~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/memory_hotplug.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/mm/memory_hotplug.c
  4  *
  5  *  Copyright (C)
  6  */
  7 
  8 #include <linux/stddef.h>
  9 #include <linux/mm.h>
 10 #include <linux/sched/signal.h>
 11 #include <linux/swap.h>
 12 #include <linux/interrupt.h>
 13 #include <linux/pagemap.h>
 14 #include <linux/compiler.h>
 15 #include <linux/export.h>
 16 #include <linux/writeback.h>
 17 #include <linux/slab.h>
 18 #include <linux/sysctl.h>
 19 #include <linux/cpu.h>
 20 #include <linux/memory.h>
 21 #include <linux/memremap.h>
 22 #include <linux/memory_hotplug.h>
 23 #include <linux/vmalloc.h>
 24 #include <linux/ioport.h>
 25 #include <linux/delay.h>
 26 #include <linux/migrate.h>
 27 #include <linux/page-isolation.h>
 28 #include <linux/pfn.h>
 29 #include <linux/suspend.h>
 30 #include <linux/mm_inline.h>
 31 #include <linux/firmware-map.h>
 32 #include <linux/stop_machine.h>
 33 #include <linux/hugetlb.h>
 34 #include <linux/memblock.h>
 35 #include <linux/compaction.h>
 36 #include <linux/rmap.h>
 37 #include <linux/module.h>
 38 
 39 #include <asm/tlbflush.h>
 40 
 41 #include "internal.h"
 42 #include "shuffle.h"
 43 
 44 enum {
 45         MEMMAP_ON_MEMORY_DISABLE = 0,
 46         MEMMAP_ON_MEMORY_ENABLE,
 47         MEMMAP_ON_MEMORY_FORCE,
 48 };
 49 
 50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
 51 
 52 static inline unsigned long memory_block_memmap_size(void)
 53 {
 54         return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
 55 }
 56 
 57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
 58 {
 59         unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
 60 
 61         /*
 62          * In "forced" memmap_on_memory mode, we add extra pages to align the
 63          * vmemmap size to cover full pageblocks. That way, we can add memory
 64          * even if the vmemmap size is not properly aligned, however, we might waste
 65          * memory.
 66          */
 67         if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
 68                 return pageblock_align(nr_pages);
 69         return nr_pages;
 70 }
 71 
 72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
 73 /*
 74  * memory_hotplug.memmap_on_memory parameter
 75  */
 76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
 77 {
 78         int ret, mode;
 79         bool enabled;
 80 
 81         if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
 82                 mode = MEMMAP_ON_MEMORY_FORCE;
 83         } else {
 84                 ret = kstrtobool(val, &enabled);
 85                 if (ret < 0)
 86                         return ret;
 87                 if (enabled)
 88                         mode = MEMMAP_ON_MEMORY_ENABLE;
 89                 else
 90                         mode = MEMMAP_ON_MEMORY_DISABLE;
 91         }
 92         *((int *)kp->arg) = mode;
 93         if (mode == MEMMAP_ON_MEMORY_FORCE) {
 94                 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
 95 
 96                 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
 97                              memmap_pages - PFN_UP(memory_block_memmap_size()));
 98         }
 99         return 0;
100 }
101 
102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104         int mode = *((int *)kp->arg);
105 
106         if (mode == MEMMAP_ON_MEMORY_FORCE)
107                 return sprintf(buffer, "force\n");
108         return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110 
111 static const struct kernel_param_ops memmap_mode_ops = {
112         .set = set_memmap_mode,
113         .get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117                  "With value \"force\" it could result in memory wastage due "
118                  "to memmap size limitations (Y/N/force)");
119 
120 static inline bool mhp_memmap_on_memory(void)
121 {
122         return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
125 static inline bool mhp_memmap_on_memory(void)
126 {
127         return false;
128 }
129 #endif
130 
131 enum {
132         ONLINE_POLICY_CONTIG_ZONES = 0,
133         ONLINE_POLICY_AUTO_MOVABLE,
134 };
135 
136 static const char * const online_policy_to_str[] = {
137         [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138         [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140 
141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143         int ret = sysfs_match_string(online_policy_to_str, val);
144 
145         if (ret < 0)
146                 return ret;
147         *((int *)kp->arg) = ret;
148         return 0;
149 }
150 
151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153         return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155 
156 /*
157  * memory_hotplug.online_policy: configure online behavior when onlining without
158  * specifying a zone (MMOP_ONLINE)
159  *
160  * "contig-zones": keep zone contiguous
161  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
163  */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166         .set = set_online_policy,
167         .get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171                 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172                 "Default: \"contig-zones\"");
173 
174 /*
175  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176  *
177  * The ratio represent an upper limit and the kernel might decide to not
178  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179  * doesn't allow for more MOVABLE memory.
180  */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184                 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185                 "in percent for \"auto-movable\" online policy. Default: 301");
186 
187 /*
188  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189  */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194                 "Consider numa node stats in addition to global stats in "
195                 "\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197 
198 /*
199  * online_page_callback contains pointer to current page onlining function.
200  * Initially it is generic_online_page(). If it is required it could be
201  * changed by calling set_online_page_callback() for callback registration
202  * and restore_online_page_callback() for generic callback restore.
203  */
204 
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207 
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209 
210 void get_online_mems(void)
211 {
212         percpu_down_read(&mem_hotplug_lock);
213 }
214 
215 void put_online_mems(void)
216 {
217         percpu_up_read(&mem_hotplug_lock);
218 }
219 
220 bool movable_node_enabled = false;
221 
222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223 int mhp_default_online_type = MMOP_OFFLINE;
224 #else
225 int mhp_default_online_type = MMOP_ONLINE;
226 #endif
227 
228 static int __init setup_memhp_default_state(char *str)
229 {
230         const int online_type = mhp_online_type_from_str(str);
231 
232         if (online_type >= 0)
233                 mhp_default_online_type = online_type;
234 
235         return 1;
236 }
237 __setup("memhp_default_state=", setup_memhp_default_state);
238 
239 void mem_hotplug_begin(void)
240 {
241         cpus_read_lock();
242         percpu_down_write(&mem_hotplug_lock);
243 }
244 
245 void mem_hotplug_done(void)
246 {
247         percpu_up_write(&mem_hotplug_lock);
248         cpus_read_unlock();
249 }
250 
251 u64 max_mem_size = U64_MAX;
252 
253 /* add this memory to iomem resource */
254 static struct resource *register_memory_resource(u64 start, u64 size,
255                                                  const char *resource_name)
256 {
257         struct resource *res;
258         unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259 
260         if (strcmp(resource_name, "System RAM"))
261                 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262 
263         if (!mhp_range_allowed(start, size, true))
264                 return ERR_PTR(-E2BIG);
265 
266         /*
267          * Make sure value parsed from 'mem=' only restricts memory adding
268          * while booting, so that memory hotplug won't be impacted. Please
269          * refer to document of 'mem=' in kernel-parameters.txt for more
270          * details.
271          */
272         if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273                 return ERR_PTR(-E2BIG);
274 
275         /*
276          * Request ownership of the new memory range.  This might be
277          * a child of an existing resource that was present but
278          * not marked as busy.
279          */
280         res = __request_region(&iomem_resource, start, size,
281                                resource_name, flags);
282 
283         if (!res) {
284                 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285                                 start, start + size);
286                 return ERR_PTR(-EEXIST);
287         }
288         return res;
289 }
290 
291 static void release_memory_resource(struct resource *res)
292 {
293         if (!res)
294                 return;
295         release_resource(res);
296         kfree(res);
297 }
298 
299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300 {
301         /*
302          * Disallow all operations smaller than a sub-section and only
303          * allow operations smaller than a section for
304          * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305          * enforces a larger memory_block_size_bytes() granularity for
306          * memory that will be marked online, so this check should only
307          * fire for direct arch_{add,remove}_memory() users outside of
308          * add_memory_resource().
309          */
310         unsigned long min_align;
311 
312         if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313                 min_align = PAGES_PER_SUBSECTION;
314         else
315                 min_align = PAGES_PER_SECTION;
316         if (!IS_ALIGNED(pfn | nr_pages, min_align))
317                 return -EINVAL;
318         return 0;
319 }
320 
321 /*
322  * Return page for the valid pfn only if the page is online. All pfn
323  * walkers which rely on the fully initialized page->flags and others
324  * should use this rather than pfn_valid && pfn_to_page
325  */
326 struct page *pfn_to_online_page(unsigned long pfn)
327 {
328         unsigned long nr = pfn_to_section_nr(pfn);
329         struct dev_pagemap *pgmap;
330         struct mem_section *ms;
331 
332         if (nr >= NR_MEM_SECTIONS)
333                 return NULL;
334 
335         ms = __nr_to_section(nr);
336         if (!online_section(ms))
337                 return NULL;
338 
339         /*
340          * Save some code text when online_section() +
341          * pfn_section_valid() are sufficient.
342          */
343         if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344                 return NULL;
345 
346         if (!pfn_section_valid(ms, pfn))
347                 return NULL;
348 
349         if (!online_device_section(ms))
350                 return pfn_to_page(pfn);
351 
352         /*
353          * Slowpath: when ZONE_DEVICE collides with
354          * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355          * the section may be 'offline' but 'valid'. Only
356          * get_dev_pagemap() can determine sub-section online status.
