1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Device Memory Migration functionality. 4 * 5 * Originally written by Jérôme Glisse. 6 */ 7 #include <linux/export.h> 8 #include <linux/memremap.h> 9 #include <linux/migrate.h> 10 #include <linux/mm.h> 11 #include <linux/mm_inline.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/oom.h> 14 #include <linux/pagewalk.h> 15 #include <linux/rmap.h> 16 #include <linux/swapops.h> 17 #include <asm/tlbflush.h> 18 #include "internal.h" 19 20 static int migrate_vma_collect_skip(unsigned long start, 21 unsigned long end, 22 struct mm_walk *walk) 23 { 24 struct migrate_vma *migrate = walk->private; 25 unsigned long addr; 26 27 for (addr = start; addr < end; addr += PAGE_SIZE) { 28 migrate->dst[migrate->npages] = 0; 29 migrate->src[migrate->npages++] = 0; 30 } 31 32 return 0; 33 } 34 35 static int migrate_vma_collect_hole(unsigned long start, 36 unsigned long end, 37 __always_unused int depth, 38 struct mm_walk *walk) 39 { 40 struct migrate_vma *migrate = walk->private; 41 unsigned long addr; 42 43 /* Only allow populating anonymous memory. */ 44 if (!vma_is_anonymous(walk->vma)) 45 return migrate_vma_collect_skip(start, end, walk); 46 47 for (addr = start; addr < end; addr += PAGE_SIZE) { 48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 49 migrate->dst[migrate->npages] = 0; 50 migrate->npages++; 51 migrate->cpages++; 52 } 53 54 return 0; 55 } 56 57 static int migrate_vma_collect_pmd(pmd_t *pmdp, 58 unsigned long start, 59 unsigned long end, 60 struct mm_walk *walk) 61 { 62 struct migrate_vma *migrate = walk->private; 63 struct vm_area_struct *vma = walk->vma; 64 struct mm_struct *mm = vma->vm_mm; 65 unsigned long addr = start, unmapped = 0; 66 spinlock_t *ptl; 67 pte_t *ptep; 68 69 again: 70 if (pmd_none(*pmdp)) 71 return migrate_vma_collect_hole(start, end, -1, walk); 72 73 if (pmd_trans_huge(*pmdp)) { 74 struct folio *folio; 75 76 ptl = pmd_lock(mm, pmdp); 77 if (unlikely(!pmd_trans_huge(*pmdp))) { 78 spin_unlock(ptl); 79 goto again; 80 } 81 82 folio = pmd_folio(*pmdp); 83 if (is_huge_zero_folio(folio)) { 84 spin_unlock(ptl); 85 split_huge_pmd(vma, pmdp, addr); 86 } else { 87 int ret; 88 89 folio_get(folio); 90 spin_unlock(ptl); 91 if (unlikely(!folio_trylock(folio))) 92 return migrate_vma_collect_skip(start, end, 93 walk); 94 ret = split_folio(folio); 95 folio_unlock(folio); 96 folio_put(folio); 97 if (ret) 98 return migrate_vma_collect_skip(start, end, 99 walk); 100 } 101 } 102 103 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 104 if (!ptep) 105 goto again; 106 arch_enter_lazy_mmu_mode(); 107 108 for (; addr < end; addr += PAGE_SIZE, ptep++) { 109 unsigned long mpfn = 0, pfn; 110 struct folio *folio; 111 struct page *page; 112 swp_entry_t entry; 113 pte_t pte; 114 115 pte = ptep_get(ptep); 116 117 if (pte_none(pte)) { 118 if (vma_is_anonymous(vma)) { 119 mpfn = MIGRATE_PFN_MIGRATE; 120 migrate->cpages++; 121 } 122 goto next; 123 } 124 125 if (!pte_present(pte)) { 126 /* 127 * Only care about unaddressable device page special 128 * page table entry. Other special swap entries are not 129 * migratable, and we ignore regular swapped page. 130 */ 131 entry = pte_to_swp_entry(pte); 132 if (!is_device_private_entry(entry)) 133 goto next; 134 135 page = pfn_swap_entry_to_page(entry); 136 if (!(migrate->flags & 137 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 138 page->pgmap->owner != migrate->pgmap_owner) 139 goto next; 140 141 mpfn = migrate_pfn(page_to_pfn(page)) | 142 MIGRATE_PFN_MIGRATE; 143 if (is_writable_device_private_entry(entry)) 144 mpfn |= MIGRATE_PFN_WRITE; 145 } else { 146 pfn = pte_pfn(pte); 147 if (is_zero_pfn(pfn) && 148 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { 149 mpfn = MIGRATE_PFN_MIGRATE; 150 migrate->cpages++; 151 goto next; 152 } 153 page = vm_normal_page(migrate->vma, addr, pte); 154 if (page && !is_zone_device_page(page) && 155 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 156 goto next; 157 else if (page && is_device_coherent_page(page) && 158 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || 159 page->pgmap->owner != migrate->pgmap_owner)) 160 goto next; 161 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 162 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 163 } 164 165 /* FIXME support THP */ 166 if (!page || !page->mapping || PageTransCompound(page)) { 167 mpfn = 0; 168 goto next; 169 } 170 171 /* 172 * By getting a reference on the folio we pin it and that blocks 173 * any kind of migration. Side effect is that it "freezes" the 174 * pte. 175 * 176 * We drop this reference after isolating the folio from the lru 177 * for non device folio (device folio are not on the lru and thus 178 * can't be dropped from it). 