~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/oom_kill.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/mm/oom_kill.c
  4  * 
  5  *  Copyright (C)  1998,2000  Rik van Riel
  6  *      Thanks go out to Claus Fischer for some serious inspiration and
  7  *      for goading me into coding this file...
  8  *  Copyright (C)  2010  Google, Inc.
  9  *      Rewritten by David Rientjes
 10  *
 11  *  The routines in this file are used to kill a process when
 12  *  we're seriously out of memory. This gets called from __alloc_pages()
 13  *  in mm/page_alloc.c when we really run out of memory.
 14  *
 15  *  Since we won't call these routines often (on a well-configured
 16  *  machine) this file will double as a 'coding guide' and a signpost
 17  *  for newbie kernel hackers. It features several pointers to major
 18  *  kernel subsystems and hints as to where to find out what things do.
 19  */
 20 
 21 #include <linux/oom.h>
 22 #include <linux/mm.h>
 23 #include <linux/err.h>
 24 #include <linux/gfp.h>
 25 #include <linux/sched.h>
 26 #include <linux/sched/mm.h>
 27 #include <linux/sched/coredump.h>
 28 #include <linux/sched/task.h>
 29 #include <linux/sched/debug.h>
 30 #include <linux/swap.h>
 31 #include <linux/syscalls.h>
 32 #include <linux/timex.h>
 33 #include <linux/jiffies.h>
 34 #include <linux/cpuset.h>
 35 #include <linux/export.h>
 36 #include <linux/notifier.h>
 37 #include <linux/memcontrol.h>
 38 #include <linux/mempolicy.h>
 39 #include <linux/security.h>
 40 #include <linux/ptrace.h>
 41 #include <linux/freezer.h>
 42 #include <linux/ftrace.h>
 43 #include <linux/ratelimit.h>
 44 #include <linux/kthread.h>
 45 #include <linux/init.h>
 46 #include <linux/mmu_notifier.h>
 47 #include <linux/cred.h>
 48 
 49 #include <asm/tlb.h>
 50 #include "internal.h"
 51 #include "slab.h"
 52 
 53 #define CREATE_TRACE_POINTS
 54 #include <trace/events/oom.h>
 55 
 56 static int sysctl_panic_on_oom;
 57 static int sysctl_oom_kill_allocating_task;
 58 static int sysctl_oom_dump_tasks = 1;
 59 
 60 /*
 61  * Serializes oom killer invocations (out_of_memory()) from all contexts to
 62  * prevent from over eager oom killing (e.g. when the oom killer is invoked
 63  * from different domains).
 64  *
 65  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
 66  * and mark_oom_victim
 67  */
 68 DEFINE_MUTEX(oom_lock);
 69 /* Serializes oom_score_adj and oom_score_adj_min updates */
 70 DEFINE_MUTEX(oom_adj_mutex);
 71 
 72 static inline bool is_memcg_oom(struct oom_control *oc)
 73 {
 74         return oc->memcg != NULL;
 75 }
 76 
 77 #ifdef CONFIG_NUMA
 78 /**
 79  * oom_cpuset_eligible() - check task eligibility for kill
 80  * @start: task struct of which task to consider
 81  * @oc: pointer to struct oom_control
 82  *
 83  * Task eligibility is determined by whether or not a candidate task, @tsk,
 84  * shares the same mempolicy nodes as current if it is bound by such a policy
 85  * and whether or not it has the same set of allowed cpuset nodes.
 86  *
 87  * This function is assuming oom-killer context and 'current' has triggered
 88  * the oom-killer.
 89  */
 90 static bool oom_cpuset_eligible(struct task_struct *start,
 91                                 struct oom_control *oc)
 92 {
 93         struct task_struct *tsk;
 94         bool ret = false;
 95         const nodemask_t *mask = oc->nodemask;
 96 
 97         rcu_read_lock();
 98         for_each_thread(start, tsk) {
 99                 if (mask) {
100                         /*
101                          * If this is a mempolicy constrained oom, tsk's
102                          * cpuset is irrelevant.  Only return true if its
103                          * mempolicy intersects current, otherwise it may be
104                          * needlessly killed.
105                          */
106                         ret = mempolicy_in_oom_domain(tsk, mask);
107                 } else {
108                         /*
109                          * This is not a mempolicy constrained oom, so only
110                          * check the mems of tsk's cpuset.
111                          */
112                         ret = cpuset_mems_allowed_intersects(current, tsk);
113                 }
114                 if (ret)
115                         break;
116         }
117         rcu_read_unlock();
118 
119         return ret;
120 }
121 #else
122 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123 {
124         return true;
125 }
126 #endif /* CONFIG_NUMA */
127 
128 /*
129  * The process p may have detached its own ->mm while exiting or through
130  * kthread_use_mm(), but one or more of its subthreads may still have a valid
131  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
132  * task_lock() held.
