1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/stackdepot.h> 28 #include <linux/swap.h> 29 #include <linux/cma.h> 30 #include <linux/crash_dump.h> 31 #include <linux/execmem.h> 32 #include <linux/vmstat.h> 33 #include "internal.h" 34 #include "slab.h" 35 #include "shuffle.h" 36 37 #include <asm/setup.h> 38 39 #ifdef CONFIG_DEBUG_MEMORY_INIT 40 int __meminitdata mminit_loglevel; 41 42 /* The zonelists are simply reported, validation is manual. */ 43 void __init mminit_verify_zonelist(void) 44 { 45 int nid; 46 47 if (mminit_loglevel < MMINIT_VERIFY) 48 return; 49 50 for_each_online_node(nid) { 51 pg_data_t *pgdat = NODE_DATA(nid); 52 struct zone *zone; 53 struct zoneref *z; 54 struct zonelist *zonelist; 55 int i, listid, zoneid; 56 57 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 58 59 /* Identify the zone and nodelist */ 60 zoneid = i % MAX_NR_ZONES; 61 listid = i / MAX_NR_ZONES; 62 zonelist = &pgdat->node_zonelists[listid]; 63 zone = &pgdat->node_zones[zoneid]; 64 if (!populated_zone(zone)) 65 continue; 66 67 /* Print information about the zonelist */ 68 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 69 listid > 0 ? "thisnode" : "general", nid, 70 zone->name); 71 72 /* Iterate the zonelist */ 73 for_each_zone_zonelist(zone, z, zonelist, zoneid) 74 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 75 pr_cont("\n"); 76 } 77 } 78 } 79 80 void __init mminit_verify_pageflags_layout(void) 81 { 82 int shift, width; 83 unsigned long or_mask, add_mask; 84 85 shift = BITS_PER_LONG; 86 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH 87 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; 88 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 89 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 90 SECTIONS_WIDTH, 91 NODES_WIDTH, 92 ZONES_WIDTH, 93 LAST_CPUPID_WIDTH, 94 KASAN_TAG_WIDTH, 95 LRU_GEN_WIDTH, 96 LRU_REFS_WIDTH, 97 NR_PAGEFLAGS); 98 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 99 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 100 SECTIONS_SHIFT, 101 NODES_SHIFT, 102 ZONES_SHIFT, 103 LAST_CPUPID_SHIFT, 104 KASAN_TAG_WIDTH); 105 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 106 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 107 (unsigned long)SECTIONS_PGSHIFT, 108 (unsigned long)NODES_PGSHIFT, 109 (unsigned long)ZONES_PGSHIFT, 110 (unsigned long)LAST_CPUPID_PGSHIFT, 111 (unsigned long)KASAN_TAG_PGSHIFT); 112 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 113 "Node/Zone ID: %lu -> %lu\n", 114 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 115 (unsigned long)ZONEID_PGOFF); 116 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 117 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 118 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 119 #ifdef NODE_NOT_IN_PAGE_FLAGS 120 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 121 "Node not in page flags"); 122 #endif 123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 124 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 125 "Last cpupid not in page flags"); 126 #endif 127 128 if (SECTIONS_WIDTH) { 129 shift -= SECTIONS_WIDTH; 130 BUG_ON(shift != SECTIONS_PGSHIFT); 131 } 132 if (NODES_WIDTH) { 133 shift -= NODES_WIDTH; 134 BUG_ON(shift != NODES_PGSHIFT); 135 } 136 if (ZONES_WIDTH) { 137 shift -= ZONES_WIDTH; 138 BUG_ON(shift != ZONES_PGSHIFT); 139 } 140 141 /* Check for bitmask overlaps */ 142 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 143 (NODES_MASK << NODES_PGSHIFT) | 144 (SECTIONS_MASK << SECTIONS_PGSHIFT); 145 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 146 (NODES_MASK << NODES_PGSHIFT) + 147 (SECTIONS_MASK << SECTIONS_PGSHIFT); 148 BUG_ON(or_mask != add_mask); 149 } 150 151 static __init int set_mminit_loglevel(char *str) 152 { 153 get_option(&str, &mminit_loglevel); 154 return 0; 155 } 156 early_param("mminit_loglevel", set_mminit_loglevel); 157 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 158 159 struct kobject *mm_kobj; 160 161 #ifdef CONFIG_SMP 162 s32 vm_committed_as_batch = 32; 163 164 void mm_compute_batch(int overcommit_policy) 165 { 166 u64 memsized_batch; 167 s32 nr = num_present_cpus(); 168 s32 batch = max_t(s32, nr*2, 32); 169 unsigned long ram_pages = totalram_pages(); 170 171 /* 172 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 173 * (total memory/#cpus), and lift it to 25% for other policies 174 * to easy the possible lock contention for percpu_counter 175 * vm_committed_as, while the max limit is INT_MAX 176 */ 177 if (overcommit_policy == OVERCOMMIT_NEVER) 178 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 179 else 180 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 181 182 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 183 } 184 185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 186 unsigned long action, void *arg) 187 { 188 switch (action) { 189 case MEM_ONLINE: 190 case MEM_OFFLINE: 191 mm_compute_batch(sysctl_overcommit_memory); 192 break; 193 default: 194 break; 195 } 196 return NOTIFY_OK; 197 } 198 199 static int __init mm_compute_batch_init(void) 200 { 201 mm_compute_batch(sysctl_overcommit_memory); 202 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 203 return 0; 204 } 205 206 __initcall(mm_compute_batch_init); 207 208 #endif 209 210 static int __init mm_sysfs_init(void) 211 { 212 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 213 if (!mm_kobj) 214 return -ENOMEM; 215 216 return 0; 217 } 218 postcore_initcall(mm_sysfs_init); 219 220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 223 224 static unsigned long required_kernelcore __initdata; 225 static unsigned long required_kernelcore_percent __initdata; 226 static unsigned long required_movablecore __initdata; 227 static unsigned long required_movablecore_percent __initdata; 228 229 static unsigned long nr_kernel_pages __initdata; 230 static unsigned long nr_all_pages __initdata; 231 232 static bool deferred_struct_pages __meminitdata; 233 234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 235 236 static int __init cmdline_parse_core(char *p, unsigned long *core, 237 unsigned long *percent) 238 { 239 unsigned long long coremem; 240 char *endptr; 241 242 if (!p) 243 return -EINVAL; 244 245 /* Value may be a percentage of total memory, otherwise bytes */ 246 coremem = simple_strtoull(p, &endptr, 0); 247 if (*endptr == '%') { 248 /* Paranoid check for percent values greater than 100 */ 249 WARN_ON(coremem > 100); 250 251 *percent = coremem; 252 } else { 253 coremem = memparse(p, &p); 254 /* Paranoid check that UL is enough for the coremem value */ 255 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 256 257 *core = coremem >> PAGE_SHIFT; 258 *percent = 0UL; 259 } 260 return 0; 261 } 262 263 bool mirrored_kernelcore __initdata_memblock; 264 265 /* 266 * kernelcore=size sets the amount of memory for use for allocations that 267 * cannot be reclaimed or migrated. 268 */ 269 static int __init cmdline_parse_kernelcore(char *p) 270 { 271 /* parse kernelcore=mirror */ 272 if (parse_option_str(p, "mirror")) { 273 mirrored_kernelcore = true; 274 return 0; 275 } 276 277 return cmdline_parse_core(p, &required_kernelcore, 278 &required_kernelcore_percent); 279 } 280 early_param("kernelcore", cmdline_parse_kernelcore); 281 282 /* 283 * movablecore=size sets the amount of memory for use for allocations that 284 * can be reclaimed or migrated. 285 */ 286 static int __init cmdline_parse_movablecore(char *p) 287 { 288 return cmdline_parse_core(p, &required_movablecore, 289 &required_movablecore_percent); 290 } 291 early_param("movablecore", cmdline_parse_movablecore); 292 293 /* 294 * early_calculate_totalpages() 295 * Sum pages in active regions for movable zone. 296 * Populate N_MEMORY for calculating usable_nodes. 297 */ 298 static unsigned long __init early_calculate_totalpages(void) 299 { 300 unsigned long totalpages = 0; 301 unsigned long start_pfn, end_pfn; 302 int i, nid; 303 304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 305 unsigned long pages = end_pfn - start_pfn; 306 307 totalpages += pages; 308 if (pages) 309 node_set_state(nid, N_MEMORY); 310 } 311 return totalpages; 312 } 313 314 /* 315 * This finds a zone that can be used for ZONE_MOVABLE pages. The 316 * assumption is made that zones within a node are ordered in monotonic 317 * increasing memory addresses so that the "highest" populated zone is used 318 */ 319 static void __init find_usable_zone_for_movable(void) 320 { 321 int zone_index; 322 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 323 if (zone_index == ZONE_MOVABLE) 324 continue; 325 326 if (arch_zone_highest_possible_pfn[zone_index] > 327 arch_zone_lowest_possible_pfn[zone_index]) 328 break; 329 } 330 331 VM_BUG_ON(zone_index == -1); 332 movable_zone = zone_index; 333 } 334 335 /* 336 * Find the PFN the Movable zone begins in each node. Kernel memory 337 * is spread evenly between nodes as long as the nodes have enough 338 * memory. When they don't, some nodes will have more kernelcore than 339 * others 340 */ 341 static void __init find_zone_movable_pfns_for_nodes(void) 342 { 343 int i, nid; 344 unsigned long usable_startpfn; 345 unsigned long kernelcore_node, kernelcore_remaining; 346 /* save the state before borrow the nodemask */ 347 nodemask_t saved_node_state = node_states[N_MEMORY]; 348 unsigned long totalpages = early_calculate_totalpages(); 349 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 350 struct memblock_region *r; 351 352 /* Need to find movable_zone earlier when movable_node is specified. */ 353 find_usable_zone_for_movable(); 354 355 /* 356 * If movable_node is specified, ignore kernelcore and movablecore 357 * options. 