReserved() pages in the page tables.
652          * eg. VDSO mappings can cause them to exist.
653          */
654 out:
655         VM_WARN_ON_ONCE(is_zero_pfn(pfn));
656         return pfn_to_page(pfn);
657 }
658 
659 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
660                             pte_t pte)
661 {
662         struct page *page = vm_normal_page(vma, addr, pte);
663 
664         if (page)
665                 return page_folio(page);
666         return NULL;
667 }
668 
669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
670 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
671                                 pmd_t pmd)
672 {
673         unsigned long pfn = pmd_pfn(pmd);
674 
675         /*
676          * There is no pmd_special() but there may be special pmds, e.g.
677          * in a direct-access (dax) mapping, so let's just replicate the
678          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
679          */
680         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
681                 if (vma->vm_flags & VM_MIXEDMAP) {
682                         if (!pfn_valid(pfn))
683                                 return NULL;
684                         goto out;
685                 } else {
686                         unsigned long off;
687                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
688                         if (pfn == vma->vm_pgoff + off)
689                                 return NULL;
690                         if (!is_cow_mapping(vma->vm_flags))
691                                 return NULL;
692                 }
693         }
694 
695         if (pmd_devmap(pmd))
696                 return NULL;
697         if (is_huge_zero_pmd(pmd))
698                 return NULL;
699         if (unlikely(pfn > highest_memmap_pfn))
700                 return NULL;
701 
702         /*
703          * NOTE! We still have PageReserved() pages in the page tables.
704          * eg. VDSO mappings can cause them to exist.
705          */
706 out:
707         return pfn_to_page(pfn);
708 }
709 
710 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
711                                   unsigned long addr, pmd_t pmd)
712 {
713         struct page *page = vm_normal_page_pmd(vma, addr, pmd);
714 
715         if (page)
716                 return page_folio(page);
717         return NULL;
718 }
719 #endif
720 
721 static void restore_exclusive_pte(struct vm_area_struct *vma,
722                                   struct page *page, unsigned long address,
723                                   pte_t *ptep)
724 {
725         struct folio *folio = page_folio(page);
726         pte_t orig_pte;
727         pte_t pte;
728         swp_entry_t entry;
729 
730         orig_pte = ptep_get(ptep);
731         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
732         if (pte_swp_soft_dirty(orig_pte))
733                 pte = pte_mksoft_dirty(pte);
734 
735         entry = pte_to_swp_entry(orig_pte);
736         if (pte_swp_uffd_wp(orig_pte))
737                 pte = pte_mkuffd_wp(pte);
738         else if (is_writable_device_exclusive_entry(entry))
739                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
740 
741         VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
742                                            PageAnonExclusive(page)), folio);
743 
744         /*
745          * No need to take a page reference as one was already
746          * created when the swap entry was made.
747          */
748         if (folio_test_anon(folio))
749                 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
750         else
751                 /*
752                  * Currently device exclusive access only supports anonymous
753                  * memory so the entry shouldn't point to a filebacked page.
754                  */
755                 WARN_ON_ONCE(1);
756 
757         set_pte_at(vma->vm_mm, address, ptep, pte);
758 
759         /*
760          * No need to invalidate - it was non-present before. However
761          * secondary CPUs may have mappings that need invalidating.
762          */
763         update_mmu_cache(vma, address, ptep);
764 }
765 
766 /*
767  * Tries to restore an exclusive pte if the page lock can be acquired without
768  * sleeping.
769  */
770 static int
771 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
772                         unsigned long addr)
773 {
774         swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
775         struct page *page = pfn_swap_entry_to_page(entry);
776 
777         if (trylock_page(page)) {
778                 restore_exclusive_pte(vma, page, addr, src_pte);
779                 unlock_page(page);
780                 return 0;
781         }
782 
783         return -EBUSY;
784 }
785 
786 /*
787  * copy one vm_area from one task to the other. Assumes the page tables
788  * already present in the new task to be cleared in the whole range
789  * covered by this vma.
790  */
791 
792 static unsigned long
793 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
794                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
795                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
796 {
797         unsigned long vm_flags = dst_vma->vm_flags;
798         pte_t orig_pte = ptep_get(src_pte);
799         pte_t pte = orig_pte;
800         struct folio *folio;
801         struct page *page;
802         swp_entry_t entry = pte_to_swp_entry(orig_pte);
803 
804         if (likely(!non_swap_entry(entry))) {
805                 if (swap_duplicate(entry) < 0)
806                         return -EIO;
807 
808                 /* make sure dst_mm is on swapoff's mmlist. */
809                 if (unlikely(list_empty(&dst_mm->mmlist))) {
810                         spin_lock(&mmlist_lock);
811                         if (list_empty(&dst_mm->mmlist))
812                                 list_add(&dst_mm->mmlist,
813                                                 &src_mm->mmlist);
814                         spin_unlock(&mmlist_lock);
815                 }
816                 /* Mark the swap entry as shared. */
817                 if (pte_swp_exclusive(orig_pte)) {
818                         pte = pte_swp_clear_exclusive(orig_pte);
819                         set_pte_at(src_mm, addr, src_pte, pte);
820                 }
821                 rss[MM_SWAPENTS]++;
822         } else if (is_migration_entry(entry)) {
823                 folio = pfn_swap_entry_folio(entry);
824 
825                 rss[mm_counter(folio)]++;
826 
827                 if (!is_readable_migration_entry(entry) &&
828                                 is_cow_mapping(vm_flags)) {
829                         /*
830                          * COW mappings require pages in both parent and child
831                          * to be set to read. A previously exclusive entry is
832                          * now shared.
833                          */
834                         entry = make_readable_migration_entry(
835                                                         swp_offset(entry));
836                         pte = swp_entry_to_pte(entry);
837                         if (pte_swp_soft_dirty(orig_pte))
838                                 pte = pte_swp_mksoft_dirty(pte);
839                         if (pte_swp_uffd_wp(orig_pte))
840                                 pte = pte_swp_mkuffd_wp(pte);
841                         set_pte_at(src_mm, addr, src_pte, pte);
842                 }
843         } else if (is_device_private_entry(entry)) {
844                 page = pfn_swap_entry_to_page(entry);
845                 folio = page_folio(page);
846 
847                 /*
848                  * Update rss count even for unaddressable pages, as
849                  * they should treated just like normal pages in this
850                  * respect.
851                  *
852                  * We will likely want to have some new rss counters
853                  * for unaddressable pages, at some point. But for now
854                  * keep things as they are.
855                  */
856                 folio_get(folio);
857                 rss[mm_counter(folio)]++;
858                 /* Cannot fail as these pages cannot get pinned. */
859                 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
860 
861                 /*
862                  * We do not preserve soft-dirty information, because so
863                  * far, checkpoint/restore is the only feature that
864                  * requires that. And checkpoint/restore does not work
865                  * when a device driver is involved (you cannot easily
866                  * save and restore device driver state).
867                  */
868                 if (is_writable_device_private_entry(entry) &&
869                     is_cow_mapping(vm_flags)) {
870                         entry = make_readable_device_private_entry(
871                                                         swp_offset(entry));
872                         pte = swp_entry_to_pte(entry);
873                         if (pte_swp_uffd_wp(orig_pte))
874                                 pte = pte_swp_mkuffd_wp(pte);
875                         set_pte_at(src_mm, addr, src_pte, pte);
876                 }
877         } else if (is_device_exclusive_entry(entry)) {
878                 /*
879                  * Make device exclusive entries present by restoring the
880                  * original entry then copying as for a present pte. Device
881                  * exclusive entries currently only support private writable
882                  * (ie. COW) mappings.
883                  */
884                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
885                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
886                         return -EBUSY;
887                 return -ENOENT;
888         } else if (is_pte_marker_entry(entry)) {
889                 pte_marker marker = copy_pte_marker(entry, dst_vma);
890 
891                 if (marker)
892                         set_pte_at(dst_mm, addr, dst_pte,
893                                    make_pte_marker(marker));
894                 return 0;
895         }
896         if (!userfaultfd_wp(dst_vma))
897                 pte = pte_swp_clear_uffd_wp(pte);
898         set_pte_at(dst_mm, addr, dst_pte, pte);
899         return 0;
900 }
901 
902 /*
903  * Copy a present and normal page.
904  *
905  * NOTE! The usual case is that this isn't required;
906  * instead, the caller can just increase the page refcount
907  * and re-use the pte the traditional way.
908  *
909  * And if we need a pre-allocated page but don't yet have
910  * one, return a negative error to let the preallocation
911  * code know so that it can do so outside the page table
912  * lock.
913  */
914 static inline int
915 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
916                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
917                   struct folio **prealloc, struct page *page)
918 {
919         struct folio *new_folio;
920         pte_t pte;
921 
922         new_folio = *prealloc;
923         if (!new_folio)
924                 return -EAGAIN;
925 
926         /*
927          * We have a prealloc page, all good!  Take it
928          * over and copy the page & arm it.
929          */
930         *prealloc = NULL;
931         copy_user_highpage(&new_folio->page, page, addr, src_vma);
932         __folio_mark_uptodate(new_folio);
933         folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934         folio_add_lru_vma(new_folio, dst_vma);
935         rss[MM_ANONPAGES]++;
936 
937         /* All done, just insert the new page copy in the child */
938         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940         if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941                 /* Uffd-wp needs to be delivered to dest pte as well */
942                 pte = pte_mkuffd_wp(pte);
943         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944         return 0;
945 }
946 
947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948                 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949                 pte_t pte, unsigned long addr, int nr)
950 {
951         struct mm_struct *src_mm = src_vma->vm_mm;
952 
953         /* If it's a COW mapping, write protect it both processes. */
954         if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955                 wrprotect_ptes(src_mm, addr, src_pte, nr);
956                 pte = pte_wrprotect(pte);
957         }
958 
959         /* If it's a shared mapping, mark it clean in the child. */
960         if (src_vma->vm_flags & VM_SHARED)
961                 pte = pte_mkclean(pte);
962         pte = pte_mkold(pte);
963 
964         if (!userfaultfd_wp(dst_vma))
965                 pte = pte_clear_uffd_wp(pte);
966 
967         set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968 }
969 
970 /*
971  * Copy one present PTE, trying to batch-process subsequent PTEs that map
972  * consecutive pages of the same folio by copying them as well.
973  *
974  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975  * Otherwise, returns the number of copied PTEs (at least 1).
976  */
977 static inline int
978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979                  pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980                  int max_nr, int *rss, struct folio **prealloc)
981 {
982         struct page *page;
983         struct folio *folio;
984         bool any_writable;
985         fpb_t flags = 0;
986         int err, nr;
987 
988         page = vm_normal_page(src_vma, addr, pte);
989         if (unlikely(!page))
990                 goto copy_pte;
991 
992         folio = page_folio(page);
993 
994         /*
995          * If we likely have to copy, just don't bother with batching. Make
996          * sure that the common "small folio" case is as fast as possible
997          * by keeping the batching logic separate.
998          */
999         if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000                 if (src_vma->vm_flags & VM_SHARED)
1001                         flags |= FPB_IGNORE_DIRTY;
1002                 if (!vma_soft_dirty_enabled(src_vma))
1003                         flags |= FPB_IGNORE_SOFT_DIRTY;
1004 
1005                 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006                                      &any_writable, NULL, NULL);
1007                 folio_ref_add(folio, nr);
1008                 if (folio_test_anon(folio)) {
1009                         if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010                                                                   nr, src_vma))) {
1011                                 folio_ref_sub(folio, nr);
1012                                 return -EAGAIN;
1013                         }
1014                         rss[MM_ANONPAGES] += nr;
1015                         VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016                 } else {
1017                         folio_dup_file_rmap_ptes(folio, page, nr);
1018                         rss[mm_counter_file(folio)] += nr;
1019                 }
1020                 if (any_writable)
1021                         pte = pte_mkwrite(pte, src_vma);
1022                 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023                                     addr, nr);
1024                 return nr;
1025         }
1026 
1027         folio_get(folio);
1028         if (folio_test_anon(folio)) {
1029                 /*
1030                  * If this page may have been pinned by the parent process,
1031                  * copy the page immediately for the child so that we'll always
1032                  * guarantee the pinned page won't be randomly replaced in the
1033                  * future.
1034                  */
1035                 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036                         /* Page may be pinned, we have to copy. */
1037                         folio_put(folio);
1038                         err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039                                                 addr, rss, prealloc, page);
1040                         return err ? err : 1;
1041                 }
1042                 rss[MM_ANONPAGES]++;
1043                 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044         } else {
1045                 folio_dup_file_rmap_pte(folio, page);
1046                 rss[mm_counter_file(folio)]++;
1047         }
1048 
1049 copy_pte:
1050         __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051         return 1;
1052 }
1053 
1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055                 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056 {
1057         struct folio *new_folio;
1058 
1059         if (need_zero)
1060                 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061         else
1062                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1063                                             addr, false);
1064 
1065         if (!new_folio)
1066                 return NULL;
1067 
1068         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069                 folio_put(new_folio);
1070                 return NULL;
1071         }
1072         folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073 
1074         return new_folio;
1075 }
1076 
1077 static int
1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080                unsigned long end)
1081 {
1082         struct mm_struct *dst_mm = dst_vma->vm_mm;
1083         struct mm_struct *src_mm = src_vma->vm_mm;
1084         pte_t *orig_src_pte, *orig_dst_pte;
1085         pte_t *src_pte, *dst_pte;
1086         pte_t ptent;
1087         spinlock_t *src_ptl, *dst_ptl;
1088         int progress, max_nr, ret = 0;
1089         int rss[NR_MM_COUNTERS];
1090         swp_entry_t entry = (swp_entry_t){0};
1091         struct folio *prealloc = NULL;
1092         int nr;
1093 
1094 again:
1095         progress = 0;
1096         init_rss_vec(rss);
1097 
1098         /*
1099          * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100          * error handling here, assume that exclusive mmap_lock on dst and src
1101          * protects anon from unexpected THP transitions; with shmem and file
1102          * protected by mmap_lock-less collapse skipping areas with anon_vma
1103          * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1104          * can remove such assumptions later, but this is good enough for now.
1105          */
1106         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107         if (!dst_pte) {
1108                 ret = -ENOMEM;
1109                 goto out;
1110         }
1111         src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1112         if (!src_pte) {
1113                 pte_unmap_unlock(dst_pte, dst_ptl);
1114                 /* ret == 0 */
1115                 goto out;
1116         }
1117         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118         orig_src_pte = src_pte;
1119         orig_dst_pte = dst_pte;
1120         arch_enter_lazy_mmu_mode();
1121 
1122         do {
1123                 nr = 1;
1124 
1125                 /*
1126                  * We are holding two locks at this point - either of them
1127                  * could generate latencies in another task on another CPU.
1128                  */
1129                 if (progress >= 32) {
1130                         progress = 0;
1131                         if (need_resched() ||
1132                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1133                                 break;
1134                 }
1135                 ptent = ptep_get(src_pte);
1136                 if (pte_none(ptent)) {
1137                         progress++;
1138                         continue;
1139                 }
1140                 if (unlikely(!pte_present(ptent))) {
1141                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1142                                                   dst_pte, src_pte,
1143                                                   dst_vma, src_vma,
1144                                                   addr, rss);
1145                         if (ret == -EIO) {
1146                                 entry = pte_to_swp_entry(ptep_get(src_pte));
1147                                 break;
1148                         } else if (ret == -EBUSY) {
1149                                 break;
1150                         } else if (!ret) {
1151                                 progress += 8;
1152                                 continue;
1153                         }
1154                         ptent = ptep_get(src_pte);
1155                         VM_WARN_ON_ONCE(!pte_present(ptent));
1156 
1157                         /*
1158                          * Device exclusive entry restored, continue by copying
1159                          * the now present pte.
1160                          */
1161                         WARN_ON_ONCE(ret != -ENOENT);
1162                 }
1163                 /* copy_present_ptes() will clear `*prealloc' if consumed */
1164                 max_nr = (end - addr) / PAGE_SIZE;
1165                 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1166                                         ptent, addr, max_nr, rss, &prealloc);
1167                 /*
1168                  * If we need a pre-allocated page for this pte, drop the
1169                  * locks, allocate, and try again.
1170                  */
1171                 if (unlikely(ret == -EAGAIN))
1172                         break;
1173                 if (unlikely(prealloc)) {
1174                         /*
1175                          * pre-alloc page cannot be reused by next time so as
1176                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1177                          * will allocate page according to address).  This
1178                          * could only happen if one pinned pte changed.
1179                          */
1180                         folio_put(prealloc);
1181                         prealloc = NULL;
1182                 }
1183                 nr = ret;
1184                 progress += 8 * nr;
1185         } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1186                  addr != end);
1187 
1188         arch_leave_lazy_mmu_mode();
1189         pte_unmap_unlock(orig_src_pte, src_ptl);
1190         add_mm_rss_vec(dst_mm, rss);
1191         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1192         cond_resched();
1193 
1194         if (ret == -EIO) {
1195                 VM_WARN_ON_ONCE(!entry.val);
1196                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1197                         ret = -ENOMEM;
1198                         goto out;
1199                 }
1200                 entry.val = 0;
1201         } else if (ret == -EBUSY) {
1202                 goto out;
1203         } else if (ret ==  -EAGAIN) {
1204                 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1205                 if (!prealloc)
1206                         return -ENOMEM;
1207         } else if (ret < 0) {
1208                 VM_WARN_ON_ONCE(1);
1209         }
1210 
1211         /* We've captured and resolved the error. Reset, try again. */
1212         ret = 0;
1213 
1214         if (addr != end)
1215                 goto again;
1216 out:
1217         if (unlikely(prealloc))
1218                 folio_put(prealloc);
1219         return ret;
1220 }
1221 
1222 static inline int
1223 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1224                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1225                unsigned long end)
1226 {
1227         struct mm_struct *dst_mm = dst_vma->vm_mm;
1228         struct mm_struct *src_mm = src_vma->vm_mm;
1229         pmd_t *src_pmd, *dst_pmd;
1230         unsigned long next;
1231 
1232         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1233         if (!dst_pmd)
1234                 return -ENOMEM;
1235         src_pmd = pmd_offset(src_pud, addr);
1236         do {
1237                 next = pmd_addr_end(addr, end);
1238                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1239                         || pmd_devmap(*src_pmd)) {
1240                         int err;
1241                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1242                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1243                                             addr, dst_vma, src_vma);
1244                         if (err == -ENOMEM)
1245                                 return -ENOMEM;
1246                         if (!err)
1247                                 continue;
1248                         /* fall through */
1249                 }
1250                 if (pmd_none_or_clear_bad(src_pmd))
1251                         continue;
1252                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1253                                    addr, next))
1254                         return -ENOMEM;
1255         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1256         return 0;
1257 }
1258 
1259 static inline int
1260 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1261                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1262                unsigned long end)
1263 {
1264         struct mm_struct *dst_mm = dst_vma->vm_mm;
1265         struct mm_struct *src_mm = src_vma->vm_mm;
1266         pud_t *src_pud, *dst_pud;
1267         unsigned long next;
1268 
1269         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1270         if (!dst_pud)
1271                 return -ENOMEM;
1272         src_pud = pud_offset(src_p4d, addr);
1273         do {
1274                 next = pud_addr_end(addr, end);
1275                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1276                         int err;
1277 
1278                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1279                         err = copy_huge_pud(dst_mm, src_mm,
1280                                             dst_pud, src_pud, addr, src_vma);
1281                         if (err == -ENOMEM)
1282                                 return -ENOMEM;
1283                         if (!err)
1284                                 continue;
1285                         /* fall through */
1286                 }
1287                 if (pud_none_or_clear_bad(src_pud))
1288                         continue;
1289                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1290                                    addr, next))
1291                         return -ENOMEM;
1292         } while (dst_pud++, src_pud++, addr = next, addr != end);
1293         return 0;
1294 }
1295 
1296 static inline int
1297 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1298                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1299                unsigned long end)
1300 {
1301         struct mm_struct *dst_mm = dst_vma->vm_mm;
1302         p4d_t *src_p4d, *dst_p4d;
1303         unsigned long next;
1304 
1305         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1306         if (!dst_p4d)
1307                 return -ENOMEM;
1308         src_p4d = p4d_offset(src_pgd, addr);
1309         do {
1310                 next = p4d_addr_end(addr, end);
1311                 if (p4d_none_or_clear_bad(src_p4d))
1312                         continue;
1313                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1314                                    addr, next))
1315                         return -ENOMEM;
1316         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1317         return 0;
1318 }
1319 
1320 /*
1321  * Return true if the vma needs to copy the pgtable during this fork().  Return
1322  * false when we can speed up fork() by allowing lazy page faults later until
1323  * when the child accesses the memory range.
1324  */
1325 static bool
1326 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1327 {
1328         /*
1329          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1330          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1331          * contains uffd-wp protection information, that's something we can't
1332          * retrieve from page cache, and skip copying will lose those info.
1333          */
1334         if (userfaultfd_wp(dst_vma))
1335                 return true;
1336 
1337         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1338                 return true;
1339 
1340         if (src_vma->anon_vma)
1341                 return true;
1342 
1343         /*
1344          * Don't copy ptes where a page fault will fill them correctly.  Fork
1345          * becomes much lighter when there are big shared or private readonly
1346          * mappings. The tradeoff is that copy_page_range is more efficient
1347          * than faulting.
1348          */
1349         return false;
1350 }
1351 
1352 int
1353 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1354 {
1355         pgd_t *src_pgd, *dst_pgd;
1356         unsigned long next;
1357         unsigned long addr = src_vma->vm_start;
1358         unsigned long end = src_vma->vm_end;
1359         struct mm_struct *dst_mm = dst_vma->vm_mm;
1360         struct mm_struct *src_mm = src_vma->vm_mm;
1361         struct mmu_notifier_range range;
1362         bool is_cow;
1363         int ret;
1364 
1365         if (!vma_needs_copy(dst_vma, src_vma))
1366                 return 0;
1367 
1368         if (is_vm_hugetlb_page(src_vma))
1369                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1370 
1371         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1372                 /*
1373                  * We do not free on error cases below as remove_vma
1374                  * gets called on error from higher level routine
1375                  */
1376                 ret = track_pfn_copy(src_vma);
1377                 if (ret)
1378                         return ret;
1379         }
1380 
1381         /*
1382          * We need to invalidate the secondary MMU mappings only when
1383          * there could be a permission downgrade on the ptes of the
1384          * parent mm. And a permission downgrade will only happen if
1385          * is_cow_mapping() returns true.
1386          */
1387         is_cow = is_cow_mapping(src_vma->vm_flags);
1388 
1389         if (is_cow) {
1390                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1391                                         0, src_mm, addr, end);
1392                 mmu_notifier_invalidate_range_start(&range);
1393                 /*
1394                  * Disabling preemption is not needed for the write side, as
1395                  * the read side doesn't spin, but goes to the mmap_lock.
1396                  *
1397                  * Use the raw variant of the seqcount_t write API to avoid
1398                  * lockdep complaining about preemptibility.
