~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/page_alloc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/mm/page_alloc.c
  4  *
  5  *  Manages the free list, the system allocates free pages here.
  6  *  Note that kmalloc() lives in slab.c
  7  *
  8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  9  *  Swap reorganised 29.12.95, Stephen Tweedie
 10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 16  */
 17 
 18 #include <linux/stddef.h>
 19 #include <linux/mm.h>
 20 #include <linux/highmem.h>
 21 #include <linux/interrupt.h>
 22 #include <linux/jiffies.h>
 23 #include <linux/compiler.h>
 24 #include <linux/kernel.h>
 25 #include <linux/kasan.h>
 26 #include <linux/kmsan.h>
 27 #include <linux/module.h>
 28 #include <linux/suspend.h>
 29 #include <linux/ratelimit.h>
 30 #include <linux/oom.h>
 31 #include <linux/topology.h>
 32 #include <linux/sysctl.h>
 33 #include <linux/cpu.h>
 34 #include <linux/cpuset.h>
 35 #include <linux/pagevec.h>
 36 #include <linux/memory_hotplug.h>
 37 #include <linux/nodemask.h>
 38 #include <linux/vmstat.h>
 39 #include <linux/fault-inject.h>
 40 #include <linux/compaction.h>
 41 #include <trace/events/kmem.h>
 42 #include <trace/events/oom.h>
 43 #include <linux/prefetch.h>
 44 #include <linux/mm_inline.h>
 45 #include <linux/mmu_notifier.h>
 46 #include <linux/migrate.h>
 47 #include <linux/sched/mm.h>
 48 #include <linux/page_owner.h>
 49 #include <linux/page_table_check.h>
 50 #include <linux/memcontrol.h>
 51 #include <linux/ftrace.h>
 52 #include <linux/lockdep.h>
 53 #include <linux/psi.h>
 54 #include <linux/khugepaged.h>
 55 #include <linux/delayacct.h>
 56 #include <linux/cacheinfo.h>
 57 #include <linux/pgalloc_tag.h>
 58 #include <asm/div64.h>
 59 #include "internal.h"
 60 #include "shuffle.h"
 61 #include "page_reporting.h"
 62 
 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
 64 typedef int __bitwise fpi_t;
 65 
 66 /* No special request */
 67 #define FPI_NONE                ((__force fpi_t)0)
 68 
 69 /*
 70  * Skip free page reporting notification for the (possibly merged) page.
 71  * This does not hinder free page reporting from grabbing the page,
 72  * reporting it and marking it "reported" -  it only skips notifying
 73  * the free page reporting infrastructure about a newly freed page. For
 74  * example, used when temporarily pulling a page from a freelist and
 75  * putting it back unmodified.
 76  */
 77 #define FPI_SKIP_REPORT_NOTIFY  ((__force fpi_t)BIT(0))
 78 
 79 /*
 80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
 81  * page shuffling (relevant code - e.g., memory onlining - is expected to
 82  * shuffle the whole zone).
 83  *
 84  * Note: No code should rely on this flag for correctness - it's purely
 85  *       to allow for optimizations when handing back either fresh pages
 86  *       (memory onlining) or untouched pages (page isolation, free page
 87  *       reporting).
 88  */
 89 #define FPI_TO_TAIL             ((__force fpi_t)BIT(1))
 90 
 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 92 static DEFINE_MUTEX(pcp_batch_high_lock);
 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
 94 
 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
 96 /*
 97  * On SMP, spin_trylock is sufficient protection.
 98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
 99  */
100 #define pcp_trylock_prepare(flags)      do { } while (0)
101 #define pcp_trylock_finish(flag)        do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)      local_irq_save(flags)
106 #define pcp_trylock_finish(flags)       local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()         preempt_disable()
119 #define pcpu_task_unpin()       preempt_enable()
120 #else
121 #define pcpu_task_pin()         migrate_disable()
122 #define pcpu_task_unpin()       migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)                               \
130 ({                                                                      \
131         type *_ret;                                                     \
132         pcpu_task_pin();                                                \
133         _ret = this_cpu_ptr(ptr);                                       \
134         spin_lock(&_ret->member);                                       \
135         _ret;                                                           \
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)                            \
139 ({                                                                      \
140         type *_ret;                                                     \
141         pcpu_task_pin();                                                \
142         _ret = this_cpu_ptr(ptr);                                       \
143         if (!spin_trylock(&_ret->member)) {                             \
144                 pcpu_task_unpin();                                      \
145                 _ret = NULL;                                            \
146         }                                                               \
147         _ret;                                                           \
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)                                   \
151 ({                                                                      \
152         spin_unlock(&ptr->member);                                      \
153         pcpu_task_unpin();                                              \
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)                                              \
158         pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)                                           \
161         pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)                                            \
164         pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195         [N_POSSIBLE] = NODE_MASK_ALL,
196         [N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198         [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200         [N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202         [N_MEMORY] = { { [0] = 1UL } },
203         [N_CPU] = { { [0] = 1UL } },
204 #endif  /* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215                             fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *      1G machine -> (16M dma, 784M normal, 224M high)
221  *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *      HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230         [ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233         [ZONE_DMA32] = 256,
234 #endif
235         [ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237         [ZONE_HIGHMEM] = 0,
238 #endif
239         [ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244          "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247          "DMA32",
248 #endif
249          "Normal",
250 #ifdef CONFIG_HIGHMEM
251          "HighMem",
252 #endif
253          "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255          "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260         "Unmovable",
261         "Movable",
262         "Reclaimable",
263         "HighAtomic",
264 #ifdef CONFIG_CMA
265         "CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268         "Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool cond_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298  * During boot we initialize deferred pages on-demand, as needed, but once
299  * page_alloc_init_late() has finished, the deferred pages are all initialized,
300  * and we can permanently disable that path.
301  */
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
303 
304 static inline bool deferred_pages_enabled(void)
305 {
306         return static_branch_unlikely(&deferred_pages);
307 }
308 
309 /*
310  * deferred_grow_zone() is __init, but it is called from
311  * get_page_from_freelist() during early boot until deferred_pages permanently
312  * disables this call. This is why we have refdata wrapper to avoid warning,
313  * and to ensure that the function body gets unloaded.
314  */
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
317 {
318         return deferred_grow_zone(zone, order);
319 }
320 #else
321 static inline bool deferred_pages_enabled(void)
322 {
323         return false;
324 }
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326 
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329                                                         unsigned long pfn)
330 {
331 #ifdef CONFIG_SPARSEMEM
332         return section_to_usemap(__pfn_to_section(pfn));
333 #else
334         return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
336 }
337 
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339 {
340 #ifdef CONFIG_SPARSEMEM
341         pfn &= (PAGES_PER_SECTION-1);
342 #else
343         pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345         return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346 }
347 
348 /**
349  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350  * @page: The page within the block of interest
351  * @pfn: The target page frame number
352  * @mask: mask of bits that the caller is interested in
353  *
354  * Return: pageblock_bits flags
355  */
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357                                         unsigned long pfn, unsigned long mask)
358 {
359         unsigned long *bitmap;
360         unsigned long bitidx, word_bitidx;
361         unsigned long word;
362 
363         bitmap = get_pageblock_bitmap(page, pfn);
364         bitidx = pfn_to_bitidx(page, pfn);
365         word_bitidx = bitidx / BITS_PER_LONG;
366         bitidx &= (BITS_PER_LONG-1);
367         /*
368          * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369          * a consistent read of the memory array, so that results, even though
370          * racy, are not corrupted.
371          */
372         word = READ_ONCE(bitmap[word_bitidx]);
373         return (word >> bitidx) & mask;
374 }
375 
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377                                         unsigned long pfn)
378 {
379         return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380 }
381 
382 /**
383  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384  * @page: The page within the block of interest
385  * @flags: The flags to set
386  * @pfn: The target page frame number
387  * @mask: mask of bits that the caller is interested in
388  */
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390                                         unsigned long pfn,
391                                         unsigned long mask)
392 {
393         unsigned long *bitmap;
394         unsigned long bitidx, word_bitidx;
395         unsigned long word;
396 
397         BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398         BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399 
400         bitmap = get_pageblock_bitmap(page, pfn);
401         bitidx = pfn_to_bitidx(page, pfn);
402         word_bitidx = bitidx / BITS_PER_LONG;
403         bitidx &= (BITS_PER_LONG-1);
404 
405         VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406 
407         mask <<= bitidx;
408         flags <<= bitidx;
409 
410         word = READ_ONCE(bitmap[word_bitidx]);
411         do {
412         } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413 }
414 
415 void set_pageblock_migratetype(struct page *page, int migratetype)
416 {
417         if (unlikely(page_group_by_mobility_disabled &&
418                      migratetype < MIGRATE_PCPTYPES))
419                 migratetype = MIGRATE_UNMOVABLE;
420 
421         set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422                                 page_to_pfn(page), MIGRATETYPE_MASK);
423 }
424 
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427 {
428         int ret;
429         unsigned seq;
430         unsigned long pfn = page_to_pfn(page);
431         unsigned long sp, start_pfn;
432 
433         do {
434                 seq = zone_span_seqbegin(zone);
435                 start_pfn = zone->zone_start_pfn;
436                 sp = zone->spanned_pages;
437                 ret = !zone_spans_pfn(zone, pfn);
438         } while (zone_span_seqretry(zone, seq));
439 
440         if (ret)
441                 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442                         pfn, zone_to_nid(zone), zone->name,
443                         start_pfn, start_pfn + sp);
444 
445         return ret;
446 }
447 
448 /*
449  * Temporary debugging check for pages not lying within a given zone.
450  */
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452 {
453         if (page_outside_zone_boundaries(zone, page))
454                 return true;
455         if (zone != page_zone(page))
456                 return true;
457 
458         return false;
459 }
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462 {
463         return false;
464 }
465 #endif
466 
467 static void bad_page(struct page *page, const char *reason)
468 {
469         static unsigned long resume;
470         static unsigned long nr_shown;
471         static unsigned long nr_unshown;
472 
473         /*
474          * Allow a burst of 60 reports, then keep quiet for that minute;
475          * or allow a steady drip of one report per second.
476          */
477         if (nr_shown == 60) {
478                 if (time_before(jiffies, resume)) {
479                         nr_unshown++;
480                         goto out;
481                 }
482                 if (nr_unshown) {
483                         pr_alert(
484                               "BUG: Bad page state: %lu messages suppressed\n",
485                                 nr_unshown);
486                         nr_unshown = 0;
487                 }
488                 nr_shown = 0;
489         }
490         if (nr_shown++ == 0)
491                 resume = jiffies + 60 * HZ;
492 
493         pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
494                 current->comm, page_to_pfn(page));
495         dump_page(page, reason);
496 
497         print_modules();
498         dump_stack();
499 out:
500         /* Leave bad fields for debug, except PageBuddy could make trouble */
501         if (PageBuddy(page))
502                 __ClearPageBuddy(page);
503         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
504 }
505 
506 static inline unsigned int order_to_pindex(int migratetype, int order)
507 {
508         bool __maybe_unused movable;
509 
510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
511         if (order > PAGE_ALLOC_COSTLY_ORDER) {
512                 VM_BUG_ON(order != HPAGE_PMD_ORDER);
513 
514                 movable = migratetype == MIGRATE_MOVABLE;
515 
516                 return NR_LOWORDER_PCP_LISTS + movable;
517         }
518 #else
519         VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
520 #endif
521 
522         return (MIGRATE_PCPTYPES * order) + migratetype;
523 }
524 
525 static inline int pindex_to_order(unsigned int pindex)
526 {
527         int order = pindex / MIGRATE_PCPTYPES;
528 
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530         if (pindex >= NR_LOWORDER_PCP_LISTS)
531                 order = HPAGE_PMD_ORDER;
532 #else
533         VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535 
536         return order;
537 }
538 
539 static inline bool pcp_allowed_order(unsigned int order)
540 {
541         if (order <= PAGE_ALLOC_COSTLY_ORDER)
542                 return true;
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544         if (order == HPAGE_PMD_ORDER)
545                 return true;
546 #endif
547         return false;
548 }
549 
550 /*
551  * Higher-order pages are called "compound pages".  They are structured thusly:
552  *
553  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554  *
555  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557  *
558  * The first tail page's ->compound_order holds the order of allocation.
559  * This usage means that zero-order pages may not be compound.
560  */
561 
562 void prep_compound_page(struct page *page, unsigned int order)
563 {
564         int i;
565         int nr_pages = 1 << order;
566 
567         __SetPageHead(page);
568         for (i = 1; i < nr_pages; i++)
569                 prep_compound_tail(page, i);
570 
571         prep_compound_head(page, order);
572 }
573 
574 static inline void set_buddy_order(struct page *page, unsigned int order)
575 {
576         set_page_private(page, order);
577         __SetPageBuddy(page);
578 }
579 
580 #ifdef CONFIG_COMPACTION
581 static inline struct capture_control *task_capc(struct zone *zone)
582 {
583         struct capture_control *capc = current->capture_control;
584 
585         return unlikely(capc) &&
586                 !(current->flags & PF_KTHREAD) &&
587                 !capc->page &&
588                 capc->cc->zone == zone ? capc : NULL;
589 }
590 
591 static inline bool
592 compaction_capture(struct capture_control *capc, struct page *page,
593                    int order, int migratetype)
594 {
595         if (!capc || order != capc->cc->order)
596                 return false;
597 
598         /* Do not accidentally pollute CMA or isolated regions*/
599         if (is_migrate_cma(migratetype) ||
600             is_migrate_isolate(migratetype))
601                 return false;
602 
603         /*
604          * Do not let lower order allocations pollute a movable pageblock
605          * unless compaction is also requesting movable pages.
606          * This might let an unmovable request use a reclaimable pageblock
607          * and vice-versa but no more than normal fallback logic which can
608          * have trouble finding a high-order free page.
609          */
610         if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
611             capc->cc->migratetype != MIGRATE_MOVABLE)
612                 return false;
613 
614         capc->page = page;
615         return true;
616 }
617 
618 #else
619 static inline struct capture_control *task_capc(struct zone *zone)
620 {
621         return NULL;
622 }
623 
624 static inline bool
625 compaction_capture(struct capture_control *capc, struct page *page,
626                    int order, int migratetype)
627 {
628         return false;
629 }
630 #endif /* CONFIG_COMPACTION */
631 
632 static inline void account_freepages(struct zone *zone, int nr_pages,
633                                      int migratetype)
634 {
635         if (is_migrate_isolate(migratetype))
636                 return;
637 
638         __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
639 
640         if (is_migrate_cma(migratetype))
641                 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
642 }
643 
644 /* Used for pages not on another list */
645 static inline void __add_to_free_list(struct page *page, struct zone *zone,
646                                       unsigned int order, int migratetype,
647                                       bool tail)
648 {
649         struct free_area *area = &zone->free_area[order];
650 
651         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
652                      "page type is %lu, passed migratetype is %d (nr=%d)\n",
653                      get_pageblock_migratetype(page), migratetype, 1 << order);
654 
655         if (tail)
656                 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
657         else
658                 list_add(&page->buddy_list, &area->free_list[migratetype]);
659         area->nr_free++;
660 }
661 
662 /*
663  * Used for pages which are on another list. Move the pages to the tail
664  * of the list - so the moved pages won't immediately be considered for
665  * allocation again (e.g., optimization for memory onlining).
666  */
667 static inline void move_to_free_list(struct page *page, struct zone *zone,
668                                      unsigned int order, int old_mt, int new_mt)
669 {
670         struct free_area *area = &zone->free_area[order];
671 
672         /* Free page moving can fail, so it happens before the type update */
673         VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
674                      "page type is %lu, passed migratetype is %d (nr=%d)\n",
675                      get_pageblock_migratetype(page), old_mt, 1 << order);
676 
677         list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
678 
679         account_freepages(zone, -(1 << order), old_mt);
680         account_freepages(zone, 1 << order, new_mt);
681 }
682 
683 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
684                                              unsigned int order, int migratetype)
685 {
686         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
687                      "page type is %lu, passed migratetype is %d (nr=%d)\n",
688                      get_pageblock_migratetype(page), migratetype, 1 << order);
689 
690         /* clear reported state and update reported page count */
691         if (page_reported(page))
692                 __ClearPageReported(page);
693 
694         list_del(&page->buddy_list);
695         __ClearPageBuddy(page);
696         set_page_private(page, 0);
697         zone->free_area[order].nr_free--;
698 }
699 
700 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
701                                            unsigned int order, int migratetype)
702 {
703         __del_page_from_free_list(page, zone, order, migratetype);
704         account_freepages(zone, -(1 << order), migratetype);
705 }
706 
707 static inline struct page *get_page_from_free_area(struct free_area *area,
708                                             int migratetype)
709 {
710         return list_first_entry_or_null(&area->free_list[migratetype],
711                                         struct page, buddy_list);
712 }
713 
714 /*
715  * If this is less than the 2nd largest possible page, check if the buddy
716  * of the next-higher order is free. If it is, it's possible
717  * that pages are being freed that will coalesce soon. In case,
718  * that is happening, add the free page to the tail of the list
719  * so it's less likely to be used soon and more likely to be merged
720  * as a 2-level higher order page
721  */
722 static inline bool
723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724                    struct page *page, unsigned int order)
725 {
726         unsigned long higher_page_pfn;
727         struct page *higher_page;
728 
729         if (order >= MAX_PAGE_ORDER - 1)
730                 return false;
731 
732         higher_page_pfn = buddy_pfn & pfn;
733         higher_page = page + (higher_page_pfn - pfn);
734 
735         return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736                         NULL) != NULL;
737 }
738 
739 /*
740  * Freeing function for a buddy system allocator.
741  *
742  * The concept of a buddy system is to maintain direct-mapped table
743  * (containing bit values) for memory blocks of various "orders".
744  * The bottom level table contains the map for the smallest allocatable
745  * units of memory (here, pages), and each level above it describes
746  * pairs of units from the levels below, hence, "buddies".
747  * At a high level, all that happens here is marking the table entry
748  * at the bottom level available, and propagating the changes upward
749  * as necessary, plus some accounting needed to play nicely with other
750  * parts of the VM system.
751  * At each level, we keep a list of pages, which are heads of continuous
752  * free pages of length of (1 << order) and marked with PageBuddy.
753  * Page's order is recorded in page_private(page) field.
754  * So when we are allocating or freeing one, we can derive the state of the
755  * other.  That is, if we allocate a small block, and both were
756  * free, the remainder of the region must be split into blocks.
757  * If a block is freed, and its buddy is also free, then this
758  * triggers coalescing into a block of larger size.
759  *
760  * -- nyc
761  */
762 
763 static inline void __free_one_page(struct page *page,
764                 unsigned long pfn,
765                 struct zone *zone, unsigned int order,
766                 int migratetype, fpi_t fpi_flags)
767 {
768         struct capture_control *capc = task_capc(zone);
769         unsigned long buddy_pfn = 0;
770         unsigned long combined_pfn;
771         struct page *buddy;
772         bool to_tail;
773 
774         VM_BUG_ON(!zone_is_initialized(zone));
775         VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
776 
777         VM_BUG_ON(migratetype == -1);
778         VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
779         VM_BUG_ON_PAGE(bad_range(zone, page), page);
780 
781         account_freepages(zone, 1 << order, migratetype);
782 
783         while (order < MAX_PAGE_ORDER) {
784                 int buddy_mt = migratetype;
785 
786                 if (compaction_capture(capc, page, order, migratetype)) {
787                         account_freepages(zone, -(1 << order), migratetype);
788                         return;
789                 }
790 
791                 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792                 if (!buddy)
793                         goto done_merging;
794 
795                 if (unlikely(order >= pageblock_order)) {
796                         /*
797                          * We want to prevent merge between freepages on pageblock
798                          * without fallbacks and normal pageblock. Without this,
799                          * pageblock isolation could cause incorrect freepage or CMA
800                          * accounting or HIGHATOMIC accounting.