133  */
134 struct task_struct *find_lock_task_mm(struct task_struct *p)
135 {
136         struct task_struct *t;
137 
138         rcu_read_lock();
139 
140         for_each_thread(p, t) {
141                 task_lock(t);
142                 if (likely(t->mm))
143                         goto found;
144                 task_unlock(t);
145         }
146         t = NULL;
147 found:
148         rcu_read_unlock();
149 
150         return t;
151 }
152 
153 /*
154  * order == -1 means the oom kill is required by sysrq, otherwise only
155  * for display purposes.
156  */
157 static inline bool is_sysrq_oom(struct oom_control *oc)
158 {
159         return oc->order == -1;
160 }
161 
162 /* return true if the task is not adequate as candidate victim task. */
163 static bool oom_unkillable_task(struct task_struct *p)
164 {
165         if (is_global_init(p))
166                 return true;
167         if (p->flags & PF_KTHREAD)
168                 return true;
169         return false;
170 }
171 
172 /*
173  * Check whether unreclaimable slab amount is greater than
174  * all user memory(LRU pages).
175  * dump_unreclaimable_slab() could help in the case that
176  * oom due to too much unreclaimable slab used by kernel.
177 */
178 static bool should_dump_unreclaim_slab(void)
179 {
180         unsigned long nr_lru;
181 
182         nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183                  global_node_page_state(NR_INACTIVE_ANON) +
184                  global_node_page_state(NR_ACTIVE_FILE) +
185                  global_node_page_state(NR_INACTIVE_FILE) +
186                  global_node_page_state(NR_ISOLATED_ANON) +
187                  global_node_page_state(NR_ISOLATED_FILE) +
188                  global_node_page_state(NR_UNEVICTABLE);
189 
190         return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191 }
192 
193 /**
194  * oom_badness - heuristic function to determine which candidate task to kill
195  * @p: task struct of which task we should calculate
196  * @totalpages: total present RAM allowed for page allocation
197  *
198  * The heuristic for determining which task to kill is made to be as simple and
199  * predictable as possible.  The goal is to return the highest value for the
200  * task consuming the most memory to avoid subsequent oom failures.
201  */
202 long oom_badness(struct task_struct *p, unsigned long totalpages)
203 {
204         long points;
205         long adj;
206 
207         if (oom_unkillable_task(p))
208                 return LONG_MIN;
209 
210         p = find_lock_task_mm(p);
211         if (!p)
212                 return LONG_MIN;
213 
214         /*
215          * Do not even consider tasks which are explicitly marked oom
216          * unkillable or have been already oom reaped or the are in
217          * the middle of vfork
218          */
219         adj = (long)p->signal->oom_score_adj;
220         if (adj == OOM_SCORE_ADJ_MIN ||
221                         test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222                         in_vfork(p)) {
223                 task_unlock(p);
224                 return LONG_MIN;
225         }
226 
227         /*
228          * The baseline for the badness score is the proportion of RAM that each
229          * task's rss, pagetable and swap space use.
230          */
231         points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232                 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233         task_unlock(p);
234 
235         /* Normalize to oom_score_adj units */
236         adj *= totalpages / 1000;
237         points += adj;
238 
239         return points;
240 }
241 
242 static const char * const oom_constraint_text[] = {
243         [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244         [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245         [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246         [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247 };
248 
249 /*
250  * Determine the type of allocation constraint.
251  */
252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 {
254         struct zone *zone;
255         struct zoneref *z;
256         enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257         bool cpuset_limited = false;
258         int nid;
259 
260         if (is_memcg_oom(oc)) {
261                 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262                 return CONSTRAINT_MEMCG;
263         }
264 
265         /* Default to all available memory */
266         oc->totalpages = totalram_pages() + total_swap_pages;
267 
268         if (!IS_ENABLED(CONFIG_NUMA))
269                 return CONSTRAINT_NONE;
270 
271         if (!oc->zonelist)
272                 return CONSTRAINT_NONE;
273         /*
274          * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275          * to kill current.We have to random task kill in this case.
276          * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277          */
278         if (oc->gfp_mask & __GFP_THISNODE)
279                 return CONSTRAINT_NONE;
280 
281         /*
282          * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283          * the page allocator means a mempolicy is in effect.  Cpuset policy
284          * is enforced in get_page_from_freelist().
285          */
286         if (oc->nodemask &&
287             !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288                 oc->totalpages = total_swap_pages;
289                 for_each_node_mask(nid, *oc->nodemask)
290                         oc->totalpages += node_present_pages(nid);
291                 return CONSTRAINT_MEMORY_POLICY;
292         }
293 
294         /* Check this allocation failure is caused by cpuset's wall function */
295         for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296                         highest_zoneidx, oc->nodemask)
297                 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298                         cpuset_limited = true;
299 
300         if (cpuset_limited) {
301                 oc->totalpages = total_swap_pages;
302                 for_each_node_mask(nid, cpuset_current_mems_allowed)
303                         oc->totalpages += node_present_pages(nid);
304                 return CONSTRAINT_CPUSET;
305         }
306         return CONSTRAINT_NONE;
307 }
308 
309 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 {
311         struct oom_control *oc = arg;
312         long points;
313 
314         if (oom_unkillable_task(task))
315                 goto next;
316 
317         /* p may not have freeable memory in nodemask */
318         if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319                 goto next;
320 
321         /*
322          * This task already has access to memory reserves and is being killed.