1399                  */
1400                 vma_assert_write_locked(src_vma);
1401                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1402         }
1403 
1404         ret = 0;
1405         dst_pgd = pgd_offset(dst_mm, addr);
1406         src_pgd = pgd_offset(src_mm, addr);
1407         do {
1408                 next = pgd_addr_end(addr, end);
1409                 if (pgd_none_or_clear_bad(src_pgd))
1410                         continue;
1411                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1412                                             addr, next))) {
1413                         untrack_pfn_clear(dst_vma);
1414                         ret = -ENOMEM;
1415                         break;
1416                 }
1417         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1418 
1419         if (is_cow) {
1420                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1421                 mmu_notifier_invalidate_range_end(&range);
1422         }
1423         return ret;
1424 }
1425 
1426 /* Whether we should zap all COWed (private) pages too */
1427 static inline bool should_zap_cows(struct zap_details *details)
1428 {
1429         /* By default, zap all pages */
1430         if (!details)
1431                 return true;
1432 
1433         /* Or, we zap COWed pages only if the caller wants to */
1434         return details->even_cows;
1435 }
1436 
1437 /* Decides whether we should zap this folio with the folio pointer specified */
1438 static inline bool should_zap_folio(struct zap_details *details,
1439                                     struct folio *folio)
1440 {
1441         /* If we can make a decision without *folio.. */
1442         if (should_zap_cows(details))
1443                 return true;
1444 
1445         /* Otherwise we should only zap non-anon folios */
1446         return !folio_test_anon(folio);
1447 }
1448 
1449 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1450 {
1451         if (!details)
1452                 return false;
1453 
1454         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1455 }
1456 
1457 /*
1458  * This function makes sure that we'll replace the none pte with an uffd-wp
1459  * swap special pte marker when necessary. Must be with the pgtable lock held.
1460  */
1461 static inline void
1462 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1463                               unsigned long addr, pte_t *pte, int nr,
1464                               struct zap_details *details, pte_t pteval)
1465 {
1466         /* Zap on anonymous always means dropping everything */
1467         if (vma_is_anonymous(vma))
1468                 return;
1469 
1470         if (zap_drop_file_uffd_wp(details))
1471                 return;
1472 
1473         for (;;) {
1474                 /* the PFN in the PTE is irrelevant. */
1475                 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1476                 if (--nr == 0)
1477                         break;
1478                 pte++;
1479                 addr += PAGE_SIZE;
1480         }
1481 }
1482 
1483 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1484                 struct vm_area_struct *vma, struct folio *folio,
1485                 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1486                 unsigned long addr, struct zap_details *details, int *rss,
1487                 bool *force_flush, bool *force_break)
1488 {
1489         struct mm_struct *mm = tlb->mm;
1490         bool delay_rmap = false;
1491 
1492         if (!folio_test_anon(folio)) {
1493                 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1494                 if (pte_dirty(ptent)) {
1495                         folio_mark_dirty(folio);
1496                         if (tlb_delay_rmap(tlb)) {
1497                                 delay_rmap = true;
1498                                 *force_flush = true;
1499                         }
1500                 }
1501                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1502                         folio_mark_accessed(folio);
1503                 rss[mm_counter(folio)] -= nr;
1504         } else {
1505                 /* We don't need up-to-date accessed/dirty bits. */
1506                 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1507                 rss[MM_ANONPAGES] -= nr;
1508         }
1509         /* Checking a single PTE in a batch is sufficient. */
1510         arch_check_zapped_pte(vma, ptent);
1511         tlb_remove_tlb_entries(tlb, pte, nr, addr);
1512         if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1513                 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1514                                               ptent);
1515 
1516         if (!delay_rmap) {
1517                 folio_remove_rmap_ptes(folio, page, nr, vma);
1518 
1519                 if (unlikely(folio_mapcount(folio) < 0))
1520                         print_bad_pte(vma, addr, ptent, page);
1521         }
1522         if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1523                 *force_flush = true;
1524                 *force_break = true;
1525         }
1526 }
1527 
1528 /*
1529  * Zap or skip at least one present PTE, trying to batch-process subsequent
1530  * PTEs that map consecutive pages of the same folio.
1531  *
1532  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1533  */
1534 static inline int zap_present_ptes(struct mmu_gather *tlb,
1535                 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1536                 unsigned int max_nr, unsigned long addr,
1537                 struct zap_details *details, int *rss, bool *force_flush,
1538                 bool *force_break)
1539 {
1540         const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1541         struct mm_struct *mm = tlb->mm;
1542         struct folio *folio;
1543         struct page *page;
1544         int nr;
1545 
1546         page = vm_normal_page(vma, addr, ptent);
1547         if (!page) {
1548                 /* We don't need up-to-date accessed/dirty bits. */
1549                 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1550                 arch_check_zapped_pte(vma, ptent);
1551                 tlb_remove_tlb_entry(tlb, pte, addr);
1552                 if (userfaultfd_pte_wp(vma, ptent))
1553                         zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1554                                                       details, ptent);
1555                 ksm_might_unmap_zero_page(mm, ptent);
1556                 return 1;
1557         }
1558 
1559         folio = page_folio(page);
1560         if (unlikely(!should_zap_folio(details, folio)))
1561                 return 1;
1562 
1563         /*
1564          * Make sure that the common "small folio" case is as fast as possible
1565          * by keeping the batching logic separate.
1566          */
1567         if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1568                 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1569                                      NULL, NULL, NULL);
1570 
1571                 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1572                                        addr, details, rss, force_flush,
1573                                        force_break);
1574                 return nr;
1575         }
1576         zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1577                                details, rss, force_flush, force_break);
1578         return 1;
1579 }
1580 
1581 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1582                                 struct vm_area_struct *vma, pmd_t *pmd,
1583                                 unsigned long addr, unsigned long end,
1584                                 struct zap_details *details)
1585 {
1586         bool force_flush = false, force_break = false;
1587         struct mm_struct *mm = tlb->mm;
1588         int rss[NR_MM_COUNTERS];
1589         spinlock_t *ptl;
1590         pte_t *start_pte;
1591         pte_t *pte;
1592         swp_entry_t entry;
1593         int nr;
1594 
1595         tlb_change_page_size(tlb, PAGE_SIZE);
1596         init_rss_vec(rss);
1597         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1598         if (!pte)
1599                 return addr;
1600 
1601         flush_tlb_batched_pending(mm);
1602         arch_enter_lazy_mmu_mode();
1603         do {
1604                 pte_t ptent = ptep_get(pte);
1605                 struct folio *folio;
1606                 struct page *page;
1607                 int max_nr;
1608 
1609                 nr = 1;
1610                 if (pte_none(ptent))
1611                         continue;
1612 
1613                 if (need_resched())
1614                         break;
1615 
1616                 if (pte_present(ptent)) {
1617                         max_nr = (end - addr) / PAGE_SIZE;
1618                         nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1619                                               addr, details, rss, &force_flush,
1620                                               &force_break);
1621                         if (unlikely(force_break)) {
1622                                 addr += nr * PAGE_SIZE;
1623                                 break;
1624                         }
1625                         continue;
1626                 }
1627 
1628                 entry = pte_to_swp_entry(ptent);
1629                 if (is_device_private_entry(entry) ||
1630                     is_device_exclusive_entry(entry)) {
1631                         page = pfn_swap_entry_to_page(entry);
1632                         folio = page_folio(page);
1633                         if (unlikely(!should_zap_folio(details, folio)))
1634                                 continue;
1635                         /*
1636                          * Both device private/exclusive mappings should only
1637                          * work with anonymous page so far, so we don't need to
1638                          * consider uffd-wp bit when zap. For more information,
1639                          * see zap_install_uffd_wp_if_needed().
1640                          */
1641                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1642                         rss[mm_counter(folio)]--;
1643                         if (is_device_private_entry(entry))
1644                                 folio_remove_rmap_pte(folio, page, vma);
1645                         folio_put(folio);
1646                 } else if (!non_swap_entry(entry)) {
1647                         max_nr = (end - addr) / PAGE_SIZE;
1648                         nr = swap_pte_batch(pte, max_nr, ptent);
1649                         /* Genuine swap entries, hence a private anon pages */
1650                         if (!should_zap_cows(details))
1651                                 continue;
1652                         rss[MM_SWAPENTS] -= nr;
1653                         free_swap_and_cache_nr(entry, nr);
1654                 } else if (is_migration_entry(entry)) {
1655                         folio = pfn_swap_entry_folio(entry);
1656                         if (!should_zap_folio(details, folio))
1657                                 continue;
1658                         rss[mm_counter(folio)]--;
1659                 } else if (pte_marker_entry_uffd_wp(entry)) {
1660                         /*
1661                          * For anon: always drop the marker; for file: only
1662                          * drop the marker if explicitly requested.
1663                          */
1664                         if (!vma_is_anonymous(vma) &&
1665                             !zap_drop_file_uffd_wp(details))
1666                                 continue;
1667                 } else if (is_hwpoison_entry(entry) ||
1668                            is_poisoned_swp_entry(entry)) {
1669                         if (!should_zap_cows(details))
1670                                 continue;
1671                 } else {
1672                         /* We should have covered all the swap entry types */
1673                         pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1674                         WARN_ON_ONCE(1);
1675                 }
1676                 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1677                 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1678         } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1679 
1680         add_mm_rss_vec(mm, rss);
1681         arch_leave_lazy_mmu_mode();
1682 
1683         /* Do the actual TLB flush before dropping ptl */
1684         if (force_flush) {
1685                 tlb_flush_mmu_tlbonly(tlb);
1686                 tlb_flush_rmaps(tlb, vma);
1687         }
1688         pte_unmap_unlock(start_pte, ptl);
1689 
1690         /*
1691          * If we forced a TLB flush (either due to running out of
1692          * batch buffers or because we needed to flush dirty TLB
1693          * entries before releasing the ptl), free the batched
1694          * memory too. Come back again if we didn't do everything.
1695          */
1696         if (force_flush)
1697                 tlb_flush_mmu(tlb);
1698 
1699         return addr;
1700 }
1701 
1702 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1703                                 struct vm_area_struct *vma, pud_t *pud,
1704                                 unsigned long addr, unsigned long end,
1705                                 struct zap_details *details)
1706 {
1707         pmd_t *pmd;
1708         unsigned long next;
1709 
1710         pmd = pmd_offset(pud, addr);
1711         do {
1712                 next = pmd_addr_end(addr, end);
1713                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1714                         if (next - addr != HPAGE_PMD_SIZE)
1715                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1716                         else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1717                                 addr = next;
1718                                 continue;
1719                         }
1720                         /* fall through */
1721                 } else if (details && details->single_folio &&
1722                            folio_test_pmd_mappable(details->single_folio) &&
1723                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1724                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1725                         /*
1726                          * Take and drop THP pmd lock so that we cannot return
1727                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1728                          * but not yet decremented compound_mapcount().
1729                          */
1730                         spin_unlock(ptl);
1731                 }
1732                 if (pmd_none(*pmd)) {
1733                         addr = next;
1734                         continue;
1735                 }
1736                 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1737                 if (addr != next)
1738                         pmd--;
1739         } while (pmd++, cond_resched(), addr != end);
1740 
1741         return addr;
1742 }
1743 
1744 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1745                                 struct vm_area_struct *vma, p4d_t *p4d,
1746                                 unsigned long addr, unsigned long end,
1747                                 struct zap_details *details)
1748 {
1749         pud_t *pud;
1750         unsigned long next;
1751 
1752         pud = pud_offset(p4d, addr);
1753         do {
1754                 next = pud_addr_end(addr, end);
1755                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1756                         if (next - addr != HPAGE_PUD_SIZE) {
1757                                 mmap_assert_locked(tlb->mm);
1758                                 split_huge_pud(vma, pud, addr);
1759                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1760                                 goto next;
1761                         /* fall through */
1762                 }
1763                 if (pud_none_or_clear_bad(pud))
1764                         continue;
1765                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1766 next:
1767                 cond_resched();
1768         } while (pud++, addr = next, addr != end);
1769 
1770         return addr;
1771 }
1772 
1773 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1774                                 struct vm_area_struct *vma, pgd_t *pgd,
1775                                 unsigned long addr, unsigned long end,
1776                                 struct zap_details *details)
1777 {
1778         p4d_t *p4d;
1779         unsigned long next;
1780 
1781         p4d = p4d_offset(pgd, addr);
1782         do {
1783                 next = p4d_addr_end(addr, end);
1784                 if (p4d_none_or_clear_bad(p4d))
1785                         continue;
1786                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1787         } while (p4d++, addr = next, addr != end);
1788 
1789         return addr;
1790 }
1791 
1792 void unmap_page_range(struct mmu_gather *tlb,
1793                              struct vm_area_struct *vma,
1794                              unsigned long addr, unsigned long end,
1795                              struct zap_details *details)
1796 {
1797         pgd_t *pgd;
1798         unsigned long next;
1799 
1800         BUG_ON(addr >= end);
1801         tlb_start_vma(tlb, vma);
1802         pgd = pgd_offset(vma->vm_mm, addr);
1803         do {
1804                 next = pgd_addr_end(addr, end);
1805                 if (pgd_none_or_clear_bad(pgd))
1806                         continue;
1807                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1808         } while (pgd++, addr = next, addr != end);
1809         tlb_end_vma(tlb, vma);
1810 }
1811 
1812 
1813 static void unmap_single_vma(struct mmu_gather *tlb,
1814                 struct vm_area_struct *vma, unsigned long start_addr,
1815                 unsigned long end_addr,
1816                 struct zap_details *details, bool mm_wr_locked)
1817 {
1818         unsigned long start = max(vma->vm_start, start_addr);
1819         unsigned long end;
1820 
1821         if (start >= vma->vm_end)
1822                 return;
1823         end = min(vma->vm_end, end_addr);
1824         if (end <= vma->vm_start)
1825                 return;
1826 
1827         if (vma->vm_file)
1828                 uprobe_munmap(vma, start, end);
1829 
1830         if (unlikely(vma->vm_flags & VM_PFNMAP))
1831                 untrack_pfn(vma, 0, 0, mm_wr_locked);
1832 
1833         if (start != end) {
1834                 if (unlikely(is_vm_hugetlb_page(vma))) {
1835                         /*
1836                          * It is undesirable to test vma->vm_file as it
1837                          * should be non-null for valid hugetlb area.
1838                          * However, vm_file will be NULL in the error
1839                          * cleanup path of mmap_region. When
1840                          * hugetlbfs ->mmap method fails,
1841                          * mmap_region() nullifies vma->vm_file
1842                          * before calling this function to clean up.
1843                          * Since no pte has actually been setup, it is
1844                          * safe to do nothing in this case.
1845                          */
1846                         if (vma->vm_file) {
1847                                 zap_flags_t zap_flags = details ?
1848                                     details->zap_flags : 0;
1849                                 __unmap_hugepage_range(tlb, vma, start, end,
1850                                                              NULL, zap_flags);
1851                         }
1852                 } else
1853                         unmap_page_range(tlb, vma, start, end, details);
1854         }
1855 }
1856 
1857 /**
1858  * unmap_vmas - unmap a range of memory covered by a list of vma's
1859  * @tlb: address of the caller's struct mmu_gather
1860  * @mas: the maple state
1861  * @vma: the starting vma
1862  * @start_addr: virtual address at which to start unmapping
1863  * @end_addr: virtual address at which to end unmapping
1864  * @tree_end: The maximum index to check
1865  * @mm_wr_locked: lock flag
1866  *
1867  * Unmap all pages in the vma list.
1868  *
1869  * Only addresses between `start' and `end' will be unmapped.
1870  *
1871  * The VMA list must be sorted in ascending virtual address order.
1872  *
1873  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1874  * range after unmap_vmas() returns.  So the only responsibility here is to
1875  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1876  * drops the lock and schedules.
1877  */
1878 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1879                 struct vm_area_struct *vma, unsigned long start_addr,
1880                 unsigned long end_addr, unsigned long tree_end,
1881                 bool mm_wr_locked)
1882 {
1883         struct mmu_notifier_range range;
1884         struct zap_details details = {
1885                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1886                 /* Careful - we need to zap private pages too! */
1887                 .even_cows = true,
1888         };
1889 
1890         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1891                                 start_addr, end_addr);
1892         mmu_notifier_invalidate_range_start(&range);
1893         do {
1894                 unsigned long start = start_addr;
1895                 unsigned long end = end_addr;
1896                 hugetlb_zap_begin(vma, &start, &end);
1897                 unmap_single_vma(tlb, vma, start, end, &details,
1898                                  mm_wr_locked);
1899                 hugetlb_zap_end(vma, &details);
1900                 vma = mas_find(mas, tree_end - 1);
1901         } while (vma && likely(!xa_is_zero(vma)));
1902         mmu_notifier_invalidate_range_end(&range);
1903 }
1904 
1905 /**
1906  * zap_page_range_single - remove user pages in a given range
1907  * @vma: vm_area_struct holding the applicable pages
1908  * @address: starting address of pages to zap
1909  * @size: number of bytes to zap
1910  * @details: details of shared cache invalidation
1911  *
1912  * The range must fit into one VMA.
1913  */
1914 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1915                 unsigned long size, struct zap_details *details)
1916 {
1917         const unsigned long end = address + size;
1918         struct mmu_notifier_range range;
1919         struct mmu_gather tlb;
1920 
1921         lru_add_drain();
1922         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1923                                 address, end);
1924         hugetlb_zap_begin(vma, &range.start, &range.end);
1925         tlb_gather_mmu(&tlb, vma->vm_mm);
1926         update_hiwater_rss(vma->vm_mm);
1927         mmu_notifier_invalidate_range_start(&range);
1928         /*
1929          * unmap 'address-end' not 'range.start-range.end' as range
1930          * could have been expanded for hugetlb pmd sharing.
1931          */
1932         unmap_single_vma(&tlb, vma, address, end, details, false);
1933         mmu_notifier_invalidate_range_end(&range);
1934         tlb_finish_mmu(&tlb);
1935         hugetlb_zap_end(vma, details);
1936 }
1937 
1938 /**
1939  * zap_vma_ptes - remove ptes mapping the vma
1940  * @vma: vm_area_struct holding ptes to be zapped
1941  * @address: starting address of pages to zap
1942  * @size: number of bytes to zap
1943  *
1944  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1945  *
1946  * The entire address range must be fully contained within the vma.
1947  *
1948  */
1949 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1950                 unsigned long size)
1951 {
1952         if (!range_in_vma(vma, address, address + size) ||
1953                         !(vma->vm_flags & VM_PFNMAP))
1954                 return;
1955 
1956         zap_page_range_single(vma, address, size, NULL);
1957 }
1958 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1959 
1960 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1961 {
1962         pgd_t *pgd;
1963         p4d_t *p4d;
1964         pud_t *pud;
1965         pmd_t *pmd;
1966 
1967         pgd = pgd_offset(mm, addr);
1968         p4d = p4d_alloc(mm, pgd, addr);
1969         if (!p4d)
1970                 return NULL;
1971         pud = pud_alloc(mm, p4d, addr);
1972         if (!pud)
1973                 return NULL;
1974         pmd = pmd_alloc(mm, pud, addr);
1975         if (!pmd)
1976                 return NULL;
1977 
1978         VM_BUG_ON(pmd_trans_huge(*pmd));
1979         return pmd;
1980 }
1981 
1982 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983                         spinlock_t **ptl)
1984 {
1985         pmd_t *pmd = walk_to_pmd(mm, addr);
1986 
1987         if (!pmd)
1988                 return NULL;
1989         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1990 }
1991 
1992 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
1993 {
1994         VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
1995         /*
1996          * Whoever wants to forbid the zeropage after some zeropages
1997          * might already have been mapped has to scan the page tables and
1998          * bail out on any zeropages. Zeropages in COW mappings can
1999          * be unshared using FAULT_FLAG_UNSHARE faults.
2000          */
2001         if (mm_forbids_zeropage(vma->vm_mm))
2002                 return false;
2003         /* zeropages in COW mappings are common and unproblematic. */
2004         if (is_cow_mapping(vma->vm_flags))
2005                 return true;
2006         /* Mappings that do not allow for writable PTEs are unproblematic. */
2007         if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2008                 return true;
2009         /*
2010          * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2011          * find the shared zeropage and longterm-pin it, which would
2012          * be problematic as soon as the zeropage gets replaced by a different
2013          * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2014          * now differ to what GUP looked up. FSDAX is incompatible to
2015          * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2016          * check_vma_flags).
2017          */
2018         return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2019                (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2020 }
2021 
2022 static int validate_page_before_insert(struct vm_area_struct *vma,
2023                                        struct page *page)
2024 {
2025         struct folio *folio = page_folio(page);
2026 
2027         if (!folio_ref_count(folio))
2028                 return -EINVAL;
2029         if (unlikely(is_zero_folio(folio))) {
2030                 if (!vm_mixed_zeropage_allowed(vma))
2031                         return -EINVAL;
2032                 return 0;
2033         }
2034         if (folio_test_anon(folio) || folio_test_slab(folio) ||
2035             page_has_type(page))
2036                 return -EINVAL;
2037         flush_dcache_folio(folio);
2038         return 0;
2039 }
2040 
2041 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2042                         unsigned long addr, struct page *page, pgprot_t prot)
2043 {
2044         struct folio *folio = page_folio(page);
2045         pte_t pteval;
2046 
2047         if (!pte_none(ptep_get(pte)))
2048                 return -EBUSY;
2049         /* Ok, finally just insert the thing.. */
2050         pteval = mk_pte(page, prot);
2051         if (unlikely(is_zero_folio(folio))) {
2052                 pteval = pte_mkspecial(pteval);
2053         } else {
2054                 folio_get(folio);
2055                 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2056                 folio_add_file_rmap_pte(folio, page, vma);
2057         }
2058         set_pte_at(vma->vm_mm, addr, pte, pteval);
2059         return 0;
2060 }
2061 
2062 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2063                         struct page *page, pgprot_t prot)
2064 {
2065         int retval;
2066         pte_t *pte;
2067         spinlock_t *ptl;
2068 
2069         retval = validate_page_before_insert(vma, page);
2070         if (retval)
2071                 goto out;
2072         retval = -ENOMEM;
2073         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2074         if (!pte)
2075                 goto out;
2076         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2077         pte_unmap_unlock(pte, ptl);
2078 out:
2079         return retval;
2080 }
2081 
2082 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2083                         unsigned long addr, struct page *page, pgprot_t prot)
2084 {
2085         int err;
2086 
2087         err = validate_page_before_insert(vma, page);
2088         if (err)
2089                 return err;
2090         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2091 }
2092 
2093 /* insert_pages() amortizes the cost of spinlock operations
2094  * when inserting pages in a loop.
2095  */
2096 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2097                         struct page **pages, unsigned long *num, pgprot_t prot)
2098 {
2099         pmd_t *pmd = NULL;
2100         pte_t *start_pte, *pte;
2101         spinlock_t *pte_lock;
2102         struct mm_struct *const mm = vma->vm_mm;
2103         unsigned long curr_page_idx = 0;
2104         unsigned long remaining_pages_total = *num;
2105         unsigned long pages_to_write_in_pmd;
2106         int ret;
2107 more:
2108         ret = -EFAULT;
2109         pmd = walk_to_pmd(mm, addr);
2110         if (!pmd)
2111                 goto out;
2112 
2113         pages_to_write_in_pmd = min_t(unsigned long,
2114                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2115 
2116         /* Allocate the PTE if necessary; takes PMD lock once only. */
2117         ret = -ENOMEM;
2118         if (pte_alloc(mm, pmd))
2119                 goto out;
2120 
2121         while (pages_to_write_in_pmd) {
2122                 int pte_idx = 0;
2123                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2124 
2125                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2126                 if (!start_pte) {
2127                         ret = -EFAULT;
2128                         goto out;
2129                 }
2130                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2131                         int err = insert_page_in_batch_locked(vma, pte,
2132                                 addr, pages[curr_page_idx], prot);
2133                         if (unlikely(err)) {
2134                                 pte_unmap_unlock(start_pte, pte_lock);
2135                                 ret = err;
2136                                 remaining_pages_total -= pte_idx;
2137                                 goto out;
2138                         }
2139                         addr += PAGE_SIZE;
2140                         ++curr_page_idx;
2141                 }
2142                 pte_unmap_unlock(start_pte, pte_lock);
2143                 pages_to_write_in_pmd -= batch_size;
2144                 remaining_pages_total -= batch_size;
2145         }
2146         if (remaining_pages_total)
2147                 goto more;
2148         ret = 0;
2149 out:
2150         *num = remaining_pages_total;
2151         return ret;
2152 }
2153 
2154 /**
2155  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2156  * @vma: user vma to map to
2157  * @addr: target start user address of these pages
2158  * @pages: source kernel pages
2159  * @num: in: number of pages to map. out: number of pages that were *not*
2160  * mapped. (0 means all pages were successfully mapped).
