1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/pagewalk.h> 18 #include <linux/mempolicy.h> 19 #include <linux/syscalls.h> 20 #include <linux/sched.h> 21 #include <linux/export.h> 22 #include <linux/rmap.h> 23 #include <linux/mmzone.h> 24 #include <linux/hugetlb.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/secretmem.h> 28 29 #include "internal.h" 30 31 struct mlock_fbatch { 32 local_lock_t lock; 33 struct folio_batch fbatch; 34 }; 35 36 static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = { 37 .lock = INIT_LOCAL_LOCK(lock), 38 }; 39 40 bool can_do_mlock(void) 41 { 42 if (rlimit(RLIMIT_MEMLOCK) != 0) 43 return true; 44 if (capable(CAP_IPC_LOCK)) 45 return true; 46 return false; 47 } 48 EXPORT_SYMBOL(can_do_mlock); 49 50 /* 51 * Mlocked folios are marked with the PG_mlocked flag for efficient testing 52 * in vmscan and, possibly, the fault path; and to support semi-accurate 53 * statistics. 54 * 55 * An mlocked folio [folio_test_mlocked(folio)] is unevictable. As such, it 56 * will be ostensibly placed on the LRU "unevictable" list (actually no such 57 * list exists), rather than the [in]active lists. PG_unevictable is set to 58 * indicate the unevictable state. 59 */ 60 61 static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec) 62 { 63 /* There is nothing more we can do while it's off LRU */ 64 if (!folio_test_clear_lru(folio)) 65 return lruvec; 66 67 lruvec = folio_lruvec_relock_irq(folio, lruvec); 68 69 if (unlikely(folio_evictable(folio))) { 70 /* 71 * This is a little surprising, but quite possible: PG_mlocked 72 * must have got cleared already by another CPU. Could this 73 * folio be unevictable? I'm not sure, but move it now if so. 74 */ 75 if (folio_test_unevictable(folio)) { 76 lruvec_del_folio(lruvec, folio); 77 folio_clear_unevictable(folio); 78 lruvec_add_folio(lruvec, folio); 79 80 __count_vm_events(UNEVICTABLE_PGRESCUED, 81 folio_nr_pages(folio)); 82 } 83 goto out; 84 } 85 86 if (folio_test_unevictable(folio)) { 87 if (folio_test_mlocked(folio)) 88 folio->mlock_count++; 89 goto out; 90 } 91 92 lruvec_del_folio(lruvec, folio); 93 folio_clear_active(folio); 94 folio_set_unevictable(folio); 95 folio->mlock_count = !!folio_test_mlocked(folio); 96 lruvec_add_folio(lruvec, folio); 97 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 98 out: 99 folio_set_lru(folio); 100 return lruvec; 101 } 102 103 static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec) 104 { 105 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 106 107 lruvec = folio_lruvec_relock_irq(folio, lruvec); 108 109 /* As above, this is a little surprising, but possible */ 110 if (unlikely(folio_evictable(folio))) 111 goto out; 112 113 folio_set_unevictable(folio); 114 folio->mlock_count = !!folio_test_mlocked(folio); 115 __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); 116 out: 117 lruvec_add_folio(lruvec, folio); 118 folio_set_lru(folio); 119 return lruvec; 120 } 121 122 static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec) 123 { 124 int nr_pages = folio_nr_pages(folio); 125 bool isolated = false; 126 127 if (!folio_test_clear_lru(folio)) 128 goto munlock; 129 130 isolated = true; 131 lruvec = folio_lruvec_relock_irq(folio, lruvec); 132 133 if (folio_test_unevictable(folio)) { 134 /* Then mlock_count is maintained, but might undercount */ 135 if (folio->mlock_count) 136 folio->mlock_count--; 137 if (folio->mlock_count) 138 goto out; 139 } 140 /* else assume that was the last mlock: reclaim will fix it if not */ 141 142 munlock: 143 if (folio_test_clear_mlocked(folio)) { 144 __zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 145 if (isolated || !folio_test_unevictable(folio)) 146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); 147 else 148 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); 149 } 150 151 /* folio_evictable() has to be checked *after* clearing Mlocked */ 152 if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) { 153 lruvec_del_folio(lruvec, folio); 154 folio_clear_unevictable(folio); 155 lruvec_add_folio(lruvec, folio); 156 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 157 } 158 out: 159 if (isolated) 160 folio_set_lru(folio); 161 return lruvec; 162 } 163 164 /* 165 * Flags held in the low bits of a struct folio pointer on the mlock_fbatch. 