~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/mmap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * mm/mmap.c
  4  *
  5  * Written by obz.
  6  *
  7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
  8  */
  9 
 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 11 
 12 #include <linux/kernel.h>
 13 #include <linux/slab.h>
 14 #include <linux/backing-dev.h>
 15 #include <linux/mm.h>
 16 #include <linux/mm_inline.h>
 17 #include <linux/shm.h>
 18 #include <linux/mman.h>
 19 #include <linux/pagemap.h>
 20 #include <linux/swap.h>
 21 #include <linux/syscalls.h>
 22 #include <linux/capability.h>
 23 #include <linux/init.h>
 24 #include <linux/file.h>
 25 #include <linux/fs.h>
 26 #include <linux/personality.h>
 27 #include <linux/security.h>
 28 #include <linux/hugetlb.h>
 29 #include <linux/shmem_fs.h>
 30 #include <linux/profile.h>
 31 #include <linux/export.h>
 32 #include <linux/mount.h>
 33 #include <linux/mempolicy.h>
 34 #include <linux/rmap.h>
 35 #include <linux/mmu_notifier.h>
 36 #include <linux/mmdebug.h>
 37 #include <linux/perf_event.h>
 38 #include <linux/audit.h>
 39 #include <linux/khugepaged.h>
 40 #include <linux/uprobes.h>
 41 #include <linux/notifier.h>
 42 #include <linux/memory.h>
 43 #include <linux/printk.h>
 44 #include <linux/userfaultfd_k.h>
 45 #include <linux/moduleparam.h>
 46 #include <linux/pkeys.h>
 47 #include <linux/oom.h>
 48 #include <linux/sched/mm.h>
 49 #include <linux/ksm.h>
 50 
 51 #include <linux/uaccess.h>
 52 #include <asm/cacheflush.h>
 53 #include <asm/tlb.h>
 54 #include <asm/mmu_context.h>
 55 
 56 #define CREATE_TRACE_POINTS
 57 #include <trace/events/mmap.h>
 58 
 59 #include "internal.h"
 60 
 61 #ifndef arch_mmap_check
 62 #define arch_mmap_check(addr, len, flags)       (0)
 63 #endif
 64 
 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
 66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
 67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
 68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
 69 #endif
 70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
 72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
 73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
 74 #endif
 75 
 76 static bool ignore_rlimit_data;
 77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
 78 
 79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
 80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
 81                 struct vm_area_struct *next, unsigned long start,
 82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
 83 
 84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 85 {
 86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 87 }
 88 
 89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
 90 void vma_set_page_prot(struct vm_area_struct *vma)
 91 {
 92         unsigned long vm_flags = vma->vm_flags;
 93         pgprot_t vm_page_prot;
 94 
 95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 96         if (vma_wants_writenotify(vma, vm_page_prot)) {
 97                 vm_flags &= ~VM_SHARED;
 98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                                       struct address_space *mapping)
109 {
110         if (vma_is_shared_maywrite(vma))
111                 mapping_unmap_writable(mapping);
112 
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125 
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133 
134 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
135 {
136         vb->count = 0;
137 }
138 
139 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
140 {
141         struct address_space *mapping;
142         int i;
143 
144         mapping = vb->vmas[0]->vm_file->f_mapping;
145         i_mmap_lock_write(mapping);
146         for (i = 0; i < vb->count; i++) {
147                 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
148                 __remove_shared_vm_struct(vb->vmas[i], mapping);
149         }
150         i_mmap_unlock_write(mapping);
151 
152         unlink_file_vma_batch_init(vb);
153 }
154 
155 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
156                                struct vm_area_struct *vma)
157 {
158         if (vma->vm_file == NULL)
159                 return;
160 
161         if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
162             vb->count == ARRAY_SIZE(vb->vmas))
163                 unlink_file_vma_batch_process(vb);
164 
165         vb->vmas[vb->count] = vma;
166         vb->count++;
167 }
168 
169 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
170 {
171         if (vb->count > 0)
172                 unlink_file_vma_batch_process(vb);
173 }
174 
175 /*
176  * Close a vm structure and free it.
177  */
178 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
179 {
180         might_sleep();
181         if (vma->vm_ops && vma->vm_ops->close)
182                 vma->vm_ops->close(vma);
183         if (vma->vm_file)
184                 fput(vma->vm_file);
185         mpol_put(vma_policy(vma));
186         if (unreachable)
187                 __vm_area_free(vma);
188         else
189                 vm_area_free(vma);
190 }
191 
192 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
193                                                     unsigned long min)
194 {
195         return mas_prev(&vmi->mas, min);
196 }
197 
198 /*
199  * check_brk_limits() - Use platform specific check of range & verify mlock
200  * limits.
201  * @addr: The address to check
202  * @len: The size of increase.
203  *
204  * Return: 0 on success.
205  */
206 static int check_brk_limits(unsigned long addr, unsigned long len)
207 {
208         unsigned long mapped_addr;
209 
210         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
211         if (IS_ERR_VALUE(mapped_addr))
212                 return mapped_addr;
213 
214         return mlock_future_ok(current->mm, current->mm->def_flags, len)
215                 ? 0 : -EAGAIN;
216 }
217 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
218                 unsigned long addr, unsigned long request, unsigned long flags);
219 SYSCALL_DEFINE1(brk, unsigned long, brk)
220 {
221         unsigned long newbrk, oldbrk, origbrk;
222         struct mm_struct *mm = current->mm;
223         struct vm_area_struct *brkvma, *next = NULL;
224         unsigned long min_brk;
225         bool populate = false;
226         LIST_HEAD(uf);
227         struct vma_iterator vmi;
228 
229         if (mmap_write_lock_killable(mm))
230                 return -EINTR;
231 
232         origbrk = mm->brk;
233 
234 #ifdef CONFIG_COMPAT_BRK
235         /*
236          * CONFIG_COMPAT_BRK can still be overridden by setting
237          * randomize_va_space to 2, which will still cause mm->start_brk
238          * to be arbitrarily shifted
239          */
240         if (current->brk_randomized)
241                 min_brk = mm->start_brk;
242         else
243                 min_brk = mm->end_data;
244 #else
245         min_brk = mm->start_brk;
246 #endif
247         if (brk < min_brk)
248                 goto out;
249 
250         /*
251          * Check against rlimit here. If this check is done later after the test
252          * of oldbrk with newbrk then it can escape the test and let the data
253          * segment grow beyond its set limit the in case where the limit is
254          * not page aligned -Ram Gupta
255          */
256         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
257                               mm->end_data, mm->start_data))
258                 goto out;
259 
260         newbrk = PAGE_ALIGN(brk);
261         oldbrk = PAGE_ALIGN(mm->brk);
262         if (oldbrk == newbrk) {
263                 mm->brk = brk;
264                 goto success;
265         }
266 
267         /* Always allow shrinking brk. */
268         if (brk <= mm->brk) {
269                 /* Search one past newbrk */
270                 vma_iter_init(&vmi, mm, newbrk);
271                 brkvma = vma_find(&vmi, oldbrk);
272                 if (!brkvma || brkvma->vm_start >= oldbrk)
273                         goto out; /* mapping intersects with an existing non-brk vma. */
274                 /*
275                  * mm->brk must be protected by write mmap_lock.
276                  * do_vma_munmap() will drop the lock on success,  so update it
277                  * before calling do_vma_munmap().
278                  */
279                 mm->brk = brk;
280                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
281                         goto out;
282 
283                 goto success_unlocked;
284         }
285 
286         if (check_brk_limits(oldbrk, newbrk - oldbrk))
287                 goto out;
288 
289         /*
290          * Only check if the next VMA is within the stack_guard_gap of the
291          * expansion area
292          */
293         vma_iter_init(&vmi, mm, oldbrk);
294         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
295         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
296                 goto out;
297 
298         brkvma = vma_prev_limit(&vmi, mm->start_brk);
299         /* Ok, looks good - let it rip. */
300         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
301                 goto out;
302 
303         mm->brk = brk;
304         if (mm->def_flags & VM_LOCKED)
305                 populate = true;
306 
307 success:
308         mmap_write_unlock(mm);
309 success_unlocked:
310         userfaultfd_unmap_complete(mm, &uf);
311         if (populate)
312                 mm_populate(oldbrk, newbrk - oldbrk);
313         return brk;
314 
315 out:
316         mm->brk = origbrk;
317         mmap_write_unlock(mm);
318         return origbrk;
319 }
320 
321 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
322 static void validate_mm(struct mm_struct *mm)
323 {
324         int bug = 0;
325         int i = 0;
326         struct vm_area_struct *vma;
327         VMA_ITERATOR(vmi, mm, 0);
328 
329         mt_validate(&mm->mm_mt);
330         for_each_vma(vmi, vma) {
331 #ifdef CONFIG_DEBUG_VM_RB
332                 struct anon_vma *anon_vma = vma->anon_vma;
333                 struct anon_vma_chain *avc;
334 #endif
335                 unsigned long vmi_start, vmi_end;
336                 bool warn = 0;
337 
338                 vmi_start = vma_iter_addr(&vmi);
339                 vmi_end = vma_iter_end(&vmi);
340                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
341                         warn = 1;
342 
343                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
344                         warn = 1;
345 
346                 if (warn) {
347                         pr_emerg("issue in %s\n", current->comm);
348                         dump_stack();
349                         dump_vma(vma);
350                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
351                                  vmi_start, vmi_end - 1);
352                         vma_iter_dump_tree(&vmi);
353                 }
354 
355 #ifdef CONFIG_DEBUG_VM_RB
356                 if (anon_vma) {
357                         anon_vma_lock_read(anon_vma);
358                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
359                                 anon_vma_interval_tree_verify(avc);
360                         anon_vma_unlock_read(anon_vma);
361                 }
362 #endif
363                 i++;
364         }
365         if (i != mm->map_count) {
366                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
367                 bug = 1;
368         }
369         VM_BUG_ON_MM(bug, mm);
370 }
371 
372 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
373 #define validate_mm(mm) do { } while (0)
374 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
375 
376 /*
377  * vma has some anon_vma assigned, and is already inserted on that
378  * anon_vma's interval trees.
379  *
380  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
381  * vma must be removed from the anon_vma's interval trees using
382  * anon_vma_interval_tree_pre_update_vma().
383  *
384  * After the update, the vma will be reinserted using
385  * anon_vma_interval_tree_post_update_vma().
386  *
387  * The entire update must be protected by exclusive mmap_lock and by
388  * the root anon_vma's mutex.
389  */
390 static inline void
391 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
392 {
393         struct anon_vma_chain *avc;
394 
395         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
396                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
397 }
398 
399 static inline void
400 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
401 {
402         struct anon_vma_chain *avc;
403 
404         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
405                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
406 }
407 
408 static unsigned long count_vma_pages_range(struct mm_struct *mm,
409                 unsigned long addr, unsigned long end)
410 {
411         VMA_ITERATOR(vmi, mm, addr);
412         struct vm_area_struct *vma;
413         unsigned long nr_pages = 0;
414 
415         for_each_vma_range(vmi, vma, end) {
416                 unsigned long vm_start = max(addr, vma->vm_start);
417                 unsigned long vm_end = min(end, vma->vm_end);
418 
419                 nr_pages += PHYS_PFN(vm_end - vm_start);
420         }
421 
422         return nr_pages;
423 }
424 
425 static void __vma_link_file(struct vm_area_struct *vma,
426                             struct address_space *mapping)
427 {
428         if (vma_is_shared_maywrite(vma))
429                 mapping_allow_writable(mapping);
430 
431         flush_dcache_mmap_lock(mapping);
432         vma_interval_tree_insert(vma, &mapping->i_mmap);
433         flush_dcache_mmap_unlock(mapping);
434 }
435 
436 static void vma_link_file(struct vm_area_struct *vma)
437 {
438         struct file *file = vma->vm_file;
439         struct address_space *mapping;
440 
441         if (file) {
442                 mapping = file->f_mapping;
443                 i_mmap_lock_write(mapping);
444                 __vma_link_file(vma, mapping);
445                 i_mmap_unlock_write(mapping);
446         }
447 }
448 
449 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
450 {
451         VMA_ITERATOR(vmi, mm, 0);
452 
453         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
454         if (vma_iter_prealloc(&vmi, vma))
455                 return -ENOMEM;
456 
457         vma_start_write(vma);
458         vma_iter_store(&vmi, vma);
459         vma_link_file(vma);
460         mm->map_count++;
461         validate_mm(mm);
462         return 0;
463 }
464 
465 /*
466  * init_multi_vma_prep() - Initializer for struct vma_prepare
467  * @vp: The vma_prepare struct
468  * @vma: The vma that will be altered once locked
469  * @next: The next vma if it is to be adjusted
470  * @remove: The first vma to be removed
471  * @remove2: The second vma to be removed
472  */
473 static inline void init_multi_vma_prep(struct vma_prepare *vp,
474                 struct vm_area_struct *vma, struct vm_area_struct *next,
475                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
476 {
477         memset(vp, 0, sizeof(struct vma_prepare));
478         vp->vma = vma;
479         vp->anon_vma = vma->anon_vma;
480         vp->remove = remove;
481         vp->remove2 = remove2;
482         vp->adj_next = next;
483         if (!vp->anon_vma && next)
484                 vp->anon_vma = next->anon_vma;
485 
486         vp->file = vma->vm_file;
487         if (vp->file)
488                 vp->mapping = vma->vm_file->f_mapping;
489 
490 }
491 
492 /*
493  * init_vma_prep() - Initializer wrapper for vma_prepare struct
494  * @vp: The vma_prepare struct
495  * @vma: The vma that will be altered once locked
496  */
497 static inline void init_vma_prep(struct vma_prepare *vp,
498                                  struct vm_area_struct *vma)
499 {
500         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
501 }
502 
503 
504 /*
505  * vma_prepare() - Helper function for handling locking VMAs prior to altering
506  * @vp: The initialized vma_prepare struct
507  */
508 static inline void vma_prepare(struct vma_prepare *vp)
509 {
510         if (vp->file) {
511                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
512 
513                 if (vp->adj_next)
514                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
515                                       vp->adj_next->vm_end);
516 
517                 i_mmap_lock_write(vp->mapping);
518                 if (vp->insert && vp->insert->vm_file) {
519                         /*
520                          * Put into interval tree now, so instantiated pages
521                          * are visible to arm/parisc __flush_dcache_page
522                          * throughout; but we cannot insert into address
523                          * space until vma start or end is updated.
524                          */
525                         __vma_link_file(vp->insert,
526                                         vp->insert->vm_file->f_mapping);
527                 }
528         }
529 
530         if (vp->anon_vma) {
531                 anon_vma_lock_write(vp->anon_vma);
532                 anon_vma_interval_tree_pre_update_vma(vp->vma);
533                 if (vp->adj_next)
534                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
535         }
536 
537         if (vp->file) {
538                 flush_dcache_mmap_lock(vp->mapping);
539                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
540                 if (vp->adj_next)
541                         vma_interval_tree_remove(vp->adj_next,
542                                                  &vp->mapping->i_mmap);
543         }
544 
545 }
546 
547 /*
548  * vma_complete- Helper function for handling the unlocking after altering VMAs,
549  * or for inserting a VMA.
550  *
551  * @vp: The vma_prepare struct
552  * @vmi: The vma iterator
553  * @mm: The mm_struct
554  */
555 static inline void vma_complete(struct vma_prepare *vp,
556                                 struct vma_iterator *vmi, struct mm_struct *mm)
557 {
558         if (vp->file) {
559                 if (vp->adj_next)
560                         vma_interval_tree_insert(vp->adj_next,
561                                                  &vp->mapping->i_mmap);
562                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
563                 flush_dcache_mmap_unlock(vp->mapping);
564         }
565 
566         if (vp->remove && vp->file) {
567                 __remove_shared_vm_struct(vp->remove, vp->mapping);
568                 if (vp->remove2)
569                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
570         } else if (vp->insert) {
571                 /*
572                  * split_vma has split insert from vma, and needs
573                  * us to insert it before dropping the locks
574                  * (it may either follow vma or precede it).
