1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static void accept_page(struct page *page, unsigned int order); 290 static bool cond_accept_memory(struct zone *zone, unsigned int order); 291 static inline bool has_unaccepted_memory(void); 292 static bool __free_unaccepted(struct page *page); 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* 298 * During boot we initialize deferred pages on-demand, as needed, but once 299 * page_alloc_init_late() has finished, the deferred pages are all initialized, 300 * and we can permanently disable that path. 301 */ 302 DEFINE_STATIC_KEY_TRUE(deferred_pages); 303 304 static inline bool deferred_pages_enabled(void) 305 { 306 return static_branch_unlikely(&deferred_pages); 307 } 308 309 /* 310 * deferred_grow_zone() is __init, but it is called from 311 * get_page_from_freelist() during early boot until deferred_pages permanently 312 * disables this call. This is why we have refdata wrapper to avoid warning, 313 * and to ensure that the function body gets unloaded. 314 */ 315 static bool __ref 316 _deferred_grow_zone(struct zone *zone, unsigned int order) 317 { 318 return deferred_grow_zone(zone, order); 319 } 320 #else 321 static inline bool deferred_pages_enabled(void) 322 { 323 return false; 324 } 325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 326 327 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 328 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 329 unsigned long pfn) 330 { 331 #ifdef CONFIG_SPARSEMEM 332 return section_to_usemap(__pfn_to_section(pfn)); 333 #else 334 return page_zone(page)->pageblock_flags; 335 #endif /* CONFIG_SPARSEMEM */ 336 } 337 338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 339 { 340 #ifdef CONFIG_SPARSEMEM 341 pfn &= (PAGES_PER_SECTION-1); 342 #else 343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 344 #endif /* CONFIG_SPARSEMEM */ 345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 346 } 347 348 /** 349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 350 * @page: The page within the block of interest 351 * @pfn: The target page frame number 352 * @mask: mask of bits that the caller is interested in 353 * 354 * Return: pageblock_bits flags 355 */ 356 unsigned long get_pfnblock_flags_mask(const struct page *page, 357 unsigned long pfn, unsigned long mask) 358 { 359 unsigned long *bitmap; 360 unsigned long bitidx, word_bitidx; 361 unsigned long word; 362 363 bitmap = get_pageblock_bitmap(page, pfn); 364 bitidx = pfn_to_bitidx(page, pfn); 365 word_bitidx = bitidx / BITS_PER_LONG; 366 bitidx &= (BITS_PER_LONG-1); 367 /* 368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 369 * a consistent read of the memory array, so that results, even though 370 * racy, are not corrupted. 371 */ 372 word = READ_ONCE(bitmap[word_bitidx]); 373 return (word >> bitidx) & mask; 374 } 375 376 static __always_inline int get_pfnblock_migratetype(const struct page *page, 377 unsigned long pfn) 378 { 379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 380 } 381 382 /** 383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 384 * @page: The page within the block of interest 385 * @flags: The flags to set 386 * @pfn: The target page frame number 387 * @mask: mask of bits that the caller is interested in 388 */ 389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 390 unsigned long pfn, 391 unsigned long mask) 392 { 393 unsigned long *bitmap; 394 unsigned long bitidx, word_bitidx; 395 unsigned long word; 396 397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 399 400 bitmap = get_pageblock_bitmap(page, pfn); 401 bitidx = pfn_to_bitidx(page, pfn); 402 word_bitidx = bitidx / BITS_PER_LONG; 403 bitidx &= (BITS_PER_LONG-1); 404 405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 406 407 mask <<= bitidx; 408 flags <<= bitidx; 409 410 word = READ_ONCE(bitmap[word_bitidx]); 411 do { 412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 413 } 414 415 void set_pageblock_migratetype(struct page *page, int migratetype) 416 { 417 if (unlikely(page_group_by_mobility_disabled && 418 migratetype < MIGRATE_PCPTYPES)) 419 migratetype = MIGRATE_UNMOVABLE; 420 421 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 422 page_to_pfn(page), MIGRATETYPE_MASK); 423 } 424 425 #ifdef CONFIG_DEBUG_VM 426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 427 { 428 int ret; 429 unsigned seq; 430 unsigned long pfn = page_to_pfn(page); 431 unsigned long sp, start_pfn; 432 433 do { 434 seq = zone_span_seqbegin(zone); 435 start_pfn = zone->zone_start_pfn; 436 sp = zone->spanned_pages; 437 ret = !zone_spans_pfn(zone, pfn); 438 } while (zone_span_seqretry(zone, seq)); 439 440 if (ret) 441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 442 pfn, zone_to_nid(zone), zone->name, 443 start_pfn, start_pfn + sp); 444 445 return ret; 446 } 447 448 /* 449 * Temporary debugging check for pages not lying within a given zone. 450 */ 451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 452 { 453 if (page_outside_zone_boundaries(zone, page)) 454 return true; 455 if (zone != page_zone(page)) 456 return true; 457 458 return false; 459 } 460 #else 461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 462 { 463 return false; 464 } 465 #endif 466 467 static void bad_page(struct page *page, const char *reason) 468 { 469 static unsigned long resume; 470 static unsigned long nr_shown; 471 static unsigned long nr_unshown; 472 473 /* 474 * Allow a burst of 60 reports, then keep quiet for that minute; 475 * or allow a steady drip of one report per second. 476 */ 477 if (nr_shown == 60) { 478 if (time_before(jiffies, resume)) { 479 nr_unshown++; 480 goto out; 481 } 482 if (nr_unshown) { 483 pr_alert( 484 "BUG: Bad page state: %lu messages suppressed\n", 485 nr_unshown); 486 nr_unshown = 0; 487 } 488 nr_shown = 0; 489 } 490 if (nr_shown++ == 0) 491 resume = jiffies + 60 * HZ; 492 493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 494 current->comm, page_to_pfn(page)); 495 dump_page(page, reason); 496 497 print_modules(); 498 dump_stack(); 499 out: 500 /* Leave bad fields for debug, except PageBuddy could make trouble */ 501 if (PageBuddy(page)) 502 __ClearPageBuddy(page); 503 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 504 } 505 506 static inline unsigned int order_to_pindex(int migratetype, int order) 507 { 508 bool __maybe_unused movable; 509 510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 511 if (order > PAGE_ALLOC_COSTLY_ORDER) { 512 VM_BUG_ON(order != HPAGE_PMD_ORDER); 513 514 movable = migratetype == MIGRATE_MOVABLE; 515 516 return NR_LOWORDER_PCP_LISTS + movable; 517 } 518 #else 519 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 520 #endif 521 522 return (MIGRATE_PCPTYPES * order) + migratetype; 523 } 524 525 static inline int pindex_to_order(unsigned int pindex) 526 { 527 int order = pindex / MIGRATE_PCPTYPES; 528 529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 530 if (pindex >= NR_LOWORDER_PCP_LISTS) 531 order = HPAGE_PMD_ORDER; 532 #else 533 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 534 #endif 535 536 return order; 537 } 538 539 static inline bool pcp_allowed_order(unsigned int order) 540 { 541 if (order <= PAGE_ALLOC_COSTLY_ORDER) 542 return true; 543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 544 if (order == HPAGE_PMD_ORDER) 545 return true; 546 #endif 547 return false; 548 } 549 550 /* 551 * Higher-order pages are called "compound pages". They are structured thusly: 552 * 553 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 554 * 555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 557 * 558 * The first tail page's ->compound_order holds the order of allocation. 559 * This usage means that zero-order pages may not be compound. 560 */ 561 562 void prep_compound_page(struct page *page, unsigned int order) 563 { 564 int i; 565 int nr_pages = 1 << order; 566 567 __SetPageHead(page); 568 for (i = 1; i < nr_pages; i++) 569 prep_compound_tail(page, i); 570 571 prep_compound_head(page, order); 572 } 573 574 static inline void set_buddy_order(struct page *page, unsigned int order) 575 { 576 set_page_private(page, order); 577 __SetPageBuddy(page); 578 } 579 580 #ifdef CONFIG_COMPACTION 581 static inline struct capture_control *task_capc(struct zone *zone) 582 { 583 struct capture_control *capc = current->capture_control; 584 585 return unlikely(capc) && 586 !(current->flags & PF_KTHREAD) && 587 !capc->page && 588 capc->cc->zone == zone ? capc : NULL; 589 } 590 591 static inline bool 592 compaction_capture(struct capture_control *capc, struct page *page, 593 int order, int migratetype) 594 { 595 if (!capc || order != capc->cc->order) 596 return false; 597 598 /* Do not accidentally pollute CMA or isolated regions*/ 599 if (is_migrate_cma(migratetype) || 600 is_migrate_isolate(migratetype)) 601 return false; 602 603 /* 604 * Do not let lower order allocations pollute a movable pageblock 605 * unless compaction is also requesting movable pages. 606 * This might let an unmovable request use a reclaimable pageblock 607 * and vice-versa but no more than normal fallback logic which can 608 * have trouble finding a high-order free page. 609 */ 610 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 611 capc->cc->migratetype != MIGRATE_MOVABLE) 612 return false; 613 614 capc->page = page; 615 return true; 616 } 617 618 #else 619 static inline struct capture_control *task_capc(struct zone *zone) 620 { 621 return NULL; 622 } 623 624 static inline bool 625 compaction_capture(struct capture_control *capc, struct page *page, 626 int order, int migratetype) 627 { 628 return false; 629 } 630 #endif /* CONFIG_COMPACTION */ 631 632 static inline void account_freepages(struct zone *zone, int nr_pages, 633 int migratetype) 634 { 635 if (is_migrate_isolate(migratetype)) 636 return; 637 638 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 639 640 if (is_migrate_cma(migratetype)) 641 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 642 } 643 644 /* Used for pages not on another list */ 645 static inline void __add_to_free_list(struct page *page, struct zone *zone, 646 unsigned int order, int migratetype, 647 bool tail) 648 { 649 struct free_area *area = &zone->free_area[order]; 650 651 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 652 "page type is %lu, passed migratetype is %d (nr=%d)\n", 653 get_pageblock_migratetype(page), migratetype, 1 << order); 654 655 if (tail) 656 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 657 else 658 list_add(&page->buddy_list, &area->free_list[migratetype]); 659 area->nr_free++; 660 } 661 662 /* 663 * Used for pages which are on another list. Move the pages to the tail 664 * of the list - so the moved pages won't immediately be considered for 665 * allocation again (e.g., optimization for memory onlining). 666 */ 667 static inline void move_to_free_list(struct page *page, struct zone *zone, 668 unsigned int order, int old_mt, int new_mt) 669 { 670 struct free_area *area = &zone->free_area[order]; 671 672 /* Free page moving can fail, so it happens before the type update */ 673 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 674 "page type is %lu, passed migratetype is %d (nr=%d)\n", 675 get_pageblock_migratetype(page), old_mt, 1 << order); 676 677 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 678 679 account_freepages(zone, -(1 << order), old_mt); 680 account_freepages(zone, 1 << order, new_mt); 681 } 682 683 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 684 unsigned int order, int migratetype) 685 { 686 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 687 "page type is %lu, passed migratetype is %d (nr=%d)\n", 688 get_pageblock_migratetype(page), migratetype, 1 << order); 689 690 /* clear reported state and update reported page count */ 691 if (page_reported(page)) 692 __ClearPageReported(page); 693 694 list_del(&page->buddy_list); 695 __ClearPageBuddy(page); 696 set_page_private(page, 0); 697 zone->free_area[order].nr_free--; 698 } 699 700 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 701 unsigned int order, int migratetype) 702 { 703 __del_page_from_free_list(page, zone, order, migratetype); 704 account_freepages(zone, -(1 << order), migratetype); 705 } 706 707 static inline struct page *get_page_from_free_area(struct free_area *area, 708 int migratetype) 709 { 710 return list_first_entry_or_null(&area->free_list[migratetype], 711 struct page, buddy_list); 712 } 713 714 /* 715 * If this is less than the 2nd largest possible page, check if the buddy 716 * of the next-higher order is free. If it is, it's possible 717 * that pages are being freed that will coalesce soon. In case, 718 * that is happening, add the free page to the tail of the list 719 * so it's less likely to be used soon and more likely to be merged 720 * as a 2-level higher order page 721 */ 722 static inline bool 723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 724 struct page *page, unsigned int order) 725 { 726 unsigned long higher_page_pfn; 727 struct page *higher_page; 728 729 if (order >= MAX_PAGE_ORDER - 1) 730 return false; 731 732 higher_page_pfn = buddy_pfn & pfn; 733 higher_page = page + (higher_page_pfn - pfn); 734 735 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 736 NULL) != NULL; 737 } 738 739 /* 740 * Freeing function for a buddy system allocator. 741 * 742 * The concept of a buddy system is to maintain direct-mapped table 743 * (containing bit values) for memory blocks of various "orders". 744 * The bottom level table contains the map for the smallest allocatable 745 * units of memory (here, pages), and each level above it describes 746 * pairs of units from the levels below, hence, "buddies". 747 * At a high level, all that happens here is marking the table entry 748 * at the bottom level available, and propagating the changes upward 749 * as necessary, plus some accounting needed to play nicely with other 750 * parts of the VM system. 751 * At each level, we keep a list of pages, which are heads of continuous 752 * free pages of length of (1 << order) and marked with PageBuddy. 753 * Page's order is recorded in page_private(page) field. 754 * So when we are allocating or freeing one, we can derive the state of the 755 * other. That is, if we allocate a small block, and both were 756 * free, the remainder of the region must be split into blocks. 757 * If a block is freed, and its buddy is also free, then this 758 * triggers coalescing into a block of larger size. 759 * 760 * -- nyc 761 */ 762 763 static inline void __free_one_page(struct page *page, 764 unsigned long pfn, 765 struct zone *zone, unsigned int order, 766 int migratetype, fpi_t fpi_flags) 767 { 768 struct capture_control *capc = task_capc(zone); 769 unsigned long buddy_pfn = 0; 770 unsigned long combined_pfn; 771 struct page *buddy; 772 bool to_tail; 773 774 VM_BUG_ON(!zone_is_initialized(zone)); 775 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 776 777 VM_BUG_ON(migratetype == -1); 778 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 779 VM_BUG_ON_PAGE(bad_range(zone, page), page); 780 781 account_freepages(zone, 1 << order, migratetype); 782 783 while (order < MAX_PAGE_ORDER) { 784 int buddy_mt = migratetype; 785 786 if (compaction_capture(capc, page, order, migratetype)) { 787 account_freepages(zone, -(1 << order), migratetype); 788 return; 789 } 790 791 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 792 if (!buddy) 793 goto done_merging; 794 795 if (unlikely(order >= pageblock_order)) { 796 /* 797 * We want to prevent merge between freepages on pageblock 798 * without fallbacks and normal pageblock. Without this, 799 * pageblock isolation could cause incorrect freepage or CMA 800 * accounting or HIGHATOMIC accounting. 801 */ 802 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 803 804 if (migratetype != buddy_mt && 805 (!migratetype_is_mergeable(migratetype) || 806 !migratetype_is_mergeable(buddy_mt))) 807 goto done_merging; 808 } 809 810 /* 811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 812 * merge with it and move up one order. 813 */ 814 if (page_is_guard(buddy)) 815 clear_page_guard(zone, buddy, order); 816 else 817 __del_page_from_free_list(buddy, zone, order, buddy_mt); 818 819 if (unlikely(buddy_mt != migratetype)) { 820 /* 821 * Match buddy type. This ensures that an 822 * expand() down the line puts the sub-blocks 823 * on the right freelists. 824 */ 825 set_pageblock_migratetype(buddy, migratetype); 826 } 827 828 combined_pfn = buddy_pfn & pfn; 829 page = page + (combined_pfn - pfn); 830 pfn = combined_pfn; 831 order++; 832 } 833 834 done_merging: 835 set_buddy_order(page, order); 836 837 if (fpi_flags & FPI_TO_TAIL) 838 to_tail = true; 839 else if (is_shuffle_order(order)) 840 to_tail = shuffle_pick_tail(); 841 else 842 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 843 844 __add_to_free_list(page, zone, order, migratetype, to_tail); 845 846 /* Notify page reporting subsystem of freed page */ 847 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 848 page_reporting_notify_free(order); 849 } 850 851 /* 852 * A bad page could be due to a number of fields. Instead of multiple branches, 853 * try and check multiple fields with one check. The caller must do a detailed 854 * check if necessary. 855 */ 856 static inline bool page_expected_state(struct page *page, 857 unsigned long check_flags) 858 { 859 if (unlikely(atomic_read(&page->_mapcount) != -1)) 860 return false; 861 862 if (unlikely((unsigned long)page->mapping | 863 page_ref_count(page) | 864 #ifdef CONFIG_MEMCG 865 page->memcg_data | 866 #endif 867 #ifdef CONFIG_PAGE_POOL 868 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 869 #endif 870 (page->flags & check_flags))) 871 return false; 872 873 return true; 874 } 875 876 static const char *page_bad_reason(struct page *page, unsigned long flags) 877 { 878 const char *bad_reason = NULL; 879 880 if (unlikely(atomic_read(&page->_mapcount) != -1)) 881 bad_reason = "nonzero mapcount"; 882 if (unlikely(page->mapping != NULL)) 883 bad_reason = "non-NULL mapping"; 884 if (unlikely(page_ref_count(page) != 0)) 885 bad_reason = "nonzero _refcount"; 886 if (unlikely(page->flags & flags)) { 887 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 888 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 889 else 890 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 891 } 892 #ifdef CONFIG_MEMCG 893 if (unlikely(page->memcg_data)) 894 bad_reason = "page still charged to cgroup"; 895 #endif 896 #ifdef CONFIG_PAGE_POOL 897 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 898 bad_reason = "page_pool leak"; 899 #endif 900 return bad_reason; 901 } 902 903 static void free_page_is_bad_report(struct page *page) 904 { 905 bad_page(page, 906 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 907 } 908 909 static inline bool free_page_is_bad(struct page *page) 910 { 911 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 912 return false; 913 914 /* Something has gone sideways, find it */ 915 free_page_is_bad_report(page); 916 return true; 917 } 918 919 static inline bool is_check_pages_enabled(void) 920 { 921 return static_branch_unlikely(&check_pages_enabled); 922 } 923 924 static int free_tail_page_prepare(struct page *head_page, struct page *page) 925 { 926 struct folio *folio = (struct folio *)head_page; 927 int ret = 1; 928 929 /* 930 * We rely page->lru.next never has bit 0 set, unless the page 931 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 932 */ 933 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 934 935 if (!is_check_pages_enabled()) { 936 ret = 0; 937 goto out; 938 } 939 switch (page - head_page) { 940 case 1: 941 /* the first tail page: these may be in place of ->mapping */ 942 if (unlikely(folio_entire_mapcount(folio))) { 943 bad_page(page, "nonzero entire_mapcount"); 944 goto out; 945 } 946 if (unlikely(folio_large_mapcount(folio))) { 947 bad_page(page, "nonzero large_mapcount"); 948 goto out; 949 } 950 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 951 bad_page(page, "nonzero nr_pages_mapped"); 952 goto out; 953 } 954 if (unlikely(atomic_read(&folio->_pincount))) { 955 bad_page(page, "nonzero pincount"); 956 goto out; 957 } 958 break; 959 case 2: 960 /* the second tail page: deferred_list overlaps ->mapping */ 961 if (unlikely(!list_empty(&folio->_deferred_list))) { 962 bad_page(page, "on deferred list"); 963 goto out; 964 } 965 break; 966 default: 967 if (page->mapping != TAIL_MAPPING) { 968 bad_page(page, "corrupted mapping in tail page"); 969 goto out; 970 } 971 break; 972 } 973 if (unlikely(!PageTail(page))) { 974 bad_page(page, "PageTail not set"); 975 goto out; 976 } 977 if (unlikely(compound_head(page) != head_page)) { 978 bad_page(page, "compound_head not consistent"); 979 goto out; 980 } 981 ret = 0; 982 out: 983 page->mapping = NULL; 984 clear_compound_head(page); 985 return ret; 986 } 987 988 /* 989 * Skip KASAN memory poisoning when either: 990 * 991 * 1. For generic KASAN: deferred memory initialization has not yet completed. 992 * Tag-based KASAN modes skip pages freed via deferred memory initialization 993 * using page tags instead (see below). 994 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 995 * that error detection is disabled for accesses via the page address. 996 * 997 * Pages will have match-all tags in the following circumstances: 998 * 999 * 1. Pages are being initialized for the first time, including during deferred 1000 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1001 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1002 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1003 * 3. The allocation was excluded from being checked due to sampling, 1004 * see the call to kasan_unpoison_pages. 1005 * 1006 * Poisoning pages during deferred memory init will greatly lengthen the 1007 * process and cause problem in large memory systems as the deferred pages 1008 * initialization is done with interrupt disabled. 1009 * 1010 * Assuming that there will be no reference to those newly initialized 1011 * pages before they are ever allocated, this should have no effect on 1012 * KASAN memory tracking as the poison will be properly inserted at page 1013 * allocation time. The only corner case is when pages are allocated by 1014 * on-demand allocation and then freed again before the deferred pages 1015 * initialization is done, but this is not likely to happen. 1016 */ 1017 static inline bool should_skip_kasan_poison(struct page *page) 1018 { 1019 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1020 return deferred_pages_enabled(); 1021 1022 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1023 } 1024 1025 static void kernel_init_pages(struct page *page, int numpages) 1026 { 1027 int i; 1028 1029 /* s390's use of memset() could override KASAN redzones. */ 1030 kasan_disable_current(); 1031 for (i = 0; i < numpages; i++) 1032 clear_highpage_kasan_tagged(page + i); 1033 kasan_enable_current(); 1034 } 1035 1036 __always_inline bool free_pages_prepare(struct page *page, 1037 unsigned int order) 1038 { 1039 int bad = 0; 1040 bool skip_kasan_poison = should_skip_kasan_poison(page); 1041 bool init = want_init_on_free(); 1042 bool compound = PageCompound(page); 1043 1044 VM_BUG_ON_PAGE(PageTail(page), page); 1045 1046 trace_mm_page_free(page, order); 1047 kmsan_free_page(page, order); 1048 1049 if (memcg_kmem_online() && PageMemcgKmem(page)) 1050 __memcg_kmem_uncharge_page(page, order); 1051 1052 if (unlikely(PageHWPoison(page)) && !order) { 1053 /* Do not let hwpoison pages hit pcplists/buddy */ 1054 reset_page_owner(page, order); 1055 page_table_check_free(page, order); 1056 pgalloc_tag_sub(page, 1 << order); 1057 1058 /* 1059 * The page is isolated and accounted for. 1060 * Mark the codetag as empty to avoid accounting error 1061 * when the page is freed by unpoison_memory(). 1062 */ 1063 clear_page_tag_ref(page); 1064 return false; 1065 } 1066 1067 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1068 1069 /* 1070 * Check tail pages before head page information is cleared to 1071 * avoid checking PageCompound for order-0 pages. 1072 */ 1073 if (unlikely(order)) { 1074 int i; 1075 1076 if (compound) 1077 page[1].flags &= ~PAGE_FLAGS_SECOND; 1078 for (i = 1; i < (1 << order); i++) { 1079 if (compound) 1080 bad += free_tail_page_prepare(page, page + i); 1081 if (is_check_pages_enabled()) { 1082 if (free_page_is_bad(page + i)) { 1083 bad++; 1084 continue; 1085 } 1086 } 1087 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1088 } 1089 } 1090 if (PageMappingFlags(page)) 1091 page->mapping = NULL; 1092 if (is_check_pages_enabled()) { 1093 if (free_page_is_bad(page)) 1094 bad++; 1095 if (bad) 1096 return false; 1097 } 1098 1099 page_cpupid_reset_last(page); 1100 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1101 reset_page_owner(page, order); 1102 page_table_check_free(page, order); 1103 pgalloc_tag_sub(page, 1 << order); 1104 1105 if (!PageHighMem(page)) { 1106 debug_check_no_locks_freed(page_address(page), 1107 PAGE_SIZE << order); 1108 debug_check_no_obj_freed(page_address(page), 1109 PAGE_SIZE << order); 1110 } 1111 1112 kernel_poison_pages(page, 1 << order); 1113 1114 /* 1115 * As memory initialization might be integrated into KASAN, 1116 * KASAN poisoning and memory initialization code must be 1117 * kept together to avoid discrepancies in behavior. 