~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/numa_emulation.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * NUMA emulation
  4  */
  5 #include <linux/kernel.h>
  6 #include <linux/errno.h>
  7 #include <linux/topology.h>
  8 #include <linux/memblock.h>
  9 #include <linux/numa_memblks.h>
 10 #include <asm/numa.h>
 11 
 12 #define FAKE_NODE_MIN_SIZE      ((u64)32 << 20)
 13 #define FAKE_NODE_MIN_HASH_MASK (~(FAKE_NODE_MIN_SIZE - 1UL))
 14 
 15 static int emu_nid_to_phys[MAX_NUMNODES];
 16 static char *emu_cmdline __initdata;
 17 
 18 int __init numa_emu_cmdline(char *str)
 19 {
 20         emu_cmdline = str;
 21         return 0;
 22 }
 23 
 24 static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
 25 {
 26         int i;
 27 
 28         for (i = 0; i < mi->nr_blks; i++)
 29                 if (mi->blk[i].nid == nid)
 30                         return i;
 31         return -ENOENT;
 32 }
 33 
 34 static u64 __init mem_hole_size(u64 start, u64 end)
 35 {
 36         unsigned long start_pfn = PFN_UP(start);
 37         unsigned long end_pfn = PFN_DOWN(end);
 38 
 39         if (start_pfn < end_pfn)
 40                 return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
 41         return 0;
 42 }
 43 
 44 /*
 45  * Sets up nid to range from @start to @end.  The return value is -errno if
 46  * something went wrong, 0 otherwise.
 47  */
 48 static int __init emu_setup_memblk(struct numa_meminfo *ei,
 49                                    struct numa_meminfo *pi,
 50                                    int nid, int phys_blk, u64 size)
 51 {
 52         struct numa_memblk *eb = &ei->blk[ei->nr_blks];
 53         struct numa_memblk *pb = &pi->blk[phys_blk];
 54 
 55         if (ei->nr_blks >= NR_NODE_MEMBLKS) {
 56                 pr_err("NUMA: Too many emulated memblks, failing emulation\n");
 57                 return -EINVAL;
 58         }
 59 
 60         ei->nr_blks++;
 61         eb->start = pb->start;
 62         eb->end = pb->start + size;
 63         eb->nid = nid;
 64 
 65         if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
 66                 emu_nid_to_phys[nid] = pb->nid;
 67 
 68         pb->start += size;
 69         if (pb->start >= pb->end) {
 70                 WARN_ON_ONCE(pb->start > pb->end);
 71                 numa_remove_memblk_from(phys_blk, pi);
 72         }
 73 
 74         printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
 75                nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
 76         return 0;
 77 }
 78 
 79 /*
 80  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
 81  * to max_addr.
 82  *
 83  * Returns zero on success or negative on error.
 84  */
 85 static int __init split_nodes_interleave(struct numa_meminfo *ei,
 86                                          struct numa_meminfo *pi,
 87                                          u64 addr, u64 max_addr, int nr_nodes)
 88 {
 89         nodemask_t physnode_mask = numa_nodes_parsed;
 90         u64 size;
 91         int big;
 92         int nid = 0;
 93         int i, ret;
 94 
 95         if (nr_nodes <= 0)
 96                 return -1;
 97         if (nr_nodes > MAX_NUMNODES) {
 98                 pr_info("numa=fake=%d too large, reducing to %d\n",
 99                         nr_nodes, MAX_NUMNODES);
100                 nr_nodes = MAX_NUMNODES;
101         }
102 
103         /*
104          * Calculate target node size.  x86_32 freaks on __udivdi3() so do
105          * the division in ulong number of pages and convert back.
106          */
107         size = max_addr - addr - mem_hole_size(addr, max_addr);
108         size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
109 
110         /*
111          * Calculate the number of big nodes that can be allocated as a result
112          * of consolidating the remainder.
113          */
114         big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
115                 FAKE_NODE_MIN_SIZE;
116 
117         size &= FAKE_NODE_MIN_HASH_MASK;
118         if (!size) {
119                 pr_err("Not enough memory for each node.  "
120                         "NUMA emulation disabled.\n");
121                 return -1;
122         }
123 
124         /*
125          * Continue to fill physical nodes with fake nodes until there is no
126          * memory left on any of them.