801                          */
802                         buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
803 
804                         if (migratetype != buddy_mt &&
805                             (!migratetype_is_mergeable(migratetype) ||
806                              !migratetype_is_mergeable(buddy_mt)))
807                                 goto done_merging;
808                 }
809 
810                 /*
811                  * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812                  * merge with it and move up one order.
813                  */
814                 if (page_is_guard(buddy))
815                         clear_page_guard(zone, buddy, order);
816                 else
817                         __del_page_from_free_list(buddy, zone, order, buddy_mt);
818 
819                 if (unlikely(buddy_mt != migratetype)) {
820                         /*
821                          * Match buddy type. This ensures that an
822                          * expand() down the line puts the sub-blocks
823                          * on the right freelists.
824                          */
825                         set_pageblock_migratetype(buddy, migratetype);
826                 }
827 
828                 combined_pfn = buddy_pfn & pfn;
829                 page = page + (combined_pfn - pfn);
830                 pfn = combined_pfn;
831                 order++;
832         }
833 
834 done_merging:
835         set_buddy_order(page, order);
836 
837         if (fpi_flags & FPI_TO_TAIL)
838                 to_tail = true;
839         else if (is_shuffle_order(order))
840                 to_tail = shuffle_pick_tail();
841         else
842                 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
843 
844         __add_to_free_list(page, zone, order, migratetype, to_tail);
845 
846         /* Notify page reporting subsystem of freed page */
847         if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
848                 page_reporting_notify_free(order);
849 }
850 
851 /*
852  * A bad page could be due to a number of fields. Instead of multiple branches,
853  * try and check multiple fields with one check. The caller must do a detailed
854  * check if necessary.
855  */
856 static inline bool page_expected_state(struct page *page,
857                                         unsigned long check_flags)
858 {
859         if (unlikely(atomic_read(&page->_mapcount) != -1))
860                 return false;
861 
862         if (unlikely((unsigned long)page->mapping |
863                         page_ref_count(page) |
864 #ifdef CONFIG_MEMCG
865                         page->memcg_data |
866 #endif
867 #ifdef CONFIG_PAGE_POOL
868                         ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
869 #endif
870                         (page->flags & check_flags)))
871                 return false;
872 
873         return true;
874 }
875 
876 static const char *page_bad_reason(struct page *page, unsigned long flags)
877 {
878         const char *bad_reason = NULL;
879 
880         if (unlikely(atomic_read(&page->_mapcount) != -1))
881                 bad_reason = "nonzero mapcount";
882         if (unlikely(page->mapping != NULL))
883                 bad_reason = "non-NULL mapping";
884         if (unlikely(page_ref_count(page) != 0))
885                 bad_reason = "nonzero _refcount";
886         if (unlikely(page->flags & flags)) {
887                 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
888                         bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
889                 else
890                         bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
891         }
892 #ifdef CONFIG_MEMCG
893         if (unlikely(page->memcg_data))
894                 bad_reason = "page still charged to cgroup";
895 #endif
896 #ifdef CONFIG_PAGE_POOL
897         if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
898                 bad_reason = "page_pool leak";
899 #endif
900         return bad_reason;
901 }
902 
903 static void free_page_is_bad_report(struct page *page)
904 {
905         bad_page(page,
906                  page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
907 }
908 
909 static inline bool free_page_is_bad(struct page *page)
910 {
911         if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
912                 return false;
913 
914         /* Something has gone sideways, find it */
915         free_page_is_bad_report(page);
916         return true;
917 }
918 
919 static inline bool is_check_pages_enabled(void)
920 {
921         return static_branch_unlikely(&check_pages_enabled);
922 }
923 
924 static int free_tail_page_prepare(struct page *head_page, struct page *page)
925 {
926         struct folio *folio = (struct folio *)head_page;
927         int ret = 1;
928 
929         /*
930          * We rely page->lru.next never has bit 0 set, unless the page
931          * is PageTail(). Let's make sure that's true even for poisoned ->lru.
932          */
933         BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
934 
935         if (!is_check_pages_enabled()) {
936                 ret = 0;
937                 goto out;
938         }
939         switch (page - head_page) {
940         case 1:
941                 /* the first tail page: these may be in place of ->mapping */
942                 if (unlikely(folio_entire_mapcount(folio))) {
943                         bad_page(page, "nonzero entire_mapcount");
944                         goto out;
945                 }
946                 if (unlikely(folio_large_mapcount(folio))) {
947                         bad_page(page, "nonzero large_mapcount");
948                         goto out;
949                 }
950                 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
951                         bad_page(page, "nonzero nr_pages_mapped");
952                         goto out;
953                 }
954                 if (unlikely(atomic_read(&folio->_pincount))) {
955                         bad_page(page, "nonzero pincount");
956                         goto out;
957                 }
958                 break;
959         case 2:
960                 /* the second tail page: deferred_list overlaps ->mapping */
961                 if (unlikely(!list_empty(&folio->_deferred_list))) {
962                         bad_page(page, "on deferred list");
963                         goto out;
964                 }
965                 break;
966         default:
967                 if (page->mapping != TAIL_MAPPING) {
968                         bad_page(page, "corrupted mapping in tail page");
969                         goto out;
970                 }
971                 break;
972         }
973         if (unlikely(!PageTail(page))) {
974                 bad_page(page, "PageTail not set");
975                 goto out;
976         }
977         if (unlikely(compound_head(page) != head_page)) {
978                 bad_page(page, "compound_head not consistent");
979                 goto out;
980         }
981         ret = 0;
982 out:
983         page->mapping = NULL;
984         clear_compound_head(page);
985         return ret;
986 }
987 
988 /*
989  * Skip KASAN memory poisoning when either:
990  *
991  * 1. For generic KASAN: deferred memory initialization has not yet completed.
992  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
993  *    using page tags instead (see below).
994  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
995  *    that error detection is disabled for accesses via the page address.
996  *
997  * Pages will have match-all tags in the following circumstances:
998  *
999  * 1. Pages are being initialized for the first time, including during deferred
1000  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1001  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1002  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1003  * 3. The allocation was excluded from being checked due to sampling,
1004  *    see the call to kasan_unpoison_pages.
1005  *
1006  * Poisoning pages during deferred memory init will greatly lengthen the
1007  * process and cause problem in large memory systems as the deferred pages
1008  * initialization is done with interrupt disabled.
1009  *
1010  * Assuming that there will be no reference to those newly initialized
1011  * pages before they are ever allocated, this should have no effect on
1012  * KASAN memory tracking as the poison will be properly inserted at page
1013  * allocation time. The only corner case is when pages are allocated by
1014  * on-demand allocation and then freed again before the deferred pages
1015  * initialization is done, but this is not likely to happen.
1016  */
1017 static inline bool should_skip_kasan_poison(struct page *page)
1018 {
1019         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1020                 return deferred_pages_enabled();
1021 
1022         return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1023 }
1024 
1025 static void kernel_init_pages(struct page *page, int numpages)
1026 {
1027         int i;
1028 
1029         /* s390's use of memset() could override KASAN redzones. */
1030         kasan_disable_current();
1031         for (i = 0; i < numpages; i++)
1032                 clear_highpage_kasan_tagged(page + i);
1033         kasan_enable_current();
1034 }
1035 
1036 __always_inline bool free_pages_prepare(struct page *page,
1037                         unsigned int order)
1038 {
1039         int bad = 0;
1040         bool skip_kasan_poison = should_skip_kasan_poison(page);
1041         bool init = want_init_on_free();
1042         bool compound = PageCompound(page);
1043 
1044         VM_BUG_ON_PAGE(PageTail(page), page);
1045 
1046         trace_mm_page_free(page, order);
1047         kmsan_free_page(page, order);
1048 
1049         if (memcg_kmem_online() && PageMemcgKmem(page))
1050                 __memcg_kmem_uncharge_page(page, order);
1051 
1052         if (unlikely(PageHWPoison(page)) && !order) {
1053                 /* Do not let hwpoison pages hit pcplists/buddy */
1054                 reset_page_owner(page, order);
1055                 page_table_check_free(page, order);
1056                 pgalloc_tag_sub(page, 1 << order);
1057 
1058                 /*
1059                  * The page is isolated and accounted for.
1060                  * Mark the codetag as empty to avoid accounting error
1061                  * when the page is freed by unpoison_memory().
1062                  */
1063                 clear_page_tag_ref(page);
1064                 return false;
1065         }
1066 
1067         VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1068 
1069         /*
1070          * Check tail pages before head page information is cleared to
1071          * avoid checking PageCompound for order-0 pages.
1072          */
1073         if (unlikely(order)) {
1074                 int i;
1075 
1076                 if (compound)
1077                         page[1].flags &= ~PAGE_FLAGS_SECOND;
1078                 for (i = 1; i < (1 << order); i++) {
1079                         if (compound)
1080                                 bad += free_tail_page_prepare(page, page + i);
1081                         if (is_check_pages_enabled()) {
1082                                 if (free_page_is_bad(page + i)) {
1083                                         bad++;
1084                                         continue;
1085                                 }
1086                         }
1087                         (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1088                 }
1089         }
1090         if (PageMappingFlags(page))
1091                 page->mapping = NULL;
1092         if (is_check_pages_enabled()) {
1093                 if (free_page_is_bad(page))
1094                         bad++;
1095                 if (bad)
1096                         return false;
1097         }
1098 
1099         page_cpupid_reset_last(page);
1100         page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1101         reset_page_owner(page, order);
1102         page_table_check_free(page, order);
1103         pgalloc_tag_sub(page, 1 << order);
1104 
1105         if (!PageHighMem(page)) {
1106                 debug_check_no_locks_freed(page_address(page),
1107                                            PAGE_SIZE << order);
1108                 debug_check_no_obj_freed(page_address(page),
1109                                            PAGE_SIZE << order);
1110         }
1111 
1112         kernel_poison_pages(page, 1 << order);
1113 
1114         /*
1115          * As memory initialization might be integrated into KASAN,
1116          * KASAN poisoning and memory initialization code must be
1117          * kept together to avoid discrepancies in behavior.
1118          *
1119          * With hardware tag-based KASAN, memory tags must be set before the
1120          * page becomes unavailable via debug_pagealloc or arch_free_page.
1121          */
1122         if (!skip_kasan_poison) {
1123                 kasan_poison_pages(page, order, init);
1124 
1125                 /* Memory is already initialized if KASAN did it internally. */
1126                 if (kasan_has_integrated_init())
1127                         init = false;
1128         }
1129         if (init)
1130                 kernel_init_pages(page, 1 << order);
1131 
1132         /*
1133          * arch_free_page() can make the page's contents inaccessible.  s390
1134          * does this.  So nothing which can access the page's contents should
1135          * happen after this.
1136          */
1137         arch_free_page(page, order);
1138 
1139         debug_pagealloc_unmap_pages(page, 1 << order);
1140 
1141         return true;
1142 }
1143 
1144 /*
1145  * Frees a number of pages from the PCP lists
1146  * Assumes all pages on list are in same zone.
1147  * count is the number of pages to free.
1148  */
1149 static void free_pcppages_bulk(struct zone *zone, int count,
1150                                         struct per_cpu_pages *pcp,
1151                                         int pindex)
1152 {
1153         unsigned long flags;
1154         unsigned int order;
1155         struct page *page;
1156 
1157         /*
1158          * Ensure proper count is passed which otherwise would stuck in the
1159          * below while (list_empty(list)) loop.
1160          */
1161         count = min(pcp->count, count);
1162 
1163         /* Ensure requested pindex is drained first. */
1164         pindex = pindex - 1;
1165 
1166         spin_lock_irqsave(&zone->lock, flags);
1167 
1168         while (count > 0) {
1169                 struct list_head *list;
1170                 int nr_pages;
1171 
1172                 /* Remove pages from lists in a round-robin fashion. */
1173                 do {
1174                         if (++pindex > NR_PCP_LISTS - 1)
1175                                 pindex = 0;
1176                         list = &pcp->lists[pindex];
1177                 } while (list_empty(list));
1178 
1179                 order = pindex_to_order(pindex);
1180                 nr_pages = 1 << order;
1181                 do {
1182                         unsigned long pfn;
1183                         int mt;
1184 
1185                         page = list_last_entry(list, struct page, pcp_list);
1186                         pfn = page_to_pfn(page);
1187                         mt = get_pfnblock_migratetype(page, pfn);
1188 
1189                         /* must delete to avoid corrupting pcp list */
1190                         list_del(&page->pcp_list);
1191                         count -= nr_pages;
1192                         pcp->count -= nr_pages;
1193 
1194                         __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1195                         trace_mm_page_pcpu_drain(page, order, mt);
1196                 } while (count > 0 && !list_empty(list));
1197         }
1198 
1199         spin_unlock_irqrestore(&zone->lock, flags);
1200 }
1201 
1202 static void free_one_page(struct zone *zone, struct page *page,
1203                           unsigned long pfn, unsigned int order,
1204                           fpi_t fpi_flags)
1205 {
1206         unsigned long flags;
1207         int migratetype;
1208 
1209         spin_lock_irqsave(&zone->lock, flags);
1210         migratetype = get_pfnblock_migratetype(page, pfn);
1211         __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1212         spin_unlock_irqrestore(&zone->lock, flags);
1213 }
1214 
1215 static void __free_pages_ok(struct page *page, unsigned int order,
1216                             fpi_t fpi_flags)
1217 {
1218         unsigned long pfn = page_to_pfn(page);
1219         struct zone *zone = page_zone(page);
1220 
1221         if (!free_pages_prepare(page, order))
1222                 return;
1223 
1224         free_one_page(zone, page, pfn, order, fpi_flags);
1225 
1226         __count_vm_events(PGFREE, 1 << order);
1227 }
1228 
1229 void __meminit __free_pages_core(struct page *page, unsigned int order,
1230                 enum meminit_context context)
1231 {
1232         unsigned int nr_pages = 1 << order;
1233         struct page *p = page;
1234         unsigned int loop;
1235 
1236         /*
1237          * When initializing the memmap, __init_single_page() sets the refcount
1238          * of all pages to 1 ("allocated"/"not free"). We have to set the
1239          * refcount of all involved pages to 0.
1240          *
1241          * Note that hotplugged memory pages are initialized to PageOffline().
1242          * Pages freed from memblock might be marked as reserved.
1243          */
1244         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1245             unlikely(context == MEMINIT_HOTPLUG)) {
1246                 for (loop = 0; loop < nr_pages; loop++, p++) {
1247                         VM_WARN_ON_ONCE(PageReserved(p));
1248                         __ClearPageOffline(p);
1249                         set_page_count(p, 0);
1250                 }
1251 
1252                 /*
1253                  * Freeing the page with debug_pagealloc enabled will try to
1254                  * unmap it; some archs don't like double-unmappings, so
1255                  * map it first.
1256                  */
1257                 debug_pagealloc_map_pages(page, nr_pages);
1258                 adjust_managed_page_count(page, nr_pages);
1259         } else {
1260                 for (loop = 0; loop < nr_pages; loop++, p++) {
1261                         __ClearPageReserved(p);
1262                         set_page_count(p, 0);
1263                 }
1264 
1265                 /* memblock adjusts totalram_pages() manually. */
1266                 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1267         }
1268 
1269         if (page_contains_unaccepted(page, order)) {
1270                 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1271                         return;
1272 
1273                 accept_page(page, order);
1274         }
1275 
1276         /*
1277          * Bypass PCP and place fresh pages right to the tail, primarily
1278          * relevant for memory onlining.
1279          */
1280         __free_pages_ok(page, order, FPI_TO_TAIL);
1281 }
1282 
1283 /*
1284  * Check that the whole (or subset of) a pageblock given by the interval of
1285  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1286  * with the migration of free compaction scanner.
1287  *
1288  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1289  *
1290  * It's possible on some configurations to have a setup like node0 node1 node0
1291  * i.e. it's possible that all pages within a zones range of pages do not
1292  * belong to a single zone. We assume that a border between node0 and node1
1293  * can occur within a single pageblock, but not a node0 node1 node0
1294  * interleaving within a single pageblock. It is therefore sufficient to check
1295  * the first and last page of a pageblock and avoid checking each individual
1296  * page in a pageblock.
1297  *
1298  * Note: the function may return non-NULL struct page even for a page block
1299  * which contains a memory hole (i.e. there is no physical memory for a subset
1300  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1301  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1302  * even though the start pfn is online and valid. This should be safe most of
1303  * the time because struct pages are still initialized via init_unavailable_range()
1304  * and pfn walkers shouldn't touch any physical memory range for which they do
1305  * not recognize any specific metadata in struct pages.
1306  */
1307 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1308                                      unsigned long end_pfn, struct zone *zone)
1309 {
1310         struct page *start_page;
1311         struct page *end_page;
1312 
1313         /* end_pfn is one past the range we are checking */
1314         end_pfn--;
1315 
1316         if (!pfn_valid(end_pfn))
1317                 return NULL;
1318 
1319         start_page = pfn_to_online_page(start_pfn);
1320         if (!start_page)
1321                 return NULL;
1322 
1323         if (page_zone(start_page) != zone)
1324                 return NULL;
1325 
1326         end_page = pfn_to_page(end_pfn);
1327 
1328         /* This gives a shorter code than deriving page_zone(end_page) */
1329         if (page_zone_id(start_page) != page_zone_id(end_page))
1330                 return NULL;
1331 
1332         return start_page;
1333 }
1334 
1335 /*
1336  * The order of subdivision here is critical for the IO subsystem.
1337  * Please do not alter this order without good reasons and regression
1338  * testing. Specifically, as large blocks of memory are subdivided,
1339  * the order in which smaller blocks are delivered depends on the order
1340  * they're subdivided in this function. This is the primary factor
1341  * influencing the order in which pages are delivered to the IO
1342  * subsystem according to empirical testing, and this is also justified
1343  * by considering the behavior of a buddy system containing a single
1344  * large block of memory acted on by a series of small allocations.
1345  * This behavior is a critical factor in sglist merging's success.
1346  *
1347  * -- nyc
1348  */
1349 static inline void expand(struct zone *zone, struct page *page,
1350         int low, int high, int migratetype)
1351 {
1352         unsigned long size = 1 << high;
1353         unsigned long nr_added = 0;
1354 
1355         while (high > low) {
1356                 high--;
1357                 size >>= 1;
1358                 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1359 
1360                 /*
1361                  * Mark as guard pages (or page), that will allow to
1362                  * merge back to allocator when buddy will be freed.