1118 * 1119 * With hardware tag-based KASAN, memory tags must be set before the 1120 * page becomes unavailable via debug_pagealloc or arch_free_page. 1121 */ 1122 if (!skip_kasan_poison) { 1123 kasan_poison_pages(page, order, init); 1124 1125 /* Memory is already initialized if KASAN did it internally. */ 1126 if (kasan_has_integrated_init()) 1127 init = false; 1128 } 1129 if (init) 1130 kernel_init_pages(page, 1 << order); 1131 1132 /* 1133 * arch_free_page() can make the page's contents inaccessible. s390 1134 * does this. So nothing which can access the page's contents should 1135 * happen after this. 1136 */ 1137 arch_free_page(page, order); 1138 1139 debug_pagealloc_unmap_pages(page, 1 << order); 1140 1141 return true; 1142 } 1143 1144 /* 1145 * Frees a number of pages from the PCP lists 1146 * Assumes all pages on list are in same zone. 1147 * count is the number of pages to free. 1148 */ 1149 static void free_pcppages_bulk(struct zone *zone, int count, 1150 struct per_cpu_pages *pcp, 1151 int pindex) 1152 { 1153 unsigned long flags; 1154 unsigned int order; 1155 struct page *page; 1156 1157 /* 1158 * Ensure proper count is passed which otherwise would stuck in the 1159 * below while (list_empty(list)) loop. 1160 */ 1161 count = min(pcp->count, count); 1162 1163 /* Ensure requested pindex is drained first. */ 1164 pindex = pindex - 1; 1165 1166 spin_lock_irqsave(&zone->lock, flags); 1167 1168 while (count > 0) { 1169 struct list_head *list; 1170 int nr_pages; 1171 1172 /* Remove pages from lists in a round-robin fashion. */ 1173 do { 1174 if (++pindex > NR_PCP_LISTS - 1) 1175 pindex = 0; 1176 list = &pcp->lists[pindex]; 1177 } while (list_empty(list)); 1178 1179 order = pindex_to_order(pindex); 1180 nr_pages = 1 << order; 1181 do { 1182 unsigned long pfn; 1183 int mt; 1184 1185 page = list_last_entry(list, struct page, pcp_list); 1186 pfn = page_to_pfn(page); 1187 mt = get_pfnblock_migratetype(page, pfn); 1188 1189 /* must delete to avoid corrupting pcp list */ 1190 list_del(&page->pcp_list); 1191 count -= nr_pages; 1192 pcp->count -= nr_pages; 1193 1194 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1195 trace_mm_page_pcpu_drain(page, order, mt); 1196 } while (count > 0 && !list_empty(list)); 1197 } 1198 1199 spin_unlock_irqrestore(&zone->lock, flags); 1200 } 1201 1202 static void free_one_page(struct zone *zone, struct page *page, 1203 unsigned long pfn, unsigned int order, 1204 fpi_t fpi_flags) 1205 { 1206 unsigned long flags; 1207 int migratetype; 1208 1209 spin_lock_irqsave(&zone->lock, flags); 1210 migratetype = get_pfnblock_migratetype(page, pfn); 1211 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1212 spin_unlock_irqrestore(&zone->lock, flags); 1213 } 1214 1215 static void __free_pages_ok(struct page *page, unsigned int order, 1216 fpi_t fpi_flags) 1217 { 1218 unsigned long pfn = page_to_pfn(page); 1219 struct zone *zone = page_zone(page); 1220 1221 if (!free_pages_prepare(page, order)) 1222 return; 1223 1224 free_one_page(zone, page, pfn, order, fpi_flags); 1225 1226 __count_vm_events(PGFREE, 1 << order); 1227 } 1228 1229 void __meminit __free_pages_core(struct page *page, unsigned int order, 1230 enum meminit_context context) 1231 { 1232 unsigned int nr_pages = 1 << order; 1233 struct page *p = page; 1234 unsigned int loop; 1235 1236 /* 1237 * When initializing the memmap, __init_single_page() sets the refcount 1238 * of all pages to 1 ("allocated"/"not free"). We have to set the 1239 * refcount of all involved pages to 0. 1240 * 1241 * Note that hotplugged memory pages are initialized to PageOffline(). 1242 * Pages freed from memblock might be marked as reserved. 1243 */ 1244 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1245 unlikely(context == MEMINIT_HOTPLUG)) { 1246 for (loop = 0; loop < nr_pages; loop++, p++) { 1247 VM_WARN_ON_ONCE(PageReserved(p)); 1248 __ClearPageOffline(p); 1249 set_page_count(p, 0); 1250 } 1251 1252 /* 1253 * Freeing the page with debug_pagealloc enabled will try to 1254 * unmap it; some archs don't like double-unmappings, so 1255 * map it first. 1256 */ 1257 debug_pagealloc_map_pages(page, nr_pages); 1258 adjust_managed_page_count(page, nr_pages); 1259 } else { 1260 for (loop = 0; loop < nr_pages; loop++, p++) { 1261 __ClearPageReserved(p); 1262 set_page_count(p, 0); 1263 } 1264 1265 /* memblock adjusts totalram_pages() manually. */ 1266 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1267 } 1268 1269 if (page_contains_unaccepted(page, order)) { 1270 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1271 return; 1272 1273 accept_page(page, order); 1274 } 1275 1276 /* 1277 * Bypass PCP and place fresh pages right to the tail, primarily 1278 * relevant for memory onlining. 1279 */ 1280 __free_pages_ok(page, order, FPI_TO_TAIL); 1281 } 1282 1283 /* 1284 * Check that the whole (or subset of) a pageblock given by the interval of 1285 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1286 * with the migration of free compaction scanner. 1287 * 1288 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1289 * 1290 * It's possible on some configurations to have a setup like node0 node1 node0 1291 * i.e. it's possible that all pages within a zones range of pages do not 1292 * belong to a single zone. We assume that a border between node0 and node1 1293 * can occur within a single pageblock, but not a node0 node1 node0 1294 * interleaving within a single pageblock. It is therefore sufficient to check 1295 * the first and last page of a pageblock and avoid checking each individual 1296 * page in a pageblock. 1297 * 1298 * Note: the function may return non-NULL struct page even for a page block 1299 * which contains a memory hole (i.e. there is no physical memory for a subset 1300 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1301 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1302 * even though the start pfn is online and valid. This should be safe most of 1303 * the time because struct pages are still initialized via init_unavailable_range() 1304 * and pfn walkers shouldn't touch any physical memory range for which they do 1305 * not recognize any specific metadata in struct pages. 1306 */ 1307 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1308 unsigned long end_pfn, struct zone *zone) 1309 { 1310 struct page *start_page; 1311 struct page *end_page; 1312 1313 /* end_pfn is one past the range we are checking */ 1314 end_pfn--; 1315 1316 if (!pfn_valid(end_pfn)) 1317 return NULL; 1318 1319 start_page = pfn_to_online_page(start_pfn); 1320 if (!start_page) 1321 return NULL; 1322 1323 if (page_zone(start_page) != zone) 1324 return NULL; 1325 1326 end_page = pfn_to_page(end_pfn); 1327 1328 /* This gives a shorter code than deriving page_zone(end_page) */ 1329 if (page_zone_id(start_page) != page_zone_id(end_page)) 1330 return NULL; 1331 1332 return start_page; 1333 } 1334 1335 /* 1336 * The order of subdivision here is critical for the IO subsystem. 1337 * Please do not alter this order without good reasons and regression 1338 * testing. Specifically, as large blocks of memory are subdivided, 1339 * the order in which smaller blocks are delivered depends on the order 1340 * they're subdivided in this function. This is the primary factor 1341 * influencing the order in which pages are delivered to the IO 1342 * subsystem according to empirical testing, and this is also justified 1343 * by considering the behavior of a buddy system containing a single 1344 * large block of memory acted on by a series of small allocations. 1345 * This behavior is a critical factor in sglist merging's success. 1346 * 1347 * -- nyc 1348 */ 1349 static inline void expand(struct zone *zone, struct page *page, 1350 int low, int high, int migratetype) 1351 { 1352 unsigned long size = 1 << high; 1353 unsigned long nr_added = 0; 1354 1355 while (high > low) { 1356 high--; 1357 size >>= 1; 1358 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1359 1360 /* 1361 * Mark as guard pages (or page), that will allow to 1362 * merge back to allocator when buddy will be freed. 1363 * Corresponding page table entries will not be touched, 1364 * pages will stay not present in virtual address space 1365 */ 1366 if (set_page_guard(zone, &page[size], high)) 1367 continue; 1368 1369 __add_to_free_list(&page[size], zone, high, migratetype, false); 1370 set_buddy_order(&page[size], high); 1371 nr_added += size; 1372 } 1373 account_freepages(zone, nr_added, migratetype); 1374 } 1375 1376 static void check_new_page_bad(struct page *page) 1377 { 1378 if (unlikely(page->flags & __PG_HWPOISON)) { 1379 /* Don't complain about hwpoisoned pages */ 1380 if (PageBuddy(page)) 1381 __ClearPageBuddy(page); 1382 return; 1383 } 1384 1385 bad_page(page, 1386 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1387 } 1388 1389 /* 1390 * This page is about to be returned from the page allocator 1391 */ 1392 static bool check_new_page(struct page *page) 1393 { 1394 if (likely(page_expected_state(page, 1395 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1396 return false; 1397 1398 check_new_page_bad(page); 1399 return true; 1400 } 1401 1402 static inline bool check_new_pages(struct page *page, unsigned int order) 1403 { 1404 if (is_check_pages_enabled()) { 1405 for (int i = 0; i < (1 << order); i++) { 1406 struct page *p = page + i; 1407 1408 if (check_new_page(p)) 1409 return true; 1410 } 1411 } 1412 1413 return false; 1414 } 1415 1416 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1417 { 1418 /* Don't skip if a software KASAN mode is enabled. */ 1419 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1420 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1421 return false; 1422 1423 /* Skip, if hardware tag-based KASAN is not enabled. */ 1424 if (!kasan_hw_tags_enabled()) 1425 return true; 1426 1427 /* 1428 * With hardware tag-based KASAN enabled, skip if this has been 1429 * requested via __GFP_SKIP_KASAN. 1430 */ 1431 return flags & __GFP_SKIP_KASAN; 1432 } 1433 1434 static inline bool should_skip_init(gfp_t flags) 1435 { 1436 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1437 if (!kasan_hw_tags_enabled()) 1438 return false; 1439 1440 /* For hardware tag-based KASAN, skip if requested. */ 1441 return (flags & __GFP_SKIP_ZERO); 1442 } 1443 1444 inline void post_alloc_hook(struct page *page, unsigned int order, 1445 gfp_t gfp_flags) 1446 { 1447 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1448 !should_skip_init(gfp_flags); 1449 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1450 int i; 1451 1452 set_page_private(page, 0); 1453 set_page_refcounted(page); 1454 1455 arch_alloc_page(page, order); 1456 debug_pagealloc_map_pages(page, 1 << order); 1457 1458 /* 1459 * Page unpoisoning must happen before memory initialization. 1460 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1461 * allocations and the page unpoisoning code will complain. 1462 */ 1463 kernel_unpoison_pages(page, 1 << order); 1464 1465 /* 1466 * As memory initialization might be integrated into KASAN, 1467 * KASAN unpoisoning and memory initializion code must be 1468 * kept together to avoid discrepancies in behavior. 1469 */ 1470 1471 /* 1472 * If memory tags should be zeroed 1473 * (which happens only when memory should be initialized as well). 1474 */ 1475 if (zero_tags) { 1476 /* Initialize both memory and memory tags. */ 1477 for (i = 0; i != 1 << order; ++i) 1478 tag_clear_highpage(page + i); 1479 1480 /* Take note that memory was initialized by the loop above. */ 1481 init = false; 1482 } 1483 if (!should_skip_kasan_unpoison(gfp_flags) && 1484 kasan_unpoison_pages(page, order, init)) { 1485 /* Take note that memory was initialized by KASAN. */ 1486 if (kasan_has_integrated_init()) 1487 init = false; 1488 } else { 1489 /* 1490 * If memory tags have not been set by KASAN, reset the page 1491 * tags to ensure page_address() dereferencing does not fault. 1492 */ 1493 for (i = 0; i != 1 << order; ++i) 1494 page_kasan_tag_reset(page + i); 1495 } 1496 /* If memory is still not initialized, initialize it now. */ 1497 if (init) 1498 kernel_init_pages(page, 1 << order); 1499 1500 set_page_owner(page, order, gfp_flags); 1501 page_table_check_alloc(page, order); 1502 pgalloc_tag_add(page, current, 1 << order); 1503 } 1504 1505 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1506 unsigned int alloc_flags) 1507 { 1508 post_alloc_hook(page, order, gfp_flags); 1509 1510 if (order && (gfp_flags & __GFP_COMP)) 1511 prep_compound_page(page, order); 1512 1513 /* 1514 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1515 * allocate the page. The expectation is that the caller is taking 1516 * steps that will free more memory. The caller should avoid the page 1517 * being used for !PFMEMALLOC purposes. 1518 */ 1519 if (alloc_flags & ALLOC_NO_WATERMARKS) 1520 set_page_pfmemalloc(page); 1521 else 1522 clear_page_pfmemalloc(page); 1523 } 1524 1525 /* 1526 * Go through the free lists for the given migratetype and remove 1527 * the smallest available page from the freelists 1528 */ 1529 static __always_inline 1530 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1531 int migratetype) 1532 { 1533 unsigned int current_order; 1534 struct free_area *area; 1535 struct page *page; 1536 1537 /* Find a page of the appropriate size in the preferred list */ 1538 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1539 area = &(zone->free_area[current_order]); 1540 page = get_page_from_free_area(area, migratetype); 1541 if (!page) 1542 continue; 1543 del_page_from_free_list(page, zone, current_order, migratetype); 1544 expand(zone, page, order, current_order, migratetype); 1545 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1546 pcp_allowed_order(order) && 1547 migratetype < MIGRATE_PCPTYPES); 1548 return page; 1549 } 1550 1551 return NULL; 1552 } 1553 1554 1555 /* 1556 * This array describes the order lists are fallen back to when 1557 * the free lists for the desirable migrate type are depleted 1558 * 1559 * The other migratetypes do not have fallbacks. 1560 */ 1561 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1562 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1563 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1564 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1565 }; 1566 1567 #ifdef CONFIG_CMA 1568 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1569 unsigned int order) 1570 { 1571 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1572 } 1573 #else 1574 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1575 unsigned int order) { return NULL; } 1576 #endif 1577 1578 /* 1579 * Change the type of a block and move all its free pages to that 1580 * type's freelist. 1581 */ 1582 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1583 int old_mt, int new_mt) 1584 { 1585 struct page *page; 1586 unsigned long pfn, end_pfn; 1587 unsigned int order; 1588 int pages_moved = 0; 1589 1590 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1591 end_pfn = pageblock_end_pfn(start_pfn); 1592 1593 for (pfn = start_pfn; pfn < end_pfn;) { 1594 page = pfn_to_page(pfn); 1595 if (!PageBuddy(page)) { 1596 pfn++; 1597 continue; 1598 } 1599 1600 /* Make sure we are not inadvertently changing nodes */ 1601 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1602 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1603 1604 order = buddy_order(page); 1605 1606 move_to_free_list(page, zone, order, old_mt, new_mt); 1607 1608 pfn += 1 << order; 1609 pages_moved += 1 << order; 1610 } 1611 1612 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1613 1614 return pages_moved; 1615 } 1616 1617 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1618 unsigned long *start_pfn, 1619 int *num_free, int *num_movable) 1620 { 1621 unsigned long pfn, start, end; 1622 1623 pfn = page_to_pfn(page); 1624 start = pageblock_start_pfn(pfn); 1625 end = pageblock_end_pfn(pfn); 1626 1627 /* 1628 * The caller only has the lock for @zone, don't touch ranges 1629 * that straddle into other zones. While we could move part of 1630 * the range that's inside the zone, this call is usually 1631 * accompanied by other operations such as migratetype updates 1632 * which also should be locked. 1633 */ 1634 if (!zone_spans_pfn(zone, start)) 1635 return false; 1636 if (!zone_spans_pfn(zone, end - 1)) 1637 return false; 1638 1639 *start_pfn = start; 1640 1641 if (num_free) { 1642 *num_free = 0; 1643 *num_movable = 0; 1644 for (pfn = start; pfn < end;) { 1645 page = pfn_to_page(pfn); 1646 if (PageBuddy(page)) { 1647 int nr = 1 << buddy_order(page); 1648 1649 *num_free += nr; 1650 pfn += nr; 1651 continue; 1652 } 1653 /* 1654 * We assume that pages that could be isolated for 1655 * migration are movable. But we don't actually try 1656 * isolating, as that would be expensive. 1657 */ 1658 if (PageLRU(page) || __PageMovable(page)) 1659 (*num_movable)++; 1660 pfn++; 1661 } 1662 } 1663 1664 return true; 1665 } 1666 1667 static int move_freepages_block(struct zone *zone, struct page *page, 1668 int old_mt, int new_mt) 1669 { 1670 unsigned long start_pfn; 1671 1672 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1673 return -1; 1674 1675 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1676 } 1677 1678 #ifdef CONFIG_MEMORY_ISOLATION 1679 /* Look for a buddy that straddles start_pfn */ 1680 static unsigned long find_large_buddy(unsigned long start_pfn) 1681 { 1682 int order = 0; 1683 struct page *page; 1684 unsigned long pfn = start_pfn; 1685 1686 while (!PageBuddy(page = pfn_to_page(pfn))) { 1687 /* Nothing found */ 1688 if (++order > MAX_PAGE_ORDER) 1689 return start_pfn; 1690 pfn &= ~0UL << order; 1691 } 1692 1693 /* 1694 * Found a preceding buddy, but does it straddle? 1695 */ 1696 if (pfn + (1 << buddy_order(page)) > start_pfn) 1697 return pfn; 1698 1699 /* Nothing found */ 1700 return start_pfn; 1701 } 1702 1703 /* Split a multi-block free page into its individual pageblocks */ 1704 static void split_large_buddy(struct zone *zone, struct page *page, 1705 unsigned long pfn, int order) 1706 { 1707 unsigned long end_pfn = pfn + (1 << order); 1708 1709 VM_WARN_ON_ONCE(order <= pageblock_order); 1710 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1)); 1711 1712 /* Caller removed page from freelist, buddy info cleared! */ 1713 VM_WARN_ON_ONCE(PageBuddy(page)); 1714 1715 while (pfn != end_pfn) { 1716 int mt = get_pfnblock_migratetype(page, pfn); 1717 1718 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE); 1719 pfn += pageblock_nr_pages; 1720 page = pfn_to_page(pfn); 1721 } 1722 } 1723 1724 /** 1725 * move_freepages_block_isolate - move free pages in block for page isolation 1726 * @zone: the zone 1727 * @page: the pageblock page 1728 * @migratetype: migratetype to set on the pageblock 1729 * 1730 * This is similar to move_freepages_block(), but handles the special 1731 * case encountered in page isolation, where the block of interest 1732 * might be part of a larger buddy spanning multiple pageblocks. 1733 * 1734 * Unlike the regular page allocator path, which moves pages while 1735 * stealing buddies off the freelist, page isolation is interested in 1736 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1737 * 1738 * This function handles that. Straddling buddies are split into 1739 * individual pageblocks. Only the block of interest is moved. 1740 * 1741 * Returns %true if pages could be moved, %false otherwise. 1742 */ 1743 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1744 int migratetype) 1745 { 1746 unsigned long start_pfn, pfn; 1747 1748 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1749 return false; 1750 1751 /* No splits needed if buddies can't span multiple blocks */ 1752 if (pageblock_order == MAX_PAGE_ORDER) 1753 goto move; 1754 1755 /* We're a tail block in a larger buddy */ 1756 pfn = find_large_buddy(start_pfn); 1757 if (pfn != start_pfn) { 1758 struct page *buddy = pfn_to_page(pfn); 1759 int order = buddy_order(buddy); 1760 1761 del_page_from_free_list(buddy, zone, order, 1762 get_pfnblock_migratetype(buddy, pfn)); 1763 set_pageblock_migratetype(page, migratetype); 1764 split_large_buddy(zone, buddy, pfn, order); 1765 return true; 1766 } 1767 1768 /* We're the starting block of a larger buddy */ 1769 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1770 int order = buddy_order(page); 1771 1772 del_page_from_free_list(page, zone, order, 1773 get_pfnblock_migratetype(page, pfn)); 1774 set_pageblock_migratetype(page, migratetype); 1775 split_large_buddy(zone, page, pfn, order); 1776 return true; 1777 } 1778 move: 1779 __move_freepages_block(zone, start_pfn, 1780 get_pfnblock_migratetype(page, start_pfn), 1781 migratetype); 1782 return true; 1783 } 1784 #endif /* CONFIG_MEMORY_ISOLATION */ 1785 1786 static void change_pageblock_range(struct page *pageblock_page, 1787 int start_order, int migratetype) 1788 { 1789 int nr_pageblocks = 1 << (start_order - pageblock_order); 1790 1791 while (nr_pageblocks--) { 1792 set_pageblock_migratetype(pageblock_page, migratetype); 1793 pageblock_page += pageblock_nr_pages; 1794 } 1795 } 1796 1797 /* 1798 * When we are falling back to another migratetype during allocation, try to 1799 * steal extra free pages from the same pageblocks to satisfy further 1800 * allocations, instead of polluting multiple pageblocks. 1801 * 1802 * If we are stealing a relatively large buddy page, it is likely there will 1803 * be more free pages in the pageblock, so try to steal them all. For 1804 * reclaimable and unmovable allocations, we steal regardless of page size, 1805 * as fragmentation caused by those allocations polluting movable pageblocks 1806 * is worse than movable allocations stealing from unmovable and reclaimable 1807 * pageblocks. 1808 */ 1809 static bool can_steal_fallback(unsigned int order, int start_mt) 1810 { 1811 /* 1812 * Leaving this order check is intended, although there is 1813 * relaxed order check in next check. The reason is that 1814 * we can actually steal whole pageblock if this condition met, 1815 * but, below check doesn't guarantee it and that is just heuristic 1816 * so could be changed anytime. 1817 */ 1818 if (order >= pageblock_order) 1819 return true; 1820 1821 if (order >= pageblock_order / 2 || 1822 start_mt == MIGRATE_RECLAIMABLE || 1823 start_mt == MIGRATE_UNMOVABLE || 1824 page_group_by_mobility_disabled) 1825 return true; 1826 1827 return false; 1828 } 1829 1830 static inline bool boost_watermark(struct zone *zone) 1831 { 1832 unsigned long max_boost; 1833 1834 if (!watermark_boost_factor) 1835 return false; 1836 /* 1837 * Don't bother in zones that are unlikely to produce results. 1838 * On small machines, including kdump capture kernels running 1839 * in a small area, boosting the watermark can cause an out of 1840 * memory situation immediately. 1841 */ 1842 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1843 return false; 1844 1845 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1846 watermark_boost_factor, 10000); 1847 1848 /* 1849 * high watermark may be uninitialised if fragmentation occurs 1850 * very early in boot so do not boost. We do not fall 1851 * through and boost by pageblock_nr_pages as failing 1852 * allocations that early means that reclaim is not going 1853 * to help and it may even be impossible to reclaim the 1854 * boosted watermark resulting in a hang. 1855 */ 1856 if (!max_boost) 1857 return false; 1858 1859 max_boost = max(pageblock_nr_pages, max_boost); 1860 1861 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1862 max_boost); 1863 1864 return true; 1865 } 1866 1867 /* 1868 * This function implements actual steal behaviour. If order is large enough, we 1869 * can claim the whole pageblock for the requested migratetype. If not, we check 1870 * the pageblock for constituent pages; if at least half of the pages are free 1871 * or compatible, we can still claim the whole block, so pages freed in the 1872 * future will be put on the correct free list. Otherwise, we isolate exactly 1873 * the order we need from the fallback block and leave its migratetype alone. 1874 */ 1875 static struct page * 1876 steal_suitable_fallback(struct zone *zone, struct page *page, 1877 int current_order, int order, int start_type, 1878 unsigned int alloc_flags, bool whole_block) 1879 { 1880 int free_pages, movable_pages, alike_pages; 1881 unsigned long start_pfn; 1882 int block_type; 1883 1884 block_type = get_pageblock_migratetype(page); 1885 1886 /* 1887 * This can happen due to races and we want to prevent broken 1888 * highatomic accounting. 1889 */ 1890 if (is_migrate_highatomic(block_type)) 1891 goto single_page; 1892 1893 /* Take ownership for orders >= pageblock_order */ 1894 if (current_order >= pageblock_order) { 1895 del_page_from_free_list(page, zone, current_order, block_type); 1896 change_pageblock_range(page, current_order, start_type); 1897 expand(zone, page, order, current_order, start_type); 1898 return page; 1899 } 1900 1901 /* 1902 * Boost watermarks to increase reclaim pressure to reduce the 1903 * likelihood of future fallbacks. Wake kswapd now as the node 1904 * may be balanced overall and kswapd will not wake naturally. 1905 */ 1906 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1907 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1908 1909 /* We are not allowed to try stealing from the whole block */ 1910 if (!whole_block) 1911 goto single_page; 1912 1913 /* moving whole block can fail due to zone boundary conditions */ 1914 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1915 &movable_pages)) 1916 goto single_page; 1917 1918 /* 1919 * Determine how many pages are compatible with our allocation. 1920 * For movable allocation, it's the number of movable pages which 1921 * we just obtained. For other types it's a bit more tricky. 1922 */ 1923 if (start_type == MIGRATE_MOVABLE) { 1924 alike_pages = movable_pages; 1925 } else { 1926 /* 1927 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1928 * to MOVABLE pageblock, consider all non-movable pages as 1929 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1930 * vice versa, be conservative since we can't distinguish the 1931 * exact migratetype of non-movable pages. 1932 */ 1933 if (block_type == MIGRATE_MOVABLE) 1934 alike_pages = pageblock_nr_pages 1935 - (free_pages + movable_pages); 1936 else 1937 alike_pages = 0; 1938 } 1939 /* 1940 * If a sufficient number of pages in the block are either free or of 1941 * compatible migratability as our allocation, claim the whole block. 1942 */ 1943 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1944 page_group_by_mobility_disabled) { 1945 __move_freepages_block(zone, start_pfn, block_type, start_type); 1946 return __rmqueue_smallest(zone, order, start_type); 1947 } 1948 1949 single_page: 1950 del_page_from_free_list(page, zone, current_order, block_type); 1951 expand(zone, page, order, current_order, block_type); 1952 return page; 1953 } 1954 1955 /* 1956 * Check whether there is a suitable fallback freepage with requested order. 