323          * Don't allow any other task to have access to the reserves unless
324          * the task has MMF_OOM_SKIP because chances that it would release
325          * any memory is quite low.
326          */
327         if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328                 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329                         goto next;
330                 goto abort;
331         }
332 
333         /*
334          * If task is allocating a lot of memory and has been marked to be
335          * killed first if it triggers an oom, then select it.
336          */
337         if (oom_task_origin(task)) {
338                 points = LONG_MAX;
339                 goto select;
340         }
341 
342         points = oom_badness(task, oc->totalpages);
343         if (points == LONG_MIN || points < oc->chosen_points)
344                 goto next;
345 
346 select:
347         if (oc->chosen)
348                 put_task_struct(oc->chosen);
349         get_task_struct(task);
350         oc->chosen = task;
351         oc->chosen_points = points;
352 next:
353         return 0;
354 abort:
355         if (oc->chosen)
356                 put_task_struct(oc->chosen);
357         oc->chosen = (void *)-1UL;
358         return 1;
359 }
360 
361 /*
362  * Simple selection loop. We choose the process with the highest number of
363  * 'points'. In case scan was aborted, oc->chosen is set to -1.
364  */
365 static void select_bad_process(struct oom_control *oc)
366 {
367         oc->chosen_points = LONG_MIN;
368 
369         if (is_memcg_oom(oc))
370                 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371         else {
372                 struct task_struct *p;
373 
374                 rcu_read_lock();
375                 for_each_process(p)
376                         if (oom_evaluate_task(p, oc))
377                                 break;
378                 rcu_read_unlock();
379         }
380 }
381 
382 static int dump_task(struct task_struct *p, void *arg)
383 {
384         struct oom_control *oc = arg;
385         struct task_struct *task;
386 
387         if (oom_unkillable_task(p))
388                 return 0;
389 
390         /* p may not have freeable memory in nodemask */
391         if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392                 return 0;
393 
394         task = find_lock_task_mm(p);
395         if (!task) {
396                 /*
397                  * All of p's threads have already detached their mm's. There's
398                  * no need to report them; they can't be oom killed anyway.
399                  */
400                 return 0;
401         }
402 
403         pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
404                 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405                 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406                 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407                 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408                 get_mm_counter(task->mm, MM_SWAPENTS),
409                 task->signal->oom_score_adj, task->comm);
410         task_unlock(task);
411 
412         return 0;
413 }
414 
415 /**
416  * dump_tasks - dump current memory state of all system tasks
417  * @oc: pointer to struct oom_control
418  *
419  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
420  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421  * are not shown.
422  * State information includes task's pid, uid, tgid, vm size, rss,
423  * pgtables_bytes, swapents, oom_score_adj value, and name.
424  */
425 static void dump_tasks(struct oom_control *oc)
426 {
427         pr_info("Tasks state (memory values in pages):\n");
428         pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429 
430         if (is_memcg_oom(oc))
431                 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432         else {
433                 struct task_struct *p;
434 
435                 rcu_read_lock();
436                 for_each_process(p)
437                         dump_task(p, oc);
438                 rcu_read_unlock();
439         }
440 }
441 
442 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
443 {
444         /* one line summary of the oom killer context. */
445         pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
446                         oom_constraint_text[oc->constraint],
447                         nodemask_pr_args(oc->nodemask));
448         cpuset_print_current_mems_allowed();
449         mem_cgroup_print_oom_context(oc->memcg, victim);
450         pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
451                 from_kuid(&init_user_ns, task_uid(victim)));
452 }
453 
454 static void dump_header(struct oom_control *oc)
455 {
456         pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
457                 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
458                         current->signal->oom_score_adj);
459         if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
460                 pr_warn("COMPACTION is disabled!!!\n");
461 
462         dump_stack();
463         if (is_memcg_oom(oc))
464                 mem_cgroup_print_oom_meminfo(oc->memcg);
465         else {
466                 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
467                 if (should_dump_unreclaim_slab())
468                         dump_unreclaimable_slab();
469         }
470         if (sysctl_oom_dump_tasks)
471                 dump_tasks(oc);
472 }
473 
474 /*
475  * Number of OOM victims in flight
476  */
477 static atomic_t oom_victims = ATOMIC_INIT(0);
478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479 
480 static bool oom_killer_disabled __read_mostly;
481 
482 /*
483  * task->mm can be NULL if the task is the exited group leader.  So to
484  * determine whether the task is using a particular mm, we examine all the
485  * task's threads: if one of those is using this mm then this task was also
486  * using it.