2161  *
2162  * Preferred over vm_insert_page() when inserting multiple pages.
2163  *
2164  * In case of error, we may have mapped a subset of the provided
2165  * pages. It is the caller's responsibility to account for this case.
2166  *
2167  * The same restrictions apply as in vm_insert_page().
2168  */
2169 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2170                         struct page **pages, unsigned long *num)
2171 {
2172         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2173 
2174         if (addr < vma->vm_start || end_addr >= vma->vm_end)
2175                 return -EFAULT;
2176         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2177                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2178                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2179                 vm_flags_set(vma, VM_MIXEDMAP);
2180         }
2181         /* Defer page refcount checking till we're about to map that page. */
2182         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2183 }
2184 EXPORT_SYMBOL(vm_insert_pages);
2185 
2186 /**
2187  * vm_insert_page - insert single page into user vma
2188  * @vma: user vma to map to
2189  * @addr: target user address of this page
2190  * @page: source kernel page
2191  *
2192  * This allows drivers to insert individual pages they've allocated
2193  * into a user vma. The zeropage is supported in some VMAs,
2194  * see vm_mixed_zeropage_allowed().
2195  *
2196  * The page has to be a nice clean _individual_ kernel allocation.
2197  * If you allocate a compound page, you need to have marked it as
2198  * such (__GFP_COMP), or manually just split the page up yourself
2199  * (see split_page()).
2200  *
2201  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2202  * took an arbitrary page protection parameter. This doesn't allow
2203  * that. Your vma protection will have to be set up correctly, which
2204  * means that if you want a shared writable mapping, you'd better
2205  * ask for a shared writable mapping!
2206  *
2207  * The page does not need to be reserved.
2208  *
2209  * Usually this function is called from f_op->mmap() handler
2210  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2211  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2212  * function from other places, for example from page-fault handler.
2213  *
2214  * Return: %0 on success, negative error code otherwise.
2215  */
2216 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2217                         struct page *page)
2218 {
2219         if (addr < vma->vm_start || addr >= vma->vm_end)
2220                 return -EFAULT;
2221         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2222                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2223                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2224                 vm_flags_set(vma, VM_MIXEDMAP);
2225         }
2226         return insert_page(vma, addr, page, vma->vm_page_prot);
2227 }
2228 EXPORT_SYMBOL(vm_insert_page);
2229 
2230 /*
2231  * __vm_map_pages - maps range of kernel pages into user vma
2232  * @vma: user vma to map to
2233  * @pages: pointer to array of source kernel pages
2234  * @num: number of pages in page array
2235  * @offset: user's requested vm_pgoff
2236  *
2237  * This allows drivers to map range of kernel pages into a user vma.
2238  * The zeropage is supported in some VMAs, see
2239  * vm_mixed_zeropage_allowed().
2240  *
2241  * Return: 0 on success and error code otherwise.
2242  */
2243 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2244                                 unsigned long num, unsigned long offset)
2245 {
2246         unsigned long count = vma_pages(vma);
2247         unsigned long uaddr = vma->vm_start;
2248         int ret, i;
2249 
2250         /* Fail if the user requested offset is beyond the end of the object */
2251         if (offset >= num)
2252                 return -ENXIO;
2253 
2254         /* Fail if the user requested size exceeds available object size */
2255         if (count > num - offset)
2256                 return -ENXIO;
2257 
2258         for (i = 0; i < count; i++) {
2259                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2260                 if (ret < 0)
2261                         return ret;
2262                 uaddr += PAGE_SIZE;
2263         }
2264 
2265         return 0;
2266 }
2267 
2268 /**
2269  * vm_map_pages - maps range of kernel pages starts with non zero offset
2270  * @vma: user vma to map to
2271  * @pages: pointer to array of source kernel pages
2272  * @num: number of pages in page array
2273  *
2274  * Maps an object consisting of @num pages, catering for the user's
2275  * requested vm_pgoff
2276  *
2277  * If we fail to insert any page into the vma, the function will return
2278  * immediately leaving any previously inserted pages present.  Callers
2279  * from the mmap handler may immediately return the error as their caller
2280  * will destroy the vma, removing any successfully inserted pages. Other
2281  * callers should make their own arrangements for calling unmap_region().
2282  *
2283  * Context: Process context. Called by mmap handlers.
2284  * Return: 0 on success and error code otherwise.
2285  */
2286 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2287                                 unsigned long num)
2288 {
2289         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2290 }
2291 EXPORT_SYMBOL(vm_map_pages);
2292 
2293 /**
2294  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2295  * @vma: user vma to map to
2296  * @pages: pointer to array of source kernel pages
2297  * @num: number of pages in page array
2298  *
2299  * Similar to vm_map_pages(), except that it explicitly sets the offset
2300  * to 0. This function is intended for the drivers that did not consider
2301  * vm_pgoff.
2302  *
2303  * Context: Process context. Called by mmap handlers.
2304  * Return: 0 on success and error code otherwise.
2305  */
2306 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2307                                 unsigned long num)
2308 {
2309         return __vm_map_pages(vma, pages, num, 0);
2310 }
2311 EXPORT_SYMBOL(vm_map_pages_zero);
2312 
2313 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2314                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2315 {
2316         struct mm_struct *mm = vma->vm_mm;
2317         pte_t *pte, entry;
2318         spinlock_t *ptl;
2319 
2320         pte = get_locked_pte(mm, addr, &ptl);
2321         if (!pte)
2322                 return VM_FAULT_OOM;
2323         entry = ptep_get(pte);
2324         if (!pte_none(entry)) {
2325                 if (mkwrite) {
2326                         /*
2327                          * For read faults on private mappings the PFN passed
2328                          * in may not match the PFN we have mapped if the
2329                          * mapped PFN is a writeable COW page.  In the mkwrite
2330                          * case we are creating a writable PTE for a shared
2331                          * mapping and we expect the PFNs to match. If they
2332                          * don't match, we are likely racing with block
2333                          * allocation and mapping invalidation so just skip the
2334                          * update.
2335                          */
2336                         if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2337                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2338                                 goto out_unlock;
2339                         }
2340                         entry = pte_mkyoung(entry);
2341                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2342                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2343                                 update_mmu_cache(vma, addr, pte);
2344                 }
2345                 goto out_unlock;
2346         }
2347 
2348         /* Ok, finally just insert the thing.. */
2349         if (pfn_t_devmap(pfn))
2350                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2351         else
2352                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2353 
2354         if (mkwrite) {
2355                 entry = pte_mkyoung(entry);
2356                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2357         }
2358 
2359         set_pte_at(mm, addr, pte, entry);
2360         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2361 
2362 out_unlock:
2363         pte_unmap_unlock(pte, ptl);
2364         return VM_FAULT_NOPAGE;
2365 }
2366 
2367 /**
2368  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2369  * @vma: user vma to map to
2370  * @addr: target user address of this page
2371  * @pfn: source kernel pfn
2372  * @pgprot: pgprot flags for the inserted page
2373  *
2374  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2375  * to override pgprot on a per-page basis.
2376  *
2377  * This only makes sense for IO mappings, and it makes no sense for
2378  * COW mappings.  In general, using multiple vmas is preferable;
2379  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2380  * impractical.
2381  *
2382  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2383  * caching- and encryption bits different than those of @vma->vm_page_prot,
2384  * because the caching- or encryption mode may not be known at mmap() time.
2385  *
2386  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2387  * to set caching and encryption bits for those vmas (except for COW pages).
2388  * This is ensured by core vm only modifying these page table entries using
2389  * functions that don't touch caching- or encryption bits, using pte_modify()
2390  * if needed. (See for example mprotect()).
2391  *
2392  * Also when new page-table entries are created, this is only done using the
2393  * fault() callback, and never using the value of vma->vm_page_prot,
2394  * except for page-table entries that point to anonymous pages as the result
2395  * of COW.
2396  *
2397  * Context: Process context.  May allocate using %GFP_KERNEL.
2398  * Return: vm_fault_t value.
2399  */
2400 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2401                         unsigned long pfn, pgprot_t pgprot)
2402 {
2403         /*
2404          * Technically, architectures with pte_special can avoid all these
2405          * restrictions (same for remap_pfn_range).  However we would like
2406          * consistency in testing and feature parity among all, so we should
2407          * try to keep these invariants in place for everybody.
2408          */
2409         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2410         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2411                                                 (VM_PFNMAP|VM_MIXEDMAP));
2412         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2413         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2414 
2415         if (addr < vma->vm_start || addr >= vma->vm_end)
2416                 return VM_FAULT_SIGBUS;
2417 
2418         if (!pfn_modify_allowed(pfn, pgprot))
2419                 return VM_FAULT_SIGBUS;
2420 
2421         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2422 
2423         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2424                         false);
2425 }
2426 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2427 
2428 /**
2429  * vmf_insert_pfn - insert single pfn into user vma
2430  * @vma: user vma to map to
2431  * @addr: target user address of this page
2432  * @pfn: source kernel pfn
2433  *
2434  * Similar to vm_insert_page, this allows drivers to insert individual pages
2435  * they've allocated into a user vma. Same comments apply.
2436  *
2437  * This function should only be called from a vm_ops->fault handler, and
2438  * in that case the handler should return the result of this function.
2439  *
2440  * vma cannot be a COW mapping.
2441  *
2442  * As this is called only for pages that do not currently exist, we
2443  * do not need to flush old virtual caches or the TLB.
2444  *
2445  * Context: Process context.  May allocate using %GFP_KERNEL.
2446  * Return: vm_fault_t value.
2447  */
2448 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2449                         unsigned long pfn)
2450 {
2451         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2452 }
2453 EXPORT_SYMBOL(vmf_insert_pfn);
2454 
2455 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2456 {
2457         if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2458             (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2459                 return false;
2460         /* these checks mirror the abort conditions in vm_normal_page */
2461         if (vma->vm_flags & VM_MIXEDMAP)
2462                 return true;
2463         if (pfn_t_devmap(pfn))
2464                 return true;
2465         if (pfn_t_special(pfn))
2466                 return true;
2467         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2468                 return true;
2469         return false;
2470 }
2471 
2472 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2473                 unsigned long addr, pfn_t pfn, bool mkwrite)
2474 {
2475         pgprot_t pgprot = vma->vm_page_prot;
2476         int err;
2477 
2478         if (!vm_mixed_ok(vma, pfn, mkwrite))
2479                 return VM_FAULT_SIGBUS;
2480 
2481         if (addr < vma->vm_start || addr >= vma->vm_end)
2482                 return VM_FAULT_SIGBUS;
2483 
2484         track_pfn_insert(vma, &pgprot, pfn);
2485 
2486         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2487                 return VM_FAULT_SIGBUS;
2488 
2489         /*
2490          * If we don't have pte special, then we have to use the pfn_valid()
2491          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2492          * refcount the page if pfn_valid is true (hence insert_page rather
2493          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2494          * without pte special, it would there be refcounted as a normal page.
2495          */
2496         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2497             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2498                 struct page *page;
2499 
2500                 /*
2501                  * At this point we are committed to insert_page()
2502                  * regardless of whether the caller specified flags that
2503                  * result in pfn_t_has_page() == false.
2504                  */
2505                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2506                 err = insert_page(vma, addr, page, pgprot);
2507         } else {
2508                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2509         }
2510 
2511         if (err == -ENOMEM)
2512                 return VM_FAULT_OOM;
2513         if (err < 0 && err != -EBUSY)
2514                 return VM_FAULT_SIGBUS;
2515 
2516         return VM_FAULT_NOPAGE;
2517 }
2518 
2519 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2520                 pfn_t pfn)
2521 {
2522         return __vm_insert_mixed(vma, addr, pfn, false);
2523 }
2524 EXPORT_SYMBOL(vmf_insert_mixed);
2525 
2526 /*
2527  *  If the insertion of PTE failed because someone else already added a
2528  *  different entry in the mean time, we treat that as success as we assume
2529  *  the same entry was actually inserted.
2530  */
2531 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2532                 unsigned long addr, pfn_t pfn)
2533 {
2534         return __vm_insert_mixed(vma, addr, pfn, true);
2535 }
2536 
2537 /*
2538  * maps a range of physical memory into the requested pages. the old
2539  * mappings are removed. any references to nonexistent pages results
2540  * in null mappings (currently treated as "copy-on-access")
2541  */
2542 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2543                         unsigned long addr, unsigned long end,
2544                         unsigned long pfn, pgprot_t prot)
2545 {
2546         pte_t *pte, *mapped_pte;
2547         spinlock_t *ptl;
2548         int err = 0;
2549 
2550         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2551         if (!pte)
2552                 return -ENOMEM;
2553         arch_enter_lazy_mmu_mode();
2554         do {
2555                 BUG_ON(!pte_none(ptep_get(pte)));
2556                 if (!pfn_modify_allowed(pfn, prot)) {
2557                         err = -EACCES;
2558                         break;
2559                 }
2560                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2561                 pfn++;
2562         } while (pte++, addr += PAGE_SIZE, addr != end);
2563         arch_leave_lazy_mmu_mode();
2564         pte_unmap_unlock(mapped_pte, ptl);
2565         return err;
2566 }
2567 
2568 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2569                         unsigned long addr, unsigned long end,
2570                         unsigned long pfn, pgprot_t prot)
2571 {
2572         pmd_t *pmd;
2573         unsigned long next;
2574         int err;
2575 
2576         pfn -= addr >> PAGE_SHIFT;
2577         pmd = pmd_alloc(mm, pud, addr);
2578         if (!pmd)
2579                 return -ENOMEM;
2580         VM_BUG_ON(pmd_trans_huge(*pmd));
2581         do {
2582                 next = pmd_addr_end(addr, end);
2583                 err = remap_pte_range(mm, pmd, addr, next,
2584                                 pfn + (addr >> PAGE_SHIFT), prot);
2585                 if (err)
2586                         return err;
2587         } while (pmd++, addr = next, addr != end);
2588         return 0;
2589 }
2590 
2591 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2592                         unsigned long addr, unsigned long end,
2593                         unsigned long pfn, pgprot_t prot)
2594 {
2595         pud_t *pud;
2596         unsigned long next;
2597         int err;
2598 
2599         pfn -= addr >> PAGE_SHIFT;
2600         pud = pud_alloc(mm, p4d, addr);
2601         if (!pud)
2602                 return -ENOMEM;
2603         do {
2604                 next = pud_addr_end(addr, end);
2605                 err = remap_pmd_range(mm, pud, addr, next,
2606                                 pfn + (addr >> PAGE_SHIFT), prot);
2607                 if (err)
2608                         return err;
2609         } while (pud++, addr = next, addr != end);
2610         return 0;
2611 }
2612 
2613 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2614                         unsigned long addr, unsigned long end,
2615                         unsigned long pfn, pgprot_t prot)
2616 {
2617         p4d_t *p4d;
2618         unsigned long next;
2619         int err;
2620 
2621         pfn -= addr >> PAGE_SHIFT;
2622         p4d = p4d_alloc(mm, pgd, addr);
2623         if (!p4d)
2624                 return -ENOMEM;
2625         do {
2626                 next = p4d_addr_end(addr, end);
2627                 err = remap_pud_range(mm, p4d, addr, next,
2628                                 pfn + (addr >> PAGE_SHIFT), prot);
2629                 if (err)
2630                         return err;
2631         } while (p4d++, addr = next, addr != end);
2632         return 0;
2633 }
2634 
2635 /*
2636  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2637  * must have pre-validated the caching bits of the pgprot_t.
2638  */
2639 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2640                 unsigned long pfn, unsigned long size, pgprot_t prot)
2641 {
2642         pgd_t *pgd;
2643         unsigned long next;
2644         unsigned long end = addr + PAGE_ALIGN(size);
2645         struct mm_struct *mm = vma->vm_mm;
2646         int err;
2647 
2648         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2649                 return -EINVAL;
2650 
2651         /*
2652          * Physically remapped pages are special. Tell the
2653          * rest of the world about it:
2654          *   VM_IO tells people not to look at these pages
2655          *      (accesses can have side effects).
2656          *   VM_PFNMAP tells the core MM that the base pages are just
2657          *      raw PFN mappings, and do not have a "struct page" associated
2658          *      with them.
2659          *   VM_DONTEXPAND
2660          *      Disable vma merging and expanding with mremap().
2661          *   VM_DONTDUMP
2662          *      Omit vma from core dump, even when VM_IO turned off.
2663          *
2664          * There's a horrible special case to handle copy-on-write
2665          * behaviour that some programs depend on. We mark the "original"
2666          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2667          * See vm_normal_page() for details.
2668          */
2669         if (is_cow_mapping(vma->vm_flags)) {
2670                 if (addr != vma->vm_start || end != vma->vm_end)
2671                         return -EINVAL;
2672                 vma->vm_pgoff = pfn;
2673         }
2674 
2675         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2676 
2677         BUG_ON(addr >= end);
2678         pfn -= addr >> PAGE_SHIFT;
2679         pgd = pgd_offset(mm, addr);
2680         flush_cache_range(vma, addr, end);
2681         do {
2682                 next = pgd_addr_end(addr, end);
2683                 err = remap_p4d_range(mm, pgd, addr, next,
2684                                 pfn + (addr >> PAGE_SHIFT), prot);
2685                 if (err)
2686                         return err;
2687         } while (pgd++, addr = next, addr != end);
2688 
2689         return 0;
2690 }
2691 
2692 /**
2693  * remap_pfn_range - remap kernel memory to userspace
2694  * @vma: user vma to map to
2695  * @addr: target page aligned user address to start at
2696  * @pfn: page frame number of kernel physical memory address
2697  * @size: size of mapping area
2698  * @prot: page protection flags for this mapping
2699  *
2700  * Note: this is only safe if the mm semaphore is held when called.
2701  *
2702  * Return: %0 on success, negative error code otherwise.
2703  */
2704 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2705                     unsigned long pfn, unsigned long size, pgprot_t prot)
2706 {
2707         int err;
2708 
2709         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2710         if (err)
2711                 return -EINVAL;
2712 
2713         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2714         if (err)
2715                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2716         return err;
2717 }
2718 EXPORT_SYMBOL(remap_pfn_range);
2719 
2720 /**
2721  * vm_iomap_memory - remap memory to userspace
2722  * @vma: user vma to map to
2723  * @start: start of the physical memory to be mapped
2724  * @len: size of area
2725  *
2726  * This is a simplified io_remap_pfn_range() for common driver use. The
2727  * driver just needs to give us the physical memory range to be mapped,
2728  * we'll figure out the rest from the vma information.
2729  *
2730  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2731  * whatever write-combining details or similar.
2732  *
2733  * Return: %0 on success, negative error code otherwise.
2734  */
2735 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2736 {
2737         unsigned long vm_len, pfn, pages;
2738 
2739         /* Check that the physical memory area passed in looks valid */
2740         if (start + len < start)
2741                 return -EINVAL;
2742         /*
2743          * You *really* shouldn't map things that aren't page-aligned,
2744          * but we've historically allowed it because IO memory might
2745          * just have smaller alignment.
2746          */
2747         len += start & ~PAGE_MASK;
2748         pfn = start >> PAGE_SHIFT;
2749         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2750         if (pfn + pages < pfn)
2751                 return -EINVAL;
2752 
2753         /* We start the mapping 'vm_pgoff' pages into the area */
2754         if (vma->vm_pgoff > pages)
2755                 return -EINVAL;
2756         pfn += vma->vm_pgoff;
2757         pages -= vma->vm_pgoff;
2758 
2759         /* Can we fit all of the mapping? */
2760         vm_len = vma->vm_end - vma->vm_start;
2761         if (vm_len >> PAGE_SHIFT > pages)
2762                 return -EINVAL;
2763 
2764         /* Ok, let it rip */
2765         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2766 }
2767 EXPORT_SYMBOL(vm_iomap_memory);
2768 
2769 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2770                                      unsigned long addr, unsigned long end,
2771                                      pte_fn_t fn, void *data, bool create,
2772                                      pgtbl_mod_mask *mask)
2773 {
2774         pte_t *pte, *mapped_pte;
2775         int err = 0;
2776         spinlock_t *ptl;
2777 
2778         if (create) {
2779                 mapped_pte = pte = (mm == &init_mm) ?
2780                         pte_alloc_kernel_track(pmd, addr, mask) :
2781                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2782                 if (!pte)
2783                         return -ENOMEM;
2784         } else {
2785                 mapped_pte = pte = (mm == &init_mm) ?