1957 * If only_stealable is true, this function returns fallback_mt only if 1958 * we can steal other freepages all together. This would help to reduce 1959 * fragmentation due to mixed migratetype pages in one pageblock. 1960 */ 1961 int find_suitable_fallback(struct free_area *area, unsigned int order, 1962 int migratetype, bool only_stealable, bool *can_steal) 1963 { 1964 int i; 1965 int fallback_mt; 1966 1967 if (area->nr_free == 0) 1968 return -1; 1969 1970 *can_steal = false; 1971 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1972 fallback_mt = fallbacks[migratetype][i]; 1973 if (free_area_empty(area, fallback_mt)) 1974 continue; 1975 1976 if (can_steal_fallback(order, migratetype)) 1977 *can_steal = true; 1978 1979 if (!only_stealable) 1980 return fallback_mt; 1981 1982 if (*can_steal) 1983 return fallback_mt; 1984 } 1985 1986 return -1; 1987 } 1988 1989 /* 1990 * Reserve the pageblock(s) surrounding an allocation request for 1991 * exclusive use of high-order atomic allocations if there are no 1992 * empty page blocks that contain a page with a suitable order 1993 */ 1994 static void reserve_highatomic_pageblock(struct page *page, int order, 1995 struct zone *zone) 1996 { 1997 int mt; 1998 unsigned long max_managed, flags; 1999 2000 /* 2001 * The number reserved as: minimum is 1 pageblock, maximum is 2002 * roughly 1% of a zone. But if 1% of a zone falls below a 2003 * pageblock size, then don't reserve any pageblocks. 2004 * Check is race-prone but harmless. 2005 */ 2006 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 2007 return; 2008 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 2009 if (zone->nr_reserved_highatomic >= max_managed) 2010 return; 2011 2012 spin_lock_irqsave(&zone->lock, flags); 2013 2014 /* Recheck the nr_reserved_highatomic limit under the lock */ 2015 if (zone->nr_reserved_highatomic >= max_managed) 2016 goto out_unlock; 2017 2018 /* Yoink! */ 2019 mt = get_pageblock_migratetype(page); 2020 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2021 if (!migratetype_is_mergeable(mt)) 2022 goto out_unlock; 2023 2024 if (order < pageblock_order) { 2025 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 2026 goto out_unlock; 2027 zone->nr_reserved_highatomic += pageblock_nr_pages; 2028 } else { 2029 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2030 zone->nr_reserved_highatomic += 1 << order; 2031 } 2032 2033 out_unlock: 2034 spin_unlock_irqrestore(&zone->lock, flags); 2035 } 2036 2037 /* 2038 * Used when an allocation is about to fail under memory pressure. This 2039 * potentially hurts the reliability of high-order allocations when under 2040 * intense memory pressure but failed atomic allocations should be easier 2041 * to recover from than an OOM. 2042 * 2043 * If @force is true, try to unreserve pageblocks even though highatomic 2044 * pageblock is exhausted. 2045 */ 2046 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2047 bool force) 2048 { 2049 struct zonelist *zonelist = ac->zonelist; 2050 unsigned long flags; 2051 struct zoneref *z; 2052 struct zone *zone; 2053 struct page *page; 2054 int order; 2055 int ret; 2056 2057 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2058 ac->nodemask) { 2059 /* 2060 * Preserve at least one pageblock unless memory pressure 2061 * is really high. 2062 */ 2063 if (!force && zone->nr_reserved_highatomic <= 2064 pageblock_nr_pages) 2065 continue; 2066 2067 spin_lock_irqsave(&zone->lock, flags); 2068 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2069 struct free_area *area = &(zone->free_area[order]); 2070 int mt; 2071 2072 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2073 if (!page) 2074 continue; 2075 2076 mt = get_pageblock_migratetype(page); 2077 /* 2078 * In page freeing path, migratetype change is racy so 2079 * we can counter several free pages in a pageblock 2080 * in this loop although we changed the pageblock type 2081 * from highatomic to ac->migratetype. So we should 2082 * adjust the count once. 2083 */ 2084 if (is_migrate_highatomic(mt)) { 2085 unsigned long size; 2086 /* 2087 * It should never happen but changes to 2088 * locking could inadvertently allow a per-cpu 2089 * drain to add pages to MIGRATE_HIGHATOMIC 2090 * while unreserving so be safe and watch for 2091 * underflows. 2092 */ 2093 size = max(pageblock_nr_pages, 1UL << order); 2094 size = min(size, zone->nr_reserved_highatomic); 2095 zone->nr_reserved_highatomic -= size; 2096 } 2097 2098 /* 2099 * Convert to ac->migratetype and avoid the normal 2100 * pageblock stealing heuristics. Minimally, the caller 2101 * is doing the work and needs the pages. More 2102 * importantly, if the block was always converted to 2103 * MIGRATE_UNMOVABLE or another type then the number 2104 * of pageblocks that cannot be completely freed 2105 * may increase. 2106 */ 2107 if (order < pageblock_order) 2108 ret = move_freepages_block(zone, page, mt, 2109 ac->migratetype); 2110 else { 2111 move_to_free_list(page, zone, order, mt, 2112 ac->migratetype); 2113 change_pageblock_range(page, order, 2114 ac->migratetype); 2115 ret = 1; 2116 } 2117 /* 2118 * Reserving the block(s) already succeeded, 2119 * so this should not fail on zone boundaries. 2120 */ 2121 WARN_ON_ONCE(ret == -1); 2122 if (ret > 0) { 2123 spin_unlock_irqrestore(&zone->lock, flags); 2124 return ret; 2125 } 2126 } 2127 spin_unlock_irqrestore(&zone->lock, flags); 2128 } 2129 2130 return false; 2131 } 2132 2133 /* 2134 * Try finding a free buddy page on the fallback list and put it on the free 2135 * list of requested migratetype, possibly along with other pages from the same 2136 * block, depending on fragmentation avoidance heuristics. Returns true if 2137 * fallback was found so that __rmqueue_smallest() can grab it. 2138 * 2139 * The use of signed ints for order and current_order is a deliberate 2140 * deviation from the rest of this file, to make the for loop 2141 * condition simpler. 2142 */ 2143 static __always_inline struct page * 2144 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2145 unsigned int alloc_flags) 2146 { 2147 struct free_area *area; 2148 int current_order; 2149 int min_order = order; 2150 struct page *page; 2151 int fallback_mt; 2152 bool can_steal; 2153 2154 /* 2155 * Do not steal pages from freelists belonging to other pageblocks 2156 * i.e. orders < pageblock_order. If there are no local zones free, 2157 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2158 */ 2159 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2160 min_order = pageblock_order; 2161 2162 /* 2163 * Find the largest available free page in the other list. This roughly 2164 * approximates finding the pageblock with the most free pages, which 2165 * would be too costly to do exactly. 2166 */ 2167 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2168 --current_order) { 2169 area = &(zone->free_area[current_order]); 2170 fallback_mt = find_suitable_fallback(area, current_order, 2171 start_migratetype, false, &can_steal); 2172 if (fallback_mt == -1) 2173 continue; 2174 2175 /* 2176 * We cannot steal all free pages from the pageblock and the 2177 * requested migratetype is movable. In that case it's better to 2178 * steal and split the smallest available page instead of the 2179 * largest available page, because even if the next movable 2180 * allocation falls back into a different pageblock than this 2181 * one, it won't cause permanent fragmentation. 2182 */ 2183 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2184 && current_order > order) 2185 goto find_smallest; 2186 2187 goto do_steal; 2188 } 2189 2190 return NULL; 2191 2192 find_smallest: 2193 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2194 area = &(zone->free_area[current_order]); 2195 fallback_mt = find_suitable_fallback(area, current_order, 2196 start_migratetype, false, &can_steal); 2197 if (fallback_mt != -1) 2198 break; 2199 } 2200 2201 /* 2202 * This should not happen - we already found a suitable fallback 2203 * when looking for the largest page. 2204 */ 2205 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2206 2207 do_steal: 2208 page = get_page_from_free_area(area, fallback_mt); 2209 2210 /* take off list, maybe claim block, expand remainder */ 2211 page = steal_suitable_fallback(zone, page, current_order, order, 2212 start_migratetype, alloc_flags, can_steal); 2213 2214 trace_mm_page_alloc_extfrag(page, order, current_order, 2215 start_migratetype, fallback_mt); 2216 2217 return page; 2218 } 2219 2220 /* 2221 * Do the hard work of removing an element from the buddy allocator. 2222 * Call me with the zone->lock already held. 2223 */ 2224 static __always_inline struct page * 2225 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2226 unsigned int alloc_flags) 2227 { 2228 struct page *page; 2229 2230 if (IS_ENABLED(CONFIG_CMA)) { 2231 /* 2232 * Balance movable allocations between regular and CMA areas by 2233 * allocating from CMA when over half of the zone's free memory 2234 * is in the CMA area. 2235 */ 2236 if (alloc_flags & ALLOC_CMA && 2237 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2238 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2239 page = __rmqueue_cma_fallback(zone, order); 2240 if (page) 2241 return page; 2242 } 2243 } 2244 2245 page = __rmqueue_smallest(zone, order, migratetype); 2246 if (unlikely(!page)) { 2247 if (alloc_flags & ALLOC_CMA) 2248 page = __rmqueue_cma_fallback(zone, order); 2249 2250 if (!page) 2251 page = __rmqueue_fallback(zone, order, migratetype, 2252 alloc_flags); 2253 } 2254 return page; 2255 } 2256 2257 /* 2258 * Obtain a specified number of elements from the buddy allocator, all under 2259 * a single hold of the lock, for efficiency. Add them to the supplied list. 2260 * Returns the number of new pages which were placed at *list. 2261 */ 2262 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2263 unsigned long count, struct list_head *list, 2264 int migratetype, unsigned int alloc_flags) 2265 { 2266 unsigned long flags; 2267 int i; 2268 2269 spin_lock_irqsave(&zone->lock, flags); 2270 for (i = 0; i < count; ++i) { 2271 struct page *page = __rmqueue(zone, order, migratetype, 2272 alloc_flags); 2273 if (unlikely(page == NULL)) 2274 break; 2275 2276 /* 2277 * Split buddy pages returned by expand() are received here in 2278 * physical page order. The page is added to the tail of 2279 * caller's list. From the callers perspective, the linked list 2280 * is ordered by page number under some conditions. This is 2281 * useful for IO devices that can forward direction from the 2282 * head, thus also in the physical page order. This is useful 2283 * for IO devices that can merge IO requests if the physical 2284 * pages are ordered properly. 2285 */ 2286 list_add_tail(&page->pcp_list, list); 2287 } 2288 spin_unlock_irqrestore(&zone->lock, flags); 2289 2290 return i; 2291 } 2292 2293 /* 2294 * Called from the vmstat counter updater to decay the PCP high. 2295 * Return whether there are addition works to do. 2296 */ 2297 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2298 { 2299 int high_min, to_drain, batch; 2300 int todo = 0; 2301 2302 high_min = READ_ONCE(pcp->high_min); 2303 batch = READ_ONCE(pcp->batch); 2304 /* 2305 * Decrease pcp->high periodically to try to free possible 2306 * idle PCP pages. And, avoid to free too many pages to 2307 * control latency. This caps pcp->high decrement too. 2308 */ 2309 if (pcp->high > high_min) { 2310 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2311 pcp->high - (pcp->high >> 3), high_min); 2312 if (pcp->high > high_min) 2313 todo++; 2314 } 2315 2316 to_drain = pcp->count - pcp->high; 2317 if (to_drain > 0) { 2318 spin_lock(&pcp->lock); 2319 free_pcppages_bulk(zone, to_drain, pcp, 0); 2320 spin_unlock(&pcp->lock); 2321 todo++; 2322 } 2323 2324 return todo; 2325 } 2326 2327 #ifdef CONFIG_NUMA 2328 /* 2329 * Called from the vmstat counter updater to drain pagesets of this 2330 * currently executing processor on remote nodes after they have 2331 * expired. 2332 */ 2333 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2334 { 2335 int to_drain, batch; 2336 2337 batch = READ_ONCE(pcp->batch); 2338 to_drain = min(pcp->count, batch); 2339 if (to_drain > 0) { 2340 spin_lock(&pcp->lock); 2341 free_pcppages_bulk(zone, to_drain, pcp, 0); 2342 spin_unlock(&pcp->lock); 2343 } 2344 } 2345 #endif 2346 2347 /* 2348 * Drain pcplists of the indicated processor and zone. 2349 */ 2350 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2351 { 2352 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2353 int count; 2354 2355 do { 2356 spin_lock(&pcp->lock); 2357 count = pcp->count; 2358 if (count) { 2359 int to_drain = min(count, 2360 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2361 2362 free_pcppages_bulk(zone, to_drain, pcp, 0); 2363 count -= to_drain; 2364 } 2365 spin_unlock(&pcp->lock); 2366 } while (count); 2367 } 2368 2369 /* 2370 * Drain pcplists of all zones on the indicated processor. 2371 */ 2372 static void drain_pages(unsigned int cpu) 2373 { 2374 struct zone *zone; 2375 2376 for_each_populated_zone(zone) { 2377 drain_pages_zone(cpu, zone); 2378 } 2379 } 2380 2381 /* 2382 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2383 */ 2384 void drain_local_pages(struct zone *zone) 2385 { 2386 int cpu = smp_processor_id(); 2387 2388 if (zone) 2389 drain_pages_zone(cpu, zone); 2390 else 2391 drain_pages(cpu); 2392 } 2393 2394 /* 2395 * The implementation of drain_all_pages(), exposing an extra parameter to 2396 * drain on all cpus. 2397 * 2398 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2399 * not empty. The check for non-emptiness can however race with a free to 2400 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2401 * that need the guarantee that every CPU has drained can disable the 2402 * optimizing racy check. 2403 */ 2404 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2405 { 2406 int cpu; 2407 2408 /* 2409 * Allocate in the BSS so we won't require allocation in 2410 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2411 */ 2412 static cpumask_t cpus_with_pcps; 2413 2414 /* 2415 * Do not drain if one is already in progress unless it's specific to 2416 * a zone. Such callers are primarily CMA and memory hotplug and need 2417 * the drain to be complete when the call returns. 2418 */ 2419 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2420 if (!zone) 2421 return; 2422 mutex_lock(&pcpu_drain_mutex); 2423 } 2424 2425 /* 2426 * We don't care about racing with CPU hotplug event 2427 * as offline notification will cause the notified 2428 * cpu to drain that CPU pcps and on_each_cpu_mask 2429 * disables preemption as part of its processing 2430 */ 2431 for_each_online_cpu(cpu) { 2432 struct per_cpu_pages *pcp; 2433 struct zone *z; 2434 bool has_pcps = false; 2435 2436 if (force_all_cpus) { 2437 /* 2438 * The pcp.count check is racy, some callers need a 2439 * guarantee that no cpu is missed. 2440 */ 2441 has_pcps = true; 2442 } else if (zone) { 2443 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2444 if (pcp->count) 2445 has_pcps = true; 2446 } else { 2447 for_each_populated_zone(z) { 2448 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2449 if (pcp->count) { 2450 has_pcps = true; 2451 break; 2452 } 2453 } 2454 } 2455 2456 if (has_pcps) 2457 cpumask_set_cpu(cpu, &cpus_with_pcps); 2458 else 2459 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2460 } 2461 2462 for_each_cpu(cpu, &cpus_with_pcps) { 2463 if (zone) 2464 drain_pages_zone(cpu, zone); 2465 else 2466 drain_pages(cpu); 2467 } 2468 2469 mutex_unlock(&pcpu_drain_mutex); 2470 } 2471 2472 /* 2473 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2474 * 2475 * When zone parameter is non-NULL, spill just the single zone's pages. 2476 */ 2477 void drain_all_pages(struct zone *zone) 2478 { 2479 __drain_all_pages(zone, false); 2480 } 2481 2482 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2483 { 2484 int min_nr_free, max_nr_free; 2485 2486 /* Free as much as possible if batch freeing high-order pages. */ 2487 if (unlikely(free_high)) 2488 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2489 2490 /* Check for PCP disabled or boot pageset */ 2491 if (unlikely(high < batch)) 2492 return 1; 2493 2494 /* Leave at least pcp->batch pages on the list */ 2495 min_nr_free = batch; 2496 max_nr_free = high - batch; 2497 2498 /* 2499 * Increase the batch number to the number of the consecutive 2500 * freed pages to reduce zone lock contention. 2501 */ 2502 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2503 2504 return batch; 2505 } 2506 2507 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2508 int batch, bool free_high) 2509 { 2510 int high, high_min, high_max; 2511 2512 high_min = READ_ONCE(pcp->high_min); 2513 high_max = READ_ONCE(pcp->high_max); 2514 high = pcp->high = clamp(pcp->high, high_min, high_max); 2515 2516 if (unlikely(!high)) 2517 return 0; 2518 2519 if (unlikely(free_high)) { 2520 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2521 high_min); 2522 return 0; 2523 } 2524 2525 /* 2526 * If reclaim is active, limit the number of pages that can be 2527 * stored on pcp lists 2528 */ 2529 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2530 int free_count = max_t(int, pcp->free_count, batch); 2531 2532 pcp->high = max(high - free_count, high_min); 2533 return min(batch << 2, pcp->high); 2534 } 2535 2536 if (high_min == high_max) 2537 return high; 2538 2539 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2540 int free_count = max_t(int, pcp->free_count, batch); 2541 2542 pcp->high = max(high - free_count, high_min); 2543 high = max(pcp->count, high_min); 2544 } else if (pcp->count >= high) { 2545 int need_high = pcp->free_count + batch; 2546 2547 /* pcp->high should be large enough to hold batch freed pages */ 2548 if (pcp->high < need_high) 2549 pcp->high = clamp(need_high, high_min, high_max); 2550 } 2551 2552 return high; 2553 } 2554 2555 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2556 struct page *page, int migratetype, 2557 unsigned int order) 2558 { 2559 int high, batch; 2560 int pindex; 2561 bool free_high = false; 2562 2563 /* 2564 * On freeing, reduce the number of pages that are batch allocated. 2565 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2566 * allocations. 2567 */ 2568 pcp->alloc_factor >>= 1; 2569 __count_vm_events(PGFREE, 1 << order); 2570 pindex = order_to_pindex(migratetype, order); 2571 list_add(&page->pcp_list, &pcp->lists[pindex]); 2572 pcp->count += 1 << order; 2573 2574 batch = READ_ONCE(pcp->batch); 2575 /* 2576 * As high-order pages other than THP's stored on PCP can contribute 2577 * to fragmentation, limit the number stored when PCP is heavily 2578 * freeing without allocation. The remainder after bulk freeing 2579 * stops will be drained from vmstat refresh context. 2580 */ 2581 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2582 free_high = (pcp->free_count >= batch && 2583 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2584 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2585 pcp->count >= READ_ONCE(batch))); 2586 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2587 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2588 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2589 } 2590 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2591 pcp->free_count += (1 << order); 2592 high = nr_pcp_high(pcp, zone, batch, free_high); 2593 if (pcp->count >= high) { 2594 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2595 pcp, pindex); 2596 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2597 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2598 ZONE_MOVABLE, 0)) 2599 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2600 } 2601 } 2602 2603 /* 2604 * Free a pcp page 2605 */ 2606 void free_unref_page(struct page *page, unsigned int order) 2607 { 2608 unsigned long __maybe_unused UP_flags; 2609 struct per_cpu_pages *pcp; 2610 struct zone *zone; 2611 unsigned long pfn = page_to_pfn(page); 2612 int migratetype; 2613 2614 if (!pcp_allowed_order(order)) { 2615 __free_pages_ok(page, order, FPI_NONE); 2616 return; 2617 } 2618 2619 if (!free_pages_prepare(page, order)) 2620 return; 2621 2622 /* 2623 * We only track unmovable, reclaimable and movable on pcp lists. 2624 * Place ISOLATE pages on the isolated list because they are being 2625 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2626 * get those areas back if necessary. Otherwise, we may have to free 2627 * excessively into the page allocator 2628 */ 2629 migratetype = get_pfnblock_migratetype(page, pfn); 2630 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2631 if (unlikely(is_migrate_isolate(migratetype))) { 2632 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2633 return; 2634 } 2635 migratetype = MIGRATE_MOVABLE; 2636 } 2637 2638 zone = page_zone(page); 2639 pcp_trylock_prepare(UP_flags); 2640 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2641 if (pcp) { 2642 free_unref_page_commit(zone, pcp, page, migratetype, order); 2643 pcp_spin_unlock(pcp); 2644 } else { 2645 free_one_page(zone, page, pfn, order, FPI_NONE); 2646 } 2647 pcp_trylock_finish(UP_flags); 2648 } 2649 2650 /* 2651 * Free a batch of folios 2652 */ 2653 void free_unref_folios(struct folio_batch *folios) 2654 { 2655 unsigned long __maybe_unused UP_flags; 2656 struct per_cpu_pages *pcp = NULL; 2657 struct zone *locked_zone = NULL; 2658 int i, j; 2659 2660 /* Prepare folios for freeing */ 2661 for (i = 0, j = 0; i < folios->nr; i++) { 2662 struct folio *folio = folios->folios[i]; 2663 unsigned long pfn = folio_pfn(folio); 2664 unsigned int order = folio_order(folio); 2665 2666 folio_undo_large_rmappable(folio); 2667 if (!free_pages_prepare(&folio->page, order)) 2668 continue; 2669 /* 2670 * Free orders not handled on the PCP directly to the 2671 * allocator. 2672 */ 2673 if (!pcp_allowed_order(order)) { 2674 free_one_page(folio_zone(folio), &folio->page, 2675 pfn, order, FPI_NONE); 2676 continue; 2677 } 2678 folio->private = (void *)(unsigned long)order; 2679 if (j != i) 2680 folios->folios[j] = folio; 2681 j++; 2682 } 2683 folios->nr = j; 2684 2685 for (i = 0; i < folios->nr; i++) { 2686 struct folio *folio = folios->folios[i]; 2687 struct zone *zone = folio_zone(folio); 2688 unsigned long pfn = folio_pfn(folio); 2689 unsigned int order = (unsigned long)folio->private; 2690 int migratetype; 2691 2692 folio->private = NULL; 2693 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2694 2695 /* Different zone requires a different pcp lock */ 2696 if (zone != locked_zone || 2697 is_migrate_isolate(migratetype)) { 2698 if (pcp) { 2699 pcp_spin_unlock(pcp); 2700 pcp_trylock_finish(UP_flags); 2701 locked_zone = NULL; 2702 pcp = NULL; 2703 } 2704 2705 /* 2706 * Free isolated pages directly to the 2707 * allocator, see comment in free_unref_page. 2708 */ 2709 if (is_migrate_isolate(migratetype)) { 2710 free_one_page(zone, &folio->page, pfn, 2711 order, FPI_NONE); 2712 continue; 2713 } 2714 2715 /* 2716 * trylock is necessary as folios may be getting freed 2717 * from IRQ or SoftIRQ context after an IO completion. 2718 */ 2719 pcp_trylock_prepare(UP_flags); 2720 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2721 if (unlikely(!pcp)) { 2722 pcp_trylock_finish(UP_flags); 2723 free_one_page(zone, &folio->page, pfn, 2724 order, FPI_NONE); 2725 continue; 2726 } 2727 locked_zone = zone; 2728 } 2729 2730 /* 2731 * Non-isolated types over MIGRATE_PCPTYPES get added 2732 * to the MIGRATE_MOVABLE pcp list. 2733 */ 2734 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2735 migratetype = MIGRATE_MOVABLE; 2736 2737 trace_mm_page_free_batched(&folio->page); 2738 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2739 order); 2740 } 2741 2742 if (pcp) { 2743 pcp_spin_unlock(pcp); 2744 pcp_trylock_finish(UP_flags); 2745 } 2746 folio_batch_reinit(folios); 2747 } 2748 2749 /* 2750 * split_page takes a non-compound higher-order page, and splits it into 2751 * n (1<<order) sub-pages: page[0..n] 2752 * Each sub-page must be freed individually. 2753 * 2754 * Note: this is probably too low level an operation for use in drivers. 2755 * Please consult with lkml before using this in your driver. 2756 */ 2757 void split_page(struct page *page, unsigned int order) 2758 { 2759 int i; 2760 2761 VM_BUG_ON_PAGE(PageCompound(page), page); 2762 VM_BUG_ON_PAGE(!page_count(page), page); 2763 2764 for (i = 1; i < (1 << order); i++) 2765 set_page_refcounted(page + i); 2766 split_page_owner(page, order, 0); 2767 pgalloc_tag_split(page, 1 << order); 2768 split_page_memcg(page, order, 0); 2769 } 2770 EXPORT_SYMBOL_GPL(split_page); 2771 2772 int __isolate_free_page(struct page *page, unsigned int order) 2773 { 2774 struct zone *zone = page_zone(page); 2775 int mt = get_pageblock_migratetype(page); 2776 2777 if (!is_migrate_isolate(mt)) { 2778 unsigned long watermark; 2779 /* 2780 * Obey watermarks as if the page was being allocated. We can 2781 * emulate a high-order watermark check with a raised order-0 2782 * watermark, because we already know our high-order page 2783 * exists. 