1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mm/mremap.c 4 * 5 * (C) Copyright 1996 Linus Torvalds 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/mm_inline.h> 13 #include <linux/hugetlb.h> 14 #include <linux/shm.h> 15 #include <linux/ksm.h> 16 #include <linux/mman.h> 17 #include <linux/swap.h> 18 #include <linux/capability.h> 19 #include <linux/fs.h> 20 #include <linux/swapops.h> 21 #include <linux/highmem.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/uaccess.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/tlb.h> 31 #include <asm/pgalloc.h> 32 33 #include "internal.h" 34 35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) 36 { 37 pgd_t *pgd; 38 p4d_t *p4d; 39 pud_t *pud; 40 41 pgd = pgd_offset(mm, addr); 42 if (pgd_none_or_clear_bad(pgd)) 43 return NULL; 44 45 p4d = p4d_offset(pgd, addr); 46 if (p4d_none_or_clear_bad(p4d)) 47 return NULL; 48 49 pud = pud_offset(p4d, addr); 50 if (pud_none_or_clear_bad(pud)) 51 return NULL; 52 53 return pud; 54 } 55 56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) 57 { 58 pud_t *pud; 59 pmd_t *pmd; 60 61 pud = get_old_pud(mm, addr); 62 if (!pud) 63 return NULL; 64 65 pmd = pmd_offset(pud, addr); 66 if (pmd_none(*pmd)) 67 return NULL; 68 69 return pmd; 70 } 71 72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, 73 unsigned long addr) 74 { 75 pgd_t *pgd; 76 p4d_t *p4d; 77 78 pgd = pgd_offset(mm, addr); 79 p4d = p4d_alloc(mm, pgd, addr); 80 if (!p4d) 81 return NULL; 82 83 return pud_alloc(mm, p4d, addr); 84 } 85 86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 87 unsigned long addr) 88 { 89 pud_t *pud; 90 pmd_t *pmd; 91 92 pud = alloc_new_pud(mm, vma, addr); 93 if (!pud) 94 return NULL; 95 96 pmd = pmd_alloc(mm, pud, addr); 97 if (!pmd) 98 return NULL; 99 100 VM_BUG_ON(pmd_trans_huge(*pmd)); 101 102 return pmd; 103 } 104 105 static void take_rmap_locks(struct vm_area_struct *vma) 106 { 107 if (vma->vm_file) 108 i_mmap_lock_write(vma->vm_file->f_mapping); 109 if (vma->anon_vma) 110 anon_vma_lock_write(vma->anon_vma); 111 } 112 113 static void drop_rmap_locks(struct vm_area_struct *vma) 114 { 115 if (vma->anon_vma) 116 anon_vma_unlock_write(vma->anon_vma); 117 if (vma->vm_file) 118 i_mmap_unlock_write(vma->vm_file->f_mapping); 119 } 120 121 static pte_t move_soft_dirty_pte(pte_t pte) 122 { 123 /* 124 * Set soft dirty bit so we can notice 125 * in userspace the ptes were moved. 126 */ 127 #ifdef CONFIG_MEM_SOFT_DIRTY 128 if (pte_present(pte)) 129 pte = pte_mksoft_dirty(pte); 130 else if (is_swap_pte(pte)) 131 pte = pte_swp_mksoft_dirty(pte); 132 #endif 133 return pte; 134 } 135 136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, 137 unsigned long old_addr, unsigned long old_end, 138 struct vm_area_struct *new_vma, pmd_t *new_pmd, 139 unsigned long new_addr, bool need_rmap_locks) 140 { 141 struct mm_struct *mm = vma->vm_mm; 142 pte_t *old_pte, *new_pte, pte; 143 spinlock_t *old_ptl, *new_ptl; 144 bool force_flush = false; 145 unsigned long len = old_end - old_addr; 146 int err = 0; 147 148 /* 149 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma 150 * locks to ensure that rmap will always observe either the old or the 151 * new ptes. This is the easiest way to avoid races with 152 * truncate_pagecache(), page migration, etc... 153 * 154 * When need_rmap_locks is false, we use other ways to avoid 155 * such races: 156 * 157 * - During exec() shift_arg_pages(), we use a specially tagged vma 158 * which rmap call sites look for using vma_is_temporary_stack(). 159 * 160 * - During mremap(), new_vma is often known to be placed after vma 161 * in rmap traversal order. This ensures rmap will always observe 162 * either the old pte, or the new pte, or both (the page table locks 163 * serialize access to individual ptes, but only rmap traversal 164 * order guarantees that we won't miss both the old and new ptes). 165 */ 166 if (need_rmap_locks) 167 take_rmap_locks(vma); 168 169 /* 170 * We don't have to worry about the ordering of src and dst 171 * pte locks because exclusive mmap_lock prevents deadlock. 