2786                         pte_offset_kernel(pmd, addr) :
2787                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2788                 if (!pte)
2789                         return -EINVAL;
2790         }
2791 
2792         arch_enter_lazy_mmu_mode();
2793 
2794         if (fn) {
2795                 do {
2796                         if (create || !pte_none(ptep_get(pte))) {
2797                                 err = fn(pte++, addr, data);
2798                                 if (err)
2799                                         break;
2800                         }
2801                 } while (addr += PAGE_SIZE, addr != end);
2802         }
2803         *mask |= PGTBL_PTE_MODIFIED;
2804 
2805         arch_leave_lazy_mmu_mode();
2806 
2807         if (mm != &init_mm)
2808                 pte_unmap_unlock(mapped_pte, ptl);
2809         return err;
2810 }
2811 
2812 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2813                                      unsigned long addr, unsigned long end,
2814                                      pte_fn_t fn, void *data, bool create,
2815                                      pgtbl_mod_mask *mask)
2816 {
2817         pmd_t *pmd;
2818         unsigned long next;
2819         int err = 0;
2820 
2821         BUG_ON(pud_leaf(*pud));
2822 
2823         if (create) {
2824                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2825                 if (!pmd)
2826                         return -ENOMEM;
2827         } else {
2828                 pmd = pmd_offset(pud, addr);
2829         }
2830         do {
2831                 next = pmd_addr_end(addr, end);
2832                 if (pmd_none(*pmd) && !create)
2833                         continue;
2834                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2835                         return -EINVAL;
2836                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2837                         if (!create)
2838                                 continue;
2839                         pmd_clear_bad(pmd);
2840                 }
2841                 err = apply_to_pte_range(mm, pmd, addr, next,
2842                                          fn, data, create, mask);
2843                 if (err)
2844                         break;
2845         } while (pmd++, addr = next, addr != end);
2846 
2847         return err;
2848 }
2849 
2850 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2851                                      unsigned long addr, unsigned long end,
2852                                      pte_fn_t fn, void *data, bool create,
2853                                      pgtbl_mod_mask *mask)
2854 {
2855         pud_t *pud;
2856         unsigned long next;
2857         int err = 0;
2858 
2859         if (create) {
2860                 pud = pud_alloc_track(mm, p4d, addr, mask);
2861                 if (!pud)
2862                         return -ENOMEM;
2863         } else {
2864                 pud = pud_offset(p4d, addr);
2865         }
2866         do {
2867                 next = pud_addr_end(addr, end);
2868                 if (pud_none(*pud) && !create)
2869                         continue;
2870                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2871                         return -EINVAL;
2872                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2873                         if (!create)
2874                                 continue;
2875                         pud_clear_bad(pud);
2876                 }
2877                 err = apply_to_pmd_range(mm, pud, addr, next,
2878                                          fn, data, create, mask);
2879                 if (err)
2880                         break;
2881         } while (pud++, addr = next, addr != end);
2882 
2883         return err;
2884 }
2885 
2886 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2887                                      unsigned long addr, unsigned long end,
2888                                      pte_fn_t fn, void *data, bool create,
2889                                      pgtbl_mod_mask *mask)
2890 {
2891         p4d_t *p4d;
2892         unsigned long next;
2893         int err = 0;
2894 
2895         if (create) {
2896                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2897                 if (!p4d)
2898                         return -ENOMEM;
2899         } else {
2900                 p4d = p4d_offset(pgd, addr);
2901         }
2902         do {
2903                 next = p4d_addr_end(addr, end);
2904                 if (p4d_none(*p4d) && !create)
2905                         continue;
2906                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2907                         return -EINVAL;
2908                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2909                         if (!create)
2910                                 continue;
2911                         p4d_clear_bad(p4d);
2912                 }
2913                 err = apply_to_pud_range(mm, p4d, addr, next,
2914                                          fn, data, create, mask);
2915                 if (err)
2916                         break;
2917         } while (p4d++, addr = next, addr != end);
2918 
2919         return err;
2920 }
2921 
2922 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2923                                  unsigned long size, pte_fn_t fn,
2924                                  void *data, bool create)
2925 {
2926         pgd_t *pgd;
2927         unsigned long start = addr, next;
2928         unsigned long end = addr + size;
2929         pgtbl_mod_mask mask = 0;
2930         int err = 0;
2931 
2932         if (WARN_ON(addr >= end))
2933                 return -EINVAL;
2934 
2935         pgd = pgd_offset(mm, addr);
2936         do {
2937                 next = pgd_addr_end(addr, end);
2938                 if (pgd_none(*pgd) && !create)
2939                         continue;
2940                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2941                         return -EINVAL;
2942                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2943                         if (!create)
2944                                 continue;
2945                         pgd_clear_bad(pgd);
2946                 }
2947                 err = apply_to_p4d_range(mm, pgd, addr, next,
2948                                          fn, data, create, &mask);
2949                 if (err)
2950                         break;
2951         } while (pgd++, addr = next, addr != end);
2952 
2953         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2954                 arch_sync_kernel_mappings(start, start + size);
2955 
2956         return err;
2957 }
2958 
2959 /*
2960  * Scan a region of virtual memory, filling in page tables as necessary
2961  * and calling a provided function on each leaf page table.
2962  */
2963 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2964                         unsigned long size, pte_fn_t fn, void *data)
2965 {
2966         return __apply_to_page_range(mm, addr, size, fn, data, true);
2967 }
2968 EXPORT_SYMBOL_GPL(apply_to_page_range);
2969 
2970 /*
2971  * Scan a region of virtual memory, calling a provided function on
2972  * each leaf page table where it exists.
2973  *
2974  * Unlike apply_to_page_range, this does _not_ fill in page tables
2975  * where they are absent.
2976  */
2977 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2978                                  unsigned long size, pte_fn_t fn, void *data)
2979 {
2980         return __apply_to_page_range(mm, addr, size, fn, data, false);
2981 }
2982 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2983 
2984 /*
2985  * handle_pte_fault chooses page fault handler according to an entry which was
2986  * read non-atomically.  Before making any commitment, on those architectures
2987  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2988  * parts, do_swap_page must check under lock before unmapping the pte and
2989  * proceeding (but do_wp_page is only called after already making such a check;
2990  * and do_anonymous_page can safely check later on).
2991  */
2992 static inline int pte_unmap_same(struct vm_fault *vmf)
2993 {
2994         int same = 1;
2995 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2996         if (sizeof(pte_t) > sizeof(unsigned long)) {
2997                 spin_lock(vmf->ptl);
2998                 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2999                 spin_unlock(vmf->ptl);
3000         }
3001 #endif
3002         pte_unmap(vmf->pte);
3003         vmf->pte = NULL;
3004         return same;
3005 }
3006 
3007 /*
3008  * Return:
3009  *      0:              copied succeeded
3010  *      -EHWPOISON:     copy failed due to hwpoison in source page
3011  *      -EAGAIN:        copied failed (some other reason)
3012  */
3013 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3014                                       struct vm_fault *vmf)
3015 {
3016         int ret;
3017         void *kaddr;
3018         void __user *uaddr;
3019         struct vm_area_struct *vma = vmf->vma;
3020         struct mm_struct *mm = vma->vm_mm;
3021         unsigned long addr = vmf->address;
3022 
3023         if (likely(src)) {
3024                 if (copy_mc_user_highpage(dst, src, addr, vma))
3025                         return -EHWPOISON;
3026                 return 0;
3027         }
3028 
3029         /*
3030          * If the source page was a PFN mapping, we don't have
3031          * a "struct page" for it. We do a best-effort copy by
3032          * just copying from the original user address. If that
3033          * fails, we just zero-fill it. Live with it.
3034          */
3035         kaddr = kmap_local_page(dst);
3036         pagefault_disable();
3037         uaddr = (void __user *)(addr & PAGE_MASK);
3038 
3039         /*
3040          * On architectures with software "accessed" bits, we would
3041          * take a double page fault, so mark it accessed here.
3042          */
3043         vmf->pte = NULL;
3044         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3045                 pte_t entry;
3046 
3047                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3048                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3049                         /*
3050                          * Other thread has already handled the fault
3051                          * and update local tlb only
3052                          */
3053                         if (vmf->pte)
3054                                 update_mmu_tlb(vma, addr, vmf->pte);
3055                         ret = -EAGAIN;
3056                         goto pte_unlock;
3057                 }
3058 
3059                 entry = pte_mkyoung(vmf->orig_pte);
3060                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3061                         update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3062         }
3063 
3064         /*
3065          * This really shouldn't fail, because the page is there
3066          * in the page tables. But it might just be unreadable,
3067          * in which case we just give up and fill the result with
3068          * zeroes.
3069          */
3070         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3071                 if (vmf->pte)
3072                         goto warn;
3073 
3074                 /* Re-validate under PTL if the page is still mapped */
3075                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3076                 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3077                         /* The PTE changed under us, update local tlb */
3078                         if (vmf->pte)
3079                                 update_mmu_tlb(vma, addr, vmf->pte);
3080                         ret = -EAGAIN;
3081                         goto pte_unlock;
3082                 }
3083 
3084                 /*
3085                  * The same page can be mapped back since last copy attempt.
3086                  * Try to copy again under PTL.
3087                  */
3088                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3089                         /*
3090                          * Give a warn in case there can be some obscure
3091                          * use-case
3092                          */
3093 warn:
3094                         WARN_ON_ONCE(1);
3095                         clear_page(kaddr);
3096                 }
3097         }
3098 
3099         ret = 0;
3100 
3101 pte_unlock:
3102         if (vmf->pte)
3103                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3104         pagefault_enable();
3105         kunmap_local(kaddr);
3106         flush_dcache_page(dst);
3107 
3108         return ret;
3109 }
3110 
3111 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3112 {
3113         struct file *vm_file = vma->vm_file;
3114 
3115         if (vm_file)
3116                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3117 
3118         /*
3119          * Special mappings (e.g. VDSO) do not have any file so fake
3120          * a default GFP_KERNEL for them.
3121          */
3122         return GFP_KERNEL;
3123 }
3124 
3125 /*
3126  * Notify the address space that the page is about to become writable so that
3127  * it can prohibit this or wait for the page to get into an appropriate state.
3128  *
3129  * We do this without the lock held, so that it can sleep if it needs to.
3130  */
3131 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3132 {
3133         vm_fault_t ret;
3134         unsigned int old_flags = vmf->flags;
3135 
3136         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3137 
3138         if (vmf->vma->vm_file &&
3139             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3140                 return VM_FAULT_SIGBUS;
3141 
3142         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3143         /* Restore original flags so that caller is not surprised */
3144         vmf->flags = old_flags;
3145         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3146                 return ret;
3147         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3148                 folio_lock(folio);
3149                 if (!folio->mapping) {
3150                         folio_unlock(folio);
3151                         return 0; /* retry */
3152                 }
3153                 ret |= VM_FAULT_LOCKED;
3154         } else
3155                 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3156         return ret;
3157 }
3158 
3159 /*
3160  * Handle dirtying of a page in shared file mapping on a write fault.
3161  *
3162  * The function expects the page to be locked and unlocks it.
3163  */
3164 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3165 {
3166         struct vm_area_struct *vma = vmf->vma;
3167         struct address_space *mapping;
3168         struct folio *folio = page_folio(vmf->page);
3169         bool dirtied;
3170         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3171 
3172         dirtied = folio_mark_dirty(folio);
3173         VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3174         /*
3175          * Take a local copy of the address_space - folio.mapping may be zeroed
3176          * by truncate after folio_unlock().   The address_space itself remains
3177          * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3178          * release semantics to prevent the compiler from undoing this copying.
3179          */
3180         mapping = folio_raw_mapping(folio);
3181         folio_unlock(folio);
3182 
3183         if (!page_mkwrite)
3184                 file_update_time(vma->vm_file);
3185 
3186         /*
3187          * Throttle page dirtying rate down to writeback speed.
3188          *
3189          * mapping may be NULL here because some device drivers do not
3190          * set page.mapping but still dirty their pages
3191          *
3192          * Drop the mmap_lock before waiting on IO, if we can. The file
3193          * is pinning the mapping, as per above.
3194          */
3195         if ((dirtied || page_mkwrite) && mapping) {
3196                 struct file *fpin;
3197 
3198                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3199                 balance_dirty_pages_ratelimited(mapping);
3200                 if (fpin) {
3201                         fput(fpin);
3202                         return VM_FAULT_COMPLETED;
3203                 }
3204         }
3205 
3206         return 0;
3207 }
3208 
3209 /*
3210  * Handle write page faults for pages that can be reused in the current vma
3211  *
3212  * This can happen either due to the mapping being with the VM_SHARED flag,
3213  * or due to us being the last reference standing to the page. In either
3214  * case, all we need to do here is to mark the page as writable and update
3215  * any related book-keeping.
3216  */
3217 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3218         __releases(vmf->ptl)
3219 {
3220         struct vm_area_struct *vma = vmf->vma;
3221         pte_t entry;
3222 
3223         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3224         VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3225 
3226         if (folio) {
3227                 VM_BUG_ON(folio_test_anon(folio) &&
3228                           !PageAnonExclusive(vmf->page));
3229                 /*
3230                  * Clear the folio's cpupid information as the existing
3231                  * information potentially belongs to a now completely
3232                  * unrelated process.
3233                  */
3234                 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3235         }
3236 
3237         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3238         entry = pte_mkyoung(vmf->orig_pte);
3239         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3240         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3241                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3242         pte_unmap_unlock(vmf->pte, vmf->ptl);
3243         count_vm_event(PGREUSE);
3244 }
3245 
3246 /*
3247  * We could add a bitflag somewhere, but for now, we know that all
3248  * vm_ops that have a ->map_pages have been audited and don't need
3249  * the mmap_lock to be held.
3250  */
3251 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3252 {
3253         struct vm_area_struct *vma = vmf->vma;
3254 
3255         if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3256                 return 0;
3257         vma_end_read(vma);
3258         return VM_FAULT_RETRY;
3259 }
3260 
3261 /**
3262  * vmf_anon_prepare - Prepare to handle an anonymous fault.
3263  * @vmf: The vm_fault descriptor passed from the fault handler.
3264  *
3265  * When preparing to insert an anonymous page into a VMA from a
3266  * fault handler, call this function rather than anon_vma_prepare().
3267  * If this vma does not already have an associated anon_vma and we are
3268  * only protected by the per-VMA lock, the caller must retry with the
3269  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3270  * determine if this VMA can share its anon_vma, and that's not safe to
3271  * do with only the per-VMA lock held for this VMA.
3272  *
3273  * Return: 0 if fault handling can proceed.  Any other value should be
3274  * returned to the caller.
3275  */
3276 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3277 {
3278         struct vm_area_struct *vma = vmf->vma;
3279         vm_fault_t ret = 0;
3280 
3281         if (likely(vma->anon_vma))
3282                 return 0;
3283         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3284                 if (!mmap_read_trylock(vma->vm_mm)) {
3285                         vma_end_read(vma);
3286                         return VM_FAULT_RETRY;
3287                 }
3288         }
3289         if (__anon_vma_prepare(vma))
3290                 ret = VM_FAULT_OOM;
3291         if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3292                 mmap_read_unlock(vma->vm_mm);
3293         return ret;
3294 }
3295 
3296 /*
3297  * Handle the case of a page which we actually need to copy to a new page,
3298  * either due to COW or unsharing.
3299  *
3300  * Called with mmap_lock locked and the old page referenced, but
3301  * without the ptl held.
3302  *
3303  * High level logic flow:
3304  *
3305  * - Allocate a page, copy the content of the old page to the new one.
3306  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3307  * - Take the PTL. If the pte changed, bail out and release the allocated page
3308  * - If the pte is still the way we remember it, update the page table and all
3309  *   relevant references. This includes dropping the reference the page-table
3310  *   held to the old page, as well as updating the rmap.
3311  * - In any case, unlock the PTL and drop the reference we took to the old page.
3312  */
3313 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3314 {
3315         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3316         struct vm_area_struct *vma = vmf->vma;
3317         struct mm_struct *mm = vma->vm_mm;
3318         struct folio *old_folio = NULL;
3319         struct folio *new_folio = NULL;
3320         pte_t entry;
3321         int page_copied = 0;
3322         struct mmu_notifier_range range;
3323         vm_fault_t ret;
3324         bool pfn_is_zero;
3325 
3326         delayacct_wpcopy_start();
3327 
3328         if (vmf->page)
3329                 old_folio = page_folio(vmf->page);
3330         ret = vmf_anon_prepare(vmf);
3331         if (unlikely(ret))
3332                 goto out;
3333 
3334         pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3335         new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3336         if (!new_folio)
3337                 goto oom;
3338 
3339         if (!pfn_is_zero) {
3340                 int err;
3341 
3342                 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3343                 if (err) {
3344                         /*
3345                          * COW failed, if the fault was solved by other,
3346                          * it's fine. If not, userspace would re-fault on
3347                          * the same address and we will handle the fault
3348                          * from the second attempt.
3349                          * The -EHWPOISON case will not be retried.
3350                          */
3351                         folio_put(new_folio);
3352                         if (old_folio)
3353                                 folio_put(old_folio);
3354 
3355                         delayacct_wpcopy_end();
3356                         return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3357                 }
3358                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3359         }
3360 
3361         __folio_mark_uptodate(new_folio);
3362 
3363         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3364                                 vmf->address & PAGE_MASK,
3365                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3366         mmu_notifier_invalidate_range_start(&range);
3367 
3368         /*
3369          * Re-check the pte - we dropped the lock
3370          */
3371         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3372         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3373                 if (old_folio) {
3374                         if (!folio_test_anon(old_folio)) {
3375                                 dec_mm_counter(mm, mm_counter_file(old_folio));
3376                                 inc_mm_counter(mm, MM_ANONPAGES);
3377                         }
3378                 } else {
3379                         ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3380                         inc_mm_counter(mm, MM_ANONPAGES);
3381                 }
3382                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3383                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3384                 entry = pte_sw_mkyoung(entry);
3385                 if (unlikely(unshare)) {
3386                         if (pte_soft_dirty(vmf->orig_pte))
3387                                 entry = pte_mksoft_dirty(entry);
3388                         if (pte_uffd_wp(vmf->orig_pte))
3389                                 entry = pte_mkuffd_wp(entry);
3390                 } else {
3391                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3392                 }
3393 
3394                 /*
3395                  * Clear the pte entry and flush it first, before updating the
3396                  * pte with the new entry, to keep TLBs on different CPUs in
3397                  * sync. This code used to set the new PTE then flush TLBs, but
3398                  * that left a window where the new PTE could be loaded into
3399                  * some TLBs while the old PTE remains in others.
3400                  */
3401                 ptep_clear_flush(vma, vmf->address, vmf->pte);
3402                 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3403                 folio_add_lru_vma(new_folio, vma);
3404                 BUG_ON(unshare && pte_write(entry));
3405                 set_pte_at(mm, vmf->address, vmf->pte, entry);
3406                 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3407                 if (old_folio) {
3408                         /*
3409                          * Only after switching the pte to the new page may
3410                          * we remove the mapcount here. Otherwise another
3411                          * process may come and find the rmap count decremented
3412                          * before the pte is switched to the new page, and
3413                          * "reuse" the old page writing into it while our pte
3414                          * here still points into it and can be read by other
3415                          * threads.
3416                          *
3417                          * The critical issue is to order this
3418                          * folio_remove_rmap_pte() with the ptp_clear_flush
3419                          * above. Those stores are ordered by (if nothing else,)
3420                          * the barrier present in the atomic_add_negative
3421                          * in folio_remove_rmap_pte();
3422                          *
3423                          * Then the TLB flush in ptep_clear_flush ensures that
3424                          * no process can access the old page before the
3425                          * decremented mapcount is visible. And the old page
3426                          * cannot be reused until after the decremented
3427                          * mapcount is visible. So transitively, TLBs to
3428                          * old page will be flushed before it can be reused.
3429                          */
3430                         folio_remove_rmap_pte(old_folio, vmf->page, vma);
3431                 }
3432 
3433                 /* Free the old page.. */
3434                 new_folio = old_folio;
3435                 page_copied = 1;
3436                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3437         } else if (vmf->pte) {
3438                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3439                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3440         }
3441 
3442         mmu_notifier_invalidate_range_end(&range);
3443 
3444         if (new_folio)
3445                 folio_put(new_folio);
3446         if (old_folio) {
3447                 if (page_copied)
3448                         free_swap_cache(old_folio);
3449                 folio_put(old_folio);
3450         }
3451 
3452         delayacct_wpcopy_end();
3453         return 0;
3454 oom:
3455         ret = VM_FAULT_OOM;
3456 out:
3457         if (old_folio)
3458                 folio_put(old_folio);
3459 
3460         delayacct_wpcopy_end();
3461         return ret;
3462 }
3463 
3464 /**
3465  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3466  *                        writeable once the page is prepared
3467  *
3468  * @vmf: structure describing the fault
3469  * @folio: the folio of vmf->page
3470  *
3471  * This function handles all that is needed to finish a write page fault in a
3472  * shared mapping due to PTE being read-only once the mapped page is prepared.
3473  * It handles locking of PTE and modifying it.
3474  *
3475  * The function expects the page to be locked or other protection against
3476  * concurrent faults / writeback (such as DAX radix tree locks).
3477  *
3478  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3479  * we acquired PTE lock.
3480  */
3481 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3482 {
3483         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3484         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3485                                        &vmf->ptl);
3486         if (!vmf->pte)
3487                 return VM_FAULT_NOPAGE;
3488         /*
3489          * We might have raced with another page fault while we released the
3490          * pte_offset_map_lock.
3491          */
3492         if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3493                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3494                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3495                 return VM_FAULT_NOPAGE;
3496         }
3497         wp_page_reuse(vmf, folio);
3498         return 0;
3499 }
3500 
3501 /*
3502  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3503  * mapping
3504  */
3505 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3506 {
3507         struct vm_area_struct *vma = vmf->vma;
3508 
3509         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3510                 vm_fault_t ret;
3511 
3512                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513                 ret = vmf_can_call_fault(vmf);
3514                 if (ret)
3515                         return ret;
3516 
3517                 vmf->flags |= FAULT_FLAG_MKWRITE;
3518                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3519                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3520                         return ret;
3521                 return finish_mkwrite_fault(vmf, NULL);
3522         }
3523         wp_page_reuse(vmf, NULL);
3524         return 0;
3525 }
3526 
3527 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3528         __releases(vmf->ptl)
3529 {
3530         struct vm_area_struct *vma = vmf->vma;
3531         vm_fault_t ret = 0;
3532 
3533         folio_get(folio);
3534 
3535         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3536                 vm_fault_t tmp;
3537 
3538                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3539                 tmp = vmf_can_call_fault(vmf);
3540                 if (tmp) {
3541                         folio_put(folio);
3542                         return tmp;
3543                 }
3544 
3545                 tmp = do_page_mkwrite(vmf, folio);
3546                 if (unlikely(!tmp || (tmp &
3547                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3548                         folio_put(folio);
3549                         return tmp;
3550                 }
3551                 tmp = finish_mkwrite_fault(vmf, folio);
3552                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3553                         folio_unlock(folio);
3554                         folio_put(folio);
3555                         return tmp;
3556                 }
3557         } else {
3558                 wp_page_reuse(vmf, folio);
3559                 folio_lock(folio);
3560         }
3561         ret |= fault_dirty_shared_page(vmf);
3562         folio_put(folio);
3563 
3564         return ret;
3565 }
3566 
3567 static bool wp_can_reuse_anon_folio(struct folio *folio,
3568                                     struct vm_area_struct *vma)
3569 {
3570         /*
3571          * We could currently only reuse a subpage of a large folio if no
3572          * other subpages of the large folios are still mapped. However,
3573          * let's just consistently not reuse subpages even if we could
3574          * reuse in that scenario, and give back a large folio a bit
3575          * sooner.
3576          */
3577         if (folio_test_large(folio))
3578                 return false;
3579 
3580         /*
3581          * We have to verify under folio lock: these early checks are
3582          * just an optimization to avoid locking the folio and freeing
3583          * the swapcache if there is little hope that we can reuse.
3584          *
3585          * KSM doesn't necessarily raise the folio refcount.
3586          */
3587         if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3588                 return false;
3589         if (!folio_test_lru(folio))
3590                 /*
3591                  * We cannot easily detect+handle references from
3592                  * remote LRU caches or references to LRU folios.
3593                  */
3594                 lru_add_drain();
3595         if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3596                 return false;
3597         if (!folio_trylock(folio))
3598                 return false;
3599         if (folio_test_swapcache(folio))
3600                 folio_free_swap(folio);
3601         if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3602                 folio_unlock(folio);
3603                 return false;
3604         }
3605         /*
3606          * Ok, we've got the only folio reference from our mapping
3607          * and the folio is locked, it's dark out, and we're wearing
3608          * sunglasses. Hit it.
3609          */
3610         folio_move_anon_rmap(folio, vma);
3611         folio_unlock(folio);
3612         return true;
3613 }
3614 
3615 /*
3616  * This routine handles present pages, when
3617  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3618  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3619  *   (FAULT_FLAG_UNSHARE)
3620  *
3621  * It is done by copying the page to a new address and decrementing the
3622  * shared-page counter for the old page.
3623  *
3624  * Note that this routine assumes that the protection checks have been
3625  * done by the caller (the low-level page fault routine in most cases).
3626  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3627  * done any necessary COW.
3628  *
3629  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3630  * though the page will change only once the write actually happens. This
3631  * avoids a few races, and potentially makes it more efficient.
3632  *
3633  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3634  * but allow concurrent faults), with pte both mapped and locked.
3635  * We return with mmap_lock still held, but pte unmapped and unlocked.