166 */ 167 #define LRU_FOLIO 0x1 168 #define NEW_FOLIO 0x2 169 static inline struct folio *mlock_lru(struct folio *folio) 170 { 171 return (struct folio *)((unsigned long)folio + LRU_FOLIO); 172 } 173 174 static inline struct folio *mlock_new(struct folio *folio) 175 { 176 return (struct folio *)((unsigned long)folio + NEW_FOLIO); 177 } 178 179 /* 180 * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can 181 * make use of such folio pointer flags in future, but for now just keep it for 182 * mlock. We could use three separate folio batches instead, but one feels 183 * better (munlocking a full folio batch does not need to drain mlocking folio 184 * batches first). 185 */ 186 static void mlock_folio_batch(struct folio_batch *fbatch) 187 { 188 struct lruvec *lruvec = NULL; 189 unsigned long mlock; 190 struct folio *folio; 191 int i; 192 193 for (i = 0; i < folio_batch_count(fbatch); i++) { 194 folio = fbatch->folios[i]; 195 mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO); 196 folio = (struct folio *)((unsigned long)folio - mlock); 197 fbatch->folios[i] = folio; 198 199 if (mlock & LRU_FOLIO) 200 lruvec = __mlock_folio(folio, lruvec); 201 else if (mlock & NEW_FOLIO) 202 lruvec = __mlock_new_folio(folio, lruvec); 203 else 204 lruvec = __munlock_folio(folio, lruvec); 205 } 206 207 if (lruvec) 208 unlock_page_lruvec_irq(lruvec); 209 folios_put(fbatch); 210 } 211 212 void mlock_drain_local(void) 213 { 214 struct folio_batch *fbatch; 215 216 local_lock(&mlock_fbatch.lock); 217 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 218 if (folio_batch_count(fbatch)) 219 mlock_folio_batch(fbatch); 220 local_unlock(&mlock_fbatch.lock); 221 } 222 223 void mlock_drain_remote(int cpu) 224 { 225 struct folio_batch *fbatch; 226 227 WARN_ON_ONCE(cpu_online(cpu)); 228 fbatch = &per_cpu(mlock_fbatch.fbatch, cpu); 229 if (folio_batch_count(fbatch)) 230 mlock_folio_batch(fbatch); 231 } 232 233 bool need_mlock_drain(int cpu) 234 { 235 return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu)); 236 } 237 238 /** 239 * mlock_folio - mlock a folio already on (or temporarily off) LRU 240 * @folio: folio to be mlocked. 241 */ 242 void mlock_folio(struct folio *folio) 243 { 244 struct folio_batch *fbatch; 245 246 local_lock(&mlock_fbatch.lock); 247 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 248 249 if (!folio_test_set_mlocked(folio)) { 250 int nr_pages = folio_nr_pages(folio); 251 252 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 253 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 254 } 255 256 folio_get(folio); 257 if (!folio_batch_add(fbatch, mlock_lru(folio)) || 258 folio_test_large(folio) || lru_cache_disabled()) 259 mlock_folio_batch(fbatch); 260 local_unlock(&mlock_fbatch.lock); 261 } 262 263 /** 264 * mlock_new_folio - mlock a newly allocated folio not yet on LRU 265 * @folio: folio to be mlocked, either normal or a THP head. 266 */ 267 void mlock_new_folio(struct folio *folio) 268 { 269 struct folio_batch *fbatch; 270 int nr_pages = folio_nr_pages(folio); 271 272 local_lock(&mlock_fbatch.lock); 273 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 274 folio_set_mlocked(folio); 275 276 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); 