179 */ 180 folio = page_folio(page); 181 folio_get(folio); 182 183 /* 184 * We rely on folio_trylock() to avoid deadlock between 185 * concurrent migrations where each is waiting on the others 186 * folio lock. If we can't immediately lock the folio we fail this 187 * migration as it is only best effort anyway. 188 * 189 * If we can lock the folio it's safe to set up a migration entry 190 * now. In the common case where the folio is mapped once in a 191 * single process setting up the migration entry now is an 192 * optimisation to avoid walking the rmap later with 193 * try_to_migrate(). 194 */ 195 if (folio_trylock(folio)) { 196 bool anon_exclusive; 197 pte_t swp_pte; 198 199 flush_cache_page(vma, addr, pte_pfn(pte)); 200 anon_exclusive = folio_test_anon(folio) && 201 PageAnonExclusive(page); 202 if (anon_exclusive) { 203 pte = ptep_clear_flush(vma, addr, ptep); 204 205 if (folio_try_share_anon_rmap_pte(folio, page)) { 206 set_pte_at(mm, addr, ptep, pte); 207 folio_unlock(folio); 208 folio_put(folio); 209 mpfn = 0; 210 goto next; 211 } 212 } else { 213 pte = ptep_get_and_clear(mm, addr, ptep); 214 } 215 216 migrate->cpages++; 217 218 /* Set the dirty flag on the folio now the pte is gone. */ 219 if (pte_dirty(pte)) 220 folio_mark_dirty(folio); 221 222 /* Setup special migration page table entry */ 223 if (mpfn & MIGRATE_PFN_WRITE) 224 entry = make_writable_migration_entry( 225 page_to_pfn(page)); 226 else if (anon_exclusive) 227 entry = make_readable_exclusive_migration_entry( 228 page_to_pfn(page)); 229 else 230 entry = make_readable_migration_entry( 231 page_to_pfn(page)); 232 if (pte_present(pte)) { 233 if (pte_young(pte)) 234 entry = make_migration_entry_young(entry); 235 if (pte_dirty(pte)) 236 entry = make_migration_entry_dirty(entry); 237 } 238 swp_pte = swp_entry_to_pte(entry); 239 if (pte_present(pte)) { 240 if (pte_soft_dirty(pte)) 241 swp_pte = pte_swp_mksoft_dirty(swp_pte); 242 if (pte_uffd_wp(pte)) 243 swp_pte = pte_swp_mkuffd_wp(swp_pte); 244 } else { 245 if (pte_swp_soft_dirty(pte)) 246 swp_pte = pte_swp_mksoft_dirty(swp_pte); 247 if (pte_swp_uffd_wp(pte)) 248 swp_pte = pte_swp_mkuffd_wp(swp_pte); 249 } 250 set_pte_at(mm, addr, ptep, swp_pte); 251 252 /* 253 * This is like regular unmap: we remove the rmap and 254 * drop the folio refcount. The folio won't be freed, as 255 * we took a reference just above. 256 */ 257 folio_remove_rmap_pte(folio, page, vma); 258 folio_put(folio); 259 260 if (pte_present(pte)) 261 unmapped++; 262 } else { 263 folio_put(folio); 264 mpfn = 0; 265 } 266 267 next: 268 migrate->dst[migrate->npages] = 0; 269 migrate->src[migrate->npages++] = mpfn; 270 } 271 272 /* Only flush the TLB if we actually modified any entries */ 273 if (unmapped) 274 flush_tlb_range(walk->vma, start, end); 275 276 arch_leave_lazy_mmu_mode(); 277 pte_unmap_unlock(ptep - 1, ptl); 278 279 return 0; 280 } 281 282 static const struct mm_walk_ops migrate_vma_walk_ops = { 283 .pmd_entry = migrate_vma_collect_pmd, 284 .pte_hole = migrate_vma_collect_hole, 285 .walk_lock = PGWALK_RDLOCK, 286 }; 287 288 /* 289 * migrate_vma_collect() - collect pages over a range of virtual addresses 290 * @migrate: migrate struct containing all migration information 291 * 292 * This will walk the CPU page table. For each virtual address backed by a 293 * valid page, it updates the src array and takes a reference on the page, in 294 * order to pin the page until we lock it and unmap it. 295 */ 296 static void migrate_vma_collect(struct migrate_vma *migrate) 297 { 298 struct mmu_notifier_range range; 299 300 /* 301 * Note that the pgmap_owner is passed to the mmu notifier callback so 302 * that the registered device driver can skip invalidating device 303 * private page mappings that won't be migrated. 