358 */ 359 if (movable_node_is_enabled()) { 360 for_each_mem_region(r) { 361 if (!memblock_is_hotpluggable(r)) 362 continue; 363 364 nid = memblock_get_region_node(r); 365 366 usable_startpfn = memblock_region_memory_base_pfn(r); 367 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 368 min(usable_startpfn, zone_movable_pfn[nid]) : 369 usable_startpfn; 370 } 371 372 goto out2; 373 } 374 375 /* 376 * If kernelcore=mirror is specified, ignore movablecore option 377 */ 378 if (mirrored_kernelcore) { 379 bool mem_below_4gb_not_mirrored = false; 380 381 if (!memblock_has_mirror()) { 382 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); 383 goto out; 384 } 385 386 if (is_kdump_kernel()) { 387 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); 388 goto out; 389 } 390 391 for_each_mem_region(r) { 392 if (memblock_is_mirror(r)) 393 continue; 394 395 nid = memblock_get_region_node(r); 396 397 usable_startpfn = memblock_region_memory_base_pfn(r); 398 399 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 400 mem_below_4gb_not_mirrored = true; 401 continue; 402 } 403 404 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 405 min(usable_startpfn, zone_movable_pfn[nid]) : 406 usable_startpfn; 407 } 408 409 if (mem_below_4gb_not_mirrored) 410 pr_warn("This configuration results in unmirrored kernel memory.\n"); 411 412 goto out2; 413 } 414 415 /* 416 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 417 * amount of necessary memory. 418 */ 419 if (required_kernelcore_percent) 420 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 421 10000UL; 422 if (required_movablecore_percent) 423 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 424 10000UL; 425 426 /* 427 * If movablecore= was specified, calculate what size of 428 * kernelcore that corresponds so that memory usable for 429 * any allocation type is evenly spread. If both kernelcore 430 * and movablecore are specified, then the value of kernelcore 431 * will be used for required_kernelcore if it's greater than 432 * what movablecore would have allowed. 433 */ 434 if (required_movablecore) { 435 unsigned long corepages; 436 437 /* 438 * Round-up so that ZONE_MOVABLE is at least as large as what 439 * was requested by the user 440 */ 441 required_movablecore = 442 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 443 required_movablecore = min(totalpages, required_movablecore); 444 corepages = totalpages - required_movablecore; 445 446 required_kernelcore = max(required_kernelcore, corepages); 447 } 448 449 /* 450 * If kernelcore was not specified or kernelcore size is larger 451 * than totalpages, there is no ZONE_MOVABLE. 452 */ 453 if (!required_kernelcore || required_kernelcore >= totalpages) 454 goto out; 455 456 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 458 459 restart: 460 /* Spread kernelcore memory as evenly as possible throughout nodes */ 461 kernelcore_node = required_kernelcore / usable_nodes; 462 for_each_node_state(nid, N_MEMORY) { 463 unsigned long start_pfn, end_pfn; 464 465 /* 466 * Recalculate kernelcore_node if the division per node 467 * now exceeds what is necessary to satisfy the requested 468 * amount of memory for the kernel 469 */ 470 if (required_kernelcore < kernelcore_node) 471 kernelcore_node = required_kernelcore / usable_nodes; 472 473 /* 474 * As the map is walked, we track how much memory is usable 475 * by the kernel using kernelcore_remaining. When it is 476 * 0, the rest of the node is usable by ZONE_MOVABLE 477 */ 478 kernelcore_remaining = kernelcore_node; 479 480 /* Go through each range of PFNs within this node */ 481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 482 unsigned long size_pages; 483 484 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 485 if (start_pfn >= end_pfn) 486 continue; 487 488 /* Account for what is only usable for kernelcore */ 489 if (start_pfn < usable_startpfn) { 490 unsigned long kernel_pages; 491 kernel_pages = min(end_pfn, usable_startpfn) 492 - start_pfn; 493 494 kernelcore_remaining -= min(kernel_pages, 495 kernelcore_remaining); 496 required_kernelcore -= min(kernel_pages, 497 required_kernelcore); 498 499 /* Continue if range is now fully accounted */ 500 if (end_pfn <= usable_startpfn) { 501 502 /* 503 * Push zone_movable_pfn to the end so 504 * that if we have to rebalance 505 * kernelcore across nodes, we will 506 * not double account here 507 */ 508 zone_movable_pfn[nid] = end_pfn; 509 continue; 510 } 511 start_pfn = usable_startpfn; 512 } 513 514 /* 515 * The usable PFN range for ZONE_MOVABLE is from 516 * start_pfn->end_pfn. Calculate size_pages as the 517 * number of pages used as kernelcore 518 */ 519 size_pages = end_pfn - start_pfn; 520 if (size_pages > kernelcore_remaining) 521 size_pages = kernelcore_remaining; 522 zone_movable_pfn[nid] = start_pfn + size_pages; 523 524 /* 525 * Some kernelcore has been met, update counts and 526 * break if the kernelcore for this node has been 527 * satisfied 528 */ 529 required_kernelcore -= min(required_kernelcore, 530 size_pages); 531 kernelcore_remaining -= size_pages; 532 if (!kernelcore_remaining) 533 break; 534 } 535 } 536 537 /* 538 * If there is still required_kernelcore, we do another pass with one 539 * less node in the count. This will push zone_movable_pfn[nid] further 540 * along on the nodes that still have memory until kernelcore is 541 * satisfied 542 */ 543 usable_nodes--; 544 if (usable_nodes && required_kernelcore > usable_nodes) 545 goto restart; 546 547 out2: 548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 549 for (nid = 0; nid < MAX_NUMNODES; nid++) { 550 unsigned long start_pfn, end_pfn; 551 552 zone_movable_pfn[nid] = 553 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 554 555 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 556 if (zone_movable_pfn[nid] >= end_pfn) 557 zone_movable_pfn[nid] = 0; 558 } 559 560 out: 561 /* restore the node_state */ 562 node_states[N_MEMORY] = saved_node_state; 563 } 564 565 void __meminit __init_single_page(struct page *page, unsigned long pfn, 566 unsigned long zone, int nid) 567 { 568 mm_zero_struct_page(page); 569 set_page_links(page, zone, nid, pfn); 570 init_page_count(page); 571 atomic_set(&page->_mapcount, -1); 572 page_cpupid_reset_last(page); 573 page_kasan_tag_reset(page); 574 575 INIT_LIST_HEAD(&page->lru); 576 #ifdef WANT_PAGE_VIRTUAL 577 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 578 if (!is_highmem_idx(zone)) 579 set_page_address(page, __va(pfn << PAGE_SHIFT)); 580 #endif 581 } 582 583 #ifdef CONFIG_NUMA 584 /* 585 * During memory init memblocks map pfns to nids. The search is expensive and 586 * this caches recent lookups. The implementation of __early_pfn_to_nid 587 * treats start/end as pfns. 588 */ 589 struct mminit_pfnnid_cache { 590 unsigned long last_start; 591 unsigned long last_end; 592 int last_nid; 593 }; 594 595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 596 597 /* 598 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 599 */ 600 static int __meminit __early_pfn_to_nid(unsigned long pfn, 601 struct mminit_pfnnid_cache *state) 602 { 603 unsigned long start_pfn, end_pfn; 604 int nid; 605 606 if (state->last_start <= pfn && pfn < state->last_end) 607 return state->last_nid; 608 609 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 610 if (nid != NUMA_NO_NODE) { 611 state->last_start = start_pfn; 612 state->last_end = end_pfn; 613 state->last_nid = nid; 614 } 615 616 return nid; 617 } 618 619 int __meminit early_pfn_to_nid(unsigned long pfn) 620 { 621 static DEFINE_SPINLOCK(early_pfn_lock); 622 int nid; 623 624 spin_lock(&early_pfn_lock); 625 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 626 if (nid < 0) 627 nid = first_online_node; 628 spin_unlock(&early_pfn_lock); 629 630 return nid; 631 } 632 633 int hashdist = HASHDIST_DEFAULT; 634 635 static int __init set_hashdist(char *str) 636 { 637 if (!str) 638 return 0; 639 hashdist = simple_strtoul(str, &str, 0); 640 return 1; 641 } 642 __setup("hashdist=", set_hashdist); 643 644 static inline void fixup_hashdist(void) 645 { 646 if (num_node_state(N_MEMORY) == 1) 647 hashdist = 0; 648 } 649 #else 650 static inline void fixup_hashdist(void) {} 651 #endif /* CONFIG_NUMA */ 652 653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 655 { 656 pgdat->first_deferred_pfn = ULONG_MAX; 657 } 658 659 /* Returns true if the struct page for the pfn is initialised */ 660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) 661 { 662 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 663 return false; 664 665 return true; 666 } 667 668 /* 669 * Returns true when the remaining initialisation should be deferred until 670 * later in the boot cycle when it can be parallelised. 671 */ 672 static bool __meminit 673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 674 { 675 static unsigned long prev_end_pfn, nr_initialised; 676 677 if (early_page_ext_enabled()) 678 return false; 679 680 /* Always populate low zones for address-constrained allocations */ 681 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 682 return false; 683 684 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 685 return true; 686 687 /* 688 * prev_end_pfn static that contains the end of previous zone 689 * No need to protect because called very early in boot before smp_init. 690 */ 691 if (prev_end_pfn != end_pfn) { 692 prev_end_pfn = end_pfn; 693 nr_initialised = 0; 694 } 695 696 /* 697 * We start only with one section of pages, more pages are added as 698 * needed until the rest of deferred pages are initialized. 699 */ 700 nr_initialised++; 701 if ((nr_initialised > PAGES_PER_SECTION) && 702 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 703 NODE_DATA(nid)->first_deferred_pfn = pfn; 704 return true; 705 } 706 return false; 707 } 708 709 static void __meminit init_reserved_page(unsigned long pfn, int nid) 710 { 711 pg_data_t *pgdat; 712 int zid; 713 714 if (early_page_initialised(pfn, nid)) 715 return; 716 717 pgdat = NODE_DATA(nid); 718 719 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 720 struct zone *zone = &pgdat->node_zones[zid]; 721 722 if (zone_spans_pfn(zone, pfn)) 723 break; 724 } 725 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 726 } 727 #else 728 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 729 730 static inline bool early_page_initialised(unsigned long pfn, int nid) 731 { 732 return true; 733 } 734 735 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 736 { 737 return false; 738 } 739 740 static inline void init_reserved_page(unsigned long pfn, int nid) 741 { 742 } 743 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 744 745 /* 746 * Initialised pages do not have PageReserved set. This function is 747 * called for each range allocated by the bootmem allocator and 748 * marks the pages PageReserved. The remaining valid pages are later 749 * sent to the buddy page allocator. 