1363                  * Corresponding page table entries will not be touched,
1364                  * pages will stay not present in virtual address space
1365                  */
1366                 if (set_page_guard(zone, &page[size], high))
1367                         continue;
1368 
1369                 __add_to_free_list(&page[size], zone, high, migratetype, false);
1370                 set_buddy_order(&page[size], high);
1371                 nr_added += size;
1372         }
1373         account_freepages(zone, nr_added, migratetype);
1374 }
1375 
1376 static void check_new_page_bad(struct page *page)
1377 {
1378         if (unlikely(page->flags & __PG_HWPOISON)) {
1379                 /* Don't complain about hwpoisoned pages */
1380                 if (PageBuddy(page))
1381                         __ClearPageBuddy(page);
1382                 return;
1383         }
1384 
1385         bad_page(page,
1386                  page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1387 }
1388 
1389 /*
1390  * This page is about to be returned from the page allocator
1391  */
1392 static bool check_new_page(struct page *page)
1393 {
1394         if (likely(page_expected_state(page,
1395                                 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1396                 return false;
1397 
1398         check_new_page_bad(page);
1399         return true;
1400 }
1401 
1402 static inline bool check_new_pages(struct page *page, unsigned int order)
1403 {
1404         if (is_check_pages_enabled()) {
1405                 for (int i = 0; i < (1 << order); i++) {
1406                         struct page *p = page + i;
1407 
1408                         if (check_new_page(p))
1409                                 return true;
1410                 }
1411         }
1412 
1413         return false;
1414 }
1415 
1416 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1417 {
1418         /* Don't skip if a software KASAN mode is enabled. */
1419         if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1420             IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1421                 return false;
1422 
1423         /* Skip, if hardware tag-based KASAN is not enabled. */
1424         if (!kasan_hw_tags_enabled())
1425                 return true;
1426 
1427         /*
1428          * With hardware tag-based KASAN enabled, skip if this has been
1429          * requested via __GFP_SKIP_KASAN.
1430          */
1431         return flags & __GFP_SKIP_KASAN;
1432 }
1433 
1434 static inline bool should_skip_init(gfp_t flags)
1435 {
1436         /* Don't skip, if hardware tag-based KASAN is not enabled. */
1437         if (!kasan_hw_tags_enabled())
1438                 return false;
1439 
1440         /* For hardware tag-based KASAN, skip if requested. */
1441         return (flags & __GFP_SKIP_ZERO);
1442 }
1443 
1444 inline void post_alloc_hook(struct page *page, unsigned int order,
1445                                 gfp_t gfp_flags)
1446 {
1447         bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1448                         !should_skip_init(gfp_flags);
1449         bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1450         int i;
1451 
1452         set_page_private(page, 0);
1453         set_page_refcounted(page);
1454 
1455         arch_alloc_page(page, order);
1456         debug_pagealloc_map_pages(page, 1 << order);
1457 
1458         /*
1459          * Page unpoisoning must happen before memory initialization.
1460          * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1461          * allocations and the page unpoisoning code will complain.
1462          */
1463         kernel_unpoison_pages(page, 1 << order);
1464 
1465         /*
1466          * As memory initialization might be integrated into KASAN,
1467          * KASAN unpoisoning and memory initializion code must be
1468          * kept together to avoid discrepancies in behavior.
1469          */
1470 
1471         /*
1472          * If memory tags should be zeroed
1473          * (which happens only when memory should be initialized as well).
1474          */
1475         if (zero_tags) {
1476                 /* Initialize both memory and memory tags. */
1477                 for (i = 0; i != 1 << order; ++i)
1478                         tag_clear_highpage(page + i);
1479 
1480                 /* Take note that memory was initialized by the loop above. */
1481                 init = false;
1482         }
1483         if (!should_skip_kasan_unpoison(gfp_flags) &&
1484             kasan_unpoison_pages(page, order, init)) {
1485                 /* Take note that memory was initialized by KASAN. */
1486                 if (kasan_has_integrated_init())
1487                         init = false;
1488         } else {
1489                 /*
1490                  * If memory tags have not been set by KASAN, reset the page
1491                  * tags to ensure page_address() dereferencing does not fault.
1492                  */
1493                 for (i = 0; i != 1 << order; ++i)
1494                         page_kasan_tag_reset(page + i);
1495         }
1496         /* If memory is still not initialized, initialize it now. */
1497         if (init)
1498                 kernel_init_pages(page, 1 << order);
1499 
1500         set_page_owner(page, order, gfp_flags);
1501         page_table_check_alloc(page, order);
1502         pgalloc_tag_add(page, current, 1 << order);
1503 }
1504 
1505 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1506                                                         unsigned int alloc_flags)
1507 {
1508         post_alloc_hook(page, order, gfp_flags);
1509 
1510         if (order && (gfp_flags & __GFP_COMP))
1511                 prep_compound_page(page, order);
1512 
1513         /*
1514          * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1515          * allocate the page. The expectation is that the caller is taking
1516          * steps that will free more memory. The caller should avoid the page
1517          * being used for !PFMEMALLOC purposes.
1518          */
1519         if (alloc_flags & ALLOC_NO_WATERMARKS)
1520                 set_page_pfmemalloc(page);
1521         else
1522                 clear_page_pfmemalloc(page);
1523 }
1524 
1525 /*
1526  * Go through the free lists for the given migratetype and remove
1527  * the smallest available page from the freelists
1528  */
1529 static __always_inline
1530 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1531                                                 int migratetype)
1532 {
1533         unsigned int current_order;
1534         struct free_area *area;
1535         struct page *page;
1536 
1537         /* Find a page of the appropriate size in the preferred list */
1538         for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1539                 area = &(zone->free_area[current_order]);
1540                 page = get_page_from_free_area(area, migratetype);
1541                 if (!page)
1542                         continue;
1543                 del_page_from_free_list(page, zone, current_order, migratetype);
1544                 expand(zone, page, order, current_order, migratetype);
1545                 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1546                                 pcp_allowed_order(order) &&
1547                                 migratetype < MIGRATE_PCPTYPES);
1548                 return page;
1549         }
1550 
1551         return NULL;
1552 }
1553 
1554 
1555 /*
1556  * This array describes the order lists are fallen back to when
1557  * the free lists for the desirable migrate type are depleted
1558  *
1559  * The other migratetypes do not have fallbacks.
1560  */
1561 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1562         [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1563         [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1564         [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1565 };
1566 
1567 #ifdef CONFIG_CMA
1568 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1569                                         unsigned int order)
1570 {
1571         return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1572 }
1573 #else
1574 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1575                                         unsigned int order) { return NULL; }
1576 #endif
1577 
1578 /*
1579  * Change the type of a block and move all its free pages to that
1580  * type's freelist.
1581  */
1582 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1583                                   int old_mt, int new_mt)
1584 {
1585         struct page *page;
1586         unsigned long pfn, end_pfn;
1587         unsigned int order;
1588         int pages_moved = 0;
1589 
1590         VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1591         end_pfn = pageblock_end_pfn(start_pfn);
1592 
1593         for (pfn = start_pfn; pfn < end_pfn;) {
1594                 page = pfn_to_page(pfn);
1595                 if (!PageBuddy(page)) {
1596                         pfn++;
1597                         continue;
1598                 }
1599 
1600                 /* Make sure we are not inadvertently changing nodes */
1601                 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1602                 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1603 
1604                 order = buddy_order(page);
1605 
1606                 move_to_free_list(page, zone, order, old_mt, new_mt);
1607 
1608                 pfn += 1 << order;
1609                 pages_moved += 1 << order;
1610         }
1611 
1612         set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1613 
1614         return pages_moved;
1615 }
1616 
1617 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1618                                       unsigned long *start_pfn,
1619                                       int *num_free, int *num_movable)
1620 {
1621         unsigned long pfn, start, end;
1622 
1623         pfn = page_to_pfn(page);
1624         start = pageblock_start_pfn(pfn);
1625         end = pageblock_end_pfn(pfn);
1626 
1627         /*
1628          * The caller only has the lock for @zone, don't touch ranges
1629          * that straddle into other zones. While we could move part of
1630          * the range that's inside the zone, this call is usually
1631          * accompanied by other operations such as migratetype updates
1632          * which also should be locked.
1633          */
1634         if (!zone_spans_pfn(zone, start))
1635                 return false;
1636         if (!zone_spans_pfn(zone, end - 1))
1637                 return false;
1638 
1639         *start_pfn = start;
1640 
1641         if (num_free) {
1642                 *num_free = 0;
1643                 *num_movable = 0;
1644                 for (pfn = start; pfn < end;) {
1645                         page = pfn_to_page(pfn);
1646                         if (PageBuddy(page)) {
1647                                 int nr = 1 << buddy_order(page);
1648 
1649                                 *num_free += nr;
1650                                 pfn += nr;
1651                                 continue;
1652                         }
1653                         /*
1654                          * We assume that pages that could be isolated for
1655                          * migration are movable. But we don't actually try
1656                          * isolating, as that would be expensive.
1657                          */
1658                         if (PageLRU(page) || __PageMovable(page))
1659                                 (*num_movable)++;
1660                         pfn++;
1661                 }
1662         }
1663 
1664         return true;
1665 }
1666 
1667 static int move_freepages_block(struct zone *zone, struct page *page,
1668                                 int old_mt, int new_mt)
1669 {
1670         unsigned long start_pfn;
1671 
1672         if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1673                 return -1;
1674 
1675         return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1676 }
1677 
1678 #ifdef CONFIG_MEMORY_ISOLATION
1679 /* Look for a buddy that straddles start_pfn */
1680 static unsigned long find_large_buddy(unsigned long start_pfn)
1681 {
1682         int order = 0;
1683         struct page *page;
1684         unsigned long pfn = start_pfn;
1685 
1686         while (!PageBuddy(page = pfn_to_page(pfn))) {
1687                 /* Nothing found */
1688                 if (++order > MAX_PAGE_ORDER)
1689                         return start_pfn;
1690                 pfn &= ~0UL << order;
1691         }
1692 
1693         /*
1694          * Found a preceding buddy, but does it straddle?
1695          */
1696         if (pfn + (1 << buddy_order(page)) > start_pfn)
1697                 return pfn;
1698 
1699         /* Nothing found */
1700         return start_pfn;
1701 }
1702 
1703 /* Split a multi-block free page into its individual pageblocks */
1704 static void split_large_buddy(struct zone *zone, struct page *page,
1705                               unsigned long pfn, int order)
1706 {
1707         unsigned long end_pfn = pfn + (1 << order);
1708 
1709         VM_WARN_ON_ONCE(order <= pageblock_order);
1710         VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1711 
1712         /* Caller removed page from freelist, buddy info cleared! */
1713         VM_WARN_ON_ONCE(PageBuddy(page));
1714 
1715         while (pfn != end_pfn) {
1716                 int mt = get_pfnblock_migratetype(page, pfn);
1717 
1718                 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1719                 pfn += pageblock_nr_pages;
1720                 page = pfn_to_page(pfn);
1721         }
1722 }
1723 
1724 /**
1725  * move_freepages_block_isolate - move free pages in block for page isolation
1726  * @zone: the zone
1727  * @page: the pageblock page
1728  * @migratetype: migratetype to set on the pageblock
1729  *
1730  * This is similar to move_freepages_block(), but handles the special
1731  * case encountered in page isolation, where the block of interest
1732  * might be part of a larger buddy spanning multiple pageblocks.
1733  *
1734  * Unlike the regular page allocator path, which moves pages while
1735  * stealing buddies off the freelist, page isolation is interested in
1736  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1737  *
1738  * This function handles that. Straddling buddies are split into
1739  * individual pageblocks. Only the block of interest is moved.
1740  *
1741  * Returns %true if pages could be moved, %false otherwise.
1742  */
1743 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1744                                   int migratetype)
1745 {
1746         unsigned long start_pfn, pfn;
1747 
1748         if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1749                 return false;
1750 
1751         /* No splits needed if buddies can't span multiple blocks */
1752         if (pageblock_order == MAX_PAGE_ORDER)
1753                 goto move;
1754 
1755         /* We're a tail block in a larger buddy */
1756         pfn = find_large_buddy(start_pfn);
1757         if (pfn != start_pfn) {
1758                 struct page *buddy = pfn_to_page(pfn);
1759                 int order = buddy_order(buddy);
1760 
1761                 del_page_from_free_list(buddy, zone, order,
1762                                         get_pfnblock_migratetype(buddy, pfn));
1763                 set_pageblock_migratetype(page, migratetype);
1764                 split_large_buddy(zone, buddy, pfn, order);
1765                 return true;
1766         }
1767 
1768         /* We're the starting block of a larger buddy */
1769         if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1770                 int order = buddy_order(page);
1771 
1772                 del_page_from_free_list(page, zone, order,
1773                                         get_pfnblock_migratetype(page, pfn));
1774                 set_pageblock_migratetype(page, migratetype);
1775                 split_large_buddy(zone, page, pfn, order);
1776                 return true;
1777         }
1778 move:
1779         __move_freepages_block(zone, start_pfn,
1780                                get_pfnblock_migratetype(page, start_pfn),
1781                                migratetype);
1782         return true;
1783 }
1784 #endif /* CONFIG_MEMORY_ISOLATION */
1785 
1786 static void change_pageblock_range(struct page *pageblock_page,
1787                                         int start_order, int migratetype)
1788 {
1789         int nr_pageblocks = 1 << (start_order - pageblock_order);
1790 
1791         while (nr_pageblocks--) {
1792                 set_pageblock_migratetype(pageblock_page, migratetype);
1793                 pageblock_page += pageblock_nr_pages;
1794         }
1795 }
1796 
1797 /*
1798  * When we are falling back to another migratetype during allocation, try to
1799  * steal extra free pages from the same pageblocks to satisfy further
1800  * allocations, instead of polluting multiple pageblocks.
1801  *
1802  * If we are stealing a relatively large buddy page, it is likely there will
1803  * be more free pages in the pageblock, so try to steal them all. For
1804  * reclaimable and unmovable allocations, we steal regardless of page size,
1805  * as fragmentation caused by those allocations polluting movable pageblocks
1806  * is worse than movable allocations stealing from unmovable and reclaimable
1807  * pageblocks.
1808  */
1809 static bool can_steal_fallback(unsigned int order, int start_mt)
1810 {
1811         /*
1812          * Leaving this order check is intended, although there is
1813          * relaxed order check in next check. The reason is that
1814          * we can actually steal whole pageblock if this condition met,
1815          * but, below check doesn't guarantee it and that is just heuristic
1816          * so could be changed anytime.
1817          */
1818         if (order >= pageblock_order)
1819                 return true;
1820 
1821         if (order >= pageblock_order / 2 ||
1822                 start_mt == MIGRATE_RECLAIMABLE ||
1823                 start_mt == MIGRATE_UNMOVABLE ||
1824                 page_group_by_mobility_disabled)
1825                 return true;
1826 
1827         return false;
1828 }
1829 
1830 static inline bool boost_watermark(struct zone *zone)
1831 {
1832         unsigned long max_boost;
1833 
1834         if (!watermark_boost_factor)
1835                 return false;
1836         /*
1837          * Don't bother in zones that are unlikely to produce results.
1838          * On small machines, including kdump capture kernels running
1839          * in a small area, boosting the watermark can cause an out of
1840          * memory situation immediately.
1841          */
1842         if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1843                 return false;
1844 
1845         max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1846                         watermark_boost_factor, 10000);
1847 
1848         /*
1849          * high watermark may be uninitialised if fragmentation occurs
1850          * very early in boot so do not boost. We do not fall
1851          * through and boost by pageblock_nr_pages as failing
1852          * allocations that early means that reclaim is not going
1853          * to help and it may even be impossible to reclaim the
1854          * boosted watermark resulting in a hang.
1855          */
1856         if (!max_boost)
1857                 return false;
1858 
1859         max_boost = max(pageblock_nr_pages, max_boost);
1860 
1861         zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1862                 max_boost);
1863 
1864         return true;
1865 }
1866 
1867 /*
1868  * This function implements actual steal behaviour. If order is large enough, we
1869  * can claim the whole pageblock for the requested migratetype. If not, we check
1870  * the pageblock for constituent pages; if at least half of the pages are free
1871  * or compatible, we can still claim the whole block, so pages freed in the
1872  * future will be put on the correct free list. Otherwise, we isolate exactly
1873  * the order we need from the fallback block and leave its migratetype alone.
1874  */
1875 static struct page *
1876 steal_suitable_fallback(struct zone *zone, struct page *page,
1877                         int current_order, int order, int start_type,
1878                         unsigned int alloc_flags, bool whole_block)
1879 {
1880         int free_pages, movable_pages, alike_pages;
1881         unsigned long start_pfn;
1882         int block_type;
1883 
1884         block_type = get_pageblock_migratetype(page);
1885 
1886         /*
1887          * This can happen due to races and we want to prevent broken
1888          * highatomic accounting.
1889          */
1890         if (is_migrate_highatomic(block_type))
1891                 goto single_page;
1892 
1893         /* Take ownership for orders >= pageblock_order */
1894         if (current_order >= pageblock_order) {
1895                 del_page_from_free_list(page, zone, current_order, block_type);
1896                 change_pageblock_range(page, current_order, start_type);
1897                 expand(zone, page, order, current_order, start_type);
1898                 return page;
1899         }
1900 
1901         /*
1902          * Boost watermarks to increase reclaim pressure to reduce the
1903          * likelihood of future fallbacks. Wake kswapd now as the node
1904          * may be balanced overall and kswapd will not wake naturally.
1905          */
1906         if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1907                 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1908 
1909         /* We are not allowed to try stealing from the whole block */
1910         if (!whole_block)
1911                 goto single_page;
1912 
1913         /* moving whole block can fail due to zone boundary conditions */
1914         if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1915                                        &movable_pages))
1916                 goto single_page;
1917 
1918         /*
1919          * Determine how many pages are compatible with our allocation.
1920          * For movable allocation, it's the number of movable pages which
1921          * we just obtained. For other types it's a bit more tricky.
1922          */
1923         if (start_type == MIGRATE_MOVABLE) {
1924                 alike_pages = movable_pages;
1925         } else {
1926                 /*
1927                  * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1928                  * to MOVABLE pageblock, consider all non-movable pages as
1929                  * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1930                  * vice versa, be conservative since we can't distinguish the
1931                  * exact migratetype of non-movable pages.
1932                  */
1933                 if (block_type == MIGRATE_MOVABLE)
1934                         alike_pages = pageblock_nr_pages
1935                                                 - (free_pages + movable_pages);
1936                 else
1937                         alike_pages = 0;
1938         }
1939         /*
1940          * If a sufficient number of pages in the block are either free or of
1941          * compatible migratability as our allocation, claim the whole block.
1942          */
1943         if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1944                         page_group_by_mobility_disabled) {
1945                 __move_freepages_block(zone, start_pfn, block_type, start_type);
1946                 return __rmqueue_smallest(zone, order, start_type);
1947         }
1948 
1949 single_page:
1950         del_page_from_free_list(page, zone, current_order, block_type);
1951         expand(zone, page, order, current_order, block_type);
1952         return page;
1953 }
1954 
1955 /*
1956  * Check whether there is a suitable fallback freepage with requested order.
1957  * If only_stealable is true, this function returns fallback_mt only if
1958  * we can steal other freepages all together. This would help to reduce
1959  * fragmentation due to mixed migratetype pages in one pageblock.
1960  */
1961 int find_suitable_fallback(struct free_area *area, unsigned int order,
1962                         int migratetype, bool only_stealable, bool *can_steal)
1963 {
1964         int i;
1965         int fallback_mt;
1966 
1967         if (area->nr_free == 0)
1968                 return -1;
1969 
1970         *can_steal = false;
1971         for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1972                 fallback_mt = fallbacks[migratetype][i];
1973                 if (free_area_empty(area, fallback_mt))
1974                         continue;
1975 
1976                 if (can_steal_fallback(order, migratetype))
1977                         *can_steal = true;
1978 
1979                 if (!only_stealable)
1980                         return fallback_mt;
1981 
1982                 if (*can_steal)
1983                         return fallback_mt;
1984         }
1985 
1986         return -1;
1987 }
1988 
1989 /*
1990  * Reserve the pageblock(s) surrounding an allocation request for
1991  * exclusive use of high-order atomic allocations if there are no
1992  * empty page blocks that contain a page with a suitable order
1993  */
1994 static void reserve_highatomic_pageblock(struct page *page, int order,
1995                                          struct zone *zone)
1996 {
1997         int mt;
1998         unsigned long max_managed, flags;
1999 
2000         /*
2001          * The number reserved as: minimum is 1 pageblock, maximum is
2002          * roughly 1% of a zone. But if 1% of a zone falls below a
2003          * pageblock size, then don't reserve any pageblocks.