2784 */ 2785 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2786 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2787 return 0; 2788 } 2789 2790 del_page_from_free_list(page, zone, order, mt); 2791 2792 /* 2793 * Set the pageblock if the isolated page is at least half of a 2794 * pageblock 2795 */ 2796 if (order >= pageblock_order - 1) { 2797 struct page *endpage = page + (1 << order) - 1; 2798 for (; page < endpage; page += pageblock_nr_pages) { 2799 int mt = get_pageblock_migratetype(page); 2800 /* 2801 * Only change normal pageblocks (i.e., they can merge 2802 * with others) 2803 */ 2804 if (migratetype_is_mergeable(mt)) 2805 move_freepages_block(zone, page, mt, 2806 MIGRATE_MOVABLE); 2807 } 2808 } 2809 2810 return 1UL << order; 2811 } 2812 2813 /** 2814 * __putback_isolated_page - Return a now-isolated page back where we got it 2815 * @page: Page that was isolated 2816 * @order: Order of the isolated page 2817 * @mt: The page's pageblock's migratetype 2818 * 2819 * This function is meant to return a page pulled from the free lists via 2820 * __isolate_free_page back to the free lists they were pulled from. 2821 */ 2822 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2823 { 2824 struct zone *zone = page_zone(page); 2825 2826 /* zone lock should be held when this function is called */ 2827 lockdep_assert_held(&zone->lock); 2828 2829 /* Return isolated page to tail of freelist. */ 2830 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2831 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2832 } 2833 2834 /* 2835 * Update NUMA hit/miss statistics 2836 */ 2837 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2838 long nr_account) 2839 { 2840 #ifdef CONFIG_NUMA 2841 enum numa_stat_item local_stat = NUMA_LOCAL; 2842 2843 /* skip numa counters update if numa stats is disabled */ 2844 if (!static_branch_likely(&vm_numa_stat_key)) 2845 return; 2846 2847 if (zone_to_nid(z) != numa_node_id()) 2848 local_stat = NUMA_OTHER; 2849 2850 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2851 __count_numa_events(z, NUMA_HIT, nr_account); 2852 else { 2853 __count_numa_events(z, NUMA_MISS, nr_account); 2854 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2855 } 2856 __count_numa_events(z, local_stat, nr_account); 2857 #endif 2858 } 2859 2860 static __always_inline 2861 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2862 unsigned int order, unsigned int alloc_flags, 2863 int migratetype) 2864 { 2865 struct page *page; 2866 unsigned long flags; 2867 2868 do { 2869 page = NULL; 2870 spin_lock_irqsave(&zone->lock, flags); 2871 if (alloc_flags & ALLOC_HIGHATOMIC) 2872 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2873 if (!page) { 2874 page = __rmqueue(zone, order, migratetype, alloc_flags); 2875 2876 /* 2877 * If the allocation fails, allow OOM handling access 2878 * to HIGHATOMIC reserves as failing now is worse than 2879 * failing a high-order atomic allocation in the 2880 * future. 2881 */ 2882 if (!page && (alloc_flags & ALLOC_OOM)) 2883 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2884 2885 if (!page) { 2886 spin_unlock_irqrestore(&zone->lock, flags); 2887 return NULL; 2888 } 2889 } 2890 spin_unlock_irqrestore(&zone->lock, flags); 2891 } while (check_new_pages(page, order)); 2892 2893 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2894 zone_statistics(preferred_zone, zone, 1); 2895 2896 return page; 2897 } 2898 2899 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2900 { 2901 int high, base_batch, batch, max_nr_alloc; 2902 int high_max, high_min; 2903 2904 base_batch = READ_ONCE(pcp->batch); 2905 high_min = READ_ONCE(pcp->high_min); 2906 high_max = READ_ONCE(pcp->high_max); 2907 high = pcp->high = clamp(pcp->high, high_min, high_max); 2908 2909 /* Check for PCP disabled or boot pageset */ 2910 if (unlikely(high < base_batch)) 2911 return 1; 2912 2913 if (order) 2914 batch = base_batch; 2915 else 2916 batch = (base_batch << pcp->alloc_factor); 2917 2918 /* 2919 * If we had larger pcp->high, we could avoid to allocate from 2920 * zone. 2921 */ 2922 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2923 high = pcp->high = min(high + batch, high_max); 2924 2925 if (!order) { 2926 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2927 /* 2928 * Double the number of pages allocated each time there is 2929 * subsequent allocation of order-0 pages without any freeing. 2930 */ 2931 if (batch <= max_nr_alloc && 2932 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2933 pcp->alloc_factor++; 2934 batch = min(batch, max_nr_alloc); 2935 } 2936 2937 /* 2938 * Scale batch relative to order if batch implies free pages 2939 * can be stored on the PCP. Batch can be 1 for small zones or 2940 * for boot pagesets which should never store free pages as 2941 * the pages may belong to arbitrary zones. 2942 */ 2943 if (batch > 1) 2944 batch = max(batch >> order, 2); 2945 2946 return batch; 2947 } 2948 2949 /* Remove page from the per-cpu list, caller must protect the list */ 2950 static inline 2951 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2952 int migratetype, 2953 unsigned int alloc_flags, 2954 struct per_cpu_pages *pcp, 2955 struct list_head *list) 2956 { 2957 struct page *page; 2958 2959 do { 2960 if (list_empty(list)) { 2961 int batch = nr_pcp_alloc(pcp, zone, order); 2962 int alloced; 2963 2964 alloced = rmqueue_bulk(zone, order, 2965 batch, list, 2966 migratetype, alloc_flags); 2967 2968 pcp->count += alloced << order; 2969 if (unlikely(list_empty(list))) 2970 return NULL; 2971 } 2972 2973 page = list_first_entry(list, struct page, pcp_list); 2974 list_del(&page->pcp_list); 2975 pcp->count -= 1 << order; 2976 } while (check_new_pages(page, order)); 2977 2978 return page; 2979 } 2980 2981 /* Lock and remove page from the per-cpu list */ 2982 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2983 struct zone *zone, unsigned int order, 2984 int migratetype, unsigned int alloc_flags) 2985 { 2986 struct per_cpu_pages *pcp; 2987 struct list_head *list; 2988 struct page *page; 2989 unsigned long __maybe_unused UP_flags; 2990 2991 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2992 pcp_trylock_prepare(UP_flags); 2993 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2994 if (!pcp) { 2995 pcp_trylock_finish(UP_flags); 2996 return NULL; 2997 } 2998 2999 /* 3000 * On allocation, reduce the number of pages that are batch freed. 3001 * See nr_pcp_free() where free_factor is increased for subsequent 3002 * frees. 3003 */ 3004 pcp->free_count >>= 1; 3005 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3006 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3007 pcp_spin_unlock(pcp); 3008 pcp_trylock_finish(UP_flags); 3009 if (page) { 3010 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3011 zone_statistics(preferred_zone, zone, 1); 3012 } 3013 return page; 3014 } 3015 3016 /* 3017 * Allocate a page from the given zone. 3018 * Use pcplists for THP or "cheap" high-order allocations. 3019 */ 3020 3021 /* 3022 * Do not instrument rmqueue() with KMSAN. This function may call 3023 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3024 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3025 * may call rmqueue() again, which will result in a deadlock. 3026 */ 3027 __no_sanitize_memory 3028 static inline 3029 struct page *rmqueue(struct zone *preferred_zone, 3030 struct zone *zone, unsigned int order, 3031 gfp_t gfp_flags, unsigned int alloc_flags, 3032 int migratetype) 3033 { 3034 struct page *page; 3035 3036 /* 3037 * We most definitely don't want callers attempting to 3038 * allocate greater than order-1 page units with __GFP_NOFAIL. 3039 */ 3040 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3041 3042 if (likely(pcp_allowed_order(order))) { 3043 page = rmqueue_pcplist(preferred_zone, zone, order, 3044 migratetype, alloc_flags); 3045 if (likely(page)) 3046 goto out; 3047 } 3048 3049 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3050 migratetype); 3051 3052 out: 3053 /* Separate test+clear to avoid unnecessary atomics */ 3054 if ((alloc_flags & ALLOC_KSWAPD) && 3055 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3056 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3057 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3058 } 3059 3060 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3061 return page; 3062 } 3063 3064 static inline long __zone_watermark_unusable_free(struct zone *z, 3065 unsigned int order, unsigned int alloc_flags) 3066 { 3067 long unusable_free = (1 << order) - 1; 3068 3069 /* 3070 * If the caller does not have rights to reserves below the min 3071 * watermark then subtract the high-atomic reserves. This will 3072 * over-estimate the size of the atomic reserve but it avoids a search. 3073 */ 3074 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3075 unusable_free += z->nr_reserved_highatomic; 3076 3077 #ifdef CONFIG_CMA 3078 /* If allocation can't use CMA areas don't use free CMA pages */ 3079 if (!(alloc_flags & ALLOC_CMA)) 3080 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3081 #endif 3082 3083 return unusable_free; 3084 } 3085 3086 /* 3087 * Return true if free base pages are above 'mark'. For high-order checks it 3088 * will return true of the order-0 watermark is reached and there is at least 3089 * one free page of a suitable size. Checking now avoids taking the zone lock 3090 * to check in the allocation paths if no pages are free. 3091 */ 3092 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3093 int highest_zoneidx, unsigned int alloc_flags, 3094 long free_pages) 3095 { 3096 long min = mark; 3097 int o; 3098 3099 /* free_pages may go negative - that's OK */ 3100 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3101 3102 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3103 /* 3104 * __GFP_HIGH allows access to 50% of the min reserve as well 3105 * as OOM. 3106 */ 3107 if (alloc_flags & ALLOC_MIN_RESERVE) { 3108 min -= min / 2; 3109 3110 /* 3111 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3112 * access more reserves than just __GFP_HIGH. Other 3113 * non-blocking allocations requests such as GFP_NOWAIT 3114 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3115 * access to the min reserve. 3116 */ 3117 if (alloc_flags & ALLOC_NON_BLOCK) 3118 min -= min / 4; 3119 } 3120 3121 /* 3122 * OOM victims can try even harder than the normal reserve 3123 * users on the grounds that it's definitely going to be in 3124 * the exit path shortly and free memory. Any allocation it 3125 * makes during the free path will be small and short-lived. 3126 */ 3127 if (alloc_flags & ALLOC_OOM) 3128 min -= min / 2; 3129 } 3130 3131 /* 3132 * Check watermarks for an order-0 allocation request. If these 3133 * are not met, then a high-order request also cannot go ahead 3134 * even if a suitable page happened to be free. 3135 */ 3136 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3137 return false; 3138 3139 /* If this is an order-0 request then the watermark is fine */ 3140 if (!order) 3141 return true; 3142 3143 /* For a high-order request, check at least one suitable page is free */ 3144 for (o = order; o < NR_PAGE_ORDERS; o++) { 3145 struct free_area *area = &z->free_area[o]; 3146 int mt; 3147 3148 if (!area->nr_free) 3149 continue; 3150 3151 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3152 if (!free_area_empty(area, mt)) 3153 return true; 3154 } 3155 3156 #ifdef CONFIG_CMA 3157 if ((alloc_flags & ALLOC_CMA) && 3158 !free_area_empty(area, MIGRATE_CMA)) { 3159 return true; 3160 } 3161 #endif 3162 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3163 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3164 return true; 3165 } 3166 } 3167 return false; 3168 } 3169 3170 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3171 int highest_zoneidx, unsigned int alloc_flags) 3172 { 3173 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3174 zone_page_state(z, NR_FREE_PAGES)); 3175 } 3176 3177 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3178 unsigned long mark, int highest_zoneidx, 3179 unsigned int alloc_flags, gfp_t gfp_mask) 3180 { 3181 long free_pages; 3182 3183 free_pages = zone_page_state(z, NR_FREE_PAGES); 3184 3185 /* 3186 * Fast check for order-0 only. If this fails then the reserves 3187 * need to be calculated. 3188 */ 3189 if (!order) { 3190 long usable_free; 3191 long reserved; 3192 3193 usable_free = free_pages; 3194 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3195 3196 /* reserved may over estimate high-atomic reserves. */ 3197 usable_free -= min(usable_free, reserved); 3198 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3199 return true; 3200 } 3201 3202 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3203 free_pages)) 3204 return true; 3205 3206 /* 3207 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3208 * when checking the min watermark. The min watermark is the 3209 * point where boosting is ignored so that kswapd is woken up 3210 * when below the low watermark. 3211 */ 3212 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3213 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3214 mark = z->_watermark[WMARK_MIN]; 3215 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3216 alloc_flags, free_pages); 3217 } 3218 3219 return false; 3220 } 3221 3222 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3223 unsigned long mark, int highest_zoneidx) 3224 { 3225 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3226 3227 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3228 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3229 3230 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3231 free_pages); 3232 } 3233 3234 #ifdef CONFIG_NUMA 3235 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3236 3237 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3238 { 3239 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3240 node_reclaim_distance; 3241 } 3242 #else /* CONFIG_NUMA */ 3243 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3244 { 3245 return true; 3246 } 3247 #endif /* CONFIG_NUMA */ 3248 3249 /* 3250 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3251 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3252 * premature use of a lower zone may cause lowmem pressure problems that 3253 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3254 * probably too small. It only makes sense to spread allocations to avoid 3255 * fragmentation between the Normal and DMA32 zones. 3256 */ 3257 static inline unsigned int 3258 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3259 { 3260 unsigned int alloc_flags; 3261 3262 /* 3263 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3264 * to save a branch. 3265 */ 3266 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3267 3268 #ifdef CONFIG_ZONE_DMA32 3269 if (!zone) 3270 return alloc_flags; 3271 3272 if (zone_idx(zone) != ZONE_NORMAL) 3273 return alloc_flags; 3274 3275 /* 3276 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3277 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3278 * on UMA that if Normal is populated then so is DMA32. 3279 */ 3280 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3281 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3282 return alloc_flags; 3283 3284 alloc_flags |= ALLOC_NOFRAGMENT; 3285 #endif /* CONFIG_ZONE_DMA32 */ 3286 return alloc_flags; 3287 } 3288 3289 /* Must be called after current_gfp_context() which can change gfp_mask */ 3290 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3291 unsigned int alloc_flags) 3292 { 3293 #ifdef CONFIG_CMA 3294 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3295 alloc_flags |= ALLOC_CMA; 3296 #endif 3297 return alloc_flags; 3298 } 3299 3300 /* 3301 * get_page_from_freelist goes through the zonelist trying to allocate 3302 * a page. 3303 */ 3304 static struct page * 3305 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3306 const struct alloc_context *ac) 3307 { 3308 struct zoneref *z; 3309 struct zone *zone; 3310 struct pglist_data *last_pgdat = NULL; 3311 bool last_pgdat_dirty_ok = false; 3312 bool no_fallback; 3313 3314 retry: 3315 /* 3316 * Scan zonelist, looking for a zone with enough free. 3317 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3318 */ 3319 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3320 z = ac->preferred_zoneref; 3321 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3322 ac->nodemask) { 3323 struct page *page; 3324 unsigned long mark; 3325 3326 if (cpusets_enabled() && 3327 (alloc_flags & ALLOC_CPUSET) && 3328 !__cpuset_zone_allowed(zone, gfp_mask)) 3329 continue; 3330 /* 3331 * When allocating a page cache page for writing, we 3332 * want to get it from a node that is within its dirty 3333 * limit, such that no single node holds more than its 3334 * proportional share of globally allowed dirty pages. 3335 * The dirty limits take into account the node's 3336 * lowmem reserves and high watermark so that kswapd 3337 * should be able to balance it without having to 3338 * write pages from its LRU list. 3339 * 3340 * XXX: For now, allow allocations to potentially 3341 * exceed the per-node dirty limit in the slowpath 3342 * (spread_dirty_pages unset) before going into reclaim, 3343 * which is important when on a NUMA setup the allowed 3344 * nodes are together not big enough to reach the 3345 * global limit. The proper fix for these situations 3346 * will require awareness of nodes in the 3347 * dirty-throttling and the flusher threads. 3348 */ 3349 if (ac->spread_dirty_pages) { 3350 if (last_pgdat != zone->zone_pgdat) { 3351 last_pgdat = zone->zone_pgdat; 3352 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3353 } 3354 3355 if (!last_pgdat_dirty_ok) 3356 continue; 3357 } 3358 3359 if (no_fallback && nr_online_nodes > 1 && 3360 zone != ac->preferred_zoneref->zone) { 3361 int local_nid; 3362 3363 /* 3364 * If moving to a remote node, retry but allow 3365 * fragmenting fallbacks. Locality is more important 3366 * than fragmentation avoidance. 3367 */ 3368 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3369 if (zone_to_nid(zone) != local_nid) { 3370 alloc_flags &= ~ALLOC_NOFRAGMENT; 3371 goto retry; 3372 } 3373 } 3374 3375 cond_accept_memory(zone, order); 3376 3377 /* 3378 * Detect whether the number of free pages is below high 3379 * watermark. If so, we will decrease pcp->high and free 3380 * PCP pages in free path to reduce the possibility of 3381 * premature page reclaiming. Detection is done here to 3382 * avoid to do that in hotter free path. 3383 */ 3384 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3385 goto check_alloc_wmark; 3386 3387 mark = high_wmark_pages(zone); 3388 if (zone_watermark_fast(zone, order, mark, 3389 ac->highest_zoneidx, alloc_flags, 3390 gfp_mask)) 3391 goto try_this_zone; 3392 else 3393 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3394 3395 check_alloc_wmark: 3396 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3397 if (!zone_watermark_fast(zone, order, mark, 3398 ac->highest_zoneidx, alloc_flags, 3399 gfp_mask)) { 3400 int ret; 3401 3402 if (cond_accept_memory(zone, order)) 3403 goto try_this_zone; 3404 3405 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3406 /* 3407 * Watermark failed for this zone, but see if we can 3408 * grow this zone if it contains deferred pages. 3409 */ 3410 if (deferred_pages_enabled()) { 3411 if (_deferred_grow_zone(zone, order)) 3412 goto try_this_zone; 3413 } 3414 #endif 3415 /* Checked here to keep the fast path fast */ 3416 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3417 if (alloc_flags & ALLOC_NO_WATERMARKS) 3418 goto try_this_zone; 3419 3420 if (!node_reclaim_enabled() || 3421 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3422 continue; 3423 3424 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3425 switch (ret) { 3426 case NODE_RECLAIM_NOSCAN: 3427 /* did not scan */ 3428 continue; 3429 case NODE_RECLAIM_FULL: 3430 /* scanned but unreclaimable */ 3431 continue; 3432 default: 3433 /* did we reclaim enough */ 3434 if (zone_watermark_ok(zone, order, mark, 3435 ac->highest_zoneidx, alloc_flags)) 3436 goto try_this_zone; 3437 3438 continue; 3439 } 3440 } 3441 3442 try_this_zone: 3443 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3444 gfp_mask, alloc_flags, ac->migratetype); 3445 if (page) { 3446 prep_new_page(page, order, gfp_mask, alloc_flags); 3447 3448 /* 3449 * If this is a high-order atomic allocation then check 3450 * if the pageblock should be reserved for the future 3451 */ 3452 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3453 reserve_highatomic_pageblock(page, order, zone); 3454 3455 return page; 3456 } else { 3457 if (cond_accept_memory(zone, order)) 3458 goto try_this_zone; 3459 3460 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3461 /* Try again if zone has deferred pages */ 3462 if (deferred_pages_enabled()) { 3463 if (_deferred_grow_zone(zone, order)) 3464 goto try_this_zone; 3465 } 3466 #endif 3467 } 3468 } 3469 3470 /* 3471 * It's possible on a UMA machine to get through all zones that are 3472 * fragmented. If avoiding fragmentation, reset and try again. 3473 */ 3474 if (no_fallback) { 3475 alloc_flags &= ~ALLOC_NOFRAGMENT; 3476 goto retry; 3477 } 3478 3479 return NULL; 3480 } 3481 3482 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3483 { 3484 unsigned int filter = SHOW_MEM_FILTER_NODES; 3485 3486 /* 3487 * This documents exceptions given to allocations in certain 3488 * contexts that are allowed to allocate outside current's set 3489 * of allowed nodes. 3490 */ 3491 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3492 if (tsk_is_oom_victim(current) || 3493 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3494 filter &= ~SHOW_MEM_FILTER_NODES; 3495 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3496 filter &= ~SHOW_MEM_FILTER_NODES; 3497 3498 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3499 } 3500 3501 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3502 { 3503 struct va_format vaf; 3504 va_list args; 3505 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3506 3507 if ((gfp_mask & __GFP_NOWARN) || 3508 !__ratelimit(&nopage_rs) || 3509 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3510 return; 3511 3512 va_start(args, fmt); 3513 vaf.fmt = fmt; 3514 vaf.va = &args; 3515 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3516 current->comm, &vaf, gfp_mask, &gfp_mask, 3517 nodemask_pr_args(nodemask)); 3518 va_end(args); 3519 3520 cpuset_print_current_mems_allowed(); 3521 pr_cont("\n"); 3522 dump_stack(); 3523 warn_alloc_show_mem(gfp_mask, nodemask); 3524 } 3525 3526 static inline struct page * 3527 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3528 unsigned int alloc_flags, 3529 const struct alloc_context *ac) 3530 { 3531 struct page *page; 3532 3533 page = get_page_from_freelist(gfp_mask, order, 3534 alloc_flags|ALLOC_CPUSET, ac); 3535 /* 3536 * fallback to ignore cpuset restriction if our nodes 3537 * are depleted 3538 */ 3539 if (!page) 3540 page = get_page_from_freelist(gfp_mask, order, 3541 alloc_flags, ac); 3542 3543 return page; 3544 } 3545 3546 static inline struct page * 3547 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3548 const struct alloc_context *ac, unsigned long *did_some_progress) 3549 { 3550 struct oom_control oc = { 3551 .zonelist = ac->zonelist, 3552 .nodemask = ac->nodemask, 3553 .memcg = NULL, 3554 .gfp_mask = gfp_mask, 3555 .order = order, 3556 }; 3557 struct page *page; 3558 3559 *did_some_progress = 0; 3560 3561 /* 3562 * Acquire the oom lock. If that fails, somebody else is 3563 * making progress for us. 3564 */ 3565 if (!mutex_trylock(&oom_lock)) { 3566 *did_some_progress = 1; 3567 schedule_timeout_uninterruptible(1); 3568 return NULL; 3569 } 3570 3571 /* 3572 * Go through the zonelist yet one more time, keep very high watermark 3573 * here, this is only to catch a parallel oom killing, we must fail if 3574 * we're still under heavy pressure. But make sure that this reclaim 3575 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3576 * allocation which will never fail due to oom_lock already held. 3577 */ 3578 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3579 ~__GFP_DIRECT_RECLAIM, order, 3580 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3581 if (page) 3582 goto out; 3583 3584 /* Coredumps can quickly deplete all memory reserves */ 3585 if (current->flags & PF_DUMPCORE) 3586 goto out; 3587 /* The OOM killer will not help higher order allocs */ 3588 if (order > PAGE_ALLOC_COSTLY_ORDER) 3589 goto out; 3590 /* 3591 * We have already exhausted all our reclaim opportunities without any 3592 * success so it is time to admit defeat. We will skip the OOM killer 3593 * because it is very likely that the caller has a more reasonable 3594 * fallback than shooting a random task. 3595 * 3596 * The OOM killer may not free memory on a specific node. 3597 */ 3598 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3599 goto out; 3600 /* The OOM killer does not needlessly kill tasks for lowmem */ 3601 if (ac->highest_zoneidx < ZONE_NORMAL) 3602 goto out; 3603 if (pm_suspended_storage()) 3604 goto out; 3605 /* 3606 * XXX: GFP_NOFS allocations should rather fail than rely on 3607 * other request to make a forward progress. 3608 * We are in an unfortunate situation where out_of_memory cannot 3609 * do much for this context but let's try it to at least get 3610 * access to memory reserved if the current task is killed (see 3611 * out_of_memory). Once filesystems are ready to handle allocation 3612 * failures more gracefully we should just bail out here. 3613 */ 3614 3615 /* Exhausted what can be done so it's blame time */ 3616 if (out_of_memory(&oc) || 3617 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3618 *did_some_progress = 1; 3619 3620 /* 3621 * Help non-failing allocations by giving them access to memory 3622 * reserves 3623 */ 3624 if (gfp_mask & __GFP_NOFAIL) 3625 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3626 ALLOC_NO_WATERMARKS, ac); 3627 } 3628 out: 3629 mutex_unlock(&oom_lock); 3630 return page; 3631 } 3632 3633 /* 3634 * Maximum number of compaction retries with a progress before OOM 3635 * killer is consider as the only way to move forward. 3636 */ 3637 #define MAX_COMPACT_RETRIES 16 3638 3639 #ifdef CONFIG_COMPACTION 3640 /* Try memory compaction for high-order allocations before reclaim */ 3641 static struct page * 3642 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3643 unsigned int alloc_flags, const struct alloc_context *ac, 3644 enum compact_priority prio, enum compact_result *compact_result) 3645 { 3646 struct page *page = NULL; 3647 unsigned long pflags; 3648 unsigned int noreclaim_flag; 3649 3650 if (!order) 3651 return NULL; 3652 3653 psi_memstall_enter(&pflags); 3654 delayacct_compact_start(); 3655 noreclaim_flag = memalloc_noreclaim_save(); 3656 3657 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3658 prio, &page); 3659 3660 memalloc_noreclaim_restore(noreclaim_flag); 3661 psi_memstall_leave(&pflags); 3662 delayacct_compact_end(); 3663 3664 if (*compact_result == COMPACT_SKIPPED) 3665 return NULL; 3666 /* 3667 * At least in one zone compaction wasn't deferred or skipped, so let's 3668 * count a compaction stall 3669 */ 3670 count_vm_event(COMPACTSTALL); 3671 3672 /* Prep a captured page if available */ 3673 if (page) 3674 prep_new_page(page, order, gfp_mask, alloc_flags); 3675 3676 /* Try get a page from the freelist if available */ 3677 if (!page) 3678 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3679 3680 if (page) { 3681 struct zone *zone = page_zone(page); 3682 3683 zone->compact_blockskip_flush = false; 3684 compaction_defer_reset(zone, order, true); 3685 count_vm_event(COMPACTSUCCESS); 3686 return page; 3687 } 3688 3689 /* 3690 * It's bad if compaction run occurs and fails. The most likely reason 3691 * is that pages exist, but not enough to satisfy watermarks. 