487  */
488 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
489 {
490         struct task_struct *t;
491 
492         for_each_thread(p, t) {
493                 struct mm_struct *t_mm = READ_ONCE(t->mm);
494                 if (t_mm)
495                         return t_mm == mm;
496         }
497         return false;
498 }
499 
500 #ifdef CONFIG_MMU
501 /*
502  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
503  * victim (if that is possible) to help the OOM killer to move on.
504  */
505 static struct task_struct *oom_reaper_th;
506 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
507 static struct task_struct *oom_reaper_list;
508 static DEFINE_SPINLOCK(oom_reaper_lock);
509 
510 static bool __oom_reap_task_mm(struct mm_struct *mm)
511 {
512         struct vm_area_struct *vma;
513         bool ret = true;
514         VMA_ITERATOR(vmi, mm, 0);
515 
516         /*
517          * Tell all users of get_user/copy_from_user etc... that the content
518          * is no longer stable. No barriers really needed because unmapping
519          * should imply barriers already and the reader would hit a page fault
520          * if it stumbled over a reaped memory.
521          */
522         set_bit(MMF_UNSTABLE, &mm->flags);
523 
524         for_each_vma(vmi, vma) {
525                 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
526                         continue;
527 
528                 /*
529                  * Only anonymous pages have a good chance to be dropped
530                  * without additional steps which we cannot afford as we
531                  * are OOM already.
532                  *
533                  * We do not even care about fs backed pages because all
534                  * which are reclaimable have already been reclaimed and
535                  * we do not want to block exit_mmap by keeping mm ref
536                  * count elevated without a good reason.
537                  */
538                 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
539                         struct mmu_notifier_range range;
540                         struct mmu_gather tlb;
541 
542                         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
543                                                 mm, vma->vm_start,
544                                                 vma->vm_end);
545                         tlb_gather_mmu(&tlb, mm);
546                         if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
547                                 tlb_finish_mmu(&tlb);
548                                 ret = false;
549                                 continue;
550                         }
551                         unmap_page_range(&tlb, vma, range.start, range.end, NULL);
552                         mmu_notifier_invalidate_range_end(&range);
553                         tlb_finish_mmu(&tlb);
554                 }
555         }
556 
557         return ret;
558 }
559 
560 /*
561  * Reaps the address space of the give task.
562  *
563  * Returns true on success and false if none or part of the address space
564  * has been reclaimed and the caller should retry later.
565  */
566 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
567 {
568         bool ret = true;
569 
570         if (!mmap_read_trylock(mm)) {
571                 trace_skip_task_reaping(tsk->pid);
572                 return false;
573         }
574 
575         /*
576          * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
577          * work on the mm anymore. The check for MMF_OOM_SKIP must run
578          * under mmap_lock for reading because it serializes against the
579          * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
580          */
581         if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
582                 trace_skip_task_reaping(tsk->pid);
583                 goto out_unlock;
584         }
585 
586         trace_start_task_reaping(tsk->pid);
587 
588         /* failed to reap part of the address space. Try again later */
589         ret = __oom_reap_task_mm(mm);
590         if (!ret)
591                 goto out_finish;
592 
593         pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
594                         task_pid_nr(tsk), tsk->comm,
595                         K(get_mm_counter(mm, MM_ANONPAGES)),
596                         K(get_mm_counter(mm, MM_FILEPAGES)),
597                         K(get_mm_counter(mm, MM_SHMEMPAGES)));
598 out_finish:
599         trace_finish_task_reaping(tsk->pid);
600 out_unlock:
601         mmap_read_unlock(mm);
602 
603         return ret;
604 }
605 
606 #define MAX_OOM_REAP_RETRIES 10
607 static void oom_reap_task(struct task_struct *tsk)
608 {
609         int attempts = 0;
610         struct mm_struct *mm = tsk->signal->oom_mm;
611 
612         /* Retry the mmap_read_trylock(mm) a few times */
613         while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
614                 schedule_timeout_idle(HZ/10);
615 
616         if (attempts <= MAX_OOM_REAP_RETRIES ||
617             test_bit(MMF_OOM_SKIP, &mm->flags))
618                 goto done;
619 
620         pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
621                 task_pid_nr(tsk), tsk->comm);
622         sched_show_task(tsk);
623         debug_show_all_locks();
624 
625 done:
626         tsk->oom_reaper_list = NULL;
627 
628         /*
629          * Hide this mm from OOM killer because it has been either reaped or
630          * somebody can't call mmap_write_unlock(mm).