3636  */
3637 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3638         __releases(vmf->ptl)
3639 {
3640         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3641         struct vm_area_struct *vma = vmf->vma;
3642         struct folio *folio = NULL;
3643         pte_t pte;
3644 
3645         if (likely(!unshare)) {
3646                 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3647                         if (!userfaultfd_wp_async(vma)) {
3648                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3649                                 return handle_userfault(vmf, VM_UFFD_WP);
3650                         }
3651 
3652                         /*
3653                          * Nothing needed (cache flush, TLB invalidations,
3654                          * etc.) because we're only removing the uffd-wp bit,
3655                          * which is completely invisible to the user.
3656                          */
3657                         pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3658 
3659                         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3660                         /*
3661                          * Update this to be prepared for following up CoW
3662                          * handling
3663                          */
3664                         vmf->orig_pte = pte;
3665                 }
3666 
3667                 /*
3668                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3669                  * is flushed in this case before copying.
3670                  */
3671                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3672                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3673                         flush_tlb_page(vmf->vma, vmf->address);
3674         }
3675 
3676         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3677 
3678         if (vmf->page)
3679                 folio = page_folio(vmf->page);
3680 
3681         /*
3682          * Shared mapping: we are guaranteed to have VM_WRITE and
3683          * FAULT_FLAG_WRITE set at this point.
3684          */
3685         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3686                 /*
3687                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3688                  * VM_PFNMAP VMA.
3689                  *
3690                  * We should not cow pages in a shared writeable mapping.
3691                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3692                  */
3693                 if (!vmf->page)
3694                         return wp_pfn_shared(vmf);
3695                 return wp_page_shared(vmf, folio);
3696         }
3697 
3698         /*
3699          * Private mapping: create an exclusive anonymous page copy if reuse
3700          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3701          *
3702          * If we encounter a page that is marked exclusive, we must reuse
3703          * the page without further checks.
3704          */
3705         if (folio && folio_test_anon(folio) &&
3706             (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3707                 if (!PageAnonExclusive(vmf->page))
3708                         SetPageAnonExclusive(vmf->page);
3709                 if (unlikely(unshare)) {
3710                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3711                         return 0;
3712                 }
3713                 wp_page_reuse(vmf, folio);
3714                 return 0;
3715         }
3716         /*
3717          * Ok, we need to copy. Oh, well..
3718          */
3719         if (folio)
3720                 folio_get(folio);
3721 
3722         pte_unmap_unlock(vmf->pte, vmf->ptl);
3723 #ifdef CONFIG_KSM
3724         if (folio && folio_test_ksm(folio))
3725                 count_vm_event(COW_KSM);
3726 #endif
3727         return wp_page_copy(vmf);
3728 }
3729 
3730 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3731                 unsigned long start_addr, unsigned long end_addr,
3732                 struct zap_details *details)
3733 {
3734         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3735 }
3736 
3737 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3738                                             pgoff_t first_index,
3739                                             pgoff_t last_index,
3740                                             struct zap_details *details)
3741 {
3742         struct vm_area_struct *vma;
3743         pgoff_t vba, vea, zba, zea;
3744 
3745         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3746                 vba = vma->vm_pgoff;
3747                 vea = vba + vma_pages(vma) - 1;
3748                 zba = max(first_index, vba);
3749                 zea = min(last_index, vea);
3750 
3751                 unmap_mapping_range_vma(vma,
3752                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3753                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3754                                 details);
3755         }
3756 }
3757 
3758 /**
3759  * unmap_mapping_folio() - Unmap single folio from processes.
3760  * @folio: The locked folio to be unmapped.
3761  *
3762  * Unmap this folio from any userspace process which still has it mmaped.
3763  * Typically, for efficiency, the range of nearby pages has already been
3764  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3765  * truncation or invalidation holds the lock on a folio, it may find that
3766  * the page has been remapped again: and then uses unmap_mapping_folio()
3767  * to unmap it finally.
3768  */
3769 void unmap_mapping_folio(struct folio *folio)
3770 {
3771         struct address_space *mapping = folio->mapping;
3772         struct zap_details details = { };
3773         pgoff_t first_index;
3774         pgoff_t last_index;
3775 
3776         VM_BUG_ON(!folio_test_locked(folio));
3777 
3778         first_index = folio->index;
3779         last_index = folio_next_index(folio) - 1;
3780 
3781         details.even_cows = false;
3782         details.single_folio = folio;
3783         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3784 
3785         i_mmap_lock_read(mapping);
3786         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3787                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3788                                          last_index, &details);
3789         i_mmap_unlock_read(mapping);
3790 }
3791 
3792 /**
3793  * unmap_mapping_pages() - Unmap pages from processes.
3794  * @mapping: The address space containing pages to be unmapped.
3795  * @start: Index of first page to be unmapped.
3796  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3797  * @even_cows: Whether to unmap even private COWed pages.
3798  *
3799  * Unmap the pages in this address space from any userspace process which
3800  * has them mmaped.  Generally, you want to remove COWed pages as well when
3801  * a file is being truncated, but not when invalidating pages from the page
3802  * cache.
3803  */
3804 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3805                 pgoff_t nr, bool even_cows)
3806 {
3807         struct zap_details details = { };
3808         pgoff_t first_index = start;
3809         pgoff_t last_index = start + nr - 1;
3810 
3811         details.even_cows = even_cows;
3812         if (last_index < first_index)
3813                 last_index = ULONG_MAX;
3814 
3815         i_mmap_lock_read(mapping);
3816         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3817                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3818                                          last_index, &details);
3819         i_mmap_unlock_read(mapping);
3820 }
3821 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3822 
3823 /**
3824  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3825  * address_space corresponding to the specified byte range in the underlying
3826  * file.
3827  *
3828  * @mapping: the address space containing mmaps to be unmapped.
3829  * @holebegin: byte in first page to unmap, relative to the start of
3830  * the underlying file.  This will be rounded down to a PAGE_SIZE
3831  * boundary.  Note that this is different from truncate_pagecache(), which
3832  * must keep the partial page.  In contrast, we must get rid of
3833  * partial pages.
3834  * @holelen: size of prospective hole in bytes.  This will be rounded
3835  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3836  * end of the file.
3837  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3838  * but 0 when invalidating pagecache, don't throw away private data.
3839  */
3840 void unmap_mapping_range(struct address_space *mapping,
3841                 loff_t const holebegin, loff_t const holelen, int even_cows)
3842 {
3843         pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3844         pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3845 
3846         /* Check for overflow. */
3847         if (sizeof(holelen) > sizeof(hlen)) {
3848                 long long holeend =
3849                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3850                 if (holeend & ~(long long)ULONG_MAX)
3851                         hlen = ULONG_MAX - hba + 1;
3852         }
3853 
3854         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3855 }
3856 EXPORT_SYMBOL(unmap_mapping_range);
3857 
3858 /*
3859  * Restore a potential device exclusive pte to a working pte entry
3860  */
3861 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3862 {
3863         struct folio *folio = page_folio(vmf->page);
3864         struct vm_area_struct *vma = vmf->vma;
3865         struct mmu_notifier_range range;
3866         vm_fault_t ret;
3867 
3868         /*
3869          * We need a reference to lock the folio because we don't hold
3870          * the PTL so a racing thread can remove the device-exclusive
3871          * entry and unmap it. If the folio is free the entry must
3872          * have been removed already. If it happens to have already
3873          * been re-allocated after being freed all we do is lock and
3874          * unlock it.
3875          */
3876         if (!folio_try_get(folio))
3877                 return 0;
3878 
3879         ret = folio_lock_or_retry(folio, vmf);
3880         if (ret) {
3881                 folio_put(folio);
3882                 return ret;
3883         }
3884         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3885                                 vma->vm_mm, vmf->address & PAGE_MASK,
3886                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3887         mmu_notifier_invalidate_range_start(&range);
3888 
3889         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3890                                 &vmf->ptl);
3891         if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3892                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3893 
3894         if (vmf->pte)
3895                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3896         folio_unlock(folio);
3897         folio_put(folio);
3898 
3899         mmu_notifier_invalidate_range_end(&range);
3900         return 0;
3901 }
3902 
3903 static inline bool should_try_to_free_swap(struct folio *folio,
3904                                            struct vm_area_struct *vma,
3905                                            unsigned int fault_flags)
3906 {
3907         if (!folio_test_swapcache(folio))
3908                 return false;
3909         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3910             folio_test_mlocked(folio))
3911                 return true;
3912         /*
3913          * If we want to map a page that's in the swapcache writable, we
3914          * have to detect via the refcount if we're really the exclusive
3915          * user. Try freeing the swapcache to get rid of the swapcache
3916          * reference only in case it's likely that we'll be the exlusive user.
3917          */
3918         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3919                 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3920 }
3921 
3922 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3923 {
3924         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3925                                        vmf->address, &vmf->ptl);
3926         if (!vmf->pte)
3927                 return 0;
3928         /*
3929          * Be careful so that we will only recover a special uffd-wp pte into a
3930          * none pte.  Otherwise it means the pte could have changed, so retry.
3931          *
3932          * This should also cover the case where e.g. the pte changed
3933          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3934          * So is_pte_marker() check is not enough to safely drop the pte.
3935          */
3936         if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3937                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3938         pte_unmap_unlock(vmf->pte, vmf->ptl);
3939         return 0;
3940 }
3941 
3942 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3943 {
3944         if (vma_is_anonymous(vmf->vma))
3945                 return do_anonymous_page(vmf);
3946         else
3947                 return do_fault(vmf);
3948 }
3949 
3950 /*
3951  * This is actually a page-missing access, but with uffd-wp special pte
3952  * installed.  It means this pte was wr-protected before being unmapped.
3953  */
3954 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3955 {
3956         /*
3957          * Just in case there're leftover special ptes even after the region
3958          * got unregistered - we can simply clear them.
3959          */
3960         if (unlikely(!userfaultfd_wp(vmf->vma)))
3961                 return pte_marker_clear(vmf);
3962 
3963         return do_pte_missing(vmf);
3964 }
3965 
3966 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3967 {
3968         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3969         unsigned long marker = pte_marker_get(entry);
3970 
3971         /*
3972          * PTE markers should never be empty.  If anything weird happened,
3973          * the best thing to do is to kill the process along with its mm.
3974          */
3975         if (WARN_ON_ONCE(!marker))
3976                 return VM_FAULT_SIGBUS;
3977 
3978         /* Higher priority than uffd-wp when data corrupted */
3979         if (marker & PTE_MARKER_POISONED)
3980                 return VM_FAULT_HWPOISON;
3981 
3982         if (pte_marker_entry_uffd_wp(entry))
3983                 return pte_marker_handle_uffd_wp(vmf);
3984 
3985         /* This is an unknown pte marker */
3986         return VM_FAULT_SIGBUS;
3987 }
3988 
3989 /*
3990  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3991  * but allow concurrent faults), and pte mapped but not yet locked.
3992  * We return with pte unmapped and unlocked.
3993  *
3994  * We return with the mmap_lock locked or unlocked in the same cases
3995  * as does filemap_fault().
3996  */
3997 vm_fault_t do_swap_page(struct vm_fault *vmf)
3998 {
3999         struct vm_area_struct *vma = vmf->vma;
4000         struct folio *swapcache, *folio = NULL;
4001         struct page *page;
4002         struct swap_info_struct *si = NULL;
4003         rmap_t rmap_flags = RMAP_NONE;
4004         bool need_clear_cache = false;
4005         bool exclusive = false;
4006         swp_entry_t entry;
4007         pte_t pte;
4008         vm_fault_t ret = 0;
4009         void *shadow = NULL;
4010         int nr_pages;
4011         unsigned long page_idx;
4012         unsigned long address;
4013         pte_t *ptep;
4014 
4015         if (!pte_unmap_same(vmf))
4016                 goto out;
4017 
4018         entry = pte_to_swp_entry(vmf->orig_pte);
4019         if (unlikely(non_swap_entry(entry))) {
4020                 if (is_migration_entry(entry)) {
4021                         migration_entry_wait(vma->vm_mm, vmf->pmd,
4022                                              vmf->address);
4023                 } else if (is_device_exclusive_entry(entry)) {
4024                         vmf->page = pfn_swap_entry_to_page(entry);
4025                         ret = remove_device_exclusive_entry(vmf);
4026                 } else if (is_device_private_entry(entry)) {
4027                         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4028                                 /*
4029                                  * migrate_to_ram is not yet ready to operate
4030                                  * under VMA lock.
4031                                  */
4032                                 vma_end_read(vma);
4033                                 ret = VM_FAULT_RETRY;
4034                                 goto out;
4035                         }
4036 
4037                         vmf->page = pfn_swap_entry_to_page(entry);
4038                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4039                                         vmf->address, &vmf->ptl);
4040                         if (unlikely(!vmf->pte ||
4041                                      !pte_same(ptep_get(vmf->pte),
4042                                                         vmf->orig_pte)))
4043                                 goto unlock;
4044 
4045                         /*
4046                          * Get a page reference while we know the page can't be
4047                          * freed.
4048                          */
4049                         get_page(vmf->page);
4050                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4051                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4052                         put_page(vmf->page);
4053                 } else if (is_hwpoison_entry(entry)) {
4054                         ret = VM_FAULT_HWPOISON;
4055                 } else if (is_pte_marker_entry(entry)) {
4056                         ret = handle_pte_marker(vmf);
4057                 } else {
4058                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4059                         ret = VM_FAULT_SIGBUS;
4060                 }
4061                 goto out;
4062         }
4063 
4064         /* Prevent swapoff from happening to us. */
4065         si = get_swap_device(entry);
4066         if (unlikely(!si))
4067                 goto out;
4068 
4069         folio = swap_cache_get_folio(entry, vma, vmf->address);
4070         if (folio)
4071                 page = folio_file_page(folio, swp_offset(entry));
4072         swapcache = folio;
4073 
4074         if (!folio) {
4075                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4076                     __swap_count(entry) == 1) {
4077                         /*
4078                          * Prevent parallel swapin from proceeding with
4079                          * the cache flag. Otherwise, another thread may
4080                          * finish swapin first, free the entry, and swapout
4081                          * reusing the same entry. It's undetectable as
4082                          * pte_same() returns true due to entry reuse.
4083                          */
4084                         if (swapcache_prepare(entry)) {
4085                                 /* Relax a bit to prevent rapid repeated page faults */
4086                                 schedule_timeout_uninterruptible(1);
4087                                 goto out;
4088                         }
4089                         need_clear_cache = true;
4090 
4091                         /* skip swapcache */
4092                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4093                                                 vma, vmf->address, false);
4094                         page = &folio->page;
4095                         if (folio) {
4096                                 __folio_set_locked(folio);
4097                                 __folio_set_swapbacked(folio);
4098 
4099                                 if (mem_cgroup_swapin_charge_folio(folio,
4100                                                         vma->vm_mm, GFP_KERNEL,
4101                                                         entry)) {
4102                                         ret = VM_FAULT_OOM;
4103                                         goto out_page;
4104                                 }
4105                                 mem_cgroup_swapin_uncharge_swap(entry);
4106 
4107                                 shadow = get_shadow_from_swap_cache(entry);
4108                                 if (shadow)
4109                                         workingset_refault(folio, shadow);
4110 
4111                                 folio_add_lru(folio);
4112 
4113                                 /* To provide entry to swap_read_folio() */
4114                                 folio->swap = entry;
4115                                 swap_read_folio(folio, NULL);
4116                                 folio->private = NULL;
4117                         }
4118                 } else {
4119                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4120                                                 vmf);
4121                         if (page)
4122                                 folio = page_folio(page);
4123                         swapcache = folio;
4124                 }
4125 
4126                 if (!folio) {
4127                         /*
4128                          * Back out if somebody else faulted in this pte
4129                          * while we released the pte lock.
4130                          */
4131                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4132                                         vmf->address, &vmf->ptl);
4133                         if (likely(vmf->pte &&
4134                                    pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4135                                 ret = VM_FAULT_OOM;
4136                         goto unlock;
4137                 }
4138 
4139                 /* Had to read the page from swap area: Major fault */
4140                 ret = VM_FAULT_MAJOR;
4141                 count_vm_event(PGMAJFAULT);
4142                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4143         } else if (PageHWPoison(page)) {
4144                 /*
4145                  * hwpoisoned dirty swapcache pages are kept for killing
4146                  * owner processes (which may be unknown at hwpoison time)
4147                  */
4148                 ret = VM_FAULT_HWPOISON;
4149                 goto out_release;
4150         }
4151 
4152         ret |= folio_lock_or_retry(folio, vmf);
4153         if (ret & VM_FAULT_RETRY)
4154                 goto out_release;
4155 
4156         if (swapcache) {
4157                 /*
4158                  * Make sure folio_free_swap() or swapoff did not release the
4159                  * swapcache from under us.  The page pin, and pte_same test
4160                  * below, are not enough to exclude that.  Even if it is still
4161                  * swapcache, we need to check that the page's swap has not
4162                  * changed.
4163                  */
4164                 if (unlikely(!folio_test_swapcache(folio) ||
4165                              page_swap_entry(page).val != entry.val))
4166                         goto out_page;
4167 
4168                 /*
4169                  * KSM sometimes has to copy on read faults, for example, if
4170                  * page->index of !PageKSM() pages would be nonlinear inside the
4171                  * anon VMA -- PageKSM() is lost on actual swapout.
4172                  */
4173                 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4174                 if (unlikely(!folio)) {
4175                         ret = VM_FAULT_OOM;
4176                         folio = swapcache;
4177                         goto out_page;
4178                 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4179                         ret = VM_FAULT_HWPOISON;
4180                         folio = swapcache;
4181                         goto out_page;
4182                 }
4183                 if (folio != swapcache)
4184                         page = folio_page(folio, 0);
4185 
4186                 /*
4187                  * If we want to map a page that's in the swapcache writable, we
4188                  * have to detect via the refcount if we're really the exclusive
4189                  * owner. Try removing the extra reference from the local LRU
4190                  * caches if required.
4191                  */
4192                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4193                     !folio_test_ksm(folio) && !folio_test_lru(folio))
4194                         lru_add_drain();
4195         }
4196 
4197         folio_throttle_swaprate(folio, GFP_KERNEL);
4198 
4199         /*
4200          * Back out if somebody else already faulted in this pte.
4201          */
4202         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4203                         &vmf->ptl);
4204         if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4205                 goto out_nomap;
4206 
4207         if (unlikely(!folio_test_uptodate(folio))) {
4208                 ret = VM_FAULT_SIGBUS;
4209                 goto out_nomap;
4210         }
4211 
4212         nr_pages = 1;
4213         page_idx = 0;
4214         address = vmf->address;
4215         ptep = vmf->pte;
4216         if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4217                 int nr = folio_nr_pages(folio);
4218                 unsigned long idx = folio_page_idx(folio, page);
4219                 unsigned long folio_start = address - idx * PAGE_SIZE;
4220                 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4221                 pte_t *folio_ptep;
4222                 pte_t folio_pte;
4223 
4224                 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4225                         goto check_folio;
4226                 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4227                         goto check_folio;
4228 
4229                 folio_ptep = vmf->pte - idx;
4230                 folio_pte = ptep_get(folio_ptep);
4231                 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4232                     swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4233                         goto check_folio;
4234 
4235                 page_idx = idx;
4236                 address = folio_start;
4237                 ptep = folio_ptep;
4238                 nr_pages = nr;
4239                 entry = folio->swap;
4240                 page = &folio->page;
4241         }
4242 
4243 check_folio:
4244         /*
4245          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4246          * must never point at an anonymous page in the swapcache that is
4247          * PG_anon_exclusive. Sanity check that this holds and especially, that
4248          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4249          * check after taking the PT lock and making sure that nobody
4250          * concurrently faulted in this page and set PG_anon_exclusive.
4251          */
4252         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4253         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4254 
4255         /*
4256          * Check under PT lock (to protect against concurrent fork() sharing
4257          * the swap entry concurrently) for certainly exclusive pages.
4258          */
4259         if (!folio_test_ksm(folio)) {
4260                 exclusive = pte_swp_exclusive(vmf->orig_pte);
4261                 if (folio != swapcache) {
4262                         /*
4263                          * We have a fresh page that is not exposed to the
4264                          * swapcache -> certainly exclusive.
4265                          */
4266                         exclusive = true;
4267                 } else if (exclusive && folio_test_writeback(folio) &&
4268                           data_race(si->flags & SWP_STABLE_WRITES)) {
4269                         /*
4270                          * This is tricky: not all swap backends support
4271                          * concurrent page modifications while under writeback.
4272                          *
4273                          * So if we stumble over such a page in the swapcache
4274                          * we must not set the page exclusive, otherwise we can
4275                          * map it writable without further checks and modify it
4276                          * while still under writeback.
4277                          *
4278                          * For these problematic swap backends, simply drop the
4279                          * exclusive marker: this is perfectly fine as we start
4280                          * writeback only if we fully unmapped the page and
4281                          * there are no unexpected references on the page after
4282                          * unmapping succeeded. After fully unmapped, no
4283                          * further GUP references (FOLL_GET and FOLL_PIN) can
4284                          * appear, so dropping the exclusive marker and mapping
4285                          * it only R/O is fine.
4286                          */
4287                         exclusive = false;
4288                 }
4289         }
4290 
4291         /*
4292          * Some architectures may have to restore extra metadata to the page
4293          * when reading from swap. This metadata may be indexed by swap entry
4294          * so this must be called before swap_free().
4295          */
4296         arch_swap_restore(folio_swap(entry, folio), folio);
4297 
4298         /*
4299          * Remove the swap entry and conditionally try to free up the swapcache.
4300          * We're already holding a reference on the page but haven't mapped it
4301          * yet.
4302          */
4303         swap_free_nr(entry, nr_pages);
4304         if (should_try_to_free_swap(folio, vma, vmf->flags))
4305                 folio_free_swap(folio);
4306 
4307         add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4308         add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4309         pte = mk_pte(page, vma->vm_page_prot);
4310         if (pte_swp_soft_dirty(vmf->orig_pte))
4311                 pte = pte_mksoft_dirty(pte);
4312         if (pte_swp_uffd_wp(vmf->orig_pte))
4313                 pte = pte_mkuffd_wp(pte);
4314 
4315         /*
4316          * Same logic as in do_wp_page(); however, optimize for pages that are
4317          * certainly not shared either because we just allocated them without
4318          * exposing them to the swapcache or because the swap entry indicates
4319          * exclusivity.
4320          */
4321         if (!folio_test_ksm(folio) &&
4322             (exclusive || folio_ref_count(folio) == 1)) {
4323                 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4324                     !pte_needs_soft_dirty_wp(vma, pte)) {
4325                         pte = pte_mkwrite(pte, vma);
4326                         if (vmf->flags & FAULT_FLAG_WRITE) {
4327                                 pte = pte_mkdirty(pte);
4328                                 vmf->flags &= ~FAULT_FLAG_WRITE;
4329                         }
4330                 }
4331                 rmap_flags |= RMAP_EXCLUSIVE;
4332         }
4333         folio_ref_add(folio, nr_pages - 1);
4334         flush_icache_pages(vma, page, nr_pages);
4335         vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4336 
4337         /* ksm created a completely new copy */
4338         if (unlikely(folio != swapcache && swapcache)) {
4339                 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4340                 folio_add_lru_vma(folio, vma);
4341         } else if (!folio_test_anon(folio)) {
4342                 /*
4343                  * We currently only expect small !anon folios, which are either
4344                  * fully exclusive or fully shared. If we ever get large folios
4345                  * here, we have to be careful.