357          */
358         pgmap = get_dev_pagemap(pfn, NULL);
359         put_dev_pagemap(pgmap);
360 
361         /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362         if (pgmap)
363                 return NULL;
364 
365         return pfn_to_page(pfn);
366 }
367 EXPORT_SYMBOL_GPL(pfn_to_online_page);
368 
369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370                 struct mhp_params *params)
371 {
372         const unsigned long end_pfn = pfn + nr_pages;
373         unsigned long cur_nr_pages;
374         int err;
375         struct vmem_altmap *altmap = params->altmap;
376 
377         if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378                 return -EINVAL;
379 
380         VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381 
382         if (altmap) {
383                 /*
384                  * Validate altmap is within bounds of the total request
385                  */
386                 if (altmap->base_pfn != pfn
387                                 || vmem_altmap_offset(altmap) > nr_pages) {
388                         pr_warn_once("memory add fail, invalid altmap\n");
389                         return -EINVAL;
390                 }
391                 altmap->alloc = 0;
392         }
393 
394         if (check_pfn_span(pfn, nr_pages)) {
395                 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396                 return -EINVAL;
397         }
398 
399         for (; pfn < end_pfn; pfn += cur_nr_pages) {
400                 /* Select all remaining pages up to the next section boundary */
401                 cur_nr_pages = min(end_pfn - pfn,
402                                    SECTION_ALIGN_UP(pfn + 1) - pfn);
403                 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404                                          params->pgmap);
405                 if (err)
406                         break;
407                 cond_resched();
408         }
409         vmemmap_populate_print_last();
410         return err;
411 }
412 
413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415                                      unsigned long start_pfn,
416                                      unsigned long end_pfn)
417 {
418         for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419                 if (unlikely(!pfn_to_online_page(start_pfn)))
420                         continue;
421 
422                 if (unlikely(pfn_to_nid(start_pfn) != nid))
423                         continue;
424 
425                 if (zone != page_zone(pfn_to_page(start_pfn)))
426                         continue;
427 
428                 return start_pfn;
429         }
430 
431         return 0;
432 }
433 
434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436                                     unsigned long start_pfn,
437                                     unsigned long end_pfn)
438 {
439         unsigned long pfn;
440 
441         /* pfn is the end pfn of a memory section. */
442         pfn = end_pfn - 1;
443         for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444                 if (unlikely(!pfn_to_online_page(pfn)))
445                         continue;
446 
447                 if (unlikely(pfn_to_nid(pfn) != nid))
448                         continue;
449 
450                 if (zone != page_zone(pfn_to_page(pfn)))
451                         continue;
452 
453                 return pfn;
454         }
455 
456         return 0;
457 }
458 
459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460                              unsigned long end_pfn)
461 {
462         unsigned long pfn;
463         int nid = zone_to_nid(zone);
464 
465         if (zone->zone_start_pfn == start_pfn) {
466                 /*
467                  * If the section is smallest section in the zone, it need
468                  * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469                  * In this case, we find second smallest valid mem_section
470                  * for shrinking zone.
471                  */
472                 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473                                                 zone_end_pfn(zone));
474                 if (pfn) {
475                         zone->spanned_pages = zone_end_pfn(zone) - pfn;
476                         zone->zone_start_pfn = pfn;
477                 } else {
478                         zone->zone_start_pfn = 0;
479                         zone->spanned_pages = 0;
480                 }
481         } else if (zone_end_pfn(zone) == end_pfn) {
482                 /*
483                  * If the section is biggest section in the zone, it need
484                  * shrink zone->spanned_pages.
485                  * In this case, we find second biggest valid mem_section for
486                  * shrinking zone.
487                  */
488                 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489                                                start_pfn);
490                 if (pfn)
491                         zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492                 else {
493                         zone->zone_start_pfn = 0;
494                         zone->spanned_pages = 0;
495                 }
496         }
497 }
498 
499 static void update_pgdat_span(struct pglist_data *pgdat)
500 {
501         unsigned long node_start_pfn = 0, node_end_pfn = 0;
502         struct zone *zone;
503 
504         for (zone = pgdat->node_zones;
505              zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506                 unsigned long end_pfn = zone_end_pfn(zone);
507 
508                 /* No need to lock the zones, they can't change. */
509                 if (!zone->spanned_pages)
510                         continue;
511                 if (!node_end_pfn) {
512                         node_start_pfn = zone->zone_start_pfn;
513                         node_end_pfn = end_pfn;
514                         continue;
515                 }
516 
517                 if (end_pfn > node_end_pfn)
518                         node_end_pfn = end_pfn;
519                 if (zone->zone_start_pfn < node_start_pfn)
520                         node_start_pfn = zone->zone_start_pfn;
521         }
522 
523         pgdat->node_start_pfn = node_start_pfn;
524         pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525 }
526 
527 void __ref remove_pfn_range_from_zone(struct zone *zone,
528                                       unsigned long start_pfn,
529                                       unsigned long nr_pages)
530 {
531         const unsigned long end_pfn = start_pfn + nr_pages;
532         struct pglist_data *pgdat = zone->zone_pgdat;
533         unsigned long pfn, cur_nr_pages;
534 
535         /* Poison struct pages because they are now uninitialized again. */
536         for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537                 cond_resched();
538 
539                 /* Select all remaining pages up to the next section boundary */
540                 cur_nr_pages =
541                         min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542                 page_init_poison(pfn_to_page(pfn),
543                                  sizeof(struct page) * cur_nr_pages);
544         }
545 
546         /*
547          * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548          * we will not try to shrink the zones - which is okay as
549          * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550          */
551         if (zone_is_zone_device(zone))
552                 return;
553 
554         clear_zone_contiguous(zone);
555 
556         shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557         update_pgdat_span(pgdat);
558 
559         set_zone_contiguous(zone);
560 }
561 
562 /**
563  * __remove_pages() - remove sections of pages
564  * @pfn: starting pageframe (must be aligned to start of a section)
565  * @nr_pages: number of pages to remove (must be multiple of section size)
566  * @altmap: alternative device page map or %NULL if default memmap is used
567  *
568  * Generic helper function to remove section mappings and sysfs entries
569  * for the section of the memory we are removing. Caller needs to make
570  * sure that pages are marked reserved and zones are adjust properly by
571  * calling offline_pages().
572  */
573 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574                     struct vmem_altmap *altmap)
575 {
576         const unsigned long end_pfn = pfn + nr_pages;
577         unsigned long cur_nr_pages;
578 
579         if (check_pfn_span(pfn, nr_pages)) {
580                 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581                 return;
582         }
583 
584         for (; pfn < end_pfn; pfn += cur_nr_pages) {
585                 cond_resched();
586                 /* Select all remaining pages up to the next section boundary */
587                 cur_nr_pages = min(end_pfn - pfn,
588                                    SECTION_ALIGN_UP(pfn + 1) - pfn);
589                 sparse_remove_section(pfn, cur_nr_pages, altmap);
590         }
591 }
592 
593 int set_online_page_callback(online_page_callback_t callback)
594 {
595         int rc = -EINVAL;
596 
597         get_online_mems();
598         mutex_lock(&online_page_callback_lock);
599 
600         if (online_page_callback == generic_online_page) {
601                 online_page_callback = callback;
602                 rc = 0;
603         }
604 
605         mutex_unlock(&online_page_callback_lock);
606         put_online_mems();
607 
608         return rc;
609 }
610 EXPORT_SYMBOL_GPL(set_online_page_callback);
611 
612 int restore_online_page_callback(online_page_callback_t callback)
613 {
614         int rc = -EINVAL;
615 
616         get_online_mems();
617         mutex_lock(&online_page_callback_lock);
618 
619         if (online_page_callback == callback) {
620                 online_page_callback = generic_online_page;
621                 rc = 0;
622         }
623 
624         mutex_unlock(&online_page_callback_lock);
625         put_online_mems();
626 
627         return rc;
628 }
629 EXPORT_SYMBOL_GPL(restore_online_page_callback);
630 
631 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
632 void __ref generic_online_page(struct page *page, unsigned int order)
633 {
634         __free_pages_core(page, order, MEMINIT_HOTPLUG);
635 }
636 EXPORT_SYMBOL_GPL(generic_online_page);
637 
638 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
639 {
640         const unsigned long end_pfn = start_pfn + nr_pages;
641         unsigned long pfn;
642 
643         /*
644          * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
645          * decide to not expose all pages to the buddy (e.g., expose them
646          * later). We account all pages as being online and belonging to this
647          * zone ("present").
648          * When using memmap_on_memory, the range might not be aligned to
649          * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
650          * this and the first chunk to online will be pageblock_nr_pages.
651          */
652         for (pfn = start_pfn; pfn < end_pfn;) {
653                 int order;
654 
655                 /*
656                  * Free to online pages in the largest chunks alignment allows.
657                  *
658                  * __ffs() behaviour is undefined for 0. start == 0 is
659                  * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
660                  * the case.