127          */
128         while (!nodes_empty(physnode_mask)) {
129                 for_each_node_mask(i, physnode_mask) {
130                         u64 dma32_end = numa_emu_dma_end();
131                         u64 start, limit, end;
132                         int phys_blk;
133 
134                         phys_blk = emu_find_memblk_by_nid(i, pi);
135                         if (phys_blk < 0) {
136                                 node_clear(i, physnode_mask);
137                                 continue;
138                         }
139                         start = pi->blk[phys_blk].start;
140                         limit = pi->blk[phys_blk].end;
141                         end = start + size;
142 
143                         if (nid < big)
144                                 end += FAKE_NODE_MIN_SIZE;
145 
146                         /*
147                          * Continue to add memory to this fake node if its
148                          * non-reserved memory is less than the per-node size.
149                          */
150                         while (end - start - mem_hole_size(start, end) < size) {
151                                 end += FAKE_NODE_MIN_SIZE;
152                                 if (end > limit) {
153                                         end = limit;
154                                         break;
155                                 }
156                         }
157 
158                         /*
159                          * If there won't be at least FAKE_NODE_MIN_SIZE of
160                          * non-reserved memory in ZONE_DMA32 for the next node,
161                          * this one must extend to the boundary.
162                          */
163                         if (end < dma32_end && dma32_end - end -
164                             mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
165                                 end = dma32_end;
166 
167                         /*
168                          * If there won't be enough non-reserved memory for the
169                          * next node, this one must extend to the end of the
170                          * physical node.
171                          */
172                         if (limit - end - mem_hole_size(end, limit) < size)
173                                 end = limit;
174 
175                         ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
176                                                phys_blk,
177                                                min(end, limit) - start);
178                         if (ret < 0)
179                                 return ret;
180                 }
181         }
182         return 0;
183 }
184 
185 /*
186  * Returns the end address of a node so that there is at least `size' amount of
187  * non-reserved memory or `max_addr' is reached.
188  */
189 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
190 {
191         u64 end = start + size;
192 
193         while (end - start - mem_hole_size(start, end) < size) {
194                 end += FAKE_NODE_MIN_SIZE;
195                 if (end > max_addr) {
196                         end = max_addr;
197                         break;
198                 }
199         }
200         return end;
201 }
202 
203 static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
204 {
205         unsigned long max_pfn = PHYS_PFN(max_addr);
206         unsigned long base_pfn = PHYS_PFN(base);
207         unsigned long hole_pfns = PHYS_PFN(hole);
208 
209         return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
210 }
211 
212 /*
213  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
214  * `addr' to `max_addr'.
215  *
216  * Returns zero on success or negative on error.
217  */
218 static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
219                                               struct numa_meminfo *pi,
220                                               u64 addr, u64 max_addr, u64 size,
221                                               int nr_nodes, struct numa_memblk *pblk,
222                                               int nid)
223 {
224         nodemask_t physnode_mask = numa_nodes_parsed;
225         int i, ret, uniform = 0;
226         u64 min_size;
227 
228         if ((!size && !nr_nodes) || (nr_nodes && !pblk))
229                 return -1;
230 
231         /*
232          * In the 'uniform' case split the passed in physical node by
233          * nr_nodes, in the non-uniform case, ignore the passed in
234          * physical block and try to create nodes of at least size
235          * @size.
236          *
237          * In the uniform case, split the nodes strictly by physical
238          * capacity, i.e. ignore holes. In the non-uniform case account
239          * for holes and treat @size as a minimum floor.
240          */
241         if (!nr_nodes)
242                 nr_nodes = MAX_NUMNODES;
243         else {
244                 nodes_clear(physnode_mask);
245                 node_set(pblk->nid, physnode_mask);
246                 uniform = 1;
247         }
248 
249         if (uniform) {
250                 min_size = uniform_size(max_addr, addr, 0, nr_nodes);
251                 size = min_size;
252         } else {
253                 /*
254                  * The limit on emulated nodes is MAX_NUMNODES, so the
255                  * size per node is increased accordingly if the
256                  * requested size is too small.  This creates a uniform
257                  * distribution of node sizes across the entire machine
258                  * (but not necessarily over physical nodes).
259                  */
260                 min_size = uniform_size(max_addr, addr,
261                                 mem_hole_size(addr, max_addr), nr_nodes);
262         }
263         min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
264         if (size < min_size) {
265                 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
266                         size >> 20, min_size >> 20);
267                 size = min_size;
268         }
269         size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
270 
271         /*
272          * Fill physical nodes with fake nodes of size until there is no memory
273          * left on any of them.