277 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 278 279 folio_get(folio); 280 if (!folio_batch_add(fbatch, mlock_new(folio)) || 281 folio_test_large(folio) || lru_cache_disabled()) 282 mlock_folio_batch(fbatch); 283 local_unlock(&mlock_fbatch.lock); 284 } 285 286 /** 287 * munlock_folio - munlock a folio 288 * @folio: folio to be munlocked, either normal or a THP head. 289 */ 290 void munlock_folio(struct folio *folio) 291 { 292 struct folio_batch *fbatch; 293 294 local_lock(&mlock_fbatch.lock); 295 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); 296 /* 297 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(), 298 * which will check whether the folio is multiply mlocked. 299 */ 300 folio_get(folio); 301 if (!folio_batch_add(fbatch, folio) || 302 folio_test_large(folio) || lru_cache_disabled()) 303 mlock_folio_batch(fbatch); 304 local_unlock(&mlock_fbatch.lock); 305 } 306 307 static inline unsigned int folio_mlock_step(struct folio *folio, 308 pte_t *pte, unsigned long addr, unsigned long end) 309 { 310 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 311 unsigned int count = (end - addr) >> PAGE_SHIFT; 312 pte_t ptent = ptep_get(pte); 313 314 if (!folio_test_large(folio)) 315 return 1; 316 317 return folio_pte_batch(folio, addr, pte, ptent, count, fpb_flags, NULL, 318 NULL, NULL); 319 } 320 321 static inline bool allow_mlock_munlock(struct folio *folio, 322 struct vm_area_struct *vma, unsigned long start, 323 unsigned long end, unsigned int step) 324 { 325 /* 326 * For unlock, allow munlock large folio which is partially 327 * mapped to VMA. As it's possible that large folio is 328 * mlocked and VMA is split later. 329 * 330 * During memory pressure, such kind of large folio can 331 * be split. And the pages are not in VM_LOCKed VMA 332 * can be reclaimed. 333 */ 334 if (!(vma->vm_flags & VM_LOCKED)) 335 return true; 336 337 /* folio_within_range() cannot take KSM, but any small folio is OK */ 338 if (!folio_test_large(folio)) 339 return true; 340 341 /* folio not in range [start, end), skip mlock */ 342 if (!folio_within_range(folio, vma, start, end)) 343 return false; 344 345 /* folio is not fully mapped, skip mlock */ 346 if (step != folio_nr_pages(folio)) 347 return false; 348 349 return true; 350 } 351 352 static int mlock_pte_range(pmd_t *pmd, unsigned long addr, 353 unsigned long end, struct mm_walk *walk) 354 355 { 356 struct vm_area_struct *vma = walk->vma; 357 spinlock_t *ptl; 358 pte_t *start_pte, *pte; 359 pte_t ptent; 360 struct folio *folio; 361 unsigned int step = 1; 362 unsigned long start = addr; 363 364 ptl = pmd_trans_huge_lock(pmd, vma); 365 if (ptl) { 366 if (!pmd_present(*pmd)) 367 goto out; 368 if (is_huge_zero_pmd(*pmd)) 369 goto out; 370 folio = pmd_folio(*pmd); 371 if (vma->vm_flags & VM_LOCKED) 372 mlock_folio(folio); 373 else 374 munlock_folio(folio); 375 goto out; 376 } 377 378 start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 379 if (!start_pte) { 380 walk->action = ACTION_AGAIN; 381 return 0; 382 } 383 384 for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) { 385 ptent = ptep_get(pte); 386 if (!pte_present(ptent)) 387 continue; 388 folio = vm_normal_folio(vma, addr, ptent); 389 if (!folio || folio_is_zone_device(folio)) 390 continue; 391 392 step = folio_mlock_step(folio, pte, addr, end); 393 if (!allow_mlock_munlock(folio, vma, start, end, step)) 394 goto next_entry; 395 396 if (vma->vm_flags & VM_LOCKED) 397 mlock_folio(folio); 398 else 399 munlock_folio(folio); 400 401 next_entry: 402 pte += step - 1; 403 addr += (step - 1) << PAGE_SHIFT; 404 } 405 pte_unmap(start_pte); 406 out: 407 spin_unlock(ptl); 408 cond_resched(); 409 return 0; 410 } 411 412 /* 413 * mlock_vma_pages_range() - mlock any pages already in the range, 414 * or munlock all pages in the range. 