575                  */
576                 vma_iter_store(vmi, vp->insert);
577                 mm->map_count++;
578         }
579 
580         if (vp->anon_vma) {
581                 anon_vma_interval_tree_post_update_vma(vp->vma);
582                 if (vp->adj_next)
583                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
584                 anon_vma_unlock_write(vp->anon_vma);
585         }
586 
587         if (vp->file) {
588                 i_mmap_unlock_write(vp->mapping);
589                 uprobe_mmap(vp->vma);
590 
591                 if (vp->adj_next)
592                         uprobe_mmap(vp->adj_next);
593         }
594 
595         if (vp->remove) {
596 again:
597                 vma_mark_detached(vp->remove, true);
598                 if (vp->file) {
599                         uprobe_munmap(vp->remove, vp->remove->vm_start,
600                                       vp->remove->vm_end);
601                         fput(vp->file);
602                 }
603                 if (vp->remove->anon_vma)
604                         anon_vma_merge(vp->vma, vp->remove);
605                 mm->map_count--;
606                 mpol_put(vma_policy(vp->remove));
607                 if (!vp->remove2)
608                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
609                 vm_area_free(vp->remove);
610 
611                 /*
612                  * In mprotect's case 6 (see comments on vma_merge),
613                  * we are removing both mid and next vmas
614                  */
615                 if (vp->remove2) {
616                         vp->remove = vp->remove2;
617                         vp->remove2 = NULL;
618                         goto again;
619                 }
620         }
621         if (vp->insert && vp->file)
622                 uprobe_mmap(vp->insert);
623         validate_mm(mm);
624 }
625 
626 /*
627  * dup_anon_vma() - Helper function to duplicate anon_vma
628  * @dst: The destination VMA
629  * @src: The source VMA
630  * @dup: Pointer to the destination VMA when successful.
631  *
632  * Returns: 0 on success.
633  */
634 static inline int dup_anon_vma(struct vm_area_struct *dst,
635                 struct vm_area_struct *src, struct vm_area_struct **dup)
636 {
637         /*
638          * Easily overlooked: when mprotect shifts the boundary, make sure the
639          * expanding vma has anon_vma set if the shrinking vma had, to cover any
640          * anon pages imported.
641          */
642         if (src->anon_vma && !dst->anon_vma) {
643                 int ret;
644 
645                 vma_assert_write_locked(dst);
646                 dst->anon_vma = src->anon_vma;
647                 ret = anon_vma_clone(dst, src);
648                 if (ret)
649                         return ret;
650 
651                 *dup = dst;
652         }
653 
654         return 0;
655 }
656 
657 /*
658  * vma_expand - Expand an existing VMA
659  *
660  * @vmi: The vma iterator
661  * @vma: The vma to expand
662  * @start: The start of the vma
663  * @end: The exclusive end of the vma
664  * @pgoff: The page offset of vma
665  * @next: The current of next vma.
666  *
667  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
668  * expand over @next if it's different from @vma and @end == @next->vm_end.
669  * Checking if the @vma can expand and merge with @next needs to be handled by
670  * the caller.
671  *
672  * Returns: 0 on success
673  */
674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
675                unsigned long start, unsigned long end, pgoff_t pgoff,
676                struct vm_area_struct *next)
677 {
678         struct vm_area_struct *anon_dup = NULL;
679         bool remove_next = false;
680         struct vma_prepare vp;
681 
682         vma_start_write(vma);
683         if (next && (vma != next) && (end == next->vm_end)) {
684                 int ret;
685 
686                 remove_next = true;
687                 vma_start_write(next);
688                 ret = dup_anon_vma(vma, next, &anon_dup);
689                 if (ret)
690                         return ret;
691         }
692 
693         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
694         /* Not merging but overwriting any part of next is not handled. */
695         VM_WARN_ON(next && !vp.remove &&
696                   next != vma && end > next->vm_start);
697         /* Only handles expanding */
698         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
699 
700         /* Note: vma iterator must be pointing to 'start' */
701         vma_iter_config(vmi, start, end);
702         if (vma_iter_prealloc(vmi, vma))
703                 goto nomem;
704 
705         vma_prepare(&vp);
706         vma_adjust_trans_huge(vma, start, end, 0);
707         vma_set_range(vma, start, end, pgoff);
708         vma_iter_store(vmi, vma);
709 
710         vma_complete(&vp, vmi, vma->vm_mm);
711         return 0;
712 
713 nomem:
714         if (anon_dup)
715                 unlink_anon_vmas(anon_dup);
716         return -ENOMEM;
717 }
718 
719 /*
720  * vma_shrink() - Reduce an existing VMAs memory area
721  * @vmi: The vma iterator
722  * @vma: The VMA to modify
723  * @start: The new start
724  * @end: The new end
725  *
726  * Returns: 0 on success, -ENOMEM otherwise
727  */
728 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
729                unsigned long start, unsigned long end, pgoff_t pgoff)
730 {
731         struct vma_prepare vp;
732 
733         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
734 
735         if (vma->vm_start < start)
736                 vma_iter_config(vmi, vma->vm_start, start);
737         else
738                 vma_iter_config(vmi, end, vma->vm_end);
739 
740         if (vma_iter_prealloc(vmi, NULL))
741                 return -ENOMEM;
742 
743         vma_start_write(vma);
744 
745         init_vma_prep(&vp, vma);
746         vma_prepare(&vp);
747         vma_adjust_trans_huge(vma, start, end, 0);
748 
749         vma_iter_clear(vmi);
750         vma_set_range(vma, start, end, pgoff);
751         vma_complete(&vp, vmi, vma->vm_mm);
752         return 0;
753 }
754 
755 /*
756  * If the vma has a ->close operation then the driver probably needs to release
757  * per-vma resources, so we don't attempt to merge those if the caller indicates
758  * the current vma may be removed as part of the merge.
759  */
760 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
761                 struct file *file, unsigned long vm_flags,
762                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
763                 struct anon_vma_name *anon_name, bool may_remove_vma)
764 {
765         /*
766          * VM_SOFTDIRTY should not prevent from VMA merging, if we
767          * match the flags but dirty bit -- the caller should mark
768          * merged VMA as dirty. If dirty bit won't be excluded from
769          * comparison, we increase pressure on the memory system forcing
770          * the kernel to generate new VMAs when old one could be
771          * extended instead.
772          */
773         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
774                 return false;
775         if (vma->vm_file != file)
776                 return false;
777         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
778                 return false;
779         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
780                 return false;
781         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
782                 return false;
783         return true;
784 }
785 
786 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
787                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
788 {
789         /*
790          * The list_is_singular() test is to avoid merging VMA cloned from
791          * parents. This can improve scalability caused by anon_vma lock.
792          */
793         if ((!anon_vma1 || !anon_vma2) && (!vma ||
794                 list_is_singular(&vma->anon_vma_chain)))
795                 return true;
796         return anon_vma1 == anon_vma2;
797 }
798 
799 /*
800  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
801  * in front of (at a lower virtual address and file offset than) the vma.
802  *
803  * We cannot merge two vmas if they have differently assigned (non-NULL)
804  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
805  *
806  * We don't check here for the merged mmap wrapping around the end of pagecache
807  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
808  * wrap, nor mmaps which cover the final page at index -1UL.
809  *
810  * We assume the vma may be removed as part of the merge.
811  */
812 static bool
813 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
814                 struct anon_vma *anon_vma, struct file *file,
815                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
816                 struct anon_vma_name *anon_name)
817 {
818         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
819             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
820                 if (vma->vm_pgoff == vm_pgoff)
821                         return true;
822         }
823         return false;
824 }
825 
826 /*
827  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
828  * beyond (at a higher virtual address and file offset than) the vma.
829  *
830  * We cannot merge two vmas if they have differently assigned (non-NULL)
831  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
832  *
833  * We assume that vma is not removed as part of the merge.
834  */
835 static bool
836 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
837                 struct anon_vma *anon_vma, struct file *file,
838                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
839                 struct anon_vma_name *anon_name)
840 {
841         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
842             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
843                 pgoff_t vm_pglen;
844                 vm_pglen = vma_pages(vma);
845                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
846                         return true;
847         }
848         return false;
849 }
850 
851 /*
852  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
853  * figure out whether that can be merged with its predecessor or its
854  * successor.  Or both (it neatly fills a hole).
855  *
856  * In most cases - when called for mmap, brk or mremap - [addr,end) is
857  * certain not to be mapped by the time vma_merge is called; but when
858  * called for mprotect, it is certain to be already mapped (either at
859  * an offset within prev, or at the start of next), and the flags of
860  * this area are about to be changed to vm_flags - and the no-change
861  * case has already been eliminated.
862  *
863  * The following mprotect cases have to be considered, where **** is
864  * the area passed down from mprotect_fixup, never extending beyond one
865  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
866  * at the same address as **** and is of the same or larger span, and
867  * NNNN the next vma after ****:
868  *
869  *     ****             ****                   ****
870  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
871  *    cannot merge    might become       might become
872  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
873  *    mmap, brk or    case 4 below       case 5 below
874  *    mremap move:
875  *                        ****               ****
876  *                    PPPP    NNNN       PPPPCCCCNNNN
877  *                    might become       might become
878  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
879  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
880  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
881  *
882  * It is important for case 8 that the vma CCCC overlapping the
883  * region **** is never going to extended over NNNN. Instead NNNN must
884  * be extended in region **** and CCCC must be removed. This way in
885  * all cases where vma_merge succeeds, the moment vma_merge drops the
886  * rmap_locks, the properties of the merged vma will be already
887  * correct for the whole merged range. Some of those properties like
888  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
889  * be correct for the whole merged range immediately after the
890  * rmap_locks are released. Otherwise if NNNN would be removed and
891  * CCCC would be extended over the NNNN range, remove_migration_ptes
892  * or other rmap walkers (if working on addresses beyond the "end"
893  * parameter) may establish ptes with the wrong permissions of CCCC
894  * instead of the right permissions of NNNN.
895  *
896  * In the code below:
897  * PPPP is represented by *prev
898  * CCCC is represented by *curr or not represented at all (NULL)
899  * NNNN is represented by *next or not represented at all (NULL)
900  * **** is not represented - it will be merged and the vma containing the
901  *      area is returned, or the function will return NULL
902  */
903 static struct vm_area_struct
904 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
905            struct vm_area_struct *src, unsigned long addr, unsigned long end,
906            unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
907            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
908            struct anon_vma_name *anon_name)
909 {
910         struct mm_struct *mm = src->vm_mm;
911         struct anon_vma *anon_vma = src->anon_vma;
912         struct file *file = src->vm_file;
913         struct vm_area_struct *curr, *next, *res;
914         struct vm_area_struct *vma, *adjust, *remove, *remove2;
915         struct vm_area_struct *anon_dup = NULL;
916         struct vma_prepare vp;
917         pgoff_t vma_pgoff;
918         int err = 0;
919         bool merge_prev = false;
920         bool merge_next = false;
921         bool vma_expanded = false;
922         unsigned long vma_start = addr;
923         unsigned long vma_end = end;
924         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
925         long adj_start = 0;
926 
927         /*
928          * We later require that vma->vm_flags == vm_flags,
929          * so this tests vma->vm_flags & VM_SPECIAL, too.
930          */
931         if (vm_flags & VM_SPECIAL)
932                 return NULL;
933 
934         /* Does the input range span an existing VMA? (cases 5 - 8) */
935         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
936 
937         if (!curr ||                    /* cases 1 - 4 */
938             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
939                 next = vma_lookup(mm, end);
940         else
941                 next = NULL;            /* case 5 */
942 
943         if (prev) {
944                 vma_start = prev->vm_start;
945                 vma_pgoff = prev->vm_pgoff;
946 
947                 /* Can we merge the predecessor? */
948                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
949                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
950                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
951                         merge_prev = true;
952                         vma_prev(vmi);
953                 }
954         }
955 
956         /* Can we merge the successor? */
957         if (next && mpol_equal(policy, vma_policy(next)) &&
958             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
959                                  vm_userfaultfd_ctx, anon_name)) {
960                 merge_next = true;
961         }
962 
963         /* Verify some invariant that must be enforced by the caller. */
964         VM_WARN_ON(prev && addr <= prev->vm_start);
965         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
966         VM_WARN_ON(addr >= end);
967 
968         if (!merge_prev && !merge_next)
969                 return NULL; /* Not mergeable. */
970 
971         if (merge_prev)
972                 vma_start_write(prev);
973 
974         res = vma = prev;
975         remove = remove2 = adjust = NULL;
976 
977         /* Can we merge both the predecessor and the successor? */
978         if (merge_prev && merge_next &&
979             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
980                 vma_start_write(next);
981                 remove = next;                          /* case 1 */
982                 vma_end = next->vm_end;
983                 err = dup_anon_vma(prev, next, &anon_dup);
984                 if (curr) {                             /* case 6 */
985                         vma_start_write(curr);
986                         remove = curr;
987                         remove2 = next;
988                         /*
989                          * Note that the dup_anon_vma below cannot overwrite err
990                          * since the first caller would do nothing unless next
991                          * has an anon_vma.
992                          */
993                         if (!next->anon_vma)
994                                 err = dup_anon_vma(prev, curr, &anon_dup);
995                 }
996         } else if (merge_prev) {                        /* case 2 */
997                 if (curr) {
998                         vma_start_write(curr);
999                         if (end == curr->vm_end) {      /* case 7 */
1000                                 /*
1001                                  * can_vma_merge_after() assumed we would not be
1002                                  * removing prev vma, so it skipped the check
1003                                  * for vm_ops->close, but we are removing curr
1004                                  */
1005                                 if (curr->vm_ops && curr->vm_ops->close)
1006                                         err = -EINVAL;
1007                                 remove = curr;
1008                         } else {                        /* case 5 */
1009                                 adjust = curr;
1010                                 adj_start = (end - curr->vm_start);
1011                         }
1012                         if (!err)
1013                                 err = dup_anon_vma(prev, curr, &anon_dup);
1014                 }
1015         } else { /* merge_next */
1016                 vma_start_write(next);
1017                 res = next;
1018                 if (prev && addr < prev->vm_end) {      /* case 4 */
1019                         vma_start_write(prev);
1020                         vma_end = addr;
1021                         adjust = next;
1022                         adj_start = -(prev->vm_end - addr);
1023                         err = dup_anon_vma(next, prev, &anon_dup);
1024                 } else {
1025                         /*
1026                          * Note that cases 3 and 8 are the ONLY ones where prev
1027                          * is permitted to be (but is not necessarily) NULL.
1028                          */
1029                         vma = next;                     /* case 3 */
1030                         vma_start = addr;
1031                         vma_end = next->vm_end;
1032                         vma_pgoff = next->vm_pgoff - pglen;
1033                         if (curr) {                     /* case 8 */
1034                                 vma_pgoff = curr->vm_pgoff;
1035                                 vma_start_write(curr);
1036                                 remove = curr;
1037                                 err = dup_anon_vma(next, curr, &anon_dup);
1038                         }
1039                 }
1040         }
1041 
1042         /* Error in anon_vma clone. */
1043         if (err)
1044                 goto anon_vma_fail;
1045 
1046         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1047                 vma_expanded = true;
1048 
1049         if (vma_expanded) {
1050                 vma_iter_config(vmi, vma_start, vma_end);
1051         } else {
1052                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1053                                 adjust->vm_end);
1054         }
1055 
1056         if (vma_iter_prealloc(vmi, vma))
1057                 goto prealloc_fail;
1058 
1059         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1060         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1061                    vp.anon_vma != adjust->anon_vma);
1062 
1063         vma_prepare(&vp);
1064         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1065         vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1066 
1067         if (vma_expanded)
1068                 vma_iter_store(vmi, vma);
1069 
1070         if (adj_start) {
1071                 adjust->vm_start += adj_start;
1072                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1073                 if (adj_start < 0) {
1074                         WARN_ON(vma_expanded);
1075                         vma_iter_store(vmi, next);
1076                 }
1077         }
1078 
1079         vma_complete(&vp, vmi, mm);
1080         khugepaged_enter_vma(res, vm_flags);
1081         return res;
1082 
1083 prealloc_fail:
1084         if (anon_dup)
1085                 unlink_anon_vmas(anon_dup);
1086 
1087 anon_vma_fail:
1088         vma_iter_set(vmi, addr);
1089         vma_iter_load(vmi);
1090         return NULL;
1091 }
1092 
1093 /*
1094  * Rough compatibility check to quickly see if it's even worth looking
1095  * at sharing an anon_vma.