661                  */
662                 if (pfn)
663                         order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
664                 else
665                         order = MAX_PAGE_ORDER;
666 
667                 (*online_page_callback)(pfn_to_page(pfn), order);
668                 pfn += (1UL << order);
669         }
670 
671         /* mark all involved sections as online */
672         online_mem_sections(start_pfn, end_pfn);
673 }
674 
675 /* check which state of node_states will be changed when online memory */
676 static void node_states_check_changes_online(unsigned long nr_pages,
677         struct zone *zone, struct memory_notify *arg)
678 {
679         int nid = zone_to_nid(zone);
680 
681         arg->status_change_nid = NUMA_NO_NODE;
682         arg->status_change_nid_normal = NUMA_NO_NODE;
683 
684         if (!node_state(nid, N_MEMORY))
685                 arg->status_change_nid = nid;
686         if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
687                 arg->status_change_nid_normal = nid;
688 }
689 
690 static void node_states_set_node(int node, struct memory_notify *arg)
691 {
692         if (arg->status_change_nid_normal >= 0)
693                 node_set_state(node, N_NORMAL_MEMORY);
694 
695         if (arg->status_change_nid >= 0)
696                 node_set_state(node, N_MEMORY);
697 }
698 
699 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
700                 unsigned long nr_pages)
701 {
702         unsigned long old_end_pfn = zone_end_pfn(zone);
703 
704         if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
705                 zone->zone_start_pfn = start_pfn;
706 
707         zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
708 }
709 
710 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
711                                      unsigned long nr_pages)
712 {
713         unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
714 
715         if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
716                 pgdat->node_start_pfn = start_pfn;
717 
718         pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
719 
720 }
721 
722 #ifdef CONFIG_ZONE_DEVICE
723 static void section_taint_zone_device(unsigned long pfn)
724 {
725         struct mem_section *ms = __pfn_to_section(pfn);
726 
727         ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
728 }
729 #else
730 static inline void section_taint_zone_device(unsigned long pfn)
731 {
732 }
733 #endif
734 
735 /*
736  * Associate the pfn range with the given zone, initializing the memmaps
737  * and resizing the pgdat/zone data to span the added pages. After this
738  * call, all affected pages are PageOffline().
739  *
740  * All aligned pageblocks are initialized to the specified migratetype
741  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
742  * zone stats (e.g., nr_isolate_pageblock) are touched.
743  */
744 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
745                                   unsigned long nr_pages,
746                                   struct vmem_altmap *altmap, int migratetype)
747 {
748         struct pglist_data *pgdat = zone->zone_pgdat;
749         int nid = pgdat->node_id;
750 
751         clear_zone_contiguous(zone);
752 
753         if (zone_is_empty(zone))
754                 init_currently_empty_zone(zone, start_pfn, nr_pages);
755         resize_zone_range(zone, start_pfn, nr_pages);
756         resize_pgdat_range(pgdat, start_pfn, nr_pages);
757 
758         /*
759          * Subsection population requires care in pfn_to_online_page().
760          * Set the taint to enable the slow path detection of
761          * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
762          * section.
763          */
764         if (zone_is_zone_device(zone)) {
765                 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
766                         section_taint_zone_device(start_pfn);
767                 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
768                         section_taint_zone_device(start_pfn + nr_pages);
769         }
770 
771         /*
772          * TODO now we have a visible range of pages which are not associated
773          * with their zone properly. Not nice but set_pfnblock_flags_mask
774          * expects the zone spans the pfn range. All the pages in the range
775          * are reserved so nobody should be touching them so we should be safe
776          */
777         memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
778                          MEMINIT_HOTPLUG, altmap, migratetype);
779 
780         set_zone_contiguous(zone);
781 }
782 
783 struct auto_movable_stats {
784         unsigned long kernel_early_pages;
785         unsigned long movable_pages;
786 };
787 
788 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
789                                             struct zone *zone)
790 {
791         if (zone_idx(zone) == ZONE_MOVABLE) {
792                 stats->movable_pages += zone->present_pages;
793         } else {
794                 stats->kernel_early_pages += zone->present_early_pages;
795 #ifdef CONFIG_CMA
796                 /*
797                  * CMA pages (never on hotplugged memory) behave like
798                  * ZONE_MOVABLE.
799                  */
800                 stats->movable_pages += zone->cma_pages;
801                 stats->kernel_early_pages -= zone->cma_pages;
802 #endif /* CONFIG_CMA */
803         }
804 }
805 struct auto_movable_group_stats {
806         unsigned long movable_pages;
807         unsigned long req_kernel_early_pages;
808 };
809 
810 static int auto_movable_stats_account_group(struct memory_group *group,
811                                            void *arg)
812 {
813         const int ratio = READ_ONCE(auto_movable_ratio);
814         struct auto_movable_group_stats *stats = arg;
815         long pages;
816 
817         /*
818          * We don't support modifying the config while the auto-movable online
819          * policy is already enabled. Just avoid the division by zero below.
820          */
821         if (!ratio)
822                 return 0;
823 
824         /*
825          * Calculate how many early kernel pages this group requires to
826          * satisfy the configured zone ratio.
827          */
828         pages = group->present_movable_pages * 100 / ratio;
829         pages -= group->present_kernel_pages;
830 
831         if (pages > 0)
832                 stats->req_kernel_early_pages += pages;
833         stats->movable_pages += group->present_movable_pages;
834         return 0;
835 }
836 
837 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
838                                             unsigned long nr_pages)
839 {
840         unsigned long kernel_early_pages, movable_pages;
841         struct auto_movable_group_stats group_stats = {};
842         struct auto_movable_stats stats = {};
843         struct zone *zone;
844         int i;
845 
846         /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
847         if (nid == NUMA_NO_NODE) {
848                 /* TODO: cache values */
849                 for_each_populated_zone(zone)
850                         auto_movable_stats_account_zone(&stats, zone);
851         } else {
852                 for (i = 0; i < MAX_NR_ZONES; i++) {
853                         pg_data_t *pgdat = NODE_DATA(nid);
854 
855                         zone = pgdat->node_zones + i;
856                         if (populated_zone(zone))
857                                 auto_movable_stats_account_zone(&stats, zone);
858                 }
859         }
860 
861         kernel_early_pages = stats.kernel_early_pages;
862         movable_pages = stats.movable_pages;
863 
864         /*
865          * Kernel memory inside dynamic memory group allows for more MOVABLE
866          * memory within the same group. Remove the effect of all but the
867          * current group from the stats.
868          */
869         walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
870                                    group, &group_stats);
871         if (kernel_early_pages <= group_stats.req_kernel_early_pages)
872                 return false;
873         kernel_early_pages -= group_stats.req_kernel_early_pages;
874         movable_pages -= group_stats.movable_pages;
875 
876         if (group && group->is_dynamic)
877                 kernel_early_pages += group->present_kernel_pages;
878 
879         /*
880          * Test if we could online the given number of pages to ZONE_MOVABLE
881          * and still stay in the configured ratio.
882          */
883         movable_pages += nr_pages;
884         return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
885 }
886 
887 /*
888  * Returns a default kernel memory zone for the given pfn range.
889  * If no kernel zone covers this pfn range it will automatically go
890  * to the ZONE_NORMAL.
891  */
892 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
893                 unsigned long nr_pages)
894 {
895         struct pglist_data *pgdat = NODE_DATA(nid);
896         int zid;
897 
898         for (zid = 0; zid < ZONE_NORMAL; zid++) {
899                 struct zone *zone = &pgdat->node_zones[zid];
900 
901                 if (zone_intersects(zone, start_pfn, nr_pages))
902                         return zone;
903         }
904 
905         return &pgdat->node_zones[ZONE_NORMAL];
906 }
907 
908 /*
909  * Determine to which zone to online memory dynamically based on user
910  * configuration and system stats. We care about the following ratio:
911  *
912  *   MOVABLE : KERNEL
913  *
914  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
915  * one of the kernel zones. CMA pages inside one of the kernel zones really
916  * behaves like ZONE_MOVABLE, so we treat them accordingly.
917  *
918  * We don't allow for hotplugged memory in a KERNEL zone to increase the
919  * amount of MOVABLE memory we can have, so we end up with:
920  *
921  *   MOVABLE : KERNEL_EARLY
922  *
923  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
924  * boot. We base our calculation on KERNEL_EARLY internally, because:
925  *
926  * a) Hotplugged memory in one of the kernel zones can sometimes still get
927  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
928  *    There is no coordination across memory devices, therefore "automatic"
929  *    hotunplugging, as implemented in hypervisors, could result in zone
930  *    imbalances.
931  * b) Early/boot memory in one of the kernel zones can usually not get
932  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
933  *    with unmovable allocations). While there are corner cases where it might
934  *    still work, it is barely relevant in practice.
935  *
936  * Exceptions are dynamic memory groups, which allow for more MOVABLE
937  * memory within the same memory group -- because in that case, there is
938  * coordination within the single memory device managed by a single driver.
939  *
940  * We rely on "present pages" instead of "managed pages", as the latter is
941  * highly unreliable and dynamic in virtualized environments, and does not
942  * consider boot time allocations. For example, memory ballooning adjusts the
943  * managed pages when inflating/deflating the balloon, and balloon compaction
944  * can even migrate inflated pages between zones.
945  *
946  * Using "present pages" is better but some things to keep in mind are:
947  *
948  * a) Some memblock allocations, such as for the crashkernel area, are
949  *    effectively unused by the kernel, yet they account to "present pages".
950  *    Fortunately, these allocations are comparatively small in relevant setups
951  *    (e.g., fraction of system memory).
952  * b) Some hotplugged memory blocks in virtualized environments, esecially
953  *    hotplugged by virtio-mem, look like they are completely present, however,
954  *    only parts of the memory block are actually currently usable.
955  *    "present pages" is an upper limit that can get reached at runtime. As
956  *    we base our calculations on KERNEL_EARLY, this is not an issue.