172 */ 173 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); 174 if (!old_pte) { 175 err = -EAGAIN; 176 goto out; 177 } 178 new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl); 179 if (!new_pte) { 180 pte_unmap_unlock(old_pte, old_ptl); 181 err = -EAGAIN; 182 goto out; 183 } 184 if (new_ptl != old_ptl) 185 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 186 flush_tlb_batched_pending(vma->vm_mm); 187 arch_enter_lazy_mmu_mode(); 188 189 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, 190 new_pte++, new_addr += PAGE_SIZE) { 191 if (pte_none(ptep_get(old_pte))) 192 continue; 193 194 pte = ptep_get_and_clear(mm, old_addr, old_pte); 195 /* 196 * If we are remapping a valid PTE, make sure 197 * to flush TLB before we drop the PTL for the 198 * PTE. 199 * 200 * NOTE! Both old and new PTL matter: the old one 201 * for racing with folio_mkclean(), the new one to 202 * make sure the physical page stays valid until 203 * the TLB entry for the old mapping has been 204 * flushed. 205 */ 206 if (pte_present(pte)) 207 force_flush = true; 208 pte = move_pte(pte, old_addr, new_addr); 209 pte = move_soft_dirty_pte(pte); 210 set_pte_at(mm, new_addr, new_pte, pte); 211 } 212 213 arch_leave_lazy_mmu_mode(); 214 if (force_flush) 215 flush_tlb_range(vma, old_end - len, old_end); 216 if (new_ptl != old_ptl) 217 spin_unlock(new_ptl); 218 pte_unmap(new_pte - 1); 219 pte_unmap_unlock(old_pte - 1, old_ptl); 220 out: 221 if (need_rmap_locks) 222 drop_rmap_locks(vma); 223 return err; 224 } 225 226 #ifndef arch_supports_page_table_move 227 #define arch_supports_page_table_move arch_supports_page_table_move 228 static inline bool arch_supports_page_table_move(void) 229 { 230 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || 231 IS_ENABLED(CONFIG_HAVE_MOVE_PUD); 232 } 233 #endif 234 235 #ifdef CONFIG_HAVE_MOVE_PMD 236 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, 237 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 238 { 239 spinlock_t *old_ptl, *new_ptl; 240 struct mm_struct *mm = vma->vm_mm; 241 bool res = false; 242 pmd_t pmd; 243 244 if (!arch_supports_page_table_move()) 245 return false; 246 /* 247 * The destination pmd shouldn't be established, free_pgtables() 248 * should have released it. 249 * 250 * However, there's a case during execve() where we use mremap 251 * to move the initial stack, and in that case the target area 252 * may overlap the source area (always moving down). 253 * 254 * If everything is PMD-aligned, that works fine, as moving 255 * each pmd down will clear the source pmd. But if we first 256 * have a few 4kB-only pages that get moved down, and then 257 * hit the "now the rest is PMD-aligned, let's do everything 258 * one pmd at a time", we will still have the old (now empty 259 * of any 4kB pages, but still there) PMD in the page table 260 * tree. 261 * 262 * Warn on it once - because we really should try to figure 263 * out how to do this better - but then say "I won't move 264 * this pmd". 265 * 266 * One alternative might be to just unmap the target pmd at 267 * this point, and verify that it really is empty. We'll see. 268 */ 269 if (WARN_ON_ONCE(!pmd_none(*new_pmd))) 270 return false; 271 272 /* 273 * We don't have to worry about the ordering of src and dst 274 * ptlocks because exclusive mmap_lock prevents deadlock. 275 */ 276 old_ptl = pmd_lock(vma->vm_mm, old_pmd); 277 new_ptl = pmd_lockptr(mm, new_pmd); 278 if (new_ptl != old_ptl) 279 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 280 281 pmd = *old_pmd; 282 283 /* Racing with collapse? */ 284 if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) 285 goto out_unlock; 286 /* Clear the pmd */ 287 pmd_clear(old_pmd); 288 res = true; 289 290 VM_BUG_ON(!pmd_none(*new_pmd)); 291 292 pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); 293 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 294 out_unlock: 295 if (new_ptl != old_ptl) 296 spin_unlock(new_ptl); 297 spin_unlock(old_ptl); 298 299 return res; 300 } 301 #else 302 static inline bool move_normal_pmd(struct vm_area_struct *vma, 303 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, 304 pmd_t *new_pmd) 305 { 306 return false; 307 } 308 #endif 309 310 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) 311 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, 312 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 313 { 314 spinlock_t *old_ptl, *new_ptl; 315 struct mm_struct *mm = vma->vm_mm; 316 pud_t pud; 317 318 if (!arch_supports_page_table_move()) 319 return false; 320 /* 321 * The destination pud shouldn't be established, free_pgtables() 322 * should have released it. 323 */ 324 if (WARN_ON_ONCE(!pud_none(*new_pud))) 325 return false; 326 327 /* 328 * We don't have to worry about the ordering of src and dst 329 * ptlocks because exclusive mmap_lock prevents deadlock. 