631          */
632         set_bit(MMF_OOM_SKIP, &mm->flags);
633 
634         /* Drop a reference taken by queue_oom_reaper */
635         put_task_struct(tsk);
636 }
637 
638 static int oom_reaper(void *unused)
639 {
640         set_freezable();
641 
642         while (true) {
643                 struct task_struct *tsk = NULL;
644 
645                 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646                 spin_lock_irq(&oom_reaper_lock);
647                 if (oom_reaper_list != NULL) {
648                         tsk = oom_reaper_list;
649                         oom_reaper_list = tsk->oom_reaper_list;
650                 }
651                 spin_unlock_irq(&oom_reaper_lock);
652 
653                 if (tsk)
654                         oom_reap_task(tsk);
655         }
656 
657         return 0;
658 }
659 
660 static void wake_oom_reaper(struct timer_list *timer)
661 {
662         struct task_struct *tsk = container_of(timer, struct task_struct,
663                         oom_reaper_timer);
664         struct mm_struct *mm = tsk->signal->oom_mm;
665         unsigned long flags;
666 
667         /* The victim managed to terminate on its own - see exit_mmap */
668         if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
669                 put_task_struct(tsk);
670                 return;
671         }
672 
673         spin_lock_irqsave(&oom_reaper_lock, flags);
674         tsk->oom_reaper_list = oom_reaper_list;
675         oom_reaper_list = tsk;
676         spin_unlock_irqrestore(&oom_reaper_lock, flags);
677         trace_wake_reaper(tsk->pid);
678         wake_up(&oom_reaper_wait);
679 }
680 
681 /*
682  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
683  * The timers timeout is arbitrary... the longer it is, the longer the worst
684  * case scenario for the OOM can take. If it is too small, the oom_reaper can
685  * get in the way and release resources needed by the process exit path.
686  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
687  * before the exit path is able to wake the futex waiters.
688  */
689 #define OOM_REAPER_DELAY (2*HZ)
690 static void queue_oom_reaper(struct task_struct *tsk)
691 {
692         /* mm is already queued? */
693         if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
694                 return;
695 
696         get_task_struct(tsk);
697         timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
698         tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
699         add_timer(&tsk->oom_reaper_timer);
700 }
701 
702 #ifdef CONFIG_SYSCTL
703 static struct ctl_table vm_oom_kill_table[] = {
704         {
705                 .procname       = "panic_on_oom",
706                 .data           = &sysctl_panic_on_oom,
707                 .maxlen         = sizeof(sysctl_panic_on_oom),
708                 .mode           = 0644,
709                 .proc_handler   = proc_dointvec_minmax,
710                 .extra1         = SYSCTL_ZERO,
711                 .extra2         = SYSCTL_TWO,
712         },
713         {
714                 .procname       = "oom_kill_allocating_task",
715                 .data           = &sysctl_oom_kill_allocating_task,
716                 .maxlen         = sizeof(sysctl_oom_kill_allocating_task),
717                 .mode           = 0644,
718                 .proc_handler   = proc_dointvec,
719         },
720         {
721                 .procname       = "oom_dump_tasks",
722                 .data           = &sysctl_oom_dump_tasks,
723                 .maxlen         = sizeof(sysctl_oom_dump_tasks),
724                 .mode           = 0644,
725                 .proc_handler   = proc_dointvec,
726         },
727 };
728 #endif
729 
730 static int __init oom_init(void)
731 {
732         oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
733 #ifdef CONFIG_SYSCTL
734         register_sysctl_init("vm", vm_oom_kill_table);
735 #endif
736         return 0;
737 }
738 subsys_initcall(oom_init)
739 #else
740 static inline void queue_oom_reaper(struct task_struct *tsk)
741 {
742 }
743 #endif /* CONFIG_MMU */
744 
745 /**
746  * mark_oom_victim - mark the given task as OOM victim
747  * @tsk: task to mark
748  *
749  * Has to be called with oom_lock held and never after
750  * oom has been disabled already.
751  *
752  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
753  * under task_lock or operate on the current).
754  */
755 static void mark_oom_victim(struct task_struct *tsk)
756 {
757         const struct cred *cred;
758         struct mm_struct *mm = tsk->mm;
759 
760         WARN_ON(oom_killer_disabled);
761         /* OOM killer might race with memcg OOM */
762         if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
763                 return;
764 
765         /* oom_mm is bound to the signal struct life time. */
766         if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
767                 mmgrab(tsk->signal->oom_mm);
768 
769         /*
770          * Make sure that the task is woken up from uninterruptible sleep
771          * if it is frozen because OOM killer wouldn't be able to free
772          * any memory and livelock. freezing_slow_path will tell the freezer
773          * that TIF_MEMDIE tasks should be ignored.