957  */
958 static struct zone *auto_movable_zone_for_pfn(int nid,
959                                               struct memory_group *group,
960                                               unsigned long pfn,
961                                               unsigned long nr_pages)
962 {
963         unsigned long online_pages = 0, max_pages, end_pfn;
964         struct page *page;
965 
966         if (!auto_movable_ratio)
967                 goto kernel_zone;
968 
969         if (group && !group->is_dynamic) {
970                 max_pages = group->s.max_pages;
971                 online_pages = group->present_movable_pages;
972 
973                 /* If anything is !MOVABLE online the rest !MOVABLE. */
974                 if (group->present_kernel_pages)
975                         goto kernel_zone;
976         } else if (!group || group->d.unit_pages == nr_pages) {
977                 max_pages = nr_pages;
978         } else {
979                 max_pages = group->d.unit_pages;
980                 /*
981                  * Take a look at all online sections in the current unit.
982                  * We can safely assume that all pages within a section belong
983                  * to the same zone, because dynamic memory groups only deal
984                  * with hotplugged memory.
985                  */
986                 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
987                 end_pfn = pfn + group->d.unit_pages;
988                 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
989                         page = pfn_to_online_page(pfn);
990                         if (!page)
991                                 continue;
992                         /* If anything is !MOVABLE online the rest !MOVABLE. */
993                         if (!is_zone_movable_page(page))
994                                 goto kernel_zone;
995                         online_pages += PAGES_PER_SECTION;
996                 }
997         }
998 
999         /*
1000          * Online MOVABLE if we could *currently* online all remaining parts
1001          * MOVABLE. We expect to (add+) online them immediately next, so if
1002          * nobody interferes, all will be MOVABLE if possible.
1003          */
1004         nr_pages = max_pages - online_pages;
1005         if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1006                 goto kernel_zone;
1007 
1008 #ifdef CONFIG_NUMA
1009         if (auto_movable_numa_aware &&
1010             !auto_movable_can_online_movable(nid, group, nr_pages))
1011                 goto kernel_zone;
1012 #endif /* CONFIG_NUMA */
1013 
1014         return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1015 kernel_zone:
1016         return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1017 }
1018 
1019 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1020                 unsigned long nr_pages)
1021 {
1022         struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1023                         nr_pages);
1024         struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1025         bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1026         bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1027 
1028         /*
1029          * We inherit the existing zone in a simple case where zones do not
1030          * overlap in the given range
1031          */
1032         if (in_kernel ^ in_movable)
1033                 return (in_kernel) ? kernel_zone : movable_zone;
1034 
1035         /*
1036          * If the range doesn't belong to any zone or two zones overlap in the
1037          * given range then we use movable zone only if movable_node is
1038          * enabled because we always online to a kernel zone by default.
1039          */
1040         return movable_node_enabled ? movable_zone : kernel_zone;
1041 }
1042 
1043 struct zone *zone_for_pfn_range(int online_type, int nid,
1044                 struct memory_group *group, unsigned long start_pfn,
1045                 unsigned long nr_pages)
1046 {
1047         if (online_type == MMOP_ONLINE_KERNEL)
1048                 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1049 
1050         if (online_type == MMOP_ONLINE_MOVABLE)
1051                 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1052 
1053         if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1054                 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1055 
1056         return default_zone_for_pfn(nid, start_pfn, nr_pages);
1057 }
1058 
1059 /*
1060  * This function should only be called by memory_block_{online,offline},
1061  * and {online,offline}_pages.
1062  */
1063 void adjust_present_page_count(struct page *page, struct memory_group *group,
1064                                long nr_pages)
1065 {
1066         struct zone *zone = page_zone(page);
1067         const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1068 
1069         /*
1070          * We only support onlining/offlining/adding/removing of complete
1071          * memory blocks; therefore, either all is either early or hotplugged.
1072          */
1073         if (early_section(__pfn_to_section(page_to_pfn(page))))
1074                 zone->present_early_pages += nr_pages;
1075         zone->present_pages += nr_pages;
1076         zone->zone_pgdat->node_present_pages += nr_pages;
1077 
1078         if (group && movable)
1079                 group->present_movable_pages += nr_pages;
1080         else if (group && !movable)
1081                 group->present_kernel_pages += nr_pages;
1082 }
1083 
1084 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1085                               struct zone *zone, bool mhp_off_inaccessible)
1086 {
1087         unsigned long end_pfn = pfn + nr_pages;
1088         int ret, i;
1089 
1090         ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1091         if (ret)
1092                 return ret;
1093 
1094         /*
1095          * Memory block is accessible at this stage and hence poison the struct
1096          * pages now.  If the memory block is accessible during memory hotplug
1097          * addition phase, then page poisining is already performed in
1098          * sparse_add_section().
1099          */
1100         if (mhp_off_inaccessible)
1101                 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1102 
1103         move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1104 
1105         for (i = 0; i < nr_pages; i++) {
1106                 struct page *page = pfn_to_page(pfn + i);
1107 
1108                 __ClearPageOffline(page);
1109                 SetPageVmemmapSelfHosted(page);
1110         }
1111 
1112         /*
1113          * It might be that the vmemmap_pages fully span sections. If that is
1114          * the case, mark those sections online here as otherwise they will be
1115          * left offline.
1116          */
1117         if (nr_pages >= PAGES_PER_SECTION)
1118                 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1119 
1120         return ret;
1121 }
1122 
1123 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1124 {
1125         unsigned long end_pfn = pfn + nr_pages;
1126 
1127         /*
1128          * It might be that the vmemmap_pages fully span sections. If that is
1129          * the case, mark those sections offline here as otherwise they will be
1130          * left online.
1131          */
1132         if (nr_pages >= PAGES_PER_SECTION)
1133                 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1134 
1135         /*
1136          * The pages associated with this vmemmap have been offlined, so
1137          * we can reset its state here.
1138          */
1139         remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1140         kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1141 }
1142 
1143 /*
1144  * Must be called with mem_hotplug_lock in write mode.
1145  */
1146 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1147                        struct zone *zone, struct memory_group *group)
1148 {
1149         unsigned long flags;
1150         int need_zonelists_rebuild = 0;
1151         const int nid = zone_to_nid(zone);
1152         int ret;
1153         struct memory_notify arg;
1154 
1155         /*
1156          * {on,off}lining is constrained to full memory sections (or more
1157          * precisely to memory blocks from the user space POV).
1158          * memmap_on_memory is an exception because it reserves initial part
1159          * of the physical memory space for vmemmaps. That space is pageblock
1160          * aligned.
1161          */
1162         if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1163                          !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1164                 return -EINVAL;
1165 
1166 
1167         /* associate pfn range with the zone */
1168         move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1169 
1170         arg.start_pfn = pfn;
1171         arg.nr_pages = nr_pages;
1172         node_states_check_changes_online(nr_pages, zone, &arg);
1173 
1174         ret = memory_notify(MEM_GOING_ONLINE, &arg);
1175         ret = notifier_to_errno(ret);
1176         if (ret)
1177                 goto failed_addition;
1178 
1179         /*
1180          * Fixup the number of isolated pageblocks before marking the sections
1181          * onlining, such that undo_isolate_page_range() works correctly.
1182          */
1183         spin_lock_irqsave(&zone->lock, flags);
1184         zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1185         spin_unlock_irqrestore(&zone->lock, flags);
1186 
1187         /*
1188          * If this zone is not populated, then it is not in zonelist.
1189          * This means the page allocator ignores this zone.
1190          * So, zonelist must be updated after online.
1191          */
1192         if (!populated_zone(zone)) {
1193                 need_zonelists_rebuild = 1;
1194                 setup_zone_pageset(zone);
1195         }
1196 
1197         online_pages_range(pfn, nr_pages);
1198         adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1199 
1200         node_states_set_node(nid, &arg);
1201         if (need_zonelists_rebuild)
1202                 build_all_zonelists(NULL);
1203 
1204         /* Basic onlining is complete, allow allocation of onlined pages. */
1205         undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1206 
1207         /*
1208          * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1209          * the tail of the freelist when undoing isolation). Shuffle the whole
1210          * zone to make sure the just onlined pages are properly distributed
1211          * across the whole freelist - to create an initial shuffle.
1212          */
1213         shuffle_zone(zone);
1214 
1215         /* reinitialise watermarks and update pcp limits */
1216         init_per_zone_wmark_min();
1217 
1218         kswapd_run(nid);
1219         kcompactd_run(nid);
1220 
1221         writeback_set_ratelimit();
1222 
1223         memory_notify(MEM_ONLINE, &arg);
1224         return 0;
1225 
1226 failed_addition:
1227         pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1228                  (unsigned long long) pfn << PAGE_SHIFT,
1229                  (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1230         memory_notify(MEM_CANCEL_ONLINE, &arg);
1231         remove_pfn_range_from_zone(zone, pfn, nr_pages);
1232         return ret;
1233 }
1234 
1235 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1236 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1237 {
1238         struct pglist_data *pgdat;
1239 
1240         /*
1241          * NODE_DATA is preallocated (free_area_init) but its internal
1242          * state is not allocated completely. Add missing pieces.
1243          * Completely offline nodes stay around and they just need
1244          * reintialization.
1245          */
1246         pgdat = NODE_DATA(nid);
1247 
1248         /* init node's zones as empty zones, we don't have any present pages.*/
1249         free_area_init_core_hotplug(pgdat);
1250 
1251         /*
1252          * The node we allocated has no zone fallback lists. For avoiding
1253          * to access not-initialized zonelist, build here.