330 */ 331 old_ptl = pud_lock(vma->vm_mm, old_pud); 332 new_ptl = pud_lockptr(mm, new_pud); 333 if (new_ptl != old_ptl) 334 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 335 336 /* Clear the pud */ 337 pud = *old_pud; 338 pud_clear(old_pud); 339 340 VM_BUG_ON(!pud_none(*new_pud)); 341 342 pud_populate(mm, new_pud, pud_pgtable(pud)); 343 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); 344 if (new_ptl != old_ptl) 345 spin_unlock(new_ptl); 346 spin_unlock(old_ptl); 347 348 return true; 349 } 350 #else 351 static inline bool move_normal_pud(struct vm_area_struct *vma, 352 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, 353 pud_t *new_pud) 354 { 355 return false; 356 } 357 #endif 358 359 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 360 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 361 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 362 { 363 spinlock_t *old_ptl, *new_ptl; 364 struct mm_struct *mm = vma->vm_mm; 365 pud_t pud; 366 367 /* 368 * The destination pud shouldn't be established, free_pgtables() 369 * should have released it. 370 */ 371 if (WARN_ON_ONCE(!pud_none(*new_pud))) 372 return false; 373 374 /* 375 * We don't have to worry about the ordering of src and dst 376 * ptlocks because exclusive mmap_lock prevents deadlock. 377 */ 378 old_ptl = pud_lock(vma->vm_mm, old_pud); 379 new_ptl = pud_lockptr(mm, new_pud); 380 if (new_ptl != old_ptl) 381 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 382 383 /* Clear the pud */ 384 pud = *old_pud; 385 pud_clear(old_pud); 386 387 VM_BUG_ON(!pud_none(*new_pud)); 388 389 /* Set the new pud */ 390 /* mark soft_ditry when we add pud level soft dirty support */ 391 set_pud_at(mm, new_addr, new_pud, pud); 392 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); 393 if (new_ptl != old_ptl) 394 spin_unlock(new_ptl); 395 spin_unlock(old_ptl); 396 397 return true; 398 } 399 #else 400 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, 401 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) 402 { 403 WARN_ON_ONCE(1); 404 return false; 405 406 } 407 #endif 408 409 enum pgt_entry { 410 NORMAL_PMD, 411 HPAGE_PMD, 412 NORMAL_PUD, 413 HPAGE_PUD, 414 }; 415 416 /* 417 * Returns an extent of the corresponding size for the pgt_entry specified if 418 * valid. Else returns a smaller extent bounded by the end of the source and 419 * destination pgt_entry. 420 */ 421 static __always_inline unsigned long get_extent(enum pgt_entry entry, 422 unsigned long old_addr, unsigned long old_end, 423 unsigned long new_addr) 424 { 425 unsigned long next, extent, mask, size; 426 427 switch (entry) { 428 case HPAGE_PMD: 429 case NORMAL_PMD: 430 mask = PMD_MASK; 431 size = PMD_SIZE; 432 break; 433 case HPAGE_PUD: 434 case NORMAL_PUD: 435 mask = PUD_MASK; 436 size = PUD_SIZE; 437 break; 438 default: 439 BUILD_BUG(); 440 break; 441 } 442 443 next = (old_addr + size) & mask; 444 /* even if next overflowed, extent below will be ok */ 445 extent = next - old_addr; 446 if (extent > old_end - old_addr) 447 extent = old_end - old_addr; 448 next = (new_addr + size) & mask; 449 if (extent > next - new_addr) 450 extent = next - new_addr; 451 return extent; 452 } 453 454 /* 455 * Attempts to speedup the move by moving entry at the level corresponding to 456 * pgt_entry. Returns true if the move was successful, else false. 457 */ 458 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, 459 unsigned long old_addr, unsigned long new_addr, 460 void *old_entry, void *new_entry, bool need_rmap_locks) 461 { 462 bool moved = false; 463 464 /* See comment in move_ptes() */ 465 if (need_rmap_locks) 466 take_rmap_locks(vma); 467 468 switch (entry) { 469 case NORMAL_PMD: 470 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, 471 new_entry); 472 break; 473 case NORMAL_PUD: 474 moved = move_normal_pud(vma, old_addr, new_addr, old_entry, 475 new_entry); 476 break; 477 case HPAGE_PMD: 478 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 479 move_huge_pmd(vma, old_addr, new_addr, old_entry, 480 new_entry); 481 break; 482 case HPAGE_PUD: 483 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 484 move_huge_pud(vma, old_addr, new_addr, old_entry, 485 new_entry); 486 break; 487 488 default: 489 WARN_ON_ONCE(1); 