1096  *
1097  * They need to have the same vm_file, and the flags can only differ
1098  * in things that mprotect may change.
1099  *
1100  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1101  * we can merge the two vma's. For example, we refuse to merge a vma if
1102  * there is a vm_ops->close() function, because that indicates that the
1103  * driver is doing some kind of reference counting. But that doesn't
1104  * really matter for the anon_vma sharing case.
1105  */
1106 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1107 {
1108         return a->vm_end == b->vm_start &&
1109                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1110                 a->vm_file == b->vm_file &&
1111                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1112                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1113 }
1114 
1115 /*
1116  * Do some basic sanity checking to see if we can re-use the anon_vma
1117  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1118  * the same as 'old', the other will be the new one that is trying
1119  * to share the anon_vma.
1120  *
1121  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1122  * the anon_vma of 'old' is concurrently in the process of being set up
1123  * by another page fault trying to merge _that_. But that's ok: if it
1124  * is being set up, that automatically means that it will be a singleton
1125  * acceptable for merging, so we can do all of this optimistically. But
1126  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1127  *
1128  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1129  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1130  * is to return an anon_vma that is "complex" due to having gone through
1131  * a fork).
1132  *
1133  * We also make sure that the two vma's are compatible (adjacent,
1134  * and with the same memory policies). That's all stable, even with just
1135  * a read lock on the mmap_lock.
1136  */
1137 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1138 {
1139         if (anon_vma_compatible(a, b)) {
1140                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1141 
1142                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1143                         return anon_vma;
1144         }
1145         return NULL;
1146 }
1147 
1148 /*
1149  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1150  * neighbouring vmas for a suitable anon_vma, before it goes off
1151  * to allocate a new anon_vma.  It checks because a repetitive
1152  * sequence of mprotects and faults may otherwise lead to distinct
1153  * anon_vmas being allocated, preventing vma merge in subsequent
1154  * mprotect.
1155  */
1156 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1157 {
1158         struct anon_vma *anon_vma = NULL;
1159         struct vm_area_struct *prev, *next;
1160         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1161 
1162         /* Try next first. */
1163         next = vma_iter_load(&vmi);
1164         if (next) {
1165                 anon_vma = reusable_anon_vma(next, vma, next);
1166                 if (anon_vma)
1167                         return anon_vma;
1168         }
1169 
1170         prev = vma_prev(&vmi);
1171         VM_BUG_ON_VMA(prev != vma, vma);
1172         prev = vma_prev(&vmi);
1173         /* Try prev next. */
1174         if (prev)
1175                 anon_vma = reusable_anon_vma(prev, prev, vma);
1176 
1177         /*
1178          * We might reach here with anon_vma == NULL if we can't find
1179          * any reusable anon_vma.
1180          * There's no absolute need to look only at touching neighbours:
1181          * we could search further afield for "compatible" anon_vmas.
1182          * But it would probably just be a waste of time searching,
1183          * or lead to too many vmas hanging off the same anon_vma.
1184          * We're trying to allow mprotect remerging later on,
1185          * not trying to minimize memory used for anon_vmas.
1186          */
1187         return anon_vma;
1188 }
1189 
1190 /*
1191  * If a hint addr is less than mmap_min_addr change hint to be as
1192  * low as possible but still greater than mmap_min_addr
1193  */
1194 static inline unsigned long round_hint_to_min(unsigned long hint)
1195 {
1196         hint &= PAGE_MASK;
1197         if (((void *)hint != NULL) &&
1198             (hint < mmap_min_addr))
1199                 return PAGE_ALIGN(mmap_min_addr);
1200         return hint;
1201 }
1202 
1203 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1204                         unsigned long bytes)
1205 {
1206         unsigned long locked_pages, limit_pages;
1207 
1208         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1209                 return true;
1210 
1211         locked_pages = bytes >> PAGE_SHIFT;
1212         locked_pages += mm->locked_vm;
1213 
1214         limit_pages = rlimit(RLIMIT_MEMLOCK);
1215         limit_pages >>= PAGE_SHIFT;
1216 
1217         return locked_pages <= limit_pages;
1218 }
1219 
1220 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1221 {
1222         if (S_ISREG(inode->i_mode))
1223                 return MAX_LFS_FILESIZE;
1224 
1225         if (S_ISBLK(inode->i_mode))
1226                 return MAX_LFS_FILESIZE;
1227 
1228         if (S_ISSOCK(inode->i_mode))
1229                 return MAX_LFS_FILESIZE;
1230 
1231         /* Special "we do even unsigned file positions" case */
1232         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1233                 return 0;
1234 
1235         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1236         return ULONG_MAX;
1237 }
1238 
1239 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1240                                 unsigned long pgoff, unsigned long len)
1241 {
1242         u64 maxsize = file_mmap_size_max(file, inode);
1243 
1244         if (maxsize && len > maxsize)
1245                 return false;
1246         maxsize -= len;
1247         if (pgoff > maxsize >> PAGE_SHIFT)
1248                 return false;
1249         return true;
1250 }
1251 
1252 /*
1253  * The caller must write-lock current->mm->mmap_lock.
1254  */
1255 unsigned long do_mmap(struct file *file, unsigned long addr,
1256                         unsigned long len, unsigned long prot,
1257                         unsigned long flags, vm_flags_t vm_flags,
1258                         unsigned long pgoff, unsigned long *populate,
1259                         struct list_head *uf)
1260 {
1261         struct mm_struct *mm = current->mm;
1262         int pkey = 0;
1263 
1264         *populate = 0;
1265 
1266         if (!len)
1267                 return -EINVAL;
1268 
1269         /*
1270          * Does the application expect PROT_READ to imply PROT_EXEC?
1271          *
1272          * (the exception is when the underlying filesystem is noexec
1273          *  mounted, in which case we don't add PROT_EXEC.)
1274          */
1275         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1276                 if (!(file && path_noexec(&file->f_path)))
1277                         prot |= PROT_EXEC;
1278 
1279         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1280         if (flags & MAP_FIXED_NOREPLACE)
1281                 flags |= MAP_FIXED;
1282 
1283         if (!(flags & MAP_FIXED))
1284                 addr = round_hint_to_min(addr);
1285 
1286         /* Careful about overflows.. */
1287         len = PAGE_ALIGN(len);
1288         if (!len)
1289                 return -ENOMEM;
1290 
1291         /* offset overflow? */
1292         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1293                 return -EOVERFLOW;
1294 
1295         /* Too many mappings? */
1296         if (mm->map_count > sysctl_max_map_count)
1297                 return -ENOMEM;
1298 
1299         /*
1300          * addr is returned from get_unmapped_area,
1301          * There are two cases:
1302          * 1> MAP_FIXED == false
1303          *      unallocated memory, no need to check sealing.
1304          * 1> MAP_FIXED == true
1305          *      sealing is checked inside mmap_region when
1306          *      do_vmi_munmap is called.
1307          */
1308 
1309         if (prot == PROT_EXEC) {
1310                 pkey = execute_only_pkey(mm);
1311                 if (pkey < 0)
1312                         pkey = 0;
1313         }
1314 
1315         /* Do simple checking here so the lower-level routines won't have
1316          * to. we assume access permissions have been handled by the open
1317          * of the memory object, so we don't do any here.
1318          */
1319         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1320                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1321 
1322         /* Obtain the address to map to. we verify (or select) it and ensure
1323          * that it represents a valid section of the address space.
1324          */
1325         addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1326         if (IS_ERR_VALUE(addr))
1327                 return addr;
1328 
1329         if (flags & MAP_FIXED_NOREPLACE) {
1330                 if (find_vma_intersection(mm, addr, addr + len))
1331                         return -EEXIST;
1332         }
1333 
1334         if (flags & MAP_LOCKED)
1335                 if (!can_do_mlock())
1336                         return -EPERM;
1337 
1338         if (!mlock_future_ok(mm, vm_flags, len))
1339                 return -EAGAIN;
1340 
1341         if (file) {
1342                 struct inode *inode = file_inode(file);
1343                 unsigned long flags_mask;
1344 
1345                 if (!file_mmap_ok(file, inode, pgoff, len))
1346                         return -EOVERFLOW;
1347 
1348                 flags_mask = LEGACY_MAP_MASK;
1349                 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1350                         flags_mask |= MAP_SYNC;
1351 
1352                 switch (flags & MAP_TYPE) {
1353                 case MAP_SHARED:
1354                         /*
1355                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1356                          * flags. E.g. MAP_SYNC is dangerous to use with
1357                          * MAP_SHARED as you don't know which consistency model
1358                          * you will get. We silently ignore unsupported flags
1359                          * with MAP_SHARED to preserve backward compatibility.
1360                          */
1361                         flags &= LEGACY_MAP_MASK;
1362                         fallthrough;
1363                 case MAP_SHARED_VALIDATE:
1364                         if (flags & ~flags_mask)
1365                                 return -EOPNOTSUPP;
1366                         if (prot & PROT_WRITE) {
1367                                 if (!(file->f_mode & FMODE_WRITE))
1368                                         return -EACCES;
1369                                 if (IS_SWAPFILE(file->f_mapping->host))
1370                                         return -ETXTBSY;
1371                         }
1372 
1373                         /*
1374                          * Make sure we don't allow writing to an append-only
1375                          * file..
1376                          */
1377                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1378                                 return -EACCES;
1379 
1380                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1381                         if (!(file->f_mode & FMODE_WRITE))
1382                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1383                         fallthrough;
1384                 case MAP_PRIVATE:
1385                         if (!(file->f_mode & FMODE_READ))
1386                                 return -EACCES;
1387                         if (path_noexec(&file->f_path)) {
1388                                 if (vm_flags & VM_EXEC)
1389                                         return -EPERM;
1390                                 vm_flags &= ~VM_MAYEXEC;
1391                         }
1392 
1393                         if (!file->f_op->mmap)
1394                                 return -ENODEV;
1395                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1396                                 return -EINVAL;
1397                         break;
1398 
1399                 default:
1400                         return -EINVAL;
1401                 }
1402         } else {
1403                 switch (flags & MAP_TYPE) {
1404                 case MAP_SHARED:
1405                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1406                                 return -EINVAL;
1407                         /*
1408                          * Ignore pgoff.
1409                          */
1410                         pgoff = 0;
1411                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1412                         break;
1413                 case MAP_DROPPABLE:
1414                         if (VM_DROPPABLE == VM_NONE)
1415                                 return -ENOTSUPP;
1416                         /*
1417                          * A locked or stack area makes no sense to be droppable.
1418                          *
1419                          * Also, since droppable pages can just go away at any time
1420                          * it makes no sense to copy them on fork or dump them.
1421                          *
1422                          * And don't attempt to combine with hugetlb for now.
1423                          */
1424                         if (flags & (MAP_LOCKED | MAP_HUGETLB))
1425                                 return -EINVAL;
1426                         if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
1427                                 return -EINVAL;
1428 
1429                         vm_flags |= VM_DROPPABLE;
1430 
1431                         /*
1432                          * If the pages can be dropped, then it doesn't make
1433                          * sense to reserve them.
1434                          */
1435                         vm_flags |= VM_NORESERVE;
1436 
1437                         /*
1438                          * Likewise, they're volatile enough that they
1439                          * shouldn't survive forks or coredumps.
1440                          */
1441                         vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
1442                         fallthrough;
1443                 case MAP_PRIVATE:
1444                         /*
1445                          * Set pgoff according to addr for anon_vma.
1446                          */
1447                         pgoff = addr >> PAGE_SHIFT;
1448                         break;
1449                 default:
1450                         return -EINVAL;
1451                 }
1452         }
1453 
1454         /*
1455          * Set 'VM_NORESERVE' if we should not account for the
1456          * memory use of this mapping.
1457          */
1458         if (flags & MAP_NORESERVE) {
1459                 /* We honor MAP_NORESERVE if allowed to overcommit */
1460                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1461                         vm_flags |= VM_NORESERVE;
1462 
1463                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1464                 if (file && is_file_hugepages(file))
1465                         vm_flags |= VM_NORESERVE;
1466         }
1467 
1468         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1469         if (!IS_ERR_VALUE(addr) &&
1470             ((vm_flags & VM_LOCKED) ||
1471              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1472                 *populate = len;
1473         return addr;
1474 }
1475 
1476 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1477                               unsigned long prot, unsigned long flags,
1478                               unsigned long fd, unsigned long pgoff)
1479 {
1480         struct file *file = NULL;
1481         unsigned long retval;
1482 
1483         if (!(flags & MAP_ANONYMOUS)) {
1484                 audit_mmap_fd(fd, flags);
1485                 file = fget(fd);
1486                 if (!file)
1487                         return -EBADF;
1488                 if (is_file_hugepages(file)) {
1489                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1490                 } else if (unlikely(flags & MAP_HUGETLB)) {
1491                         retval = -EINVAL;
1492                         goto out_fput;
1493                 }
1494         } else if (flags & MAP_HUGETLB) {
1495                 struct hstate *hs;
1496 
1497                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1498                 if (!hs)
1499                         return -EINVAL;
1500 
1501                 len = ALIGN(len, huge_page_size(hs));
1502                 /*
1503                  * VM_NORESERVE is used because the reservations will be
1504                  * taken when vm_ops->mmap() is called
1505                  */
1506                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1507                                 VM_NORESERVE,
1508                                 HUGETLB_ANONHUGE_INODE,
1509                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1510                 if (IS_ERR(file))
1511                         return PTR_ERR(file);
1512         }
1513 
1514         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1515 out_fput:
1516         if (file)
1517                 fput(file);
1518         return retval;
1519 }
1520 
1521 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1522                 unsigned long, prot, unsigned long, flags,
1523                 unsigned long, fd, unsigned long, pgoff)
1524 {
1525         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1526 }
1527 
1528 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1529 struct mmap_arg_struct {
1530         unsigned long addr;
1531         unsigned long len;
1532         unsigned long prot;
1533         unsigned long flags;
1534         unsigned long fd;
1535         unsigned long offset;
1536 };
1537 
1538 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1539 {
1540         struct mmap_arg_struct a;
1541 
1542         if (copy_from_user(&a, arg, sizeof(a)))
1543                 return -EFAULT;
1544         if (offset_in_page(a.offset))
1545                 return -EINVAL;
1546 
1547         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1548                                a.offset >> PAGE_SHIFT);
1549 }
1550 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1551 
1552 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1553 {
1554         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1555 }
1556 
1557 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1558 {
1559         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1560                 (VM_WRITE | VM_SHARED);
1561 }
1562 
1563 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1564 {
1565         /* No managed pages to writeback. */
1566         if (vma->vm_flags & VM_PFNMAP)
1567                 return false;
1568 
1569         return vma->vm_file && vma->vm_file->f_mapping &&
1570                 mapping_can_writeback(vma->vm_file->f_mapping);
1571 }
1572 
1573 /*
1574  * Does this VMA require the underlying folios to have their dirty state
1575  * tracked?
1576  */
1577 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1578 {
1579         /* Only shared, writable VMAs require dirty tracking. */
1580         if (!vma_is_shared_writable(vma))
1581                 return false;
1582 
1583         /* Does the filesystem need to be notified? */
1584         if (vm_ops_needs_writenotify(vma->vm_ops))
1585                 return true;
1586 
1587         /*
1588          * Even if the filesystem doesn't indicate a need for writenotify, if it
1589          * can writeback, dirty tracking is still required.