3692 */ 3693 count_vm_event(COMPACTFAIL); 3694 3695 cond_resched(); 3696 3697 return NULL; 3698 } 3699 3700 static inline bool 3701 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3702 enum compact_result compact_result, 3703 enum compact_priority *compact_priority, 3704 int *compaction_retries) 3705 { 3706 int max_retries = MAX_COMPACT_RETRIES; 3707 int min_priority; 3708 bool ret = false; 3709 int retries = *compaction_retries; 3710 enum compact_priority priority = *compact_priority; 3711 3712 if (!order) 3713 return false; 3714 3715 if (fatal_signal_pending(current)) 3716 return false; 3717 3718 /* 3719 * Compaction was skipped due to a lack of free order-0 3720 * migration targets. Continue if reclaim can help. 3721 */ 3722 if (compact_result == COMPACT_SKIPPED) { 3723 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3724 goto out; 3725 } 3726 3727 /* 3728 * Compaction managed to coalesce some page blocks, but the 3729 * allocation failed presumably due to a race. Retry some. 3730 */ 3731 if (compact_result == COMPACT_SUCCESS) { 3732 /* 3733 * !costly requests are much more important than 3734 * __GFP_RETRY_MAYFAIL costly ones because they are de 3735 * facto nofail and invoke OOM killer to move on while 3736 * costly can fail and users are ready to cope with 3737 * that. 1/4 retries is rather arbitrary but we would 3738 * need much more detailed feedback from compaction to 3739 * make a better decision. 3740 */ 3741 if (order > PAGE_ALLOC_COSTLY_ORDER) 3742 max_retries /= 4; 3743 3744 if (++(*compaction_retries) <= max_retries) { 3745 ret = true; 3746 goto out; 3747 } 3748 } 3749 3750 /* 3751 * Compaction failed. Retry with increasing priority. 3752 */ 3753 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3754 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3755 3756 if (*compact_priority > min_priority) { 3757 (*compact_priority)--; 3758 *compaction_retries = 0; 3759 ret = true; 3760 } 3761 out: 3762 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3763 return ret; 3764 } 3765 #else 3766 static inline struct page * 3767 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3768 unsigned int alloc_flags, const struct alloc_context *ac, 3769 enum compact_priority prio, enum compact_result *compact_result) 3770 { 3771 *compact_result = COMPACT_SKIPPED; 3772 return NULL; 3773 } 3774 3775 static inline bool 3776 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3777 enum compact_result compact_result, 3778 enum compact_priority *compact_priority, 3779 int *compaction_retries) 3780 { 3781 struct zone *zone; 3782 struct zoneref *z; 3783 3784 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3785 return false; 3786 3787 /* 3788 * There are setups with compaction disabled which would prefer to loop 3789 * inside the allocator rather than hit the oom killer prematurely. 3790 * Let's give them a good hope and keep retrying while the order-0 3791 * watermarks are OK. 3792 */ 3793 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3794 ac->highest_zoneidx, ac->nodemask) { 3795 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3796 ac->highest_zoneidx, alloc_flags)) 3797 return true; 3798 } 3799 return false; 3800 } 3801 #endif /* CONFIG_COMPACTION */ 3802 3803 #ifdef CONFIG_LOCKDEP 3804 static struct lockdep_map __fs_reclaim_map = 3805 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3806 3807 static bool __need_reclaim(gfp_t gfp_mask) 3808 { 3809 /* no reclaim without waiting on it */ 3810 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3811 return false; 3812 3813 /* this guy won't enter reclaim */ 3814 if (current->flags & PF_MEMALLOC) 3815 return false; 3816 3817 if (gfp_mask & __GFP_NOLOCKDEP) 3818 return false; 3819 3820 return true; 3821 } 3822 3823 void __fs_reclaim_acquire(unsigned long ip) 3824 { 3825 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3826 } 3827 3828 void __fs_reclaim_release(unsigned long ip) 3829 { 3830 lock_release(&__fs_reclaim_map, ip); 3831 } 3832 3833 void fs_reclaim_acquire(gfp_t gfp_mask) 3834 { 3835 gfp_mask = current_gfp_context(gfp_mask); 3836 3837 if (__need_reclaim(gfp_mask)) { 3838 if (gfp_mask & __GFP_FS) 3839 __fs_reclaim_acquire(_RET_IP_); 3840 3841 #ifdef CONFIG_MMU_NOTIFIER 3842 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3843 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3844 #endif 3845 3846 } 3847 } 3848 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3849 3850 void fs_reclaim_release(gfp_t gfp_mask) 3851 { 3852 gfp_mask = current_gfp_context(gfp_mask); 3853 3854 if (__need_reclaim(gfp_mask)) { 3855 if (gfp_mask & __GFP_FS) 3856 __fs_reclaim_release(_RET_IP_); 3857 } 3858 } 3859 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3860 #endif 3861 3862 /* 3863 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3864 * have been rebuilt so allocation retries. Reader side does not lock and 3865 * retries the allocation if zonelist changes. Writer side is protected by the 3866 * embedded spin_lock. 3867 */ 3868 static DEFINE_SEQLOCK(zonelist_update_seq); 3869 3870 static unsigned int zonelist_iter_begin(void) 3871 { 3872 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3873 return read_seqbegin(&zonelist_update_seq); 3874 3875 return 0; 3876 } 3877 3878 static unsigned int check_retry_zonelist(unsigned int seq) 3879 { 3880 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3881 return read_seqretry(&zonelist_update_seq, seq); 3882 3883 return seq; 3884 } 3885 3886 /* Perform direct synchronous page reclaim */ 3887 static unsigned long 3888 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3889 const struct alloc_context *ac) 3890 { 3891 unsigned int noreclaim_flag; 3892 unsigned long progress; 3893 3894 cond_resched(); 3895 3896 /* We now go into synchronous reclaim */ 3897 cpuset_memory_pressure_bump(); 3898 fs_reclaim_acquire(gfp_mask); 3899 noreclaim_flag = memalloc_noreclaim_save(); 3900 3901 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3902 ac->nodemask); 3903 3904 memalloc_noreclaim_restore(noreclaim_flag); 3905 fs_reclaim_release(gfp_mask); 3906 3907 cond_resched(); 3908 3909 return progress; 3910 } 3911 3912 /* The really slow allocator path where we enter direct reclaim */ 3913 static inline struct page * 3914 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3915 unsigned int alloc_flags, const struct alloc_context *ac, 3916 unsigned long *did_some_progress) 3917 { 3918 struct page *page = NULL; 3919 unsigned long pflags; 3920 bool drained = false; 3921 3922 psi_memstall_enter(&pflags); 3923 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3924 if (unlikely(!(*did_some_progress))) 3925 goto out; 3926 3927 retry: 3928 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3929 3930 /* 3931 * If an allocation failed after direct reclaim, it could be because 3932 * pages are pinned on the per-cpu lists or in high alloc reserves. 3933 * Shrink them and try again 3934 */ 3935 if (!page && !drained) { 3936 unreserve_highatomic_pageblock(ac, false); 3937 drain_all_pages(NULL); 3938 drained = true; 3939 goto retry; 3940 } 3941 out: 3942 psi_memstall_leave(&pflags); 3943 3944 return page; 3945 } 3946 3947 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3948 const struct alloc_context *ac) 3949 { 3950 struct zoneref *z; 3951 struct zone *zone; 3952 pg_data_t *last_pgdat = NULL; 3953 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3954 3955 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3956 ac->nodemask) { 3957 if (!managed_zone(zone)) 3958 continue; 3959 if (last_pgdat != zone->zone_pgdat) { 3960 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3961 last_pgdat = zone->zone_pgdat; 3962 } 3963 } 3964 } 3965 3966 static inline unsigned int 3967 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3968 { 3969 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3970 3971 /* 3972 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3973 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3974 * to save two branches. 3975 */ 3976 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3977 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3978 3979 /* 3980 * The caller may dip into page reserves a bit more if the caller 3981 * cannot run direct reclaim, or if the caller has realtime scheduling 3982 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3983 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3984 */ 3985 alloc_flags |= (__force int) 3986 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3987 3988 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3989 /* 3990 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3991 * if it can't schedule. 3992 */ 3993 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3994 alloc_flags |= ALLOC_NON_BLOCK; 3995 3996 if (order > 0) 3997 alloc_flags |= ALLOC_HIGHATOMIC; 3998 } 3999 4000 /* 4001 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4002 * GFP_ATOMIC) rather than fail, see the comment for 4003 * cpuset_node_allowed(). 4004 */ 4005 if (alloc_flags & ALLOC_MIN_RESERVE) 4006 alloc_flags &= ~ALLOC_CPUSET; 4007 } else if (unlikely(rt_task(current)) && in_task()) 4008 alloc_flags |= ALLOC_MIN_RESERVE; 4009 4010 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4011 4012 return alloc_flags; 4013 } 4014 4015 static bool oom_reserves_allowed(struct task_struct *tsk) 4016 { 4017 if (!tsk_is_oom_victim(tsk)) 4018 return false; 4019 4020 /* 4021 * !MMU doesn't have oom reaper so give access to memory reserves 4022 * only to the thread with TIF_MEMDIE set 4023 */ 4024 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4025 return false; 4026 4027 return true; 4028 } 4029 4030 /* 4031 * Distinguish requests which really need access to full memory 4032 * reserves from oom victims which can live with a portion of it 4033 */ 4034 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4035 { 4036 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4037 return 0; 4038 if (gfp_mask & __GFP_MEMALLOC) 4039 return ALLOC_NO_WATERMARKS; 4040 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4041 return ALLOC_NO_WATERMARKS; 4042 if (!in_interrupt()) { 4043 if (current->flags & PF_MEMALLOC) 4044 return ALLOC_NO_WATERMARKS; 4045 else if (oom_reserves_allowed(current)) 4046 return ALLOC_OOM; 4047 } 4048 4049 return 0; 4050 } 4051 4052 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4053 { 4054 return !!__gfp_pfmemalloc_flags(gfp_mask); 4055 } 4056 4057 /* 4058 * Checks whether it makes sense to retry the reclaim to make a forward progress 4059 * for the given allocation request. 4060 * 4061 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4062 * without success, or when we couldn't even meet the watermark if we 4063 * reclaimed all remaining pages on the LRU lists. 4064 * 4065 * Returns true if a retry is viable or false to enter the oom path. 4066 */ 4067 static inline bool 4068 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4069 struct alloc_context *ac, int alloc_flags, 4070 bool did_some_progress, int *no_progress_loops) 4071 { 4072 struct zone *zone; 4073 struct zoneref *z; 4074 bool ret = false; 4075 4076 /* 4077 * Costly allocations might have made a progress but this doesn't mean 4078 * their order will become available due to high fragmentation so 4079 * always increment the no progress counter for them 4080 */ 4081 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4082 *no_progress_loops = 0; 4083 else 4084 (*no_progress_loops)++; 4085 4086 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4087 goto out; 4088 4089 4090 /* 4091 * Keep reclaiming pages while there is a chance this will lead 4092 * somewhere. If none of the target zones can satisfy our allocation 4093 * request even if all reclaimable pages are considered then we are 4094 * screwed and have to go OOM. 4095 */ 4096 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4097 ac->highest_zoneidx, ac->nodemask) { 4098 unsigned long available; 4099 unsigned long reclaimable; 4100 unsigned long min_wmark = min_wmark_pages(zone); 4101 bool wmark; 4102 4103 available = reclaimable = zone_reclaimable_pages(zone); 4104 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4105 4106 /* 4107 * Would the allocation succeed if we reclaimed all 4108 * reclaimable pages? 4109 */ 4110 wmark = __zone_watermark_ok(zone, order, min_wmark, 4111 ac->highest_zoneidx, alloc_flags, available); 4112 trace_reclaim_retry_zone(z, order, reclaimable, 4113 available, min_wmark, *no_progress_loops, wmark); 4114 if (wmark) { 4115 ret = true; 4116 break; 4117 } 4118 } 4119 4120 /* 4121 * Memory allocation/reclaim might be called from a WQ context and the 4122 * current implementation of the WQ concurrency control doesn't 4123 * recognize that a particular WQ is congested if the worker thread is 4124 * looping without ever sleeping. Therefore we have to do a short sleep 4125 * here rather than calling cond_resched(). 4126 */ 4127 if (current->flags & PF_WQ_WORKER) 4128 schedule_timeout_uninterruptible(1); 4129 else 4130 cond_resched(); 4131 out: 4132 /* Before OOM, exhaust highatomic_reserve */ 4133 if (!ret) 4134 return unreserve_highatomic_pageblock(ac, true); 4135 4136 return ret; 4137 } 4138 4139 static inline bool 4140 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4141 { 4142 /* 4143 * It's possible that cpuset's mems_allowed and the nodemask from 4144 * mempolicy don't intersect. This should be normally dealt with by 4145 * policy_nodemask(), but it's possible to race with cpuset update in 4146 * such a way the check therein was true, and then it became false 4147 * before we got our cpuset_mems_cookie here. 4148 * This assumes that for all allocations, ac->nodemask can come only 4149 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4150 * when it does not intersect with the cpuset restrictions) or the 4151 * caller can deal with a violated nodemask. 4152 */ 4153 if (cpusets_enabled() && ac->nodemask && 4154 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4155 ac->nodemask = NULL; 4156 return true; 4157 } 4158 4159 /* 4160 * When updating a task's mems_allowed or mempolicy nodemask, it is 4161 * possible to race with parallel threads in such a way that our 4162 * allocation can fail while the mask is being updated. If we are about 4163 * to fail, check if the cpuset changed during allocation and if so, 4164 * retry. 4165 */ 4166 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4167 return true; 4168 4169 return false; 4170 } 4171 4172 static inline struct page * 4173 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4174 struct alloc_context *ac) 4175 { 4176 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4177 bool can_compact = gfp_compaction_allowed(gfp_mask); 4178 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4179 struct page *page = NULL; 4180 unsigned int alloc_flags; 4181 unsigned long did_some_progress; 4182 enum compact_priority compact_priority; 4183 enum compact_result compact_result; 4184 int compaction_retries; 4185 int no_progress_loops; 4186 unsigned int cpuset_mems_cookie; 4187 unsigned int zonelist_iter_cookie; 4188 int reserve_flags; 4189 4190 restart: 4191 compaction_retries = 0; 4192 no_progress_loops = 0; 4193 compact_priority = DEF_COMPACT_PRIORITY; 4194 cpuset_mems_cookie = read_mems_allowed_begin(); 4195 zonelist_iter_cookie = zonelist_iter_begin(); 4196 4197 /* 4198 * The fast path uses conservative alloc_flags to succeed only until 4199 * kswapd needs to be woken up, and to avoid the cost of setting up 4200 * alloc_flags precisely. So we do that now. 4201 */ 4202 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4203 4204 /* 4205 * We need to recalculate the starting point for the zonelist iterator 4206 * because we might have used different nodemask in the fast path, or 4207 * there was a cpuset modification and we are retrying - otherwise we 4208 * could end up iterating over non-eligible zones endlessly. 4209 */ 4210 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4211 ac->highest_zoneidx, ac->nodemask); 4212 if (!ac->preferred_zoneref->zone) 4213 goto nopage; 4214 4215 /* 4216 * Check for insane configurations where the cpuset doesn't contain 4217 * any suitable zone to satisfy the request - e.g. non-movable 4218 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4219 */ 4220 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4221 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4222 ac->highest_zoneidx, 4223 &cpuset_current_mems_allowed); 4224 if (!z->zone) 4225 goto nopage; 4226 } 4227 4228 if (alloc_flags & ALLOC_KSWAPD) 4229 wake_all_kswapds(order, gfp_mask, ac); 4230 4231 /* 4232 * The adjusted alloc_flags might result in immediate success, so try 4233 * that first 4234 */ 4235 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4236 if (page) 4237 goto got_pg; 4238 4239 /* 4240 * For costly allocations, try direct compaction first, as it's likely 4241 * that we have enough base pages and don't need to reclaim. For non- 4242 * movable high-order allocations, do that as well, as compaction will 4243 * try prevent permanent fragmentation by migrating from blocks of the 4244 * same migratetype. 4245 * Don't try this for allocations that are allowed to ignore 4246 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4247 */ 4248 if (can_direct_reclaim && can_compact && 4249 (costly_order || 4250 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4251 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4252 page = __alloc_pages_direct_compact(gfp_mask, order, 4253 alloc_flags, ac, 4254 INIT_COMPACT_PRIORITY, 4255 &compact_result); 4256 if (page) 4257 goto got_pg; 4258 4259 /* 4260 * Checks for costly allocations with __GFP_NORETRY, which 4261 * includes some THP page fault allocations 4262 */ 4263 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4264 /* 4265 * If allocating entire pageblock(s) and compaction 4266 * failed because all zones are below low watermarks 4267 * or is prohibited because it recently failed at this 4268 * order, fail immediately unless the allocator has 4269 * requested compaction and reclaim retry. 4270 * 4271 * Reclaim is 4272 * - potentially very expensive because zones are far 4273 * below their low watermarks or this is part of very 4274 * bursty high order allocations, 4275 * - not guaranteed to help because isolate_freepages() 4276 * may not iterate over freed pages as part of its 4277 * linear scan, and 4278 * - unlikely to make entire pageblocks free on its 4279 * own. 4280 */ 4281 if (compact_result == COMPACT_SKIPPED || 4282 compact_result == COMPACT_DEFERRED) 4283 goto nopage; 4284 4285 /* 4286 * Looks like reclaim/compaction is worth trying, but 4287 * sync compaction could be very expensive, so keep 4288 * using async compaction. 4289 */ 4290 compact_priority = INIT_COMPACT_PRIORITY; 4291 } 4292 } 4293 4294 retry: 4295 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4296 if (alloc_flags & ALLOC_KSWAPD) 4297 wake_all_kswapds(order, gfp_mask, ac); 4298 4299 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4300 if (reserve_flags) 4301 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4302 (alloc_flags & ALLOC_KSWAPD); 4303 4304 /* 4305 * Reset the nodemask and zonelist iterators if memory policies can be 4306 * ignored. These allocations are high priority and system rather than 4307 * user oriented. 4308 */ 4309 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4310 ac->nodemask = NULL; 4311 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4312 ac->highest_zoneidx, ac->nodemask); 4313 } 4314 4315 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4316 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4317 if (page) 4318 goto got_pg; 4319 4320 /* Caller is not willing to reclaim, we can't balance anything */ 4321 if (!can_direct_reclaim) 4322 goto nopage; 4323 4324 /* Avoid recursion of direct reclaim */ 4325 if (current->flags & PF_MEMALLOC) 4326 goto nopage; 4327 4328 /* Try direct reclaim and then allocating */ 4329 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4330 &did_some_progress); 4331 if (page) 4332 goto got_pg; 4333 4334 /* Try direct compaction and then allocating */ 4335 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4336 compact_priority, &compact_result); 4337 if (page) 4338 goto got_pg; 4339 4340 /* Do not loop if specifically requested */ 4341 if (gfp_mask & __GFP_NORETRY) 4342 goto nopage; 4343 4344 /* 4345 * Do not retry costly high order allocations unless they are 4346 * __GFP_RETRY_MAYFAIL and we can compact 4347 */ 4348 if (costly_order && (!can_compact || 4349 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4350 goto nopage; 4351 4352 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4353 did_some_progress > 0, &no_progress_loops)) 4354 goto retry; 4355 4356 /* 4357 * It doesn't make any sense to retry for the compaction if the order-0 4358 * reclaim is not able to make any progress because the current 4359 * implementation of the compaction depends on the sufficient amount 4360 * of free memory (see __compaction_suitable) 4361 */ 4362 if (did_some_progress > 0 && can_compact && 4363 should_compact_retry(ac, order, alloc_flags, 4364 compact_result, &compact_priority, 4365 &compaction_retries)) 4366 goto retry; 4367 4368 4369 /* 4370 * Deal with possible cpuset update races or zonelist updates to avoid 4371 * a unnecessary OOM kill. 4372 */ 4373 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4374 check_retry_zonelist(zonelist_iter_cookie)) 4375 goto restart; 4376 4377 /* Reclaim has failed us, start killing things */ 4378 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4379 if (page) 4380 goto got_pg; 4381 4382 /* Avoid allocations with no watermarks from looping endlessly */ 4383 if (tsk_is_oom_victim(current) && 4384 (alloc_flags & ALLOC_OOM || 4385 (gfp_mask & __GFP_NOMEMALLOC))) 4386 goto nopage; 4387 4388 /* Retry as long as the OOM killer is making progress */ 4389 if (did_some_progress) { 4390 no_progress_loops = 0; 4391 goto retry; 4392 } 4393 4394 nopage: 4395 /* 4396 * Deal with possible cpuset update races or zonelist updates to avoid 4397 * a unnecessary OOM kill. 4398 */ 4399 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4400 check_retry_zonelist(zonelist_iter_cookie)) 4401 goto restart; 4402 4403 /* 4404 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4405 * we always retry 4406 */ 4407 if (gfp_mask & __GFP_NOFAIL) { 4408 /* 4409 * All existing users of the __GFP_NOFAIL are blockable, so warn 4410 * of any new users that actually require GFP_NOWAIT 4411 */ 4412 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4413 goto fail; 4414 4415 /* 4416 * PF_MEMALLOC request from this context is rather bizarre 4417 * because we cannot reclaim anything and only can loop waiting 4418 * for somebody to do a work for us 4419 */ 4420 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4421 4422 /* 4423 * non failing costly orders are a hard requirement which we 4424 * are not prepared for much so let's warn about these users 4425 * so that we can identify them and convert them to something 4426 * else. 4427 */ 4428 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4429 4430 /* 4431 * Help non-failing allocations by giving some access to memory 4432 * reserves normally used for high priority non-blocking 4433 * allocations but do not use ALLOC_NO_WATERMARKS because this 4434 * could deplete whole memory reserves which would just make 4435 * the situation worse. 4436 */ 4437 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4438 if (page) 4439 goto got_pg; 4440 4441 cond_resched(); 4442 goto retry; 4443 } 4444 fail: 4445 warn_alloc(gfp_mask, ac->nodemask, 4446 "page allocation failure: order:%u", order); 4447 got_pg: 4448 return page; 4449 } 4450 4451 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4452 int preferred_nid, nodemask_t *nodemask, 4453 struct alloc_context *ac, gfp_t *alloc_gfp, 4454 unsigned int *alloc_flags) 4455 { 4456 ac->highest_zoneidx = gfp_zone(gfp_mask); 4457 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4458 ac->nodemask = nodemask; 4459 ac->migratetype = gfp_migratetype(gfp_mask); 4460 4461 if (cpusets_enabled()) { 4462 *alloc_gfp |= __GFP_HARDWALL; 4463 /* 4464 * When we are in the interrupt context, it is irrelevant 4465 * to the current task context. It means that any node ok. 4466 */ 4467 if (in_task() && !ac->nodemask) 4468 ac->nodemask = &cpuset_current_mems_allowed; 4469 else 4470 *alloc_flags |= ALLOC_CPUSET; 4471 } 4472 4473 might_alloc(gfp_mask); 4474 4475 if (should_fail_alloc_page(gfp_mask, order)) 4476 return false; 4477 4478 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4479 4480 /* Dirty zone balancing only done in the fast path */ 4481 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4482 4483 /* 4484 * The preferred zone is used for statistics but crucially it is 4485 * also used as the starting point for the zonelist iterator. It 4486 * may get reset for allocations that ignore memory policies. 