490 break; 491 } 492 493 if (need_rmap_locks) 494 drop_rmap_locks(vma); 495 496 return moved; 497 } 498 499 /* 500 * A helper to check if aligning down is OK. The aligned address should fall 501 * on *no mapping*. For the stack moving down, that's a special move within 502 * the VMA that is created to span the source and destination of the move, 503 * so we make an exception for it. 504 */ 505 static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align, 506 unsigned long mask, bool for_stack) 507 { 508 unsigned long addr_masked = addr_to_align & mask; 509 510 /* 511 * If @addr_to_align of either source or destination is not the beginning 512 * of the corresponding VMA, we can't align down or we will destroy part 513 * of the current mapping. 514 */ 515 if (!for_stack && vma->vm_start != addr_to_align) 516 return false; 517 518 /* In the stack case we explicitly permit in-VMA alignment. */ 519 if (for_stack && addr_masked >= vma->vm_start) 520 return true; 521 522 /* 523 * Make sure the realignment doesn't cause the address to fall on an 524 * existing mapping. 525 */ 526 return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL; 527 } 528 529 /* Opportunistically realign to specified boundary for faster copy. */ 530 static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma, 531 unsigned long *new_addr, struct vm_area_struct *new_vma, 532 unsigned long mask, bool for_stack) 533 { 534 /* Skip if the addresses are already aligned. */ 535 if ((*old_addr & ~mask) == 0) 536 return; 537 538 /* Only realign if the new and old addresses are mutually aligned. */ 539 if ((*old_addr & ~mask) != (*new_addr & ~mask)) 540 return; 541 542 /* Ensure realignment doesn't cause overlap with existing mappings. */ 543 if (!can_align_down(old_vma, *old_addr, mask, for_stack) || 544 !can_align_down(new_vma, *new_addr, mask, for_stack)) 545 return; 546 547 *old_addr = *old_addr & mask; 548 *new_addr = *new_addr & mask; 549 } 550 551 unsigned long move_page_tables(struct vm_area_struct *vma, 552 unsigned long old_addr, struct vm_area_struct *new_vma, 553 unsigned long new_addr, unsigned long len, 554 bool need_rmap_locks, bool for_stack) 555 { 556 unsigned long extent, old_end; 557 struct mmu_notifier_range range; 558 pmd_t *old_pmd, *new_pmd; 559 pud_t *old_pud, *new_pud; 560 561 if (!len) 562 return 0; 563 564 old_end = old_addr + len; 565 566 if (is_vm_hugetlb_page(vma)) 567 return move_hugetlb_page_tables(vma, new_vma, old_addr, 568 new_addr, len); 569 570 /* 571 * If possible, realign addresses to PMD boundary for faster copy. 572 * Only realign if the mremap copying hits a PMD boundary. 573 */ 574 if (len >= PMD_SIZE - (old_addr & ~PMD_MASK)) 575 try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK, 576 for_stack); 577 578 flush_cache_range(vma, old_addr, old_end); 579 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 580 old_addr, old_end); 581 mmu_notifier_invalidate_range_start(&range); 582 583 for (; old_addr < old_end; old_addr += extent, new_addr += extent) { 584 cond_resched(); 585 /* 586 * If extent is PUD-sized try to speed up the move by moving at the 587 * PUD level if possible. 588 */ 589 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); 590 591 old_pud = get_old_pud(vma->vm_mm, old_addr); 592 if (!old_pud) 593 continue; 594 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); 595 if (!new_pud) 596 break; 597 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { 598 if (extent == HPAGE_PUD_SIZE) { 599 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, 600 old_pud, new_pud, need_rmap_locks); 601 /* We ignore and continue on error? */ 602 continue; 603 } 604 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { 605 606 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, 607 old_pud, new_pud, true)) 608 continue; 609 } 610 611 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); 612 old_pmd = get_old_pmd(vma->vm_mm, old_addr); 613 if (!old_pmd) 614 continue; 615 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); 616 if (!new_pmd) 617 break; 618 again: 619 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || 620 pmd_devmap(*old_pmd)) { 621 if (extent == HPAGE_PMD_SIZE && 622 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, 623 old_pmd, new_pmd, need_rmap_locks)) 624 continue; 625 split_huge_pmd(vma, old_pmd, old_addr); 626 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && 627 extent == PMD_SIZE) { 628 /* 629 * If the extent is PMD-sized, try to speed the move by 630 * moving at the PMD level if possible. 