1590          */
1591         return vma_fs_can_writeback(vma);
1592 }
1593 
1594 /*
1595  * Some shared mappings will want the pages marked read-only
1596  * to track write events. If so, we'll downgrade vm_page_prot
1597  * to the private version (using protection_map[] without the
1598  * VM_SHARED bit).
1599  */
1600 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1601 {
1602         /* If it was private or non-writable, the write bit is already clear */
1603         if (!vma_is_shared_writable(vma))
1604                 return false;
1605 
1606         /* The backer wishes to know when pages are first written to? */
1607         if (vm_ops_needs_writenotify(vma->vm_ops))
1608                 return true;
1609 
1610         /* The open routine did something to the protections that pgprot_modify
1611          * won't preserve? */
1612         if (pgprot_val(vm_page_prot) !=
1613             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1614                 return false;
1615 
1616         /*
1617          * Do we need to track softdirty? hugetlb does not support softdirty
1618          * tracking yet.
1619          */
1620         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1621                 return true;
1622 
1623         /* Do we need write faults for uffd-wp tracking? */
1624         if (userfaultfd_wp(vma))
1625                 return true;
1626 
1627         /* Can the mapping track the dirty pages? */
1628         return vma_fs_can_writeback(vma);
1629 }
1630 
1631 /*
1632  * We account for memory if it's a private writeable mapping,
1633  * not hugepages and VM_NORESERVE wasn't set.
1634  */
1635 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1636 {
1637         /*
1638          * hugetlb has its own accounting separate from the core VM
1639          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1640          */
1641         if (file && is_file_hugepages(file))
1642                 return false;
1643 
1644         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1645 }
1646 
1647 /**
1648  * unmapped_area() - Find an area between the low_limit and the high_limit with
1649  * the correct alignment and offset, all from @info. Note: current->mm is used
1650  * for the search.
1651  *
1652  * @info: The unmapped area information including the range [low_limit -
1653  * high_limit), the alignment offset and mask.
1654  *
1655  * Return: A memory address or -ENOMEM.
1656  */
1657 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1658 {
1659         unsigned long length, gap;
1660         unsigned long low_limit, high_limit;
1661         struct vm_area_struct *tmp;
1662         VMA_ITERATOR(vmi, current->mm, 0);
1663 
1664         /* Adjust search length to account for worst case alignment overhead */
1665         length = info->length + info->align_mask + info->start_gap;
1666         if (length < info->length)
1667                 return -ENOMEM;
1668 
1669         low_limit = info->low_limit;
1670         if (low_limit < mmap_min_addr)
1671                 low_limit = mmap_min_addr;
1672         high_limit = info->high_limit;
1673 retry:
1674         if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1675                 return -ENOMEM;
1676 
1677         /*
1678          * Adjust for the gap first so it doesn't interfere with the
1679          * later alignment. The first step is the minimum needed to
1680          * fulill the start gap, the next steps is the minimum to align
1681          * that. It is the minimum needed to fulill both.
1682          */
1683         gap = vma_iter_addr(&vmi) + info->start_gap;
1684         gap += (info->align_offset - gap) & info->align_mask;
1685         tmp = vma_next(&vmi);
1686         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1687                 if (vm_start_gap(tmp) < gap + length - 1) {
1688                         low_limit = tmp->vm_end;
1689                         vma_iter_reset(&vmi);
1690                         goto retry;
1691                 }
1692         } else {
1693                 tmp = vma_prev(&vmi);
1694                 if (tmp && vm_end_gap(tmp) > gap) {
1695                         low_limit = vm_end_gap(tmp);
1696                         vma_iter_reset(&vmi);
1697                         goto retry;
1698                 }
1699         }
1700 
1701         return gap;
1702 }
1703 
1704 /**
1705  * unmapped_area_topdown() - Find an area between the low_limit and the
1706  * high_limit with the correct alignment and offset at the highest available
1707  * address, all from @info. Note: current->mm is used for the search.
1708  *
1709  * @info: The unmapped area information including the range [low_limit -
1710  * high_limit), the alignment offset and mask.
1711  *
1712  * Return: A memory address or -ENOMEM.
1713  */
1714 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1715 {
1716         unsigned long length, gap, gap_end;
1717         unsigned long low_limit, high_limit;
1718         struct vm_area_struct *tmp;
1719         VMA_ITERATOR(vmi, current->mm, 0);
1720 
1721         /* Adjust search length to account for worst case alignment overhead */
1722         length = info->length + info->align_mask + info->start_gap;
1723         if (length < info->length)
1724                 return -ENOMEM;
1725 
1726         low_limit = info->low_limit;
1727         if (low_limit < mmap_min_addr)
1728                 low_limit = mmap_min_addr;
1729         high_limit = info->high_limit;
1730 retry:
1731         if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1732                 return -ENOMEM;
1733 
1734         gap = vma_iter_end(&vmi) - info->length;
1735         gap -= (gap - info->align_offset) & info->align_mask;
1736         gap_end = vma_iter_end(&vmi);
1737         tmp = vma_next(&vmi);
1738         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1739                 if (vm_start_gap(tmp) < gap_end) {
1740                         high_limit = vm_start_gap(tmp);
1741                         vma_iter_reset(&vmi);
1742                         goto retry;
1743                 }
1744         } else {
1745                 tmp = vma_prev(&vmi);
1746                 if (tmp && vm_end_gap(tmp) > gap) {
1747                         high_limit = tmp->vm_start;
1748                         vma_iter_reset(&vmi);
1749                         goto retry;
1750                 }
1751         }
1752 
1753         return gap;
1754 }
1755 
1756 /*
1757  * Search for an unmapped address range.
1758  *
1759  * We are looking for a range that:
1760  * - does not intersect with any VMA;
1761  * - is contained within the [low_limit, high_limit) interval;
1762  * - is at least the desired size.
1763  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1764  */
1765 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1766 {
1767         unsigned long addr;
1768 
1769         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1770                 addr = unmapped_area_topdown(info);
1771         else
1772                 addr = unmapped_area(info);
1773 
1774         trace_vm_unmapped_area(addr, info);
1775         return addr;
1776 }
1777 
1778 /* Get an address range which is currently unmapped.
1779  * For shmat() with addr=0.
1780  *
1781  * Ugly calling convention alert:
1782  * Return value with the low bits set means error value,
1783  * ie
1784  *      if (ret & ~PAGE_MASK)
1785  *              error = ret;
1786  *
1787  * This function "knows" that -ENOMEM has the bits set.
1788  */
1789 unsigned long
1790 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1791                           unsigned long len, unsigned long pgoff,
1792                           unsigned long flags)
1793 {
1794         struct mm_struct *mm = current->mm;
1795         struct vm_area_struct *vma, *prev;
1796         struct vm_unmapped_area_info info = {};
1797         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1798 
1799         if (len > mmap_end - mmap_min_addr)
1800                 return -ENOMEM;
1801 
1802         if (flags & MAP_FIXED)
1803                 return addr;
1804 
1805         if (addr) {
1806                 addr = PAGE_ALIGN(addr);
1807                 vma = find_vma_prev(mm, addr, &prev);
1808                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1809                     (!vma || addr + len <= vm_start_gap(vma)) &&
1810                     (!prev || addr >= vm_end_gap(prev)))
1811                         return addr;
1812         }
1813 
1814         info.length = len;
1815         info.low_limit = mm->mmap_base;
1816         info.high_limit = mmap_end;
1817         return vm_unmapped_area(&info);
1818 }
1819 
1820 #ifndef HAVE_ARCH_UNMAPPED_AREA
1821 unsigned long
1822 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1823                        unsigned long len, unsigned long pgoff,
1824                        unsigned long flags)
1825 {
1826         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1827 }
1828 #endif
1829 
1830 /*
1831  * This mmap-allocator allocates new areas top-down from below the
1832  * stack's low limit (the base):
1833  */
1834 unsigned long
1835 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1836                                   unsigned long len, unsigned long pgoff,
1837                                   unsigned long flags)
1838 {
1839         struct vm_area_struct *vma, *prev;
1840         struct mm_struct *mm = current->mm;
1841         struct vm_unmapped_area_info info = {};
1842         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1843 
1844         /* requested length too big for entire address space */
1845         if (len > mmap_end - mmap_min_addr)
1846                 return -ENOMEM;
1847 
1848         if (flags & MAP_FIXED)
1849                 return addr;
1850 
1851         /* requesting a specific address */
1852         if (addr) {
1853                 addr = PAGE_ALIGN(addr);
1854                 vma = find_vma_prev(mm, addr, &prev);
1855                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1856                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1857                                 (!prev || addr >= vm_end_gap(prev)))
1858                         return addr;
1859         }
1860 
1861         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1862         info.length = len;
1863         info.low_limit = PAGE_SIZE;
1864         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1865         addr = vm_unmapped_area(&info);
1866 
1867         /*
1868          * A failed mmap() very likely causes application failure,
1869          * so fall back to the bottom-up function here. This scenario
1870          * can happen with large stack limits and large mmap()
1871          * allocations.
1872          */
1873         if (offset_in_page(addr)) {
1874                 VM_BUG_ON(addr != -ENOMEM);
1875                 info.flags = 0;
1876                 info.low_limit = TASK_UNMAPPED_BASE;
1877                 info.high_limit = mmap_end;
1878                 addr = vm_unmapped_area(&info);
1879         }
1880 
1881         return addr;
1882 }
1883 
1884 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1885 unsigned long
1886 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1887                                unsigned long len, unsigned long pgoff,
1888                                unsigned long flags)
1889 {
1890         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1891 }
1892 #endif
1893 
1894 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1895 unsigned long
1896 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1897                                unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1898 {
1899         return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1900 }
1901 
1902 unsigned long
1903 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1904                                        unsigned long len, unsigned long pgoff,
1905                                        unsigned long flags, vm_flags_t vm_flags)
1906 {
1907         return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1908 }
1909 #endif
1910 
1911 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1912                                            unsigned long addr, unsigned long len,
1913                                            unsigned long pgoff, unsigned long flags,
1914                                            vm_flags_t vm_flags)
1915 {
1916         if (test_bit(MMF_TOPDOWN, &mm->flags))
1917                 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1918                                                               flags, vm_flags);
1919         return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1920 }
1921 
1922 unsigned long
1923 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1924                 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1925 {
1926         unsigned long (*get_area)(struct file *, unsigned long,
1927                                   unsigned long, unsigned long, unsigned long)
1928                                   = NULL;
1929 
1930         unsigned long error = arch_mmap_check(addr, len, flags);
1931         if (error)
1932                 return error;
1933 
1934         /* Careful about overflows.. */
1935         if (len > TASK_SIZE)
1936                 return -ENOMEM;
1937 
1938         if (file) {
1939                 if (file->f_op->get_unmapped_area)
1940                         get_area = file->f_op->get_unmapped_area;
1941         } else if (flags & MAP_SHARED) {
1942                 /*
1943                  * mmap_region() will call shmem_zero_setup() to create a file,
1944                  * so use shmem's get_unmapped_area in case it can be huge.
1945                  */
1946                 get_area = shmem_get_unmapped_area;
1947         }
1948 
1949         /* Always treat pgoff as zero for anonymous memory. */
1950         if (!file)
1951                 pgoff = 0;
1952 
1953         if (get_area) {
1954                 addr = get_area(file, addr, len, pgoff, flags);
1955         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1956                 /* Ensures that larger anonymous mappings are THP aligned. */
1957                 addr = thp_get_unmapped_area_vmflags(file, addr, len,
1958                                                      pgoff, flags, vm_flags);
1959         } else {
1960                 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1961                                                     pgoff, flags, vm_flags);
1962         }
1963         if (IS_ERR_VALUE(addr))
1964                 return addr;
1965 
1966         if (addr > TASK_SIZE - len)
1967                 return -ENOMEM;
1968         if (offset_in_page(addr))
1969                 return -EINVAL;
1970 
1971         error = security_mmap_addr(addr);
1972         return error ? error : addr;
1973 }
1974 
1975 unsigned long
1976 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1977                      unsigned long addr, unsigned long len,
1978                      unsigned long pgoff, unsigned long flags)
1979 {
1980         if (test_bit(MMF_TOPDOWN, &mm->flags))
1981                 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1982         return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1983 }
1984 EXPORT_SYMBOL(mm_get_unmapped_area);
1985 
1986 /**
1987  * find_vma_intersection() - Look up the first VMA which intersects the interval
1988  * @mm: The process address space.
1989  * @start_addr: The inclusive start user address.
1990  * @end_addr: The exclusive end user address.
1991  *
1992  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1993  * start_addr < end_addr.
1994  */
1995 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1996                                              unsigned long start_addr,
1997                                              unsigned long end_addr)
1998 {
1999         unsigned long index = start_addr;
2000 
2001         mmap_assert_locked(mm);
2002         return mt_find(&mm->mm_mt, &index, end_addr - 1);
2003 }
2004 EXPORT_SYMBOL(find_vma_intersection);
2005 
2006 /**
2007  * find_vma() - Find the VMA for a given address, or the next VMA.
2008  * @mm: The mm_struct to check
2009  * @addr: The address
2010  *
2011  * Returns: The VMA associated with addr, or the next VMA.
2012  * May return %NULL in the case of no VMA at addr or above.
2013  */
2014 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2015 {
2016         unsigned long index = addr;
2017 
2018         mmap_assert_locked(mm);
2019         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
2020 }
2021 EXPORT_SYMBOL(find_vma);
2022 
2023 /**
2024  * find_vma_prev() - Find the VMA for a given address, or the next vma and
2025  * set %pprev to the previous VMA, if any.
2026  * @mm: The mm_struct to check
2027  * @addr: The address
2028  * @pprev: The pointer to set to the previous VMA
2029  *
2030  * Note that RCU lock is missing here since the external mmap_lock() is used
2031  * instead.
2032  *
2033  * Returns: The VMA associated with @addr, or the next vma.
2034  * May return %NULL in the case of no vma at addr or above.
2035  */
2036 struct vm_area_struct *
2037 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2038                         struct vm_area_struct **pprev)
2039 {
2040         struct vm_area_struct *vma;
2041         VMA_ITERATOR(vmi, mm, addr);
2042 
2043         vma = vma_iter_load(&vmi);
2044         *pprev = vma_prev(&vmi);
2045         if (!vma)
2046                 vma = vma_next(&vmi);
2047         return vma;
2048 }
2049 
2050 /*
2051  * Verify that the stack growth is acceptable and
2052  * update accounting. This is shared with both the
2053  * grow-up and grow-down cases.
2054  */
2055 static int acct_stack_growth(struct vm_area_struct *vma,
2056                              unsigned long size, unsigned long grow)
2057 {
2058         struct mm_struct *mm = vma->vm_mm;
2059         unsigned long new_start;
2060 
2061         /* address space limit tests */
2062         if (!may_expand_vm(mm, vma->vm_flags, grow))
2063                 return -ENOMEM;
2064 
2065         /* Stack limit test */
2066         if (size > rlimit(RLIMIT_STACK))
2067                 return -ENOMEM;
2068 
2069         /* mlock limit tests */
2070         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2071                 return -ENOMEM;
2072 
2073         /* Check to ensure the stack will not grow into a hugetlb-only region */
2074         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2075                         vma->vm_end - size;
2076         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2077                 return -EFAULT;
2078 
2079         /*
2080          * Overcommit..  This must be the final test, as it will
2081          * update security statistics.
2082          */
2083         if (security_vm_enough_memory_mm(mm, grow))
2084                 return -ENOMEM;
2085 
2086         return 0;
2087 }
2088 
2089 #if defined(CONFIG_STACK_GROWSUP)
2090 /*
2091  * PA-RISC uses this for its stack.