4487 */ 4488 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4489 ac->highest_zoneidx, ac->nodemask); 4490 4491 return true; 4492 } 4493 4494 /* 4495 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4496 * @gfp: GFP flags for the allocation 4497 * @preferred_nid: The preferred NUMA node ID to allocate from 4498 * @nodemask: Set of nodes to allocate from, may be NULL 4499 * @nr_pages: The number of pages desired on the list or array 4500 * @page_list: Optional list to store the allocated pages 4501 * @page_array: Optional array to store the pages 4502 * 4503 * This is a batched version of the page allocator that attempts to 4504 * allocate nr_pages quickly. Pages are added to page_list if page_list 4505 * is not NULL, otherwise it is assumed that the page_array is valid. 4506 * 4507 * For lists, nr_pages is the number of pages that should be allocated. 4508 * 4509 * For arrays, only NULL elements are populated with pages and nr_pages 4510 * is the maximum number of pages that will be stored in the array. 4511 * 4512 * Returns the number of pages on the list or array. 4513 */ 4514 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4515 nodemask_t *nodemask, int nr_pages, 4516 struct list_head *page_list, 4517 struct page **page_array) 4518 { 4519 struct page *page; 4520 unsigned long __maybe_unused UP_flags; 4521 struct zone *zone; 4522 struct zoneref *z; 4523 struct per_cpu_pages *pcp; 4524 struct list_head *pcp_list; 4525 struct alloc_context ac; 4526 gfp_t alloc_gfp; 4527 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4528 int nr_populated = 0, nr_account = 0; 4529 4530 /* 4531 * Skip populated array elements to determine if any pages need 4532 * to be allocated before disabling IRQs. 4533 */ 4534 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4535 nr_populated++; 4536 4537 /* No pages requested? */ 4538 if (unlikely(nr_pages <= 0)) 4539 goto out; 4540 4541 /* Already populated array? */ 4542 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4543 goto out; 4544 4545 /* Bulk allocator does not support memcg accounting. */ 4546 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4547 goto failed; 4548 4549 /* Use the single page allocator for one page. */ 4550 if (nr_pages - nr_populated == 1) 4551 goto failed; 4552 4553 #ifdef CONFIG_PAGE_OWNER 4554 /* 4555 * PAGE_OWNER may recurse into the allocator to allocate space to 4556 * save the stack with pagesets.lock held. Releasing/reacquiring 4557 * removes much of the performance benefit of bulk allocation so 4558 * force the caller to allocate one page at a time as it'll have 4559 * similar performance to added complexity to the bulk allocator. 4560 */ 4561 if (static_branch_unlikely(&page_owner_inited)) 4562 goto failed; 4563 #endif 4564 4565 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4566 gfp &= gfp_allowed_mask; 4567 alloc_gfp = gfp; 4568 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4569 goto out; 4570 gfp = alloc_gfp; 4571 4572 /* Find an allowed local zone that meets the low watermark. */ 4573 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4574 unsigned long mark; 4575 4576 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4577 !__cpuset_zone_allowed(zone, gfp)) { 4578 continue; 4579 } 4580 4581 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4582 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4583 goto failed; 4584 } 4585 4586 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4587 if (zone_watermark_fast(zone, 0, mark, 4588 zonelist_zone_idx(ac.preferred_zoneref), 4589 alloc_flags, gfp)) { 4590 break; 4591 } 4592 } 4593 4594 /* 4595 * If there are no allowed local zones that meets the watermarks then 4596 * try to allocate a single page and reclaim if necessary. 4597 */ 4598 if (unlikely(!zone)) 4599 goto failed; 4600 4601 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4602 pcp_trylock_prepare(UP_flags); 4603 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4604 if (!pcp) 4605 goto failed_irq; 4606 4607 /* Attempt the batch allocation */ 4608 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4609 while (nr_populated < nr_pages) { 4610 4611 /* Skip existing pages */ 4612 if (page_array && page_array[nr_populated]) { 4613 nr_populated++; 4614 continue; 4615 } 4616 4617 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4618 pcp, pcp_list); 4619 if (unlikely(!page)) { 4620 /* Try and allocate at least one page */ 4621 if (!nr_account) { 4622 pcp_spin_unlock(pcp); 4623 goto failed_irq; 4624 } 4625 break; 4626 } 4627 nr_account++; 4628 4629 prep_new_page(page, 0, gfp, 0); 4630 if (page_list) 4631 list_add(&page->lru, page_list); 4632 else 4633 page_array[nr_populated] = page; 4634 nr_populated++; 4635 } 4636 4637 pcp_spin_unlock(pcp); 4638 pcp_trylock_finish(UP_flags); 4639 4640 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4641 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4642 4643 out: 4644 return nr_populated; 4645 4646 failed_irq: 4647 pcp_trylock_finish(UP_flags); 4648 4649 failed: 4650 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4651 if (page) { 4652 if (page_list) 4653 list_add(&page->lru, page_list); 4654 else 4655 page_array[nr_populated] = page; 4656 nr_populated++; 4657 } 4658 4659 goto out; 4660 } 4661 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4662 4663 /* 4664 * This is the 'heart' of the zoned buddy allocator. 4665 */ 4666 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4667 int preferred_nid, nodemask_t *nodemask) 4668 { 4669 struct page *page; 4670 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4671 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4672 struct alloc_context ac = { }; 4673 4674 /* 4675 * There are several places where we assume that the order value is sane 4676 * so bail out early if the request is out of bound. 4677 */ 4678 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4679 return NULL; 4680 4681 gfp &= gfp_allowed_mask; 4682 /* 4683 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4684 * resp. GFP_NOIO which has to be inherited for all allocation requests 4685 * from a particular context which has been marked by 4686 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4687 * movable zones are not used during allocation. 4688 */ 4689 gfp = current_gfp_context(gfp); 4690 alloc_gfp = gfp; 4691 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4692 &alloc_gfp, &alloc_flags)) 4693 return NULL; 4694 4695 /* 4696 * Forbid the first pass from falling back to types that fragment 4697 * memory until all local zones are considered. 4698 */ 4699 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4700 4701 /* First allocation attempt */ 4702 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4703 if (likely(page)) 4704 goto out; 4705 4706 alloc_gfp = gfp; 4707 ac.spread_dirty_pages = false; 4708 4709 /* 4710 * Restore the original nodemask if it was potentially replaced with 4711 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4712 */ 4713 ac.nodemask = nodemask; 4714 4715 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4716 4717 out: 4718 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4719 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4720 __free_pages(page, order); 4721 page = NULL; 4722 } 4723 4724 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4725 kmsan_alloc_page(page, order, alloc_gfp); 4726 4727 return page; 4728 } 4729 EXPORT_SYMBOL(__alloc_pages_noprof); 4730 4731 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4732 nodemask_t *nodemask) 4733 { 4734 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4735 preferred_nid, nodemask); 4736 return page_rmappable_folio(page); 4737 } 4738 EXPORT_SYMBOL(__folio_alloc_noprof); 4739 4740 /* 4741 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4742 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4743 * you need to access high mem. 4744 */ 4745 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4746 { 4747 struct page *page; 4748 4749 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4750 if (!page) 4751 return 0; 4752 return (unsigned long) page_address(page); 4753 } 4754 EXPORT_SYMBOL(get_free_pages_noprof); 4755 4756 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4757 { 4758 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4759 } 4760 EXPORT_SYMBOL(get_zeroed_page_noprof); 4761 4762 /** 4763 * __free_pages - Free pages allocated with alloc_pages(). 4764 * @page: The page pointer returned from alloc_pages(). 4765 * @order: The order of the allocation. 4766 * 4767 * This function can free multi-page allocations that are not compound 4768 * pages. It does not check that the @order passed in matches that of 4769 * the allocation, so it is easy to leak memory. Freeing more memory 4770 * than was allocated will probably emit a warning. 4771 * 4772 * If the last reference to this page is speculative, it will be released 4773 * by put_page() which only frees the first page of a non-compound 4774 * allocation. To prevent the remaining pages from being leaked, we free 4775 * the subsequent pages here. If you want to use the page's reference 4776 * count to decide when to free the allocation, you should allocate a 4777 * compound page, and use put_page() instead of __free_pages(). 4778 * 4779 * Context: May be called in interrupt context or while holding a normal 4780 * spinlock, but not in NMI context or while holding a raw spinlock. 4781 */ 4782 void __free_pages(struct page *page, unsigned int order) 4783 { 4784 /* get PageHead before we drop reference */ 4785 int head = PageHead(page); 4786 struct alloc_tag *tag = pgalloc_tag_get(page); 4787 4788 if (put_page_testzero(page)) 4789 free_unref_page(page, order); 4790 else if (!head) { 4791 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4792 while (order-- > 0) 4793 free_unref_page(page + (1 << order), order); 4794 } 4795 } 4796 EXPORT_SYMBOL(__free_pages); 4797 4798 void free_pages(unsigned long addr, unsigned int order) 4799 { 4800 if (addr != 0) { 4801 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4802 __free_pages(virt_to_page((void *)addr), order); 4803 } 4804 } 4805 4806 EXPORT_SYMBOL(free_pages); 4807 4808 /* 4809 * Page Fragment: 4810 * An arbitrary-length arbitrary-offset area of memory which resides 4811 * within a 0 or higher order page. Multiple fragments within that page 4812 * are individually refcounted, in the page's reference counter. 4813 * 4814 * The page_frag functions below provide a simple allocation framework for 4815 * page fragments. This is used by the network stack and network device 4816 * drivers to provide a backing region of memory for use as either an 4817 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4818 */ 4819 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4820 gfp_t gfp_mask) 4821 { 4822 struct page *page = NULL; 4823 gfp_t gfp = gfp_mask; 4824 4825 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4826 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4827 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4828 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4829 PAGE_FRAG_CACHE_MAX_ORDER); 4830 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4831 #endif 4832 if (unlikely(!page)) 4833 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4834 4835 nc->va = page ? page_address(page) : NULL; 4836 4837 return page; 4838 } 4839 4840 void page_frag_cache_drain(struct page_frag_cache *nc) 4841 { 4842 if (!nc->va) 4843 return; 4844 4845 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4846 nc->va = NULL; 4847 } 4848 EXPORT_SYMBOL(page_frag_cache_drain); 4849 4850 void __page_frag_cache_drain(struct page *page, unsigned int count) 4851 { 4852 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4853 4854 if (page_ref_sub_and_test(page, count)) 4855 free_unref_page(page, compound_order(page)); 4856 } 4857 EXPORT_SYMBOL(__page_frag_cache_drain); 4858 4859 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4860 unsigned int fragsz, gfp_t gfp_mask, 4861 unsigned int align_mask) 4862 { 4863 unsigned int size = PAGE_SIZE; 4864 struct page *page; 4865 int offset; 4866 4867 if (unlikely(!nc->va)) { 4868 refill: 4869 page = __page_frag_cache_refill(nc, gfp_mask); 4870 if (!page) 4871 return NULL; 4872 4873 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4874 /* if size can vary use size else just use PAGE_SIZE */ 4875 size = nc->size; 4876 #endif 4877 /* Even if we own the page, we do not use atomic_set(). 4878 * This would break get_page_unless_zero() users. 4879 */ 4880 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4881 4882 /* reset page count bias and offset to start of new frag */ 4883 nc->pfmemalloc = page_is_pfmemalloc(page); 4884 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4885 nc->offset = size; 4886 } 4887 4888 offset = nc->offset - fragsz; 4889 if (unlikely(offset < 0)) { 4890 page = virt_to_page(nc->va); 4891 4892 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4893 goto refill; 4894 4895 if (unlikely(nc->pfmemalloc)) { 4896 free_unref_page(page, compound_order(page)); 4897 goto refill; 4898 } 4899 4900 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4901 /* if size can vary use size else just use PAGE_SIZE */ 4902 size = nc->size; 4903 #endif 4904 /* OK, page count is 0, we can safely set it */ 4905 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4906 4907 /* reset page count bias and offset to start of new frag */ 4908 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4909 offset = size - fragsz; 4910 if (unlikely(offset < 0)) { 4911 /* 4912 * The caller is trying to allocate a fragment 4913 * with fragsz > PAGE_SIZE but the cache isn't big 4914 * enough to satisfy the request, this may 4915 * happen in low memory conditions. 4916 * We don't release the cache page because 4917 * it could make memory pressure worse 4918 * so we simply return NULL here. 4919 */ 4920 return NULL; 4921 } 4922 } 4923 4924 nc->pagecnt_bias--; 4925 offset &= align_mask; 4926 nc->offset = offset; 4927 4928 return nc->va + offset; 4929 } 4930 EXPORT_SYMBOL(__page_frag_alloc_align); 4931 4932 /* 4933 * Frees a page fragment allocated out of either a compound or order 0 page. 4934 */ 4935 void page_frag_free(void *addr) 4936 { 4937 struct page *page = virt_to_head_page(addr); 4938 4939 if (unlikely(put_page_testzero(page))) 4940 free_unref_page(page, compound_order(page)); 4941 } 4942 EXPORT_SYMBOL(page_frag_free); 4943 4944 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4945 size_t size) 4946 { 4947 if (addr) { 4948 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4949 struct page *page = virt_to_page((void *)addr); 4950 struct page *last = page + nr; 4951 4952 split_page_owner(page, order, 0); 4953 pgalloc_tag_split(page, 1 << order); 4954 split_page_memcg(page, order, 0); 4955 while (page < --last) 4956 set_page_refcounted(last); 4957 4958 last = page + (1UL << order); 4959 for (page += nr; page < last; page++) 4960 __free_pages_ok(page, 0, FPI_TO_TAIL); 4961 } 4962 return (void *)addr; 4963 } 4964 4965 /** 4966 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4967 * @size: the number of bytes to allocate 4968 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4969 * 4970 * This function is similar to alloc_pages(), except that it allocates the 4971 * minimum number of pages to satisfy the request. alloc_pages() can only 4972 * allocate memory in power-of-two pages. 4973 * 4974 * This function is also limited by MAX_PAGE_ORDER. 4975 * 4976 * Memory allocated by this function must be released by free_pages_exact(). 4977 * 4978 * Return: pointer to the allocated area or %NULL in case of error. 4979 */ 4980 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4981 { 4982 unsigned int order = get_order(size); 4983 unsigned long addr; 4984 4985 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4986 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4987 4988 addr = get_free_pages_noprof(gfp_mask, order); 4989 return make_alloc_exact(addr, order, size); 4990 } 4991 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4992 4993 /** 4994 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4995 * pages on a node. 4996 * @nid: the preferred node ID where memory should be allocated 4997 * @size: the number of bytes to allocate 4998 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4999 * 5000 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5001 * back. 5002 * 5003 * Return: pointer to the allocated area or %NULL in case of error. 5004 */ 5005 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5006 { 5007 unsigned int order = get_order(size); 5008 struct page *p; 5009 5010 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5011 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5012 5013 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5014 if (!p) 5015 return NULL; 5016 return make_alloc_exact((unsigned long)page_address(p), order, size); 5017 } 5018 5019 /** 5020 * free_pages_exact - release memory allocated via alloc_pages_exact() 5021 * @virt: the value returned by alloc_pages_exact. 5022 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5023 * 5024 * Release the memory allocated by a previous call to alloc_pages_exact. 5025 */ 5026 void free_pages_exact(void *virt, size_t size) 5027 { 5028 unsigned long addr = (unsigned long)virt; 5029 unsigned long end = addr + PAGE_ALIGN(size); 5030 5031 while (addr < end) { 5032 free_page(addr); 5033 addr += PAGE_SIZE; 5034 } 5035 } 5036 EXPORT_SYMBOL(free_pages_exact); 5037 5038 /** 5039 * nr_free_zone_pages - count number of pages beyond high watermark 5040 * @offset: The zone index of the highest zone 5041 * 5042 * nr_free_zone_pages() counts the number of pages which are beyond the 5043 * high watermark within all zones at or below a given zone index. For each 5044 * zone, the number of pages is calculated as: 5045 * 5046 * nr_free_zone_pages = managed_pages - high_pages 5047 * 5048 * Return: number of pages beyond high watermark. 5049 */ 5050 static unsigned long nr_free_zone_pages(int offset) 5051 { 5052 struct zoneref *z; 5053 struct zone *zone; 5054 5055 /* Just pick one node, since fallback list is circular */ 5056 unsigned long sum = 0; 5057 5058 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5059 5060 for_each_zone_zonelist(zone, z, zonelist, offset) { 5061 unsigned long size = zone_managed_pages(zone); 5062 unsigned long high = high_wmark_pages(zone); 5063 if (size > high) 5064 sum += size - high; 5065 } 5066 5067 return sum; 5068 } 5069 5070 /** 5071 * nr_free_buffer_pages - count number of pages beyond high watermark 5072 * 5073 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5074 * watermark within ZONE_DMA and ZONE_NORMAL. 5075 * 5076 * Return: number of pages beyond high watermark within ZONE_DMA and 5077 * ZONE_NORMAL. 5078 */ 5079 unsigned long nr_free_buffer_pages(void) 5080 { 5081 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5082 } 5083 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5084 5085 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5086 { 5087 zoneref->zone = zone; 5088 zoneref->zone_idx = zone_idx(zone); 5089 } 5090 5091 /* 5092 * Builds allocation fallback zone lists. 5093 * 5094 * Add all populated zones of a node to the zonelist. 5095 */ 5096 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5097 { 5098 struct zone *zone; 5099 enum zone_type zone_type = MAX_NR_ZONES; 5100 int nr_zones = 0; 5101 5102 do { 5103 zone_type--; 5104 zone = pgdat->node_zones + zone_type; 5105 if (populated_zone(zone)) { 5106 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5107 check_highest_zone(zone_type); 5108 } 5109 } while (zone_type); 5110 5111 return nr_zones; 5112 } 5113 5114 #ifdef CONFIG_NUMA 5115 5116 static int __parse_numa_zonelist_order(char *s) 5117 { 5118 /* 5119 * We used to support different zonelists modes but they turned 5120 * out to be just not useful. Let's keep the warning in place 5121 * if somebody still use the cmd line parameter so that we do 5122 * not fail it silently 5123 */ 5124 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5125 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5126 return -EINVAL; 5127 } 5128 return 0; 5129 } 5130 5131 static char numa_zonelist_order[] = "Node"; 5132 #define NUMA_ZONELIST_ORDER_LEN 16 5133 /* 5134 * sysctl handler for numa_zonelist_order 5135 */ 5136 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5137 void *buffer, size_t *length, loff_t *ppos) 5138 { 5139 if (write) 5140 return __parse_numa_zonelist_order(buffer); 5141 return proc_dostring(table, write, buffer, length, ppos); 5142 } 5143 5144 static int node_load[MAX_NUMNODES]; 5145 5146 /** 5147 * find_next_best_node - find the next node that should appear in a given node's fallback list 5148 * @node: node whose fallback list we're appending 5149 * @used_node_mask: nodemask_t of already used nodes 5150 * 5151 * We use a number of factors to determine which is the next node that should 5152 * appear on a given node's fallback list. The node should not have appeared 5153 * already in @node's fallback list, and it should be the next closest node 5154 * according to the distance array (which contains arbitrary distance values 5155 * from each node to each node in the system), and should also prefer nodes 5156 * with no CPUs, since presumably they'll have very little allocation pressure 5157 * on them otherwise. 5158 * 5159 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5160 */ 5161 int find_next_best_node(int node, nodemask_t *used_node_mask) 5162 { 5163 int n, val; 5164 int min_val = INT_MAX; 5165 int best_node = NUMA_NO_NODE; 5166 5167 /* 5168 * Use the local node if we haven't already, but for memoryless local 5169 * node, we should skip it and fall back to other nodes. 5170 */ 5171 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5172 node_set(node, *used_node_mask); 5173 return node; 5174 } 5175 5176 for_each_node_state(n, N_MEMORY) { 5177 5178 /* Don't want a node to appear more than once */ 5179 if (node_isset(n, *used_node_mask)) 5180 continue; 5181 5182 /* Use the distance array to find the distance */ 5183 val = node_distance(node, n); 5184 5185 /* Penalize nodes under us ("prefer the next node") */ 5186 val += (n < node); 5187 5188 /* Give preference to headless and unused nodes */ 5189 if (!cpumask_empty(cpumask_of_node(n))) 5190 val += PENALTY_FOR_NODE_WITH_CPUS; 5191 5192 /* Slight preference for less loaded node */ 5193 val *= MAX_NUMNODES; 5194 val += node_load[n]; 5195 5196 if (val < min_val) { 5197 min_val = val; 5198 best_node = n; 5199 } 5200 } 5201 5202 if (best_node >= 0) 5203 node_set(best_node, *used_node_mask); 5204 5205 return best_node; 5206 } 5207 5208 5209 /* 5210 * Build zonelists ordered by node and zones within node. 5211 * This results in maximum locality--normal zone overflows into local 5212 * DMA zone, if any--but risks exhausting DMA zone. 5213 */ 5214 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5215 unsigned nr_nodes) 5216 { 5217 struct zoneref *zonerefs; 5218 int i; 5219 5220 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5221 5222 for (i = 0; i < nr_nodes; i++) { 5223 int nr_zones; 5224 5225 pg_data_t *node = NODE_DATA(node_order[i]); 5226 5227 nr_zones = build_zonerefs_node(node, zonerefs); 5228 zonerefs += nr_zones; 5229 } 5230 zonerefs->zone = NULL; 5231 zonerefs->zone_idx = 0; 5232 } 5233 5234 /* 5235 * Build __GFP_THISNODE zonelists 5236 */ 5237 static void build_thisnode_zonelists(pg_data_t *pgdat) 5238 { 5239 struct zoneref *zonerefs; 5240 int nr_zones; 5241 5242 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5243 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5244 zonerefs += nr_zones; 5245 zonerefs->zone = NULL; 5246 zonerefs->zone_idx = 0; 5247 } 5248 5249 /* 5250 * Build zonelists ordered by zone and nodes within zones. 5251 * This results in conserving DMA zone[s] until all Normal memory is 5252 * exhausted, but results in overflowing to remote node while memory 5253 * may still exist in local DMA zone. 5254 */ 5255 5256 static void build_zonelists(pg_data_t *pgdat) 5257 { 5258 static int node_order[MAX_NUMNODES]; 5259 int node, nr_nodes = 0; 5260 nodemask_t used_mask = NODE_MASK_NONE; 5261 int local_node, prev_node; 5262 5263 /* NUMA-aware ordering of nodes */ 5264 local_node = pgdat->node_id; 5265 prev_node = local_node; 5266 5267 memset(node_order, 0, sizeof(node_order)); 5268 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5269 /* 5270 * We don't want to pressure a particular node. 5271 * So adding penalty to the first node in same 5272 * distance group to make it round-robin. 5273 */ 5274 if (node_distance(local_node, node) != 5275 node_distance(local_node, prev_node)) 5276 node_load[node] += 1; 5277 5278 node_order[nr_nodes++] = node; 5279 prev_node = node; 5280 } 5281 5282 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5283 build_thisnode_zonelists(pgdat); 5284 pr_info("Fallback order for Node %d: ", local_node); 5285 for (node = 0; node < nr_nodes; node++) 5286 pr_cont("%d ", node_order[node]); 5287 pr_cont("\n"); 5288 } 5289 5290 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5291 /* 5292 * Return node id of node used for "local" allocations. 5293 * I.e., first node id of first zone in arg node's generic zonelist. 5294 * Used for initializing percpu 'numa_mem', which is used primarily 5295 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5296 */ 5297 int local_memory_node(int node) 5298 { 5299 struct zoneref *z; 5300 5301 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5302 gfp_zone(GFP_KERNEL), 5303 NULL); 5304 return zone_to_nid(z->zone); 5305 } 5306 #endif 5307 5308 static void setup_min_unmapped_ratio(void); 5309 static void setup_min_slab_ratio(void); 5310 #else /* CONFIG_NUMA */ 5311 5312 static void build_zonelists(pg_data_t *pgdat) 5313 { 5314 struct zoneref *zonerefs; 5315 int nr_zones; 5316 5317 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5318 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5319 zonerefs += nr_zones; 5320 5321 zonerefs->zone = NULL; 5322 zonerefs->zone_idx = 0; 5323 } 5324 5325 #endif /* CONFIG_NUMA */ 5326 5327 /* 5328 * Boot pageset table. One per cpu which is going to be used for all 5329 * zones and all nodes. The parameters will be set in such a way 5330 * that an item put on a list will immediately be handed over to 5331 * the buddy list. This is safe since pageset manipulation is done 5332 * with interrupts disabled. 