750 */ 751 void __meminit reserve_bootmem_region(phys_addr_t start, 752 phys_addr_t end, int nid) 753 { 754 unsigned long start_pfn = PFN_DOWN(start); 755 unsigned long end_pfn = PFN_UP(end); 756 757 for (; start_pfn < end_pfn; start_pfn++) { 758 if (pfn_valid(start_pfn)) { 759 struct page *page = pfn_to_page(start_pfn); 760 761 init_reserved_page(start_pfn, nid); 762 763 /* 764 * no need for atomic set_bit because the struct 765 * page is not visible yet so nobody should 766 * access it yet. 767 */ 768 __SetPageReserved(page); 769 } 770 } 771 } 772 773 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 774 static bool __meminit 775 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 776 { 777 static struct memblock_region *r; 778 779 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 780 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 781 for_each_mem_region(r) { 782 if (*pfn < memblock_region_memory_end_pfn(r)) 783 break; 784 } 785 } 786 if (*pfn >= memblock_region_memory_base_pfn(r) && 787 memblock_is_mirror(r)) { 788 *pfn = memblock_region_memory_end_pfn(r); 789 return true; 790 } 791 } 792 return false; 793 } 794 795 /* 796 * Only struct pages that correspond to ranges defined by memblock.memory 797 * are zeroed and initialized by going through __init_single_page() during 798 * memmap_init_zone_range(). 799 * 800 * But, there could be struct pages that correspond to holes in 801 * memblock.memory. This can happen because of the following reasons: 802 * - physical memory bank size is not necessarily the exact multiple of the 803 * arbitrary section size 804 * - early reserved memory may not be listed in memblock.memory 805 * - non-memory regions covered by the contigious flatmem mapping 806 * - memory layouts defined with memmap= kernel parameter may not align 807 * nicely with memmap sections 808 * 809 * Explicitly initialize those struct pages so that: 810 * - PG_Reserved is set 811 * - zone and node links point to zone and node that span the page if the 812 * hole is in the middle of a zone 813 * - zone and node links point to adjacent zone/node if the hole falls on 814 * the zone boundary; the pages in such holes will be prepended to the 815 * zone/node above the hole except for the trailing pages in the last 816 * section that will be appended to the zone/node below. 817 */ 818 static void __init init_unavailable_range(unsigned long spfn, 819 unsigned long epfn, 820 int zone, int node) 821 { 822 unsigned long pfn; 823 u64 pgcnt = 0; 824 825 for (pfn = spfn; pfn < epfn; pfn++) { 826 if (!pfn_valid(pageblock_start_pfn(pfn))) { 827 pfn = pageblock_end_pfn(pfn) - 1; 828 continue; 829 } 830 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 831 __SetPageReserved(pfn_to_page(pfn)); 832 pgcnt++; 833 } 834 835 if (pgcnt) 836 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", 837 node, zone_names[zone], pgcnt); 838 } 839 840 /* 841 * Initially all pages are reserved - free ones are freed 842 * up by memblock_free_all() once the early boot process is 843 * done. Non-atomic initialization, single-pass. 844 * 845 * All aligned pageblocks are initialized to the specified migratetype 846 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 847 * zone stats (e.g., nr_isolate_pageblock) are touched. 848 */ 849 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 850 unsigned long start_pfn, unsigned long zone_end_pfn, 851 enum meminit_context context, 852 struct vmem_altmap *altmap, int migratetype) 853 { 854 unsigned long pfn, end_pfn = start_pfn + size; 855 struct page *page; 856 857 if (highest_memmap_pfn < end_pfn - 1) 858 highest_memmap_pfn = end_pfn - 1; 859 860 #ifdef CONFIG_ZONE_DEVICE 861 /* 862 * Honor reservation requested by the driver for this ZONE_DEVICE 863 * memory. We limit the total number of pages to initialize to just 864 * those that might contain the memory mapping. We will defer the 865 * ZONE_DEVICE page initialization until after we have released 866 * the hotplug lock. 867 */ 868 if (zone == ZONE_DEVICE) { 869 if (!altmap) 870 return; 871 872 if (start_pfn == altmap->base_pfn) 873 start_pfn += altmap->reserve; 874 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 875 } 876 #endif 877 878 for (pfn = start_pfn; pfn < end_pfn; ) { 879 /* 880 * There can be holes in boot-time mem_map[]s handed to this 881 * function. They do not exist on hotplugged memory. 882 */ 883 if (context == MEMINIT_EARLY) { 884 if (overlap_memmap_init(zone, &pfn)) 885 continue; 886 if (defer_init(nid, pfn, zone_end_pfn)) { 887 deferred_struct_pages = true; 888 break; 889 } 890 } 891 892 page = pfn_to_page(pfn); 893 __init_single_page(page, pfn, zone, nid); 894 if (context == MEMINIT_HOTPLUG) { 895 #ifdef CONFIG_ZONE_DEVICE 896 if (zone == ZONE_DEVICE) 897 __SetPageReserved(page); 898 else 899 #endif 900 __SetPageOffline(page); 901 } 902 903 /* 904 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 905 * such that unmovable allocations won't be scattered all 906 * over the place during system boot. 907 */ 908 if (pageblock_aligned(pfn)) { 909 set_pageblock_migratetype(page, migratetype); 910 cond_resched(); 911 } 912 pfn++; 913 } 914 } 915 916 static void __init memmap_init_zone_range(struct zone *zone, 917 unsigned long start_pfn, 918 unsigned long end_pfn, 919 unsigned long *hole_pfn) 920 { 921 unsigned long zone_start_pfn = zone->zone_start_pfn; 922 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 923 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 924 925 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 926 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 927 928 if (start_pfn >= end_pfn) 929 return; 930 931 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 932 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 933 934 if (*hole_pfn < start_pfn) 935 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 936 937 *hole_pfn = end_pfn; 938 } 939 940 static void __init memmap_init(void) 941 { 942 unsigned long start_pfn, end_pfn; 943 unsigned long hole_pfn = 0; 944 int i, j, zone_id = 0, nid; 945 946 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 947 struct pglist_data *node = NODE_DATA(nid); 948 949 for (j = 0; j < MAX_NR_ZONES; j++) { 950 struct zone *zone = node->node_zones + j; 951 952 if (!populated_zone(zone)) 953 continue; 954 955 memmap_init_zone_range(zone, start_pfn, end_pfn, 956 &hole_pfn); 957 zone_id = j; 958 } 959 } 960 961 #ifdef CONFIG_SPARSEMEM 962 /* 963 * Initialize the memory map for hole in the range [memory_end, 964 * section_end]. 965 * Append the pages in this hole to the highest zone in the last 966 * node. 967 * The call to init_unavailable_range() is outside the ifdef to 968 * silence the compiler warining about zone_id set but not used; 969 * for FLATMEM it is a nop anyway 970 */ 971 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 972 if (hole_pfn < end_pfn) 973 #endif 974 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 975 } 976 977 #ifdef CONFIG_ZONE_DEVICE 978 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 979 unsigned long zone_idx, int nid, 980 struct dev_pagemap *pgmap) 981 { 982 983 __init_single_page(page, pfn, zone_idx, nid); 984 985 /* 986 * Mark page reserved as it will need to wait for onlining 987 * phase for it to be fully associated with a zone. 988 * 989 * We can use the non-atomic __set_bit operation for setting 990 * the flag as we are still initializing the pages. 991 */ 992 __SetPageReserved(page); 993 994 /* 995 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 996 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 997 * ever freed or placed on a driver-private list. 998 */ 999 page->pgmap = pgmap; 1000 page->zone_device_data = NULL; 1001 1002 /* 1003 * Mark the block movable so that blocks are reserved for 1004 * movable at startup. This will force kernel allocations 1005 * to reserve their blocks rather than leaking throughout 1006 * the address space during boot when many long-lived 1007 * kernel allocations are made. 1008 * 1009 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 1010 * because this is done early in section_activate() 1011 */ 1012 if (pageblock_aligned(pfn)) { 1013 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1014 cond_resched(); 1015 } 1016 1017 /* 1018 * ZONE_DEVICE pages are released directly to the driver page allocator 1019 * which will set the page count to 1 when allocating the page. 1020 */ 1021 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1022 pgmap->type == MEMORY_DEVICE_COHERENT) 1023 set_page_count(page, 0); 1024 } 1025 1026 /* 1027 * With compound page geometry and when struct pages are stored in ram most 1028 * tail pages are reused. Consequently, the amount of unique struct pages to 1029 * initialize is a lot smaller that the total amount of struct pages being 1030 * mapped. This is a paired / mild layering violation with explicit knowledge 1031 * of how the sparse_vmemmap internals handle compound pages in the lack 1032 * of an altmap. See vmemmap_populate_compound_pages(). 1033 */ 1034 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1035 struct dev_pagemap *pgmap) 1036 { 1037 if (!vmemmap_can_optimize(altmap, pgmap)) 1038 return pgmap_vmemmap_nr(pgmap); 1039 1040 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); 1041 } 1042 1043 static void __ref memmap_init_compound(struct page *head, 1044 unsigned long head_pfn, 1045 unsigned long zone_idx, int nid, 1046 struct dev_pagemap *pgmap, 1047 unsigned long nr_pages) 1048 { 1049 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1050 unsigned int order = pgmap->vmemmap_shift; 1051 1052 __SetPageHead(head); 1053 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1054 struct page *page = pfn_to_page(pfn); 1055 1056 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1057 prep_compound_tail(head, pfn - head_pfn); 1058 set_page_count(page, 0); 1059 1060 /* 1061 * The first tail page stores important compound page info. 1062 * Call prep_compound_head() after the first tail page has 1063 * been initialized, to not have the data overwritten. 