2092  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2093  */
2094 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2095 {
2096         struct mm_struct *mm = vma->vm_mm;
2097         struct vm_area_struct *next;
2098         unsigned long gap_addr;
2099         int error = 0;
2100         VMA_ITERATOR(vmi, mm, vma->vm_start);
2101 
2102         if (!(vma->vm_flags & VM_GROWSUP))
2103                 return -EFAULT;
2104 
2105         /* Guard against exceeding limits of the address space. */
2106         address &= PAGE_MASK;
2107         if (address >= (TASK_SIZE & PAGE_MASK))
2108                 return -ENOMEM;
2109         address += PAGE_SIZE;
2110 
2111         /* Enforce stack_guard_gap */
2112         gap_addr = address + stack_guard_gap;
2113 
2114         /* Guard against overflow */
2115         if (gap_addr < address || gap_addr > TASK_SIZE)
2116                 gap_addr = TASK_SIZE;
2117 
2118         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2119         if (next && vma_is_accessible(next)) {
2120                 if (!(next->vm_flags & VM_GROWSUP))
2121                         return -ENOMEM;
2122                 /* Check that both stack segments have the same anon_vma? */
2123         }
2124 
2125         if (next)
2126                 vma_iter_prev_range_limit(&vmi, address);
2127 
2128         vma_iter_config(&vmi, vma->vm_start, address);
2129         if (vma_iter_prealloc(&vmi, vma))
2130                 return -ENOMEM;
2131 
2132         /* We must make sure the anon_vma is allocated. */
2133         if (unlikely(anon_vma_prepare(vma))) {
2134                 vma_iter_free(&vmi);
2135                 return -ENOMEM;
2136         }
2137 
2138         /* Lock the VMA before expanding to prevent concurrent page faults */
2139         vma_start_write(vma);
2140         /*
2141          * vma->vm_start/vm_end cannot change under us because the caller
2142          * is required to hold the mmap_lock in read mode.  We need the
2143          * anon_vma lock to serialize against concurrent expand_stacks.
2144          */
2145         anon_vma_lock_write(vma->anon_vma);
2146 
2147         /* Somebody else might have raced and expanded it already */
2148         if (address > vma->vm_end) {
2149                 unsigned long size, grow;
2150 
2151                 size = address - vma->vm_start;
2152                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2153 
2154                 error = -ENOMEM;
2155                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2156                         error = acct_stack_growth(vma, size, grow);
2157                         if (!error) {
2158                                 /*
2159                                  * We only hold a shared mmap_lock lock here, so
2160                                  * we need to protect against concurrent vma
2161                                  * expansions.  anon_vma_lock_write() doesn't
2162                                  * help here, as we don't guarantee that all
2163                                  * growable vmas in a mm share the same root
2164                                  * anon vma.  So, we reuse mm->page_table_lock
2165                                  * to guard against concurrent vma expansions.
2166                                  */
2167                                 spin_lock(&mm->page_table_lock);
2168                                 if (vma->vm_flags & VM_LOCKED)
2169                                         mm->locked_vm += grow;
2170                                 vm_stat_account(mm, vma->vm_flags, grow);
2171                                 anon_vma_interval_tree_pre_update_vma(vma);
2172                                 vma->vm_end = address;
2173                                 /* Overwrite old entry in mtree. */
2174                                 vma_iter_store(&vmi, vma);
2175                                 anon_vma_interval_tree_post_update_vma(vma);
2176                                 spin_unlock(&mm->page_table_lock);
2177 
2178                                 perf_event_mmap(vma);
2179                         }
2180                 }
2181         }
2182         anon_vma_unlock_write(vma->anon_vma);
2183         vma_iter_free(&vmi);
2184         validate_mm(mm);
2185         return error;
2186 }
2187 #endif /* CONFIG_STACK_GROWSUP */
2188 
2189 /*
2190  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2191  * mmap_lock held for writing.
2192  */
2193 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2194 {
2195         struct mm_struct *mm = vma->vm_mm;
2196         struct vm_area_struct *prev;
2197         int error = 0;
2198         VMA_ITERATOR(vmi, mm, vma->vm_start);
2199 
2200         if (!(vma->vm_flags & VM_GROWSDOWN))
2201                 return -EFAULT;
2202 
2203         address &= PAGE_MASK;
2204         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2205                 return -EPERM;
2206 
2207         /* Enforce stack_guard_gap */
2208         prev = vma_prev(&vmi);
2209         /* Check that both stack segments have the same anon_vma? */
2210         if (prev) {
2211                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2212                     vma_is_accessible(prev) &&
2213                     (address - prev->vm_end < stack_guard_gap))
2214                         return -ENOMEM;
2215         }
2216 
2217         if (prev)
2218                 vma_iter_next_range_limit(&vmi, vma->vm_start);
2219 
2220         vma_iter_config(&vmi, address, vma->vm_end);
2221         if (vma_iter_prealloc(&vmi, vma))
2222                 return -ENOMEM;
2223 
2224         /* We must make sure the anon_vma is allocated. */
2225         if (unlikely(anon_vma_prepare(vma))) {
2226                 vma_iter_free(&vmi);
2227                 return -ENOMEM;
2228         }
2229 
2230         /* Lock the VMA before expanding to prevent concurrent page faults */
2231         vma_start_write(vma);
2232         /*
2233          * vma->vm_start/vm_end cannot change under us because the caller
2234          * is required to hold the mmap_lock in read mode.  We need the
2235          * anon_vma lock to serialize against concurrent expand_stacks.
2236          */
2237         anon_vma_lock_write(vma->anon_vma);
2238 
2239         /* Somebody else might have raced and expanded it already */
2240         if (address < vma->vm_start) {
2241                 unsigned long size, grow;
2242 
2243                 size = vma->vm_end - address;
2244                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2245 
2246                 error = -ENOMEM;
2247                 if (grow <= vma->vm_pgoff) {
2248                         error = acct_stack_growth(vma, size, grow);
2249                         if (!error) {
2250                                 /*
2251                                  * We only hold a shared mmap_lock lock here, so
2252                                  * we need to protect against concurrent vma
2253                                  * expansions.  anon_vma_lock_write() doesn't
2254                                  * help here, as we don't guarantee that all
2255                                  * growable vmas in a mm share the same root
2256                                  * anon vma.  So, we reuse mm->page_table_lock
2257                                  * to guard against concurrent vma expansions.
2258                                  */
2259                                 spin_lock(&mm->page_table_lock);
2260                                 if (vma->vm_flags & VM_LOCKED)
2261                                         mm->locked_vm += grow;
2262                                 vm_stat_account(mm, vma->vm_flags, grow);
2263                                 anon_vma_interval_tree_pre_update_vma(vma);
2264                                 vma->vm_start = address;
2265                                 vma->vm_pgoff -= grow;
2266                                 /* Overwrite old entry in mtree. */
2267                                 vma_iter_store(&vmi, vma);
2268                                 anon_vma_interval_tree_post_update_vma(vma);
2269                                 spin_unlock(&mm->page_table_lock);
2270 
2271                                 perf_event_mmap(vma);
2272                         }
2273                 }
2274         }
2275         anon_vma_unlock_write(vma->anon_vma);
2276         vma_iter_free(&vmi);
2277         validate_mm(mm);
2278         return error;
2279 }
2280 
2281 /* enforced gap between the expanding stack and other mappings. */
2282 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2283 
2284 static int __init cmdline_parse_stack_guard_gap(char *p)
2285 {
2286         unsigned long val;
2287         char *endptr;
2288 
2289         val = simple_strtoul(p, &endptr, 10);
2290         if (!*endptr)
2291                 stack_guard_gap = val << PAGE_SHIFT;
2292 
2293         return 1;
2294 }
2295 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2296 
2297 #ifdef CONFIG_STACK_GROWSUP
2298 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2299 {
2300         return expand_upwards(vma, address);
2301 }
2302 
2303 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2304 {
2305         struct vm_area_struct *vma, *prev;
2306 
2307         addr &= PAGE_MASK;
2308         vma = find_vma_prev(mm, addr, &prev);
2309         if (vma && (vma->vm_start <= addr))
2310                 return vma;
2311         if (!prev)
2312                 return NULL;
2313         if (expand_stack_locked(prev, addr))
2314                 return NULL;
2315         if (prev->vm_flags & VM_LOCKED)
2316                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2317         return prev;
2318 }
2319 #else
2320 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2321 {
2322         return expand_downwards(vma, address);
2323 }
2324 
2325 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2326 {
2327         struct vm_area_struct *vma;
2328         unsigned long start;
2329 
2330         addr &= PAGE_MASK;
2331         vma = find_vma(mm, addr);
2332         if (!vma)
2333                 return NULL;
2334         if (vma->vm_start <= addr)
2335                 return vma;
2336         start = vma->vm_start;
2337         if (expand_stack_locked(vma, addr))
2338                 return NULL;
2339         if (vma->vm_flags & VM_LOCKED)
2340                 populate_vma_page_range(vma, addr, start, NULL);
2341         return vma;
2342 }
2343 #endif
2344 
2345 #if defined(CONFIG_STACK_GROWSUP)
2346 
2347 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2348 #define vma_expand_down(vma, addr) (-EFAULT)
2349 
2350 #else
2351 
2352 #define vma_expand_up(vma,addr) (-EFAULT)
2353 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2354 
2355 #endif
2356 
2357 /*
2358  * expand_stack(): legacy interface for page faulting. Don't use unless
2359  * you have to.
2360  *
2361  * This is called with the mm locked for reading, drops the lock, takes
2362  * the lock for writing, tries to look up a vma again, expands it if
2363  * necessary, and downgrades the lock to reading again.
2364  *
2365  * If no vma is found or it can't be expanded, it returns NULL and has
2366  * dropped the lock.
2367  */
2368 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2369 {
2370         struct vm_area_struct *vma, *prev;
2371 
2372         mmap_read_unlock(mm);
2373         if (mmap_write_lock_killable(mm))
2374                 return NULL;
2375 
2376         vma = find_vma_prev(mm, addr, &prev);
2377         if (vma && vma->vm_start <= addr)
2378                 goto success;
2379 
2380         if (prev && !vma_expand_up(prev, addr)) {
2381                 vma = prev;
2382                 goto success;
2383         }
2384 
2385         if (vma && !vma_expand_down(vma, addr))
2386                 goto success;
2387 
2388         mmap_write_unlock(mm);
2389         return NULL;
2390 
2391 success:
2392         mmap_write_downgrade(mm);
2393         return vma;
2394 }
2395 
2396 /*
2397  * Ok - we have the memory areas we should free on a maple tree so release them,
2398  * and do the vma updates.
2399  *
2400  * Called with the mm semaphore held.
2401  */
2402 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2403 {
2404         unsigned long nr_accounted = 0;
2405         struct vm_area_struct *vma;
2406 
2407         /* Update high watermark before we lower total_vm */
2408         update_hiwater_vm(mm);
2409         mas_for_each(mas, vma, ULONG_MAX) {
2410                 long nrpages = vma_pages(vma);
2411 
2412                 if (vma->vm_flags & VM_ACCOUNT)
2413                         nr_accounted += nrpages;
2414                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2415                 remove_vma(vma, false);
2416         }
2417         vm_unacct_memory(nr_accounted);
2418 }
2419 
2420 /*
2421  * Get rid of page table information in the indicated region.
2422  *
2423  * Called with the mm semaphore held.
2424  */
2425 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2426                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2427                 struct vm_area_struct *next, unsigned long start,
2428                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2429 {
2430         struct mmu_gather tlb;
2431         unsigned long mt_start = mas->index;
2432 
2433         lru_add_drain();
2434         tlb_gather_mmu(&tlb, mm);
2435         update_hiwater_rss(mm);
2436         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2437         mas_set(mas, mt_start);
2438         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2439                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2440                                  mm_wr_locked);
2441         tlb_finish_mmu(&tlb);
2442 }
2443 
2444 /*
2445  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2446  * has already been checked or doesn't make sense to fail.
2447  * VMA Iterator will point to the end VMA.
2448  */
2449 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2450                        unsigned long addr, int new_below)
2451 {
2452         struct vma_prepare vp;
2453         struct vm_area_struct *new;
2454         int err;
2455 
2456         WARN_ON(vma->vm_start >= addr);
2457         WARN_ON(vma->vm_end <= addr);
2458 
2459         if (vma->vm_ops && vma->vm_ops->may_split) {
2460                 err = vma->vm_ops->may_split(vma, addr);
2461                 if (err)
2462                         return err;
2463         }
2464 
2465         new = vm_area_dup(vma);
2466         if (!new)
2467                 return -ENOMEM;
2468 
2469         if (new_below) {
2470                 new->vm_end = addr;
2471         } else {
2472                 new->vm_start = addr;
2473                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2474         }
2475 
2476         err = -ENOMEM;
2477         vma_iter_config(vmi, new->vm_start, new->vm_end);
2478         if (vma_iter_prealloc(vmi, new))
2479                 goto out_free_vma;
2480 
2481         err = vma_dup_policy(vma, new);
2482         if (err)
2483                 goto out_free_vmi;
2484 
2485         err = anon_vma_clone(new, vma);
2486         if (err)
2487                 goto out_free_mpol;
2488 
2489         if (new->vm_file)
2490                 get_file(new->vm_file);
2491 
2492         if (new->vm_ops && new->vm_ops->open)
2493                 new->vm_ops->open(new);
2494 
2495         vma_start_write(vma);
2496         vma_start_write(new);
2497 
2498         init_vma_prep(&vp, vma);
2499         vp.insert = new;
2500         vma_prepare(&vp);
2501         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2502 
2503         if (new_below) {
2504                 vma->vm_start = addr;
2505                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2506         } else {
2507                 vma->vm_end = addr;
2508         }
2509 
2510         /* vma_complete stores the new vma */
2511         vma_complete(&vp, vmi, vma->vm_mm);
2512 
2513         /* Success. */
2514         if (new_below)
2515                 vma_next(vmi);
2516         return 0;
2517 
2518 out_free_mpol:
2519         mpol_put(vma_policy(new));
2520 out_free_vmi:
2521         vma_iter_free(vmi);
2522 out_free_vma:
2523         vm_area_free(new);
2524         return err;
2525 }
2526 
2527 /*
2528  * Split a vma into two pieces at address 'addr', a new vma is allocated
2529  * either for the first part or the tail.
2530  */
2531 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2532                      unsigned long addr, int new_below)
2533 {
2534         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2535                 return -ENOMEM;
2536 
2537         return __split_vma(vmi, vma, addr, new_below);
2538 }
2539 
2540 /*
2541  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2542  * context and anonymous VMA name within the range [start, end).
2543  *
2544  * As a result, we might be able to merge the newly modified VMA range with an
2545  * adjacent VMA with identical properties.
2546  *
2547  * If no merge is possible and the range does not span the entirety of the VMA,
2548  * we then need to split the VMA to accommodate the change.
2549  *
2550  * The function returns either the merged VMA, the original VMA if a split was
2551  * required instead, or an error if the split failed.
2552  */
2553 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2554                                   struct vm_area_struct *prev,
2555                                   struct vm_area_struct *vma,
2556                                   unsigned long start, unsigned long end,
2557                                   unsigned long vm_flags,
2558                                   struct mempolicy *policy,
2559                                   struct vm_userfaultfd_ctx uffd_ctx,
2560                                   struct anon_vma_name *anon_name)
2561 {
2562         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2563         struct vm_area_struct *merged;
2564 
2565         merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2566                            pgoff, policy, uffd_ctx, anon_name);
2567         if (merged)
2568                 return merged;
2569 
2570         if (vma->vm_start < start) {
2571                 int err = split_vma(vmi, vma, start, 1);
2572 
2573                 if (err)
2574                         return ERR_PTR(err);
2575         }
2576 
2577         if (vma->vm_end > end) {
2578                 int err = split_vma(vmi, vma, end, 0);
2579 
2580                 if (err)
2581                         return ERR_PTR(err);
2582         }
2583 
2584         return vma;
2585 }
2586 
2587 /*
2588  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2589  * must ensure that [start, end) does not overlap any existing VMA.
2590  */
2591 static struct vm_area_struct
2592 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2593                    struct vm_area_struct *vma, unsigned long start,
2594                    unsigned long end, pgoff_t pgoff)
2595 {
2596         return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2597                          vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2598 }
2599 
2600 /*
2601  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2602  * VMA with identical properties.