2004          * Check is race-prone but harmless.
2005          */
2006         if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2007                 return;
2008         max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2009         if (zone->nr_reserved_highatomic >= max_managed)
2010                 return;
2011 
2012         spin_lock_irqsave(&zone->lock, flags);
2013 
2014         /* Recheck the nr_reserved_highatomic limit under the lock */
2015         if (zone->nr_reserved_highatomic >= max_managed)
2016                 goto out_unlock;
2017 
2018         /* Yoink! */
2019         mt = get_pageblock_migratetype(page);
2020         /* Only reserve normal pageblocks (i.e., they can merge with others) */
2021         if (!migratetype_is_mergeable(mt))
2022                 goto out_unlock;
2023 
2024         if (order < pageblock_order) {
2025                 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2026                         goto out_unlock;
2027                 zone->nr_reserved_highatomic += pageblock_nr_pages;
2028         } else {
2029                 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2030                 zone->nr_reserved_highatomic += 1 << order;
2031         }
2032 
2033 out_unlock:
2034         spin_unlock_irqrestore(&zone->lock, flags);
2035 }
2036 
2037 /*
2038  * Used when an allocation is about to fail under memory pressure. This
2039  * potentially hurts the reliability of high-order allocations when under
2040  * intense memory pressure but failed atomic allocations should be easier
2041  * to recover from than an OOM.
2042  *
2043  * If @force is true, try to unreserve pageblocks even though highatomic
2044  * pageblock is exhausted.
2045  */
2046 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2047                                                 bool force)
2048 {
2049         struct zonelist *zonelist = ac->zonelist;
2050         unsigned long flags;
2051         struct zoneref *z;
2052         struct zone *zone;
2053         struct page *page;
2054         int order;
2055         int ret;
2056 
2057         for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2058                                                                 ac->nodemask) {
2059                 /*
2060                  * Preserve at least one pageblock unless memory pressure
2061                  * is really high.
2062                  */
2063                 if (!force && zone->nr_reserved_highatomic <=
2064                                         pageblock_nr_pages)
2065                         continue;
2066 
2067                 spin_lock_irqsave(&zone->lock, flags);
2068                 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2069                         struct free_area *area = &(zone->free_area[order]);
2070                         int mt;
2071 
2072                         page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2073                         if (!page)
2074                                 continue;
2075 
2076                         mt = get_pageblock_migratetype(page);
2077                         /*
2078                          * In page freeing path, migratetype change is racy so
2079                          * we can counter several free pages in a pageblock
2080                          * in this loop although we changed the pageblock type
2081                          * from highatomic to ac->migratetype. So we should
2082                          * adjust the count once.
2083                          */
2084                         if (is_migrate_highatomic(mt)) {
2085                                 unsigned long size;
2086                                 /*
2087                                  * It should never happen but changes to
2088                                  * locking could inadvertently allow a per-cpu
2089                                  * drain to add pages to MIGRATE_HIGHATOMIC
2090                                  * while unreserving so be safe and watch for
2091                                  * underflows.
2092                                  */
2093                                 size = max(pageblock_nr_pages, 1UL << order);
2094                                 size = min(size, zone->nr_reserved_highatomic);
2095                                 zone->nr_reserved_highatomic -= size;
2096                         }
2097 
2098                         /*
2099                          * Convert to ac->migratetype and avoid the normal
2100                          * pageblock stealing heuristics. Minimally, the caller
2101                          * is doing the work and needs the pages. More
2102                          * importantly, if the block was always converted to
2103                          * MIGRATE_UNMOVABLE or another type then the number
2104                          * of pageblocks that cannot be completely freed
2105                          * may increase.
2106                          */
2107                         if (order < pageblock_order)
2108                                 ret = move_freepages_block(zone, page, mt,
2109                                                            ac->migratetype);
2110                         else {
2111                                 move_to_free_list(page, zone, order, mt,
2112                                                   ac->migratetype);
2113                                 change_pageblock_range(page, order,
2114                                                        ac->migratetype);
2115                                 ret = 1;
2116                         }
2117                         /*
2118                          * Reserving the block(s) already succeeded,
2119                          * so this should not fail on zone boundaries.
2120                          */
2121                         WARN_ON_ONCE(ret == -1);
2122                         if (ret > 0) {
2123                                 spin_unlock_irqrestore(&zone->lock, flags);
2124                                 return ret;
2125                         }
2126                 }
2127                 spin_unlock_irqrestore(&zone->lock, flags);
2128         }
2129 
2130         return false;
2131 }
2132 
2133 /*
2134  * Try finding a free buddy page on the fallback list and put it on the free
2135  * list of requested migratetype, possibly along with other pages from the same
2136  * block, depending on fragmentation avoidance heuristics. Returns true if
2137  * fallback was found so that __rmqueue_smallest() can grab it.
2138  *
2139  * The use of signed ints for order and current_order is a deliberate
2140  * deviation from the rest of this file, to make the for loop
2141  * condition simpler.
2142  */
2143 static __always_inline struct page *
2144 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2145                                                 unsigned int alloc_flags)
2146 {
2147         struct free_area *area;
2148         int current_order;
2149         int min_order = order;
2150         struct page *page;
2151         int fallback_mt;
2152         bool can_steal;
2153 
2154         /*
2155          * Do not steal pages from freelists belonging to other pageblocks
2156          * i.e. orders < pageblock_order. If there are no local zones free,
2157          * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2158          */
2159         if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2160                 min_order = pageblock_order;
2161 
2162         /*
2163          * Find the largest available free page in the other list. This roughly
2164          * approximates finding the pageblock with the most free pages, which
2165          * would be too costly to do exactly.
2166          */
2167         for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2168                                 --current_order) {
2169                 area = &(zone->free_area[current_order]);
2170                 fallback_mt = find_suitable_fallback(area, current_order,
2171                                 start_migratetype, false, &can_steal);
2172                 if (fallback_mt == -1)
2173                         continue;
2174 
2175                 /*
2176                  * We cannot steal all free pages from the pageblock and the
2177                  * requested migratetype is movable. In that case it's better to
2178                  * steal and split the smallest available page instead of the
2179                  * largest available page, because even if the next movable
2180                  * allocation falls back into a different pageblock than this
2181                  * one, it won't cause permanent fragmentation.
2182                  */
2183                 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2184                                         && current_order > order)
2185                         goto find_smallest;
2186 
2187                 goto do_steal;
2188         }
2189 
2190         return NULL;
2191 
2192 find_smallest:
2193         for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2194                 area = &(zone->free_area[current_order]);
2195                 fallback_mt = find_suitable_fallback(area, current_order,
2196                                 start_migratetype, false, &can_steal);
2197                 if (fallback_mt != -1)
2198                         break;
2199         }
2200 
2201         /*
2202          * This should not happen - we already found a suitable fallback
2203          * when looking for the largest page.
2204          */
2205         VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2206 
2207 do_steal:
2208         page = get_page_from_free_area(area, fallback_mt);
2209 
2210         /* take off list, maybe claim block, expand remainder */
2211         page = steal_suitable_fallback(zone, page, current_order, order,
2212                                        start_migratetype, alloc_flags, can_steal);
2213 
2214         trace_mm_page_alloc_extfrag(page, order, current_order,
2215                 start_migratetype, fallback_mt);
2216 
2217         return page;
2218 }
2219 
2220 /*
2221  * Do the hard work of removing an element from the buddy allocator.
2222  * Call me with the zone->lock already held.
2223  */
2224 static __always_inline struct page *
2225 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2226                                                 unsigned int alloc_flags)
2227 {
2228         struct page *page;
2229 
2230         if (IS_ENABLED(CONFIG_CMA)) {
2231                 /*
2232                  * Balance movable allocations between regular and CMA areas by
2233                  * allocating from CMA when over half of the zone's free memory
2234                  * is in the CMA area.
2235                  */
2236                 if (alloc_flags & ALLOC_CMA &&
2237                     zone_page_state(zone, NR_FREE_CMA_PAGES) >
2238                     zone_page_state(zone, NR_FREE_PAGES) / 2) {
2239                         page = __rmqueue_cma_fallback(zone, order);
2240                         if (page)
2241                                 return page;
2242                 }
2243         }
2244 
2245         page = __rmqueue_smallest(zone, order, migratetype);
2246         if (unlikely(!page)) {
2247                 if (alloc_flags & ALLOC_CMA)
2248                         page = __rmqueue_cma_fallback(zone, order);
2249 
2250                 if (!page)
2251                         page = __rmqueue_fallback(zone, order, migratetype,
2252                                                   alloc_flags);
2253         }
2254         return page;
2255 }
2256 
2257 /*
2258  * Obtain a specified number of elements from the buddy allocator, all under
2259  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2260  * Returns the number of new pages which were placed at *list.
2261  */
2262 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2263                         unsigned long count, struct list_head *list,
2264                         int migratetype, unsigned int alloc_flags)
2265 {
2266         unsigned long flags;
2267         int i;
2268 
2269         spin_lock_irqsave(&zone->lock, flags);
2270         for (i = 0; i < count; ++i) {
2271                 struct page *page = __rmqueue(zone, order, migratetype,
2272                                                                 alloc_flags);
2273                 if (unlikely(page == NULL))
2274                         break;
2275 
2276                 /*
2277                  * Split buddy pages returned by expand() are received here in
2278                  * physical page order. The page is added to the tail of
2279                  * caller's list. From the callers perspective, the linked list
2280                  * is ordered by page number under some conditions. This is
2281                  * useful for IO devices that can forward direction from the
2282                  * head, thus also in the physical page order. This is useful
2283                  * for IO devices that can merge IO requests if the physical
2284                  * pages are ordered properly.
2285                  */
2286                 list_add_tail(&page->pcp_list, list);
2287         }
2288         spin_unlock_irqrestore(&zone->lock, flags);
2289 
2290         return i;
2291 }
2292 
2293 /*
2294  * Called from the vmstat counter updater to decay the PCP high.
2295  * Return whether there are addition works to do.
2296  */
2297 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2298 {
2299         int high_min, to_drain, batch;
2300         int todo = 0;
2301 
2302         high_min = READ_ONCE(pcp->high_min);
2303         batch = READ_ONCE(pcp->batch);
2304         /*
2305          * Decrease pcp->high periodically to try to free possible
2306          * idle PCP pages.  And, avoid to free too many pages to
2307          * control latency.  This caps pcp->high decrement too.
2308          */
2309         if (pcp->high > high_min) {
2310                 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2311                                  pcp->high - (pcp->high >> 3), high_min);
2312                 if (pcp->high > high_min)
2313                         todo++;
2314         }
2315 
2316         to_drain = pcp->count - pcp->high;
2317         if (to_drain > 0) {
2318                 spin_lock(&pcp->lock);
2319                 free_pcppages_bulk(zone, to_drain, pcp, 0);
2320                 spin_unlock(&pcp->lock);
2321                 todo++;
2322         }
2323 
2324         return todo;
2325 }
2326 
2327 #ifdef CONFIG_NUMA
2328 /*
2329  * Called from the vmstat counter updater to drain pagesets of this
2330  * currently executing processor on remote nodes after they have
2331  * expired.
2332  */
2333 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2334 {
2335         int to_drain, batch;
2336 
2337         batch = READ_ONCE(pcp->batch);
2338         to_drain = min(pcp->count, batch);
2339         if (to_drain > 0) {
2340                 spin_lock(&pcp->lock);
2341                 free_pcppages_bulk(zone, to_drain, pcp, 0);
2342                 spin_unlock(&pcp->lock);
2343         }
2344 }
2345 #endif
2346 
2347 /*
2348  * Drain pcplists of the indicated processor and zone.
2349  */
2350 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2351 {
2352         struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2353         int count;
2354 
2355         do {
2356                 spin_lock(&pcp->lock);
2357                 count = pcp->count;
2358                 if (count) {
2359                         int to_drain = min(count,
2360                                 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2361 
2362                         free_pcppages_bulk(zone, to_drain, pcp, 0);
2363                         count -= to_drain;
2364                 }
2365                 spin_unlock(&pcp->lock);
2366         } while (count);
2367 }
2368 
2369 /*
2370  * Drain pcplists of all zones on the indicated processor.
2371  */
2372 static void drain_pages(unsigned int cpu)
2373 {
2374         struct zone *zone;
2375 
2376         for_each_populated_zone(zone) {
2377                 drain_pages_zone(cpu, zone);
2378         }
2379 }
2380 
2381 /*
2382  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2383  */
2384 void drain_local_pages(struct zone *zone)
2385 {
2386         int cpu = smp_processor_id();
2387 
2388         if (zone)
2389                 drain_pages_zone(cpu, zone);
2390         else
2391                 drain_pages(cpu);
2392 }
2393 
2394 /*
2395  * The implementation of drain_all_pages(), exposing an extra parameter to
2396  * drain on all cpus.
2397  *
2398  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2399  * not empty. The check for non-emptiness can however race with a free to
2400  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2401  * that need the guarantee that every CPU has drained can disable the
2402  * optimizing racy check.
2403  */
2404 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2405 {
2406         int cpu;
2407 
2408         /*
2409          * Allocate in the BSS so we won't require allocation in
2410          * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2411          */
2412         static cpumask_t cpus_with_pcps;
2413 
2414         /*
2415          * Do not drain if one is already in progress unless it's specific to
2416          * a zone. Such callers are primarily CMA and memory hotplug and need
2417          * the drain to be complete when the call returns.
2418          */
2419         if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2420                 if (!zone)
2421                         return;
2422                 mutex_lock(&pcpu_drain_mutex);
2423         }
2424 
2425         /*
2426          * We don't care about racing with CPU hotplug event
2427          * as offline notification will cause the notified
2428          * cpu to drain that CPU pcps and on_each_cpu_mask
2429          * disables preemption as part of its processing
2430          */
2431         for_each_online_cpu(cpu) {
2432                 struct per_cpu_pages *pcp;
2433                 struct zone *z;
2434                 bool has_pcps = false;
2435 
2436                 if (force_all_cpus) {
2437                         /*
2438                          * The pcp.count check is racy, some callers need a
2439                          * guarantee that no cpu is missed.
2440                          */
2441                         has_pcps = true;
2442                 } else if (zone) {
2443                         pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2444                         if (pcp->count)
2445                                 has_pcps = true;
2446                 } else {
2447                         for_each_populated_zone(z) {
2448                                 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2449                                 if (pcp->count) {
2450                                         has_pcps = true;
2451                                         break;
2452                                 }
2453                         }
2454                 }
2455 
2456                 if (has_pcps)
2457                         cpumask_set_cpu(cpu, &cpus_with_pcps);
2458                 else
2459                         cpumask_clear_cpu(cpu, &cpus_with_pcps);
2460         }
2461 
2462         for_each_cpu(cpu, &cpus_with_pcps) {
2463                 if (zone)
2464                         drain_pages_zone(cpu, zone);
2465                 else
2466                         drain_pages(cpu);
2467         }
2468 
2469         mutex_unlock(&pcpu_drain_mutex);
2470 }
2471 
2472 /*
2473  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2474  *
2475  * When zone parameter is non-NULL, spill just the single zone's pages.
2476  */
2477 void drain_all_pages(struct zone *zone)
2478 {
2479         __drain_all_pages(zone, false);
2480 }
2481 
2482 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2483 {
2484         int min_nr_free, max_nr_free;
2485 
2486         /* Free as much as possible if batch freeing high-order pages. */
2487         if (unlikely(free_high))
2488                 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2489 
2490         /* Check for PCP disabled or boot pageset */
2491         if (unlikely(high < batch))
2492                 return 1;
2493 
2494         /* Leave at least pcp->batch pages on the list */
2495         min_nr_free = batch;
2496         max_nr_free = high - batch;
2497 
2498         /*
2499          * Increase the batch number to the number of the consecutive
2500          * freed pages to reduce zone lock contention.
2501          */
2502         batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2503 
2504         return batch;
2505 }
2506 
2507 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2508                        int batch, bool free_high)
2509 {
2510         int high, high_min, high_max;
2511 
2512         high_min = READ_ONCE(pcp->high_min);
2513         high_max = READ_ONCE(pcp->high_max);
2514         high = pcp->high = clamp(pcp->high, high_min, high_max);
2515 
2516         if (unlikely(!high))
2517                 return 0;
2518 
2519         if (unlikely(free_high)) {
2520                 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2521                                 high_min);
2522                 return 0;
2523         }
2524 
2525         /*
2526          * If reclaim is active, limit the number of pages that can be
2527          * stored on pcp lists
2528          */
2529         if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2530                 int free_count = max_t(int, pcp->free_count, batch);
2531 
2532                 pcp->high = max(high - free_count, high_min);
2533                 return min(batch << 2, pcp->high);
2534         }
2535 
2536         if (high_min == high_max)
2537                 return high;
2538 
2539         if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2540                 int free_count = max_t(int, pcp->free_count, batch);
2541 
2542                 pcp->high = max(high - free_count, high_min);
2543                 high = max(pcp->count, high_min);
2544         } else if (pcp->count >= high) {
2545                 int need_high = pcp->free_count + batch;
2546 
2547                 /* pcp->high should be large enough to hold batch freed pages */
2548                 if (pcp->high < need_high)
2549                         pcp->high = clamp(need_high, high_min, high_max);
2550         }
2551 
2552         return high;
2553 }
2554 
2555 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2556                                    struct page *page, int migratetype,
2557                                    unsigned int order)
2558 {
2559         int high, batch;
2560         int pindex;
2561         bool free_high = false;
2562 
2563         /*
2564          * On freeing, reduce the number of pages that are batch allocated.
2565          * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2566          * allocations.
2567          */
2568         pcp->alloc_factor >>= 1;
2569         __count_vm_events(PGFREE, 1 << order);
2570         pindex = order_to_pindex(migratetype, order);
2571         list_add(&page->pcp_list, &pcp->lists[pindex]);
2572         pcp->count += 1 << order;
2573 
2574         batch = READ_ONCE(pcp->batch);
2575         /*
2576          * As high-order pages other than THP's stored on PCP can contribute
2577          * to fragmentation, limit the number stored when PCP is heavily
2578          * freeing without allocation. The remainder after bulk freeing
2579          * stops will be drained from vmstat refresh context.
2580          */
2581         if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2582                 free_high = (pcp->free_count >= batch &&
2583                              (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2584                              (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2585                               pcp->count >= READ_ONCE(batch)));
2586                 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2587         } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2588                 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2589         }
2590         if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2591                 pcp->free_count += (1 << order);
2592         high = nr_pcp_high(pcp, zone, batch, free_high);
2593         if (pcp->count >= high) {
2594                 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2595                                    pcp, pindex);
2596                 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2597                     zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2598                                       ZONE_MOVABLE, 0))
2599                         clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2600         }
2601 }
2602 
2603 /*
2604  * Free a pcp page
2605  */
2606 void free_unref_page(struct page *page, unsigned int order)
2607 {
2608         unsigned long __maybe_unused UP_flags;
2609         struct per_cpu_pages *pcp;
2610         struct zone *zone;
2611         unsigned long pfn = page_to_pfn(page);
2612         int migratetype;
2613 
2614         if (!pcp_allowed_order(order)) {
2615                 __free_pages_ok(page, order, FPI_NONE);
2616                 return;
2617         }
2618 
2619         if (!free_pages_prepare(page, order))
2620                 return;
2621 
2622         /*
2623          * We only track unmovable, reclaimable and movable on pcp lists.