631 */ 632 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, 633 old_pmd, new_pmd, true)) 634 continue; 635 } 636 if (pmd_none(*old_pmd)) 637 continue; 638 if (pte_alloc(new_vma->vm_mm, new_pmd)) 639 break; 640 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent, 641 new_vma, new_pmd, new_addr, need_rmap_locks) < 0) 642 goto again; 643 } 644 645 mmu_notifier_invalidate_range_end(&range); 646 647 /* 648 * Prevent negative return values when {old,new}_addr was realigned 649 * but we broke out of the above loop for the first PMD itself. 650 */ 651 if (len + old_addr < old_end) 652 return 0; 653 654 return len + old_addr - old_end; /* how much done */ 655 } 656 657 static unsigned long move_vma(struct vm_area_struct *vma, 658 unsigned long old_addr, unsigned long old_len, 659 unsigned long new_len, unsigned long new_addr, 660 bool *locked, unsigned long flags, 661 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) 662 { 663 long to_account = new_len - old_len; 664 struct mm_struct *mm = vma->vm_mm; 665 struct vm_area_struct *new_vma; 666 unsigned long vm_flags = vma->vm_flags; 667 unsigned long new_pgoff; 668 unsigned long moved_len; 669 unsigned long account_start = 0; 670 unsigned long account_end = 0; 671 unsigned long hiwater_vm; 672 int err = 0; 673 bool need_rmap_locks; 674 struct vma_iterator vmi; 675 676 /* 677 * We'd prefer to avoid failure later on in do_munmap: 678 * which may split one vma into three before unmapping. 679 */ 680 if (mm->map_count >= sysctl_max_map_count - 3) 681 return -ENOMEM; 682 683 if (unlikely(flags & MREMAP_DONTUNMAP)) 684 to_account = new_len; 685 686 if (vma->vm_ops && vma->vm_ops->may_split) { 687 if (vma->vm_start != old_addr) 688 err = vma->vm_ops->may_split(vma, old_addr); 689 if (!err && vma->vm_end != old_addr + old_len) 690 err = vma->vm_ops->may_split(vma, old_addr + old_len); 691 if (err) 692 return err; 693 } 694 695 /* 696 * Advise KSM to break any KSM pages in the area to be moved: 697 * it would be confusing if they were to turn up at the new 698 * location, where they happen to coincide with different KSM 699 * pages recently unmapped. But leave vma->vm_flags as it was, 700 * so KSM can come around to merge on vma and new_vma afterwards. 701 */ 702 err = ksm_madvise(vma, old_addr, old_addr + old_len, 703 MADV_UNMERGEABLE, &vm_flags); 704 if (err) 705 return err; 706 707 if (vm_flags & VM_ACCOUNT) { 708 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) 709 return -ENOMEM; 710 } 711 712 vma_start_write(vma); 713 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); 714 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, 715 &need_rmap_locks); 716 if (!new_vma) { 717 if (vm_flags & VM_ACCOUNT) 718 vm_unacct_memory(to_account >> PAGE_SHIFT); 719 return -ENOMEM; 720 } 721 722 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, 723 need_rmap_locks, false); 724 if (moved_len < old_len) { 725 err = -ENOMEM; 726 } else if (vma->vm_ops && vma->vm_ops->mremap) { 727 err = vma->vm_ops->mremap(new_vma); 728 } 729 730 if (unlikely(err)) { 731 /* 732 * On error, move entries back from new area to old, 733 * which will succeed since page tables still there, 734 * and then proceed to unmap new area instead of old. 735 */ 736 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, 737 true, false); 738 vma = new_vma; 739 old_len = new_len; 740 old_addr = new_addr; 741 new_addr = err; 742 } else { 743 mremap_userfaultfd_prep(new_vma, uf); 744 } 745 746 if (is_vm_hugetlb_page(vma)) { 747 clear_vma_resv_huge_pages(vma); 748 } 749 750 /* Conceal VM_ACCOUNT so old reservation is not undone */ 751 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { 752 vm_flags_clear(vma, VM_ACCOUNT); 753 if (vma->vm_start < old_addr) 754 account_start = vma->vm_start; 755 if (vma->vm_end > old_addr + old_len) 756 account_end = vma->vm_end; 757 } 758 759 /* 760 * If we failed to move page tables we still do total_vm increment 761 * since do_munmap() will decrement it by old_len == new_len. 762 * 763 * Since total_vm is about to be raised artificially high for a 764 * moment, we need to restore high watermark afterwards: if stats 765 * are taken meanwhile, total_vm and hiwater_vm appear too high. 766 * If this were a serious issue, we'd add a flag to do_munmap(). 