2603  */
2604 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2605                                         struct vm_area_struct *vma,
2606                                         unsigned long delta)
2607 {
2608         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2609 
2610         /* vma is specified as prev, so case 1 or 2 will apply. */
2611         return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2612                          vma->vm_flags, pgoff, vma_policy(vma),
2613                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2614 }
2615 
2616 /*
2617  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2618  * @vmi: The vma iterator
2619  * @vma: The starting vm_area_struct
2620  * @mm: The mm_struct
2621  * @start: The aligned start address to munmap.
2622  * @end: The aligned end address to munmap.
2623  * @uf: The userfaultfd list_head
2624  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2625  * success.
2626  *
2627  * Return: 0 on success and drops the lock if so directed, error and leaves the
2628  * lock held otherwise.
2629  */
2630 static int
2631 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2632                     struct mm_struct *mm, unsigned long start,
2633                     unsigned long end, struct list_head *uf, bool unlock)
2634 {
2635         struct vm_area_struct *prev, *next = NULL;
2636         struct maple_tree mt_detach;
2637         int count = 0;
2638         int error = -ENOMEM;
2639         unsigned long locked_vm = 0;
2640         MA_STATE(mas_detach, &mt_detach, 0, 0);
2641         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2642         mt_on_stack(mt_detach);
2643 
2644         /*
2645          * If we need to split any vma, do it now to save pain later.
2646          *
2647          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2648          * unmapped vm_area_struct will remain in use: so lower split_vma
2649          * places tmp vma above, and higher split_vma places tmp vma below.
2650          */
2651 
2652         /* Does it split the first one? */
2653         if (start > vma->vm_start) {
2654 
2655                 /*
2656                  * Make sure that map_count on return from munmap() will
2657                  * not exceed its limit; but let map_count go just above
2658                  * its limit temporarily, to help free resources as expected.
2659                  */
2660                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2661                         goto map_count_exceeded;
2662 
2663                 error = __split_vma(vmi, vma, start, 1);
2664                 if (error)
2665                         goto start_split_failed;
2666         }
2667 
2668         /*
2669          * Detach a range of VMAs from the mm. Using next as a temp variable as
2670          * it is always overwritten.
2671          */
2672         next = vma;
2673         do {
2674                 /* Does it split the end? */
2675                 if (next->vm_end > end) {
2676                         error = __split_vma(vmi, next, end, 0);
2677                         if (error)
2678                                 goto end_split_failed;
2679                 }
2680                 vma_start_write(next);
2681                 mas_set(&mas_detach, count);
2682                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2683                 if (error)
2684                         goto munmap_gather_failed;
2685                 vma_mark_detached(next, true);
2686                 if (next->vm_flags & VM_LOCKED)
2687                         locked_vm += vma_pages(next);
2688 
2689                 count++;
2690                 if (unlikely(uf)) {
2691                         /*
2692                          * If userfaultfd_unmap_prep returns an error the vmas
2693                          * will remain split, but userland will get a
2694                          * highly unexpected error anyway. This is no
2695                          * different than the case where the first of the two
2696                          * __split_vma fails, but we don't undo the first
2697                          * split, despite we could. This is unlikely enough
2698                          * failure that it's not worth optimizing it for.
2699                          */
2700                         error = userfaultfd_unmap_prep(next, start, end, uf);
2701 
2702                         if (error)
2703                                 goto userfaultfd_error;
2704                 }
2705 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2706                 BUG_ON(next->vm_start < start);
2707                 BUG_ON(next->vm_start > end);
2708 #endif
2709         } for_each_vma_range(*vmi, next, end);
2710 
2711 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2712         /* Make sure no VMAs are about to be lost. */
2713         {
2714                 MA_STATE(test, &mt_detach, 0, 0);
2715                 struct vm_area_struct *vma_mas, *vma_test;
2716                 int test_count = 0;
2717 
2718                 vma_iter_set(vmi, start);
2719                 rcu_read_lock();
2720                 vma_test = mas_find(&test, count - 1);
2721                 for_each_vma_range(*vmi, vma_mas, end) {
2722                         BUG_ON(vma_mas != vma_test);
2723                         test_count++;
2724                         vma_test = mas_next(&test, count - 1);
2725                 }
2726                 rcu_read_unlock();
2727                 BUG_ON(count != test_count);
2728         }
2729 #endif
2730 
2731         while (vma_iter_addr(vmi) > start)
2732                 vma_iter_prev_range(vmi);
2733 
2734         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2735         if (error)
2736                 goto clear_tree_failed;
2737 
2738         /* Point of no return */
2739         mm->locked_vm -= locked_vm;
2740         mm->map_count -= count;
2741         if (unlock)
2742                 mmap_write_downgrade(mm);
2743 
2744         prev = vma_iter_prev_range(vmi);
2745         next = vma_next(vmi);
2746         if (next)
2747                 vma_iter_prev_range(vmi);
2748 
2749         /*
2750          * We can free page tables without write-locking mmap_lock because VMAs
2751          * were isolated before we downgraded mmap_lock.
2752          */
2753         mas_set(&mas_detach, 1);
2754         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2755                      !unlock);
2756         /* Statistics and freeing VMAs */
2757         mas_set(&mas_detach, 0);
2758         remove_mt(mm, &mas_detach);
2759         validate_mm(mm);
2760         if (unlock)
2761                 mmap_read_unlock(mm);
2762 
2763         __mt_destroy(&mt_detach);
2764         return 0;
2765 
2766 clear_tree_failed:
2767 userfaultfd_error:
2768 munmap_gather_failed:
2769 end_split_failed:
2770         mas_set(&mas_detach, 0);
2771         mas_for_each(&mas_detach, next, end)
2772                 vma_mark_detached(next, false);
2773 
2774         __mt_destroy(&mt_detach);
2775 start_split_failed:
2776 map_count_exceeded:
2777         validate_mm(mm);
2778         return error;
2779 }
2780 
2781 /*
2782  * do_vmi_munmap() - munmap a given range.
2783  * @vmi: The vma iterator
2784  * @mm: The mm_struct
2785  * @start: The start address to munmap
2786  * @len: The length of the range to munmap
2787  * @uf: The userfaultfd list_head
2788  * @unlock: set to true if the user wants to drop the mmap_lock on success
2789  *
2790  * This function takes a @mas that is either pointing to the previous VMA or set
2791  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2792  * aligned and any arch_unmap work will be preformed.
2793  *
2794  * Return: 0 on success and drops the lock if so directed, error and leaves the
2795  * lock held otherwise.
2796  */
2797 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2798                   unsigned long start, size_t len, struct list_head *uf,
2799                   bool unlock)
2800 {
2801         unsigned long end;
2802         struct vm_area_struct *vma;
2803 
2804         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2805                 return -EINVAL;
2806 
2807         end = start + PAGE_ALIGN(len);
2808         if (end == start)
2809                 return -EINVAL;
2810 
2811         /*
2812          * Check if memory is sealed before arch_unmap.
2813          * Prevent unmapping a sealed VMA.
2814          * can_modify_mm assumes we have acquired the lock on MM.
2815          */
2816         if (unlikely(!can_modify_mm(mm, start, end)))
2817                 return -EPERM;
2818 
2819          /* arch_unmap() might do unmaps itself.  */
2820         arch_unmap(mm, start, end);
2821 
2822         /* Find the first overlapping VMA */
2823         vma = vma_find(vmi, end);
2824         if (!vma) {
2825                 if (unlock)
2826                         mmap_write_unlock(mm);
2827                 return 0;
2828         }
2829 
2830         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2831 }
2832 
2833 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2834  * @mm: The mm_struct
2835  * @start: The start address to munmap
2836  * @len: The length to be munmapped.
2837  * @uf: The userfaultfd list_head
2838  *
2839  * Return: 0 on success, error otherwise.
2840  */
2841 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2842               struct list_head *uf)
2843 {
2844         VMA_ITERATOR(vmi, mm, start);
2845 
2846         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2847 }
2848 
2849 unsigned long mmap_region(struct file *file, unsigned long addr,
2850                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2851                 struct list_head *uf)
2852 {
2853         struct mm_struct *mm = current->mm;
2854         struct vm_area_struct *vma = NULL;
2855         struct vm_area_struct *next, *prev, *merge;
2856         pgoff_t pglen = len >> PAGE_SHIFT;
2857         unsigned long charged = 0;
2858         unsigned long end = addr + len;
2859         unsigned long merge_start = addr, merge_end = end;
2860         bool writable_file_mapping = false;
2861         pgoff_t vm_pgoff;
2862         int error;
2863         VMA_ITERATOR(vmi, mm, addr);
2864 
2865         /* Check against address space limit. */
2866         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2867                 unsigned long nr_pages;
2868 
2869                 /*
2870                  * MAP_FIXED may remove pages of mappings that intersects with
2871                  * requested mapping. Account for the pages it would unmap.
2872                  */
2873                 nr_pages = count_vma_pages_range(mm, addr, end);
2874 
2875                 if (!may_expand_vm(mm, vm_flags,
2876                                         (len >> PAGE_SHIFT) - nr_pages))
2877                         return -ENOMEM;
2878         }
2879 
2880         /* Unmap any existing mapping in the area */
2881         error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2882         if (error == -EPERM)
2883                 return error;
2884         else if (error)
2885                 return -ENOMEM;
2886 
2887         /*
2888          * Private writable mapping: check memory availability
2889          */
2890         if (accountable_mapping(file, vm_flags)) {
2891                 charged = len >> PAGE_SHIFT;
2892                 if (security_vm_enough_memory_mm(mm, charged))
2893                         return -ENOMEM;
2894                 vm_flags |= VM_ACCOUNT;
2895         }
2896 
2897         next = vma_next(&vmi);
2898         prev = vma_prev(&vmi);
2899         if (vm_flags & VM_SPECIAL) {
2900                 if (prev)
2901                         vma_iter_next_range(&vmi);
2902                 goto cannot_expand;
2903         }
2904 
2905         /* Attempt to expand an old mapping */
2906         /* Check next */
2907         if (next && next->vm_start == end && !vma_policy(next) &&
2908             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2909                                  NULL_VM_UFFD_CTX, NULL)) {
2910                 merge_end = next->vm_end;
2911                 vma = next;
2912                 vm_pgoff = next->vm_pgoff - pglen;
2913         }
2914 
2915         /* Check prev */
2916         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2917             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2918                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2919                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2920                                        NULL_VM_UFFD_CTX, NULL))) {
2921                 merge_start = prev->vm_start;
2922                 vma = prev;
2923                 vm_pgoff = prev->vm_pgoff;
2924         } else if (prev) {
2925                 vma_iter_next_range(&vmi);
2926         }
2927 
2928         /* Actually expand, if possible */
2929         if (vma &&
2930             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2931                 khugepaged_enter_vma(vma, vm_flags);
2932                 goto expanded;
2933         }
2934 
2935         if (vma == prev)
2936                 vma_iter_set(&vmi, addr);
2937 cannot_expand:
2938 
2939         /*
2940          * Determine the object being mapped and call the appropriate
2941          * specific mapper. the address has already been validated, but
2942          * not unmapped, but the maps are removed from the list.
2943          */
2944         vma = vm_area_alloc(mm);
2945         if (!vma) {
2946                 error = -ENOMEM;
2947                 goto unacct_error;
2948         }
2949 
2950         vma_iter_config(&vmi, addr, end);
2951         vma_set_range(vma, addr, end, pgoff);
2952         vm_flags_init(vma, vm_flags);
2953         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2954 
2955         if (file) {
2956                 vma->vm_file = get_file(file);
2957                 error = call_mmap(file, vma);
2958                 if (error)
2959                         goto unmap_and_free_vma;
2960 
2961                 if (vma_is_shared_maywrite(vma)) {
2962                         error = mapping_map_writable(file->f_mapping);
2963                         if (error)
2964                                 goto close_and_free_vma;
2965 
2966                         writable_file_mapping = true;
2967                 }
2968 
2969                 /*
2970                  * Expansion is handled above, merging is handled below.
2971                  * Drivers should not alter the address of the VMA.
2972                  */
2973                 error = -EINVAL;
2974                 if (WARN_ON((addr != vma->vm_start)))
2975                         goto close_and_free_vma;
2976 
2977                 vma_iter_config(&vmi, addr, end);
2978                 /*
2979                  * If vm_flags changed after call_mmap(), we should try merge
2980                  * vma again as we may succeed this time.
2981                  */
2982                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2983                         merge = vma_merge_new_vma(&vmi, prev, vma,
2984                                                   vma->vm_start, vma->vm_end,
2985                                                   vma->vm_pgoff);
2986                         if (merge) {
2987                                 /*
2988                                  * ->mmap() can change vma->vm_file and fput
2989                                  * the original file. So fput the vma->vm_file
2990                                  * here or we would add an extra fput for file
2991                                  * and cause general protection fault
2992                                  * ultimately.
2993                                  */
2994                                 fput(vma->vm_file);
2995                                 vm_area_free(vma);
2996                                 vma = merge;
2997                                 /* Update vm_flags to pick up the change. */
2998                                 vm_flags = vma->vm_flags;
2999                                 goto unmap_writable;
3000                         }
3001                 }
3002 
3003                 vm_flags = vma->vm_flags;
3004         } else if (vm_flags & VM_SHARED) {
3005                 error = shmem_zero_setup(vma);
3006                 if (error)
3007                         goto free_vma;
3008         } else {
3009                 vma_set_anonymous(vma);
3010         }
3011 
3012         if (map_deny_write_exec(vma, vma->vm_flags)) {
3013                 error = -EACCES;
3014                 goto close_and_free_vma;
3015         }
3016 
3017         /* Allow architectures to sanity-check the vm_flags */
3018         error = -EINVAL;
3019         if (!arch_validate_flags(vma->vm_flags))
3020                 goto close_and_free_vma;
3021 
3022         error = -ENOMEM;
3023         if (vma_iter_prealloc(&vmi, vma))
3024                 goto close_and_free_vma;
3025 
3026         /* Lock the VMA since it is modified after insertion into VMA tree */
3027         vma_start_write(vma);
3028         vma_iter_store(&vmi, vma);
3029         mm->map_count++;
3030         vma_link_file(vma);
3031 
3032         /*
3033          * vma_merge() calls khugepaged_enter_vma() either, the below
3034          * call covers the non-merge case.
3035          */
3036         khugepaged_enter_vma(vma, vma->vm_flags);
3037 
3038         /* Once vma denies write, undo our temporary denial count */
3039 unmap_writable:
3040         if (writable_file_mapping)
3041                 mapping_unmap_writable(file->f_mapping);
3042         file = vma->vm_file;
3043         ksm_add_vma(vma);
3044 expanded:
3045         perf_event_mmap(vma);
3046 
3047         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
3048         if (vm_flags & VM_LOCKED) {
3049                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
3050                                         is_vm_hugetlb_page(vma) ||
3051                                         vma == get_gate_vma(current->mm))
3052                         vm_flags_clear(vma, VM_LOCKED_MASK);
3053                 else
3054                         mm->locked_vm += (len >> PAGE_SHIFT);
3055         }
3056 
3057         if (file)
3058                 uprobe_mmap(vma);
3059 
3060         /*
3061          * New (or expanded) vma always get soft dirty status.
3062          * Otherwise user-space soft-dirty page tracker won't
3063          * be able to distinguish situation when vma area unmapped,
3064          * then new mapped in-place (which must be aimed as
3065          * a completely new data area).