2624          * Place ISOLATE pages on the isolated list because they are being
2625          * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2626          * get those areas back if necessary. Otherwise, we may have to free
2627          * excessively into the page allocator
2628          */
2629         migratetype = get_pfnblock_migratetype(page, pfn);
2630         if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2631                 if (unlikely(is_migrate_isolate(migratetype))) {
2632                         free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2633                         return;
2634                 }
2635                 migratetype = MIGRATE_MOVABLE;
2636         }
2637 
2638         zone = page_zone(page);
2639         pcp_trylock_prepare(UP_flags);
2640         pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2641         if (pcp) {
2642                 free_unref_page_commit(zone, pcp, page, migratetype, order);
2643                 pcp_spin_unlock(pcp);
2644         } else {
2645                 free_one_page(zone, page, pfn, order, FPI_NONE);
2646         }
2647         pcp_trylock_finish(UP_flags);
2648 }
2649 
2650 /*
2651  * Free a batch of folios
2652  */
2653 void free_unref_folios(struct folio_batch *folios)
2654 {
2655         unsigned long __maybe_unused UP_flags;
2656         struct per_cpu_pages *pcp = NULL;
2657         struct zone *locked_zone = NULL;
2658         int i, j;
2659 
2660         /* Prepare folios for freeing */
2661         for (i = 0, j = 0; i < folios->nr; i++) {
2662                 struct folio *folio = folios->folios[i];
2663                 unsigned long pfn = folio_pfn(folio);
2664                 unsigned int order = folio_order(folio);
2665 
2666                 folio_undo_large_rmappable(folio);
2667                 if (!free_pages_prepare(&folio->page, order))
2668                         continue;
2669                 /*
2670                  * Free orders not handled on the PCP directly to the
2671                  * allocator.
2672                  */
2673                 if (!pcp_allowed_order(order)) {
2674                         free_one_page(folio_zone(folio), &folio->page,
2675                                       pfn, order, FPI_NONE);
2676                         continue;
2677                 }
2678                 folio->private = (void *)(unsigned long)order;
2679                 if (j != i)
2680                         folios->folios[j] = folio;
2681                 j++;
2682         }
2683         folios->nr = j;
2684 
2685         for (i = 0; i < folios->nr; i++) {
2686                 struct folio *folio = folios->folios[i];
2687                 struct zone *zone = folio_zone(folio);
2688                 unsigned long pfn = folio_pfn(folio);
2689                 unsigned int order = (unsigned long)folio->private;
2690                 int migratetype;
2691 
2692                 folio->private = NULL;
2693                 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2694 
2695                 /* Different zone requires a different pcp lock */
2696                 if (zone != locked_zone ||
2697                     is_migrate_isolate(migratetype)) {
2698                         if (pcp) {
2699                                 pcp_spin_unlock(pcp);
2700                                 pcp_trylock_finish(UP_flags);
2701                                 locked_zone = NULL;
2702                                 pcp = NULL;
2703                         }
2704 
2705                         /*
2706                          * Free isolated pages directly to the
2707                          * allocator, see comment in free_unref_page.
2708                          */
2709                         if (is_migrate_isolate(migratetype)) {
2710                                 free_one_page(zone, &folio->page, pfn,
2711                                               order, FPI_NONE);
2712                                 continue;
2713                         }
2714 
2715                         /*
2716                          * trylock is necessary as folios may be getting freed
2717                          * from IRQ or SoftIRQ context after an IO completion.
2718                          */
2719                         pcp_trylock_prepare(UP_flags);
2720                         pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2721                         if (unlikely(!pcp)) {
2722                                 pcp_trylock_finish(UP_flags);
2723                                 free_one_page(zone, &folio->page, pfn,
2724                                               order, FPI_NONE);
2725                                 continue;
2726                         }
2727                         locked_zone = zone;
2728                 }
2729 
2730                 /*
2731                  * Non-isolated types over MIGRATE_PCPTYPES get added
2732                  * to the MIGRATE_MOVABLE pcp list.
2733                  */
2734                 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2735                         migratetype = MIGRATE_MOVABLE;
2736 
2737                 trace_mm_page_free_batched(&folio->page);
2738                 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2739                                 order);
2740         }
2741 
2742         if (pcp) {
2743                 pcp_spin_unlock(pcp);
2744                 pcp_trylock_finish(UP_flags);
2745         }
2746         folio_batch_reinit(folios);
2747 }
2748 
2749 /*
2750  * split_page takes a non-compound higher-order page, and splits it into
2751  * n (1<<order) sub-pages: page[0..n]
2752  * Each sub-page must be freed individually.
2753  *
2754  * Note: this is probably too low level an operation for use in drivers.
2755  * Please consult with lkml before using this in your driver.
2756  */
2757 void split_page(struct page *page, unsigned int order)
2758 {
2759         int i;
2760 
2761         VM_BUG_ON_PAGE(PageCompound(page), page);
2762         VM_BUG_ON_PAGE(!page_count(page), page);
2763 
2764         for (i = 1; i < (1 << order); i++)
2765                 set_page_refcounted(page + i);
2766         split_page_owner(page, order, 0);
2767         pgalloc_tag_split(page, 1 << order);
2768         split_page_memcg(page, order, 0);
2769 }
2770 EXPORT_SYMBOL_GPL(split_page);
2771 
2772 int __isolate_free_page(struct page *page, unsigned int order)
2773 {
2774         struct zone *zone = page_zone(page);
2775         int mt = get_pageblock_migratetype(page);
2776 
2777         if (!is_migrate_isolate(mt)) {
2778                 unsigned long watermark;
2779                 /*
2780                  * Obey watermarks as if the page was being allocated. We can
2781                  * emulate a high-order watermark check with a raised order-0
2782                  * watermark, because we already know our high-order page
2783                  * exists.
2784                  */
2785                 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2786                 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2787                         return 0;
2788         }
2789 
2790         del_page_from_free_list(page, zone, order, mt);
2791 
2792         /*
2793          * Set the pageblock if the isolated page is at least half of a
2794          * pageblock
2795          */
2796         if (order >= pageblock_order - 1) {
2797                 struct page *endpage = page + (1 << order) - 1;
2798                 for (; page < endpage; page += pageblock_nr_pages) {
2799                         int mt = get_pageblock_migratetype(page);
2800                         /*
2801                          * Only change normal pageblocks (i.e., they can merge
2802                          * with others)
2803                          */
2804                         if (migratetype_is_mergeable(mt))
2805                                 move_freepages_block(zone, page, mt,
2806                                                      MIGRATE_MOVABLE);
2807                 }
2808         }
2809 
2810         return 1UL << order;
2811 }
2812 
2813 /**
2814  * __putback_isolated_page - Return a now-isolated page back where we got it
2815  * @page: Page that was isolated
2816  * @order: Order of the isolated page
2817  * @mt: The page's pageblock's migratetype
2818  *
2819  * This function is meant to return a page pulled from the free lists via
2820  * __isolate_free_page back to the free lists they were pulled from.
2821  */
2822 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2823 {
2824         struct zone *zone = page_zone(page);
2825 
2826         /* zone lock should be held when this function is called */
2827         lockdep_assert_held(&zone->lock);
2828 
2829         /* Return isolated page to tail of freelist. */
2830         __free_one_page(page, page_to_pfn(page), zone, order, mt,
2831                         FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2832 }
2833 
2834 /*
2835  * Update NUMA hit/miss statistics
2836  */
2837 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2838                                    long nr_account)
2839 {
2840 #ifdef CONFIG_NUMA
2841         enum numa_stat_item local_stat = NUMA_LOCAL;
2842 
2843         /* skip numa counters update if numa stats is disabled */
2844         if (!static_branch_likely(&vm_numa_stat_key))
2845                 return;
2846 
2847         if (zone_to_nid(z) != numa_node_id())
2848                 local_stat = NUMA_OTHER;
2849 
2850         if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2851                 __count_numa_events(z, NUMA_HIT, nr_account);
2852         else {
2853                 __count_numa_events(z, NUMA_MISS, nr_account);
2854                 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2855         }
2856         __count_numa_events(z, local_stat, nr_account);
2857 #endif
2858 }
2859 
2860 static __always_inline
2861 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2862                            unsigned int order, unsigned int alloc_flags,
2863                            int migratetype)
2864 {
2865         struct page *page;
2866         unsigned long flags;
2867 
2868         do {
2869                 page = NULL;
2870                 spin_lock_irqsave(&zone->lock, flags);
2871                 if (alloc_flags & ALLOC_HIGHATOMIC)
2872                         page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2873                 if (!page) {
2874                         page = __rmqueue(zone, order, migratetype, alloc_flags);
2875 
2876                         /*
2877                          * If the allocation fails, allow OOM handling access
2878                          * to HIGHATOMIC reserves as failing now is worse than
2879                          * failing a high-order atomic allocation in the
2880                          * future.
2881                          */
2882                         if (!page && (alloc_flags & ALLOC_OOM))
2883                                 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2884 
2885                         if (!page) {
2886                                 spin_unlock_irqrestore(&zone->lock, flags);
2887                                 return NULL;
2888                         }
2889                 }
2890                 spin_unlock_irqrestore(&zone->lock, flags);
2891         } while (check_new_pages(page, order));
2892 
2893         __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2894         zone_statistics(preferred_zone, zone, 1);
2895 
2896         return page;
2897 }
2898 
2899 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2900 {
2901         int high, base_batch, batch, max_nr_alloc;
2902         int high_max, high_min;
2903 
2904         base_batch = READ_ONCE(pcp->batch);
2905         high_min = READ_ONCE(pcp->high_min);
2906         high_max = READ_ONCE(pcp->high_max);
2907         high = pcp->high = clamp(pcp->high, high_min, high_max);
2908 
2909         /* Check for PCP disabled or boot pageset */
2910         if (unlikely(high < base_batch))
2911                 return 1;
2912 
2913         if (order)
2914                 batch = base_batch;
2915         else
2916                 batch = (base_batch << pcp->alloc_factor);
2917 
2918         /*
2919          * If we had larger pcp->high, we could avoid to allocate from
2920          * zone.
2921          */
2922         if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2923                 high = pcp->high = min(high + batch, high_max);
2924 
2925         if (!order) {
2926                 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2927                 /*
2928                  * Double the number of pages allocated each time there is
2929                  * subsequent allocation of order-0 pages without any freeing.
2930                  */
2931                 if (batch <= max_nr_alloc &&
2932                     pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2933                         pcp->alloc_factor++;
2934                 batch = min(batch, max_nr_alloc);
2935         }
2936 
2937         /*
2938          * Scale batch relative to order if batch implies free pages
2939          * can be stored on the PCP. Batch can be 1 for small zones or
2940          * for boot pagesets which should never store free pages as
2941          * the pages may belong to arbitrary zones.
2942          */
2943         if (batch > 1)
2944                 batch = max(batch >> order, 2);
2945 
2946         return batch;
2947 }
2948 
2949 /* Remove page from the per-cpu list, caller must protect the list */
2950 static inline
2951 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2952                         int migratetype,
2953                         unsigned int alloc_flags,
2954                         struct per_cpu_pages *pcp,
2955                         struct list_head *list)
2956 {
2957         struct page *page;
2958 
2959         do {
2960                 if (list_empty(list)) {
2961                         int batch = nr_pcp_alloc(pcp, zone, order);
2962                         int alloced;
2963 
2964                         alloced = rmqueue_bulk(zone, order,
2965                                         batch, list,
2966                                         migratetype, alloc_flags);
2967 
2968                         pcp->count += alloced << order;
2969                         if (unlikely(list_empty(list)))
2970                                 return NULL;
2971                 }
2972 
2973                 page = list_first_entry(list, struct page, pcp_list);
2974                 list_del(&page->pcp_list);
2975                 pcp->count -= 1 << order;
2976         } while (check_new_pages(page, order));
2977 
2978         return page;
2979 }
2980 
2981 /* Lock and remove page from the per-cpu list */
2982 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2983                         struct zone *zone, unsigned int order,
2984                         int migratetype, unsigned int alloc_flags)
2985 {
2986         struct per_cpu_pages *pcp;
2987         struct list_head *list;
2988         struct page *page;
2989         unsigned long __maybe_unused UP_flags;
2990 
2991         /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2992         pcp_trylock_prepare(UP_flags);
2993         pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2994         if (!pcp) {
2995                 pcp_trylock_finish(UP_flags);
2996                 return NULL;
2997         }
2998 
2999         /*
3000          * On allocation, reduce the number of pages that are batch freed.
3001          * See nr_pcp_free() where free_factor is increased for subsequent
3002          * frees.
3003          */
3004         pcp->free_count >>= 1;
3005         list = &pcp->lists[order_to_pindex(migratetype, order)];
3006         page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3007         pcp_spin_unlock(pcp);
3008         pcp_trylock_finish(UP_flags);
3009         if (page) {
3010                 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3011                 zone_statistics(preferred_zone, zone, 1);
3012         }
3013         return page;
3014 }
3015 
3016 /*
3017  * Allocate a page from the given zone.
3018  * Use pcplists for THP or "cheap" high-order allocations.
3019  */
3020 
3021 /*
3022  * Do not instrument rmqueue() with KMSAN. This function may call
3023  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3024  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3025  * may call rmqueue() again, which will result in a deadlock.
3026  */
3027 __no_sanitize_memory
3028 static inline
3029 struct page *rmqueue(struct zone *preferred_zone,
3030                         struct zone *zone, unsigned int order,
3031                         gfp_t gfp_flags, unsigned int alloc_flags,
3032                         int migratetype)
3033 {
3034         struct page *page;
3035 
3036         /*
3037          * We most definitely don't want callers attempting to
3038          * allocate greater than order-1 page units with __GFP_NOFAIL.
3039          */
3040         WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3041 
3042         if (likely(pcp_allowed_order(order))) {
3043                 page = rmqueue_pcplist(preferred_zone, zone, order,
3044                                        migratetype, alloc_flags);
3045                 if (likely(page))
3046                         goto out;
3047         }
3048 
3049         page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3050                                                         migratetype);
3051 
3052 out:
3053         /* Separate test+clear to avoid unnecessary atomics */
3054         if ((alloc_flags & ALLOC_KSWAPD) &&
3055             unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3056                 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3057                 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3058         }
3059 
3060         VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3061         return page;
3062 }
3063 
3064 static inline long __zone_watermark_unusable_free(struct zone *z,
3065                                 unsigned int order, unsigned int alloc_flags)
3066 {
3067         long unusable_free = (1 << order) - 1;
3068 
3069         /*
3070          * If the caller does not have rights to reserves below the min
3071          * watermark then subtract the high-atomic reserves. This will
3072          * over-estimate the size of the atomic reserve but it avoids a search.
3073          */
3074         if (likely(!(alloc_flags & ALLOC_RESERVES)))
3075                 unusable_free += z->nr_reserved_highatomic;
3076 
3077 #ifdef CONFIG_CMA
3078         /* If allocation can't use CMA areas don't use free CMA pages */
3079         if (!(alloc_flags & ALLOC_CMA))
3080                 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3081 #endif
3082 
3083         return unusable_free;
3084 }
3085 
3086 /*
3087  * Return true if free base pages are above 'mark'. For high-order checks it
3088  * will return true of the order-0 watermark is reached and there is at least
3089  * one free page of a suitable size. Checking now avoids taking the zone lock
3090  * to check in the allocation paths if no pages are free.
3091  */
3092 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3093                          int highest_zoneidx, unsigned int alloc_flags,
3094                          long free_pages)
3095 {
3096         long min = mark;
3097         int o;
3098 
3099         /* free_pages may go negative - that's OK */
3100         free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3101 
3102         if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3103                 /*
3104                  * __GFP_HIGH allows access to 50% of the min reserve as well
3105                  * as OOM.
3106                  */
3107                 if (alloc_flags & ALLOC_MIN_RESERVE) {
3108                         min -= min / 2;
3109 
3110                         /*
3111                          * Non-blocking allocations (e.g. GFP_ATOMIC) can
3112                          * access more reserves than just __GFP_HIGH. Other
3113                          * non-blocking allocations requests such as GFP_NOWAIT
3114                          * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3115                          * access to the min reserve.
3116                          */
3117                         if (alloc_flags & ALLOC_NON_BLOCK)
3118                                 min -= min / 4;
3119                 }
3120 
3121                 /*
3122                  * OOM victims can try even harder than the normal reserve
3123                  * users on the grounds that it's definitely going to be in
3124                  * the exit path shortly and free memory. Any allocation it
3125                  * makes during the free path will be small and short-lived.
3126                  */
3127                 if (alloc_flags & ALLOC_OOM)
3128                         min -= min / 2;
3129         }
3130 
3131         /*
3132          * Check watermarks for an order-0 allocation request. If these
3133          * are not met, then a high-order request also cannot go ahead
3134          * even if a suitable page happened to be free.
3135          */
3136         if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3137                 return false;
3138 
3139         /* If this is an order-0 request then the watermark is fine */
3140         if (!order)
3141                 return true;
3142 
3143         /* For a high-order request, check at least one suitable page is free */
3144         for (o = order; o < NR_PAGE_ORDERS; o++) {
3145                 struct free_area *area = &z->free_area[o];
3146                 int mt;
3147 
3148                 if (!area->nr_free)
3149                         continue;
3150 
3151                 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3152                         if (!free_area_empty(area, mt))
3153                                 return true;
3154                 }
3155 
3156 #ifdef CONFIG_CMA
3157                 if ((alloc_flags & ALLOC_CMA) &&
3158                     !free_area_empty(area, MIGRATE_CMA)) {
3159                         return true;
3160                 }
3161 #endif
3162                 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3163                     !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3164                         return true;
3165                 }
3166         }
3167         return false;
3168 }
3169 
3170 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3171                       int highest_zoneidx, unsigned int alloc_flags)
3172 {
3173         return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3174                                         zone_page_state(z, NR_FREE_PAGES));
3175 }
3176 
3177 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3178                                 unsigned long mark, int highest_zoneidx,
3179                                 unsigned int alloc_flags, gfp_t gfp_mask)
3180 {
3181         long free_pages;
3182 
3183         free_pages = zone_page_state(z, NR_FREE_PAGES);
3184 
3185         /*
3186          * Fast check for order-0 only. If this fails then the reserves
3187          * need to be calculated.
3188          */
3189         if (!order) {
3190                 long usable_free;
3191                 long reserved;
3192 
3193                 usable_free = free_pages;
3194                 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3195 
3196                 /* reserved may over estimate high-atomic reserves. */
3197                 usable_free -= min(usable_free, reserved);
3198                 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3199                         return true;
3200         }
3201 
3202         if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3203                                         free_pages))
3204                 return true;
3205 
3206         /*
3207          * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3208          * when checking the min watermark. The min watermark is the
3209          * point where boosting is ignored so that kswapd is woken up
3210          * when below the low watermark.