774          */
775         __thaw_task(tsk);
776         atomic_inc(&oom_victims);
777         cred = get_task_cred(tsk);
778         trace_mark_victim(tsk, cred->uid.val);
779         put_cred(cred);
780 }
781 
782 /**
783  * exit_oom_victim - note the exit of an OOM victim
784  */
785 void exit_oom_victim(void)
786 {
787         clear_thread_flag(TIF_MEMDIE);
788 
789         if (!atomic_dec_return(&oom_victims))
790                 wake_up_all(&oom_victims_wait);
791 }
792 
793 /**
794  * oom_killer_enable - enable OOM killer
795  */
796 void oom_killer_enable(void)
797 {
798         oom_killer_disabled = false;
799         pr_info("OOM killer enabled.\n");
800 }
801 
802 /**
803  * oom_killer_disable - disable OOM killer
804  * @timeout: maximum timeout to wait for oom victims in jiffies
805  *
806  * Forces all page allocations to fail rather than trigger OOM killer.
807  * Will block and wait until all OOM victims are killed or the given
808  * timeout expires.
809  *
810  * The function cannot be called when there are runnable user tasks because
811  * the userspace would see unexpected allocation failures as a result. Any
812  * new usage of this function should be consulted with MM people.
813  *
814  * Returns true if successful and false if the OOM killer cannot be
815  * disabled.
816  */
817 bool oom_killer_disable(signed long timeout)
818 {
819         signed long ret;
820 
821         /*
822          * Make sure to not race with an ongoing OOM killer. Check that the
823          * current is not killed (possibly due to sharing the victim's memory).
824          */
825         if (mutex_lock_killable(&oom_lock))
826                 return false;
827         oom_killer_disabled = true;
828         mutex_unlock(&oom_lock);
829 
830         ret = wait_event_interruptible_timeout(oom_victims_wait,
831                         !atomic_read(&oom_victims), timeout);
832         if (ret <= 0) {
833                 oom_killer_enable();
834                 return false;
835         }
836         pr_info("OOM killer disabled.\n");
837 
838         return true;
839 }
840 
841 static inline bool __task_will_free_mem(struct task_struct *task)
842 {
843         struct signal_struct *sig = task->signal;
844 
845         /*
846          * A coredumping process may sleep for an extended period in
847          * coredump_task_exit(), so the oom killer cannot assume that
848          * the process will promptly exit and release memory.
849          */
850         if (sig->core_state)
851                 return false;
852 
853         if (sig->flags & SIGNAL_GROUP_EXIT)
854                 return true;
855 
856         if (thread_group_empty(task) && (task->flags & PF_EXITING))
857                 return true;
858 
859         return false;
860 }
861 
862 /*
863  * Checks whether the given task is dying or exiting and likely to
864  * release its address space. This means that all threads and processes
865  * sharing the same mm have to be killed or exiting.
866  * Caller has to make sure that task->mm is stable (hold task_lock or
867  * it operates on the current).
868  */
869 static bool task_will_free_mem(struct task_struct *task)
870 {
871         struct mm_struct *mm = task->mm;
872         struct task_struct *p;
873         bool ret = true;
874 
875         /*
876          * Skip tasks without mm because it might have passed its exit_mm and
877          * exit_oom_victim. oom_reaper could have rescued that but do not rely
878          * on that for now. We can consider find_lock_task_mm in future.
879          */
880         if (!mm)
881                 return false;
882 
883         if (!__task_will_free_mem(task))
884                 return false;
885 
886         /*
887          * This task has already been drained by the oom reaper so there are
888          * only small chances it will free some more
889          */
890         if (test_bit(MMF_OOM_SKIP, &mm->flags))
891                 return false;
892 
893         if (atomic_read(&mm->mm_users) <= 1)
894                 return true;
895 
896         /*
897          * Make sure that all tasks which share the mm with the given tasks
898          * are dying as well to make sure that a) nobody pins its mm and
899          * b) the task is also reapable by the oom reaper.
900          */
901         rcu_read_lock();
902         for_each_process(p) {
903                 if (!process_shares_mm(p, mm))
904                         continue;
905                 if (same_thread_group(task, p))
906                         continue;
907                 ret = __task_will_free_mem(p);
908                 if (!ret)
909                         break;
910         }
911         rcu_read_unlock();
912 
913         return ret;
914 }
915 
916 static void __oom_kill_process(struct task_struct *victim, const char *message)
917 {
918         struct task_struct *p;
919         struct mm_struct *mm;
920         bool can_oom_reap = true;
921 
922         p = find_lock_task_mm(victim);
923         if (!p) {
924                 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
925                         message, task_pid_nr(victim), victim->comm);
926                 put_task_struct(victim);
927                 return;
928         } else if (victim != p) {
929                 get_task_struct(p);
930                 put_task_struct(victim);
931                 victim = p;
932         }
933 
934         /* Get a reference to safely compare mm after task_unlock(victim) */
935         mm = victim->mm;
936         mmgrab(mm);
937 
938         /* Raise event before sending signal: task reaper must see this */
939         count_vm_event(OOM_KILL);
940         memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
941 
942         /*
943          * We should send SIGKILL before granting access to memory reserves
944          * in order to prevent the OOM victim from depleting the memory
945          * reserves from the user space under its control.