3066          */
3067         vm_flags_set(vma, VM_SOFTDIRTY);
3068 
3069         vma_set_page_prot(vma);
3070 
3071         validate_mm(mm);
3072         return addr;
3073 
3074 close_and_free_vma:
3075         if (file && vma->vm_ops && vma->vm_ops->close)
3076                 vma->vm_ops->close(vma);
3077 
3078         if (file || vma->vm_file) {
3079 unmap_and_free_vma:
3080                 fput(vma->vm_file);
3081                 vma->vm_file = NULL;
3082 
3083                 vma_iter_set(&vmi, vma->vm_end);
3084                 /* Undo any partial mapping done by a device driver. */
3085                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3086                              vma->vm_end, vma->vm_end, true);
3087         }
3088         if (writable_file_mapping)
3089                 mapping_unmap_writable(file->f_mapping);
3090 free_vma:
3091         vm_area_free(vma);
3092 unacct_error:
3093         if (charged)
3094                 vm_unacct_memory(charged);
3095         validate_mm(mm);
3096         return error;
3097 }
3098 
3099 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3100 {
3101         int ret;
3102         struct mm_struct *mm = current->mm;
3103         LIST_HEAD(uf);
3104         VMA_ITERATOR(vmi, mm, start);
3105 
3106         if (mmap_write_lock_killable(mm))
3107                 return -EINTR;
3108 
3109         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3110         if (ret || !unlock)
3111                 mmap_write_unlock(mm);
3112 
3113         userfaultfd_unmap_complete(mm, &uf);
3114         return ret;
3115 }
3116 
3117 int vm_munmap(unsigned long start, size_t len)
3118 {
3119         return __vm_munmap(start, len, false);
3120 }
3121 EXPORT_SYMBOL(vm_munmap);
3122 
3123 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3124 {
3125         addr = untagged_addr(addr);
3126         return __vm_munmap(addr, len, true);
3127 }
3128 
3129 
3130 /*
3131  * Emulation of deprecated remap_file_pages() syscall.
3132  */
3133 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3134                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3135 {
3136 
3137         struct mm_struct *mm = current->mm;
3138         struct vm_area_struct *vma;
3139         unsigned long populate = 0;
3140         unsigned long ret = -EINVAL;
3141         struct file *file;
3142 
3143         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3144                      current->comm, current->pid);
3145 
3146         if (prot)
3147                 return ret;
3148         start = start & PAGE_MASK;
3149         size = size & PAGE_MASK;
3150 
3151         if (start + size <= start)
3152                 return ret;
3153 
3154         /* Does pgoff wrap? */
3155         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3156                 return ret;
3157 
3158         if (mmap_write_lock_killable(mm))
3159                 return -EINTR;
3160 
3161         vma = vma_lookup(mm, start);
3162 
3163         if (!vma || !(vma->vm_flags & VM_SHARED))
3164                 goto out;
3165 
3166         if (start + size > vma->vm_end) {
3167                 VMA_ITERATOR(vmi, mm, vma->vm_end);
3168                 struct vm_area_struct *next, *prev = vma;
3169 
3170                 for_each_vma_range(vmi, next, start + size) {
3171                         /* hole between vmas ? */
3172                         if (next->vm_start != prev->vm_end)
3173                                 goto out;
3174 
3175                         if (next->vm_file != vma->vm_file)
3176                                 goto out;
3177 
3178                         if (next->vm_flags != vma->vm_flags)
3179                                 goto out;
3180 
3181                         if (start + size <= next->vm_end)
3182                                 break;
3183 
3184                         prev = next;
3185                 }
3186 
3187                 if (!next)
3188                         goto out;
3189         }
3190 
3191         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3192         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3193         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3194 
3195         flags &= MAP_NONBLOCK;
3196         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3197         if (vma->vm_flags & VM_LOCKED)
3198                 flags |= MAP_LOCKED;
3199 
3200         file = get_file(vma->vm_file);
3201         ret = security_mmap_file(vma->vm_file, prot, flags);
3202         if (ret)
3203                 goto out_fput;
3204         ret = do_mmap(vma->vm_file, start, size,
3205                         prot, flags, 0, pgoff, &populate, NULL);
3206 out_fput:
3207         fput(file);
3208 out:
3209         mmap_write_unlock(mm);
3210         if (populate)
3211                 mm_populate(ret, populate);
3212         if (!IS_ERR_VALUE(ret))
3213                 ret = 0;
3214         return ret;
3215 }
3216 
3217 /*
3218  * do_vma_munmap() - Unmap a full or partial vma.
3219  * @vmi: The vma iterator pointing at the vma
3220  * @vma: The first vma to be munmapped
3221  * @start: the start of the address to unmap
3222  * @end: The end of the address to unmap
3223  * @uf: The userfaultfd list_head
3224  * @unlock: Drop the lock on success
3225  *
3226  * unmaps a VMA mapping when the vma iterator is already in position.
3227  * Does not handle alignment.
3228  *
3229  * Return: 0 on success drops the lock of so directed, error on failure and will
3230  * still hold the lock.
3231  */
3232 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3233                 unsigned long start, unsigned long end, struct list_head *uf,
3234                 bool unlock)
3235 {
3236         struct mm_struct *mm = vma->vm_mm;
3237 
3238         /*
3239          * Check if memory is sealed before arch_unmap.
3240          * Prevent unmapping a sealed VMA.
3241          * can_modify_mm assumes we have acquired the lock on MM.
3242          */
3243         if (unlikely(!can_modify_mm(mm, start, end)))
3244                 return -EPERM;
3245 
3246         arch_unmap(mm, start, end);
3247         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3248 }
3249 
3250 /*
3251  * do_brk_flags() - Increase the brk vma if the flags match.
3252  * @vmi: The vma iterator
3253  * @addr: The start address
3254  * @len: The length of the increase
3255  * @vma: The vma,
3256  * @flags: The VMA Flags
3257  *
3258  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3259  * do not match then create a new anonymous VMA.  Eventually we may be able to
3260  * do some brk-specific accounting here.
3261  */
3262 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3263                 unsigned long addr, unsigned long len, unsigned long flags)
3264 {
3265         struct mm_struct *mm = current->mm;
3266         struct vma_prepare vp;
3267 
3268         /*
3269          * Check against address space limits by the changed size
3270          * Note: This happens *after* clearing old mappings in some code paths.
3271          */
3272         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3273         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3274                 return -ENOMEM;
3275 
3276         if (mm->map_count > sysctl_max_map_count)
3277                 return -ENOMEM;
3278 
3279         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3280                 return -ENOMEM;
3281 
3282         /*
3283          * Expand the existing vma if possible; Note that singular lists do not
3284          * occur after forking, so the expand will only happen on new VMAs.
3285          */
3286         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3287             can_vma_merge_after(vma, flags, NULL, NULL,
3288                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3289                 vma_iter_config(vmi, vma->vm_start, addr + len);
3290                 if (vma_iter_prealloc(vmi, vma))
3291                         goto unacct_fail;
3292 
3293                 vma_start_write(vma);
3294 
3295                 init_vma_prep(&vp, vma);
3296                 vma_prepare(&vp);
3297                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3298                 vma->vm_end = addr + len;
3299                 vm_flags_set(vma, VM_SOFTDIRTY);
3300                 vma_iter_store(vmi, vma);
3301 
3302                 vma_complete(&vp, vmi, mm);
3303                 khugepaged_enter_vma(vma, flags);
3304                 goto out;
3305         }
3306 
3307         if (vma)
3308                 vma_iter_next_range(vmi);
3309         /* create a vma struct for an anonymous mapping */
3310         vma = vm_area_alloc(mm);
3311         if (!vma)
3312                 goto unacct_fail;
3313 
3314         vma_set_anonymous(vma);
3315         vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3316         vm_flags_init(vma, flags);
3317         vma->vm_page_prot = vm_get_page_prot(flags);
3318         vma_start_write(vma);
3319         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3320                 goto mas_store_fail;
3321 
3322         mm->map_count++;
3323         validate_mm(mm);
3324         ksm_add_vma(vma);
3325 out:
3326         perf_event_mmap(vma);
3327         mm->total_vm += len >> PAGE_SHIFT;
3328         mm->data_vm += len >> PAGE_SHIFT;
3329         if (flags & VM_LOCKED)
3330                 mm->locked_vm += (len >> PAGE_SHIFT);
3331         vm_flags_set(vma, VM_SOFTDIRTY);
3332         return 0;
3333 
3334 mas_store_fail:
3335         vm_area_free(vma);
3336 unacct_fail:
3337         vm_unacct_memory(len >> PAGE_SHIFT);
3338         return -ENOMEM;
3339 }
3340 
3341 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3342 {
3343         struct mm_struct *mm = current->mm;
3344         struct vm_area_struct *vma = NULL;
3345         unsigned long len;
3346         int ret;
3347         bool populate;
3348         LIST_HEAD(uf);
3349         VMA_ITERATOR(vmi, mm, addr);
3350 
3351         len = PAGE_ALIGN(request);
3352         if (len < request)
3353                 return -ENOMEM;
3354         if (!len)
3355                 return 0;
3356 
3357         /* Until we need other flags, refuse anything except VM_EXEC. */
3358         if ((flags & (~VM_EXEC)) != 0)
3359                 return -EINVAL;
3360 
3361         if (mmap_write_lock_killable(mm))
3362                 return -EINTR;
3363 
3364         ret = check_brk_limits(addr, len);
3365         if (ret)
3366                 goto limits_failed;
3367 
3368         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3369         if (ret)
3370                 goto munmap_failed;
3371 
3372         vma = vma_prev(&vmi);
3373         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3374         populate = ((mm->def_flags & VM_LOCKED) != 0);
3375         mmap_write_unlock(mm);
3376         userfaultfd_unmap_complete(mm, &uf);
3377         if (populate && !ret)
3378                 mm_populate(addr, len);
3379         return ret;
3380 
3381 munmap_failed:
3382 limits_failed:
3383         mmap_write_unlock(mm);
3384         return ret;
3385 }
3386 EXPORT_SYMBOL(vm_brk_flags);
3387 
3388 /* Release all mmaps. */
3389 void exit_mmap(struct mm_struct *mm)
3390 {
3391         struct mmu_gather tlb;
3392         struct vm_area_struct *vma;
3393         unsigned long nr_accounted = 0;
3394         VMA_ITERATOR(vmi, mm, 0);
3395         int count = 0;
3396 
3397         /* mm's last user has gone, and its about to be pulled down */
3398         mmu_notifier_release(mm);
3399 
3400         mmap_read_lock(mm);
3401         arch_exit_mmap(mm);
3402 
3403         vma = vma_next(&vmi);
3404         if (!vma || unlikely(xa_is_zero(vma))) {
3405                 /* Can happen if dup_mmap() received an OOM */
3406                 mmap_read_unlock(mm);
3407                 mmap_write_lock(mm);
3408                 goto destroy;
3409         }
3410 
3411         lru_add_drain();
3412         flush_cache_mm(mm);
3413         tlb_gather_mmu_fullmm(&tlb, mm);
3414         /* update_hiwater_rss(mm) here? but nobody should be looking */
3415         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3416         unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3417         mmap_read_unlock(mm);
3418 
3419         /*
3420          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3421          * because the memory has been already freed.
3422          */
3423         set_bit(MMF_OOM_SKIP, &mm->flags);
3424         mmap_write_lock(mm);
3425         mt_clear_in_rcu(&mm->mm_mt);
3426         vma_iter_set(&vmi, vma->vm_end);
3427         free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3428                       USER_PGTABLES_CEILING, true);
3429         tlb_finish_mmu(&tlb);
3430 
3431         /*
3432          * Walk the list again, actually closing and freeing it, with preemption
3433          * enabled, without holding any MM locks besides the unreachable
3434          * mmap_write_lock.
3435          */
3436         vma_iter_set(&vmi, vma->vm_end);
3437         do {
3438                 if (vma->vm_flags & VM_ACCOUNT)
3439                         nr_accounted += vma_pages(vma);
3440                 remove_vma(vma, true);
3441                 count++;
3442                 cond_resched();
3443                 vma = vma_next(&vmi);
3444         } while (vma && likely(!xa_is_zero(vma)));
3445 
3446         BUG_ON(count != mm->map_count);
3447 
3448         trace_exit_mmap(mm);
3449 destroy:
3450         __mt_destroy(&mm->mm_mt);
3451         mmap_write_unlock(mm);
3452         vm_unacct_memory(nr_accounted);
3453 }
3454 
3455 /* Insert vm structure into process list sorted by address
3456  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3457  * then i_mmap_rwsem is taken here.
3458  */
3459 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3460 {
3461         unsigned long charged = vma_pages(vma);
3462 
3463 
3464         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3465                 return -ENOMEM;
3466 
3467         if ((vma->vm_flags & VM_ACCOUNT) &&
3468              security_vm_enough_memory_mm(mm, charged))
3469                 return -ENOMEM;
3470 
3471         /*
3472          * The vm_pgoff of a purely anonymous vma should be irrelevant
3473          * until its first write fault, when page's anon_vma and index
3474          * are set.  But now set the vm_pgoff it will almost certainly
3475          * end up with (unless mremap moves it elsewhere before that
3476          * first wfault), so /proc/pid/maps tells a consistent story.
3477          *
3478          * By setting it to reflect the virtual start address of the
3479          * vma, merges and splits can happen in a seamless way, just
3480          * using the existing file pgoff checks and manipulations.
3481          * Similarly in do_mmap and in do_brk_flags.
3482          */
3483         if (vma_is_anonymous(vma)) {
3484                 BUG_ON(vma->anon_vma);
3485                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3486         }
3487 
3488         if (vma_link(mm, vma)) {
3489                 if (vma->vm_flags & VM_ACCOUNT)
3490                         vm_unacct_memory(charged);
3491                 return -ENOMEM;
3492         }
3493 
3494         return 0;
3495 }
3496 
3497 /*
3498  * Copy the vma structure to a new location in the same mm,
3499  * prior to moving page table entries, to effect an mremap move.
3500  */
3501 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3502         unsigned long addr, unsigned long len, pgoff_t pgoff,
3503         bool *need_rmap_locks)
3504 {
3505         struct vm_area_struct *vma = *vmap;
3506         unsigned long vma_start = vma->vm_start;
3507         struct mm_struct *mm = vma->vm_mm;
3508         struct vm_area_struct *new_vma, *prev;
3509         bool faulted_in_anon_vma = true;
3510         VMA_ITERATOR(vmi, mm, addr);
3511 
3512         /*
3513          * If anonymous vma has not yet been faulted, update new pgoff
3514          * to match new location, to increase its chance of merging.
3515          */
3516         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3517                 pgoff = addr >> PAGE_SHIFT;
3518                 faulted_in_anon_vma = false;
3519         }
3520 
3521         new_vma = find_vma_prev(mm, addr, &prev);
3522         if (new_vma && new_vma->vm_start < addr + len)
3523                 return NULL;    /* should never get here */
3524 
3525         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3526         if (new_vma) {
3527                 /*
3528                  * Source vma may have been merged into new_vma
3529                  */
3530                 if (unlikely(vma_start >= new_vma->vm_start &&
3531                              vma_start < new_vma->vm_end)) {
3532                         /*
3533                          * The only way we can get a vma_merge with
3534                          * self during an mremap is if the vma hasn't
3535                          * been faulted in yet and we were allowed to
3536                          * reset the dst vma->vm_pgoff to the
3537                          * destination address of the mremap to allow
3538                          * the merge to happen. mremap must change the
3539                          * vm_pgoff linearity between src and dst vmas
3540                          * (in turn preventing a vma_merge) to be
3541                          * safe. It is only safe to keep the vm_pgoff
3542                          * linear if there are no pages mapped yet.