304 */ 305 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 306 migrate->vma->vm_mm, migrate->start, migrate->end, 307 migrate->pgmap_owner); 308 mmu_notifier_invalidate_range_start(&range); 309 310 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 311 &migrate_vma_walk_ops, migrate); 312 313 mmu_notifier_invalidate_range_end(&range); 314 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 315 } 316 317 /* 318 * migrate_vma_check_page() - check if page is pinned or not 319 * @page: struct page to check 320 * 321 * Pinned pages cannot be migrated. This is the same test as in 322 * folio_migrate_mapping(), except that here we allow migration of a 323 * ZONE_DEVICE page. 324 */ 325 static bool migrate_vma_check_page(struct page *page, struct page *fault_page) 326 { 327 struct folio *folio = page_folio(page); 328 329 /* 330 * One extra ref because caller holds an extra reference, either from 331 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 332 * a device page. 333 */ 334 int extra = 1 + (page == fault_page); 335 336 /* 337 * FIXME support THP (transparent huge page), it is bit more complex to 338 * check them than regular pages, because they can be mapped with a pmd 339 * or with a pte (split pte mapping). 340 */ 341 if (folio_test_large(folio)) 342 return false; 343 344 /* Page from ZONE_DEVICE have one extra reference */ 345 if (folio_is_zone_device(folio)) 346 extra++; 347 348 /* For file back page */ 349 if (folio_mapping(folio)) 350 extra += 1 + folio_has_private(folio); 351 352 if ((folio_ref_count(folio) - extra) > folio_mapcount(folio)) 353 return false; 354 355 return true; 356 } 357 358 /* 359 * Unmaps pages for migration. Returns number of source pfns marked as 360 * migrating. 361 */ 362 static unsigned long migrate_device_unmap(unsigned long *src_pfns, 363 unsigned long npages, 364 struct page *fault_page) 365 { 366 unsigned long i, restore = 0; 367 bool allow_drain = true; 368 unsigned long unmapped = 0; 369 370 lru_add_drain(); 371 372 for (i = 0; i < npages; i++) { 373 struct page *page = migrate_pfn_to_page(src_pfns[i]); 374 struct folio *folio; 375 376 if (!page) { 377 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) 378 unmapped++; 379 continue; 380 } 381 382 /* ZONE_DEVICE pages are not on LRU */ 383 if (!is_zone_device_page(page)) { 384 if (!PageLRU(page) && allow_drain) { 385 /* Drain CPU's lru cache */ 386 lru_add_drain_all(); 387 allow_drain = false; 388 } 389 390 if (!isolate_lru_page(page)) { 391 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 392 restore++; 393 continue; 394 } 395 396 /* Drop the reference we took in collect */ 397 put_page(page); 398 } 399 400 folio = page_folio(page); 401 if (folio_mapped(folio)) 402 try_to_migrate(folio, 0); 403 404 if (page_mapped(page) || 405 !migrate_vma_check_page(page, fault_page)) { 406 if (!is_zone_device_page(page)) { 407 get_page(page); 408 putback_lru_page(page); 409 } 410 411 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 412 restore++; 413 continue; 414 } 415 416 unmapped++; 417 } 418 419 for (i = 0; i < npages && restore; i++) { 420 struct page *page = migrate_pfn_to_page(src_pfns[i]); 421 struct folio *folio; 422 423 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) 424 continue; 425 426 folio = page_folio(page); 427 remove_migration_ptes(folio, folio, false); 428 429 src_pfns[i] = 0; 430 folio_unlock(folio); 431 folio_put(folio); 432 restore--; 433 } 434 435 return unmapped; 436 } 437 438 /* 439 * migrate_vma_unmap() - replace page mapping with special migration pte entry 440 * @migrate: migrate struct containing all migration information 441 * 442 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 443 * special migration pte entry and check if it has been pinned. Pinned pages are 444 * restored because we cannot migrate them. 445 * 446 * This is the last step before we call the device driver callback to allocate 447 * destination memory and copy contents of original page over to new page. 448 */ 449 static void migrate_vma_unmap(struct migrate_vma *migrate) 450 { 451 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, 452 migrate->fault_page); 453 } 454 455 /** 456 * migrate_vma_setup() - prepare to migrate a range of memory 457 * @args: contains the vma, start, and pfns arrays for the migration 458 * 459 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 460 * without an error. 