274          */
275         while (!nodes_empty(physnode_mask)) {
276                 for_each_node_mask(i, physnode_mask) {
277                         u64 dma32_end = numa_emu_dma_end();
278                         u64 start, limit, end;
279                         int phys_blk;
280 
281                         phys_blk = emu_find_memblk_by_nid(i, pi);
282                         if (phys_blk < 0) {
283                                 node_clear(i, physnode_mask);
284                                 continue;
285                         }
286 
287                         start = pi->blk[phys_blk].start;
288                         limit = pi->blk[phys_blk].end;
289 
290                         if (uniform)
291                                 end = start + size;
292                         else
293                                 end = find_end_of_node(start, limit, size);
294                         /*
295                          * If there won't be at least FAKE_NODE_MIN_SIZE of
296                          * non-reserved memory in ZONE_DMA32 for the next node,
297                          * this one must extend to the boundary.
298                          */
299                         if (end < dma32_end && dma32_end - end -
300                             mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
301                                 end = dma32_end;
302 
303                         /*
304                          * If there won't be enough non-reserved memory for the
305                          * next node, this one must extend to the end of the
306                          * physical node.
307                          */
308                         if ((limit - end - mem_hole_size(end, limit) < size)
309                                         && !uniform)
310                                 end = limit;
311 
312                         ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
313                                                phys_blk,
314                                                min(end, limit) - start);
315                         if (ret < 0)
316                                 return ret;
317                 }
318         }
319         return nid;
320 }
321 
322 static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
323                                               struct numa_meminfo *pi,
324                                               u64 addr, u64 max_addr, u64 size)
325 {
326         return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
327                         0, NULL, 0);
328 }
329 
330 static int __init setup_emu2phys_nid(int *dfl_phys_nid)
331 {
332         int i, max_emu_nid = 0;
333 
334         *dfl_phys_nid = NUMA_NO_NODE;
335         for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
336                 if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
337                         max_emu_nid = i;
338                         if (*dfl_phys_nid == NUMA_NO_NODE)
339                                 *dfl_phys_nid = emu_nid_to_phys[i];
340                 }
341         }
342 
343         return max_emu_nid;
344 }
345 
346 /**
347  * numa_emulation - Emulate NUMA nodes
348  * @numa_meminfo: NUMA configuration to massage
349  * @numa_dist_cnt: The size of the physical NUMA distance table
350  *
351  * Emulate NUMA nodes according to the numa=fake kernel parameter.
352  * @numa_meminfo contains the physical memory configuration and is modified
353  * to reflect the emulated configuration on success.  @numa_dist_cnt is
354  * used to determine the size of the physical distance table.
355  *
356  * On success, the following modifications are made.
357  *
358  * - @numa_meminfo is updated to reflect the emulated nodes.
359  *
360  * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
361  *   emulated nodes.
362  *
363  * - NUMA distance table is rebuilt to represent distances between emulated
364  *   nodes.  The distances are determined considering how emulated nodes
365  *   are mapped to physical nodes and match the actual distances.
366  *
367  * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
368  *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
369  *
370  * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
371  * identity mapping and no other modification is made.
372  */
373 void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
374 {
375         static struct numa_meminfo ei __initdata;
376         static struct numa_meminfo pi __initdata;
377         const u64 max_addr = PFN_PHYS(max_pfn);
378         u8 *phys_dist = NULL;
379         size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
380         int max_emu_nid, dfl_phys_nid;
381         int i, j, ret;
382 
383         if (!emu_cmdline)
384                 goto no_emu;
385 
386         memset(&ei, 0, sizeof(ei));
387         pi = *numa_meminfo;
388 
389         for (i = 0; i < MAX_NUMNODES; i++)
390                 emu_nid_to_phys[i] = NUMA_NO_NODE;
391 
392         /*
393          * If the numa=fake command-line contains a 'M' or 'G', it represents
394          * the fixed node size.  Otherwise, if it is just a single number N,
395          * split the system RAM into N fake nodes.
396          */
397         if (strchr(emu_cmdline, 'U')) {
398                 nodemask_t physnode_mask = numa_nodes_parsed;
399                 unsigned long n;
400                 int nid = 0;
401 
402                 n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
403                 ret = -1;
404                 for_each_node_mask(i, physnode_mask) {
405                         /*
406                          * The reason we pass in blk[0] is due to
407                          * numa_remove_memblk_from() called by
408                          * emu_setup_memblk() will delete entry 0
409                          * and then move everything else up in the pi.blk
410                          * array. Therefore we should always be looking
411                          * at blk[0].