1064 */ 1065 if (pfn == head_pfn + 1) 1066 prep_compound_head(head, order); 1067 } 1068 } 1069 1070 void __ref memmap_init_zone_device(struct zone *zone, 1071 unsigned long start_pfn, 1072 unsigned long nr_pages, 1073 struct dev_pagemap *pgmap) 1074 { 1075 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1076 struct pglist_data *pgdat = zone->zone_pgdat; 1077 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1078 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1079 unsigned long zone_idx = zone_idx(zone); 1080 unsigned long start = jiffies; 1081 int nid = pgdat->node_id; 1082 1083 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1084 return; 1085 1086 /* 1087 * The call to memmap_init should have already taken care 1088 * of the pages reserved for the memmap, so we can just jump to 1089 * the end of that region and start processing the device pages. 1090 */ 1091 if (altmap) { 1092 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1093 nr_pages = end_pfn - start_pfn; 1094 } 1095 1096 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1097 struct page *page = pfn_to_page(pfn); 1098 1099 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1100 1101 if (pfns_per_compound == 1) 1102 continue; 1103 1104 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1105 compound_nr_pages(altmap, pgmap)); 1106 } 1107 1108 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1109 nr_pages, jiffies_to_msecs(jiffies - start)); 1110 } 1111 #endif 1112 1113 /* 1114 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1115 * because it is sized independent of architecture. Unlike the other zones, 1116 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1117 * in each node depending on the size of each node and how evenly kernelcore 1118 * is distributed. This helper function adjusts the zone ranges 1119 * provided by the architecture for a given node by using the end of the 1120 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1121 * zones within a node are in order of monotonic increases memory addresses 1122 */ 1123 static void __init adjust_zone_range_for_zone_movable(int nid, 1124 unsigned long zone_type, 1125 unsigned long node_end_pfn, 1126 unsigned long *zone_start_pfn, 1127 unsigned long *zone_end_pfn) 1128 { 1129 /* Only adjust if ZONE_MOVABLE is on this node */ 1130 if (zone_movable_pfn[nid]) { 1131 /* Size ZONE_MOVABLE */ 1132 if (zone_type == ZONE_MOVABLE) { 1133 *zone_start_pfn = zone_movable_pfn[nid]; 1134 *zone_end_pfn = min(node_end_pfn, 1135 arch_zone_highest_possible_pfn[movable_zone]); 1136 1137 /* Adjust for ZONE_MOVABLE starting within this range */ 1138 } else if (!mirrored_kernelcore && 1139 *zone_start_pfn < zone_movable_pfn[nid] && 1140 *zone_end_pfn > zone_movable_pfn[nid]) { 1141 *zone_end_pfn = zone_movable_pfn[nid]; 1142 1143 /* Check if this whole range is within ZONE_MOVABLE */ 1144 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1145 *zone_start_pfn = *zone_end_pfn; 1146 } 1147 } 1148 1149 /* 1150 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1151 * then all holes in the requested range will be accounted for. 1152 */ 1153 static unsigned long __init __absent_pages_in_range(int nid, 1154 unsigned long range_start_pfn, 1155 unsigned long range_end_pfn) 1156 { 1157 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1158 unsigned long start_pfn, end_pfn; 1159 int i; 1160 1161 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1162 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1163 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1164 nr_absent -= end_pfn - start_pfn; 1165 } 1166 return nr_absent; 1167 } 1168 1169 /** 1170 * absent_pages_in_range - Return number of page frames in holes within a range 1171 * @start_pfn: The start PFN to start searching for holes 1172 * @end_pfn: The end PFN to stop searching for holes 1173 * 1174 * Return: the number of pages frames in memory holes within a range. 1175 */ 1176 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1177 unsigned long end_pfn) 1178 { 1179 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1180 } 1181 1182 /* Return the number of page frames in holes in a zone on a node */ 1183 static unsigned long __init zone_absent_pages_in_node(int nid, 1184 unsigned long zone_type, 1185 unsigned long zone_start_pfn, 1186 unsigned long zone_end_pfn) 1187 { 1188 unsigned long nr_absent; 1189 1190 /* zone is empty, we don't have any absent pages */ 1191 if (zone_start_pfn == zone_end_pfn) 1192 return 0; 1193 1194 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1195 1196 /* 1197 * ZONE_MOVABLE handling. 1198 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1199 * and vice versa. 1200 */ 1201 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1202 unsigned long start_pfn, end_pfn; 1203 struct memblock_region *r; 1204 1205 for_each_mem_region(r) { 1206 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1207 zone_start_pfn, zone_end_pfn); 1208 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1209 zone_start_pfn, zone_end_pfn); 1210 1211 if (zone_type == ZONE_MOVABLE && 1212 memblock_is_mirror(r)) 1213 nr_absent += end_pfn - start_pfn; 1214 1215 if (zone_type == ZONE_NORMAL && 1216 !memblock_is_mirror(r)) 1217 nr_absent += end_pfn - start_pfn; 1218 } 1219 } 1220 1221 return nr_absent; 1222 } 1223 1224 /* 1225 * Return the number of pages a zone spans in a node, including holes 1226 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1227 */ 1228 static unsigned long __init zone_spanned_pages_in_node(int nid, 1229 unsigned long zone_type, 1230 unsigned long node_start_pfn, 1231 unsigned long node_end_pfn, 1232 unsigned long *zone_start_pfn, 1233 unsigned long *zone_end_pfn) 1234 { 1235 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1236 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1237 1238 /* Get the start and end of the zone */ 1239 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1240 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1241 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, 1242 zone_start_pfn, zone_end_pfn); 1243 1244 /* Check that this node has pages within the zone's required range */ 1245 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1246 return 0; 1247 1248 /* Move the zone boundaries inside the node if necessary */ 1249 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1250 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1251 1252 /* Return the spanned pages */ 1253 return *zone_end_pfn - *zone_start_pfn; 1254 } 1255 1256 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) 1257 { 1258 struct zone *z; 1259 1260 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { 1261 z->zone_start_pfn = 0; 1262 z->spanned_pages = 0; 1263 z->present_pages = 0; 1264 #if defined(CONFIG_MEMORY_HOTPLUG) 1265 z->present_early_pages = 0; 1266 #endif 1267 } 1268 1269 pgdat->node_spanned_pages = 0; 1270 pgdat->node_present_pages = 0; 1271 pr_debug("On node %d totalpages: 0\n", pgdat->node_id); 1272 } 1273 1274 static void __init calc_nr_kernel_pages(void) 1275 { 1276 unsigned long start_pfn, end_pfn; 1277 phys_addr_t start_addr, end_addr; 1278 u64 u; 1279 #ifdef CONFIG_HIGHMEM 1280 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; 1281 #endif 1282 1283 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 1284 start_pfn = PFN_UP(start_addr); 1285 end_pfn = PFN_DOWN(end_addr); 1286 1287 if (start_pfn < end_pfn) { 1288 nr_all_pages += end_pfn - start_pfn; 1289 #ifdef CONFIG_HIGHMEM 1290 start_pfn = clamp(start_pfn, 0, high_zone_low); 1291 end_pfn = clamp(end_pfn, 0, high_zone_low); 1292 #endif 1293 nr_kernel_pages += end_pfn - start_pfn; 1294 } 1295 } 1296 } 1297 1298 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1299 unsigned long node_start_pfn, 1300 unsigned long node_end_pfn) 1301 { 1302 unsigned long realtotalpages = 0, totalpages = 0; 1303 enum zone_type i; 1304 1305 for (i = 0; i < MAX_NR_ZONES; i++) { 1306 struct zone *zone = pgdat->node_zones + i; 1307 unsigned long zone_start_pfn, zone_end_pfn; 1308 unsigned long spanned, absent; 1309 unsigned long real_size; 1310 1311 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1312 node_start_pfn, 1313 node_end_pfn, 1314 &zone_start_pfn, 1315 &zone_end_pfn); 1316 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1317 zone_start_pfn, 1318 zone_end_pfn); 1319 1320 real_size = spanned - absent; 1321 1322 if (spanned) 1323 zone->zone_start_pfn = zone_start_pfn; 1324 else 1325 zone->zone_start_pfn = 0; 1326 zone->spanned_pages = spanned; 1327 zone->present_pages = real_size; 1328 #if defined(CONFIG_MEMORY_HOTPLUG) 1329 zone->present_early_pages = real_size; 1330 #endif 1331 1332 totalpages += spanned; 1333 realtotalpages += real_size; 1334 } 1335 1336 pgdat->node_spanned_pages = totalpages; 1337 pgdat->node_present_pages = realtotalpages; 1338 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1339 } 1340 1341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1342 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1343 { 1344 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1345 1346 spin_lock_init(&ds_queue->split_queue_lock); 1347 INIT_LIST_HEAD(&ds_queue->split_queue); 1348 ds_queue->split_queue_len = 0; 1349 } 1350 #else 1351 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1352 #endif 1353 1354 #ifdef CONFIG_COMPACTION 1355 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1356 { 1357 init_waitqueue_head(&pgdat->kcompactd_wait); 1358 } 1359 #else 1360 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1361 #endif 1362 1363 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1364 { 1365 int i; 1366 1367 pgdat_resize_init(pgdat); 1368 pgdat_kswapd_lock_init(pgdat); 1369 1370 pgdat_init_split_queue(pgdat); 1371 pgdat_init_kcompactd(pgdat); 1372 1373 init_waitqueue_head(&pgdat->kswapd_wait); 1374 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1375 1376 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1377 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1378 1379 pgdat_page_ext_init(pgdat); 1380 lruvec_init(&pgdat->__lruvec); 1381 } 1382 1383 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1384 unsigned long remaining_pages) 1385 { 1386 atomic_long_set(&zone->managed_pages, remaining_pages); 