461 * 462 * Prepare to migrate a range of memory virtual address range by collecting all 463 * the pages backing each virtual address in the range, saving them inside the 464 * src array. Then lock those pages and unmap them. Once the pages are locked 465 * and unmapped, check whether each page is pinned or not. Pages that aren't 466 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 467 * corresponding src array entry. Then restores any pages that are pinned, by 468 * remapping and unlocking those pages. 469 * 470 * The caller should then allocate destination memory and copy source memory to 471 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 472 * flag set). Once these are allocated and copied, the caller must update each 473 * corresponding entry in the dst array with the pfn value of the destination 474 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 475 * lock_page(). 476 * 477 * Note that the caller does not have to migrate all the pages that are marked 478 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 479 * device memory to system memory. If the caller cannot migrate a device page 480 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 481 * consequences for the userspace process, so it must be avoided if at all 482 * possible. 483 * 484 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 485 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 486 * allowing the caller to allocate device memory for those unbacked virtual 487 * addresses. For this the caller simply has to allocate device memory and 488 * properly set the destination entry like for regular migration. Note that 489 * this can still fail, and thus inside the device driver you must check if the 490 * migration was successful for those entries after calling migrate_vma_pages(), 491 * just like for regular migration. 492 * 493 * After that, the callers must call migrate_vma_pages() to go over each entry 494 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 495 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 496 * then migrate_vma_pages() to migrate struct page information from the source 497 * struct page to the destination struct page. If it fails to migrate the 498 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 499 * src array. 500 * 501 * At this point all successfully migrated pages have an entry in the src 502 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 503 * array entry with MIGRATE_PFN_VALID flag set. 504 * 505 * Once migrate_vma_pages() returns the caller may inspect which pages were 506 * successfully migrated, and which were not. Successfully migrated pages will 507 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 508 * 509 * It is safe to update device page table after migrate_vma_pages() because 510 * both destination and source page are still locked, and the mmap_lock is held 511 * in read mode (hence no one can unmap the range being migrated). 512 * 513 * Once the caller is done cleaning up things and updating its page table (if it 514 * chose to do so, this is not an obligation) it finally calls 515 * migrate_vma_finalize() to update the CPU page table to point to new pages 516 * for successfully migrated pages or otherwise restore the CPU page table to 517 * point to the original source pages. 