412                          */
413                         ret = split_nodes_size_interleave_uniform(&ei, &pi,
414                                         pi.blk[0].start, pi.blk[0].end, 0,
415                                         n, &pi.blk[0], nid);
416                         if (ret < 0)
417                                 break;
418                         if (ret < n) {
419                                 pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
420                                                 __func__, i, ret, n);
421                                 ret = -1;
422                                 break;
423                         }
424                         nid = ret;
425                 }
426         } else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
427                 u64 size;
428 
429                 size = memparse(emu_cmdline, &emu_cmdline);
430                 ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
431         } else {
432                 unsigned long n;
433 
434                 n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
435                 ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
436         }
437         if (*emu_cmdline == ':')
438                 emu_cmdline++;
439 
440         if (ret < 0)
441                 goto no_emu;
442 
443         if (numa_cleanup_meminfo(&ei) < 0) {
444                 pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
445                 goto no_emu;
446         }
447 
448         /* copy the physical distance table */
449         if (numa_dist_cnt) {
450                 phys_dist = memblock_alloc(phys_size, PAGE_SIZE);
451                 if (!phys_dist) {
452                         pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
453                         goto no_emu;
454                 }
455 
456                 for (i = 0; i < numa_dist_cnt; i++)
457                         for (j = 0; j < numa_dist_cnt; j++)
458                                 phys_dist[i * numa_dist_cnt + j] =
459                                         node_distance(i, j);
460         }
461 
462         /*
463          * Determine the max emulated nid and the default phys nid to use
464          * for unmapped nodes.
465          */
466         max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
467 
468         /* commit */
469         *numa_meminfo = ei;
470 
471         /* Make sure numa_nodes_parsed only contains emulated nodes */
472         nodes_clear(numa_nodes_parsed);
473         for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
474                 if (ei.blk[i].start != ei.blk[i].end &&
475                     ei.blk[i].nid != NUMA_NO_NODE)
476                         node_set(ei.blk[i].nid, numa_nodes_parsed);
477 
478         numa_emu_update_cpu_to_node(emu_nid_to_phys, ARRAY_SIZE(emu_nid_to_phys));
479 
480         /* make sure all emulated nodes are mapped to a physical node */
481         for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
482                 if (emu_nid_to_phys[i] == NUMA_NO_NODE)
483                         emu_nid_to_phys[i] = dfl_phys_nid;
484 
485         /* transform distance table */
486         numa_reset_distance();
487         for (i = 0; i < max_emu_nid + 1; i++) {
488                 for (j = 0; j < max_emu_nid + 1; j++) {
489                         int physi = emu_nid_to_phys[i];
490                         int physj = emu_nid_to_phys[j];
491                         int dist;
492 
493                         if (get_option(&emu_cmdline, &dist) == 2)
494                                 ;
495                         else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
496                                 dist = physi == physj ?
497                                         LOCAL_DISTANCE : REMOTE_DISTANCE;
498                         else
499                                 dist = phys_dist[physi * numa_dist_cnt + physj];
500 
501                         numa_set_distance(i, j, dist);
502                 }
503         }
504 
505         /* free the copied physical distance table */
506         memblock_free(phys_dist, phys_size);
507         return;
508 
509 no_emu:
510         /* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
511         for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
512                 emu_nid_to_phys[i] = i;
513 }
514 
515 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
516 void numa_add_cpu(unsigned int cpu)
517 {
518         int physnid, nid;
519 
520         nid = early_cpu_to_node(cpu);
521         BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
522 
523         physnid = emu_nid_to_phys[nid];
524 
525         /*
526          * Map the cpu to each emulated node that is allocated on the physical
527          * node of the cpu's apic id.
528          */
529         for_each_online_node(nid)
530                 if (emu_nid_to_phys[nid] == physnid)
531                         cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
532 }
533 
534 void numa_remove_cpu(unsigned int cpu)
535 {
536         int i;
537 
538         for_each_online_node(i)
539                 cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
540 }
541 #else   /* !CONFIG_DEBUG_PER_CPU_MAPS */
542 static void numa_set_cpumask(unsigned int cpu, bool enable)
543 {
544         int nid, physnid;
545 
546         nid = early_cpu_to_node(cpu);
547         if (nid == NUMA_NO_NODE) {
548                 /* early_cpu_to_node() already emits a warning and trace */
549                 return;
550         }
551 
552         physnid = emu_nid_to_phys[nid];
553 
554         for_each_online_node(nid) {
555                 if (emu_nid_to_phys[nid] != physnid)
556                         continue;
557 
558                 debug_cpumask_set_cpu(cpu, nid, enable);
559         }
560 }
561 
562 void numa_add_cpu(unsigned int cpu)
563 {
564         numa_set_cpumask(cpu, true);
565 }
566 
567 void numa_remove_cpu(unsigned int cpu)
568 {
569         numa_set_cpumask(cpu, false);
570 }
571 #endif  /* !CONFIG_DEBUG_PER_CPU_MAPS */
572 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php