1254          */
1255         build_all_zonelists(pgdat);
1256 
1257         return pgdat;
1258 }
1259 
1260 /*
1261  * __try_online_node - online a node if offlined
1262  * @nid: the node ID
1263  * @set_node_online: Whether we want to online the node
1264  * called by cpu_up() to online a node without onlined memory.
1265  *
1266  * Returns:
1267  * 1 -> a new node has been allocated
1268  * 0 -> the node is already online
1269  * -ENOMEM -> the node could not be allocated
1270  */
1271 static int __try_online_node(int nid, bool set_node_online)
1272 {
1273         pg_data_t *pgdat;
1274         int ret = 1;
1275 
1276         if (node_online(nid))
1277                 return 0;
1278 
1279         pgdat = hotadd_init_pgdat(nid);
1280         if (!pgdat) {
1281                 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1282                 ret = -ENOMEM;
1283                 goto out;
1284         }
1285 
1286         if (set_node_online) {
1287                 node_set_online(nid);
1288                 ret = register_one_node(nid);
1289                 BUG_ON(ret);
1290         }
1291 out:
1292         return ret;
1293 }
1294 
1295 /*
1296  * Users of this function always want to online/register the node
1297  */
1298 int try_online_node(int nid)
1299 {
1300         int ret;
1301 
1302         mem_hotplug_begin();
1303         ret =  __try_online_node(nid, true);
1304         mem_hotplug_done();
1305         return ret;
1306 }
1307 
1308 static int check_hotplug_memory_range(u64 start, u64 size)
1309 {
1310         /* memory range must be block size aligned */
1311         if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1312             !IS_ALIGNED(size, memory_block_size_bytes())) {
1313                 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1314                        memory_block_size_bytes(), start, size);
1315                 return -EINVAL;
1316         }
1317 
1318         return 0;
1319 }
1320 
1321 static int online_memory_block(struct memory_block *mem, void *arg)
1322 {
1323         mem->online_type = mhp_default_online_type;
1324         return device_online(&mem->dev);
1325 }
1326 
1327 #ifndef arch_supports_memmap_on_memory
1328 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1329 {
1330         /*
1331          * As default, we want the vmemmap to span a complete PMD such that we
1332          * can map the vmemmap using a single PMD if supported by the
1333          * architecture.
1334          */
1335         return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1336 }
1337 #endif
1338 
1339 bool mhp_supports_memmap_on_memory(void)
1340 {
1341         unsigned long vmemmap_size = memory_block_memmap_size();
1342         unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1343 
1344         /*
1345          * Besides having arch support and the feature enabled at runtime, we
1346          * need a few more assumptions to hold true:
1347          *
1348          * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1349          *    to populate memory from the altmap for unrelated parts (i.e.,
1350          *    other memory blocks)
1351          *
1352          * b) The vmemmap pages (and thereby the pages that will be exposed to
1353          *    the buddy) have to cover full pageblocks: memory onlining/offlining
1354          *    code requires applicable ranges to be page-aligned, for example, to
1355          *    set the migratetypes properly.
1356          *
1357          * TODO: Although we have a check here to make sure that vmemmap pages
1358          *       fully populate a PMD, it is not the right place to check for
1359          *       this. A much better solution involves improving vmemmap code
1360          *       to fallback to base pages when trying to populate vmemmap using
1361          *       altmap as an alternative source of memory, and we do not exactly
1362          *       populate a single PMD.
1363          */
1364         if (!mhp_memmap_on_memory())
1365                 return false;
1366 
1367         /*
1368          * Make sure the vmemmap allocation is fully contained
1369          * so that we always allocate vmemmap memory from altmap area.
1370          */
1371         if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1372                 return false;
1373 
1374         /*
1375          * start pfn should be pageblock_nr_pages aligned for correctly
1376          * setting migrate types
1377          */
1378         if (!pageblock_aligned(memmap_pages))
1379                 return false;
1380 
1381         if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1382                 /* No effective hotplugged memory doesn't make sense. */
1383                 return false;
1384 
1385         return arch_supports_memmap_on_memory(vmemmap_size);
1386 }
1387 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1388 
1389 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1390 {
1391         unsigned long memblock_size = memory_block_size_bytes();
1392         u64 cur_start;
1393 
1394         /*
1395          * For memmap_on_memory, the altmaps were added on a per-memblock
1396          * basis; we have to process each individual memory block.
1397          */
1398         for (cur_start = start; cur_start < start + size;
1399              cur_start += memblock_size) {
1400                 struct vmem_altmap *altmap = NULL;
1401                 struct memory_block *mem;
1402 
1403                 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1404                 if (WARN_ON_ONCE(!mem))
1405                         continue;
1406 
1407                 altmap = mem->altmap;
1408                 mem->altmap = NULL;
1409 
1410                 remove_memory_block_devices(cur_start, memblock_size);
1411 
1412                 arch_remove_memory(cur_start, memblock_size, altmap);
1413 
1414                 /* Verify that all vmemmap pages have actually been freed. */
1415                 WARN(altmap->alloc, "Altmap not fully unmapped");
1416                 kfree(altmap);
1417         }
1418 }
1419 
1420 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1421                                             u64 start, u64 size, mhp_t mhp_flags)
1422 {
1423         unsigned long memblock_size = memory_block_size_bytes();
1424         u64 cur_start;
1425         int ret;
1426 
1427         for (cur_start = start; cur_start < start + size;
1428              cur_start += memblock_size) {
1429                 struct mhp_params params = { .pgprot =
1430                                                      pgprot_mhp(PAGE_KERNEL) };
1431                 struct vmem_altmap mhp_altmap = {
1432                         .base_pfn = PHYS_PFN(cur_start),
1433                         .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1434                 };
1435 
1436                 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1437                 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1438                         mhp_altmap.inaccessible = true;
1439                 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1440                                         GFP_KERNEL);
1441                 if (!params.altmap) {
1442                         ret = -ENOMEM;
1443                         goto out;
1444                 }
1445 
1446                 /* call arch's memory hotadd */
1447                 ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1448                 if (ret < 0) {
1449                         kfree(params.altmap);
1450                         goto out;
1451                 }
1452 
1453                 /* create memory block devices after memory was added */
1454                 ret = create_memory_block_devices(cur_start, memblock_size,
1455                                                   params.altmap, group);
1456                 if (ret) {
1457                         arch_remove_memory(cur_start, memblock_size, NULL);
1458                         kfree(params.altmap);
1459                         goto out;
1460                 }
1461         }
1462 
1463         return 0;
1464 out:
1465         if (ret && cur_start != start)
1466                 remove_memory_blocks_and_altmaps(start, cur_start - start);
1467         return ret;
1468 }
1469 
1470 /*
1471  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1472  * and online/offline operations (triggered e.g. by sysfs).
1473  *
1474  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1475  */
1476 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1477 {
1478         struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1479         enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1480         struct memory_group *group = NULL;
1481         u64 start, size;
1482         bool new_node = false;
1483         int ret;
1484 
1485         start = res->start;
1486         size = resource_size(res);
1487 
1488         ret = check_hotplug_memory_range(start, size);
1489         if (ret)
1490                 return ret;
1491 
1492         if (mhp_flags & MHP_NID_IS_MGID) {
1493                 group = memory_group_find_by_id(nid);
1494                 if (!group)
1495                         return -EINVAL;
1496                 nid = group->nid;
1497         }
1498 
1499         if (!node_possible(nid)) {
1500                 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1501                 return -EINVAL;
1502         }
1503 
1504         mem_hotplug_begin();
1505 
1506         if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1507                 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1508                         memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1509                 ret = memblock_add_node(start, size, nid, memblock_flags);
1510                 if (ret)
1511                         goto error_mem_hotplug_end;
1512         }
1513 
1514         ret = __try_online_node(nid, false);
1515         if (ret < 0)
1516                 goto error;
1517         new_node = ret;
1518 
1519         /*
1520          * Self hosted memmap array
1521          */
1522         if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1523             mhp_supports_memmap_on_memory()) {
1524                 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1525                 if (ret)
1526                         goto error;
1527         } else {
1528                 ret = arch_add_memory(nid, start, size, &params);
1529                 if (ret < 0)
1530                         goto error;
1531 
1532                 /* create memory block devices after memory was added */
1533                 ret = create_memory_block_devices(start, size, NULL, group);
1534                 if (ret) {
1535                         arch_remove_memory(start, size, params.altmap);
1536                         goto error;
1537                 }
1538         }
1539 
1540         if (new_node) {
1541                 /* If sysfs file of new node can't be created, cpu on the node
1542                  * can't be hot-added. There is no rollback way now.
1543                  * So, check by BUG_ON() to catch it reluctantly..
1544                  * We online node here. We can't roll back from here.
1545                  */
1546                 node_set_online(nid);
1547                 ret = __register_one_node(nid);
1548                 BUG_ON(ret);
1549         }
1550 
1551         register_memory_blocks_under_node(nid, PFN_DOWN(start),
1552                                           PFN_UP(start + size - 1),
1553                                           MEMINIT_HOTPLUG);
1554 
1555         /* create new memmap entry */
1556         if (!strcmp(res->name, "System RAM"))
1557                 firmware_map_add_hotplug(start, start + size, "System RAM");
1558 
1559         /* device_online() will take the lock when calling online_pages() */
1560         mem_hotplug_done();
1561 
1562         /*
1563          * In case we're allowed to merge the resource, flag it and trigger
1564          * merging now that adding succeeded.