1387 zone_set_nid(zone, nid); 1388 zone->name = zone_names[idx]; 1389 zone->zone_pgdat = NODE_DATA(nid); 1390 spin_lock_init(&zone->lock); 1391 zone_seqlock_init(zone); 1392 zone_pcp_init(zone); 1393 } 1394 1395 static void __meminit zone_init_free_lists(struct zone *zone) 1396 { 1397 unsigned int order, t; 1398 for_each_migratetype_order(order, t) { 1399 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1400 zone->free_area[order].nr_free = 0; 1401 } 1402 1403 #ifdef CONFIG_UNACCEPTED_MEMORY 1404 INIT_LIST_HEAD(&zone->unaccepted_pages); 1405 #endif 1406 } 1407 1408 void __meminit init_currently_empty_zone(struct zone *zone, 1409 unsigned long zone_start_pfn, 1410 unsigned long size) 1411 { 1412 struct pglist_data *pgdat = zone->zone_pgdat; 1413 int zone_idx = zone_idx(zone) + 1; 1414 1415 if (zone_idx > pgdat->nr_zones) 1416 pgdat->nr_zones = zone_idx; 1417 1418 zone->zone_start_pfn = zone_start_pfn; 1419 1420 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1421 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1422 pgdat->node_id, 1423 (unsigned long)zone_idx(zone), 1424 zone_start_pfn, (zone_start_pfn + size)); 1425 1426 zone_init_free_lists(zone); 1427 zone->initialized = 1; 1428 } 1429 1430 #ifndef CONFIG_SPARSEMEM 1431 /* 1432 * Calculate the size of the zone->blockflags rounded to an unsigned long 1433 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1434 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1435 * round what is now in bits to nearest long in bits, then return it in 1436 * bytes. 1437 */ 1438 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1439 { 1440 unsigned long usemapsize; 1441 1442 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1443 usemapsize = roundup(zonesize, pageblock_nr_pages); 1444 usemapsize = usemapsize >> pageblock_order; 1445 usemapsize *= NR_PAGEBLOCK_BITS; 1446 usemapsize = roundup(usemapsize, BITS_PER_LONG); 1447 1448 return usemapsize / BITS_PER_BYTE; 1449 } 1450 1451 static void __ref setup_usemap(struct zone *zone) 1452 { 1453 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1454 zone->spanned_pages); 1455 zone->pageblock_flags = NULL; 1456 if (usemapsize) { 1457 zone->pageblock_flags = 1458 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1459 zone_to_nid(zone)); 1460 if (!zone->pageblock_flags) 1461 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1462 usemapsize, zone->name, zone_to_nid(zone)); 1463 } 1464 } 1465 #else 1466 static inline void setup_usemap(struct zone *zone) {} 1467 #endif /* CONFIG_SPARSEMEM */ 1468 1469 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1470 1471 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1472 void __init set_pageblock_order(void) 1473 { 1474 unsigned int order = MAX_PAGE_ORDER; 1475 1476 /* Check that pageblock_nr_pages has not already been setup */ 1477 if (pageblock_order) 1478 return; 1479 1480 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1481 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1482 order = HUGETLB_PAGE_ORDER; 1483 1484 /* 1485 * Assume the largest contiguous order of interest is a huge page. 1486 * This value may be variable depending on boot parameters on powerpc. 1487 */ 1488 pageblock_order = order; 1489 } 1490 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1491 1492 /* 1493 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1494 * is unused as pageblock_order is set at compile-time. See 1495 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1496 * the kernel config 1497 */ 1498 void __init set_pageblock_order(void) 1499 { 1500 } 1501 1502 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1503 1504 /* 1505 * Set up the zone data structures 1506 * - init pgdat internals 1507 * - init all zones belonging to this node 1508 * 1509 * NOTE: this function is only called during memory hotplug 1510 */ 1511 #ifdef CONFIG_MEMORY_HOTPLUG 1512 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1513 { 1514 int nid = pgdat->node_id; 1515 enum zone_type z; 1516 int cpu; 1517 1518 pgdat_init_internals(pgdat); 1519 1520 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1521 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1522 1523 /* 1524 * Reset the nr_zones, order and highest_zoneidx before reuse. 1525 * Note that kswapd will init kswapd_highest_zoneidx properly 1526 * when it starts in the near future. 1527 */ 1528 pgdat->nr_zones = 0; 1529 pgdat->kswapd_order = 0; 1530 pgdat->kswapd_highest_zoneidx = 0; 1531 pgdat->node_start_pfn = 0; 1532 pgdat->node_present_pages = 0; 1533 1534 for_each_online_cpu(cpu) { 1535 struct per_cpu_nodestat *p; 1536 1537 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1538 memset(p, 0, sizeof(*p)); 1539 } 1540 1541 /* 1542 * When memory is hot-added, all the memory is in offline state. So 1543 * clear all zones' present_pages and managed_pages because they will 1544 * be updated in online_pages() and offline_pages(). 1545 */ 1546 for (z = 0; z < MAX_NR_ZONES; z++) { 1547 struct zone *zone = pgdat->node_zones + z; 1548 1549 zone->present_pages = 0; 1550 zone_init_internals(zone, z, nid, 0); 1551 } 1552 } 1553 #endif 1554 1555 static void __init free_area_init_core(struct pglist_data *pgdat) 1556 { 1557 enum zone_type j; 1558 int nid = pgdat->node_id; 1559 1560 pgdat_init_internals(pgdat); 1561 pgdat->per_cpu_nodestats = &boot_nodestats; 1562 1563 for (j = 0; j < MAX_NR_ZONES; j++) { 1564 struct zone *zone = pgdat->node_zones + j; 1565 unsigned long size = zone->spanned_pages; 1566 1567 /* 1568 * Initialize zone->managed_pages as 0 , it will be reset 1569 * when memblock allocator frees pages into buddy system. 1570 */ 1571 zone_init_internals(zone, j, nid, zone->present_pages); 1572 1573 if (!size) 1574 continue; 1575 1576 setup_usemap(zone); 1577 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1578 } 1579 } 1580 1581 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1582 phys_addr_t min_addr, int nid, bool exact_nid) 1583 { 1584 void *ptr; 1585 1586 if (exact_nid) 1587 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1588 MEMBLOCK_ALLOC_ACCESSIBLE, 1589 nid); 1590 else 1591 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1592 MEMBLOCK_ALLOC_ACCESSIBLE, 1593 nid); 1594 1595 if (ptr && size > 0) 1596 page_init_poison(ptr, size); 1597 1598 return ptr; 1599 } 1600 1601 #ifdef CONFIG_FLATMEM 1602 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1603 { 1604 unsigned long start, offset, size, end; 1605 struct page *map; 1606 1607 /* Skip empty nodes */ 1608 if (!pgdat->node_spanned_pages) 1609 return; 1610 1611 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1612 offset = pgdat->node_start_pfn - start; 1613 /* 1614 * The zone's endpoints aren't required to be MAX_PAGE_ORDER 1615 * aligned but the node_mem_map endpoints must be in order 1616 * for the buddy allocator to function correctly. 1617 */ 1618 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); 1619 size = (end - start) * sizeof(struct page); 1620 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1621 pgdat->node_id, false); 1622 if (!map) 1623 panic("Failed to allocate %ld bytes for node %d memory map\n", 1624 size, pgdat->node_id); 1625 pgdat->node_mem_map = map + offset; 1626 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); 1627 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1628 __func__, pgdat->node_id, (unsigned long)pgdat, 1629 (unsigned long)pgdat->node_mem_map); 1630 #ifndef CONFIG_NUMA 1631 /* the global mem_map is just set as node 0's */ 1632 if (pgdat == NODE_DATA(0)) { 1633 mem_map = NODE_DATA(0)->node_mem_map; 1634 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1635 mem_map -= offset; 1636 } 1637 #endif 1638 } 1639 #else 1640 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1641 #endif /* CONFIG_FLATMEM */ 1642 1643 /** 1644 * get_pfn_range_for_nid - Return the start and end page frames for a node 1645 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1646 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1647 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1648 * 1649 * It returns the start and end page frame of a node based on information 1650 * provided by memblock_set_node(). If called for a node 1651 * with no available memory, the start and end PFNs will be 0. 1652 */ 1653 void __init get_pfn_range_for_nid(unsigned int nid, 1654 unsigned long *start_pfn, unsigned long *end_pfn) 1655 { 1656 unsigned long this_start_pfn, this_end_pfn; 1657 int i; 1658 1659 *start_pfn = -1UL; 1660 *end_pfn = 0; 1661 1662 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1663 *start_pfn = min(*start_pfn, this_start_pfn); 1664 *end_pfn = max(*end_pfn, this_end_pfn); 1665 } 1666 1667 if (*start_pfn == -1UL) 1668 *start_pfn = 0; 1669 } 1670 1671 static void __init free_area_init_node(int nid) 1672 { 1673 pg_data_t *pgdat = NODE_DATA(nid); 1674 unsigned long start_pfn = 0; 1675 unsigned long end_pfn = 0; 1676 1677 /* pg_data_t should be reset to zero when it's allocated */ 1678 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1679 1680 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1681 1682 pgdat->node_id = nid; 1683 pgdat->node_start_pfn = start_pfn; 1684 pgdat->per_cpu_nodestats = NULL; 1685 1686 if (start_pfn != end_pfn) { 1687 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1688 (u64)start_pfn << PAGE_SHIFT, 1689 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1690 1691 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1692 } else { 1693 pr_info("Initmem setup node %d as memoryless\n", nid); 1694 1695 reset_memoryless_node_totalpages(pgdat); 1696 } 1697 1698 alloc_node_mem_map(pgdat); 1699 pgdat_set_deferred_range(pgdat); 1700 1701 free_area_init_core(pgdat); 1702 lru_gen_init_pgdat(pgdat); 1703 } 1704 1705 /* Any regular or high memory on that node ? */ 1706 static void __init check_for_memory(pg_data_t *pgdat) 1707 { 1708 enum zone_type zone_type; 1709 1710 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1711 struct zone *zone = &pgdat->node_zones[zone_type]; 1712 if (populated_zone(zone)) { 1713 if (IS_ENABLED(CONFIG_HIGHMEM)) 1714 node_set_state(pgdat->node_id, N_HIGH_MEMORY); 1715 if (zone_type <= ZONE_NORMAL) 1716 node_set_state(pgdat->node_id, N_NORMAL_MEMORY); 1717 break; 1718 } 1719 } 1720 } 1721 1722 #if MAX_NUMNODES > 1 1723 /* 1724 * Figure out the number of possible node ids. 1725 */ 1726 void __init setup_nr_node_ids(void) 1727 { 1728 unsigned int highest; 1729 1730 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1731 nr_node_ids = highest + 1; 1732 } 1733 #endif 1734 1735 /* 1736 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1737 * such cases we allow max_zone_pfn sorted in the descending order 1738 */ 1739 static bool arch_has_descending_max_zone_pfns(void) 1740 { 1741 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1742 } 1743 1744 /** 1745 * free_area_init - Initialise all pg_data_t and zone data 1746 * @max_zone_pfn: an array of max PFNs for each zone 1747 * 1748 * This will call free_area_init_node() for each active node in the system. 