4346                  */
4347                 VM_WARN_ON_ONCE(folio_test_large(folio));
4348                 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4349                 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4350         } else {
4351                 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4352                                         rmap_flags);
4353         }
4354 
4355         VM_BUG_ON(!folio_test_anon(folio) ||
4356                         (pte_write(pte) && !PageAnonExclusive(page)));
4357         set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4358         arch_do_swap_page_nr(vma->vm_mm, vma, address,
4359                         pte, pte, nr_pages);
4360 
4361         folio_unlock(folio);
4362         if (folio != swapcache && swapcache) {
4363                 /*
4364                  * Hold the lock to avoid the swap entry to be reused
4365                  * until we take the PT lock for the pte_same() check
4366                  * (to avoid false positives from pte_same). For
4367                  * further safety release the lock after the swap_free
4368                  * so that the swap count won't change under a
4369                  * parallel locked swapcache.
4370                  */
4371                 folio_unlock(swapcache);
4372                 folio_put(swapcache);
4373         }
4374 
4375         if (vmf->flags & FAULT_FLAG_WRITE) {
4376                 ret |= do_wp_page(vmf);
4377                 if (ret & VM_FAULT_ERROR)
4378                         ret &= VM_FAULT_ERROR;
4379                 goto out;
4380         }
4381 
4382         /* No need to invalidate - it was non-present before */
4383         update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4384 unlock:
4385         if (vmf->pte)
4386                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4387 out:
4388         /* Clear the swap cache pin for direct swapin after PTL unlock */
4389         if (need_clear_cache)
4390                 swapcache_clear(si, entry);
4391         if (si)
4392                 put_swap_device(si);
4393         return ret;
4394 out_nomap:
4395         if (vmf->pte)
4396                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4397 out_page:
4398         folio_unlock(folio);
4399 out_release:
4400         folio_put(folio);
4401         if (folio != swapcache && swapcache) {
4402                 folio_unlock(swapcache);
4403                 folio_put(swapcache);
4404         }
4405         if (need_clear_cache)
4406                 swapcache_clear(si, entry);
4407         if (si)
4408                 put_swap_device(si);
4409         return ret;
4410 }
4411 
4412 static bool pte_range_none(pte_t *pte, int nr_pages)
4413 {
4414         int i;
4415 
4416         for (i = 0; i < nr_pages; i++) {
4417                 if (!pte_none(ptep_get_lockless(pte + i)))
4418                         return false;
4419         }
4420 
4421         return true;
4422 }
4423 
4424 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4425 {
4426         struct vm_area_struct *vma = vmf->vma;
4427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4428         unsigned long orders;
4429         struct folio *folio;
4430         unsigned long addr;
4431         pte_t *pte;
4432         gfp_t gfp;
4433         int order;
4434 
4435         /*
4436          * If uffd is active for the vma we need per-page fault fidelity to
4437          * maintain the uffd semantics.
4438          */
4439         if (unlikely(userfaultfd_armed(vma)))
4440                 goto fallback;
4441 
4442         /*
4443          * Get a list of all the (large) orders below PMD_ORDER that are enabled
4444          * for this vma. Then filter out the orders that can't be allocated over
4445          * the faulting address and still be fully contained in the vma.
4446          */
4447         orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4448                         TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4449         orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4450 
4451         if (!orders)
4452                 goto fallback;
4453 
4454         pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4455         if (!pte)
4456                 return ERR_PTR(-EAGAIN);
4457 
4458         /*
4459          * Find the highest order where the aligned range is completely
4460          * pte_none(). Note that all remaining orders will be completely
4461          * pte_none().
4462          */
4463         order = highest_order(orders);
4464         while (orders) {
4465                 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4466                 if (pte_range_none(pte + pte_index(addr), 1 << order))
4467                         break;
4468                 order = next_order(&orders, order);
4469         }
4470 
4471         pte_unmap(pte);
4472 
4473         if (!orders)
4474                 goto fallback;
4475 
4476         /* Try allocating the highest of the remaining orders. */
4477         gfp = vma_thp_gfp_mask(vma);
4478         while (orders) {
4479                 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4480                 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4481                 if (folio) {
4482                         if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4483                                 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4484                                 folio_put(folio);
4485                                 goto next;
4486                         }
4487                         folio_throttle_swaprate(folio, gfp);
4488                         folio_zero_user(folio, vmf->address);
4489                         return folio;
4490                 }
4491 next:
4492                 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4493                 order = next_order(&orders, order);
4494         }
4495 
4496 fallback:
4497 #endif
4498         return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4499 }
4500 
4501 /*
4502  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4503  * but allow concurrent faults), and pte mapped but not yet locked.
4504  * We return with mmap_lock still held, but pte unmapped and unlocked.
4505  */
4506 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4507 {
4508         struct vm_area_struct *vma = vmf->vma;
4509         unsigned long addr = vmf->address;
4510         struct folio *folio;
4511         vm_fault_t ret = 0;
4512         int nr_pages = 1;
4513         pte_t entry;
4514 
4515         /* File mapping without ->vm_ops ? */
4516         if (vma->vm_flags & VM_SHARED)
4517                 return VM_FAULT_SIGBUS;
4518 
4519         /*
4520          * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4521          * be distinguished from a transient failure of pte_offset_map().
4522          */
4523         if (pte_alloc(vma->vm_mm, vmf->pmd))
4524                 return VM_FAULT_OOM;
4525 
4526         /* Use the zero-page for reads */
4527         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4528                         !mm_forbids_zeropage(vma->vm_mm)) {
4529                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4530                                                 vma->vm_page_prot));
4531                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4532                                 vmf->address, &vmf->ptl);
4533                 if (!vmf->pte)
4534                         goto unlock;
4535                 if (vmf_pte_changed(vmf)) {
4536                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4537                         goto unlock;
4538                 }
4539                 ret = check_stable_address_space(vma->vm_mm);
4540                 if (ret)
4541                         goto unlock;
4542                 /* Deliver the page fault to userland, check inside PT lock */
4543                 if (userfaultfd_missing(vma)) {
4544                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4545                         return handle_userfault(vmf, VM_UFFD_MISSING);
4546                 }
4547                 goto setpte;
4548         }
4549 
4550         /* Allocate our own private page. */
4551         ret = vmf_anon_prepare(vmf);
4552         if (ret)
4553                 return ret;
4554         /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4555         folio = alloc_anon_folio(vmf);
4556         if (IS_ERR(folio))
4557                 return 0;
4558         if (!folio)
4559                 goto oom;
4560 
4561         nr_pages = folio_nr_pages(folio);
4562         addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4563 
4564         /*
4565          * The memory barrier inside __folio_mark_uptodate makes sure that
4566          * preceding stores to the page contents become visible before
4567          * the set_pte_at() write.
4568          */
4569         __folio_mark_uptodate(folio);
4570 
4571         entry = mk_pte(&folio->page, vma->vm_page_prot);
4572         entry = pte_sw_mkyoung(entry);
4573         if (vma->vm_flags & VM_WRITE)
4574                 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4575 
4576         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4577         if (!vmf->pte)
4578                 goto release;
4579         if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4580                 update_mmu_tlb(vma, addr, vmf->pte);
4581                 goto release;
4582         } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4583                 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4584                 goto release;
4585         }
4586 
4587         ret = check_stable_address_space(vma->vm_mm);
4588         if (ret)
4589                 goto release;
4590 
4591         /* Deliver the page fault to userland, check inside PT lock */
4592         if (userfaultfd_missing(vma)) {
4593                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4594                 folio_put(folio);
4595                 return handle_userfault(vmf, VM_UFFD_MISSING);
4596         }
4597 
4598         folio_ref_add(folio, nr_pages - 1);
4599         add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4601         count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4602 #endif
4603         folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4604         folio_add_lru_vma(folio, vma);
4605 setpte:
4606         if (vmf_orig_pte_uffd_wp(vmf))
4607                 entry = pte_mkuffd_wp(entry);
4608         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4609 
4610         /* No need to invalidate - it was non-present before */
4611         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4612 unlock:
4613         if (vmf->pte)
4614                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4615         return ret;
4616 release:
4617         folio_put(folio);
4618         goto unlock;
4619 oom:
4620         return VM_FAULT_OOM;
4621 }
4622 
4623 /*
4624  * The mmap_lock must have been held on entry, and may have been
4625  * released depending on flags and vma->vm_ops->fault() return value.
4626  * See filemap_fault() and __lock_page_retry().
4627  */
4628 static vm_fault_t __do_fault(struct vm_fault *vmf)
4629 {
4630         struct vm_area_struct *vma = vmf->vma;
4631         struct folio *folio;
4632         vm_fault_t ret;
4633 
4634         /*
4635          * Preallocate pte before we take page_lock because this might lead to
4636          * deadlocks for memcg reclaim which waits for pages under writeback:
4637          *                              lock_page(A)
4638          *                              SetPageWriteback(A)
4639          *                              unlock_page(A)
4640          * lock_page(B)
4641          *                              lock_page(B)
4642          * pte_alloc_one
4643          *   shrink_folio_list
4644          *     wait_on_page_writeback(A)
4645          *                              SetPageWriteback(B)
4646          *                              unlock_page(B)
4647          *                              # flush A, B to clear the writeback
4648          */
4649         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4650                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4651                 if (!vmf->prealloc_pte)
4652                         return VM_FAULT_OOM;
4653         }
4654 
4655         ret = vma->vm_ops->fault(vmf);
4656         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4657                             VM_FAULT_DONE_COW)))
4658                 return ret;
4659 
4660         folio = page_folio(vmf->page);
4661         if (unlikely(PageHWPoison(vmf->page))) {
4662                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4663                 if (ret & VM_FAULT_LOCKED) {
4664                         if (page_mapped(vmf->page))
4665                                 unmap_mapping_folio(folio);
4666                         /* Retry if a clean folio was removed from the cache. */
4667                         if (mapping_evict_folio(folio->mapping, folio))
4668                                 poisonret = VM_FAULT_NOPAGE;
4669                         folio_unlock(folio);
4670                 }
4671                 folio_put(folio);
4672                 vmf->page = NULL;
4673                 return poisonret;
4674         }
4675 
4676         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4677                 folio_lock(folio);
4678         else
4679                 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4680 
4681         return ret;
4682 }
4683 
4684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4685 static void deposit_prealloc_pte(struct vm_fault *vmf)
4686 {
4687         struct vm_area_struct *vma = vmf->vma;
4688 
4689         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4690         /*
4691          * We are going to consume the prealloc table,
4692          * count that as nr_ptes.
4693          */
4694         mm_inc_nr_ptes(vma->vm_mm);
4695         vmf->prealloc_pte = NULL;
4696 }
4697 
4698 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4699 {
4700         struct folio *folio = page_folio(page);
4701         struct vm_area_struct *vma = vmf->vma;
4702         bool write = vmf->flags & FAULT_FLAG_WRITE;
4703         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4704         pmd_t entry;
4705         vm_fault_t ret = VM_FAULT_FALLBACK;
4706 
4707         if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4708                 return ret;
4709 
4710         if (folio_order(folio) != HPAGE_PMD_ORDER)
4711                 return ret;
4712         page = &folio->page;
4713 
4714         /*
4715          * Just backoff if any subpage of a THP is corrupted otherwise
4716          * the corrupted page may mapped by PMD silently to escape the
4717          * check.  This kind of THP just can be PTE mapped.  Access to
4718          * the corrupted subpage should trigger SIGBUS as expected.
4719          */
4720         if (unlikely(folio_test_has_hwpoisoned(folio)))
4721                 return ret;
4722 
4723         /*
4724          * Archs like ppc64 need additional space to store information
4725          * related to pte entry. Use the preallocated table for that.
4726          */
4727         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4728                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4729                 if (!vmf->prealloc_pte)
4730                         return VM_FAULT_OOM;
4731         }
4732 
4733         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4734         if (unlikely(!pmd_none(*vmf->pmd)))
4735                 goto out;
4736 
4737         flush_icache_pages(vma, page, HPAGE_PMD_NR);
4738 
4739         entry = mk_huge_pmd(page, vma->vm_page_prot);
4740         if (write)
4741                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4742 
4743         add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4744         folio_add_file_rmap_pmd(folio, page, vma);
4745 
4746         /*
4747          * deposit and withdraw with pmd lock held
4748          */
4749         if (arch_needs_pgtable_deposit())
4750                 deposit_prealloc_pte(vmf);
4751 
4752         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4753 
4754         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4755 
4756         /* fault is handled */
4757         ret = 0;
4758         count_vm_event(THP_FILE_MAPPED);
4759 out:
4760         spin_unlock(vmf->ptl);
4761         return ret;
4762 }
4763 #else
4764 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4765 {
4766         return VM_FAULT_FALLBACK;
4767 }
4768 #endif
4769 
4770 /**
4771  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4772  * @vmf: Fault decription.
4773  * @folio: The folio that contains @page.
4774  * @page: The first page to create a PTE for.
4775  * @nr: The number of PTEs to create.
4776  * @addr: The first address to create a PTE for.
4777  */
4778 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4779                 struct page *page, unsigned int nr, unsigned long addr)
4780 {
4781         struct vm_area_struct *vma = vmf->vma;
4782         bool write = vmf->flags & FAULT_FLAG_WRITE;
4783         bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4784         pte_t entry;
4785 
4786         flush_icache_pages(vma, page, nr);
4787         entry = mk_pte(page, vma->vm_page_prot);
4788 
4789         if (prefault && arch_wants_old_prefaulted_pte())
4790                 entry = pte_mkold(entry);
4791         else
4792                 entry = pte_sw_mkyoung(entry);
4793 
4794         if (write)
4795                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4796         if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
4797                 entry = pte_mkuffd_wp(entry);
4798         /* copy-on-write page */
4799         if (write && !(vma->vm_flags & VM_SHARED)) {
4800                 VM_BUG_ON_FOLIO(nr != 1, folio);
4801                 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4802                 folio_add_lru_vma(folio, vma);
4803         } else {
4804                 folio_add_file_rmap_ptes(folio, page, nr, vma);
4805         }
4806         set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4807 
4808         /* no need to invalidate: a not-present page won't be cached */
4809         update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4810 }
4811 
4812 static bool vmf_pte_changed(struct vm_fault *vmf)
4813 {
4814         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4815                 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4816 
4817         return !pte_none(ptep_get(vmf->pte));
4818 }
4819 
4820 /**
4821  * finish_fault - finish page fault once we have prepared the page to fault
4822  *
4823  * @vmf: structure describing the fault
4824  *
4825  * This function handles all that is needed to finish a page fault once the
4826  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4827  * given page, adds reverse page mapping, handles memcg charges and LRU
4828  * addition.
4829  *
4830  * The function expects the page to be locked and on success it consumes a
4831  * reference of a page being mapped (for the PTE which maps it).
4832  *
4833  * Return: %0 on success, %VM_FAULT_ code in case of error.
4834  */
4835 vm_fault_t finish_fault(struct vm_fault *vmf)
4836 {
4837         struct vm_area_struct *vma = vmf->vma;
4838         struct page *page;
4839         struct folio *folio;
4840         vm_fault_t ret;
4841         bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4842                       !(vma->vm_flags & VM_SHARED);
4843         int type, nr_pages;
4844         unsigned long addr = vmf->address;
4845 
4846         /* Did we COW the page? */
4847         if (is_cow)
4848                 page = vmf->cow_page;
4849         else
4850                 page = vmf->page;
4851 
4852         /*
4853          * check even for read faults because we might have lost our CoWed
4854          * page
4855          */
4856         if (!(vma->vm_flags & VM_SHARED)) {
4857                 ret = check_stable_address_space(vma->vm_mm);
4858                 if (ret)
4859                         return ret;
4860         }
4861 
4862         if (pmd_none(*vmf->pmd)) {
4863                 if (PageTransCompound(page)) {
4864                         ret = do_set_pmd(vmf, page);
4865                         if (ret != VM_FAULT_FALLBACK)
4866                                 return ret;
4867                 }
4868 
4869                 if (vmf->prealloc_pte)
4870                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4871                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4872                         return VM_FAULT_OOM;
4873         }
4874 
4875         folio = page_folio(page);
4876         nr_pages = folio_nr_pages(folio);
4877 
4878         /*
4879          * Using per-page fault to maintain the uffd semantics, and same
4880          * approach also applies to non-anonymous-shmem faults to avoid
4881          * inflating the RSS of the process.
4882          */
4883         if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
4884                 nr_pages = 1;
4885         } else if (nr_pages > 1) {
4886                 pgoff_t idx = folio_page_idx(folio, page);
4887                 /* The page offset of vmf->address within the VMA. */
4888                 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4889                 /* The index of the entry in the pagetable for fault page. */
4890                 pgoff_t pte_off = pte_index(vmf->address);
4891 
4892                 /*
4893                  * Fallback to per-page fault in case the folio size in page
4894                  * cache beyond the VMA limits and PMD pagetable limits.
4895                  */
4896                 if (unlikely(vma_off < idx ||
4897                             vma_off + (nr_pages - idx) > vma_pages(vma) ||
4898                             pte_off < idx ||
4899                             pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
4900                         nr_pages = 1;
4901                 } else {
4902                         /* Now we can set mappings for the whole large folio. */
4903                         addr = vmf->address - idx * PAGE_SIZE;
4904                         page = &folio->page;
4905                 }
4906         }
4907 
4908         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4909                                        addr, &vmf->ptl);
4910         if (!vmf->pte)
4911                 return VM_FAULT_NOPAGE;
4912 
4913         /* Re-check under ptl */
4914         if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
4915                 update_mmu_tlb(vma, addr, vmf->pte);
4916                 ret = VM_FAULT_NOPAGE;
4917                 goto unlock;
4918         } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4919                 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4920                 ret = VM_FAULT_NOPAGE;
4921                 goto unlock;
4922         }
4923 
4924         folio_ref_add(folio, nr_pages - 1);
4925         set_pte_range(vmf, folio, page, nr_pages, addr);
4926         type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
4927         add_mm_counter(vma->vm_mm, type, nr_pages);
4928         ret = 0;
4929 
4930 unlock:
4931         pte_unmap_unlock(vmf->pte, vmf->ptl);
4932         return ret;
4933 }
4934 
4935 static unsigned long fault_around_pages __read_mostly =
4936         65536 >> PAGE_SHIFT;
4937 
4938 #ifdef CONFIG_DEBUG_FS
4939 static int fault_around_bytes_get(void *data, u64 *val)
4940 {
4941         *val = fault_around_pages << PAGE_SHIFT;
4942         return 0;
4943 }
4944 
4945 /*
4946  * fault_around_bytes must be rounded down to the nearest page order as it's
4947  * what do_fault_around() expects to see.
4948  */
4949 static int fault_around_bytes_set(void *data, u64 val)
4950 {
4951         if (val / PAGE_SIZE > PTRS_PER_PTE)
4952                 return -EINVAL;
4953 
4954         /*
4955          * The minimum value is 1 page, however this results in no fault-around
4956          * at all. See should_fault_around().
4957          */
4958         val = max(val, PAGE_SIZE);
4959         fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4960 
4961         return 0;
4962 }
4963 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4964                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4965 
4966 static int __init fault_around_debugfs(void)
4967 {
4968         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4969                                    &fault_around_bytes_fops);
4970         return 0;
4971 }
4972 late_initcall(fault_around_debugfs);
4973 #endif
4974 
4975 /*
4976  * do_fault_around() tries to map few pages around the fault address. The hope
4977  * is that the pages will be needed soon and this will lower the number of
4978  * faults to handle.
4979  *
4980  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4981  * not ready to be mapped: not up-to-date, locked, etc.
4982  *
4983  * This function doesn't cross VMA or page table boundaries, in order to call
4984  * map_pages() and acquire a PTE lock only once.
4985  *
4986  * fault_around_pages defines how many pages we'll try to map.
4987  * do_fault_around() expects it to be set to a power of two less than or equal
4988  * to PTRS_PER_PTE.
4989  *
4990  * The virtual address of the area that we map is naturally aligned to
4991  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4992  * (and therefore to page order).  This way it's easier to guarantee
4993  * that we don't cross page table boundaries.
4994  */
4995 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4996 {
4997         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4998         pgoff_t pte_off = pte_index(vmf->address);
4999         /* The page offset of vmf->address within the VMA. */
5000         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5001         pgoff_t from_pte, to_pte;
5002         vm_fault_t ret;
5003 
5004         /* The PTE offset of the start address, clamped to the VMA. */
5005         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5006                        pte_off - min(pte_off, vma_off));
5007 
5008         /* The PTE offset of the end address, clamped to the VMA and PTE. */
5009         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5010                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5011 
5012         if (pmd_none(*vmf->pmd)) {
5013                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5014                 if (!vmf->prealloc_pte)
5015                         return VM_FAULT_OOM;
5016         }
5017 
5018         rcu_read_lock();
5019         ret = vmf->vma->vm_ops->map_pages(vmf,
5020                         vmf->pgoff + from_pte - pte_off,
5021                         vmf->pgoff + to_pte - pte_off);
5022         rcu_read_unlock();
5023 
5024         return ret;
5025 }
5026 
5027 /* Return true if we should do read fault-around, false otherwise */
5028 static inline bool should_fault_around(struct vm_fault *vmf)
5029 {
5030         /* No ->map_pages?  No way to fault around... */
5031         if (!vmf->vma->vm_ops->map_pages)
5032                 return false;
5033 
5034         if (uffd_disable_fault_around(vmf->vma))
5035                 return false;
5036 
5037         /* A single page implies no faulting 'around' at all. */
5038         return fault_around_pages > 1;
5039 }
5040 
5041 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5042 {
5043         vm_fault_t ret = 0;
5044         struct folio *folio;
5045 
5046         /*
5047          * Let's call ->map_pages() first and use ->fault() as fallback
5048          * if page by the offset is not ready to be mapped (cold cache or
5049          * something).
5050          */
5051         if (should_fault_around(vmf)) {
5052                 ret = do_fault_around(vmf);
5053                 if (ret)
5054                         return ret;
5055         }
5056 
5057         ret = vmf_can_call_fault(vmf);
5058         if (ret)
5059                 return ret;
5060 
5061         ret = __do_fault(vmf);
5062         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5063                 return ret;
5064 
5065         ret |= finish_fault(vmf);
5066         folio = page_folio(vmf->page);
5067         folio_unlock(folio);
5068         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5069                 folio_put(folio);
5070         return ret;
5071 }
5072 
5073 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5074 {
5075         struct vm_area_struct *vma = vmf->vma;
5076         struct folio *folio;
5077         vm_fault_t ret;
5078 
5079         ret = vmf_can_call_fault(vmf);
5080         if (!ret)
5081                 ret = vmf_anon_prepare(vmf);
5082         if (ret)
5083                 return ret;
5084 
5085         folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5086         if (!folio)
5087                 return VM_FAULT_OOM;
5088 
5089         vmf->cow_page = &folio->page;
5090 
5091         ret = __do_fault(vmf);
5092         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5093                 goto uncharge_out;
5094         if (ret & VM_FAULT_DONE_COW)
5095                 return ret;
5096 
5097         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
5098         __folio_mark_uptodate(folio);
5099 
5100         ret |= finish_fault(vmf);
5101         unlock_page(vmf->page);
5102         put_page(vmf->page);
5103         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5104                 goto uncharge_out;
5105         return ret;
5106 uncharge_out:
5107         folio_put(folio);
5108         return ret;
5109 }
5110 
5111 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5112 {
5113         struct vm_area_struct *vma = vmf->vma;
5114         vm_fault_t ret, tmp;
5115         struct folio *folio;
5116 
5117         ret = vmf_can_call_fault(vmf);
5118         if (ret)
5119                 return ret;
5120 
5121         ret = __do_fault(vmf);
5122         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5123                 return ret;
5124 
5125         folio = page_folio(vmf->page);
5126 
5127         /*
5128          * Check if the backing address space wants to know that the page is
5129          * about to become writable
5130          */
5131         if (vma->vm_ops->page_mkwrite) {
5132                 folio_unlock(folio);
5133                 tmp = do_page_mkwrite(vmf, folio);
5134                 if (unlikely(!tmp ||
5135                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5136                         folio_put(folio);
5137                         return tmp;
5138                 }
5139         }
5140 
5141         ret |= finish_fault(vmf);
5142         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5143                                         VM_FAULT_RETRY))) {
5144                 folio_unlock(folio);
5145                 folio_put(folio);
5146                 return ret;
5147         }
5148 
5149         ret |= fault_dirty_shared_page(vmf);
5150         return ret;
5151 }
5152 
5153 /*
5154  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5155  * but allow concurrent faults).