518 */ 519 int migrate_vma_setup(struct migrate_vma *args) 520 { 521 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 522 523 args->start &= PAGE_MASK; 524 args->end &= PAGE_MASK; 525 if (!args->vma || is_vm_hugetlb_page(args->vma) || 526 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 527 return -EINVAL; 528 if (nr_pages <= 0) 529 return -EINVAL; 530 if (args->start < args->vma->vm_start || 531 args->start >= args->vma->vm_end) 532 return -EINVAL; 533 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 534 return -EINVAL; 535 if (!args->src || !args->dst) 536 return -EINVAL; 537 if (args->fault_page && !is_device_private_page(args->fault_page)) 538 return -EINVAL; 539 540 memset(args->src, 0, sizeof(*args->src) * nr_pages); 541 args->cpages = 0; 542 args->npages = 0; 543 544 migrate_vma_collect(args); 545 546 if (args->cpages) 547 migrate_vma_unmap(args); 548 549 /* 550 * At this point pages are locked and unmapped, and thus they have 551 * stable content and can safely be copied to destination memory that 552 * is allocated by the drivers. 553 */ 554 return 0; 555 556 } 557 EXPORT_SYMBOL(migrate_vma_setup); 558 559 /* 560 * This code closely matches the code in: 561 * __handle_mm_fault() 562 * handle_pte_fault() 563 * do_anonymous_page() 564 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 565 * private or coherent page. 566 */ 567 static void migrate_vma_insert_page(struct migrate_vma *migrate, 568 unsigned long addr, 569 struct page *page, 570 unsigned long *src) 571 { 572 struct folio *folio = page_folio(page); 573 struct vm_area_struct *vma = migrate->vma; 574 struct mm_struct *mm = vma->vm_mm; 575 bool flush = false; 576 spinlock_t *ptl; 577 pte_t entry; 578 pgd_t *pgdp; 579 p4d_t *p4dp; 580 pud_t *pudp; 581 pmd_t *pmdp; 582 pte_t *ptep; 583 pte_t orig_pte; 584 585 /* Only allow populating anonymous memory */ 586 if (!vma_is_anonymous(vma)) 587 goto abort; 588 589 pgdp = pgd_offset(mm, addr); 590 p4dp = p4d_alloc(mm, pgdp, addr); 591 if (!p4dp) 592 goto abort; 593 pudp = pud_alloc(mm, p4dp, addr); 594 if (!pudp) 595 goto abort; 596 pmdp = pmd_alloc(mm, pudp, addr); 597 if (!pmdp) 598 goto abort; 599 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 600 goto abort; 601 if (pte_alloc(mm, pmdp)) 602 goto abort; 603 if (unlikely(anon_vma_prepare(vma))) 604 goto abort; 605 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 606 goto abort; 607 608 /* 609 * The memory barrier inside __folio_mark_uptodate makes sure that 610 * preceding stores to the folio contents become visible before 611 * the set_pte_at() write. 612 */ 613 __folio_mark_uptodate(folio); 614 615 if (folio_is_device_private(folio)) { 616 swp_entry_t swp_entry; 617 618 if (vma->vm_flags & VM_WRITE) 619 swp_entry = make_writable_device_private_entry( 620 page_to_pfn(page)); 621 else 622 swp_entry = make_readable_device_private_entry( 623 page_to_pfn(page)); 624 entry = swp_entry_to_pte(swp_entry); 625 } else { 626 if (folio_is_zone_device(folio) && 627 !folio_is_device_coherent(folio)) { 628 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 629 goto abort; 630 } 631 entry = mk_pte(page, vma->vm_page_prot); 632 if (vma->vm_flags & VM_WRITE) 633 entry = pte_mkwrite(pte_mkdirty(entry), vma); 634 } 635 636 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 637 if (!ptep) 638 goto abort; 639 orig_pte = ptep_get(ptep); 640 641 if (check_stable_address_space(mm)) 642 goto unlock_abort; 643 644 if (pte_present(orig_pte)) { 645 unsigned long pfn = pte_pfn(orig_pte); 646 647 if (!is_zero_pfn(pfn)) 648 goto unlock_abort; 649 flush = true; 650 } else if (!pte_none(orig_pte)) 651 goto unlock_abort; 652 653 /* 654 * Check for userfaultfd but do not deliver the fault. Instead, 655 * just back off. 656 */ 657 if (userfaultfd_missing(vma)) 658 goto unlock_abort; 659 660 inc_mm_counter(mm, MM_ANONPAGES); 661 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 662 if (!folio_is_zone_device(folio)) 663 folio_add_lru_vma(folio, vma); 664 folio_get(folio); 665 666 if (flush) { 667 flush_cache_page(vma, addr, pte_pfn(orig_pte)); 668 ptep_clear_flush(vma, addr, ptep); 669 } 670 set_pte_at(mm, addr, ptep, entry); 671 update_mmu_cache(vma, addr, ptep); 672 673 pte_unmap_unlock(ptep, ptl); 674 *src = MIGRATE_PFN_MIGRATE; 675 return; 676 677 unlock_abort: 678 pte_unmap_unlock(ptep, ptl); 679 abort: 680 *src &= ~MIGRATE_PFN_MIGRATE; 681 } 682 683 static void __migrate_device_pages(unsigned long *src_pfns, 684 unsigned long *dst_pfns, unsigned long npages, 685 struct migrate_vma *migrate) 686 { 687 struct mmu_notifier_range range; 688 unsigned long i; 689 bool notified = false; 690 