1749 * Using the page ranges provided by memblock_set_node(), the size of each 1750 * zone in each node and their holes is calculated. If the maximum PFN 1751 * between two adjacent zones match, it is assumed that the zone is empty. 1752 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1753 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1754 * starts where the previous one ended. For example, ZONE_DMA32 starts 1755 * at arch_max_dma_pfn. 1756 */ 1757 void __init free_area_init(unsigned long *max_zone_pfn) 1758 { 1759 unsigned long start_pfn, end_pfn; 1760 int i, nid, zone; 1761 bool descending; 1762 1763 /* Record where the zone boundaries are */ 1764 memset(arch_zone_lowest_possible_pfn, 0, 1765 sizeof(arch_zone_lowest_possible_pfn)); 1766 memset(arch_zone_highest_possible_pfn, 0, 1767 sizeof(arch_zone_highest_possible_pfn)); 1768 1769 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1770 descending = arch_has_descending_max_zone_pfns(); 1771 1772 for (i = 0; i < MAX_NR_ZONES; i++) { 1773 if (descending) 1774 zone = MAX_NR_ZONES - i - 1; 1775 else 1776 zone = i; 1777 1778 if (zone == ZONE_MOVABLE) 1779 continue; 1780 1781 end_pfn = max(max_zone_pfn[zone], start_pfn); 1782 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1783 arch_zone_highest_possible_pfn[zone] = end_pfn; 1784 1785 start_pfn = end_pfn; 1786 } 1787 1788 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1789 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1790 find_zone_movable_pfns_for_nodes(); 1791 1792 /* Print out the zone ranges */ 1793 pr_info("Zone ranges:\n"); 1794 for (i = 0; i < MAX_NR_ZONES; i++) { 1795 if (i == ZONE_MOVABLE) 1796 continue; 1797 pr_info(" %-8s ", zone_names[i]); 1798 if (arch_zone_lowest_possible_pfn[i] == 1799 arch_zone_highest_possible_pfn[i]) 1800 pr_cont("empty\n"); 1801 else 1802 pr_cont("[mem %#018Lx-%#018Lx]\n", 1803 (u64)arch_zone_lowest_possible_pfn[i] 1804 << PAGE_SHIFT, 1805 ((u64)arch_zone_highest_possible_pfn[i] 1806 << PAGE_SHIFT) - 1); 1807 } 1808 1809 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1810 pr_info("Movable zone start for each node\n"); 1811 for (i = 0; i < MAX_NUMNODES; i++) { 1812 if (zone_movable_pfn[i]) 1813 pr_info(" Node %d: %#018Lx\n", i, 1814 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1815 } 1816 1817 /* 1818 * Print out the early node map, and initialize the 1819 * subsection-map relative to active online memory ranges to 1820 * enable future "sub-section" extensions of the memory map. 1821 */ 1822 pr_info("Early memory node ranges\n"); 1823 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1824 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1825 (u64)start_pfn << PAGE_SHIFT, 1826 ((u64)end_pfn << PAGE_SHIFT) - 1); 1827 subsection_map_init(start_pfn, end_pfn - start_pfn); 1828 } 1829 1830 /* Initialise every node */ 1831 mminit_verify_pageflags_layout(); 1832 setup_nr_node_ids(); 1833 set_pageblock_order(); 1834 1835 for_each_node(nid) { 1836 pg_data_t *pgdat; 1837 1838 if (!node_online(nid)) { 1839 /* Allocator not initialized yet */ 1840 pgdat = arch_alloc_nodedata(nid); 1841 if (!pgdat) 1842 panic("Cannot allocate %zuB for node %d.\n", 1843 sizeof(*pgdat), nid); 1844 arch_refresh_nodedata(nid, pgdat); 1845 } 1846 1847 pgdat = NODE_DATA(nid); 1848 free_area_init_node(nid); 1849 1850 /* 1851 * No sysfs hierarcy will be created via register_one_node() 1852 *for memory-less node because here it's not marked as N_MEMORY 1853 *and won't be set online later. The benefit is userspace 1854 *program won't be confused by sysfs files/directories of 1855 *memory-less node. The pgdat will get fully initialized by 1856 *hotadd_init_pgdat() when memory is hotplugged into this node. 1857 */ 1858 if (pgdat->node_present_pages) { 1859 node_set_state(nid, N_MEMORY); 1860 check_for_memory(pgdat); 1861 } 1862 } 1863 1864 calc_nr_kernel_pages(); 1865 memmap_init(); 1866 1867 /* disable hash distribution for systems with a single node */ 1868 fixup_hashdist(); 1869 } 1870 1871 /** 1872 * node_map_pfn_alignment - determine the maximum internode alignment 1873 * 1874 * This function should be called after node map is populated and sorted. 1875 * It calculates the maximum power of two alignment which can distinguish 1876 * all the nodes. 1877 * 1878 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1879 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1880 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1881 * shifted, 1GiB is enough and this function will indicate so. 1882 * 1883 * This is used to test whether pfn -> nid mapping of the chosen memory 1884 * model has fine enough granularity to avoid incorrect mapping for the 1885 * populated node map. 1886 * 1887 * Return: the determined alignment in pfn's. 0 if there is no alignment 1888 * requirement (single node). 1889 */ 1890 unsigned long __init node_map_pfn_alignment(void) 1891 { 1892 unsigned long accl_mask = 0, last_end = 0; 1893 unsigned long start, end, mask; 1894 int last_nid = NUMA_NO_NODE; 1895 int i, nid; 1896 1897 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1898 if (!start || last_nid < 0 || last_nid == nid) { 1899 last_nid = nid; 1900 last_end = end; 1901 continue; 1902 } 1903 1904 /* 1905 * Start with a mask granular enough to pin-point to the 1906 * start pfn and tick off bits one-by-one until it becomes 1907 * too coarse to separate the current node from the last. 1908 */ 1909 mask = ~((1 << __ffs(start)) - 1); 1910 while (mask && last_end <= (start & (mask << 1))) 1911 mask <<= 1; 1912 1913 /* accumulate all internode masks */ 1914 accl_mask |= mask; 1915 } 1916 1917 /* convert mask to number of pages */ 1918 return ~accl_mask + 1; 1919 } 1920 1921 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1922 static void __init deferred_free_pages(unsigned long pfn, 1923 unsigned long nr_pages) 1924 { 1925 struct page *page; 1926 unsigned long i; 1927 1928 if (!nr_pages) 1929 return; 1930 1931 page = pfn_to_page(pfn); 1932 1933 /* Free a large naturally-aligned chunk if possible */ 1934 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1935 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1936 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1937 __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY); 1938 return; 1939 } 1940 1941 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */ 1942 accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); 1943 1944 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1945 if (pageblock_aligned(pfn)) 1946 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1947 __free_pages_core(page, 0, MEMINIT_EARLY); 1948 } 1949 } 1950 1951 /* Completion tracking for deferred_init_memmap() threads */ 1952 static atomic_t pgdat_init_n_undone __initdata; 1953 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1954 1955 static inline void __init pgdat_init_report_one_done(void) 1956 { 1957 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1958 complete(&pgdat_init_all_done_comp); 1959 } 1960 1961 /* 1962 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1963 * by performing it only once every MAX_ORDER_NR_PAGES. 1964 * Return number of pages initialized. 1965 */ 1966 static unsigned long __init deferred_init_pages(struct zone *zone, 1967 unsigned long pfn, unsigned long end_pfn) 1968 { 1969 int nid = zone_to_nid(zone); 1970 unsigned long nr_pages = end_pfn - pfn; 1971 int zid = zone_idx(zone); 1972 struct page *page = pfn_to_page(pfn); 1973 1974 for (; pfn < end_pfn; pfn++, page++) 1975 __init_single_page(page, pfn, zid, nid); 1976 return nr_pages; 1977 } 1978 1979 /* 1980 * This function is meant to pre-load the iterator for the zone init from 1981 * a given point. 1982 * Specifically it walks through the ranges starting with initial index 1983 * passed to it until we are caught up to the first_init_pfn value and 1984 * exits there. If we never encounter the value we return false indicating 1985 * there are no valid ranges left. 1986 */ 1987 static bool __init 1988 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1989 unsigned long *spfn, unsigned long *epfn, 1990 unsigned long first_init_pfn) 1991 { 1992 u64 j = *i; 1993 1994 if (j == 0) 1995 __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn); 1996 1997 /* 1998 * Start out by walking through the ranges in this zone that have 1999 * already been initialized. We don't need to do anything with them 2000 * so we just need to flush them out of the system. 2001 */ 2002 for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) { 2003 if (*epfn <= first_init_pfn) 2004 continue; 2005 if (*spfn < first_init_pfn) 2006 *spfn = first_init_pfn; 2007 *i = j; 2008 return true; 2009 } 2010 2011 return false; 2012 } 2013 2014 /* 2015 * Initialize and free pages. We do it in two loops: first we initialize 2016 * struct page, then free to buddy allocator, because while we are 2017 * freeing pages we can access pages that are ahead (computing buddy 2018 * page in __free_one_page()). 2019 * 2020 * In order to try and keep some memory in the cache we have the loop 2021 * broken along max page order boundaries. This way we will not cause 2022 * any issues with the buddy page computation. 