946          */
947         do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
948         mark_oom_victim(victim);
949         pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
950                 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
951                 K(get_mm_counter(mm, MM_ANONPAGES)),
952                 K(get_mm_counter(mm, MM_FILEPAGES)),
953                 K(get_mm_counter(mm, MM_SHMEMPAGES)),
954                 from_kuid(&init_user_ns, task_uid(victim)),
955                 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
956         task_unlock(victim);
957 
958         /*
959          * Kill all user processes sharing victim->mm in other thread groups, if
960          * any.  They don't get access to memory reserves, though, to avoid
961          * depletion of all memory.  This prevents mm->mmap_lock livelock when an
962          * oom killed thread cannot exit because it requires the semaphore and
963          * its contended by another thread trying to allocate memory itself.
964          * That thread will now get access to memory reserves since it has a
965          * pending fatal signal.
966          */
967         rcu_read_lock();
968         for_each_process(p) {
969                 if (!process_shares_mm(p, mm))
970                         continue;
971                 if (same_thread_group(p, victim))
972                         continue;
973                 if (is_global_init(p)) {
974                         can_oom_reap = false;
975                         set_bit(MMF_OOM_SKIP, &mm->flags);
976                         pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
977                                         task_pid_nr(victim), victim->comm,
978                                         task_pid_nr(p), p->comm);
979                         continue;
980                 }
981                 /*
982                  * No kthread_use_mm() user needs to read from the userspace so
983                  * we are ok to reap it.
984                  */
985                 if (unlikely(p->flags & PF_KTHREAD))
986                         continue;
987                 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
988         }
989         rcu_read_unlock();
990 
991         if (can_oom_reap)
992                 queue_oom_reaper(victim);
993 
994         mmdrop(mm);
995         put_task_struct(victim);
996 }
997 
998 /*
999  * Kill provided task unless it's secured by setting
1000  * oom_score_adj to OOM_SCORE_ADJ_MIN.
1001  */
1002 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1003 {
1004         if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1005             !is_global_init(task)) {
1006                 get_task_struct(task);
1007                 __oom_kill_process(task, message);
1008         }
1009         return 0;
1010 }
1011 
1012 static void oom_kill_process(struct oom_control *oc, const char *message)
1013 {
1014         struct task_struct *victim = oc->chosen;
1015         struct mem_cgroup *oom_group;
1016         static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1017                                               DEFAULT_RATELIMIT_BURST);
1018 
1019         /*
1020          * If the task is already exiting, don't alarm the sysadmin or kill
1021          * its children or threads, just give it access to memory reserves
1022          * so it can die quickly
1023          */
1024         task_lock(victim);
1025         if (task_will_free_mem(victim)) {
1026                 mark_oom_victim(victim);
1027                 queue_oom_reaper(victim);
1028                 task_unlock(victim);
1029                 put_task_struct(victim);
1030                 return;
1031         }
1032         task_unlock(victim);
1033 
1034         if (__ratelimit(&oom_rs)) {
1035                 dump_header(oc);
1036                 dump_oom_victim(oc, victim);
1037         }
1038 
1039         /*
1040          * Do we need to kill the entire memory cgroup?
1041          * Or even one of the ancestor memory cgroups?
1042          * Check this out before killing the victim task.
1043          */
1044         oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1045 
1046         __oom_kill_process(victim, message);
1047 
1048         /*
1049          * If necessary, kill all tasks in the selected memory cgroup.
1050          */
1051         if (oom_group) {
1052                 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1053                 mem_cgroup_print_oom_group(oom_group);
1054                 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1055                                       (void *)message);
1056                 mem_cgroup_put(oom_group);
1057         }
1058 }
1059 
1060 /*
1061  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1062  */
1063 static void check_panic_on_oom(struct oom_control *oc)
1064 {
1065         if (likely(!sysctl_panic_on_oom))
1066                 return;
1067         if (sysctl_panic_on_oom != 2) {
1068                 /*
1069                  * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1070                  * does not panic for cpuset, mempolicy, or memcg allocation
1071                  * failures.
1072                  */
1073                 if (oc->constraint != CONSTRAINT_NONE)
1074                         return;
1075         }
1076         /* Do not panic for oom kills triggered by sysrq */
1077         if (is_sysrq_oom(oc))
1078                 return;
1079         dump_header(oc);
1080         panic("Out of memory: %s panic_on_oom is enabled\n",
1081                 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1082 }
1083 
1084 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1085 
1086 int register_oom_notifier(struct notifier_block *nb)
1087 {
1088         return blocking_notifier_chain_register(&oom_notify_list, nb);
1089 }
1090 EXPORT_SYMBOL_GPL(register_oom_notifier);
1091 
1092 int unregister_oom_notifier(struct notifier_block *nb)
1093 {
1094         return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1095 }
1096 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1097 
1098 /**
1099  * out_of_memory - kill the "best" process when we run out of memory
1100  * @oc: pointer to struct oom_control
1101  *
1102  * If we run out of memory, we have the choice between either
1103  * killing a random task (bad), letting the system crash (worse)
1104  * OR try to be smart about which process to kill. Note that we
1105  * don't have to be perfect here, we just have to be good.