3211          */
3212         if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3213                 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3214                 mark = z->_watermark[WMARK_MIN];
3215                 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3216                                         alloc_flags, free_pages);
3217         }
3218 
3219         return false;
3220 }
3221 
3222 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3223                         unsigned long mark, int highest_zoneidx)
3224 {
3225         long free_pages = zone_page_state(z, NR_FREE_PAGES);
3226 
3227         if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3228                 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3229 
3230         return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3231                                                                 free_pages);
3232 }
3233 
3234 #ifdef CONFIG_NUMA
3235 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3236 
3237 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3238 {
3239         return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3240                                 node_reclaim_distance;
3241 }
3242 #else   /* CONFIG_NUMA */
3243 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3244 {
3245         return true;
3246 }
3247 #endif  /* CONFIG_NUMA */
3248 
3249 /*
3250  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3251  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3252  * premature use of a lower zone may cause lowmem pressure problems that
3253  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3254  * probably too small. It only makes sense to spread allocations to avoid
3255  * fragmentation between the Normal and DMA32 zones.
3256  */
3257 static inline unsigned int
3258 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3259 {
3260         unsigned int alloc_flags;
3261 
3262         /*
3263          * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3264          * to save a branch.
3265          */
3266         alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3267 
3268 #ifdef CONFIG_ZONE_DMA32
3269         if (!zone)
3270                 return alloc_flags;
3271 
3272         if (zone_idx(zone) != ZONE_NORMAL)
3273                 return alloc_flags;
3274 
3275         /*
3276          * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3277          * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3278          * on UMA that if Normal is populated then so is DMA32.
3279          */
3280         BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3281         if (nr_online_nodes > 1 && !populated_zone(--zone))
3282                 return alloc_flags;
3283 
3284         alloc_flags |= ALLOC_NOFRAGMENT;
3285 #endif /* CONFIG_ZONE_DMA32 */
3286         return alloc_flags;
3287 }
3288 
3289 /* Must be called after current_gfp_context() which can change gfp_mask */
3290 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3291                                                   unsigned int alloc_flags)
3292 {
3293 #ifdef CONFIG_CMA
3294         if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3295                 alloc_flags |= ALLOC_CMA;
3296 #endif
3297         return alloc_flags;
3298 }
3299 
3300 /*
3301  * get_page_from_freelist goes through the zonelist trying to allocate
3302  * a page.
3303  */
3304 static struct page *
3305 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3306                                                 const struct alloc_context *ac)
3307 {
3308         struct zoneref *z;
3309         struct zone *zone;
3310         struct pglist_data *last_pgdat = NULL;
3311         bool last_pgdat_dirty_ok = false;
3312         bool no_fallback;
3313 
3314 retry:
3315         /*
3316          * Scan zonelist, looking for a zone with enough free.
3317          * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3318          */
3319         no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3320         z = ac->preferred_zoneref;
3321         for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3322                                         ac->nodemask) {
3323                 struct page *page;
3324                 unsigned long mark;
3325 
3326                 if (cpusets_enabled() &&
3327                         (alloc_flags & ALLOC_CPUSET) &&
3328                         !__cpuset_zone_allowed(zone, gfp_mask))
3329                                 continue;
3330                 /*
3331                  * When allocating a page cache page for writing, we
3332                  * want to get it from a node that is within its dirty
3333                  * limit, such that no single node holds more than its
3334                  * proportional share of globally allowed dirty pages.
3335                  * The dirty limits take into account the node's
3336                  * lowmem reserves and high watermark so that kswapd
3337                  * should be able to balance it without having to
3338                  * write pages from its LRU list.
3339                  *
3340                  * XXX: For now, allow allocations to potentially
3341                  * exceed the per-node dirty limit in the slowpath
3342                  * (spread_dirty_pages unset) before going into reclaim,
3343                  * which is important when on a NUMA setup the allowed
3344                  * nodes are together not big enough to reach the
3345                  * global limit.  The proper fix for these situations
3346                  * will require awareness of nodes in the
3347                  * dirty-throttling and the flusher threads.
3348                  */
3349                 if (ac->spread_dirty_pages) {
3350                         if (last_pgdat != zone->zone_pgdat) {
3351                                 last_pgdat = zone->zone_pgdat;
3352                                 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3353                         }
3354 
3355                         if (!last_pgdat_dirty_ok)
3356                                 continue;
3357                 }
3358 
3359                 if (no_fallback && nr_online_nodes > 1 &&
3360                     zone != ac->preferred_zoneref->zone) {
3361                         int local_nid;
3362 
3363                         /*
3364                          * If moving to a remote node, retry but allow
3365                          * fragmenting fallbacks. Locality is more important
3366                          * than fragmentation avoidance.
3367                          */
3368                         local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3369                         if (zone_to_nid(zone) != local_nid) {
3370                                 alloc_flags &= ~ALLOC_NOFRAGMENT;
3371                                 goto retry;
3372                         }
3373                 }
3374 
3375                 cond_accept_memory(zone, order);
3376 
3377                 /*
3378                  * Detect whether the number of free pages is below high
3379                  * watermark.  If so, we will decrease pcp->high and free
3380                  * PCP pages in free path to reduce the possibility of
3381                  * premature page reclaiming.  Detection is done here to
3382                  * avoid to do that in hotter free path.
3383                  */
3384                 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3385                         goto check_alloc_wmark;
3386 
3387                 mark = high_wmark_pages(zone);
3388                 if (zone_watermark_fast(zone, order, mark,
3389                                         ac->highest_zoneidx, alloc_flags,
3390                                         gfp_mask))
3391                         goto try_this_zone;
3392                 else
3393                         set_bit(ZONE_BELOW_HIGH, &zone->flags);
3394 
3395 check_alloc_wmark:
3396                 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3397                 if (!zone_watermark_fast(zone, order, mark,
3398                                        ac->highest_zoneidx, alloc_flags,
3399                                        gfp_mask)) {
3400                         int ret;
3401 
3402                         if (cond_accept_memory(zone, order))
3403                                 goto try_this_zone;
3404 
3405 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3406                         /*
3407                          * Watermark failed for this zone, but see if we can
3408                          * grow this zone if it contains deferred pages.
3409                          */
3410                         if (deferred_pages_enabled()) {
3411                                 if (_deferred_grow_zone(zone, order))
3412                                         goto try_this_zone;
3413                         }
3414 #endif
3415                         /* Checked here to keep the fast path fast */
3416                         BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3417                         if (alloc_flags & ALLOC_NO_WATERMARKS)
3418                                 goto try_this_zone;
3419 
3420                         if (!node_reclaim_enabled() ||
3421                             !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3422                                 continue;
3423 
3424                         ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3425                         switch (ret) {
3426                         case NODE_RECLAIM_NOSCAN:
3427                                 /* did not scan */
3428                                 continue;
3429                         case NODE_RECLAIM_FULL:
3430                                 /* scanned but unreclaimable */
3431                                 continue;
3432                         default:
3433                                 /* did we reclaim enough */
3434                                 if (zone_watermark_ok(zone, order, mark,
3435                                         ac->highest_zoneidx, alloc_flags))
3436                                         goto try_this_zone;
3437 
3438                                 continue;
3439                         }
3440                 }
3441 
3442 try_this_zone:
3443                 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3444                                 gfp_mask, alloc_flags, ac->migratetype);
3445                 if (page) {
3446                         prep_new_page(page, order, gfp_mask, alloc_flags);
3447 
3448                         /*
3449                          * If this is a high-order atomic allocation then check
3450                          * if the pageblock should be reserved for the future
3451                          */
3452                         if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3453                                 reserve_highatomic_pageblock(page, order, zone);
3454 
3455                         return page;
3456                 } else {
3457                         if (cond_accept_memory(zone, order))
3458                                 goto try_this_zone;
3459 
3460 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3461                         /* Try again if zone has deferred pages */
3462                         if (deferred_pages_enabled()) {
3463                                 if (_deferred_grow_zone(zone, order))
3464                                         goto try_this_zone;
3465                         }
3466 #endif
3467                 }
3468         }
3469 
3470         /*
3471          * It's possible on a UMA machine to get through all zones that are
3472          * fragmented. If avoiding fragmentation, reset and try again.
3473          */
3474         if (no_fallback) {
3475                 alloc_flags &= ~ALLOC_NOFRAGMENT;
3476                 goto retry;
3477         }
3478 
3479         return NULL;
3480 }
3481 
3482 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3483 {
3484         unsigned int filter = SHOW_MEM_FILTER_NODES;
3485 
3486         /*
3487          * This documents exceptions given to allocations in certain
3488          * contexts that are allowed to allocate outside current's set
3489          * of allowed nodes.
3490          */
3491         if (!(gfp_mask & __GFP_NOMEMALLOC))
3492                 if (tsk_is_oom_victim(current) ||
3493                     (current->flags & (PF_MEMALLOC | PF_EXITING)))
3494                         filter &= ~SHOW_MEM_FILTER_NODES;
3495         if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3496                 filter &= ~SHOW_MEM_FILTER_NODES;
3497 
3498         __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3499 }
3500 
3501 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3502 {
3503         struct va_format vaf;
3504         va_list args;
3505         static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3506 
3507         if ((gfp_mask & __GFP_NOWARN) ||
3508              !__ratelimit(&nopage_rs) ||
3509              ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3510                 return;
3511 
3512         va_start(args, fmt);
3513         vaf.fmt = fmt;
3514         vaf.va = &args;
3515         pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3516                         current->comm, &vaf, gfp_mask, &gfp_mask,
3517                         nodemask_pr_args(nodemask));
3518         va_end(args);
3519 
3520         cpuset_print_current_mems_allowed();
3521         pr_cont("\n");
3522         dump_stack();
3523         warn_alloc_show_mem(gfp_mask, nodemask);
3524 }
3525 
3526 static inline struct page *
3527 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3528                               unsigned int alloc_flags,
3529                               const struct alloc_context *ac)
3530 {
3531         struct page *page;
3532 
3533         page = get_page_from_freelist(gfp_mask, order,
3534                         alloc_flags|ALLOC_CPUSET, ac);
3535         /*
3536          * fallback to ignore cpuset restriction if our nodes
3537          * are depleted
3538          */
3539         if (!page)
3540                 page = get_page_from_freelist(gfp_mask, order,
3541                                 alloc_flags, ac);
3542 
3543         return page;
3544 }
3545 
3546 static inline struct page *
3547 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3548         const struct alloc_context *ac, unsigned long *did_some_progress)
3549 {
3550         struct oom_control oc = {
3551                 .zonelist = ac->zonelist,
3552                 .nodemask = ac->nodemask,
3553                 .memcg = NULL,
3554                 .gfp_mask = gfp_mask,
3555                 .order = order,
3556         };
3557         struct page *page;
3558 
3559         *did_some_progress = 0;
3560 
3561         /*
3562          * Acquire the oom lock.  If that fails, somebody else is
3563          * making progress for us.
3564          */
3565         if (!mutex_trylock(&oom_lock)) {
3566                 *did_some_progress = 1;
3567                 schedule_timeout_uninterruptible(1);
3568                 return NULL;
3569         }
3570 
3571         /*
3572          * Go through the zonelist yet one more time, keep very high watermark
3573          * here, this is only to catch a parallel oom killing, we must fail if
3574          * we're still under heavy pressure. But make sure that this reclaim
3575          * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3576          * allocation which will never fail due to oom_lock already held.
3577          */
3578         page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3579                                       ~__GFP_DIRECT_RECLAIM, order,
3580                                       ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3581         if (page)
3582                 goto out;
3583 
3584         /* Coredumps can quickly deplete all memory reserves */
3585         if (current->flags & PF_DUMPCORE)
3586                 goto out;
3587         /* The OOM killer will not help higher order allocs */
3588         if (order > PAGE_ALLOC_COSTLY_ORDER)
3589                 goto out;
3590         /*
3591          * We have already exhausted all our reclaim opportunities without any
3592          * success so it is time to admit defeat. We will skip the OOM killer
3593          * because it is very likely that the caller has a more reasonable
3594          * fallback than shooting a random task.
3595          *
3596          * The OOM killer may not free memory on a specific node.
3597          */
3598         if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3599                 goto out;
3600         /* The OOM killer does not needlessly kill tasks for lowmem */
3601         if (ac->highest_zoneidx < ZONE_NORMAL)
3602                 goto out;
3603         if (pm_suspended_storage())
3604                 goto out;
3605         /*
3606          * XXX: GFP_NOFS allocations should rather fail than rely on
3607          * other request to make a forward progress.
3608          * We are in an unfortunate situation where out_of_memory cannot
3609          * do much for this context but let's try it to at least get
3610          * access to memory reserved if the current task is killed (see
3611          * out_of_memory). Once filesystems are ready to handle allocation
3612          * failures more gracefully we should just bail out here.
3613          */
3614 
3615         /* Exhausted what can be done so it's blame time */
3616         if (out_of_memory(&oc) ||
3617             WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3618                 *did_some_progress = 1;
3619 
3620                 /*
3621                  * Help non-failing allocations by giving them access to memory
3622                  * reserves
3623                  */
3624                 if (gfp_mask & __GFP_NOFAIL)
3625                         page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3626                                         ALLOC_NO_WATERMARKS, ac);
3627         }
3628 out:
3629         mutex_unlock(&oom_lock);
3630         return page;
3631 }
3632 
3633 /*
3634  * Maximum number of compaction retries with a progress before OOM
3635  * killer is consider as the only way to move forward.
3636  */
3637 #define MAX_COMPACT_RETRIES 16
3638 
3639 #ifdef CONFIG_COMPACTION
3640 /* Try memory compaction for high-order allocations before reclaim */
3641 static struct page *
3642 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3643                 unsigned int alloc_flags, const struct alloc_context *ac,
3644                 enum compact_priority prio, enum compact_result *compact_result)
3645 {
3646         struct page *page = NULL;
3647         unsigned long pflags;
3648         unsigned int noreclaim_flag;
3649 
3650         if (!order)
3651                 return NULL;
3652 
3653         psi_memstall_enter(&pflags);
3654         delayacct_compact_start();
3655         noreclaim_flag = memalloc_noreclaim_save();
3656 
3657         *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3658                                                                 prio, &page);
3659 
3660         memalloc_noreclaim_restore(noreclaim_flag);
3661         psi_memstall_leave(&pflags);
3662         delayacct_compact_end();
3663 
3664         if (*compact_result == COMPACT_SKIPPED)
3665                 return NULL;
3666         /*
3667          * At least in one zone compaction wasn't deferred or skipped, so let's
3668          * count a compaction stall
3669          */
3670         count_vm_event(COMPACTSTALL);
3671 
3672         /* Prep a captured page if available */
3673         if (page)
3674                 prep_new_page(page, order, gfp_mask, alloc_flags);
3675 
3676         /* Try get a page from the freelist if available */
3677         if (!page)
3678                 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3679 
3680         if (page) {
3681                 struct zone *zone = page_zone(page);
3682 
3683                 zone->compact_blockskip_flush = false;
3684                 compaction_defer_reset(zone, order, true);
3685                 count_vm_event(COMPACTSUCCESS);
3686                 return page;
3687         }
3688 
3689         /*
3690          * It's bad if compaction run occurs and fails. The most likely reason
3691          * is that pages exist, but not enough to satisfy watermarks.
3692          */
3693         count_vm_event(COMPACTFAIL);
3694 
3695         cond_resched();
3696 
3697         return NULL;
3698 }
3699 
3700 static inline bool
3701 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3702                      enum compact_result compact_result,
3703                      enum compact_priority *compact_priority,
3704                      int *compaction_retries)
3705 {
3706         int max_retries = MAX_COMPACT_RETRIES;
3707         int min_priority;
3708         bool ret = false;
3709         int retries = *compaction_retries;
3710         enum compact_priority priority = *compact_priority;
3711 
3712         if (!order)
3713                 return false;
3714 
3715         if (fatal_signal_pending(current))
3716                 return false;
3717 
3718         /*
3719          * Compaction was skipped due to a lack of free order-0
3720          * migration targets. Continue if reclaim can help.
3721          */
3722         if (compact_result == COMPACT_SKIPPED) {
3723                 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3724                 goto out;
3725         }
3726 
3727         /*
3728          * Compaction managed to coalesce some page blocks, but the
3729          * allocation failed presumably due to a race. Retry some.
3730          */
3731         if (compact_result == COMPACT_SUCCESS) {
3732                 /*
3733                  * !costly requests are much more important than
3734                  * __GFP_RETRY_MAYFAIL costly ones because they are de
3735                  * facto nofail and invoke OOM killer to move on while
3736                  * costly can fail and users are ready to cope with
3737                  * that. 1/4 retries is rather arbitrary but we would
3738                  * need much more detailed feedback from compaction to
3739                  * make a better decision.
3740                  */
3741                 if (order > PAGE_ALLOC_COSTLY_ORDER)
3742                         max_retries /= 4;
3743 
3744                 if (++(*compaction_retries) <= max_retries) {
3745                         ret = true;
3746                         goto out;
3747                 }
3748         }
3749 
3750         /*
3751          * Compaction failed. Retry with increasing priority.
3752          */
3753         min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3754                         MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3755 
3756         if (*compact_priority > min_priority) {
3757                 (*compact_priority)--;
3758                 *compaction_retries = 0;
3759                 ret = true;
3760         }
3761 out:
3762         trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3763         return ret;
3764 }
3765 #else
3766 static inline struct page *
3767 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3768                 unsigned int alloc_flags, const struct alloc_context *ac,
3769                 enum compact_priority prio, enum compact_result *compact_result)
3770 {
3771         *compact_result = COMPACT_SKIPPED;
3772         return NULL;
3773 }
3774 
3775 static inline bool
3776 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3777                      enum compact_result compact_result,
3778                      enum compact_priority *compact_priority,
3779                      int *compaction_retries)
3780 {
3781         struct zone *zone;
3782         struct zoneref *z;
3783 
3784         if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3785                 return false;
3786 
3787         /*
3788          * There are setups with compaction disabled which would prefer to loop
3789          * inside the allocator rather than hit the oom killer prematurely.
3790          * Let's give them a good hope and keep retrying while the order-0
3791          * watermarks are OK.
3792          */
3793         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3794                                 ac->highest_zoneidx, ac->nodemask) {
3795                 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3796                                         ac->highest_zoneidx, alloc_flags))
3797                         return true;
3798         }
3799         return false;
3800 }
3801 #endif /* CONFIG_COMPACTION */
3802 
3803 #ifdef CONFIG_LOCKDEP
3804 static struct lockdep_map __fs_reclaim_map =
3805         STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3806 
3807 static bool __need_reclaim(gfp_t gfp_mask)
3808 {
3809         /* no reclaim without waiting on it */
3810         if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3811                 return false;
3812 
3813         /* this guy won't enter reclaim */
3814         if (current->flags & PF_MEMALLOC)
3815                 return false;
3816 
3817         if (gfp_mask & __GFP_NOLOCKDEP)
3818                 return false;
3819 
3820         return true;
3821 }
3822 
3823 void __fs_reclaim_acquire(unsigned long ip)
3824 {
3825         lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3826 }
3827 
3828 void __fs_reclaim_release(unsigned long ip)
3829 {
3830         lock_release(&__fs_reclaim_map, ip);
3831 }
3832 
3833 void fs_reclaim_acquire(gfp_t gfp_mask)
3834 {
3835         gfp_mask = current_gfp_context(gfp_mask);
3836 
3837         if (__need_reclaim(gfp_mask)) {
3838                 if (gfp_mask & __GFP_FS)
3839                         __fs_reclaim_acquire(_RET_IP_);
3840 
3841 #ifdef CONFIG_MMU_NOTIFIER
3842                 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3843                 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3844 #endif
3845 
3846         }
3847 }
3848 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3849 
3850 void fs_reclaim_release(gfp_t gfp_mask)
3851 {
3852         gfp_mask = current_gfp_context(gfp_mask);
3853 
3854         if (__need_reclaim(gfp_mask)) {
3855                 if (gfp_mask & __GFP_FS)
3856                         __fs_reclaim_release(_RET_IP_);
3857         }
3858 }
3859 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3860 #endif
3861 
3862 /*
3863  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3864  * have been rebuilt so allocation retries. Reader side does not lock and
3865  * retries the allocation if zonelist changes. Writer side is protected by the
3866  * embedded spin_lock.