2023 */ 2024 static unsigned long __init 2025 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2026 unsigned long *end_pfn) 2027 { 2028 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2029 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2030 unsigned long nr_pages = 0; 2031 u64 j = *i; 2032 2033 /* First we loop through and initialize the page values */ 2034 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2035 unsigned long t; 2036 2037 if (mo_pfn <= *start_pfn) 2038 break; 2039 2040 t = min(mo_pfn, *end_pfn); 2041 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2042 2043 if (mo_pfn < *end_pfn) { 2044 *start_pfn = mo_pfn; 2045 break; 2046 } 2047 } 2048 2049 /* Reset values and now loop through freeing pages as needed */ 2050 swap(j, *i); 2051 2052 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2053 unsigned long t; 2054 2055 if (mo_pfn <= spfn) 2056 break; 2057 2058 t = min(mo_pfn, epfn); 2059 deferred_free_pages(spfn, t - spfn); 2060 2061 if (mo_pfn <= epfn) 2062 break; 2063 } 2064 2065 return nr_pages; 2066 } 2067 2068 static void __init 2069 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2070 void *arg) 2071 { 2072 unsigned long spfn, epfn; 2073 struct zone *zone = arg; 2074 u64 i = 0; 2075 2076 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2077 2078 /* 2079 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that 2080 * we can avoid introducing any issues with the buddy allocator. 2081 */ 2082 while (spfn < end_pfn) { 2083 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2084 cond_resched(); 2085 } 2086 } 2087 2088 static unsigned int __init 2089 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2090 { 2091 return max(cpumask_weight(node_cpumask), 1U); 2092 } 2093 2094 /* Initialise remaining memory on a node */ 2095 static int __init deferred_init_memmap(void *data) 2096 { 2097 pg_data_t *pgdat = data; 2098 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2099 unsigned long spfn = 0, epfn = 0; 2100 unsigned long first_init_pfn, flags; 2101 unsigned long start = jiffies; 2102 struct zone *zone; 2103 int max_threads; 2104 u64 i = 0; 2105 2106 /* Bind memory initialisation thread to a local node if possible */ 2107 if (!cpumask_empty(cpumask)) 2108 set_cpus_allowed_ptr(current, cpumask); 2109 2110 pgdat_resize_lock(pgdat, &flags); 2111 first_init_pfn = pgdat->first_deferred_pfn; 2112 if (first_init_pfn == ULONG_MAX) { 2113 pgdat_resize_unlock(pgdat, &flags); 2114 pgdat_init_report_one_done(); 2115 return 0; 2116 } 2117 2118 /* Sanity check boundaries */ 2119 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2120 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2121 pgdat->first_deferred_pfn = ULONG_MAX; 2122 2123 /* 2124 * Once we unlock here, the zone cannot be grown anymore, thus if an 2125 * interrupt thread must allocate this early in boot, zone must be 2126 * pre-grown prior to start of deferred page initialization. 2127 */ 2128 pgdat_resize_unlock(pgdat, &flags); 2129 2130 /* Only the highest zone is deferred */ 2131 zone = pgdat->node_zones + pgdat->nr_zones - 1; 2132 2133 max_threads = deferred_page_init_max_threads(cpumask); 2134 2135 while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) { 2136 first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION); 2137 struct padata_mt_job job = { 2138 .thread_fn = deferred_init_memmap_chunk, 2139 .fn_arg = zone, 2140 .start = spfn, 2141 .size = first_init_pfn - spfn, 2142 .align = PAGES_PER_SECTION, 2143 .min_chunk = PAGES_PER_SECTION, 2144 .max_threads = max_threads, 2145 .numa_aware = false, 2146 }; 2147 2148 padata_do_multithreaded(&job); 2149 } 2150 2151 /* Sanity check that the next zone really is unpopulated */ 2152 WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone)); 2153 2154 pr_info("node %d deferred pages initialised in %ums\n", 2155 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2156 2157 pgdat_init_report_one_done(); 2158 return 0; 2159 } 2160 2161 /* 2162 * If this zone has deferred pages, try to grow it by initializing enough 2163 * deferred pages to satisfy the allocation specified by order, rounded up to 2164 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2165 * of SECTION_SIZE bytes by initializing struct pages in increments of 2166 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2167 * 2168 * Return true when zone was grown, otherwise return false. We return true even 2169 * when we grow less than requested, to let the caller decide if there are 2170 * enough pages to satisfy the allocation. 2171 */ 2172 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2173 { 2174 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2175 pg_data_t *pgdat = zone->zone_pgdat; 2176 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2177 unsigned long spfn, epfn, flags; 2178 unsigned long nr_pages = 0; 2179 u64 i = 0; 2180 2181 /* Only the last zone may have deferred pages */ 2182 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2183 return false; 2184 2185 pgdat_resize_lock(pgdat, &flags); 2186 2187 /* 2188 * If someone grew this zone while we were waiting for spinlock, return 2189 * true, as there might be enough pages already. 2190 */ 2191 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2192 pgdat_resize_unlock(pgdat, &flags); 2193 return true; 2194 } 2195 2196 /* If the zone is empty somebody else may have cleared out the zone */ 2197 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2198 first_deferred_pfn)) { 2199 pgdat->first_deferred_pfn = ULONG_MAX; 2200 pgdat_resize_unlock(pgdat, &flags); 2201 /* Retry only once. */ 2202 return first_deferred_pfn != ULONG_MAX; 2203 } 2204 2205 /* 2206 * Initialize and free pages in MAX_PAGE_ORDER sized increments so 2207 * that we can avoid introducing any issues with the buddy 2208 * allocator. 2209 */ 2210 while (spfn < epfn) { 2211 /* update our first deferred PFN for this section */ 2212 first_deferred_pfn = spfn; 2213 2214 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2215 touch_nmi_watchdog(); 2216 2217 /* We should only stop along section boundaries */ 2218 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2219 continue; 2220 2221 /* If our quota has been met we can stop here */ 2222 if (nr_pages >= nr_pages_needed) 2223 break; 2224 } 2225 2226 pgdat->first_deferred_pfn = spfn; 2227 pgdat_resize_unlock(pgdat, &flags); 2228 2229 return nr_pages > 0; 2230 } 2231 2232 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2233 2234 #ifdef CONFIG_CMA 2235 void __init init_cma_reserved_pageblock(struct page *page) 2236 { 2237 unsigned i = pageblock_nr_pages; 2238 struct page *p = page; 2239 2240 do { 2241 __ClearPageReserved(p); 2242 set_page_count(p, 0); 2243 } while (++p, --i); 2244 2245 set_pageblock_migratetype(page, MIGRATE_CMA); 2246 set_page_refcounted(page); 2247 /* pages were reserved and not allocated */ 2248 clear_page_tag_ref(page); 2249 __free_pages(page, pageblock_order); 2250 2251 adjust_managed_page_count(page, pageblock_nr_pages); 2252 page_zone(page)->cma_pages += pageblock_nr_pages; 2253 } 2254 #endif 2255 2256 void set_zone_contiguous(struct zone *zone) 2257 { 2258 unsigned long block_start_pfn = zone->zone_start_pfn; 2259 unsigned long block_end_pfn; 2260 2261 block_end_pfn = pageblock_end_pfn(block_start_pfn); 2262 for (; block_start_pfn < zone_end_pfn(zone); 2263 block_start_pfn = block_end_pfn, 2264 block_end_pfn += pageblock_nr_pages) { 2265 2266 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 2267 2268 if (!__pageblock_pfn_to_page(block_start_pfn, 2269 block_end_pfn, zone)) 2270 return; 2271 cond_resched(); 2272 } 2273 2274 /* We confirm that there is no hole */ 2275 zone->contiguous = true; 2276 } 2277 2278 static void __init mem_init_print_info(void); 2279 void __init page_alloc_init_late(void) 2280 { 2281 struct zone *zone; 2282 int nid; 2283 2284 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2285 2286 /* There will be num_node_state(N_MEMORY) threads */ 2287 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2288 for_each_node_state(nid, N_MEMORY) { 2289 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2290 } 2291 2292 /* Block until all are initialised */ 2293 wait_for_completion(&pgdat_init_all_done_comp); 2294 2295 /* 2296 * We initialized the rest of the deferred pages. Permanently disable 2297 * on-demand struct page initialization. 2298 */ 2299 static_branch_disable(&deferred_pages); 2300 2301 /* Reinit limits that are based on free pages after the kernel is up */ 2302 files_maxfiles_init(); 2303 #endif 2304 2305 /* Accounting of total+free memory is stable at this point. */ 2306 mem_init_print_info(); 2307 buffer_init(); 2308 2309 /* Discard memblock private memory */ 2310 memblock_discard(); 2311 2312 for_each_node_state(nid, N_MEMORY) 2313 shuffle_free_memory(NODE_DATA(nid)); 2314 2315 for_each_populated_zone(zone) 2316 set_zone_contiguous(zone); 2317 2318 /* Initialize page ext after all struct pages are initialized. */ 2319 if (deferred_struct_pages) 2320 page_ext_init(); 2321 2322 page_alloc_sysctl_init(); 2323 } 2324 2325 /* 2326 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2327 * machines. As memory size is increased the scale is also increased but at 2328 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2329 * quadruples the scale is increased by one, which means the size of hash table 2330 * only doubles, instead of quadrupling as well. 2331 * Because 32-bit systems cannot have large physical memory, where this scaling 2332 * makes sense, it is disabled on such platforms. 