1106  */
1107 bool out_of_memory(struct oom_control *oc)
1108 {
1109         unsigned long freed = 0;
1110 
1111         if (oom_killer_disabled)
1112                 return false;
1113 
1114         if (!is_memcg_oom(oc)) {
1115                 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1116                 if (freed > 0 && !is_sysrq_oom(oc))
1117                         /* Got some memory back in the last second. */
1118                         return true;
1119         }
1120 
1121         /*
1122          * If current has a pending SIGKILL or is exiting, then automatically
1123          * select it.  The goal is to allow it to allocate so that it may
1124          * quickly exit and free its memory.
1125          */
1126         if (task_will_free_mem(current)) {
1127                 mark_oom_victim(current);
1128                 queue_oom_reaper(current);
1129                 return true;
1130         }
1131 
1132         /*
1133          * The OOM killer does not compensate for IO-less reclaim.
1134          * But mem_cgroup_oom() has to invoke the OOM killer even
1135          * if it is a GFP_NOFS allocation.
1136          */
1137         if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1138                 return true;
1139 
1140         /*
1141          * Check if there were limitations on the allocation (only relevant for
1142          * NUMA and memcg) that may require different handling.
1143          */
1144         oc->constraint = constrained_alloc(oc);
1145         if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1146                 oc->nodemask = NULL;
1147         check_panic_on_oom(oc);
1148 
1149         if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1150             current->mm && !oom_unkillable_task(current) &&
1151             oom_cpuset_eligible(current, oc) &&
1152             current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1153                 get_task_struct(current);
1154                 oc->chosen = current;
1155                 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1156                 return true;
1157         }
1158 
1159         select_bad_process(oc);
1160         /* Found nothing?!?! */
1161         if (!oc->chosen) {
1162                 dump_header(oc);
1163                 pr_warn("Out of memory and no killable processes...\n");
1164                 /*
1165                  * If we got here due to an actual allocation at the
1166                  * system level, we cannot survive this and will enter
1167                  * an endless loop in the allocator. Bail out now.
1168                  */
1169                 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1170                         panic("System is deadlocked on memory\n");
1171         }
1172         if (oc->chosen && oc->chosen != (void *)-1UL)
1173                 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1174                                  "Memory cgroup out of memory");
1175         return !!oc->chosen;
1176 }
1177 
1178 /*
1179  * The pagefault handler calls here because some allocation has failed. We have
1180  * to take care of the memcg OOM here because this is the only safe context without
1181  * any locks held but let the oom killer triggered from the allocation context care
1182  * about the global OOM.
1183  */
1184 void pagefault_out_of_memory(void)
1185 {
1186         static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1187                                       DEFAULT_RATELIMIT_BURST);
1188 
1189         if (mem_cgroup_oom_synchronize(true))
1190                 return;
1191 
1192         if (fatal_signal_pending(current))
1193                 return;
1194 
1195         if (__ratelimit(&pfoom_rs))
1196                 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1197 }
1198 
1199 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1200 {
1201 #ifdef CONFIG_MMU
1202         struct mm_struct *mm = NULL;
1203         struct task_struct *task;
1204         struct task_struct *p;
1205         unsigned int f_flags;
1206         bool reap = false;
1207         long ret = 0;
1208 
1209         if (flags)
1210                 return -EINVAL;
1211 
1212         task = pidfd_get_task(pidfd, &f_flags);
1213         if (IS_ERR(task))
1214                 return PTR_ERR(task);
1215 
1216         /*
1217          * Make sure to choose a thread which still has a reference to mm
1218          * during the group exit
1219          */
1220         p = find_lock_task_mm(task);
1221         if (!p) {
1222                 ret = -ESRCH;
1223                 goto put_task;
1224         }
1225 
1226         mm = p->mm;
1227         mmgrab(mm);
1228 
1229         if (task_will_free_mem(p))
1230                 reap = true;
1231         else {
1232                 /* Error only if the work has not been done already */
1233                 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1234                         ret = -EINVAL;
1235         }
1236         task_unlock(p);
1237 
1238         if (!reap)
1239                 goto drop_mm;
1240 
1241         if (mmap_read_lock_killable(mm)) {
1242                 ret = -EINTR;
1243                 goto drop_mm;
1244         }
1245         /*
1246          * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1247          * possible change in exit_mmap is seen
1248          */
1249         if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1250                 ret = -EAGAIN;
1251         mmap_read_unlock(mm);
1252 
1253 drop_mm:
1254         mmdrop(mm);
1255 put_task:
1256         put_task_struct(task);
1257         return ret;
1258 #else
1259         return -ENOSYS;
1260 #endif /* CONFIG_MMU */
1261 }
1262 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php