5333 * 5334 * The boot_pagesets must be kept even after bootup is complete for 5335 * unused processors and/or zones. They do play a role for bootstrapping 5336 * hotplugged processors. 5337 * 5338 * zoneinfo_show() and maybe other functions do 5339 * not check if the processor is online before following the pageset pointer. 5340 * Other parts of the kernel may not check if the zone is available. 5341 */ 5342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5343 /* These effectively disable the pcplists in the boot pageset completely */ 5344 #define BOOT_PAGESET_HIGH 0 5345 #define BOOT_PAGESET_BATCH 1 5346 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5347 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5348 5349 static void __build_all_zonelists(void *data) 5350 { 5351 int nid; 5352 int __maybe_unused cpu; 5353 pg_data_t *self = data; 5354 unsigned long flags; 5355 5356 /* 5357 * The zonelist_update_seq must be acquired with irqsave because the 5358 * reader can be invoked from IRQ with GFP_ATOMIC. 5359 */ 5360 write_seqlock_irqsave(&zonelist_update_seq, flags); 5361 /* 5362 * Also disable synchronous printk() to prevent any printk() from 5363 * trying to hold port->lock, for 5364 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5365 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5366 */ 5367 printk_deferred_enter(); 5368 5369 #ifdef CONFIG_NUMA 5370 memset(node_load, 0, sizeof(node_load)); 5371 #endif 5372 5373 /* 5374 * This node is hotadded and no memory is yet present. So just 5375 * building zonelists is fine - no need to touch other nodes. 5376 */ 5377 if (self && !node_online(self->node_id)) { 5378 build_zonelists(self); 5379 } else { 5380 /* 5381 * All possible nodes have pgdat preallocated 5382 * in free_area_init 5383 */ 5384 for_each_node(nid) { 5385 pg_data_t *pgdat = NODE_DATA(nid); 5386 5387 build_zonelists(pgdat); 5388 } 5389 5390 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5391 /* 5392 * We now know the "local memory node" for each node-- 5393 * i.e., the node of the first zone in the generic zonelist. 5394 * Set up numa_mem percpu variable for on-line cpus. During 5395 * boot, only the boot cpu should be on-line; we'll init the 5396 * secondary cpus' numa_mem as they come on-line. During 5397 * node/memory hotplug, we'll fixup all on-line cpus. 5398 */ 5399 for_each_online_cpu(cpu) 5400 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5401 #endif 5402 } 5403 5404 printk_deferred_exit(); 5405 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5406 } 5407 5408 static noinline void __init 5409 build_all_zonelists_init(void) 5410 { 5411 int cpu; 5412 5413 __build_all_zonelists(NULL); 5414 5415 /* 5416 * Initialize the boot_pagesets that are going to be used 5417 * for bootstrapping processors. The real pagesets for 5418 * each zone will be allocated later when the per cpu 5419 * allocator is available. 5420 * 5421 * boot_pagesets are used also for bootstrapping offline 5422 * cpus if the system is already booted because the pagesets 5423 * are needed to initialize allocators on a specific cpu too. 5424 * F.e. the percpu allocator needs the page allocator which 5425 * needs the percpu allocator in order to allocate its pagesets 5426 * (a chicken-egg dilemma). 5427 */ 5428 for_each_possible_cpu(cpu) 5429 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5430 5431 mminit_verify_zonelist(); 5432 cpuset_init_current_mems_allowed(); 5433 } 5434 5435 /* 5436 * unless system_state == SYSTEM_BOOTING. 5437 * 5438 * __ref due to call of __init annotated helper build_all_zonelists_init 5439 * [protected by SYSTEM_BOOTING]. 5440 */ 5441 void __ref build_all_zonelists(pg_data_t *pgdat) 5442 { 5443 unsigned long vm_total_pages; 5444 5445 if (system_state == SYSTEM_BOOTING) { 5446 build_all_zonelists_init(); 5447 } else { 5448 __build_all_zonelists(pgdat); 5449 /* cpuset refresh routine should be here */ 5450 } 5451 /* Get the number of free pages beyond high watermark in all zones. */ 5452 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5453 /* 5454 * Disable grouping by mobility if the number of pages in the 5455 * system is too low to allow the mechanism to work. It would be 5456 * more accurate, but expensive to check per-zone. This check is 5457 * made on memory-hotadd so a system can start with mobility 5458 * disabled and enable it later 5459 */ 5460 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5461 page_group_by_mobility_disabled = 1; 5462 else 5463 page_group_by_mobility_disabled = 0; 5464 5465 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5466 nr_online_nodes, 5467 page_group_by_mobility_disabled ? "off" : "on", 5468 vm_total_pages); 5469 #ifdef CONFIG_NUMA 5470 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5471 #endif 5472 } 5473 5474 static int zone_batchsize(struct zone *zone) 5475 { 5476 #ifdef CONFIG_MMU 5477 int batch; 5478 5479 /* 5480 * The number of pages to batch allocate is either ~0.1% 5481 * of the zone or 1MB, whichever is smaller. The batch 5482 * size is striking a balance between allocation latency 5483 * and zone lock contention. 5484 */ 5485 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5486 batch /= 4; /* We effectively *= 4 below */ 5487 if (batch < 1) 5488 batch = 1; 5489 5490 /* 5491 * Clamp the batch to a 2^n - 1 value. Having a power 5492 * of 2 value was found to be more likely to have 5493 * suboptimal cache aliasing properties in some cases. 5494 * 5495 * For example if 2 tasks are alternately allocating 5496 * batches of pages, one task can end up with a lot 5497 * of pages of one half of the possible page colors 5498 * and the other with pages of the other colors. 5499 */ 5500 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5501 5502 return batch; 5503 5504 #else 5505 /* The deferral and batching of frees should be suppressed under NOMMU 5506 * conditions. 5507 * 5508 * The problem is that NOMMU needs to be able to allocate large chunks 5509 * of contiguous memory as there's no hardware page translation to 5510 * assemble apparent contiguous memory from discontiguous pages. 5511 * 5512 * Queueing large contiguous runs of pages for batching, however, 5513 * causes the pages to actually be freed in smaller chunks. As there 5514 * can be a significant delay between the individual batches being 5515 * recycled, this leads to the once large chunks of space being 5516 * fragmented and becoming unavailable for high-order allocations. 5517 */ 5518 return 0; 5519 #endif 5520 } 5521 5522 static int percpu_pagelist_high_fraction; 5523 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5524 int high_fraction) 5525 { 5526 #ifdef CONFIG_MMU 5527 int high; 5528 int nr_split_cpus; 5529 unsigned long total_pages; 5530 5531 if (!high_fraction) { 5532 /* 5533 * By default, the high value of the pcp is based on the zone 5534 * low watermark so that if they are full then background 5535 * reclaim will not be started prematurely. 5536 */ 5537 total_pages = low_wmark_pages(zone); 5538 } else { 5539 /* 5540 * If percpu_pagelist_high_fraction is configured, the high 5541 * value is based on a fraction of the managed pages in the 5542 * zone. 5543 */ 5544 total_pages = zone_managed_pages(zone) / high_fraction; 5545 } 5546 5547 /* 5548 * Split the high value across all online CPUs local to the zone. Note 5549 * that early in boot that CPUs may not be online yet and that during 5550 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5551 * onlined. For memory nodes that have no CPUs, split the high value 5552 * across all online CPUs to mitigate the risk that reclaim is triggered 5553 * prematurely due to pages stored on pcp lists. 5554 */ 5555 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5556 if (!nr_split_cpus) 5557 nr_split_cpus = num_online_cpus(); 5558 high = total_pages / nr_split_cpus; 5559 5560 /* 5561 * Ensure high is at least batch*4. The multiple is based on the 5562 * historical relationship between high and batch. 5563 */ 5564 high = max(high, batch << 2); 5565 5566 return high; 5567 #else 5568 return 0; 5569 #endif 5570 } 5571 5572 /* 5573 * pcp->high and pcp->batch values are related and generally batch is lower 5574 * than high. They are also related to pcp->count such that count is lower 5575 * than high, and as soon as it reaches high, the pcplist is flushed. 5576 * 5577 * However, guaranteeing these relations at all times would require e.g. write 5578 * barriers here but also careful usage of read barriers at the read side, and 5579 * thus be prone to error and bad for performance. Thus the update only prevents 5580 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5581 * should ensure they can cope with those fields changing asynchronously, and 5582 * fully trust only the pcp->count field on the local CPU with interrupts 5583 * disabled. 5584 * 5585 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5586 * outside of boot time (or some other assurance that no concurrent updaters 5587 * exist). 5588 */ 5589 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5590 unsigned long high_max, unsigned long batch) 5591 { 5592 WRITE_ONCE(pcp->batch, batch); 5593 WRITE_ONCE(pcp->high_min, high_min); 5594 WRITE_ONCE(pcp->high_max, high_max); 5595 } 5596 5597 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5598 { 5599 int pindex; 5600 5601 memset(pcp, 0, sizeof(*pcp)); 5602 memset(pzstats, 0, sizeof(*pzstats)); 5603 5604 spin_lock_init(&pcp->lock); 5605 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5606 INIT_LIST_HEAD(&pcp->lists[pindex]); 5607 5608 /* 5609 * Set batch and high values safe for a boot pageset. A true percpu 5610 * pageset's initialization will update them subsequently. Here we don't 5611 * need to be as careful as pageset_update() as nobody can access the 5612 * pageset yet. 5613 */ 5614 pcp->high_min = BOOT_PAGESET_HIGH; 5615 pcp->high_max = BOOT_PAGESET_HIGH; 5616 pcp->batch = BOOT_PAGESET_BATCH; 5617 pcp->free_count = 0; 5618 } 5619 5620 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5621 unsigned long high_max, unsigned long batch) 5622 { 5623 struct per_cpu_pages *pcp; 5624 int cpu; 5625 5626 for_each_possible_cpu(cpu) { 5627 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5628 pageset_update(pcp, high_min, high_max, batch); 5629 } 5630 } 5631 5632 /* 5633 * Calculate and set new high and batch values for all per-cpu pagesets of a 5634 * zone based on the zone's size. 5635 */ 5636 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5637 { 5638 int new_high_min, new_high_max, new_batch; 5639 5640 new_batch = max(1, zone_batchsize(zone)); 5641 if (percpu_pagelist_high_fraction) { 5642 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5643 percpu_pagelist_high_fraction); 5644 /* 5645 * PCP high is tuned manually, disable auto-tuning via 5646 * setting high_min and high_max to the manual value. 5647 */ 5648 new_high_max = new_high_min; 5649 } else { 5650 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5651 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5652 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5653 } 5654 5655 if (zone->pageset_high_min == new_high_min && 5656 zone->pageset_high_max == new_high_max && 5657 zone->pageset_batch == new_batch) 5658 return; 5659 5660 zone->pageset_high_min = new_high_min; 5661 zone->pageset_high_max = new_high_max; 5662 zone->pageset_batch = new_batch; 5663 5664 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5665 new_batch); 5666 } 5667 5668 void __meminit setup_zone_pageset(struct zone *zone) 5669 { 5670 int cpu; 5671 5672 /* Size may be 0 on !SMP && !NUMA */ 5673 if (sizeof(struct per_cpu_zonestat) > 0) 5674 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5675 5676 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5677 for_each_possible_cpu(cpu) { 5678 struct per_cpu_pages *pcp; 5679 struct per_cpu_zonestat *pzstats; 5680 5681 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5682 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5683 per_cpu_pages_init(pcp, pzstats); 5684 } 5685 5686 zone_set_pageset_high_and_batch(zone, 0); 5687 } 5688 5689 /* 5690 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5691 * page high values need to be recalculated. 5692 */ 5693 static void zone_pcp_update(struct zone *zone, int cpu_online) 5694 { 5695 mutex_lock(&pcp_batch_high_lock); 5696 zone_set_pageset_high_and_batch(zone, cpu_online); 5697 mutex_unlock(&pcp_batch_high_lock); 5698 } 5699 5700 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5701 { 5702 struct per_cpu_pages *pcp; 5703 struct cpu_cacheinfo *cci; 5704 5705 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5706 cci = get_cpu_cacheinfo(cpu); 5707 /* 5708 * If data cache slice of CPU is large enough, "pcp->batch" 5709 * pages can be preserved in PCP before draining PCP for 5710 * consecutive high-order pages freeing without allocation. 5711 * This can reduce zone lock contention without hurting 5712 * cache-hot pages sharing. 5713 */ 5714 spin_lock(&pcp->lock); 5715 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5716 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5717 else 5718 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5719 spin_unlock(&pcp->lock); 5720 } 5721 5722 void setup_pcp_cacheinfo(unsigned int cpu) 5723 { 5724 struct zone *zone; 5725 5726 for_each_populated_zone(zone) 5727 zone_pcp_update_cacheinfo(zone, cpu); 5728 } 5729 5730 /* 5731 * Allocate per cpu pagesets and initialize them. 5732 * Before this call only boot pagesets were available. 5733 */ 5734 void __init setup_per_cpu_pageset(void) 5735 { 5736 struct pglist_data *pgdat; 5737 struct zone *zone; 5738 int __maybe_unused cpu; 5739 5740 for_each_populated_zone(zone) 5741 setup_zone_pageset(zone); 5742 5743 #ifdef CONFIG_NUMA 5744 /* 5745 * Unpopulated zones continue using the boot pagesets. 5746 * The numa stats for these pagesets need to be reset. 5747 * Otherwise, they will end up skewing the stats of 5748 * the nodes these zones are associated with. 5749 */ 5750 for_each_possible_cpu(cpu) { 5751 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5752 memset(pzstats->vm_numa_event, 0, 5753 sizeof(pzstats->vm_numa_event)); 5754 } 5755 #endif 5756 5757 for_each_online_pgdat(pgdat) 5758 pgdat->per_cpu_nodestats = 5759 alloc_percpu(struct per_cpu_nodestat); 5760 } 5761 5762 __meminit void zone_pcp_init(struct zone *zone) 5763 { 5764 /* 5765 * per cpu subsystem is not up at this point. The following code 5766 * relies on the ability of the linker to provide the 5767 * offset of a (static) per cpu variable into the per cpu area. 5768 */ 5769 zone->per_cpu_pageset = &boot_pageset; 5770 zone->per_cpu_zonestats = &boot_zonestats; 5771 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5772 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5773 zone->pageset_batch = BOOT_PAGESET_BATCH; 5774 5775 if (populated_zone(zone)) 5776 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5777 zone->present_pages, zone_batchsize(zone)); 5778 } 5779 5780 void adjust_managed_page_count(struct page *page, long count) 5781 { 5782 atomic_long_add(count, &page_zone(page)->managed_pages); 5783 totalram_pages_add(count); 5784 } 5785 EXPORT_SYMBOL(adjust_managed_page_count); 5786 5787 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5788 { 5789 void *pos; 5790 unsigned long pages = 0; 5791 5792 start = (void *)PAGE_ALIGN((unsigned long)start); 5793 end = (void *)((unsigned long)end & PAGE_MASK); 5794 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5795 struct page *page = virt_to_page(pos); 5796 void *direct_map_addr; 5797 5798 /* 5799 * 'direct_map_addr' might be different from 'pos' 5800 * because some architectures' virt_to_page() 5801 * work with aliases. Getting the direct map 5802 * address ensures that we get a _writeable_ 5803 * alias for the memset(). 5804 */ 5805 direct_map_addr = page_address(page); 5806 /* 5807 * Perform a kasan-unchecked memset() since this memory 5808 * has not been initialized. 5809 */ 5810 direct_map_addr = kasan_reset_tag(direct_map_addr); 5811 if ((unsigned int)poison <= 0xFF) 5812 memset(direct_map_addr, poison, PAGE_SIZE); 5813 5814 free_reserved_page(page); 5815 } 5816 5817 if (pages && s) 5818 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5819 5820 return pages; 5821 } 5822 5823 void free_reserved_page(struct page *page) 5824 { 5825 clear_page_tag_ref(page); 5826 ClearPageReserved(page); 5827 init_page_count(page); 5828 __free_page(page); 5829 adjust_managed_page_count(page, 1); 5830 } 5831 EXPORT_SYMBOL(free_reserved_page); 5832 5833 static int page_alloc_cpu_dead(unsigned int cpu) 5834 { 5835 struct zone *zone; 5836 5837 lru_add_drain_cpu(cpu); 5838 mlock_drain_remote(cpu); 5839 drain_pages(cpu); 5840 5841 /* 5842 * Spill the event counters of the dead processor 5843 * into the current processors event counters. 5844 * This artificially elevates the count of the current 5845 * processor. 5846 */ 5847 vm_events_fold_cpu(cpu); 5848 5849 /* 5850 * Zero the differential counters of the dead processor 5851 * so that the vm statistics are consistent. 5852 * 5853 * This is only okay since the processor is dead and cannot 5854 * race with what we are doing. 5855 */ 5856 cpu_vm_stats_fold(cpu); 5857 5858 for_each_populated_zone(zone) 5859 zone_pcp_update(zone, 0); 5860 5861 return 0; 5862 } 5863 5864 static int page_alloc_cpu_online(unsigned int cpu) 5865 { 5866 struct zone *zone; 5867 5868 for_each_populated_zone(zone) 5869 zone_pcp_update(zone, 1); 5870 return 0; 5871 } 5872 5873 void __init page_alloc_init_cpuhp(void) 5874 { 5875 int ret; 5876 5877 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5878 "mm/page_alloc:pcp", 5879 page_alloc_cpu_online, 5880 page_alloc_cpu_dead); 5881 WARN_ON(ret < 0); 5882 } 5883 5884 /* 5885 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5886 * or min_free_kbytes changes. 5887 */ 5888 static void calculate_totalreserve_pages(void) 5889 { 5890 struct pglist_data *pgdat; 5891 unsigned long reserve_pages = 0; 5892 enum zone_type i, j; 5893 5894 for_each_online_pgdat(pgdat) { 5895 5896 pgdat->totalreserve_pages = 0; 5897 5898 for (i = 0; i < MAX_NR_ZONES; i++) { 5899 struct zone *zone = pgdat->node_zones + i; 5900 long max = 0; 5901 unsigned long managed_pages = zone_managed_pages(zone); 5902 5903 /* Find valid and maximum lowmem_reserve in the zone */ 5904 for (j = i; j < MAX_NR_ZONES; j++) { 5905 if (zone->lowmem_reserve[j] > max) 5906 max = zone->lowmem_reserve[j]; 5907 } 5908 5909 /* we treat the high watermark as reserved pages. */ 5910 max += high_wmark_pages(zone); 5911 5912 if (max > managed_pages) 5913 max = managed_pages; 5914 5915 pgdat->totalreserve_pages += max; 5916 5917 reserve_pages += max; 5918 } 5919 } 5920 totalreserve_pages = reserve_pages; 5921 } 5922 5923 /* 5924 * setup_per_zone_lowmem_reserve - called whenever 5925 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5926 * has a correct pages reserved value, so an adequate number of 5927 * pages are left in the zone after a successful __alloc_pages(). 5928 */ 5929 static void setup_per_zone_lowmem_reserve(void) 5930 { 5931 struct pglist_data *pgdat; 5932 enum zone_type i, j; 5933 5934 for_each_online_pgdat(pgdat) { 5935 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5936 struct zone *zone = &pgdat->node_zones[i]; 5937 int ratio = sysctl_lowmem_reserve_ratio[i]; 5938 bool clear = !ratio || !zone_managed_pages(zone); 5939 unsigned long managed_pages = 0; 5940 5941 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5942 struct zone *upper_zone = &pgdat->node_zones[j]; 5943 bool empty = !zone_managed_pages(upper_zone); 5944 5945 managed_pages += zone_managed_pages(upper_zone); 5946 5947 if (clear || empty) 5948 zone->lowmem_reserve[j] = 0; 5949 else 5950 zone->lowmem_reserve[j] = managed_pages / ratio; 5951 } 5952 } 5953 } 5954 5955 /* update totalreserve_pages */ 5956 calculate_totalreserve_pages(); 5957 } 5958 5959 static void __setup_per_zone_wmarks(void) 5960 { 5961 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5962 unsigned long lowmem_pages = 0; 5963 struct zone *zone; 5964 unsigned long flags; 5965 5966 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5967 for_each_zone(zone) { 5968 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5969 lowmem_pages += zone_managed_pages(zone); 5970 } 5971 5972 for_each_zone(zone) { 5973 u64 tmp; 5974 5975 spin_lock_irqsave(&zone->lock, flags); 5976 tmp = (u64)pages_min * zone_managed_pages(zone); 5977 tmp = div64_ul(tmp, lowmem_pages); 5978 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5979 /* 5980 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5981 * need highmem and movable zones pages, so cap pages_min 5982 * to a small value here. 5983 * 5984 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5985 * deltas control async page reclaim, and so should 5986 * not be capped for highmem and movable zones. 5987 */ 5988 unsigned long min_pages; 5989 5990 min_pages = zone_managed_pages(zone) / 1024; 5991 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5992 zone->_watermark[WMARK_MIN] = min_pages; 5993 } else { 5994 /* 5995 * If it's a lowmem zone, reserve a number of pages 5996 * proportionate to the zone's size. 5997 */ 5998 zone->_watermark[WMARK_MIN] = tmp; 5999 } 6000 6001 /* 6002 * Set the kswapd watermarks distance according to the 6003 * scale factor in proportion to available memory, but 6004 * ensure a minimum size on small systems. 6005 */ 6006 tmp = max_t(u64, tmp >> 2, 6007 mult_frac(zone_managed_pages(zone), 6008 watermark_scale_factor, 10000)); 6009 6010 zone->watermark_boost = 0; 6011 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6012 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6013 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6014 6015 spin_unlock_irqrestore(&zone->lock, flags); 6016 } 6017 6018 /* update totalreserve_pages */ 6019 calculate_totalreserve_pages(); 6020 } 6021 6022 /** 6023 * setup_per_zone_wmarks - called when min_free_kbytes changes 6024 * or when memory is hot-{added|removed} 6025 * 6026 * Ensures that the watermark[min,low,high] values for each zone are set 6027 * correctly with respect to min_free_kbytes. 6028 */ 6029 void setup_per_zone_wmarks(void) 6030 { 6031 struct zone *zone; 6032 static DEFINE_SPINLOCK(lock); 6033 6034 spin_lock(&lock); 6035 __setup_per_zone_wmarks(); 6036 spin_unlock(&lock); 6037 6038 /* 6039 * The watermark size have changed so update the pcpu batch 6040 * and high limits or the limits may be inappropriate. 6041 */ 6042 for_each_zone(zone) 6043 zone_pcp_update(zone, 0); 6044 } 6045 6046 /* 6047 * Initialise min_free_kbytes. 6048 * 6049 * For small machines we want it small (128k min). For large machines 6050 * we want it large (256MB max). But it is not linear, because network 6051 * bandwidth does not increase linearly with machine size. We use 6052 * 6053 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6054 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6055 * 6056 * which yields 6057 * 6058 * 16MB: 512k 6059 * 32MB: 724k 6060 * 64MB: 1024k 6061 * 128MB: 1448k 6062 * 256MB: 2048k 6063 * 512MB: 2896k 6064 * 1024MB: 4096k 6065 * 2048MB: 5792k 6066 * 4096MB: 8192k 6067 * 8192MB: 11584k 6068 * 16384MB: 16384k 6069 */ 6070 void calculate_min_free_kbytes(void) 6071 { 6072 unsigned long lowmem_kbytes; 6073 int new_min_free_kbytes; 6074 6075 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6076 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6077 6078 if (new_min_free_kbytes > user_min_free_kbytes) 6079 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6080 else 6081 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6082 new_min_free_kbytes, user_min_free_kbytes); 6083 6084 } 6085 6086 int __meminit init_per_zone_wmark_min(void) 6087 { 6088 calculate_min_free_kbytes(); 6089 setup_per_zone_wmarks(); 6090 refresh_zone_stat_thresholds(); 6091 setup_per_zone_lowmem_reserve(); 6092 6093 #ifdef CONFIG_NUMA 6094 setup_min_unmapped_ratio(); 6095 setup_min_slab_ratio(); 6096 #endif 6097 6098 khugepaged_min_free_kbytes_update(); 6099 6100 return 0; 6101 } 6102 postcore_initcall(init_per_zone_wmark_min) 6103 6104 /* 6105 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6106 * that we can call two helper functions whenever min_free_kbytes 6107 * changes. 6108 */ 6109 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6110 void *buffer, size_t *length, loff_t *ppos) 6111 { 6112 int rc; 6113 6114 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6115 if (rc) 6116 return rc; 6117 6118 if (write) { 6119 user_min_free_kbytes = min_free_kbytes; 6120 setup_per_zone_wmarks(); 6121 } 6122 return 0; 6123 } 6124 6125 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6126 void *buffer, size_t *length, loff_t *ppos) 6127 { 6128 int rc; 6129 6130 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6131 if (rc) 6132 return rc; 6133 6134 if (write) 6135 setup_per_zone_wmarks(); 6136 6137 return 0; 6138 } 6139 6140 #ifdef CONFIG_NUMA 6141 static void setup_min_unmapped_ratio(void) 6142 { 6143 pg_data_t *pgdat; 6144 struct zone *zone; 6145 6146 for_each_online_pgdat(pgdat) 6147 pgdat->min_unmapped_pages = 0; 6148 6149 for_each_zone(zone) 6150 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6151 sysctl_min_unmapped_ratio) / 100; 6152 } 6153 6154 6155 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6156 void *buffer, size_t *length, loff_t *ppos) 6157 { 6158 int rc; 6159 6160 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6161 if (rc) 6162 return rc; 6163 6164 setup_min_unmapped_ratio(); 6165 6166 return 0; 6167 } 6168 6169 static void setup_min_slab_ratio(void) 6170 { 6171 pg_data_t *pgdat; 6172 struct zone *zone; 6173 6174 for_each_online_pgdat(pgdat) 6175 pgdat->min_slab_pages = 0; 6176 6177 for_each_zone(zone) 6178 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6179 sysctl_min_slab_ratio) / 100; 6180 } 6181 6182 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6183 void *buffer, size_t *length, loff_t *ppos) 6184 { 6185 int rc; 6186 6187 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6188 if (rc) 6189 return rc; 6190 6191 setup_min_slab_ratio(); 6192 6193 return 0; 6194 } 6195 #endif 6196 6197 /* 6198 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6199 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6200 * whenever sysctl_lowmem_reserve_ratio changes. 