2333 */ 2334 #if __BITS_PER_LONG > 32 2335 #define ADAPT_SCALE_BASE (64ul << 30) 2336 #define ADAPT_SCALE_SHIFT 2 2337 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2338 #endif 2339 2340 /* 2341 * allocate a large system hash table from bootmem 2342 * - it is assumed that the hash table must contain an exact power-of-2 2343 * quantity of entries 2344 * - limit is the number of hash buckets, not the total allocation size 2345 */ 2346 void *__init alloc_large_system_hash(const char *tablename, 2347 unsigned long bucketsize, 2348 unsigned long numentries, 2349 int scale, 2350 int flags, 2351 unsigned int *_hash_shift, 2352 unsigned int *_hash_mask, 2353 unsigned long low_limit, 2354 unsigned long high_limit) 2355 { 2356 unsigned long long max = high_limit; 2357 unsigned long log2qty, size; 2358 void *table; 2359 gfp_t gfp_flags; 2360 bool virt; 2361 bool huge; 2362 2363 /* allow the kernel cmdline to have a say */ 2364 if (!numentries) { 2365 /* round applicable memory size up to nearest megabyte */ 2366 numentries = nr_kernel_pages; 2367 2368 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2369 if (PAGE_SIZE < SZ_1M) 2370 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2371 2372 #if __BITS_PER_LONG > 32 2373 if (!high_limit) { 2374 unsigned long adapt; 2375 2376 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2377 adapt <<= ADAPT_SCALE_SHIFT) 2378 scale++; 2379 } 2380 #endif 2381 2382 /* limit to 1 bucket per 2^scale bytes of low memory */ 2383 if (scale > PAGE_SHIFT) 2384 numentries >>= (scale - PAGE_SHIFT); 2385 else 2386 numentries <<= (PAGE_SHIFT - scale); 2387 2388 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2389 numentries = PAGE_SIZE / bucketsize; 2390 } 2391 numentries = roundup_pow_of_two(numentries); 2392 2393 /* limit allocation size to 1/16 total memory by default */ 2394 if (max == 0) { 2395 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2396 do_div(max, bucketsize); 2397 } 2398 max = min(max, 0x80000000ULL); 2399 2400 if (numentries < low_limit) 2401 numentries = low_limit; 2402 if (numentries > max) 2403 numentries = max; 2404 2405 log2qty = ilog2(numentries); 2406 2407 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2408 do { 2409 virt = false; 2410 size = bucketsize << log2qty; 2411 if (flags & HASH_EARLY) { 2412 if (flags & HASH_ZERO) 2413 table = memblock_alloc(size, SMP_CACHE_BYTES); 2414 else 2415 table = memblock_alloc_raw(size, 2416 SMP_CACHE_BYTES); 2417 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { 2418 table = vmalloc_huge(size, gfp_flags); 2419 virt = true; 2420 if (table) 2421 huge = is_vm_area_hugepages(table); 2422 } else { 2423 /* 2424 * If bucketsize is not a power-of-two, we may free 2425 * some pages at the end of hash table which 2426 * alloc_pages_exact() automatically does 2427 */ 2428 table = alloc_pages_exact(size, gfp_flags); 2429 kmemleak_alloc(table, size, 1, gfp_flags); 2430 } 2431 } while (!table && size > PAGE_SIZE && --log2qty); 2432 2433 if (!table) 2434 panic("Failed to allocate %s hash table\n", tablename); 2435 2436 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2437 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2438 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2439 2440 if (_hash_shift) 2441 *_hash_shift = log2qty; 2442 if (_hash_mask) 2443 *_hash_mask = (1 << log2qty) - 1; 2444 2445 return table; 2446 } 2447 2448 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2449 unsigned int order) 2450 { 2451 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { 2452 int nid = early_pfn_to_nid(pfn); 2453 2454 if (!early_page_initialised(pfn, nid)) 2455 return; 2456 } 2457 2458 if (!kmsan_memblock_free_pages(page, order)) { 2459 /* KMSAN will take care of these pages. */ 2460 return; 2461 } 2462 2463 /* pages were reserved and not allocated */ 2464 clear_page_tag_ref(page); 2465 __free_pages_core(page, order, MEMINIT_EARLY); 2466 } 2467 2468 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2469 EXPORT_SYMBOL(init_on_alloc); 2470 2471 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2472 EXPORT_SYMBOL(init_on_free); 2473 2474 static bool _init_on_alloc_enabled_early __read_mostly 2475 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2476 static int __init early_init_on_alloc(char *buf) 2477 { 2478 2479 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2480 } 2481 early_param("init_on_alloc", early_init_on_alloc); 2482 2483 static bool _init_on_free_enabled_early __read_mostly 2484 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2485 static int __init early_init_on_free(char *buf) 2486 { 2487 return kstrtobool(buf, &_init_on_free_enabled_early); 2488 } 2489 early_param("init_on_free", early_init_on_free); 2490 2491 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2492 2493 /* 2494 * Enable static keys related to various memory debugging and hardening options. 2495 * Some override others, and depend on early params that are evaluated in the 2496 * order of appearance. So we need to first gather the full picture of what was 2497 * enabled, and then make decisions. 2498 */ 2499 static void __init mem_debugging_and_hardening_init(void) 2500 { 2501 bool page_poisoning_requested = false; 2502 bool want_check_pages = false; 2503 2504 #ifdef CONFIG_PAGE_POISONING 2505 /* 2506 * Page poisoning is debug page alloc for some arches. If 2507 * either of those options are enabled, enable poisoning. 2508 */ 2509 if (page_poisoning_enabled() || 2510 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2511 debug_pagealloc_enabled())) { 2512 static_branch_enable(&_page_poisoning_enabled); 2513 page_poisoning_requested = true; 2514 want_check_pages = true; 2515 } 2516 #endif 2517 2518 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 2519 page_poisoning_requested) { 2520 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2521 "will take precedence over init_on_alloc and init_on_free\n"); 2522 _init_on_alloc_enabled_early = false; 2523 _init_on_free_enabled_early = false; 2524 } 2525 2526 if (_init_on_alloc_enabled_early) { 2527 want_check_pages = true; 2528 static_branch_enable(&init_on_alloc); 2529 } else { 2530 static_branch_disable(&init_on_alloc); 2531 } 2532 2533 if (_init_on_free_enabled_early) { 2534 want_check_pages = true; 2535 static_branch_enable(&init_on_free); 2536 } else { 2537 static_branch_disable(&init_on_free); 2538 } 2539 2540 if (IS_ENABLED(CONFIG_KMSAN) && 2541 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 2542 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 2543 2544 #ifdef CONFIG_DEBUG_PAGEALLOC 2545 if (debug_pagealloc_enabled()) { 2546 want_check_pages = true; 2547 static_branch_enable(&_debug_pagealloc_enabled); 2548 2549 if (debug_guardpage_minorder()) 2550 static_branch_enable(&_debug_guardpage_enabled); 2551 } 2552 #endif 2553 2554 /* 2555 * Any page debugging or hardening option also enables sanity checking 2556 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2557 * enabled already. 2558 */ 2559 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2560 static_branch_enable(&check_pages_enabled); 2561 } 2562 2563 /* Report memory auto-initialization states for this boot. */ 2564 static void __init report_meminit(void) 2565 { 2566 const char *stack; 2567 2568 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2569 stack = "all(pattern)"; 2570 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2571 stack = "all(zero)"; 2572 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2573 stack = "byref_all(zero)"; 2574 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2575 stack = "byref(zero)"; 2576 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2577 stack = "__user(zero)"; 2578 else 2579 stack = "off"; 2580 2581 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", 2582 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", 2583 want_init_on_free() ? "on" : "off"); 2584 if (want_init_on_free()) 2585 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2586 } 2587 2588 static void __init mem_init_print_info(void) 2589 { 2590 unsigned long physpages, codesize, datasize, rosize, bss_size; 2591 unsigned long init_code_size, init_data_size; 2592 2593 physpages = get_num_physpages(); 2594 codesize = _etext - _stext; 2595 datasize = _edata - _sdata; 2596 rosize = __end_rodata - __start_rodata; 2597 bss_size = __bss_stop - __bss_start; 2598 init_data_size = __init_end - __init_begin; 2599 init_code_size = _einittext - _sinittext; 2600 2601 /* 2602 * Detect special cases and adjust section sizes accordingly: 2603 * 1) .init.* may be embedded into .data sections 2604 * 2) .init.text.* may be out of [__init_begin, __init_end], 2605 * please refer to arch/tile/kernel/vmlinux.lds.S. 2606 * 3) .rodata.* may be embedded into .text or .data sections. 2607 */ 2608 #define adj_init_size(start, end, size, pos, adj) \ 2609 do { \ 2610 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2611 size -= adj; \ 2612 } while (0) 2613 2614 adj_init_size(__init_begin, __init_end, init_data_size, 2615 _sinittext, init_code_size); 2616 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2617 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2618 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2619 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2620 2621 #undef adj_init_size 2622 2623 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2624 #ifdef CONFIG_HIGHMEM 2625 ", %luK highmem" 2626 #endif 2627 ")\n", 2628 K(nr_free_pages()), K(physpages), 2629 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2630 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2631 K(physpages - totalram_pages() - totalcma_pages), 2632 K(totalcma_pages) 2633 #ifdef CONFIG_HIGHMEM 2634 , K(totalhigh_pages()) 2635 #endif 2636 ); 2637 } 2638 2639 /* 2640 * Set up kernel memory allocators 2641 */ 2642 void __init mm_core_init(void) 2643 { 2644 /* Initializations relying on SMP setup */ 2645 BUILD_BUG_ON(MAX_ZONELISTS > 2); 2646 build_all_zonelists(NULL); 2647 page_alloc_init_cpuhp(); 2648 2649 /* 2650 * page_ext requires contiguous pages, 2651 * bigger than MAX_PAGE_ORDER unless SPARSEMEM. 2652 */ 2653 page_ext_init_flatmem(); 2654 mem_debugging_and_hardening_init(); 2655 kfence_alloc_pool_and_metadata(); 2656 report_meminit(); 2657 kmsan_init_shadow(); 2658 stack_depot_early_init(); 2659 mem_init(); 2660 kmem_cache_init(); 2661 /* 2662 * page_owner must be initialized after buddy is ready, and also after 2663 * slab is ready so that stack_depot_init() works properly 2664 */ 2665 page_ext_init_flatmem_late(); 2666 kmemleak_init(); 2667 ptlock_cache_init(); 2668 pgtable_cache_init(); 2669 debug_objects_mem_init(); 2670 vmalloc_init(); 2671 /* If no deferred init page_ext now, as vmap is fully initialized */ 2672 if (!deferred_struct_pages) 2673 page_ext_init(); 2674 /* Should be run before the first non-init thread is created */ 2675 init_espfix_bsp(); 2676 /* Should be run after espfix64 is set up. */ 2677 pti_init(); 2678 kmsan_init_runtime(); 2679 mm_cache_init(); 2680 execmem_init(); 2681 } 2682
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.