3543                          */
3544                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3545                         *vmap = vma = new_vma;
3546                 }
3547                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3548         } else {
3549                 new_vma = vm_area_dup(vma);
3550                 if (!new_vma)
3551                         goto out;
3552                 vma_set_range(new_vma, addr, addr + len, pgoff);
3553                 if (vma_dup_policy(vma, new_vma))
3554                         goto out_free_vma;
3555                 if (anon_vma_clone(new_vma, vma))
3556                         goto out_free_mempol;
3557                 if (new_vma->vm_file)
3558                         get_file(new_vma->vm_file);
3559                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3560                         new_vma->vm_ops->open(new_vma);
3561                 if (vma_link(mm, new_vma))
3562                         goto out_vma_link;
3563                 *need_rmap_locks = false;
3564         }
3565         return new_vma;
3566 
3567 out_vma_link:
3568         if (new_vma->vm_ops && new_vma->vm_ops->close)
3569                 new_vma->vm_ops->close(new_vma);
3570 
3571         if (new_vma->vm_file)
3572                 fput(new_vma->vm_file);
3573 
3574         unlink_anon_vmas(new_vma);
3575 out_free_mempol:
3576         mpol_put(vma_policy(new_vma));
3577 out_free_vma:
3578         vm_area_free(new_vma);
3579 out:
3580         return NULL;
3581 }
3582 
3583 /*
3584  * Return true if the calling process may expand its vm space by the passed
3585  * number of pages
3586  */
3587 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3588 {
3589         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3590                 return false;
3591 
3592         if (is_data_mapping(flags) &&
3593             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3594                 /* Workaround for Valgrind */
3595                 if (rlimit(RLIMIT_DATA) == 0 &&
3596                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3597                         return true;
3598 
3599                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3600                              current->comm, current->pid,
3601                              (mm->data_vm + npages) << PAGE_SHIFT,
3602                              rlimit(RLIMIT_DATA),
3603                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3604 
3605                 if (!ignore_rlimit_data)
3606                         return false;
3607         }
3608 
3609         return true;
3610 }
3611 
3612 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3613 {
3614         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3615 
3616         if (is_exec_mapping(flags))
3617                 mm->exec_vm += npages;
3618         else if (is_stack_mapping(flags))
3619                 mm->stack_vm += npages;
3620         else if (is_data_mapping(flags))
3621                 mm->data_vm += npages;
3622 }
3623 
3624 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3625 
3626 /*
3627  * Having a close hook prevents vma merging regardless of flags.
3628  */
3629 static void special_mapping_close(struct vm_area_struct *vma)
3630 {
3631 }
3632 
3633 static const char *special_mapping_name(struct vm_area_struct *vma)
3634 {
3635         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3636 }
3637 
3638 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3639 {
3640         struct vm_special_mapping *sm = new_vma->vm_private_data;
3641 
3642         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3643                 return -EFAULT;
3644 
3645         if (sm->mremap)
3646                 return sm->mremap(sm, new_vma);
3647 
3648         return 0;
3649 }
3650 
3651 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3652 {
3653         /*
3654          * Forbid splitting special mappings - kernel has expectations over
3655          * the number of pages in mapping. Together with VM_DONTEXPAND
3656          * the size of vma should stay the same over the special mapping's
3657          * lifetime.
3658          */
3659         return -EINVAL;
3660 }
3661 
3662 static const struct vm_operations_struct special_mapping_vmops = {
3663         .close = special_mapping_close,
3664         .fault = special_mapping_fault,
3665         .mremap = special_mapping_mremap,
3666         .name = special_mapping_name,
3667         /* vDSO code relies that VVAR can't be accessed remotely */
3668         .access = NULL,
3669         .may_split = special_mapping_split,
3670 };
3671 
3672 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3673         .close = special_mapping_close,
3674         .fault = special_mapping_fault,
3675 };
3676 
3677 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3678 {
3679         struct vm_area_struct *vma = vmf->vma;
3680         pgoff_t pgoff;
3681         struct page **pages;
3682 
3683         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3684                 pages = vma->vm_private_data;
3685         } else {
3686                 struct vm_special_mapping *sm = vma->vm_private_data;
3687 
3688                 if (sm->fault)
3689                         return sm->fault(sm, vmf->vma, vmf);
3690 
3691                 pages = sm->pages;
3692         }
3693 
3694         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3695                 pgoff--;
3696 
3697         if (*pages) {
3698                 struct page *page = *pages;
3699                 get_page(page);
3700                 vmf->page = page;
3701                 return 0;
3702         }
3703 
3704         return VM_FAULT_SIGBUS;
3705 }
3706 
3707 static struct vm_area_struct *__install_special_mapping(
3708         struct mm_struct *mm,
3709         unsigned long addr, unsigned long len,
3710         unsigned long vm_flags, void *priv,
3711         const struct vm_operations_struct *ops)
3712 {
3713         int ret;
3714         struct vm_area_struct *vma;
3715 
3716         vma = vm_area_alloc(mm);
3717         if (unlikely(vma == NULL))
3718                 return ERR_PTR(-ENOMEM);
3719 
3720         vma_set_range(vma, addr, addr + len, 0);
3721         vm_flags_init(vma, (vm_flags | mm->def_flags |
3722                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3723         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3724 
3725         vma->vm_ops = ops;
3726         vma->vm_private_data = priv;
3727 
3728         ret = insert_vm_struct(mm, vma);
3729         if (ret)
3730                 goto out;
3731 
3732         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3733 
3734         perf_event_mmap(vma);
3735 
3736         return vma;
3737 
3738 out:
3739         vm_area_free(vma);
3740         return ERR_PTR(ret);
3741 }
3742 
3743 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3744         const struct vm_special_mapping *sm)
3745 {
3746         return vma->vm_private_data == sm &&
3747                 (vma->vm_ops == &special_mapping_vmops ||
3748                  vma->vm_ops == &legacy_special_mapping_vmops);
3749 }
3750 
3751 /*
3752  * Called with mm->mmap_lock held for writing.
3753  * Insert a new vma covering the given region, with the given flags.
3754  * Its pages are supplied by the given array of struct page *.
3755  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3756  * The region past the last page supplied will always produce SIGBUS.
3757  * The array pointer and the pages it points to are assumed to stay alive
3758  * for as long as this mapping might exist.
3759  */
3760 struct vm_area_struct *_install_special_mapping(
3761         struct mm_struct *mm,
3762         unsigned long addr, unsigned long len,
3763         unsigned long vm_flags, const struct vm_special_mapping *spec)
3764 {
3765         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3766                                         &special_mapping_vmops);
3767 }
3768 
3769 int install_special_mapping(struct mm_struct *mm,
3770                             unsigned long addr, unsigned long len,
3771                             unsigned long vm_flags, struct page **pages)
3772 {
3773         struct vm_area_struct *vma = __install_special_mapping(
3774                 mm, addr, len, vm_flags, (void *)pages,
3775                 &legacy_special_mapping_vmops);
3776 
3777         return PTR_ERR_OR_ZERO(vma);
3778 }
3779 
3780 static DEFINE_MUTEX(mm_all_locks_mutex);
3781 
3782 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3783 {
3784         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3785                 /*
3786                  * The LSB of head.next can't change from under us
3787                  * because we hold the mm_all_locks_mutex.
3788                  */
3789                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3790                 /*
3791                  * We can safely modify head.next after taking the
3792                  * anon_vma->root->rwsem. If some other vma in this mm shares
3793                  * the same anon_vma we won't take it again.
3794                  *
3795                  * No need of atomic instructions here, head.next
3796                  * can't change from under us thanks to the
3797                  * anon_vma->root->rwsem.
3798                  */
3799                 if (__test_and_set_bit(0, (unsigned long *)
3800                                        &anon_vma->root->rb_root.rb_root.rb_node))
3801                         BUG();
3802         }
3803 }
3804 
3805 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3806 {
3807         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3808                 /*
3809                  * AS_MM_ALL_LOCKS can't change from under us because
3810                  * we hold the mm_all_locks_mutex.
3811                  *
3812                  * Operations on ->flags have to be atomic because
3813                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3814                  * mm_all_locks_mutex, there may be other cpus
3815                  * changing other bitflags in parallel to us.
3816                  */
3817                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3818                         BUG();
3819                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3820         }
3821 }
3822 
3823 /*
3824  * This operation locks against the VM for all pte/vma/mm related
3825  * operations that could ever happen on a certain mm. This includes
3826  * vmtruncate, try_to_unmap, and all page faults.
3827  *
3828  * The caller must take the mmap_lock in write mode before calling
3829  * mm_take_all_locks(). The caller isn't allowed to release the
3830  * mmap_lock until mm_drop_all_locks() returns.
3831  *
3832  * mmap_lock in write mode is required in order to block all operations
3833  * that could modify pagetables and free pages without need of
3834  * altering the vma layout. It's also needed in write mode to avoid new
3835  * anon_vmas to be associated with existing vmas.
3836  *
3837  * A single task can't take more than one mm_take_all_locks() in a row
3838  * or it would deadlock.
3839  *
3840  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3841  * mapping->flags avoid to take the same lock twice, if more than one
3842  * vma in this mm is backed by the same anon_vma or address_space.
3843  *
3844  * We take locks in following order, accordingly to comment at beginning
3845  * of mm/rmap.c:
3846  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3847  *     hugetlb mapping);
3848  *   - all vmas marked locked
3849  *   - all i_mmap_rwsem locks;
3850  *   - all anon_vma->rwseml
3851  *
3852  * We can take all locks within these types randomly because the VM code
3853  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3854  * mm_all_locks_mutex.
3855  *
3856  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3857  * that may have to take thousand of locks.
3858  *
3859  * mm_take_all_locks() can fail if it's interrupted by signals.
3860  */
3861 int mm_take_all_locks(struct mm_struct *mm)
3862 {
3863         struct vm_area_struct *vma;
3864         struct anon_vma_chain *avc;
3865         VMA_ITERATOR(vmi, mm, 0);
3866 
3867         mmap_assert_write_locked(mm);
3868 
3869         mutex_lock(&mm_all_locks_mutex);
3870 
3871         /*
3872          * vma_start_write() does not have a complement in mm_drop_all_locks()
3873          * because vma_start_write() is always asymmetrical; it marks a VMA as
3874          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3875          * is reached.
3876          */
3877         for_each_vma(vmi, vma) {
3878                 if (signal_pending(current))
3879                         goto out_unlock;
3880                 vma_start_write(vma);
3881         }
3882 
3883         vma_iter_init(&vmi, mm, 0);
3884         for_each_vma(vmi, vma) {
3885                 if (signal_pending(current))
3886                         goto out_unlock;
3887                 if (vma->vm_file && vma->vm_file->f_mapping &&
3888                                 is_vm_hugetlb_page(vma))
3889                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3890         }
3891 
3892         vma_iter_init(&vmi, mm, 0);
3893         for_each_vma(vmi, vma) {
3894                 if (signal_pending(current))
3895                         goto out_unlock;
3896                 if (vma->vm_file && vma->vm_file->f_mapping &&
3897                                 !is_vm_hugetlb_page(vma))
3898                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3899         }
3900 
3901         vma_iter_init(&vmi, mm, 0);
3902         for_each_vma(vmi, vma) {
3903                 if (signal_pending(current))
3904                         goto out_unlock;
3905                 if (vma->anon_vma)
3906                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3907                                 vm_lock_anon_vma(mm, avc->anon_vma);
3908         }
3909 
3910         return 0;
3911 
3912 out_unlock:
3913         mm_drop_all_locks(mm);
3914         return -EINTR;
3915 }
3916 
3917 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3918 {
3919         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3920                 /*
3921                  * The LSB of head.next can't change to 0 from under
3922                  * us because we hold the mm_all_locks_mutex.
3923                  *
3924                  * We must however clear the bitflag before unlocking
3925                  * the vma so the users using the anon_vma->rb_root will
3926                  * never see our bitflag.
3927                  *
3928                  * No need of atomic instructions here, head.next
3929                  * can't change from under us until we release the
3930                  * anon_vma->root->rwsem.
3931                  */
3932                 if (!__test_and_clear_bit(0, (unsigned long *)
3933                                           &anon_vma->root->rb_root.rb_root.rb_node))
3934                         BUG();
3935                 anon_vma_unlock_write(anon_vma);
3936         }
3937 }
3938 
3939 static void vm_unlock_mapping(struct address_space *mapping)
3940 {
3941         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3942                 /*
3943                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3944                  * because we hold the mm_all_locks_mutex.
3945                  */
3946                 i_mmap_unlock_write(mapping);
3947                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3948                                         &mapping->flags))
3949                         BUG();
3950         }
3951 }
3952 
3953 /*
3954  * The mmap_lock cannot be released by the caller until
3955  * mm_drop_all_locks() returns.
3956  */
3957 void mm_drop_all_locks(struct mm_struct *mm)
3958 {
3959         struct vm_area_struct *vma;
3960         struct anon_vma_chain *avc;
3961         VMA_ITERATOR(vmi, mm, 0);
3962 
3963         mmap_assert_write_locked(mm);
3964         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3965 
3966         for_each_vma(vmi, vma) {
3967                 if (vma->anon_vma)
3968                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3969                                 vm_unlock_anon_vma(avc->anon_vma);
3970                 if (vma->vm_file && vma->vm_file->f_mapping)
3971                         vm_unlock_mapping(vma->vm_file->f_mapping);
3972         }
3973 
3974         mutex_unlock(&mm_all_locks_mutex);
3975 }
3976 
3977 /*
3978  * initialise the percpu counter for VM
3979  */
3980 void __init mmap_init(void)
3981 {
3982         int ret;
3983 
3984         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3985         VM_BUG_ON(ret);
3986 }
3987 
3988 /*
3989  * Initialise sysctl_user_reserve_kbytes.
3990  *
3991  * This is intended to prevent a user from starting a single memory hogging
3992  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3993  * mode.
3994  *
3995  * The default value is min(3% of free memory, 128MB)
3996  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3997  */
3998 static int init_user_reserve(void)
3999 {
4000         unsigned long free_kbytes;
4001 
4002         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4003 
4004         sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
4005         return 0;
4006 }
4007 subsys_initcall(init_user_reserve);
4008 
4009 /*
4010  * Initialise sysctl_admin_reserve_kbytes.
4011  *
4012  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
4013  * to log in and kill a memory hogging process.
4014  *
4015  * Systems with more than 256MB will reserve 8MB, enough to recover
4016  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
4017  * only reserve 3% of free pages by default.
4018  */
4019 static int init_admin_reserve(void)
4020 {
4021         unsigned long free_kbytes;
4022 
4023         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4024 
4025         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
4026         return 0;
4027 }
4028 subsys_initcall(init_admin_reserve);
4029 
4030 /*
4031  * Reinititalise user and admin reserves if memory is added or removed.
4032  *
4033  * The default user reserve max is 128MB, and the default max for the
4034  * admin reserve is 8MB. These are usually, but not always, enough to
4035  * enable recovery from a memory hogging process using login/sshd, a shell,
4036  * and tools like top. It may make sense to increase or even disable the
4037  * reserve depending on the existence of swap or variations in the recovery
4038  * tools. So, the admin may have changed them.
4039  *
4040  * If memory is added and the reserves have been eliminated or increased above
4041  * the default max, then we'll trust the admin.
4042  *
4043  * If memory is removed and there isn't enough free memory, then we
4044  * need to reset the reserves.
4045  *
4046  * Otherwise keep the reserve set by the admin.
4047  */
4048 static int reserve_mem_notifier(struct notifier_block *nb,
4049                              unsigned long action, void *data)
4050 {
4051         unsigned long tmp, free_kbytes;
4052 
4053         switch (action) {
4054         case MEM_ONLINE:
4055                 /* Default max is 128MB. Leave alone if modified by operator. */
4056                 tmp = sysctl_user_reserve_kbytes;
4057                 if (tmp > 0 && tmp < SZ_128K)
4058                         init_user_reserve();
4059 
4060                 /* Default max is 8MB.  Leave alone if modified by operator. */
4061                 tmp = sysctl_admin_reserve_kbytes;
4062                 if (tmp > 0 && tmp < SZ_8K)
4063                         init_admin_reserve();
4064 
4065                 break;
4066         case MEM_OFFLINE:
4067                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
4068 
4069                 if (sysctl_user_reserve_kbytes > free_kbytes) {
4070                         init_user_reserve();
4071                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
4072                                 sysctl_user_reserve_kbytes);
4073                 }
4074 
4075                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
4076                         init_admin_reserve();
4077                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4078                                 sysctl_admin_reserve_kbytes);
4079                 }
4080                 break;
4081         default:
4082                 break;
4083         }
4084         return NOTIFY_OK;
4085 }
4086 
4087 static int __meminit init_reserve_notifier(void)
4088 {
4089         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4090                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4091 
4092         return 0;
4093 }
4094 subsys_initcall(init_reserve_notifier);
4095 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php