5156  * The mmap_lock may have been released depending on flags and our
5157  * return value.  See filemap_fault() and __folio_lock_or_retry().
5158  * If mmap_lock is released, vma may become invalid (for example
5159  * by other thread calling munmap()).
5160  */
5161 static vm_fault_t do_fault(struct vm_fault *vmf)
5162 {
5163         struct vm_area_struct *vma = vmf->vma;
5164         struct mm_struct *vm_mm = vma->vm_mm;
5165         vm_fault_t ret;
5166 
5167         /*
5168          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5169          */
5170         if (!vma->vm_ops->fault) {
5171                 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5172                                                vmf->address, &vmf->ptl);
5173                 if (unlikely(!vmf->pte))
5174                         ret = VM_FAULT_SIGBUS;
5175                 else {
5176                         /*
5177                          * Make sure this is not a temporary clearing of pte
5178                          * by holding ptl and checking again. A R/M/W update
5179                          * of pte involves: take ptl, clearing the pte so that
5180                          * we don't have concurrent modification by hardware
5181                          * followed by an update.
5182                          */
5183                         if (unlikely(pte_none(ptep_get(vmf->pte))))
5184                                 ret = VM_FAULT_SIGBUS;
5185                         else
5186                                 ret = VM_FAULT_NOPAGE;
5187 
5188                         pte_unmap_unlock(vmf->pte, vmf->ptl);
5189                 }
5190         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5191                 ret = do_read_fault(vmf);
5192         else if (!(vma->vm_flags & VM_SHARED))
5193                 ret = do_cow_fault(vmf);
5194         else
5195                 ret = do_shared_fault(vmf);
5196 
5197         /* preallocated pagetable is unused: free it */
5198         if (vmf->prealloc_pte) {
5199                 pte_free(vm_mm, vmf->prealloc_pte);
5200                 vmf->prealloc_pte = NULL;
5201         }
5202         return ret;
5203 }
5204 
5205 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5206                       unsigned long addr, int page_nid, int *flags)
5207 {
5208         struct vm_area_struct *vma = vmf->vma;
5209 
5210         /* Record the current PID acceesing VMA */
5211         vma_set_access_pid_bit(vma);
5212 
5213         count_vm_numa_event(NUMA_HINT_FAULTS);
5214         if (page_nid == numa_node_id()) {
5215                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5216                 *flags |= TNF_FAULT_LOCAL;
5217         }
5218 
5219         return mpol_misplaced(folio, vmf, addr);
5220 }
5221 
5222 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5223                                         unsigned long fault_addr, pte_t *fault_pte,
5224                                         bool writable)
5225 {
5226         pte_t pte, old_pte;
5227 
5228         old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5229         pte = pte_modify(old_pte, vma->vm_page_prot);
5230         pte = pte_mkyoung(pte);
5231         if (writable)
5232                 pte = pte_mkwrite(pte, vma);
5233         ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5234         update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5235 }
5236 
5237 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5238                                        struct folio *folio, pte_t fault_pte,
5239                                        bool ignore_writable, bool pte_write_upgrade)
5240 {
5241         int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5242         unsigned long start, end, addr = vmf->address;
5243         unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5244         unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5245         pte_t *start_ptep;
5246 
5247         /* Stay within the VMA and within the page table. */
5248         start = max3(addr_start, pt_start, vma->vm_start);
5249         end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5250                    vma->vm_end);
5251         start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5252 
5253         /* Restore all PTEs' mapping of the large folio */
5254         for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5255                 pte_t ptent = ptep_get(start_ptep);
5256                 bool writable = false;
5257 
5258                 if (!pte_present(ptent) || !pte_protnone(ptent))
5259                         continue;
5260 
5261                 if (pfn_folio(pte_pfn(ptent)) != folio)
5262                         continue;
5263 
5264                 if (!ignore_writable) {
5265                         ptent = pte_modify(ptent, vma->vm_page_prot);
5266                         writable = pte_write(ptent);
5267                         if (!writable && pte_write_upgrade &&
5268                             can_change_pte_writable(vma, addr, ptent))
5269                                 writable = true;
5270                 }
5271 
5272                 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5273         }
5274 }
5275 
5276 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5277 {
5278         struct vm_area_struct *vma = vmf->vma;
5279         struct folio *folio = NULL;
5280         int nid = NUMA_NO_NODE;
5281         bool writable = false, ignore_writable = false;
5282         bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5283         int last_cpupid;
5284         int target_nid;
5285         pte_t pte, old_pte;
5286         int flags = 0, nr_pages;
5287 
5288         /*
5289          * The pte cannot be used safely until we verify, while holding the page
5290          * table lock, that its contents have not changed during fault handling.
5291          */
5292         spin_lock(vmf->ptl);
5293         /* Read the live PTE from the page tables: */
5294         old_pte = ptep_get(vmf->pte);
5295 
5296         if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5297                 pte_unmap_unlock(vmf->pte, vmf->ptl);
5298                 goto out;
5299         }
5300 
5301         pte = pte_modify(old_pte, vma->vm_page_prot);
5302 
5303         /*
5304          * Detect now whether the PTE could be writable; this information
5305          * is only valid while holding the PT lock.
5306          */
5307         writable = pte_write(pte);
5308         if (!writable && pte_write_upgrade &&
5309             can_change_pte_writable(vma, vmf->address, pte))
5310                 writable = true;
5311 
5312         folio = vm_normal_folio(vma, vmf->address, pte);
5313         if (!folio || folio_is_zone_device(folio))
5314                 goto out_map;
5315 
5316         /*
5317          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5318          * much anyway since they can be in shared cache state. This misses
5319          * the case where a mapping is writable but the process never writes
5320          * to it but pte_write gets cleared during protection updates and
5321          * pte_dirty has unpredictable behaviour between PTE scan updates,
5322          * background writeback, dirty balancing and application behaviour.
5323          */
5324         if (!writable)
5325                 flags |= TNF_NO_GROUP;
5326 
5327         /*
5328          * Flag if the folio is shared between multiple address spaces. This
5329          * is later used when determining whether to group tasks together
5330          */
5331         if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5332                 flags |= TNF_SHARED;
5333 
5334         nid = folio_nid(folio);
5335         nr_pages = folio_nr_pages(folio);
5336         /*
5337          * For memory tiering mode, cpupid of slow memory page is used
5338          * to record page access time.  So use default value.
5339          */
5340         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5341             !node_is_toptier(nid))
5342                 last_cpupid = (-1 & LAST_CPUPID_MASK);
5343         else
5344                 last_cpupid = folio_last_cpupid(folio);
5345         target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5346         if (target_nid == NUMA_NO_NODE)
5347                 goto out_map;
5348         if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5349                 flags |= TNF_MIGRATE_FAIL;
5350                 goto out_map;
5351         }
5352         /* The folio is isolated and isolation code holds a folio reference. */
5353         pte_unmap_unlock(vmf->pte, vmf->ptl);
5354         writable = false;
5355         ignore_writable = true;
5356 
5357         /* Migrate to the requested node */
5358         if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5359                 nid = target_nid;
5360                 flags |= TNF_MIGRATED;
5361         } else {
5362                 flags |= TNF_MIGRATE_FAIL;
5363                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5364                                                vmf->address, &vmf->ptl);
5365                 if (unlikely(!vmf->pte))
5366                         goto out;
5367                 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5368                         pte_unmap_unlock(vmf->pte, vmf->ptl);
5369                         goto out;
5370                 }
5371                 goto out_map;
5372         }
5373 
5374 out:
5375         if (nid != NUMA_NO_NODE)
5376                 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5377         return 0;
5378 out_map:
5379         /*
5380          * Make it present again, depending on how arch implements
5381          * non-accessible ptes, some can allow access by kernel mode.
5382          */
5383         if (folio && folio_test_large(folio))
5384                 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5385                                            pte_write_upgrade);
5386         else
5387                 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5388                                             writable);
5389         pte_unmap_unlock(vmf->pte, vmf->ptl);
5390         goto out;
5391 }
5392 
5393 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5394 {
5395         struct vm_area_struct *vma = vmf->vma;
5396         if (vma_is_anonymous(vma))
5397                 return do_huge_pmd_anonymous_page(vmf);
5398         if (vma->vm_ops->huge_fault)
5399                 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5400         return VM_FAULT_FALLBACK;
5401 }
5402 
5403 /* `inline' is required to avoid gcc 4.1.2 build error */
5404 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5405 {
5406         struct vm_area_struct *vma = vmf->vma;
5407         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5408         vm_fault_t ret;
5409 
5410         if (vma_is_anonymous(vma)) {
5411                 if (likely(!unshare) &&
5412                     userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5413                         if (userfaultfd_wp_async(vmf->vma))
5414                                 goto split;
5415                         return handle_userfault(vmf, VM_UFFD_WP);
5416                 }
5417                 return do_huge_pmd_wp_page(vmf);
5418         }
5419 
5420         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5421                 if (vma->vm_ops->huge_fault) {
5422                         ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5423                         if (!(ret & VM_FAULT_FALLBACK))
5424                                 return ret;
5425                 }
5426         }
5427 
5428 split:
5429         /* COW or write-notify handled on pte level: split pmd. */
5430         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5431 
5432         return VM_FAULT_FALLBACK;
5433 }
5434 
5435 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5436 {
5437 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
5438         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5439         struct vm_area_struct *vma = vmf->vma;
5440         /* No support for anonymous transparent PUD pages yet */
5441         if (vma_is_anonymous(vma))
5442                 return VM_FAULT_FALLBACK;
5443         if (vma->vm_ops->huge_fault)
5444                 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5445 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5446         return VM_FAULT_FALLBACK;
5447 }
5448 
5449 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5450 {
5451 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
5452         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5453         struct vm_area_struct *vma = vmf->vma;
5454         vm_fault_t ret;
5455 
5456         /* No support for anonymous transparent PUD pages yet */
5457         if (vma_is_anonymous(vma))
5458                 goto split;
5459         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5460                 if (vma->vm_ops->huge_fault) {
5461                         ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5462                         if (!(ret & VM_FAULT_FALLBACK))
5463                                 return ret;
5464                 }
5465         }
5466 split:
5467         /* COW or write-notify not handled on PUD level: split pud.*/
5468         __split_huge_pud(vma, vmf->pud, vmf->address);
5469 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5470         return VM_FAULT_FALLBACK;
5471 }
5472 
5473 /*
5474  * These routines also need to handle stuff like marking pages dirty
5475  * and/or accessed for architectures that don't do it in hardware (most
5476  * RISC architectures).  The early dirtying is also good on the i386.
5477  *
5478  * There is also a hook called "update_mmu_cache()" that architectures
5479  * with external mmu caches can use to update those (ie the Sparc or
5480  * PowerPC hashed page tables that act as extended TLBs).
5481  *
5482  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5483  * concurrent faults).
5484  *
5485  * The mmap_lock may have been released depending on flags and our return value.
5486  * See filemap_fault() and __folio_lock_or_retry().
5487  */
5488 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5489 {
5490         pte_t entry;
5491 
5492         if (unlikely(pmd_none(*vmf->pmd))) {
5493                 /*
5494                  * Leave __pte_alloc() until later: because vm_ops->fault may
5495                  * want to allocate huge page, and if we expose page table
5496                  * for an instant, it will be difficult to retract from
5497                  * concurrent faults and from rmap lookups.
5498                  */
5499                 vmf->pte = NULL;
5500                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5501         } else {
5502                 /*
5503                  * A regular pmd is established and it can't morph into a huge
5504                  * pmd by anon khugepaged, since that takes mmap_lock in write
5505                  * mode; but shmem or file collapse to THP could still morph
5506                  * it into a huge pmd: just retry later if so.
5507                  */
5508                 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5509                                                  vmf->address, &vmf->ptl);
5510                 if (unlikely(!vmf->pte))
5511                         return 0;
5512                 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5513                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5514 
5515                 if (pte_none(vmf->orig_pte)) {
5516                         pte_unmap(vmf->pte);
5517                         vmf->pte = NULL;
5518                 }
5519         }
5520 
5521         if (!vmf->pte)
5522                 return do_pte_missing(vmf);
5523 
5524         if (!pte_present(vmf->orig_pte))
5525                 return do_swap_page(vmf);
5526 
5527         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5528                 return do_numa_page(vmf);
5529 
5530         spin_lock(vmf->ptl);
5531         entry = vmf->orig_pte;
5532         if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5533                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5534                 goto unlock;
5535         }
5536         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5537                 if (!pte_write(entry))
5538                         return do_wp_page(vmf);
5539                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5540                         entry = pte_mkdirty(entry);
5541         }
5542         entry = pte_mkyoung(entry);
5543         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5544                                 vmf->flags & FAULT_FLAG_WRITE)) {
5545                 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5546                                 vmf->pte, 1);
5547         } else {
5548                 /* Skip spurious TLB flush for retried page fault */
5549                 if (vmf->flags & FAULT_FLAG_TRIED)
5550                         goto unlock;
5551                 /*
5552                  * This is needed only for protection faults but the arch code
5553                  * is not yet telling us if this is a protection fault or not.
5554                  * This still avoids useless tlb flushes for .text page faults
5555                  * with threads.
5556                  */
5557                 if (vmf->flags & FAULT_FLAG_WRITE)
5558                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5559                                                      vmf->pte);
5560         }
5561 unlock:
5562         pte_unmap_unlock(vmf->pte, vmf->ptl);
5563         return 0;
5564 }
5565 
5566 /*
5567  * On entry, we hold either the VMA lock or the mmap_lock
5568  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5569  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5570  * and __folio_lock_or_retry().
5571  */
5572 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5573                 unsigned long address, unsigned int flags)
5574 {
5575         struct vm_fault vmf = {
5576                 .vma = vma,
5577                 .address = address & PAGE_MASK,
5578                 .real_address = address,
5579                 .flags = flags,
5580                 .pgoff = linear_page_index(vma, address),
5581                 .gfp_mask = __get_fault_gfp_mask(vma),
5582         };
5583         struct mm_struct *mm = vma->vm_mm;
5584         unsigned long vm_flags = vma->vm_flags;
5585         pgd_t *pgd;
5586         p4d_t *p4d;
5587         vm_fault_t ret;
5588 
5589         pgd = pgd_offset(mm, address);
5590         p4d = p4d_alloc(mm, pgd, address);
5591         if (!p4d)
5592                 return VM_FAULT_OOM;
5593 
5594         vmf.pud = pud_alloc(mm, p4d, address);
5595         if (!vmf.pud)
5596                 return VM_FAULT_OOM;
5597 retry_pud:
5598         if (pud_none(*vmf.pud) &&
5599             thp_vma_allowable_order(vma, vm_flags,
5600                                 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5601                 ret = create_huge_pud(&vmf);
5602                 if (!(ret & VM_FAULT_FALLBACK))
5603                         return ret;
5604         } else {
5605                 pud_t orig_pud = *vmf.pud;
5606 
5607                 barrier();
5608                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5609 
5610                         /*
5611                          * TODO once we support anonymous PUDs: NUMA case and
5612                          * FAULT_FLAG_UNSHARE handling.
5613                          */
5614                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5615                                 ret = wp_huge_pud(&vmf, orig_pud);
5616                                 if (!(ret & VM_FAULT_FALLBACK))
5617                                         return ret;
5618                         } else {
5619                                 huge_pud_set_accessed(&vmf, orig_pud);
5620                                 return 0;
5621                         }
5622                 }
5623         }
5624 
5625         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5626         if (!vmf.pmd)
5627                 return VM_FAULT_OOM;
5628 
5629         /* Huge pud page fault raced with pmd_alloc? */
5630         if (pud_trans_unstable(vmf.pud))
5631                 goto retry_pud;
5632 
5633         if (pmd_none(*vmf.pmd) &&
5634             thp_vma_allowable_order(vma, vm_flags,
5635                                 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5636                 ret = create_huge_pmd(&vmf);
5637                 if (!(ret & VM_FAULT_FALLBACK))
5638                         return ret;
5639         } else {
5640                 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5641 
5642                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5643                         VM_BUG_ON(thp_migration_supported() &&
5644                                           !is_pmd_migration_entry(vmf.orig_pmd));
5645                         if (is_pmd_migration_entry(vmf.orig_pmd))
5646                                 pmd_migration_entry_wait(mm, vmf.pmd);
5647                         return 0;
5648                 }
5649                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5650                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5651                                 return do_huge_pmd_numa_page(&vmf);
5652 
5653                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5654                             !pmd_write(vmf.orig_pmd)) {
5655                                 ret = wp_huge_pmd(&vmf);
5656                                 if (!(ret & VM_FAULT_FALLBACK))
5657                                         return ret;
5658                         } else {
5659                                 huge_pmd_set_accessed(&vmf);
5660                                 return 0;
5661                         }
5662                 }
5663         }
5664 
5665         return handle_pte_fault(&vmf);
5666 }
5667 
5668 /**
5669  * mm_account_fault - Do page fault accounting
5670  * @mm: mm from which memcg should be extracted. It can be NULL.
5671  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5672  *        of perf event counters, but we'll still do the per-task accounting to
5673  *        the task who triggered this page fault.
5674  * @address: the faulted address.
5675  * @flags: the fault flags.
5676  * @ret: the fault retcode.
5677  *
5678  * This will take care of most of the page fault accounting.  Meanwhile, it
5679  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5680  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5681  * still be in per-arch page fault handlers at the entry of page fault.
5682  */
5683 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5684                                     unsigned long address, unsigned int flags,
5685                                     vm_fault_t ret)
5686 {
5687         bool major;
5688 
5689         /* Incomplete faults will be accounted upon completion. */
5690         if (ret & VM_FAULT_RETRY)
5691                 return;
5692 
5693         /*
5694          * To preserve the behavior of older kernels, PGFAULT counters record
5695          * both successful and failed faults, as opposed to perf counters,
5696          * which ignore failed cases.
5697          */
5698         count_vm_event(PGFAULT);
5699         count_memcg_event_mm(mm, PGFAULT);
5700 
5701         /*
5702          * Do not account for unsuccessful faults (e.g. when the address wasn't
5703          * valid).  That includes arch_vma_access_permitted() failing before
5704          * reaching here. So this is not a "this many hardware page faults"
5705          * counter.  We should use the hw profiling for that.
5706          */
5707         if (ret & VM_FAULT_ERROR)
5708                 return;
5709 
5710         /*
5711          * We define the fault as a major fault when the final successful fault
5712          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5713          * handle it immediately previously).
5714          */
5715         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5716 
5717         if (major)
5718                 current->maj_flt++;
5719         else
5720                 current->min_flt++;
5721 
5722         /*
5723          * If the fault is done for GUP, regs will be NULL.  We only do the
5724          * accounting for the per thread fault counters who triggered the
5725          * fault, and we skip the perf event updates.
5726          */
5727         if (!regs)
5728                 return;
5729 
5730         if (major)
5731                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5732         else
5733                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5734 }
5735 
5736 #ifdef CONFIG_LRU_GEN
5737 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5738 {
5739         /* the LRU algorithm only applies to accesses with recency */
5740         current->in_lru_fault = vma_has_recency(vma);
5741 }
5742 
5743 static void lru_gen_exit_fault(void)
5744 {
5745         current->in_lru_fault = false;
5746 }
5747 #else
5748 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5749 {
5750 }
5751 
5752 static void lru_gen_exit_fault(void)
5753 {
5754 }
5755 #endif /* CONFIG_LRU_GEN */
5756 
5757 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5758                                        unsigned int *flags)
5759 {
5760         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5761                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5762                         return VM_FAULT_SIGSEGV;
5763                 /*
5764                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5765                  * just treat it like an ordinary read-fault otherwise.
5766                  */
5767                 if (!is_cow_mapping(vma->vm_flags))
5768                         *flags &= ~FAULT_FLAG_UNSHARE;
5769         } else if (*flags & FAULT_FLAG_WRITE) {
5770                 /* Write faults on read-only mappings are impossible ... */
5771                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5772                         return VM_FAULT_SIGSEGV;
5773                 /* ... and FOLL_FORCE only applies to COW mappings. */
5774                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5775                                  !is_cow_mapping(vma->vm_flags)))
5776                         return VM_FAULT_SIGSEGV;
5777         }
5778 #ifdef CONFIG_PER_VMA_LOCK
5779         /*
5780          * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5781          * the assumption that lock is dropped on VM_FAULT_RETRY.
5782          */
5783         if (WARN_ON_ONCE((*flags &
5784                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5785                         (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5786                 return VM_FAULT_SIGSEGV;
5787 #endif
5788 
5789         return 0;
5790 }
5791 
5792 /*
5793  * By the time we get here, we already hold the mm semaphore
5794  *
5795  * The mmap_lock may have been released depending on flags and our
5796  * return value.  See filemap_fault() and __folio_lock_or_retry().
5797  */
5798 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5799                            unsigned int flags, struct pt_regs *regs)
5800 {
5801         /* If the fault handler drops the mmap_lock, vma may be freed */
5802         struct mm_struct *mm = vma->vm_mm;
5803         vm_fault_t ret;
5804         bool is_droppable;
5805 
5806         __set_current_state(TASK_RUNNING);
5807 
5808         ret = sanitize_fault_flags(vma, &flags);
5809         if (ret)
5810                 goto out;
5811 
5812         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5813                                             flags & FAULT_FLAG_INSTRUCTION,
5814                                             flags & FAULT_FLAG_REMOTE)) {
5815                 ret = VM_FAULT_SIGSEGV;
5816                 goto out;
5817         }
5818 
5819         is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
5820 
5821         /*
5822          * Enable the memcg OOM handling for faults triggered in user
5823          * space.  Kernel faults are handled more gracefully.
5824          */
5825         if (flags & FAULT_FLAG_USER)
5826                 mem_cgroup_enter_user_fault();
5827 
5828         lru_gen_enter_fault(vma);
5829 
5830         if (unlikely(is_vm_hugetlb_page(vma)))
5831                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5832         else
5833                 ret = __handle_mm_fault(vma, address, flags);
5834 
5835         /*
5836          * Warning: It is no longer safe to dereference vma-> after this point,
5837          * because mmap_lock might have been dropped by __handle_mm_fault(), so
5838          * vma might be destroyed from underneath us.
5839          */
5840 
5841         lru_gen_exit_fault();
5842 
5843         /* If the mapping is droppable, then errors due to OOM aren't fatal. */
5844         if (is_droppable)
5845                 ret &= ~VM_FAULT_OOM;
5846 
5847         if (flags & FAULT_FLAG_USER) {
5848                 mem_cgroup_exit_user_fault();
5849                 /*
5850                  * The task may have entered a memcg OOM situation but
5851                  * if the allocation error was handled gracefully (no
5852                  * VM_FAULT_OOM), there is no need to kill anything.