691 for (i = 0; i < npages; i++) { 692 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 693 struct page *page = migrate_pfn_to_page(src_pfns[i]); 694 struct address_space *mapping; 695 struct folio *newfolio, *folio; 696 int r, extra_cnt = 0; 697 698 if (!newpage) { 699 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 700 continue; 701 } 702 703 if (!page) { 704 unsigned long addr; 705 706 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) 707 continue; 708 709 /* 710 * The only time there is no vma is when called from 711 * migrate_device_coherent_page(). However this isn't 712 * called if the page could not be unmapped. 713 */ 714 VM_BUG_ON(!migrate); 715 addr = migrate->start + i*PAGE_SIZE; 716 if (!notified) { 717 notified = true; 718 719 mmu_notifier_range_init_owner(&range, 720 MMU_NOTIFY_MIGRATE, 0, 721 migrate->vma->vm_mm, addr, migrate->end, 722 migrate->pgmap_owner); 723 mmu_notifier_invalidate_range_start(&range); 724 } 725 migrate_vma_insert_page(migrate, addr, newpage, 726 &src_pfns[i]); 727 continue; 728 } 729 730 newfolio = page_folio(newpage); 731 folio = page_folio(page); 732 mapping = folio_mapping(folio); 733 734 if (folio_is_device_private(newfolio) || 735 folio_is_device_coherent(newfolio)) { 736 if (mapping) { 737 /* 738 * For now only support anonymous memory migrating to 739 * device private or coherent memory. 740 * 741 * Try to get rid of swap cache if possible. 742 */ 743 if (!folio_test_anon(folio) || 744 !folio_free_swap(folio)) { 745 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 746 continue; 747 } 748 } 749 } else if (folio_is_zone_device(newfolio)) { 750 /* 751 * Other types of ZONE_DEVICE page are not supported. 752 */ 753 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 754 continue; 755 } 756 757 BUG_ON(folio_test_writeback(folio)); 758 759 if (migrate && migrate->fault_page == page) 760 extra_cnt = 1; 761 r = folio_migrate_mapping(mapping, newfolio, folio, extra_cnt); 762 if (r != MIGRATEPAGE_SUCCESS) 763 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 764 else 765 folio_migrate_flags(newfolio, folio); 766 } 767 768 if (notified) 769 mmu_notifier_invalidate_range_end(&range); 770 } 771 772 /** 773 * migrate_device_pages() - migrate meta-data from src page to dst page 774 * @src_pfns: src_pfns returned from migrate_device_range() 775 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 776 * @npages: number of pages in the range 777 * 778 * Equivalent to migrate_vma_pages(). This is called to migrate struct page 779 * meta-data from source struct page to destination. 780 */ 781 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, 782 unsigned long npages) 783 { 784 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); 785 } 786 EXPORT_SYMBOL(migrate_device_pages); 787 788 /** 789 * migrate_vma_pages() - migrate meta-data from src page to dst page 790 * @migrate: migrate struct containing all migration information 791 * 792 * This migrates struct page meta-data from source struct page to destination 793 * struct page. This effectively finishes the migration from source page to the 794 * destination page. 795 */ 796 void migrate_vma_pages(struct migrate_vma *migrate) 797 { 798 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); 799 } 800 EXPORT_SYMBOL(migrate_vma_pages); 801 802 /* 803 * migrate_device_finalize() - complete page migration 804 * @src_pfns: src_pfns returned from migrate_device_range() 805 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 806 * @npages: number of pages in the range 807 * 808 * Completes migration of the page by removing special migration entries. 