767 */ 768 hiwater_vm = mm->hiwater_vm; 769 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); 770 771 /* Tell pfnmap has moved from this vma */ 772 if (unlikely(vma->vm_flags & VM_PFNMAP)) 773 untrack_pfn_clear(vma); 774 775 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { 776 /* We always clear VM_LOCKED[ONFAULT] on the old vma */ 777 vm_flags_clear(vma, VM_LOCKED_MASK); 778 779 /* 780 * anon_vma links of the old vma is no longer needed after its page 781 * table has been moved. 782 */ 783 if (new_vma != vma && vma->vm_start == old_addr && 784 vma->vm_end == (old_addr + old_len)) 785 unlink_anon_vmas(vma); 786 787 /* Because we won't unmap we don't need to touch locked_vm */ 788 return new_addr; 789 } 790 791 vma_iter_init(&vmi, mm, old_addr); 792 if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) { 793 /* OOM: unable to split vma, just get accounts right */ 794 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) 795 vm_acct_memory(old_len >> PAGE_SHIFT); 796 account_start = account_end = 0; 797 } 798 799 if (vm_flags & VM_LOCKED) { 800 mm->locked_vm += new_len >> PAGE_SHIFT; 801 *locked = true; 802 } 803 804 mm->hiwater_vm = hiwater_vm; 805 806 /* Restore VM_ACCOUNT if one or two pieces of vma left */ 807 if (account_start) { 808 vma = vma_prev(&vmi); 809 vm_flags_set(vma, VM_ACCOUNT); 810 } 811 812 if (account_end) { 813 vma = vma_next(&vmi); 814 vm_flags_set(vma, VM_ACCOUNT); 815 } 816 817 return new_addr; 818 } 819 820 static struct vm_area_struct *vma_to_resize(unsigned long addr, 821 unsigned long old_len, unsigned long new_len, unsigned long flags) 822 { 823 struct mm_struct *mm = current->mm; 824 struct vm_area_struct *vma; 825 unsigned long pgoff; 826 827 vma = vma_lookup(mm, addr); 828 if (!vma) 829 return ERR_PTR(-EFAULT); 830 831 /* 832 * !old_len is a special case where an attempt is made to 'duplicate' 833 * a mapping. This makes no sense for private mappings as it will 834 * instead create a fresh/new mapping unrelated to the original. This 835 * is contrary to the basic idea of mremap which creates new mappings 836 * based on the original. There are no known use cases for this 837 * behavior. As a result, fail such attempts. 838 */ 839 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { 840 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); 841 return ERR_PTR(-EINVAL); 842 } 843 844 if ((flags & MREMAP_DONTUNMAP) && 845 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) 846 return ERR_PTR(-EINVAL); 847 848 /* We can't remap across vm area boundaries */ 849 if (old_len > vma->vm_end - addr) 850 return ERR_PTR(-EFAULT); 851 852 if (new_len == old_len) 853 return vma; 854 855 /* Need to be careful about a growing mapping */ 856 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; 857 pgoff += vma->vm_pgoff; 858 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) 859 return ERR_PTR(-EINVAL); 860 861 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) 862 return ERR_PTR(-EFAULT); 863 864 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len)) 865 return ERR_PTR(-EAGAIN); 866 867 if (!may_expand_vm(mm, vma->vm_flags, 868 (new_len - old_len) >> PAGE_SHIFT)) 869 return ERR_PTR(-ENOMEM); 870 871 return vma; 872 } 873 874 static unsigned long mremap_to(unsigned long addr, unsigned long old_len, 875 unsigned long new_addr, unsigned long new_len, bool *locked, 876 unsigned long flags, struct vm_userfaultfd_ctx *uf, 877 struct list_head *uf_unmap_early, 878 struct list_head *uf_unmap) 879 { 880 struct mm_struct *mm = current->mm; 881 struct vm_area_struct *vma; 882 unsigned long ret = -EINVAL; 883 unsigned long map_flags = 0; 884 885 if (offset_in_page(new_addr)) 886 goto out; 887 888 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) 889 goto out; 890 891 /* Ensure the old/new locations do not overlap */ 892 if (addr + old_len > new_addr && new_addr + new_len > addr) 893 goto out; 894 895 /* 896 * move_vma() need us to stay 4 maps below the threshold, otherwise 897 * it will bail out at the very beginning. 898 * That is a problem if we have already unmaped the regions here 899 * (new_addr, and old_addr), because userspace will not know the 900 * state of the vma's after it gets -ENOMEM. 