5853                  * Just clean up the OOM state peacefully.
5854                  */
5855                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5856                         mem_cgroup_oom_synchronize(false);
5857         }
5858 out:
5859         mm_account_fault(mm, regs, address, flags, ret);
5860 
5861         return ret;
5862 }
5863 EXPORT_SYMBOL_GPL(handle_mm_fault);
5864 
5865 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5866 #include <linux/extable.h>
5867 
5868 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5869 {
5870         if (likely(mmap_read_trylock(mm)))
5871                 return true;
5872 
5873         if (regs && !user_mode(regs)) {
5874                 unsigned long ip = exception_ip(regs);
5875                 if (!search_exception_tables(ip))
5876                         return false;
5877         }
5878 
5879         return !mmap_read_lock_killable(mm);
5880 }
5881 
5882 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5883 {
5884         /*
5885          * We don't have this operation yet.
5886          *
5887          * It should be easy enough to do: it's basically a
5888          *    atomic_long_try_cmpxchg_acquire()
5889          * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5890          * it also needs the proper lockdep magic etc.
5891          */
5892         return false;
5893 }
5894 
5895 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5896 {
5897         mmap_read_unlock(mm);
5898         if (regs && !user_mode(regs)) {
5899                 unsigned long ip = exception_ip(regs);
5900                 if (!search_exception_tables(ip))
5901                         return false;
5902         }
5903         return !mmap_write_lock_killable(mm);
5904 }
5905 
5906 /*
5907  * Helper for page fault handling.
5908  *
5909  * This is kind of equivalend to "mmap_read_lock()" followed
5910  * by "find_extend_vma()", except it's a lot more careful about
5911  * the locking (and will drop the lock on failure).
5912  *
5913  * For example, if we have a kernel bug that causes a page
5914  * fault, we don't want to just use mmap_read_lock() to get
5915  * the mm lock, because that would deadlock if the bug were
5916  * to happen while we're holding the mm lock for writing.
5917  *
5918  * So this checks the exception tables on kernel faults in
5919  * order to only do this all for instructions that are actually
5920  * expected to fault.
5921  *
5922  * We can also actually take the mm lock for writing if we
5923  * need to extend the vma, which helps the VM layer a lot.
5924  */
5925 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5926                         unsigned long addr, struct pt_regs *regs)
5927 {
5928         struct vm_area_struct *vma;
5929 
5930         if (!get_mmap_lock_carefully(mm, regs))
5931                 return NULL;
5932 
5933         vma = find_vma(mm, addr);
5934         if (likely(vma && (vma->vm_start <= addr)))
5935                 return vma;
5936 
5937         /*
5938          * Well, dang. We might still be successful, but only
5939          * if we can extend a vma to do so.
5940          */
5941         if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5942                 mmap_read_unlock(mm);
5943                 return NULL;
5944         }
5945 
5946         /*
5947          * We can try to upgrade the mmap lock atomically,
5948          * in which case we can continue to use the vma
5949          * we already looked up.
5950          *
5951          * Otherwise we'll have to drop the mmap lock and
5952          * re-take it, and also look up the vma again,
5953          * re-checking it.
5954          */
5955         if (!mmap_upgrade_trylock(mm)) {
5956                 if (!upgrade_mmap_lock_carefully(mm, regs))
5957                         return NULL;
5958 
5959                 vma = find_vma(mm, addr);
5960                 if (!vma)
5961                         goto fail;
5962                 if (vma->vm_start <= addr)
5963                         goto success;
5964                 if (!(vma->vm_flags & VM_GROWSDOWN))
5965                         goto fail;
5966         }
5967 
5968         if (expand_stack_locked(vma, addr))
5969                 goto fail;
5970 
5971 success:
5972         mmap_write_downgrade(mm);
5973         return vma;
5974 
5975 fail:
5976         mmap_write_unlock(mm);
5977         return NULL;
5978 }
5979 #endif
5980 
5981 #ifdef CONFIG_PER_VMA_LOCK
5982 /*
5983  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5984  * stable and not isolated. If the VMA is not found or is being modified the
5985  * function returns NULL.
5986  */
5987 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5988                                           unsigned long address)
5989 {
5990         MA_STATE(mas, &mm->mm_mt, address, address);
5991         struct vm_area_struct *vma;
5992 
5993         rcu_read_lock();
5994 retry:
5995         vma = mas_walk(&mas);
5996         if (!vma)
5997                 goto inval;
5998 
5999         if (!vma_start_read(vma))
6000                 goto inval;
6001 
6002         /* Check since vm_start/vm_end might change before we lock the VMA */
6003         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6004                 goto inval_end_read;
6005 
6006         /* Check if the VMA got isolated after we found it */
6007         if (vma->detached) {
6008                 vma_end_read(vma);
6009                 count_vm_vma_lock_event(VMA_LOCK_MISS);
6010                 /* The area was replaced with another one */
6011                 goto retry;
6012         }
6013 
6014         rcu_read_unlock();
6015         return vma;
6016 
6017 inval_end_read:
6018         vma_end_read(vma);
6019 inval:
6020         rcu_read_unlock();
6021         count_vm_vma_lock_event(VMA_LOCK_ABORT);
6022         return NULL;
6023 }
6024 #endif /* CONFIG_PER_VMA_LOCK */
6025 
6026 #ifndef __PAGETABLE_P4D_FOLDED
6027 /*
6028  * Allocate p4d page table.
6029  * We've already handled the fast-path in-line.
6030  */
6031 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6032 {
6033         p4d_t *new = p4d_alloc_one(mm, address);
6034         if (!new)
6035                 return -ENOMEM;
6036 
6037         spin_lock(&mm->page_table_lock);
6038         if (pgd_present(*pgd)) {        /* Another has populated it */
6039                 p4d_free(mm, new);
6040         } else {
6041                 smp_wmb(); /* See comment in pmd_install() */
6042                 pgd_populate(mm, pgd, new);
6043         }
6044         spin_unlock(&mm->page_table_lock);
6045         return 0;
6046 }
6047 #endif /* __PAGETABLE_P4D_FOLDED */
6048 
6049 #ifndef __PAGETABLE_PUD_FOLDED
6050 /*
6051  * Allocate page upper directory.
6052  * We've already handled the fast-path in-line.
6053  */
6054 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6055 {
6056         pud_t *new = pud_alloc_one(mm, address);
6057         if (!new)
6058                 return -ENOMEM;
6059 
6060         spin_lock(&mm->page_table_lock);
6061         if (!p4d_present(*p4d)) {
6062                 mm_inc_nr_puds(mm);
6063                 smp_wmb(); /* See comment in pmd_install() */
6064                 p4d_populate(mm, p4d, new);
6065         } else  /* Another has populated it */
6066                 pud_free(mm, new);
6067         spin_unlock(&mm->page_table_lock);
6068         return 0;
6069 }
6070 #endif /* __PAGETABLE_PUD_FOLDED */
6071 
6072 #ifndef __PAGETABLE_PMD_FOLDED
6073 /*
6074  * Allocate page middle directory.
6075  * We've already handled the fast-path in-line.
6076  */
6077 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6078 {
6079         spinlock_t *ptl;
6080         pmd_t *new = pmd_alloc_one(mm, address);
6081         if (!new)
6082                 return -ENOMEM;
6083 
6084         ptl = pud_lock(mm, pud);
6085         if (!pud_present(*pud)) {
6086                 mm_inc_nr_pmds(mm);
6087                 smp_wmb(); /* See comment in pmd_install() */
6088                 pud_populate(mm, pud, new);
6089         } else {        /* Another has populated it */
6090                 pmd_free(mm, new);
6091         }
6092         spin_unlock(ptl);
6093         return 0;
6094 }
6095 #endif /* __PAGETABLE_PMD_FOLDED */
6096 
6097 /**
6098  * follow_pte - look up PTE at a user virtual address
6099  * @vma: the memory mapping
6100  * @address: user virtual address
6101  * @ptepp: location to store found PTE
6102  * @ptlp: location to store the lock for the PTE
6103  *
6104  * On a successful return, the pointer to the PTE is stored in @ptepp;
6105  * the corresponding lock is taken and its location is stored in @ptlp.
6106  *
6107  * The contents of the PTE are only stable until @ptlp is released using
6108  * pte_unmap_unlock(). This function will fail if the PTE is non-present.
6109  * Present PTEs may include PTEs that map refcounted pages, such as
6110  * anonymous folios in COW mappings.
6111  *
6112  * Callers must be careful when relying on PTE content after
6113  * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
6114  * callers must protect against invalidation with MMU notifiers; otherwise
6115  * access to the PFN at a later point in time can trigger use-after-free.
6116  *
6117  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6118  * should be taken for read.
6119  *
6120  * This function must not be used to modify PTE content.
6121  *
6122  * Return: zero on success, -ve otherwise.
6123  */
6124 int follow_pte(struct vm_area_struct *vma, unsigned long address,
6125                pte_t **ptepp, spinlock_t **ptlp)
6126 {
6127         struct mm_struct *mm = vma->vm_mm;
6128         pgd_t *pgd;
6129         p4d_t *p4d;
6130         pud_t *pud;
6131         pmd_t *pmd;
6132         pte_t *ptep;
6133 
6134         mmap_assert_locked(mm);
6135         if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6136                 goto out;
6137 
6138         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6139                 goto out;
6140 
6141         pgd = pgd_offset(mm, address);
6142         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
6143                 goto out;
6144 
6145         p4d = p4d_offset(pgd, address);
6146         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
6147                 goto out;
6148 
6149         pud = pud_offset(p4d, address);
6150         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
6151                 goto out;
6152 
6153         pmd = pmd_offset(pud, address);
6154         VM_BUG_ON(pmd_trans_huge(*pmd));
6155 
6156         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
6157         if (!ptep)
6158                 goto out;
6159         if (!pte_present(ptep_get(ptep)))
6160                 goto unlock;
6161         *ptepp = ptep;
6162         return 0;
6163 unlock:
6164         pte_unmap_unlock(ptep, *ptlp);
6165 out:
6166         return -EINVAL;
6167 }
6168 EXPORT_SYMBOL_GPL(follow_pte);
6169 
6170 #ifdef CONFIG_HAVE_IOREMAP_PROT
6171 /**
6172  * generic_access_phys - generic implementation for iomem mmap access
6173  * @vma: the vma to access
6174  * @addr: userspace address, not relative offset within @vma
6175  * @buf: buffer to read/write
6176  * @len: length of transfer
6177  * @write: set to FOLL_WRITE when writing, otherwise reading
6178  *
6179  * This is a generic implementation for &vm_operations_struct.access for an
6180  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6181  * not page based.
6182  */
6183 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6184                         void *buf, int len, int write)
6185 {
6186         resource_size_t phys_addr;
6187         unsigned long prot = 0;
6188         void __iomem *maddr;
6189         pte_t *ptep, pte;
6190         spinlock_t *ptl;
6191         int offset = offset_in_page(addr);
6192         int ret = -EINVAL;
6193 
6194 retry:
6195         if (follow_pte(vma, addr, &ptep, &ptl))
6196                 return -EINVAL;
6197         pte = ptep_get(ptep);
6198         pte_unmap_unlock(ptep, ptl);
6199 
6200         prot = pgprot_val(pte_pgprot(pte));
6201         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6202 
6203         if ((write & FOLL_WRITE) && !pte_write(pte))
6204                 return -EINVAL;
6205 
6206         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6207         if (!maddr)
6208                 return -ENOMEM;
6209 
6210         if (follow_pte(vma, addr, &ptep, &ptl))
6211                 goto out_unmap;
6212 
6213         if (!pte_same(pte, ptep_get(ptep))) {
6214                 pte_unmap_unlock(ptep, ptl);
6215                 iounmap(maddr);
6216 
6217                 goto retry;
6218         }
6219 
6220         if (write)
6221                 memcpy_toio(maddr + offset, buf, len);
6222         else
6223                 memcpy_fromio(buf, maddr + offset, len);
6224         ret = len;
6225         pte_unmap_unlock(ptep, ptl);
6226 out_unmap:
6227         iounmap(maddr);
6228 
6229         return ret;
6230 }
6231 EXPORT_SYMBOL_GPL(generic_access_phys);
6232 #endif
6233 
6234 /*
6235  * Access another process' address space as given in mm.
6236  */
6237 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6238                               void *buf, int len, unsigned int gup_flags)
6239 {
6240         void *old_buf = buf;
6241         int write = gup_flags & FOLL_WRITE;
6242 
6243         if (mmap_read_lock_killable(mm))
6244                 return 0;
6245 
6246         /* Untag the address before looking up the VMA */
6247         addr = untagged_addr_remote(mm, addr);
6248 
6249         /* Avoid triggering the temporary warning in __get_user_pages */
6250         if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6251                 return 0;
6252 
6253         /* ignore errors, just check how much was successfully transferred */
6254         while (len) {
6255                 int bytes, offset;
6256                 void *maddr;
6257                 struct vm_area_struct *vma = NULL;
6258                 struct page *page = get_user_page_vma_remote(mm, addr,
6259                                                              gup_flags, &vma);
6260 
6261                 if (IS_ERR(page)) {
6262                         /* We might need to expand the stack to access it */
6263                         vma = vma_lookup(mm, addr);
6264                         if (!vma) {
6265                                 vma = expand_stack(mm, addr);
6266 
6267                                 /* mmap_lock was dropped on failure */
6268                                 if (!vma)
6269                                         return buf - old_buf;
6270 
6271                                 /* Try again if stack expansion worked */
6272                                 continue;
6273                         }
6274 
6275                         /*
6276                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
6277                          * we can access using slightly different code.
6278                          */
6279                         bytes = 0;
6280 #ifdef CONFIG_HAVE_IOREMAP_PROT
6281                         if (vma->vm_ops && vma->vm_ops->access)
6282                                 bytes = vma->vm_ops->access(vma, addr, buf,
6283                                                             len, write);
6284 #endif
6285                         if (bytes <= 0)
6286                                 break;
6287                 } else {
6288                         bytes = len;
6289                         offset = addr & (PAGE_SIZE-1);
6290                         if (bytes > PAGE_SIZE-offset)
6291                                 bytes = PAGE_SIZE-offset;
6292 
6293                         maddr = kmap_local_page(page);
6294                         if (write) {
6295                                 copy_to_user_page(vma, page, addr,
6296                                                   maddr + offset, buf, bytes);
6297                                 set_page_dirty_lock(page);
6298                         } else {
6299                                 copy_from_user_page(vma, page, addr,
6300                                                     buf, maddr + offset, bytes);
6301                         }
6302                         unmap_and_put_page(page, maddr);
6303                 }
6304                 len -= bytes;
6305                 buf += bytes;
6306                 addr += bytes;
6307         }
6308         mmap_read_unlock(mm);
6309 
6310         return buf - old_buf;
6311 }
6312 
6313 /**
6314  * access_remote_vm - access another process' address space
6315  * @mm:         the mm_struct of the target address space
6316  * @addr:       start address to access
6317  * @buf:        source or destination buffer
6318  * @len:        number of bytes to transfer
6319  * @gup_flags:  flags modifying lookup behaviour
6320  *
6321  * The caller must hold a reference on @mm.
6322  *
6323  * Return: number of bytes copied from source to destination.
6324  */
6325 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6326                 void *buf, int len, unsigned int gup_flags)
6327 {
6328         return __access_remote_vm(mm, addr, buf, len, gup_flags);
6329 }
6330 
6331 /*
6332  * Access another process' address space.
6333  * Source/target buffer must be kernel space,
6334  * Do not walk the page table directly, use get_user_pages
6335  */
6336 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6337                 void *buf, int len, unsigned int gup_flags)
6338 {
6339         struct mm_struct *mm;
6340         int ret;
6341 
6342         mm = get_task_mm(tsk);
6343         if (!mm)
6344                 return 0;
6345 
6346         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6347 
6348         mmput(mm);
6349 
6350         return ret;
6351 }
6352 EXPORT_SYMBOL_GPL(access_process_vm);
6353 
6354 /*
6355  * Print the name of a VMA.
6356  */
6357 void print_vma_addr(char *prefix, unsigned long ip)
6358 {
6359         struct mm_struct *mm = current->mm;
6360         struct vm_area_struct *vma;
6361 
6362         /*
6363          * we might be running from an atomic context so we cannot sleep
6364          */
6365         if (!mmap_read_trylock(mm))
6366                 return;
6367 
6368         vma = vma_lookup(mm, ip);
6369         if (vma && vma->vm_file) {
6370                 struct file *f = vma->vm_file;
6371                 ip -= vma->vm_start;
6372                 ip += vma->vm_pgoff << PAGE_SHIFT;
6373                 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6374                                 vma->vm_start,
6375                                 vma->vm_end - vma->vm_start);
6376         }
6377         mmap_read_unlock(mm);
6378 }
6379 
6380 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6381 void __might_fault(const char *file, int line)
6382 {
6383         if (pagefault_disabled())
6384                 return;
6385         __might_sleep(file, line);
6386 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6387         if (current->mm)
6388                 might_lock_read(&current->mm->mmap_lock);
6389 #endif
6390 }
6391 EXPORT_SYMBOL(__might_fault);
6392 #endif
6393 
6394 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6395 /*
6396  * Process all subpages of the specified huge page with the specified
6397  * operation.  The target subpage will be processed last to keep its
6398  * cache lines hot.
6399  */
6400 static inline int process_huge_page(
6401         unsigned long addr_hint, unsigned int nr_pages,
6402         int (*process_subpage)(unsigned long addr, int idx, void *arg),
6403         void *arg)
6404 {
6405         int i, n, base, l, ret;
6406         unsigned long addr = addr_hint &
6407                 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6408 
6409         /* Process target subpage last to keep its cache lines hot */
6410         might_sleep();
6411         n = (addr_hint - addr) / PAGE_SIZE;
6412         if (2 * n <= nr_pages) {
6413                 /* If target subpage in first half of huge page */
6414                 base = 0;
6415                 l = n;
6416                 /* Process subpages at the end of huge page */
6417                 for (i = nr_pages - 1; i >= 2 * n; i--) {
6418                         cond_resched();
6419                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6420                         if (ret)
6421                                 return ret;
6422                 }
6423         } else {
6424                 /* If target subpage in second half of huge page */
6425                 base = nr_pages - 2 * (nr_pages - n);
6426                 l = nr_pages - n;
6427                 /* Process subpages at the begin of huge page */
6428                 for (i = 0; i < base; i++) {
6429                         cond_resched();
6430                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6431                         if (ret)
6432                                 return ret;
6433                 }
6434         }
6435         /*
6436          * Process remaining subpages in left-right-left-right pattern
6437          * towards the target subpage
6438          */
6439         for (i = 0; i < l; i++) {
6440                 int left_idx = base + i;
6441                 int right_idx = base + 2 * l - 1 - i;
6442 
6443                 cond_resched();
6444                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6445                 if (ret)
6446                         return ret;
6447                 cond_resched();
6448                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6449                 if (ret)
6450                         return ret;
6451         }
6452         return 0;
6453 }
6454 
6455 static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6456                                 unsigned int nr_pages)
6457 {
6458         int i;
6459 
6460         might_sleep();
6461         for (i = 0; i < nr_pages; i++) {
6462                 cond_resched();
6463                 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6464         }
6465 }
6466 
6467 static int clear_subpage(unsigned long addr, int idx, void *arg)
6468 {
6469         struct folio *folio = arg;
6470 
6471         clear_user_highpage(folio_page(folio, idx), addr);
6472         return 0;
6473 }
6474 
6475 /**
6476  * folio_zero_user - Zero a folio which will be mapped to userspace.
6477  * @folio: The folio to zero.
6478  * @addr_hint: The address will be accessed or the base address if uncelar.
6479  */
6480 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6481 {
6482         unsigned int nr_pages = folio_nr_pages(folio);
6483 
6484         if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6485                 clear_gigantic_page(folio, addr_hint, nr_pages);
6486         else
6487                 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6488 }
6489 
6490 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6491                                    unsigned long addr,
6492                                    struct vm_area_struct *vma,
6493                                    unsigned int nr_pages)
6494 {
6495         int i;
6496         struct page *dst_page;
6497         struct page *src_page;
6498 
6499         for (i = 0; i < nr_pages; i++) {
6500                 dst_page = folio_page(dst, i);
6501                 src_page = folio_page(src, i);
6502 
6503                 cond_resched();
6504                 if (copy_mc_user_highpage(dst_page, src_page,
6505                                           addr + i*PAGE_SIZE, vma))
6506                         return -EHWPOISON;
6507         }
6508         return 0;
6509 }
6510 
6511 struct copy_subpage_arg {
6512         struct folio *dst;
6513         struct folio *src;
6514         struct vm_area_struct *vma;
6515 };
6516 
6517 static int copy_subpage(unsigned long addr, int idx, void *arg)
6518 {
6519         struct copy_subpage_arg *copy_arg = arg;
6520         struct page *dst = folio_page(copy_arg->dst, idx);
6521         struct page *src = folio_page(copy_arg->src, idx);
6522 
6523         if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6524                 return -EHWPOISON;
6525         return 0;
6526 }
6527 
6528 int copy_user_large_folio(struct folio *dst, struct folio *src,
6529                           unsigned long addr_hint, struct vm_area_struct *vma)
6530 {
6531         unsigned int nr_pages = folio_nr_pages(dst);
6532         struct copy_subpage_arg arg = {
6533                 .dst = dst,
6534                 .src = src,
6535                 .vma = vma,
6536         };
6537 
6538         if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6539                 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6540 
6541         return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6542 }
6543 
6544 long copy_folio_from_user(struct folio *dst_folio,
6545                            const void __user *usr_src,
6546                            bool allow_pagefault)
6547 {
6548         void *kaddr;
6549         unsigned long i, rc = 0;
6550         unsigned int nr_pages = folio_nr_pages(dst_folio);
6551         unsigned long ret_val = nr_pages * PAGE_SIZE;
6552         struct page *subpage;
6553 
6554         for (i = 0; i < nr_pages; i++) {
6555                 subpage = folio_page(dst_folio, i);
6556                 kaddr = kmap_local_page(subpage);
6557                 if (!allow_pagefault)
6558                         pagefault_disable();
6559                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6560                 if (!allow_pagefault)
6561                         pagefault_enable();
6562                 kunmap_local(kaddr);
6563 
6564                 ret_val -= (PAGE_SIZE - rc);
6565                 if (rc)
6566                         break;
6567 
6568                 flush_dcache_page(subpage);
6569 
6570                 cond_resched();
6571         }
6572         return ret_val;
6573 }
6574 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6575 
6576 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6577 
6578 static struct kmem_cache *page_ptl_cachep;
6579 
6580 void __init ptlock_cache_init(void)
6581 {
6582         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6583                         SLAB_PANIC, NULL);
6584 }
6585 
6586 bool ptlock_alloc(struct ptdesc *ptdesc)
6587 {
6588         spinlock_t *ptl;
6589 
6590         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6591         if (!ptl)
6592                 return false;
6593         ptdesc->ptl = ptl;
6594         return true;
6595 }
6596 
6597 void ptlock_free(struct ptdesc *ptdesc)
6598 {
6599         kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6600 }
6601 #endif
6602 
6603 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6604 {
6605         if (is_vm_hugetlb_page(vma))
6606                 hugetlb_vma_lock_read(vma);
6607 }
6608 
6609 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6610 {
6611         if (is_vm_hugetlb_page(vma))
6612                 hugetlb_vma_unlock_read(vma);
6613 }
6614 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php