1565          */
1566         if (mhp_flags & MHP_MERGE_RESOURCE)
1567                 merge_system_ram_resource(res);
1568 
1569         /* online pages if requested */
1570         if (mhp_default_online_type != MMOP_OFFLINE)
1571                 walk_memory_blocks(start, size, NULL, online_memory_block);
1572 
1573         return ret;
1574 error:
1575         if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1576                 memblock_remove(start, size);
1577 error_mem_hotplug_end:
1578         mem_hotplug_done();
1579         return ret;
1580 }
1581 
1582 /* requires device_hotplug_lock, see add_memory_resource() */
1583 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1584 {
1585         struct resource *res;
1586         int ret;
1587 
1588         res = register_memory_resource(start, size, "System RAM");
1589         if (IS_ERR(res))
1590                 return PTR_ERR(res);
1591 
1592         ret = add_memory_resource(nid, res, mhp_flags);
1593         if (ret < 0)
1594                 release_memory_resource(res);
1595         return ret;
1596 }
1597 
1598 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1599 {
1600         int rc;
1601 
1602         lock_device_hotplug();
1603         rc = __add_memory(nid, start, size, mhp_flags);
1604         unlock_device_hotplug();
1605 
1606         return rc;
1607 }
1608 EXPORT_SYMBOL_GPL(add_memory);
1609 
1610 /*
1611  * Add special, driver-managed memory to the system as system RAM. Such
1612  * memory is not exposed via the raw firmware-provided memmap as system
1613  * RAM, instead, it is detected and added by a driver - during cold boot,
1614  * after a reboot, and after kexec.
1615  *
1616  * Reasons why this memory should not be used for the initial memmap of a
1617  * kexec kernel or for placing kexec images:
1618  * - The booting kernel is in charge of determining how this memory will be
1619  *   used (e.g., use persistent memory as system RAM)
1620  * - Coordination with a hypervisor is required before this memory
1621  *   can be used (e.g., inaccessible parts).
1622  *
1623  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1624  * memory map") are created. Also, the created memory resource is flagged
1625  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1626  * this memory as well (esp., not place kexec images onto it).
1627  *
1628  * The resource_name (visible via /proc/iomem) has to have the format
1629  * "System RAM ($DRIVER)".
1630  */
1631 int add_memory_driver_managed(int nid, u64 start, u64 size,
1632                               const char *resource_name, mhp_t mhp_flags)
1633 {
1634         struct resource *res;
1635         int rc;
1636 
1637         if (!resource_name ||
1638             strstr(resource_name, "System RAM (") != resource_name ||
1639             resource_name[strlen(resource_name) - 1] != ')')
1640                 return -EINVAL;
1641 
1642         lock_device_hotplug();
1643 
1644         res = register_memory_resource(start, size, resource_name);
1645         if (IS_ERR(res)) {
1646                 rc = PTR_ERR(res);
1647                 goto out_unlock;
1648         }
1649 
1650         rc = add_memory_resource(nid, res, mhp_flags);
1651         if (rc < 0)
1652                 release_memory_resource(res);
1653 
1654 out_unlock:
1655         unlock_device_hotplug();
1656         return rc;
1657 }
1658 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1659 
1660 /*
1661  * Platforms should define arch_get_mappable_range() that provides
1662  * maximum possible addressable physical memory range for which the
1663  * linear mapping could be created. The platform returned address
1664  * range must adhere to these following semantics.
1665  *
1666  * - range.start <= range.end
1667  * - Range includes both end points [range.start..range.end]
1668  *
1669  * There is also a fallback definition provided here, allowing the
1670  * entire possible physical address range in case any platform does
1671  * not define arch_get_mappable_range().
1672  */
1673 struct range __weak arch_get_mappable_range(void)
1674 {
1675         struct range mhp_range = {
1676                 .start = 0UL,
1677                 .end = -1ULL,
1678         };
1679         return mhp_range;
1680 }
1681 
1682 struct range mhp_get_pluggable_range(bool need_mapping)
1683 {
1684         const u64 max_phys = PHYSMEM_END;
1685         struct range mhp_range;
1686 
1687         if (need_mapping) {
1688                 mhp_range = arch_get_mappable_range();
1689                 if (mhp_range.start > max_phys) {
1690                         mhp_range.start = 0;
1691                         mhp_range.end = 0;
1692                 }
1693                 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1694         } else {
1695                 mhp_range.start = 0;
1696                 mhp_range.end = max_phys;
1697         }
1698         return mhp_range;
1699 }
1700 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1701 
1702 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1703 {
1704         struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1705         u64 end = start + size;
1706 
1707         if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1708                 return true;
1709 
1710         pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1711                 start, end, mhp_range.start, mhp_range.end);
1712         return false;
1713 }
1714 
1715 #ifdef CONFIG_MEMORY_HOTREMOVE
1716 /*
1717  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1718  * non-lru movable pages and hugepages). Will skip over most unmovable
1719  * pages (esp., pages that can be skipped when offlining), but bail out on
1720  * definitely unmovable pages.
1721  *
1722  * Returns:
1723  *      0 in case a movable page is found and movable_pfn was updated.
1724  *      -ENOENT in case no movable page was found.
1725  *      -EBUSY in case a definitely unmovable page was found.
1726  */
1727 static int scan_movable_pages(unsigned long start, unsigned long end,
1728                               unsigned long *movable_pfn)
1729 {
1730         unsigned long pfn;
1731 
1732         for (pfn = start; pfn < end; pfn++) {
1733                 struct page *page;
1734                 struct folio *folio;
1735 
1736                 if (!pfn_valid(pfn))
1737                         continue;
1738                 page = pfn_to_page(pfn);
1739                 if (PageLRU(page))
1740                         goto found;
1741                 if (__PageMovable(page))
1742                         goto found;
1743 
1744                 /*
1745                  * PageOffline() pages that are not marked __PageMovable() and
1746                  * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1747                  * definitely unmovable. If their reference count would be 0,
1748                  * they could at least be skipped when offlining memory.
1749                  */
1750                 if (PageOffline(page) && page_count(page))
1751                         return -EBUSY;
1752 
1753                 if (!PageHuge(page))
1754                         continue;
1755                 folio = page_folio(page);
1756                 /*
1757                  * This test is racy as we hold no reference or lock.  The
1758                  * hugetlb page could have been free'ed and head is no longer
1759                  * a hugetlb page before the following check.  In such unlikely
1760                  * cases false positives and negatives are possible.  Calling
1761                  * code must deal with these scenarios.
1762                  */
1763                 if (folio_test_hugetlb_migratable(folio))
1764                         goto found;
1765                 pfn |= folio_nr_pages(folio) - 1;
1766         }
1767         return -ENOENT;
1768 found:
1769         *movable_pfn = pfn;
1770         return 0;
1771 }
1772 
1773 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1774 {
1775         unsigned long pfn;
1776         struct page *page, *head;
1777         LIST_HEAD(source);
1778         static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1779                                       DEFAULT_RATELIMIT_BURST);
1780 
1781         for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1782                 struct folio *folio;
1783                 bool isolated;
1784 
1785                 if (!pfn_valid(pfn))
1786                         continue;
1787                 page = pfn_to_page(pfn);
1788                 folio = page_folio(page);
1789                 head = &folio->page;
1790 
1791                 if (PageHuge(page)) {
1792                         pfn = page_to_pfn(head) + compound_nr(head) - 1;
1793                         isolate_hugetlb(folio, &source);
1794                         continue;
1795                 } else if (PageTransHuge(page))
1796                         pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1797 
1798                 /*
1799                  * HWPoison pages have elevated reference counts so the migration would
1800                  * fail on them. It also doesn't make any sense to migrate them in the
1801                  * first place. Still try to unmap such a page in case it is still mapped
1802                  * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1803                  * the unmap as the catch all safety net).
1804                  */
1805                 if (PageHWPoison(page)) {
1806                         if (WARN_ON(folio_test_lru(folio)))
1807                                 folio_isolate_lru(folio);
1808                         if (folio_mapped(folio))
1809                                 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1810                         continue;
1811                 }
1812 
1813                 if (!get_page_unless_zero(page))
1814                         continue;
1815                 /*
1816                  * We can skip free pages. And we can deal with pages on
1817                  * LRU and non-lru movable pages.
1818                  */
1819                 if (PageLRU(page))
1820                         isolated = isolate_lru_page(page);
1821                 else
1822                         isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1823                 if (isolated) {
1824                         list_add_tail(&page->lru, &source);
1825                         if (!__PageMovable(page))
1826                                 inc_node_page_state(page, NR_ISOLATED_ANON +
1827                                                     page_is_file_lru(page));
1828 
1829                 } else {
1830                         if (__ratelimit(&migrate_rs)) {
1831                                 pr_warn("failed to isolate pfn %lx\n", pfn);
1832                                 dump_page(page, "isolation failed");
1833                         }
1834                 }
1835                 put_page(page);
1836         }
1837         if (!list_empty(&source)) {
1838                 nodemask_t nmask = node_states[N_MEMORY];
1839                 struct migration_target_control mtc = {
1840                         .nmask = &nmask,
1841                         .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1842                         .reason = MR_MEMORY_HOTPLUG,
1843                 };
1844                 int ret;
1845 
1846                 /*
1847                  * We have checked that migration range is on a single zone so
1848                  * we can use the nid of the first page to all the others.