3867  */
3868 static DEFINE_SEQLOCK(zonelist_update_seq);
3869 
3870 static unsigned int zonelist_iter_begin(void)
3871 {
3872         if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3873                 return read_seqbegin(&zonelist_update_seq);
3874 
3875         return 0;
3876 }
3877 
3878 static unsigned int check_retry_zonelist(unsigned int seq)
3879 {
3880         if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3881                 return read_seqretry(&zonelist_update_seq, seq);
3882 
3883         return seq;
3884 }
3885 
3886 /* Perform direct synchronous page reclaim */
3887 static unsigned long
3888 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3889                                         const struct alloc_context *ac)
3890 {
3891         unsigned int noreclaim_flag;
3892         unsigned long progress;
3893 
3894         cond_resched();
3895 
3896         /* We now go into synchronous reclaim */
3897         cpuset_memory_pressure_bump();
3898         fs_reclaim_acquire(gfp_mask);
3899         noreclaim_flag = memalloc_noreclaim_save();
3900 
3901         progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3902                                                                 ac->nodemask);
3903 
3904         memalloc_noreclaim_restore(noreclaim_flag);
3905         fs_reclaim_release(gfp_mask);
3906 
3907         cond_resched();
3908 
3909         return progress;
3910 }
3911 
3912 /* The really slow allocator path where we enter direct reclaim */
3913 static inline struct page *
3914 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3915                 unsigned int alloc_flags, const struct alloc_context *ac,
3916                 unsigned long *did_some_progress)
3917 {
3918         struct page *page = NULL;
3919         unsigned long pflags;
3920         bool drained = false;
3921 
3922         psi_memstall_enter(&pflags);
3923         *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3924         if (unlikely(!(*did_some_progress)))
3925                 goto out;
3926 
3927 retry:
3928         page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3929 
3930         /*
3931          * If an allocation failed after direct reclaim, it could be because
3932          * pages are pinned on the per-cpu lists or in high alloc reserves.
3933          * Shrink them and try again
3934          */
3935         if (!page && !drained) {
3936                 unreserve_highatomic_pageblock(ac, false);
3937                 drain_all_pages(NULL);
3938                 drained = true;
3939                 goto retry;
3940         }
3941 out:
3942         psi_memstall_leave(&pflags);
3943 
3944         return page;
3945 }
3946 
3947 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3948                              const struct alloc_context *ac)
3949 {
3950         struct zoneref *z;
3951         struct zone *zone;
3952         pg_data_t *last_pgdat = NULL;
3953         enum zone_type highest_zoneidx = ac->highest_zoneidx;
3954 
3955         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3956                                         ac->nodemask) {
3957                 if (!managed_zone(zone))
3958                         continue;
3959                 if (last_pgdat != zone->zone_pgdat) {
3960                         wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3961                         last_pgdat = zone->zone_pgdat;
3962                 }
3963         }
3964 }
3965 
3966 static inline unsigned int
3967 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3968 {
3969         unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3970 
3971         /*
3972          * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3973          * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3974          * to save two branches.
3975          */
3976         BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3977         BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3978 
3979         /*
3980          * The caller may dip into page reserves a bit more if the caller
3981          * cannot run direct reclaim, or if the caller has realtime scheduling
3982          * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3983          * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3984          */
3985         alloc_flags |= (__force int)
3986                 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3987 
3988         if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3989                 /*
3990                  * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3991                  * if it can't schedule.
3992                  */
3993                 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3994                         alloc_flags |= ALLOC_NON_BLOCK;
3995 
3996                         if (order > 0)
3997                                 alloc_flags |= ALLOC_HIGHATOMIC;
3998                 }
3999 
4000                 /*
4001                  * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4002                  * GFP_ATOMIC) rather than fail, see the comment for
4003                  * cpuset_node_allowed().
4004                  */
4005                 if (alloc_flags & ALLOC_MIN_RESERVE)
4006                         alloc_flags &= ~ALLOC_CPUSET;
4007         } else if (unlikely(rt_task(current)) && in_task())
4008                 alloc_flags |= ALLOC_MIN_RESERVE;
4009 
4010         alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4011 
4012         return alloc_flags;
4013 }
4014 
4015 static bool oom_reserves_allowed(struct task_struct *tsk)
4016 {
4017         if (!tsk_is_oom_victim(tsk))
4018                 return false;
4019 
4020         /*
4021          * !MMU doesn't have oom reaper so give access to memory reserves
4022          * only to the thread with TIF_MEMDIE set
4023          */
4024         if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4025                 return false;
4026 
4027         return true;
4028 }
4029 
4030 /*
4031  * Distinguish requests which really need access to full memory
4032  * reserves from oom victims which can live with a portion of it
4033  */
4034 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4035 {
4036         if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4037                 return 0;
4038         if (gfp_mask & __GFP_MEMALLOC)
4039                 return ALLOC_NO_WATERMARKS;
4040         if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4041                 return ALLOC_NO_WATERMARKS;
4042         if (!in_interrupt()) {
4043                 if (current->flags & PF_MEMALLOC)
4044                         return ALLOC_NO_WATERMARKS;
4045                 else if (oom_reserves_allowed(current))
4046                         return ALLOC_OOM;
4047         }
4048 
4049         return 0;
4050 }
4051 
4052 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4053 {
4054         return !!__gfp_pfmemalloc_flags(gfp_mask);
4055 }
4056 
4057 /*
4058  * Checks whether it makes sense to retry the reclaim to make a forward progress
4059  * for the given allocation request.
4060  *
4061  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4062  * without success, or when we couldn't even meet the watermark if we
4063  * reclaimed all remaining pages on the LRU lists.
4064  *
4065  * Returns true if a retry is viable or false to enter the oom path.
4066  */
4067 static inline bool
4068 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4069                      struct alloc_context *ac, int alloc_flags,
4070                      bool did_some_progress, int *no_progress_loops)
4071 {
4072         struct zone *zone;
4073         struct zoneref *z;
4074         bool ret = false;
4075 
4076         /*
4077          * Costly allocations might have made a progress but this doesn't mean
4078          * their order will become available due to high fragmentation so
4079          * always increment the no progress counter for them
4080          */
4081         if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4082                 *no_progress_loops = 0;
4083         else
4084                 (*no_progress_loops)++;
4085 
4086         if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4087                 goto out;
4088 
4089 
4090         /*
4091          * Keep reclaiming pages while there is a chance this will lead
4092          * somewhere.  If none of the target zones can satisfy our allocation
4093          * request even if all reclaimable pages are considered then we are
4094          * screwed and have to go OOM.
4095          */
4096         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4097                                 ac->highest_zoneidx, ac->nodemask) {
4098                 unsigned long available;
4099                 unsigned long reclaimable;
4100                 unsigned long min_wmark = min_wmark_pages(zone);
4101                 bool wmark;
4102 
4103                 available = reclaimable = zone_reclaimable_pages(zone);
4104                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4105 
4106                 /*
4107                  * Would the allocation succeed if we reclaimed all
4108                  * reclaimable pages?
4109                  */
4110                 wmark = __zone_watermark_ok(zone, order, min_wmark,
4111                                 ac->highest_zoneidx, alloc_flags, available);
4112                 trace_reclaim_retry_zone(z, order, reclaimable,
4113                                 available, min_wmark, *no_progress_loops, wmark);
4114                 if (wmark) {
4115                         ret = true;
4116                         break;
4117                 }
4118         }
4119 
4120         /*
4121          * Memory allocation/reclaim might be called from a WQ context and the
4122          * current implementation of the WQ concurrency control doesn't
4123          * recognize that a particular WQ is congested if the worker thread is
4124          * looping without ever sleeping. Therefore we have to do a short sleep
4125          * here rather than calling cond_resched().
4126          */
4127         if (current->flags & PF_WQ_WORKER)
4128                 schedule_timeout_uninterruptible(1);
4129         else
4130                 cond_resched();
4131 out:
4132         /* Before OOM, exhaust highatomic_reserve */
4133         if (!ret)
4134                 return unreserve_highatomic_pageblock(ac, true);
4135 
4136         return ret;
4137 }
4138 
4139 static inline bool
4140 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4141 {
4142         /*
4143          * It's possible that cpuset's mems_allowed and the nodemask from
4144          * mempolicy don't intersect. This should be normally dealt with by
4145          * policy_nodemask(), but it's possible to race with cpuset update in
4146          * such a way the check therein was true, and then it became false
4147          * before we got our cpuset_mems_cookie here.
4148          * This assumes that for all allocations, ac->nodemask can come only
4149          * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4150          * when it does not intersect with the cpuset restrictions) or the
4151          * caller can deal with a violated nodemask.
4152          */
4153         if (cpusets_enabled() && ac->nodemask &&
4154                         !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4155                 ac->nodemask = NULL;
4156                 return true;
4157         }
4158 
4159         /*
4160          * When updating a task's mems_allowed or mempolicy nodemask, it is
4161          * possible to race with parallel threads in such a way that our
4162          * allocation can fail while the mask is being updated. If we are about
4163          * to fail, check if the cpuset changed during allocation and if so,
4164          * retry.
4165          */
4166         if (read_mems_allowed_retry(cpuset_mems_cookie))
4167                 return true;
4168 
4169         return false;
4170 }
4171 
4172 static inline struct page *
4173 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4174                                                 struct alloc_context *ac)
4175 {
4176         bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4177         bool can_compact = gfp_compaction_allowed(gfp_mask);
4178         const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4179         struct page *page = NULL;
4180         unsigned int alloc_flags;
4181         unsigned long did_some_progress;
4182         enum compact_priority compact_priority;
4183         enum compact_result compact_result;
4184         int compaction_retries;
4185         int no_progress_loops;
4186         unsigned int cpuset_mems_cookie;
4187         unsigned int zonelist_iter_cookie;
4188         int reserve_flags;
4189 
4190 restart:
4191         compaction_retries = 0;
4192         no_progress_loops = 0;
4193         compact_priority = DEF_COMPACT_PRIORITY;
4194         cpuset_mems_cookie = read_mems_allowed_begin();
4195         zonelist_iter_cookie = zonelist_iter_begin();
4196 
4197         /*
4198          * The fast path uses conservative alloc_flags to succeed only until
4199          * kswapd needs to be woken up, and to avoid the cost of setting up
4200          * alloc_flags precisely. So we do that now.
4201          */
4202         alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4203 
4204         /*
4205          * We need to recalculate the starting point for the zonelist iterator
4206          * because we might have used different nodemask in the fast path, or
4207          * there was a cpuset modification and we are retrying - otherwise we
4208          * could end up iterating over non-eligible zones endlessly.
4209          */
4210         ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4211                                         ac->highest_zoneidx, ac->nodemask);
4212         if (!ac->preferred_zoneref->zone)
4213                 goto nopage;
4214 
4215         /*
4216          * Check for insane configurations where the cpuset doesn't contain
4217          * any suitable zone to satisfy the request - e.g. non-movable
4218          * GFP_HIGHUSER allocations from MOVABLE nodes only.
4219          */
4220         if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4221                 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4222                                         ac->highest_zoneidx,
4223                                         &cpuset_current_mems_allowed);
4224                 if (!z->zone)
4225                         goto nopage;
4226         }
4227 
4228         if (alloc_flags & ALLOC_KSWAPD)
4229                 wake_all_kswapds(order, gfp_mask, ac);
4230 
4231         /*
4232          * The adjusted alloc_flags might result in immediate success, so try
4233          * that first
4234          */
4235         page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4236         if (page)
4237                 goto got_pg;
4238 
4239         /*
4240          * For costly allocations, try direct compaction first, as it's likely
4241          * that we have enough base pages and don't need to reclaim. For non-
4242          * movable high-order allocations, do that as well, as compaction will
4243          * try prevent permanent fragmentation by migrating from blocks of the
4244          * same migratetype.
4245          * Don't try this for allocations that are allowed to ignore
4246          * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4247          */
4248         if (can_direct_reclaim && can_compact &&
4249                         (costly_order ||
4250                            (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4251                         && !gfp_pfmemalloc_allowed(gfp_mask)) {
4252                 page = __alloc_pages_direct_compact(gfp_mask, order,
4253                                                 alloc_flags, ac,
4254                                                 INIT_COMPACT_PRIORITY,
4255                                                 &compact_result);
4256                 if (page)
4257                         goto got_pg;
4258 
4259                 /*
4260                  * Checks for costly allocations with __GFP_NORETRY, which
4261                  * includes some THP page fault allocations
4262                  */
4263                 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4264                         /*
4265                          * If allocating entire pageblock(s) and compaction
4266                          * failed because all zones are below low watermarks
4267                          * or is prohibited because it recently failed at this
4268                          * order, fail immediately unless the allocator has
4269                          * requested compaction and reclaim retry.
4270                          *
4271                          * Reclaim is
4272                          *  - potentially very expensive because zones are far
4273                          *    below their low watermarks or this is part of very
4274                          *    bursty high order allocations,
4275                          *  - not guaranteed to help because isolate_freepages()
4276                          *    may not iterate over freed pages as part of its
4277                          *    linear scan, and
4278                          *  - unlikely to make entire pageblocks free on its
4279                          *    own.
4280                          */
4281                         if (compact_result == COMPACT_SKIPPED ||
4282                             compact_result == COMPACT_DEFERRED)
4283                                 goto nopage;
4284 
4285                         /*
4286                          * Looks like reclaim/compaction is worth trying, but
4287                          * sync compaction could be very expensive, so keep
4288                          * using async compaction.
4289                          */
4290                         compact_priority = INIT_COMPACT_PRIORITY;
4291                 }
4292         }
4293 
4294 retry:
4295         /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4296         if (alloc_flags & ALLOC_KSWAPD)
4297                 wake_all_kswapds(order, gfp_mask, ac);
4298 
4299         reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4300         if (reserve_flags)
4301                 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4302                                           (alloc_flags & ALLOC_KSWAPD);
4303 
4304         /*
4305          * Reset the nodemask and zonelist iterators if memory policies can be
4306          * ignored. These allocations are high priority and system rather than
4307          * user oriented.
4308          */
4309         if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4310                 ac->nodemask = NULL;
4311                 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4312                                         ac->highest_zoneidx, ac->nodemask);
4313         }
4314 
4315         /* Attempt with potentially adjusted zonelist and alloc_flags */
4316         page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4317         if (page)
4318                 goto got_pg;
4319 
4320         /* Caller is not willing to reclaim, we can't balance anything */
4321         if (!can_direct_reclaim)
4322                 goto nopage;
4323 
4324         /* Avoid recursion of direct reclaim */
4325         if (current->flags & PF_MEMALLOC)
4326                 goto nopage;
4327 
4328         /* Try direct reclaim and then allocating */
4329         page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4330                                                         &did_some_progress);
4331         if (page)
4332                 goto got_pg;
4333 
4334         /* Try direct compaction and then allocating */
4335         page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4336                                         compact_priority, &compact_result);
4337         if (page)
4338                 goto got_pg;
4339 
4340         /* Do not loop if specifically requested */
4341         if (gfp_mask & __GFP_NORETRY)
4342                 goto nopage;
4343 
4344         /*
4345          * Do not retry costly high order allocations unless they are
4346          * __GFP_RETRY_MAYFAIL and we can compact
4347          */
4348         if (costly_order && (!can_compact ||
4349                              !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4350                 goto nopage;
4351 
4352         if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4353                                  did_some_progress > 0, &no_progress_loops))
4354                 goto retry;
4355 
4356         /*
4357          * It doesn't make any sense to retry for the compaction if the order-0
4358          * reclaim is not able to make any progress because the current
4359          * implementation of the compaction depends on the sufficient amount
4360          * of free memory (see __compaction_suitable)
4361          */
4362         if (did_some_progress > 0 && can_compact &&
4363                         should_compact_retry(ac, order, alloc_flags,
4364                                 compact_result, &compact_priority,
4365                                 &compaction_retries))
4366                 goto retry;
4367 
4368 
4369         /*
4370          * Deal with possible cpuset update races or zonelist updates to avoid
4371          * a unnecessary OOM kill.
4372          */
4373         if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4374             check_retry_zonelist(zonelist_iter_cookie))
4375                 goto restart;
4376 
4377         /* Reclaim has failed us, start killing things */
4378         page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4379         if (page)
4380                 goto got_pg;
4381 
4382         /* Avoid allocations with no watermarks from looping endlessly */
4383         if (tsk_is_oom_victim(current) &&
4384             (alloc_flags & ALLOC_OOM ||
4385              (gfp_mask & __GFP_NOMEMALLOC)))
4386                 goto nopage;
4387 
4388         /* Retry as long as the OOM killer is making progress */
4389         if (did_some_progress) {
4390                 no_progress_loops = 0;
4391                 goto retry;
4392         }
4393 
4394 nopage:
4395         /*
4396          * Deal with possible cpuset update races or zonelist updates to avoid
4397          * a unnecessary OOM kill.
4398          */
4399         if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4400             check_retry_zonelist(zonelist_iter_cookie))
4401                 goto restart;
4402 
4403         /*
4404          * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4405          * we always retry
4406          */
4407         if (gfp_mask & __GFP_NOFAIL) {
4408                 /*
4409                  * All existing users of the __GFP_NOFAIL are blockable, so warn
4410                  * of any new users that actually require GFP_NOWAIT
4411                  */
4412                 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4413                         goto fail;
4414 
4415                 /*
4416                  * PF_MEMALLOC request from this context is rather bizarre
4417                  * because we cannot reclaim anything and only can loop waiting
4418                  * for somebody to do a work for us
4419                  */
4420                 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4421 
4422                 /*
4423                  * non failing costly orders are a hard requirement which we
4424                  * are not prepared for much so let's warn about these users
4425                  * so that we can identify them and convert them to something
4426                  * else.
4427                  */
4428                 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4429 
4430                 /*
4431                  * Help non-failing allocations by giving some access to memory
4432                  * reserves normally used for high priority non-blocking
4433                  * allocations but do not use ALLOC_NO_WATERMARKS because this
4434                  * could deplete whole memory reserves which would just make
4435                  * the situation worse.
4436                  */
4437                 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4438                 if (page)
4439                         goto got_pg;
4440 
4441                 cond_resched();
4442                 goto retry;
4443         }
4444 fail:
4445         warn_alloc(gfp_mask, ac->nodemask,
4446                         "page allocation failure: order:%u", order);
4447 got_pg:
4448         return page;
4449 }
4450 
4451 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4452                 int preferred_nid, nodemask_t *nodemask,
4453                 struct alloc_context *ac, gfp_t *alloc_gfp,
4454                 unsigned int *alloc_flags)
4455 {
4456         ac->highest_zoneidx = gfp_zone(gfp_mask);
4457         ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4458         ac->nodemask = nodemask;
4459         ac->migratetype = gfp_migratetype(gfp_mask);
4460 
4461         if (cpusets_enabled()) {
4462                 *alloc_gfp |= __GFP_HARDWALL;
4463                 /*
4464                  * When we are in the interrupt context, it is irrelevant
4465                  * to the current task context. It means that any node ok.