901 * So, to avoid such scenario we can pre-compute if the whole 902 * operation has high chances to success map-wise. 903 * Worst-scenario case is when both vma's (new_addr and old_addr) get 904 * split in 3 before unmapping it. 905 * That means 2 more maps (1 for each) to the ones we already hold. 906 * Check whether current map count plus 2 still leads us to 4 maps below 907 * the threshold, otherwise return -ENOMEM here to be more safe. 908 */ 909 if ((mm->map_count + 2) >= sysctl_max_map_count - 3) 910 return -ENOMEM; 911 912 /* 913 * In mremap_to(). 914 * Move a VMA to another location, check if src addr is sealed. 915 * 916 * Place can_modify_mm here because mremap_to() 917 * does its own checking for address range, and we only 918 * check the sealing after passing those checks. 919 * 920 * can_modify_mm assumes we have acquired the lock on MM. 921 */ 922 if (unlikely(!can_modify_mm(mm, addr, addr + old_len))) 923 return -EPERM; 924 925 if (flags & MREMAP_FIXED) { 926 /* 927 * In mremap_to(). 928 * VMA is moved to dst address, and munmap dst first. 929 * do_munmap will check if dst is sealed. 930 */ 931 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); 932 if (ret) 933 goto out; 934 } 935 936 if (old_len > new_len) { 937 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); 938 if (ret) 939 goto out; 940 old_len = new_len; 941 } 942 943 vma = vma_to_resize(addr, old_len, new_len, flags); 944 if (IS_ERR(vma)) { 945 ret = PTR_ERR(vma); 946 goto out; 947 } 948 949 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ 950 if (flags & MREMAP_DONTUNMAP && 951 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { 952 ret = -ENOMEM; 953 goto out; 954 } 955 956 if (flags & MREMAP_FIXED) 957 map_flags |= MAP_FIXED; 958 959 if (vma->vm_flags & VM_MAYSHARE) 960 map_flags |= MAP_SHARED; 961 962 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + 963 ((addr - vma->vm_start) >> PAGE_SHIFT), 964 map_flags); 965 if (IS_ERR_VALUE(ret)) 966 goto out; 967 968 /* We got a new mapping */ 969 if (!(flags & MREMAP_FIXED)) 970 new_addr = ret; 971 972 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, 973 uf_unmap); 974 975 out: 976 return ret; 977 } 978 979 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) 980 { 981 unsigned long end = vma->vm_end + delta; 982 983 if (end < vma->vm_end) /* overflow */ 984 return 0; 985 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) 986 return 0; 987 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 988 0, MAP_FIXED) & ~PAGE_MASK) 989 return 0; 990 return 1; 991 } 992 993 /* 994 * Expand (or shrink) an existing mapping, potentially moving it at the 995 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) 996 * 997 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise 998 * This option implies MREMAP_MAYMOVE. 999 */ 1000 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1001 unsigned long, new_len, unsigned long, flags, 1002 unsigned long, new_addr) 1003 { 1004 struct mm_struct *mm = current->mm; 1005 struct vm_area_struct *vma; 1006 unsigned long ret = -EINVAL; 1007 bool locked = false; 1008 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; 1009 LIST_HEAD(uf_unmap_early); 1010 LIST_HEAD(uf_unmap); 1011 1012 /* 1013 * There is a deliberate asymmetry here: we strip the pointer tag 1014 * from the old address but leave the new address alone. This is 1015 * for consistency with mmap(), where we prevent the creation of 1016 * aliasing mappings in userspace by leaving the tag bits of the 1017 * mapping address intact. A non-zero tag will cause the subsequent 1018 * range checks to reject the address as invalid. 1019 * 1020 * See Documentation/arch/arm64/tagged-address-abi.rst for more 1021 * information. 1022 */ 1023 addr = untagged_addr(addr); 1024 1025 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) 1026 return ret; 1027 1028 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) 1029 return ret; 1030 1031 /* 1032 * MREMAP_DONTUNMAP is always a move and it does not allow resizing 1033 * in the process. 1034 */ 1035 if (flags & MREMAP_DONTUNMAP && 1036 (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) 1037 return ret; 1038 1039 1040 if (offset_in_page(addr)) 1041 return ret; 1042 1043 old_len = PAGE_ALIGN(old_len); 1044 new_len = PAGE_ALIGN(new_len); 1045 1046 /* 1047 * We allow a zero old-len as a special case 1048 * for DOS-emu "duplicate shm area" thing. But 1049 * a zero new-len is nonsensical. 