6201 * 6202 * The reserve ratio obviously has absolutely no relation with the 6203 * minimum watermarks. The lowmem reserve ratio can only make sense 6204 * if in function of the boot time zone sizes. 6205 */ 6206 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6207 int write, void *buffer, size_t *length, loff_t *ppos) 6208 { 6209 int i; 6210 6211 proc_dointvec_minmax(table, write, buffer, length, ppos); 6212 6213 for (i = 0; i < MAX_NR_ZONES; i++) { 6214 if (sysctl_lowmem_reserve_ratio[i] < 1) 6215 sysctl_lowmem_reserve_ratio[i] = 0; 6216 } 6217 6218 setup_per_zone_lowmem_reserve(); 6219 return 0; 6220 } 6221 6222 /* 6223 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6224 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6225 * pagelist can have before it gets flushed back to buddy allocator. 6226 */ 6227 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6228 int write, void *buffer, size_t *length, loff_t *ppos) 6229 { 6230 struct zone *zone; 6231 int old_percpu_pagelist_high_fraction; 6232 int ret; 6233 6234 mutex_lock(&pcp_batch_high_lock); 6235 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6236 6237 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6238 if (!write || ret < 0) 6239 goto out; 6240 6241 /* Sanity checking to avoid pcp imbalance */ 6242 if (percpu_pagelist_high_fraction && 6243 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6244 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6245 ret = -EINVAL; 6246 goto out; 6247 } 6248 6249 /* No change? */ 6250 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6251 goto out; 6252 6253 for_each_populated_zone(zone) 6254 zone_set_pageset_high_and_batch(zone, 0); 6255 out: 6256 mutex_unlock(&pcp_batch_high_lock); 6257 return ret; 6258 } 6259 6260 static struct ctl_table page_alloc_sysctl_table[] = { 6261 { 6262 .procname = "min_free_kbytes", 6263 .data = &min_free_kbytes, 6264 .maxlen = sizeof(min_free_kbytes), 6265 .mode = 0644, 6266 .proc_handler = min_free_kbytes_sysctl_handler, 6267 .extra1 = SYSCTL_ZERO, 6268 }, 6269 { 6270 .procname = "watermark_boost_factor", 6271 .data = &watermark_boost_factor, 6272 .maxlen = sizeof(watermark_boost_factor), 6273 .mode = 0644, 6274 .proc_handler = proc_dointvec_minmax, 6275 .extra1 = SYSCTL_ZERO, 6276 }, 6277 { 6278 .procname = "watermark_scale_factor", 6279 .data = &watermark_scale_factor, 6280 .maxlen = sizeof(watermark_scale_factor), 6281 .mode = 0644, 6282 .proc_handler = watermark_scale_factor_sysctl_handler, 6283 .extra1 = SYSCTL_ONE, 6284 .extra2 = SYSCTL_THREE_THOUSAND, 6285 }, 6286 { 6287 .procname = "percpu_pagelist_high_fraction", 6288 .data = &percpu_pagelist_high_fraction, 6289 .maxlen = sizeof(percpu_pagelist_high_fraction), 6290 .mode = 0644, 6291 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6292 .extra1 = SYSCTL_ZERO, 6293 }, 6294 { 6295 .procname = "lowmem_reserve_ratio", 6296 .data = &sysctl_lowmem_reserve_ratio, 6297 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6298 .mode = 0644, 6299 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6300 }, 6301 #ifdef CONFIG_NUMA 6302 { 6303 .procname = "numa_zonelist_order", 6304 .data = &numa_zonelist_order, 6305 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6306 .mode = 0644, 6307 .proc_handler = numa_zonelist_order_handler, 6308 }, 6309 { 6310 .procname = "min_unmapped_ratio", 6311 .data = &sysctl_min_unmapped_ratio, 6312 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6313 .mode = 0644, 6314 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6315 .extra1 = SYSCTL_ZERO, 6316 .extra2 = SYSCTL_ONE_HUNDRED, 6317 }, 6318 { 6319 .procname = "min_slab_ratio", 6320 .data = &sysctl_min_slab_ratio, 6321 .maxlen = sizeof(sysctl_min_slab_ratio), 6322 .mode = 0644, 6323 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6324 .extra1 = SYSCTL_ZERO, 6325 .extra2 = SYSCTL_ONE_HUNDRED, 6326 }, 6327 #endif 6328 }; 6329 6330 void __init page_alloc_sysctl_init(void) 6331 { 6332 register_sysctl_init("vm", page_alloc_sysctl_table); 6333 } 6334 6335 #ifdef CONFIG_CONTIG_ALLOC 6336 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6337 static void alloc_contig_dump_pages(struct list_head *page_list) 6338 { 6339 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6340 6341 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6342 struct page *page; 6343 6344 dump_stack(); 6345 list_for_each_entry(page, page_list, lru) 6346 dump_page(page, "migration failure"); 6347 } 6348 } 6349 6350 /* 6351 * [start, end) must belong to a single zone. 6352 * @migratetype: using migratetype to filter the type of migration in 6353 * trace_mm_alloc_contig_migrate_range_info. 6354 */ 6355 int __alloc_contig_migrate_range(struct compact_control *cc, 6356 unsigned long start, unsigned long end, 6357 int migratetype) 6358 { 6359 /* This function is based on compact_zone() from compaction.c. */ 6360 unsigned int nr_reclaimed; 6361 unsigned long pfn = start; 6362 unsigned int tries = 0; 6363 int ret = 0; 6364 struct migration_target_control mtc = { 6365 .nid = zone_to_nid(cc->zone), 6366 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6367 .reason = MR_CONTIG_RANGE, 6368 }; 6369 struct page *page; 6370 unsigned long total_mapped = 0; 6371 unsigned long total_migrated = 0; 6372 unsigned long total_reclaimed = 0; 6373 6374 lru_cache_disable(); 6375 6376 while (pfn < end || !list_empty(&cc->migratepages)) { 6377 if (fatal_signal_pending(current)) { 6378 ret = -EINTR; 6379 break; 6380 } 6381 6382 if (list_empty(&cc->migratepages)) { 6383 cc->nr_migratepages = 0; 6384 ret = isolate_migratepages_range(cc, pfn, end); 6385 if (ret && ret != -EAGAIN) 6386 break; 6387 pfn = cc->migrate_pfn; 6388 tries = 0; 6389 } else if (++tries == 5) { 6390 ret = -EBUSY; 6391 break; 6392 } 6393 6394 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6395 &cc->migratepages); 6396 cc->nr_migratepages -= nr_reclaimed; 6397 6398 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6399 total_reclaimed += nr_reclaimed; 6400 list_for_each_entry(page, &cc->migratepages, lru) { 6401 struct folio *folio = page_folio(page); 6402 6403 total_mapped += folio_mapped(folio) * 6404 folio_nr_pages(folio); 6405 } 6406 } 6407 6408 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6409 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6410 6411 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6412 total_migrated += cc->nr_migratepages; 6413 6414 /* 6415 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6416 * to retry again over this error, so do the same here. 6417 */ 6418 if (ret == -ENOMEM) 6419 break; 6420 } 6421 6422 lru_cache_enable(); 6423 if (ret < 0) { 6424 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6425 alloc_contig_dump_pages(&cc->migratepages); 6426 putback_movable_pages(&cc->migratepages); 6427 } 6428 6429 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6430 total_migrated, 6431 total_reclaimed, 6432 total_mapped); 6433 return (ret < 0) ? ret : 0; 6434 } 6435 6436 /** 6437 * alloc_contig_range() -- tries to allocate given range of pages 6438 * @start: start PFN to allocate 6439 * @end: one-past-the-last PFN to allocate 6440 * @migratetype: migratetype of the underlying pageblocks (either 6441 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6442 * in range must have the same migratetype and it must 6443 * be either of the two. 6444 * @gfp_mask: GFP mask to use during compaction 6445 * 6446 * The PFN range does not have to be pageblock aligned. The PFN range must 6447 * belong to a single zone. 6448 * 6449 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6450 * pageblocks in the range. Once isolated, the pageblocks should not 6451 * be modified by others. 6452 * 6453 * Return: zero on success or negative error code. On success all 6454 * pages which PFN is in [start, end) are allocated for the caller and 6455 * need to be freed with free_contig_range(). 6456 */ 6457 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6458 unsigned migratetype, gfp_t gfp_mask) 6459 { 6460 unsigned long outer_start, outer_end; 6461 int ret = 0; 6462 6463 struct compact_control cc = { 6464 .nr_migratepages = 0, 6465 .order = -1, 6466 .zone = page_zone(pfn_to_page(start)), 6467 .mode = MIGRATE_SYNC, 6468 .ignore_skip_hint = true, 6469 .no_set_skip_hint = true, 6470 .gfp_mask = current_gfp_context(gfp_mask), 6471 .alloc_contig = true, 6472 }; 6473 INIT_LIST_HEAD(&cc.migratepages); 6474 6475 /* 6476 * What we do here is we mark all pageblocks in range as 6477 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6478 * have different sizes, and due to the way page allocator 6479 * work, start_isolate_page_range() has special handlings for this. 6480 * 6481 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6482 * migrate the pages from an unaligned range (ie. pages that 6483 * we are interested in). This will put all the pages in 6484 * range back to page allocator as MIGRATE_ISOLATE. 6485 * 6486 * When this is done, we take the pages in range from page 6487 * allocator removing them from the buddy system. This way 6488 * page allocator will never consider using them. 6489 * 6490 * This lets us mark the pageblocks back as 6491 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6492 * aligned range but not in the unaligned, original range are 6493 * put back to page allocator so that buddy can use them. 6494 */ 6495 6496 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6497 if (ret) 6498 goto done; 6499 6500 drain_all_pages(cc.zone); 6501 6502 /* 6503 * In case of -EBUSY, we'd like to know which page causes problem. 6504 * So, just fall through. test_pages_isolated() has a tracepoint 6505 * which will report the busy page. 6506 * 6507 * It is possible that busy pages could become available before 6508 * the call to test_pages_isolated, and the range will actually be 6509 * allocated. So, if we fall through be sure to clear ret so that 6510 * -EBUSY is not accidentally used or returned to caller. 6511 */ 6512 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6513 if (ret && ret != -EBUSY) 6514 goto done; 6515 ret = 0; 6516 6517 /* 6518 * Pages from [start, end) are within a pageblock_nr_pages 6519 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6520 * more, all pages in [start, end) are free in page allocator. 6521 * What we are going to do is to allocate all pages from 6522 * [start, end) (that is remove them from page allocator). 6523 * 6524 * The only problem is that pages at the beginning and at the 6525 * end of interesting range may be not aligned with pages that 6526 * page allocator holds, ie. they can be part of higher order 6527 * pages. Because of this, we reserve the bigger range and 6528 * once this is done free the pages we are not interested in. 6529 * 6530 * We don't have to hold zone->lock here because the pages are 6531 * isolated thus they won't get removed from buddy. 6532 */ 6533 outer_start = find_large_buddy(start); 6534 6535 /* Make sure the range is really isolated. */ 6536 if (test_pages_isolated(outer_start, end, 0)) { 6537 ret = -EBUSY; 6538 goto done; 6539 } 6540 6541 /* Grab isolated pages from freelists. */ 6542 outer_end = isolate_freepages_range(&cc, outer_start, end); 6543 if (!outer_end) { 6544 ret = -EBUSY; 6545 goto done; 6546 } 6547 6548 /* Free head and tail (if any) */ 6549 if (start != outer_start) 6550 free_contig_range(outer_start, start - outer_start); 6551 if (end != outer_end) 6552 free_contig_range(end, outer_end - end); 6553 6554 done: 6555 undo_isolate_page_range(start, end, migratetype); 6556 return ret; 6557 } 6558 EXPORT_SYMBOL(alloc_contig_range_noprof); 6559 6560 static int __alloc_contig_pages(unsigned long start_pfn, 6561 unsigned long nr_pages, gfp_t gfp_mask) 6562 { 6563 unsigned long end_pfn = start_pfn + nr_pages; 6564 6565 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6566 gfp_mask); 6567 } 6568 6569 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6570 unsigned long nr_pages) 6571 { 6572 unsigned long i, end_pfn = start_pfn + nr_pages; 6573 struct page *page; 6574 6575 for (i = start_pfn; i < end_pfn; i++) { 6576 page = pfn_to_online_page(i); 6577 if (!page) 6578 return false; 6579 6580 if (page_zone(page) != z) 6581 return false; 6582 6583 if (PageReserved(page)) 6584 return false; 6585 6586 if (PageHuge(page)) 6587 return false; 6588 } 6589 return true; 6590 } 6591 6592 static bool zone_spans_last_pfn(const struct zone *zone, 6593 unsigned long start_pfn, unsigned long nr_pages) 6594 { 6595 unsigned long last_pfn = start_pfn + nr_pages - 1; 6596 6597 return zone_spans_pfn(zone, last_pfn); 6598 } 6599 6600 /** 6601 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6602 * @nr_pages: Number of contiguous pages to allocate 6603 * @gfp_mask: GFP mask to limit search and used during compaction 6604 * @nid: Target node 6605 * @nodemask: Mask for other possible nodes 6606 * 6607 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6608 * on an applicable zonelist to find a contiguous pfn range which can then be 6609 * tried for allocation with alloc_contig_range(). This routine is intended 6610 * for allocation requests which can not be fulfilled with the buddy allocator. 6611 * 6612 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6613 * power of two, then allocated range is also guaranteed to be aligned to same 6614 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6615 * 6616 * Allocated pages can be freed with free_contig_range() or by manually calling 6617 * __free_page() on each allocated page. 6618 * 6619 * Return: pointer to contiguous pages on success, or NULL if not successful. 6620 */ 6621 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6622 int nid, nodemask_t *nodemask) 6623 { 6624 unsigned long ret, pfn, flags; 6625 struct zonelist *zonelist; 6626 struct zone *zone; 6627 struct zoneref *z; 6628 6629 zonelist = node_zonelist(nid, gfp_mask); 6630 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6631 gfp_zone(gfp_mask), nodemask) { 6632 spin_lock_irqsave(&zone->lock, flags); 6633 6634 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6635 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6636 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6637 /* 6638 * We release the zone lock here because 6639 * alloc_contig_range() will also lock the zone 6640 * at some point. If there's an allocation 6641 * spinning on this lock, it may win the race 6642 * and cause alloc_contig_range() to fail... 6643 */ 6644 spin_unlock_irqrestore(&zone->lock, flags); 6645 ret = __alloc_contig_pages(pfn, nr_pages, 6646 gfp_mask); 6647 if (!ret) 6648 return pfn_to_page(pfn); 6649 spin_lock_irqsave(&zone->lock, flags); 6650 } 6651 pfn += nr_pages; 6652 } 6653 spin_unlock_irqrestore(&zone->lock, flags); 6654 } 6655 return NULL; 6656 } 6657 #endif /* CONFIG_CONTIG_ALLOC */ 6658 6659 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6660 { 6661 unsigned long count = 0; 6662 6663 for (; nr_pages--; pfn++) { 6664 struct page *page = pfn_to_page(pfn); 6665 6666 count += page_count(page) != 1; 6667 __free_page(page); 6668 } 6669 WARN(count != 0, "%lu pages are still in use!\n", count); 6670 } 6671 EXPORT_SYMBOL(free_contig_range); 6672 6673 /* 6674 * Effectively disable pcplists for the zone by setting the high limit to 0 6675 * and draining all cpus. A concurrent page freeing on another CPU that's about 6676 * to put the page on pcplist will either finish before the drain and the page 6677 * will be drained, or observe the new high limit and skip the pcplist. 6678 * 6679 * Must be paired with a call to zone_pcp_enable(). 6680 */ 6681 void zone_pcp_disable(struct zone *zone) 6682 { 6683 mutex_lock(&pcp_batch_high_lock); 6684 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6685 __drain_all_pages(zone, true); 6686 } 6687 6688 void zone_pcp_enable(struct zone *zone) 6689 { 6690 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6691 zone->pageset_high_max, zone->pageset_batch); 6692 mutex_unlock(&pcp_batch_high_lock); 6693 } 6694 6695 void zone_pcp_reset(struct zone *zone) 6696 { 6697 int cpu; 6698 struct per_cpu_zonestat *pzstats; 6699 6700 if (zone->per_cpu_pageset != &boot_pageset) { 6701 for_each_online_cpu(cpu) { 6702 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6703 drain_zonestat(zone, pzstats); 6704 } 6705 free_percpu(zone->per_cpu_pageset); 6706 zone->per_cpu_pageset = &boot_pageset; 6707 if (zone->per_cpu_zonestats != &boot_zonestats) { 6708 free_percpu(zone->per_cpu_zonestats); 6709 zone->per_cpu_zonestats = &boot_zonestats; 6710 } 6711 } 6712 } 6713 6714 #ifdef CONFIG_MEMORY_HOTREMOVE 6715 /* 6716 * All pages in the range must be in a single zone, must not contain holes, 6717 * must span full sections, and must be isolated before calling this function. 6718 * 6719 * Returns the number of managed (non-PageOffline()) pages in the range: the 6720 * number of pages for which memory offlining code must adjust managed page 6721 * counters using adjust_managed_page_count(). 6722 */ 6723 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6724 unsigned long end_pfn) 6725 { 6726 unsigned long already_offline = 0, flags; 6727 unsigned long pfn = start_pfn; 6728 struct page *page; 6729 struct zone *zone; 6730 unsigned int order; 6731 6732 offline_mem_sections(pfn, end_pfn); 6733 zone = page_zone(pfn_to_page(pfn)); 6734 spin_lock_irqsave(&zone->lock, flags); 6735 while (pfn < end_pfn) { 6736 page = pfn_to_page(pfn); 6737 /* 6738 * The HWPoisoned page may be not in buddy system, and 6739 * page_count() is not 0. 6740 */ 6741 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6742 pfn++; 6743 continue; 6744 } 6745 /* 6746 * At this point all remaining PageOffline() pages have a 6747 * reference count of 0 and can simply be skipped. 6748 */ 6749 if (PageOffline(page)) { 6750 BUG_ON(page_count(page)); 6751 BUG_ON(PageBuddy(page)); 6752 already_offline++; 6753 pfn++; 6754 continue; 6755 } 6756 6757 BUG_ON(page_count(page)); 6758 BUG_ON(!PageBuddy(page)); 6759 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6760 order = buddy_order(page); 6761 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6762 pfn += (1 << order); 6763 } 6764 spin_unlock_irqrestore(&zone->lock, flags); 6765 6766 return end_pfn - start_pfn - already_offline; 6767 } 6768 #endif 6769 6770 /* 6771 * This function returns a stable result only if called under zone lock. 6772 */ 6773 bool is_free_buddy_page(const struct page *page) 6774 { 6775 unsigned long pfn = page_to_pfn(page); 6776 unsigned int order; 6777 6778 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6779 const struct page *head = page - (pfn & ((1 << order) - 1)); 6780 6781 if (PageBuddy(head) && 6782 buddy_order_unsafe(head) >= order) 6783 break; 6784 } 6785 6786 return order <= MAX_PAGE_ORDER; 6787 } 6788 EXPORT_SYMBOL(is_free_buddy_page); 6789 6790 #ifdef CONFIG_MEMORY_FAILURE 6791 static inline void add_to_free_list(struct page *page, struct zone *zone, 6792 unsigned int order, int migratetype, 6793 bool tail) 6794 { 6795 __add_to_free_list(page, zone, order, migratetype, tail); 6796 account_freepages(zone, 1 << order, migratetype); 6797 } 6798 6799 /* 6800 * Break down a higher-order page in sub-pages, and keep our target out of 6801 * buddy allocator. 6802 */ 6803 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6804 struct page *target, int low, int high, 6805 int migratetype) 6806 { 6807 unsigned long size = 1 << high; 6808 struct page *current_buddy; 6809 6810 while (high > low) { 6811 high--; 6812 size >>= 1; 6813 6814 if (target >= &page[size]) { 6815 current_buddy = page; 6816 page = page + size; 6817 } else { 6818 current_buddy = page + size; 6819 } 6820 6821 if (set_page_guard(zone, current_buddy, high)) 6822 continue; 6823 6824 add_to_free_list(current_buddy, zone, high, migratetype, false); 6825 set_buddy_order(current_buddy, high); 6826 } 6827 } 6828 6829 /* 6830 * Take a page that will be marked as poisoned off the buddy allocator. 6831 */ 6832 bool take_page_off_buddy(struct page *page) 6833 { 6834 struct zone *zone = page_zone(page); 6835 unsigned long pfn = page_to_pfn(page); 6836 unsigned long flags; 6837 unsigned int order; 6838 bool ret = false; 6839 6840 spin_lock_irqsave(&zone->lock, flags); 6841 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6842 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6843 int page_order = buddy_order(page_head); 6844 6845 if (PageBuddy(page_head) && page_order >= order) { 6846 unsigned long pfn_head = page_to_pfn(page_head); 6847 int migratetype = get_pfnblock_migratetype(page_head, 6848 pfn_head); 6849 6850 del_page_from_free_list(page_head, zone, page_order, 6851 migratetype); 6852 break_down_buddy_pages(zone, page_head, page, 0, 6853 page_order, migratetype); 6854 SetPageHWPoisonTakenOff(page); 6855 ret = true; 6856 break; 6857 } 6858 if (page_count(page_head) > 0) 6859 break; 6860 } 6861 spin_unlock_irqrestore(&zone->lock, flags); 6862 return ret; 6863 } 6864 6865 /* 6866 * Cancel takeoff done by take_page_off_buddy(). 6867 */ 6868 bool put_page_back_buddy(struct page *page) 6869 { 6870 struct zone *zone = page_zone(page); 6871 unsigned long flags; 6872 bool ret = false; 6873 6874 spin_lock_irqsave(&zone->lock, flags); 6875 if (put_page_testzero(page)) { 6876 unsigned long pfn = page_to_pfn(page); 6877 int migratetype = get_pfnblock_migratetype(page, pfn); 6878 6879 ClearPageHWPoisonTakenOff(page); 6880 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6881 if (TestClearPageHWPoison(page)) { 6882 ret = true; 6883 } 6884 } 6885 spin_unlock_irqrestore(&zone->lock, flags); 6886 6887 return ret; 6888 } 6889 #endif 6890 6891 #ifdef CONFIG_ZONE_DMA 6892 bool has_managed_dma(void) 6893 { 6894 struct pglist_data *pgdat; 6895 6896 for_each_online_pgdat(pgdat) { 6897 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6898 6899 if (managed_zone(zone)) 6900 return true; 6901 } 6902 return false; 6903 } 6904 #endif /* CONFIG_ZONE_DMA */ 6905 6906 #ifdef CONFIG_UNACCEPTED_MEMORY 6907 6908 /* Counts number of zones with unaccepted pages. */ 6909 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6910 6911 static bool lazy_accept = true; 6912 6913 static int __init accept_memory_parse(char *p) 6914 { 6915 if (!strcmp(p, "lazy")) { 6916 lazy_accept = true; 6917 return 0; 6918 } else if (!strcmp(p, "eager")) { 6919 lazy_accept = false; 6920 return 0; 6921 } else { 6922 return -EINVAL; 6923 } 6924 } 6925 early_param("accept_memory", accept_memory_parse); 6926 6927 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6928 { 6929 phys_addr_t start = page_to_phys(page); 6930 phys_addr_t end = start + (PAGE_SIZE << order); 6931 6932 return range_contains_unaccepted_memory(start, end); 6933 } 6934 6935 static void accept_page(struct page *page, unsigned int order) 6936 { 6937 phys_addr_t start = page_to_phys(page); 6938 6939 accept_memory(start, start + (PAGE_SIZE << order)); 6940 } 6941 6942 static bool try_to_accept_memory_one(struct zone *zone) 6943 { 6944 unsigned long flags; 6945 struct page *page; 6946 bool last; 6947 6948 spin_lock_irqsave(&zone->lock, flags); 6949 page = list_first_entry_or_null(&zone->unaccepted_pages, 6950 struct page, lru); 6951 if (!page) { 6952 spin_unlock_irqrestore(&zone->lock, flags); 6953 return false; 6954 } 6955 6956 list_del(&page->lru); 6957 last = list_empty(&zone->unaccepted_pages); 6958 6959 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6960 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6961 spin_unlock_irqrestore(&zone->lock, flags); 6962 6963 accept_page(page, MAX_PAGE_ORDER); 6964 6965 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6966 6967 if (last) 6968 static_branch_dec(&zones_with_unaccepted_pages); 6969 6970 return true; 6971 } 6972 6973 static bool cond_accept_memory(struct zone *zone, unsigned int order) 6974 { 6975 long to_accept; 6976 bool ret = false; 6977 6978 if (!has_unaccepted_memory()) 6979 return false; 6980 6981 if (list_empty(&zone->unaccepted_pages)) 6982 return false; 6983 6984 /* How much to accept to get to high watermark? */ 6985 to_accept = high_wmark_pages(zone) - 6986 (zone_page_state(zone, NR_FREE_PAGES) - 6987 __zone_watermark_unusable_free(zone, order, 0) - 6988 zone_page_state(zone, NR_UNACCEPTED)); 6989 6990 while (to_accept > 0) { 6991 if (!try_to_accept_memory_one(zone)) 6992 break; 6993 ret = true; 6994 to_accept -= MAX_ORDER_NR_PAGES; 6995 } 6996 6997 return ret; 6998 } 6999 7000 static inline bool has_unaccepted_memory(void) 7001 { 7002 return static_branch_unlikely(&zones_with_unaccepted_pages); 7003 } 7004 7005 static bool __free_unaccepted(struct page *page) 7006 { 7007 struct zone *zone = page_zone(page); 7008 unsigned long flags; 7009 bool first = false; 7010 7011 if (!lazy_accept) 7012 return false; 7013 7014 spin_lock_irqsave(&zone->lock, flags); 7015 first = list_empty(&zone->unaccepted_pages); 7016 list_add_tail(&page->lru, &zone->unaccepted_pages); 7017 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7018 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7019 spin_unlock_irqrestore(&zone->lock, flags); 7020 7021 if (first) 7022 static_branch_inc(&zones_with_unaccepted_pages); 7023 7024 return true; 7025 } 7026 7027 #else 7028 7029 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7030 { 7031 return false; 7032 } 7033 7034 static void accept_page(struct page *page, unsigned int order) 7035 { 7036 } 7037 7038 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7039 { 7040 return false; 7041 } 7042 7043 static inline bool has_unaccepted_memory(void) 7044 { 7045 return false; 7046 } 7047 7048 static bool __free_unaccepted(struct page *page) 7049 { 7050 BUILD_BUG(); 7051 return false; 7052 } 7053 7054 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7055
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.