415 * @vma - vma containing range to be mlock()ed or munlock()ed 416 * @start - start address in @vma of the range 417 * @end - end of range in @vma 418 * @newflags - the new set of flags for @vma. 419 * 420 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED; 421 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma. 422 */ 423 static void mlock_vma_pages_range(struct vm_area_struct *vma, 424 unsigned long start, unsigned long end, vm_flags_t newflags) 425 { 426 static const struct mm_walk_ops mlock_walk_ops = { 427 .pmd_entry = mlock_pte_range, 428 .walk_lock = PGWALK_WRLOCK_VERIFY, 429 }; 430 431 /* 432 * There is a slight chance that concurrent page migration, 433 * or page reclaim finding a page of this now-VM_LOCKED vma, 434 * will call mlock_vma_folio() and raise page's mlock_count: 435 * double counting, leaving the page unevictable indefinitely. 436 * Communicate this danger to mlock_vma_folio() with VM_IO, 437 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas. 438 * mmap_lock is held in write mode here, so this weird 439 * combination should not be visible to other mmap_lock users; 440 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED. 441 */ 442 if (newflags & VM_LOCKED) 443 newflags |= VM_IO; 444 vma_start_write(vma); 445 vm_flags_reset_once(vma, newflags); 446 447 lru_add_drain(); 448 walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL); 449 lru_add_drain(); 450 451 if (newflags & VM_IO) { 452 newflags &= ~VM_IO; 453 vm_flags_reset_once(vma, newflags); 454 } 455 } 456 457 /* 458 * mlock_fixup - handle mlock[all]/munlock[all] requests. 459 * 460 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 461 * munlock is a no-op. However, for some special vmas, we go ahead and 462 * populate the ptes. 463 * 464 * For vmas that pass the filters, merge/split as appropriate. 465 */ 466 static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma, 467 struct vm_area_struct **prev, unsigned long start, 468 unsigned long end, vm_flags_t newflags) 469 { 470 struct mm_struct *mm = vma->vm_mm; 471 int nr_pages; 472 int ret = 0; 473 vm_flags_t oldflags = vma->vm_flags; 474 475 if (newflags == oldflags || (oldflags & VM_SPECIAL) || 476 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 477 vma_is_dax(vma) || vma_is_secretmem(vma) || (oldflags & VM_DROPPABLE)) 478 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 479 goto out; 480 481 vma = vma_modify_flags(vmi, *prev, vma, start, end, newflags); 482 if (IS_ERR(vma)) { 483 ret = PTR_ERR(vma); 484 goto out; 485 } 486 487 /* 488 * Keep track of amount of locked VM. 489 */ 490 nr_pages = (end - start) >> PAGE_SHIFT; 491 if (!(newflags & VM_LOCKED)) 492 nr_pages = -nr_pages; 493 else if (oldflags & VM_LOCKED) 494 nr_pages = 0; 495 mm->locked_vm += nr_pages; 496 497 /* 498 * vm_flags is protected by the mmap_lock held in write mode. 499 * It's okay if try_to_unmap_one unmaps a page just after we 500 * set VM_LOCKED, populate_vma_page_range will bring it back. 501 */ 502 if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) { 503 /* No work to do, and mlocking twice would be wrong */ 504 vma_start_write(vma); 505 vm_flags_reset(vma, newflags); 506 } else { 507 mlock_vma_pages_range(vma, start, end, newflags); 508 } 509 out: 510 *prev = vma; 511 return ret; 512 } 513 514 static int apply_vma_lock_flags(unsigned long start, size_t len, 515 vm_flags_t flags) 516 { 517 unsigned long nstart, end, tmp; 518 struct vm_area_struct *vma, *prev; 519 VMA_ITERATOR(vmi, current->mm, start); 520 521 VM_BUG_ON(offset_in_page(start)); 522 VM_BUG_ON(len != PAGE_ALIGN(len)); 523 end = start + len; 524 if (end < start) 525 return -EINVAL; 526 if (end == start) 527 return 