1050 */ 1051 if (!new_len) 1052 return ret; 1053 1054 if (mmap_write_lock_killable(current->mm)) 1055 return -EINTR; 1056 vma = vma_lookup(mm, addr); 1057 if (!vma) { 1058 ret = -EFAULT; 1059 goto out; 1060 } 1061 1062 if (is_vm_hugetlb_page(vma)) { 1063 struct hstate *h __maybe_unused = hstate_vma(vma); 1064 1065 old_len = ALIGN(old_len, huge_page_size(h)); 1066 new_len = ALIGN(new_len, huge_page_size(h)); 1067 1068 /* addrs must be huge page aligned */ 1069 if (addr & ~huge_page_mask(h)) 1070 goto out; 1071 if (new_addr & ~huge_page_mask(h)) 1072 goto out; 1073 1074 /* 1075 * Don't allow remap expansion, because the underlying hugetlb 1076 * reservation is not yet capable to handle split reservation. 1077 */ 1078 if (new_len > old_len) 1079 goto out; 1080 } 1081 1082 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { 1083 ret = mremap_to(addr, old_len, new_addr, new_len, 1084 &locked, flags, &uf, &uf_unmap_early, 1085 &uf_unmap); 1086 goto out; 1087 } 1088 1089 /* 1090 * Below is shrink/expand case (not mremap_to()) 1091 * Check if src address is sealed, if so, reject. 1092 * In other words, prevent shrinking or expanding a sealed VMA. 1093 * 1094 * Place can_modify_mm here so we can keep the logic related to 1095 * shrink/expand together. 1096 */ 1097 if (unlikely(!can_modify_mm(mm, addr, addr + old_len))) { 1098 ret = -EPERM; 1099 goto out; 1100 } 1101 1102 /* 1103 * Always allow a shrinking remap: that just unmaps 1104 * the unnecessary pages.. 1105 * do_vmi_munmap does all the needed commit accounting, and 1106 * unlocks the mmap_lock if so directed. 1107 */ 1108 if (old_len >= new_len) { 1109 VMA_ITERATOR(vmi, mm, addr + new_len); 1110 1111 if (old_len == new_len) { 1112 ret = addr; 1113 goto out; 1114 } 1115 1116 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len, 1117 &uf_unmap, true); 1118 if (ret) 1119 goto out; 1120 1121 ret = addr; 1122 goto out_unlocked; 1123 } 1124 1125 /* 1126 * Ok, we need to grow.. 1127 */ 1128 vma = vma_to_resize(addr, old_len, new_len, flags); 1129 if (IS_ERR(vma)) { 1130 ret = PTR_ERR(vma); 1131 goto out; 1132 } 1133 1134 /* old_len exactly to the end of the area.. 1135 */ 1136 if (old_len == vma->vm_end - addr) { 1137 unsigned long delta = new_len - old_len; 1138 1139 /* can we just expand the current mapping? */ 1140 if (vma_expandable(vma, delta)) { 1141 long pages = delta >> PAGE_SHIFT; 1142 VMA_ITERATOR(vmi, mm, vma->vm_end); 1143 long charged = 0; 1144 1145 if (vma->vm_flags & VM_ACCOUNT) { 1146 if (security_vm_enough_memory_mm(mm, pages)) { 1147 ret = -ENOMEM; 1148 goto out; 1149 } 1150 charged = pages; 1151 } 1152 1153 /* 1154 * Function vma_merge_extend() is called on the 1155 * extension we are adding to the already existing vma, 1156 * vma_merge_extend() will merge this extension with the 1157 * already existing vma (expand operation itself) and 1158 * possibly also with the next vma if it becomes 1159 * adjacent to the expanded vma and otherwise 1160 * compatible. 1161 */ 1162 vma = vma_merge_extend(&vmi, vma, delta); 1163 if (!vma) { 1164 vm_unacct_memory(charged); 1165 ret = -ENOMEM; 1166 goto out; 1167 } 1168 1169 vm_stat_account(mm, vma->vm_flags, pages); 1170 if (vma->vm_flags & VM_LOCKED) { 1171 mm->locked_vm += pages; 1172 locked = true; 1173 new_addr = addr; 1174 } 1175 ret = addr; 1176 goto out; 1177 } 1178 } 1179 1180 /* 1181 * We weren't able to just expand or shrink the area, 1182 * we need to create a new one and move it.. 1183 */ 1184 ret = -ENOMEM; 1185 if (flags & MREMAP_MAYMOVE) { 1186 unsigned long map_flags = 0; 1187 if (vma->vm_flags & VM_MAYSHARE) 1188 map_flags |= MAP_SHARED; 1189 1190 new_addr = get_unmapped_area(vma->vm_file, 0, new_len, 1191 vma->vm_pgoff + 1192 ((addr - vma->vm_start) >> PAGE_SHIFT), 1193 map_flags); 1194 if (IS_ERR_VALUE(new_addr)) { 1195 ret = new_addr; 1196 goto out; 1197 } 1198 1199 ret = move_vma(vma, addr, old_len, new_len, new_addr, 1200 &locked, flags, &uf, &uf_unmap); 1201 } 1202 out: 1203 if (offset_in_page(ret)) 1204 locked = false; 1205 mmap_write_unlock(current->mm); 1206 if (locked && new_len > old_len) 1207 mm_populate(new_addr + old_len, new_len - old_len); 1208 out_unlocked: 1209 userfaultfd_unmap_complete(mm, &uf_unmap_early); 1210 mremap_userfaultfd_complete(&uf, addr, ret, old_len); 1211 userfaultfd_unmap_complete(mm, &uf_unmap); 1212 return ret; 1213 } 1214
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.