809 * Drivers must ensure copying of page data is complete and visible to the CPU 810 * before calling this. 811 */ 812 void migrate_device_finalize(unsigned long *src_pfns, 813 unsigned long *dst_pfns, unsigned long npages) 814 { 815 unsigned long i; 816 817 for (i = 0; i < npages; i++) { 818 struct folio *dst, *src; 819 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 820 struct page *page = migrate_pfn_to_page(src_pfns[i]); 821 822 if (!page) { 823 if (newpage) { 824 unlock_page(newpage); 825 put_page(newpage); 826 } 827 continue; 828 } 829 830 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 831 if (newpage) { 832 unlock_page(newpage); 833 put_page(newpage); 834 } 835 newpage = page; 836 } 837 838 src = page_folio(page); 839 dst = page_folio(newpage); 840 remove_migration_ptes(src, dst, false); 841 folio_unlock(src); 842 843 if (is_zone_device_page(page)) 844 put_page(page); 845 else 846 putback_lru_page(page); 847 848 if (newpage != page) { 849 unlock_page(newpage); 850 if (is_zone_device_page(newpage)) 851 put_page(newpage); 852 else 853 putback_lru_page(newpage); 854 } 855 } 856 } 857 EXPORT_SYMBOL(migrate_device_finalize); 858 859 /** 860 * migrate_vma_finalize() - restore CPU page table entry 861 * @migrate: migrate struct containing all migration information 862 * 863 * This replaces the special migration pte entry with either a mapping to the 864 * new page if migration was successful for that page, or to the original page 865 * otherwise. 866 * 867 * This also unlocks the pages and puts them back on the lru, or drops the extra 868 * refcount, for device pages. 869 */ 870 void migrate_vma_finalize(struct migrate_vma *migrate) 871 { 872 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); 873 } 874 EXPORT_SYMBOL(migrate_vma_finalize); 875 876 /** 877 * migrate_device_range() - migrate device private pfns to normal memory. 878 * @src_pfns: array large enough to hold migrating source device private pfns. 879 * @start: starting pfn in the range to migrate. 880 * @npages: number of pages to migrate. 881 * 882 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that 883 * instead of looking up pages based on virtual address mappings a range of 884 * device pfns that should be migrated to system memory is used instead. 885 * 886 * This is useful when a driver needs to free device memory but doesn't know the 887 * virtual mappings of every page that may be in device memory. For example this 888 * is often the case when a driver is being unloaded or unbound from a device. 889 * 890 * Like migrate_vma_setup() this function will take a reference and lock any 891 * migrating pages that aren't free before unmapping them. Drivers may then 892 * allocate destination pages and start copying data from the device to CPU 893 * memory before calling migrate_device_pages(). 894 */ 895 int migrate_device_range(unsigned long *src_pfns, unsigned long start, 896 unsigned long npages) 897 { 898 unsigned long i, pfn; 899 900 for (pfn = start, i = 0; i < npages; pfn++, i++) { 901 struct page *page = pfn_to_page(pfn); 902 903 if (!get_page_unless_zero(page)) { 904 src_pfns[i] = 0; 905 continue; 906 } 907 908 if (!trylock_page(page)) { 909 src_pfns[i] = 0; 910 put_page(page); 911 continue; 912 } 913 914 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 915 } 916 917 migrate_device_unmap(src_pfns, npages, NULL); 918 919 return 0; 920 } 921 EXPORT_SYMBOL(migrate_device_range); 922 923 /* 924 * Migrate a device coherent page back to normal memory. The caller should have 925 * a reference on page which will be copied to the new page if migration is 926 * successful or dropped on failure. 927 */ 928 int migrate_device_coherent_page(struct page *page) 929 { 930 unsigned long src_pfn, dst_pfn = 0; 931 struct page *dpage; 932 933 WARN_ON_ONCE(PageCompound(page)); 934 935 lock_page(page); 936 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; 937 938 /* 939 * We don't have a VMA and don't need to walk the page tables to find 940 * the source page. So call migrate_vma_unmap() directly to unmap the 941 * page as migrate_vma_setup() will fail if args.vma == NULL. 942 */ 943 migrate_device_unmap(&src_pfn, 1, NULL); 944 if (!(src_pfn & MIGRATE_PFN_MIGRATE)) 945 return -EBUSY; 946 947 dpage = alloc_page(GFP_USER | __GFP_NOWARN); 948 if (dpage) { 949 lock_page(dpage); 950 dst_pfn = migrate_pfn(page_to_pfn(dpage)); 951 } 952 953 migrate_device_pages(&src_pfn, &dst_pfn, 1); 954 if (src_pfn & MIGRATE_PFN_MIGRATE) 955 copy_highpage(dpage, page); 956 migrate_device_finalize(&src_pfn, &dst_pfn, 1); 957 958 if (src_pfn & MIGRATE_PFN_MIGRATE) 959 return 0; 960 return -EBUSY; 961 } 962
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.