0; 528 vma = vma_iter_load(&vmi); 529 if (!vma) 530 return -ENOMEM; 531 532 prev = vma_prev(&vmi); 533 if (start > vma->vm_start) 534 prev = vma; 535 536 nstart = start; 537 tmp = vma->vm_start; 538 for_each_vma_range(vmi, vma, end) { 539 int error; 540 vm_flags_t newflags; 541 542 if (vma->vm_start != tmp) 543 return -ENOMEM; 544 545 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 546 newflags |= flags; 547 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 548 tmp = vma->vm_end; 549 if (tmp > end) 550 tmp = end; 551 error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags); 552 if (error) 553 return error; 554 tmp = vma_iter_end(&vmi); 555 nstart = tmp; 556 } 557 558 if (tmp < end) 559 return -ENOMEM; 560 561 return 0; 562 } 563 564 /* 565 * Go through vma areas and sum size of mlocked 566 * vma pages, as return value. 567 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 568 * is also counted. 569 * Return value: previously mlocked page counts 570 */ 571 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 572 unsigned long start, size_t len) 573 { 574 struct vm_area_struct *vma; 575 unsigned long count = 0; 576 unsigned long end; 577 VMA_ITERATOR(vmi, mm, start); 578 579 /* Don't overflow past ULONG_MAX */ 580 if (unlikely(ULONG_MAX - len < start)) 581 end = ULONG_MAX; 582 else 583 end = start + len; 584 585 for_each_vma_range(vmi, vma, end) { 586 if (vma->vm_flags & VM_LOCKED) { 587 if (start > vma->vm_start) 588 count -= (start - vma->vm_start); 589 if (end < vma->vm_end) { 590 count += end - vma->vm_start; 591 break; 592 } 593 count += vma->vm_end - vma->vm_start; 594 } 595 } 596 597 return count >> PAGE_SHIFT; 598 } 599 600 /* 601 * convert get_user_pages() return value to posix mlock() error 602 */ 603 static int __mlock_posix_error_return(long retval) 604 { 605 if (retval == -EFAULT) 606 retval = -ENOMEM; 607 else if (retval == -ENOMEM) 608 retval = -EAGAIN; 609 return retval; 610 } 611 612 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 613 { 614 unsigned long locked; 615 unsigned long lock_limit; 616 int error = -ENOMEM; 617 618 start = untagged_addr(start); 619 620 if (!can_do_mlock()) 621 return -EPERM; 622 623 len = PAGE_ALIGN(len + (offset_in_page(start))); 624 start &= PAGE_MASK; 625 626 lock_limit = rlimit(RLIMIT_MEMLOCK); 627 lock_limit >>= PAGE_SHIFT; 628 locked = len >> PAGE_SHIFT; 629 630 if (mmap_write_lock_killable(current->mm)) 631 return -EINTR; 632 633 locked += current->mm->locked_vm; 634 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 635 /* 636 * It is possible that the regions requested intersect with 637 * previously mlocked areas, that part area in "mm->locked_vm" 638 * should not be counted to new mlock increment count. So check 639 * and adjust locked count if necessary. 640 */ 641 locked -= count_mm_mlocked_page_nr(current->mm, 642 start, len); 643 } 644 645 /* check against resource limits */ 646 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 647 error = apply_vma_lock_flags(start, len, flags); 648 649 mmap_write_unlock(current->mm); 650 if (error) 651 return error; 652 653 error = __mm_populate(start, len, 0); 654 if (error) 655 return __mlock_posix_error_return(error); 656 return 0; 657 } 658 659 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 660 { 661 return do_mlock(start, len, VM_LOCKED); 662 } 663 664 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 665 { 666 vm_flags_t vm_flags = VM_LOCKED; 667 668 if (flags & ~MLOCK_ONFAULT) 669 return -EINVAL; 670 671 if (flags & MLOCK_ONFAULT) 672 vm_flags |= VM_LOCKONFAULT; 673 674 return do_mlock(start, len, vm_flags); 675 } 676 677 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 678 { 679 int ret; 680 681 start = untagged_addr(start); 682 683 