1849                  */
1850                 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1851 
1852                 /*
1853                  * try to allocate from a different node but reuse this node
1854                  * if there are no other online nodes to be used (e.g. we are
1855                  * offlining a part of the only existing node)
1856                  */
1857                 node_clear(mtc.nid, nmask);
1858                 if (nodes_empty(nmask))
1859                         node_set(mtc.nid, nmask);
1860                 ret = migrate_pages(&source, alloc_migration_target, NULL,
1861                         (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1862                 if (ret) {
1863                         list_for_each_entry(page, &source, lru) {
1864                                 if (__ratelimit(&migrate_rs)) {
1865                                         pr_warn("migrating pfn %lx failed ret:%d\n",
1866                                                 page_to_pfn(page), ret);
1867                                         dump_page(page, "migration failure");
1868                                 }
1869                         }
1870                         putback_movable_pages(&source);
1871                 }
1872         }
1873 }
1874 
1875 static int __init cmdline_parse_movable_node(char *p)
1876 {
1877         movable_node_enabled = true;
1878         return 0;
1879 }
1880 early_param("movable_node", cmdline_parse_movable_node);
1881 
1882 /* check which state of node_states will be changed when offline memory */
1883 static void node_states_check_changes_offline(unsigned long nr_pages,
1884                 struct zone *zone, struct memory_notify *arg)
1885 {
1886         struct pglist_data *pgdat = zone->zone_pgdat;
1887         unsigned long present_pages = 0;
1888         enum zone_type zt;
1889 
1890         arg->status_change_nid = NUMA_NO_NODE;
1891         arg->status_change_nid_normal = NUMA_NO_NODE;
1892 
1893         /*
1894          * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1895          * If the memory to be offline is within the range
1896          * [0..ZONE_NORMAL], and it is the last present memory there,
1897          * the zones in that range will become empty after the offlining,
1898          * thus we can determine that we need to clear the node from
1899          * node_states[N_NORMAL_MEMORY].
1900          */
1901         for (zt = 0; zt <= ZONE_NORMAL; zt++)
1902                 present_pages += pgdat->node_zones[zt].present_pages;
1903         if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1904                 arg->status_change_nid_normal = zone_to_nid(zone);
1905 
1906         /*
1907          * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1908          * does not apply as we don't support 32bit.
1909          * Here we count the possible pages from ZONE_MOVABLE.
1910          * If after having accounted all the pages, we see that the nr_pages
1911          * to be offlined is over or equal to the accounted pages,
1912          * we know that the node will become empty, and so, we can clear
1913          * it for N_MEMORY as well.
1914          */
1915         present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1916 
1917         if (nr_pages >= present_pages)
1918                 arg->status_change_nid = zone_to_nid(zone);
1919 }
1920 
1921 static void node_states_clear_node(int node, struct memory_notify *arg)
1922 {
1923         if (arg->status_change_nid_normal >= 0)
1924                 node_clear_state(node, N_NORMAL_MEMORY);
1925 
1926         if (arg->status_change_nid >= 0)
1927                 node_clear_state(node, N_MEMORY);
1928 }
1929 
1930 static int count_system_ram_pages_cb(unsigned long start_pfn,
1931                                      unsigned long nr_pages, void *data)
1932 {
1933         unsigned long *nr_system_ram_pages = data;
1934 
1935         *nr_system_ram_pages += nr_pages;
1936         return 0;
1937 }
1938 
1939 /*
1940  * Must be called with mem_hotplug_lock in write mode.
1941  */
1942 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1943                         struct zone *zone, struct memory_group *group)
1944 {
1945         const unsigned long end_pfn = start_pfn + nr_pages;
1946         unsigned long pfn, managed_pages, system_ram_pages = 0;
1947         const int node = zone_to_nid(zone);
1948         unsigned long flags;
1949         struct memory_notify arg;
1950         char *reason;
1951         int ret;
1952 
1953         /*
1954          * {on,off}lining is constrained to full memory sections (or more
1955          * precisely to memory blocks from the user space POV).
1956          * memmap_on_memory is an exception because it reserves initial part
1957          * of the physical memory space for vmemmaps. That space is pageblock
1958          * aligned.
1959          */
1960         if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1961                          !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1962                 return -EINVAL;
1963 
1964         /*
1965          * Don't allow to offline memory blocks that contain holes.
1966          * Consequently, memory blocks with holes can never get onlined
1967          * via the hotplug path - online_pages() - as hotplugged memory has
1968          * no holes. This way, we don't have to worry about memory holes,
1969          * don't need pfn_valid() checks, and can avoid using
1970          * walk_system_ram_range() later.
1971          */
1972         walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1973                               count_system_ram_pages_cb);
1974         if (system_ram_pages != nr_pages) {
1975                 ret = -EINVAL;
1976                 reason = "memory holes";
1977                 goto failed_removal;
1978         }
1979 
1980         /*
1981          * We only support offlining of memory blocks managed by a single zone,
1982          * checked by calling code. This is just a sanity check that we might
1983          * want to remove in the future.
1984          */
1985         if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1986                          page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1987                 ret = -EINVAL;
1988                 reason = "multizone range";
1989                 goto failed_removal;
1990         }
1991 
1992         /*
1993          * Disable pcplists so that page isolation cannot race with freeing
1994          * in a way that pages from isolated pageblock are left on pcplists.
1995          */
1996         zone_pcp_disable(zone);
1997         lru_cache_disable();
1998 
1999         /* set above range as isolated */
2000         ret = start_isolate_page_range(start_pfn, end_pfn,
2001                                        MIGRATE_MOVABLE,
2002                                        MEMORY_OFFLINE | REPORT_FAILURE,
2003                                        GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
2004         if (ret) {
2005                 reason = "failure to isolate range";
2006                 goto failed_removal_pcplists_disabled;
2007         }
2008 
2009         arg.start_pfn = start_pfn;
2010         arg.nr_pages = nr_pages;
2011         node_states_check_changes_offline(nr_pages, zone, &arg);
2012 
2013         ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2014         ret = notifier_to_errno(ret);
2015         if (ret) {
2016                 reason = "notifier failure";
2017                 goto failed_removal_isolated;
2018         }
2019 
2020         do {
2021                 pfn = start_pfn;
2022                 do {
2023                         /*
2024                          * Historically we always checked for any signal and
2025                          * can't limit it to fatal signals without eventually
2026                          * breaking user space.
2027                          */
2028                         if (signal_pending(current)) {
2029                                 ret = -EINTR;
2030                                 reason = "signal backoff";
2031                                 goto failed_removal_isolated;
2032                         }
2033 
2034                         cond_resched();
2035 
2036                         ret = scan_movable_pages(pfn, end_pfn, &pfn);
2037                         if (!ret) {
2038                                 /*
2039                                  * TODO: fatal migration failures should bail
2040                                  * out
2041                                  */
2042                                 do_migrate_range(pfn, end_pfn);
2043                         }
2044                 } while (!ret);
2045 
2046                 if (ret != -ENOENT) {
2047                         reason = "unmovable page";
2048                         goto failed_removal_isolated;
2049                 }
2050 
2051                 /*
2052                  * Dissolve free hugetlb folios in the memory block before doing
2053                  * offlining actually in order to make hugetlbfs's object
2054                  * counting consistent.
2055                  */
2056                 ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2057                 if (ret) {
2058                         reason = "failure to dissolve huge pages";
2059                         goto failed_removal_isolated;
2060                 }
2061 
2062                 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2063 
2064         } while (ret);
2065 
2066         /* Mark all sections offline and remove free pages from the buddy. */
2067         managed_pages = __offline_isolated_pages(start_pfn, end_pfn);
2068         pr_debug("Offlined Pages %ld\n", nr_pages);
2069 
2070         /*
2071          * The memory sections are marked offline, and the pageblock flags
2072          * effectively stale; nobody should be touching them. Fixup the number
2073          * of isolated pageblocks, memory onlining will properly revert this.
2074          */
2075         spin_lock_irqsave(&zone->lock, flags);
2076         zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2077         spin_unlock_irqrestore(&zone->lock, flags);
2078 
2079         lru_cache_enable();
2080         zone_pcp_enable(zone);
2081 
2082         /* removal success */
2083         adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages);
2084         adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2085 
2086         /* reinitialise watermarks and update pcp limits */
2087         init_per_zone_wmark_min();
2088 
2089         /*
2090          * Make sure to mark the node as memory-less before rebuilding the zone
2091          * list. Otherwise this node would still appear in the fallback lists.