len = PAGE_ALIGN(len + (offset_in_page(start))); 684 start &= PAGE_MASK; 685 686 if (mmap_write_lock_killable(current->mm)) 687 return -EINTR; 688 ret = apply_vma_lock_flags(start, len, 0); 689 mmap_write_unlock(current->mm); 690 691 return ret; 692 } 693 694 /* 695 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 696 * and translate into the appropriate modifications to mm->def_flags and/or the 697 * flags for all current VMAs. 698 * 699 * There are a couple of subtleties with this. If mlockall() is called multiple 700 * times with different flags, the values do not necessarily stack. If mlockall 701 * is called once including the MCL_FUTURE flag and then a second time without 702 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 703 */ 704 static int apply_mlockall_flags(int flags) 705 { 706 VMA_ITERATOR(vmi, current->mm, 0); 707 struct vm_area_struct *vma, *prev = NULL; 708 vm_flags_t to_add = 0; 709 710 current->mm->def_flags &= ~VM_LOCKED_MASK; 711 if (flags & MCL_FUTURE) { 712 current->mm->def_flags |= VM_LOCKED; 713 714 if (flags & MCL_ONFAULT) 715 current->mm->def_flags |= VM_LOCKONFAULT; 716 717 if (!(flags & MCL_CURRENT)) 718 goto out; 719 } 720 721 if (flags & MCL_CURRENT) { 722 to_add |= VM_LOCKED; 723 if (flags & MCL_ONFAULT) 724 to_add |= VM_LOCKONFAULT; 725 } 726 727 for_each_vma(vmi, vma) { 728 vm_flags_t newflags; 729 730 newflags = vma->vm_flags & ~VM_LOCKED_MASK; 731 newflags |= to_add; 732 733 /* Ignore errors */ 734 mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end, 735 newflags); 736 cond_resched(); 737 } 738 out: 739 return 0; 740 } 741 742 SYSCALL_DEFINE1(mlockall, int, flags) 743 { 744 unsigned long lock_limit; 745 int ret; 746 747 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 748 flags == MCL_ONFAULT) 749 return -EINVAL; 750 751 if (!can_do_mlock()) 752 return -EPERM; 753 754 lock_limit = rlimit(RLIMIT_MEMLOCK); 755 lock_limit >>= PAGE_SHIFT; 756 757 if (mmap_write_lock_killable(current->mm)) 758 return -EINTR; 759 760 ret = -ENOMEM; 761 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 762 capable(CAP_IPC_LOCK)) 763 ret = apply_mlockall_flags(flags); 764 mmap_write_unlock(current->mm); 765 if (!ret && (flags & MCL_CURRENT)) 766 mm_populate(0, TASK_SIZE); 767 768 return ret; 769 } 770 771 SYSCALL_DEFINE0(munlockall) 772 { 773 int ret; 774 775 if (mmap_write_lock_killable(current->mm)) 776 return -EINTR; 777 ret = apply_mlockall_flags(0); 778 mmap_write_unlock(current->mm); 779 return ret; 780 } 781 782 /* 783 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 784 * shm segments) get accounted against the user_struct instead. 785 */ 786 static DEFINE_SPINLOCK(shmlock_user_lock); 787 788 int user_shm_lock(size_t size, struct ucounts *ucounts) 789 { 790 unsigned long lock_limit, locked; 791 long memlock; 792 int allowed = 0; 793 794 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 795 lock_limit = rlimit(RLIMIT_MEMLOCK); 796 if (lock_limit != RLIM_INFINITY) 797 lock_limit >>= PAGE_SHIFT; 798 spin_lock(&shmlock_user_lock); 799 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 800 801 if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) { 802 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 803 goto out; 804 } 805 if (!get_ucounts(ucounts)) { 806 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); 807 allowed = 0; 808 goto out; 809 } 810 allowed = 1; 811 out: 812 spin_unlock(&shmlock_user_lock); 813 return allowed; 814 } 815 816 void user_shm_unlock(size_t size, struct ucounts *ucounts) 817 { 818 spin_lock(&shmlock_user_lock); 819 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); 820 spin_unlock(&shmlock_user_lock); 821 put_ucounts(ucounts); 822 } 823
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.