2092          */
2093         node_states_clear_node(node, &arg);
2094         if (!populated_zone(zone)) {
2095                 zone_pcp_reset(zone);
2096                 build_all_zonelists(NULL);
2097         }
2098 
2099         if (arg.status_change_nid >= 0) {
2100                 kcompactd_stop(node);
2101                 kswapd_stop(node);
2102         }
2103 
2104         writeback_set_ratelimit();
2105 
2106         memory_notify(MEM_OFFLINE, &arg);
2107         remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2108         return 0;
2109 
2110 failed_removal_isolated:
2111         /* pushback to free area */
2112         undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2113         memory_notify(MEM_CANCEL_OFFLINE, &arg);
2114 failed_removal_pcplists_disabled:
2115         lru_cache_enable();
2116         zone_pcp_enable(zone);
2117 failed_removal:
2118         pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2119                  (unsigned long long) start_pfn << PAGE_SHIFT,
2120                  ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2121                  reason);
2122         return ret;
2123 }
2124 
2125 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2126 {
2127         int *nid = arg;
2128 
2129         *nid = mem->nid;
2130         if (unlikely(mem->state != MEM_OFFLINE)) {
2131                 phys_addr_t beginpa, endpa;
2132 
2133                 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2134                 endpa = beginpa + memory_block_size_bytes() - 1;
2135                 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2136                         &beginpa, &endpa);
2137 
2138                 return -EBUSY;
2139         }
2140         return 0;
2141 }
2142 
2143 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2144 {
2145         u64 *num_altmaps = (u64 *)arg;
2146 
2147         if (mem->altmap)
2148                 *num_altmaps += 1;
2149 
2150         return 0;
2151 }
2152 
2153 static int check_cpu_on_node(int nid)
2154 {
2155         int cpu;
2156 
2157         for_each_present_cpu(cpu) {
2158                 if (cpu_to_node(cpu) == nid)
2159                         /*
2160                          * the cpu on this node isn't removed, and we can't
2161                          * offline this node.
2162                          */
2163                         return -EBUSY;
2164         }
2165 
2166         return 0;
2167 }
2168 
2169 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2170 {
2171         int nid = *(int *)arg;
2172 
2173         /*
2174          * If a memory block belongs to multiple nodes, the stored nid is not
2175          * reliable. However, such blocks are always online (e.g., cannot get
2176          * offlined) and, therefore, are still spanned by the node.
2177          */
2178         return mem->nid == nid ? -EEXIST : 0;
2179 }
2180 
2181 /**
2182  * try_offline_node
2183  * @nid: the node ID
2184  *
2185  * Offline a node if all memory sections and cpus of the node are removed.
2186  *
2187  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2188  * and online/offline operations before this call.
2189  */
2190 void try_offline_node(int nid)
2191 {
2192         int rc;
2193 
2194         /*
2195          * If the node still spans pages (especially ZONE_DEVICE), don't
2196          * offline it. A node spans memory after move_pfn_range_to_zone(),
2197          * e.g., after the memory block was onlined.
2198          */
2199         if (node_spanned_pages(nid))
2200                 return;
2201 
2202         /*
2203          * Especially offline memory blocks might not be spanned by the
2204          * node. They will get spanned by the node once they get onlined.
2205          * However, they link to the node in sysfs and can get onlined later.
2206          */
2207         rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2208         if (rc)
2209                 return;
2210 
2211         if (check_cpu_on_node(nid))
2212                 return;
2213 
2214         /*
2215          * all memory/cpu of this node are removed, we can offline this
2216          * node now.
2217          */
2218         node_set_offline(nid);
2219         unregister_one_node(nid);
2220 }
2221 EXPORT_SYMBOL(try_offline_node);
2222 
2223 static int memory_blocks_have_altmaps(u64 start, u64 size)
2224 {
2225         u64 num_memblocks = size / memory_block_size_bytes();
2226         u64 num_altmaps = 0;
2227 
2228         if (!mhp_memmap_on_memory())
2229                 return 0;
2230 
2231         walk_memory_blocks(start, size, &num_altmaps,
2232                            count_memory_range_altmaps_cb);
2233 
2234         if (num_altmaps == 0)
2235                 return 0;
2236 
2237         if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2238                 return -EINVAL;
2239 
2240         return 1;
2241 }
2242 
2243 static int __ref try_remove_memory(u64 start, u64 size)
2244 {
2245         int rc, nid = NUMA_NO_NODE;
2246 
2247         BUG_ON(check_hotplug_memory_range(start, size));
2248 
2249         /*
2250          * All memory blocks must be offlined before removing memory.  Check
2251          * whether all memory blocks in question are offline and return error
2252          * if this is not the case.
2253          *
2254          * While at it, determine the nid. Note that if we'd have mixed nodes,
2255          * we'd only try to offline the last determined one -- which is good
2256          * enough for the cases we care about.
2257          */
2258         rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2259         if (rc)
2260                 return rc;
2261 
2262         /* remove memmap entry */
2263         firmware_map_remove(start, start + size, "System RAM");
2264 
2265         mem_hotplug_begin();
2266 
2267         rc = memory_blocks_have_altmaps(start, size);
2268         if (rc < 0) {
2269                 mem_hotplug_done();
2270                 return rc;
2271         } else if (!rc) {
2272                 /*
2273                  * Memory block device removal under the device_hotplug_lock is
2274                  * a barrier against racing online attempts.
2275                  * No altmaps present, do the removal directly
2276                  */
2277                 remove_memory_block_devices(start, size);
2278                 arch_remove_memory(start, size, NULL);
2279         } else {
2280                 /* all memblocks in the range have altmaps */
2281                 remove_memory_blocks_and_altmaps(start, size);
2282         }
2283 
2284         if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
2285                 memblock_remove(start, size);
2286 
2287         release_mem_region_adjustable(start, size);
2288 
2289         if (nid != NUMA_NO_NODE)
2290                 try_offline_node(nid);
2291 
2292         mem_hotplug_done();
2293         return 0;
2294 }
2295 
2296 /**
2297  * __remove_memory - Remove memory if every memory block is offline
2298  * @start: physical address of the region to remove
2299  * @size: size of the region to remove
2300  *
2301  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2302  * and online/offline operations before this call, as required by
2303  * try_offline_node().
2304  */
2305 void __remove_memory(u64 start, u64 size)
2306 {
2307 
2308         /*
2309          * trigger BUG() if some memory is not offlined prior to calling this
2310          * function
2311          */
2312         if (try_remove_memory(start, size))
2313                 BUG();
2314 }
2315 
2316 /*
2317  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2318  * some memory is not offline
2319  */
2320 int remove_memory(u64 start, u64 size)
2321 {
2322         int rc;
2323 
2324         lock_device_hotplug();
2325         rc = try_remove_memory(start, size);
2326         unlock_device_hotplug();
2327 
2328         return rc;
2329 }
2330 EXPORT_SYMBOL_GPL(remove_memory);
2331 
2332 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2333 {
2334         uint8_t online_type = MMOP_ONLINE_KERNEL;
2335         uint8_t **online_types = arg;
2336         struct page *page;
2337         int rc;
2338 
2339         /*
2340          * Sense the online_type via the zone of the memory block. Offlining
2341          * with multiple zones within one memory block will be rejected
2342          * by offlining code ... so we don't care about that.
2343          */
2344         page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2345         if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2346                 online_type = MMOP_ONLINE_MOVABLE;
2347 
2348         rc = device_offline(&mem->dev);
2349         /*
2350          * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2351          * so try_reonline_memory_block() can do the right thing.
2352          */
2353         if (!rc)
2354                 **online_types = online_type;
2355 
2356         (*online_types)++;
2357         /* Ignore if already offline. */
2358         return rc < 0 ? rc : 0;
2359 }
2360 
2361 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2362 {
2363         uint8_t **online_types = arg;
2364         int rc;
2365 
2366         if (**online_types != MMOP_OFFLINE) {
2367                 mem->online_type = **online_types;
2368                 rc = device_online(&mem->dev);
2369                 if (rc < 0)
2370                         pr_warn("%s: Failed to re-online memory: %d",
2371                                 __func__, rc);
2372         }
2373 
2374         /* Continue processing all remaining memory blocks. */
2375         (*online_types)++;
2376         return 0;
2377 }
2378 
2379 /*
2380  * Try to offline and remove memory. Might take a long time to finish in case
2381  * memory is still in use. Primarily useful for memory devices that logically
2382  * unplugged all memory (so it's no longer in use) and want to offline + remove
2383  * that memory.
2384  */
2385 int offline_and_remove_memory(u64 start, u64 size)
2386 {
2387         const unsigned long mb_count = size / memory_block_size_bytes();
2388         uint8_t *online_types, *tmp;
2389         int rc;
2390 
2391         if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2392             !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2393                 return -EINVAL;
2394 
2395         /*
2396          * We'll remember the old online type of each memory block, so we can
2397          * try to revert whatever we did when offlining one memory block fails
2398          * after offlining some others succeeded.
2399          */
2400         online_types = kmalloc_array(mb_count, sizeof(*online_types),
2401                                      GFP_KERNEL);
2402         if (!online_types)
2403                 return -ENOMEM;
2404         /*
2405          * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2406          * try_offline_memory_block(), we'll skip all unprocessed blocks in
2407          * try_reonline_memory_block().
2408          */
2409         memset(online_types, MMOP_OFFLINE, mb_count);
2410 
2411         lock_device_hotplug();
2412 
2413         tmp = online_types;
2414         rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2415 
2416         /*
2417          * In case we succeeded to offline all memory, remove it.
2418          * This cannot fail as it cannot get onlined in the meantime.
2419          */
2420         if (!rc) {
2421                 rc = try_remove_memory(start, size);
2422                 if (rc)
2423                         pr_err("%s: Failed to remove memory: %d", __func__, rc);
2424         }
2425 
2426         /*
2427          * Rollback what we did. While memory onlining might theoretically fail
2428          * (nacked by a notifier), it barely ever happens.
2429          */
2430         if (rc) {
2431                 tmp = online_types;
2432                 walk_memory_blocks(start, size, &tmp,
2433                                    try_reonline_memory_block);
2434         }
2435         unlock_device_hotplug();
2436 
2437         kfree(online_types);
2438         return rc;
2439 }
2440 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2441 #endif /* CONFIG_MEMORY_HOTREMOVE */
2442 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php