4466                  */
4467                 if (in_task() && !ac->nodemask)
4468                         ac->nodemask = &cpuset_current_mems_allowed;
4469                 else
4470                         *alloc_flags |= ALLOC_CPUSET;
4471         }
4472 
4473         might_alloc(gfp_mask);
4474 
4475         if (should_fail_alloc_page(gfp_mask, order))
4476                 return false;
4477 
4478         *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4479 
4480         /* Dirty zone balancing only done in the fast path */
4481         ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4482 
4483         /*
4484          * The preferred zone is used for statistics but crucially it is
4485          * also used as the starting point for the zonelist iterator. It
4486          * may get reset for allocations that ignore memory policies.
4487          */
4488         ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4489                                         ac->highest_zoneidx, ac->nodemask);
4490 
4491         return true;
4492 }
4493 
4494 /*
4495  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4496  * @gfp: GFP flags for the allocation
4497  * @preferred_nid: The preferred NUMA node ID to allocate from
4498  * @nodemask: Set of nodes to allocate from, may be NULL
4499  * @nr_pages: The number of pages desired on the list or array
4500  * @page_list: Optional list to store the allocated pages
4501  * @page_array: Optional array to store the pages
4502  *
4503  * This is a batched version of the page allocator that attempts to
4504  * allocate nr_pages quickly. Pages are added to page_list if page_list
4505  * is not NULL, otherwise it is assumed that the page_array is valid.
4506  *
4507  * For lists, nr_pages is the number of pages that should be allocated.
4508  *
4509  * For arrays, only NULL elements are populated with pages and nr_pages
4510  * is the maximum number of pages that will be stored in the array.
4511  *
4512  * Returns the number of pages on the list or array.
4513  */
4514 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4515                         nodemask_t *nodemask, int nr_pages,
4516                         struct list_head *page_list,
4517                         struct page **page_array)
4518 {
4519         struct page *page;
4520         unsigned long __maybe_unused UP_flags;
4521         struct zone *zone;
4522         struct zoneref *z;
4523         struct per_cpu_pages *pcp;
4524         struct list_head *pcp_list;
4525         struct alloc_context ac;
4526         gfp_t alloc_gfp;
4527         unsigned int alloc_flags = ALLOC_WMARK_LOW;
4528         int nr_populated = 0, nr_account = 0;
4529 
4530         /*
4531          * Skip populated array elements to determine if any pages need
4532          * to be allocated before disabling IRQs.
4533          */
4534         while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4535                 nr_populated++;
4536 
4537         /* No pages requested? */
4538         if (unlikely(nr_pages <= 0))
4539                 goto out;
4540 
4541         /* Already populated array? */
4542         if (unlikely(page_array && nr_pages - nr_populated == 0))
4543                 goto out;
4544 
4545         /* Bulk allocator does not support memcg accounting. */
4546         if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4547                 goto failed;
4548 
4549         /* Use the single page allocator for one page. */
4550         if (nr_pages - nr_populated == 1)
4551                 goto failed;
4552 
4553 #ifdef CONFIG_PAGE_OWNER
4554         /*
4555          * PAGE_OWNER may recurse into the allocator to allocate space to
4556          * save the stack with pagesets.lock held. Releasing/reacquiring
4557          * removes much of the performance benefit of bulk allocation so
4558          * force the caller to allocate one page at a time as it'll have
4559          * similar performance to added complexity to the bulk allocator.
4560          */
4561         if (static_branch_unlikely(&page_owner_inited))
4562                 goto failed;
4563 #endif
4564 
4565         /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4566         gfp &= gfp_allowed_mask;
4567         alloc_gfp = gfp;
4568         if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4569                 goto out;
4570         gfp = alloc_gfp;
4571 
4572         /* Find an allowed local zone that meets the low watermark. */
4573         for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4574                 unsigned long mark;
4575 
4576                 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4577                     !__cpuset_zone_allowed(zone, gfp)) {
4578                         continue;
4579                 }
4580 
4581                 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4582                     zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4583                         goto failed;
4584                 }
4585 
4586                 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4587                 if (zone_watermark_fast(zone, 0,  mark,
4588                                 zonelist_zone_idx(ac.preferred_zoneref),
4589                                 alloc_flags, gfp)) {
4590                         break;
4591                 }
4592         }
4593 
4594         /*
4595          * If there are no allowed local zones that meets the watermarks then
4596          * try to allocate a single page and reclaim if necessary.
4597          */
4598         if (unlikely(!zone))
4599                 goto failed;
4600 
4601         /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4602         pcp_trylock_prepare(UP_flags);
4603         pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4604         if (!pcp)
4605                 goto failed_irq;
4606 
4607         /* Attempt the batch allocation */
4608         pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4609         while (nr_populated < nr_pages) {
4610 
4611                 /* Skip existing pages */
4612                 if (page_array && page_array[nr_populated]) {
4613                         nr_populated++;
4614                         continue;
4615                 }
4616 
4617                 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4618                                                                 pcp, pcp_list);
4619                 if (unlikely(!page)) {
4620                         /* Try and allocate at least one page */
4621                         if (!nr_account) {
4622                                 pcp_spin_unlock(pcp);
4623                                 goto failed_irq;
4624                         }
4625                         break;
4626                 }
4627                 nr_account++;
4628 
4629                 prep_new_page(page, 0, gfp, 0);
4630                 if (page_list)
4631                         list_add(&page->lru, page_list);
4632                 else
4633                         page_array[nr_populated] = page;
4634                 nr_populated++;
4635         }
4636 
4637         pcp_spin_unlock(pcp);
4638         pcp_trylock_finish(UP_flags);
4639 
4640         __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4641         zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4642 
4643 out:
4644         return nr_populated;
4645 
4646 failed_irq:
4647         pcp_trylock_finish(UP_flags);
4648 
4649 failed:
4650         page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4651         if (page) {
4652                 if (page_list)
4653                         list_add(&page->lru, page_list);
4654                 else
4655                         page_array[nr_populated] = page;
4656                 nr_populated++;
4657         }
4658 
4659         goto out;
4660 }
4661 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4662 
4663 /*
4664  * This is the 'heart' of the zoned buddy allocator.
4665  */
4666 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4667                                       int preferred_nid, nodemask_t *nodemask)
4668 {
4669         struct page *page;
4670         unsigned int alloc_flags = ALLOC_WMARK_LOW;
4671         gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4672         struct alloc_context ac = { };
4673 
4674         /*
4675          * There are several places where we assume that the order value is sane
4676          * so bail out early if the request is out of bound.
4677          */
4678         if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4679                 return NULL;
4680 
4681         gfp &= gfp_allowed_mask;
4682         /*
4683          * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4684          * resp. GFP_NOIO which has to be inherited for all allocation requests
4685          * from a particular context which has been marked by
4686          * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4687          * movable zones are not used during allocation.
4688          */
4689         gfp = current_gfp_context(gfp);
4690         alloc_gfp = gfp;
4691         if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4692                         &alloc_gfp, &alloc_flags))
4693                 return NULL;
4694 
4695         /*
4696          * Forbid the first pass from falling back to types that fragment
4697          * memory until all local zones are considered.
4698          */
4699         alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4700 
4701         /* First allocation attempt */
4702         page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4703         if (likely(page))
4704                 goto out;
4705 
4706         alloc_gfp = gfp;
4707         ac.spread_dirty_pages = false;
4708 
4709         /*
4710          * Restore the original nodemask if it was potentially replaced with
4711          * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4712          */
4713         ac.nodemask = nodemask;
4714 
4715         page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4716 
4717 out:
4718         if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4719             unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4720                 __free_pages(page, order);
4721                 page = NULL;
4722         }
4723 
4724         trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4725         kmsan_alloc_page(page, order, alloc_gfp);
4726 
4727         return page;
4728 }
4729 EXPORT_SYMBOL(__alloc_pages_noprof);
4730 
4731 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4732                 nodemask_t *nodemask)
4733 {
4734         struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4735                                         preferred_nid, nodemask);
4736         return page_rmappable_folio(page);
4737 }
4738 EXPORT_SYMBOL(__folio_alloc_noprof);
4739 
4740 /*
4741  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4742  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4743  * you need to access high mem.
4744  */
4745 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4746 {
4747         struct page *page;
4748 
4749         page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4750         if (!page)
4751                 return 0;
4752         return (unsigned long) page_address(page);
4753 }
4754 EXPORT_SYMBOL(get_free_pages_noprof);
4755 
4756 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4757 {
4758         return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4759 }
4760 EXPORT_SYMBOL(get_zeroed_page_noprof);
4761 
4762 /**
4763  * __free_pages - Free pages allocated with alloc_pages().
4764  * @page: The page pointer returned from alloc_pages().
4765  * @order: The order of the allocation.
4766  *
4767  * This function can free multi-page allocations that are not compound
4768  * pages.  It does not check that the @order passed in matches that of
4769  * the allocation, so it is easy to leak memory.  Freeing more memory
4770  * than was allocated will probably emit a warning.
4771  *
4772  * If the last reference to this page is speculative, it will be released
4773  * by put_page() which only frees the first page of a non-compound
4774  * allocation.  To prevent the remaining pages from being leaked, we free
4775  * the subsequent pages here.  If you want to use the page's reference
4776  * count to decide when to free the allocation, you should allocate a
4777  * compound page, and use put_page() instead of __free_pages().
4778  *
4779  * Context: May be called in interrupt context or while holding a normal
4780  * spinlock, but not in NMI context or while holding a raw spinlock.
4781  */
4782 void __free_pages(struct page *page, unsigned int order)
4783 {
4784         /* get PageHead before we drop reference */
4785         int head = PageHead(page);
4786         struct alloc_tag *tag = pgalloc_tag_get(page);
4787 
4788         if (put_page_testzero(page))
4789                 free_unref_page(page, order);
4790         else if (!head) {
4791                 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4792                 while (order-- > 0)
4793                         free_unref_page(page + (1 << order), order);
4794         }
4795 }
4796 EXPORT_SYMBOL(__free_pages);
4797 
4798 void free_pages(unsigned long addr, unsigned int order)
4799 {
4800         if (addr != 0) {
4801                 VM_BUG_ON(!virt_addr_valid((void *)addr));
4802                 __free_pages(virt_to_page((void *)addr), order);
4803         }
4804 }
4805 
4806 EXPORT_SYMBOL(free_pages);
4807 
4808 /*
4809  * Page Fragment:
4810  *  An arbitrary-length arbitrary-offset area of memory which resides
4811  *  within a 0 or higher order page.  Multiple fragments within that page
4812  *  are individually refcounted, in the page's reference counter.
4813  *
4814  * The page_frag functions below provide a simple allocation framework for
4815  * page fragments.  This is used by the network stack and network device
4816  * drivers to provide a backing region of memory for use as either an
4817  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4818  */
4819 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4820                                              gfp_t gfp_mask)
4821 {
4822         struct page *page = NULL;
4823         gfp_t gfp = gfp_mask;
4824 
4825 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4826         gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4827                    __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4828         page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4829                                 PAGE_FRAG_CACHE_MAX_ORDER);
4830         nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4831 #endif
4832         if (unlikely(!page))
4833                 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4834 
4835         nc->va = page ? page_address(page) : NULL;
4836 
4837         return page;
4838 }
4839 
4840 void page_frag_cache_drain(struct page_frag_cache *nc)
4841 {
4842         if (!nc->va)
4843                 return;
4844 
4845         __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4846         nc->va = NULL;
4847 }
4848 EXPORT_SYMBOL(page_frag_cache_drain);
4849 
4850 void __page_frag_cache_drain(struct page *page, unsigned int count)
4851 {
4852         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4853 
4854         if (page_ref_sub_and_test(page, count))
4855                 free_unref_page(page, compound_order(page));
4856 }
4857 EXPORT_SYMBOL(__page_frag_cache_drain);
4858 
4859 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4860                               unsigned int fragsz, gfp_t gfp_mask,
4861                               unsigned int align_mask)
4862 {
4863         unsigned int size = PAGE_SIZE;
4864         struct page *page;
4865         int offset;
4866 
4867         if (unlikely(!nc->va)) {
4868 refill:
4869                 page = __page_frag_cache_refill(nc, gfp_mask);
4870                 if (!page)
4871                         return NULL;
4872 
4873 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4874                 /* if size can vary use size else just use PAGE_SIZE */
4875                 size = nc->size;
4876 #endif
4877                 /* Even if we own the page, we do not use atomic_set().
4878                  * This would break get_page_unless_zero() users.
4879                  */
4880                 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4881 
4882                 /* reset page count bias and offset to start of new frag */
4883                 nc->pfmemalloc = page_is_pfmemalloc(page);
4884                 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4885                 nc->offset = size;
4886         }
4887 
4888         offset = nc->offset - fragsz;
4889         if (unlikely(offset < 0)) {
4890                 page = virt_to_page(nc->va);
4891 
4892                 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4893                         goto refill;
4894 
4895                 if (unlikely(nc->pfmemalloc)) {
4896                         free_unref_page(page, compound_order(page));
4897                         goto refill;
4898                 }
4899 
4900 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4901                 /* if size can vary use size else just use PAGE_SIZE */
4902                 size = nc->size;
4903 #endif
4904                 /* OK, page count is 0, we can safely set it */
4905                 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4906 
4907                 /* reset page count bias and offset to start of new frag */
4908                 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4909                 offset = size - fragsz;
4910                 if (unlikely(offset < 0)) {
4911                         /*
4912                          * The caller is trying to allocate a fragment
4913                          * with fragsz > PAGE_SIZE but the cache isn't big
4914                          * enough to satisfy the request, this may
4915                          * happen in low memory conditions.
4916                          * We don't release the cache page because
4917                          * it could make memory pressure worse
4918                          * so we simply return NULL here.
4919                          */
4920                         return NULL;
4921                 }
4922         }
4923 
4924         nc->pagecnt_bias--;
4925         offset &= align_mask;
4926         nc->offset = offset;
4927 
4928         return nc->va + offset;
4929 }
4930 EXPORT_SYMBOL(__page_frag_alloc_align);
4931 
4932 /*
4933  * Frees a page fragment allocated out of either a compound or order 0 page.
4934  */
4935 void page_frag_free(void *addr)
4936 {
4937         struct page *page = virt_to_head_page(addr);
4938 
4939         if (unlikely(put_page_testzero(page)))
4940                 free_unref_page(page, compound_order(page));
4941 }
4942 EXPORT_SYMBOL(page_frag_free);
4943 
4944 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4945                 size_t size)
4946 {
4947         if (addr) {
4948                 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4949                 struct page *page = virt_to_page((void *)addr);
4950                 struct page *last = page + nr;
4951 
4952                 split_page_owner(page, order, 0);
4953                 pgalloc_tag_split(page, 1 << order);
4954                 split_page_memcg(page, order, 0);
4955                 while (page < --last)
4956                         set_page_refcounted(last);
4957 
4958                 last = page + (1UL << order);
4959                 for (page += nr; page < last; page++)
4960                         __free_pages_ok(page, 0, FPI_TO_TAIL);
4961         }
4962         return (void *)addr;
4963 }
4964 
4965 /**
4966  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4967  * @size: the number of bytes to allocate
4968  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4969  *
4970  * This function is similar to alloc_pages(), except that it allocates the
4971  * minimum number of pages to satisfy the request.  alloc_pages() can only
4972  * allocate memory in power-of-two pages.
4973  *
4974  * This function is also limited by MAX_PAGE_ORDER.
4975  *
4976  * Memory allocated by this function must be released by free_pages_exact().
4977  *
4978  * Return: pointer to the allocated area or %NULL in case of error.
4979  */
4980 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4981 {
4982         unsigned int order = get_order(size);
4983         unsigned long addr;
4984 
4985         if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4986                 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4987 
4988         addr = get_free_pages_noprof(gfp_mask, order);
4989         return make_alloc_exact(addr, order, size);
4990 }
4991 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4992 
4993 /**
4994  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4995  *                         pages on a node.
4996  * @nid: the preferred node ID where memory should be allocated
4997  * @size: the number of bytes to allocate
4998  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4999  *
5000  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5001  * back.
5002  *
5003  * Return: pointer to the allocated area or %NULL in case of error.
5004  */
5005 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5006 {
5007         unsigned int order = get_order(size);
5008         struct page *p;
5009 
5010         if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5011                 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5012 
5013         p = alloc_pages_node_noprof(nid, gfp_mask, order);
5014         if (!p)
5015                 return NULL;
5016         return make_alloc_exact((unsigned long)page_address(p), order, size);
5017 }
5018 
5019 /**
5020  * free_pages_exact - release memory allocated via alloc_pages_exact()
5021  * @virt: the value returned by alloc_pages_exact.
5022  * @size: size of allocation, same value as passed to alloc_pages_exact().
5023  *
5024  * Release the memory allocated by a previous call to alloc_pages_exact.
5025  */
5026 void free_pages_exact(void *virt, size_t size)
5027 {
5028         unsigned long addr = (unsigned long)virt;
5029         unsigned long end = addr + PAGE_ALIGN(size);
5030 
5031         while (addr < end) {
5032                 free_page(addr);
5033                 addr += PAGE_SIZE;
5034         }
5035 }
5036 EXPORT_SYMBOL(free_pages_exact);
5037 
5038 /**
5039  * nr_free_zone_pages - count number of pages beyond high watermark
5040  * @offset: The zone index of the highest zone
5041  *
5042  * nr_free_zone_pages() counts the number of pages which are beyond the
5043  * high watermark within all zones at or below a given zone index.  For each
5044  * zone, the number of pages is calculated as:
5045  *
5046  *     nr_free_zone_pages = managed_pages - high_pages
5047  *
5048  * Return: number of pages beyond high watermark.
5049  */
5050 static unsigned long nr_free_zone_pages(int offset)
5051 {
5052         struct zoneref *z;
5053         struct zone *zone;
5054 
5055         /* Just pick one node, since fallback list is circular */
5056         unsigned long sum = 0;
5057 
5058         struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5059 
5060         for_each_zone_zonelist(zone, z, zonelist, offset) {
5061                 unsigned long size = zone_managed_pages(zone);
5062                 unsigned long high = high_wmark_pages(zone);
5063                 if (size > high)
5064                         sum += size - high;
5065         }
5066 
5067         return sum;
5068 }
5069 
5070 /**
5071  * nr_free_buffer_pages - count number of pages beyond high watermark
5072  *
5073  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5074  * watermark within ZONE_DMA and ZONE_NORMAL.
5075  *
5076  * Return: number of pages beyond high watermark within ZONE_DMA and
5077  * ZONE_NORMAL.
5078  */
5079 unsigned long nr_free_buffer_pages(void)
5080 {
5081         return nr_free_zone_pages(gfp_zone(GFP_USER));
5082 }
5083 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5084 
5085 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5086 {
5087         zoneref->zone = zone;
5088         zoneref->zone_idx = zone_idx(zone);
5089 }
5090 
5091 /*
5092  * Builds allocation fallback zone lists.
5093  *
5094  * Add all populated zones of a node to the zonelist.
5095  */
5096 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5097 {
5098         struct zone *zone;
5099         enum zone_type zone_type = MAX_NR_ZONES;
5100         int nr_zones = 0;
5101 
5102         do {
5103                 zone_type--;
5104                 zone = pgdat->node_zones + zone_type;
5105                 if (populated_zone(zone)) {
5106                         zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5107                         check_highest_zone(zone_type);
5108                 }
5109         } while (zone_type);
5110 
5111         return nr_zones;
5112 }
5113 
5114 #ifdef CONFIG_NUMA
5115 
5116 static int __parse_numa_zonelist_order(char *s)
5117 {
5118         /*
5119          * We used to support different zonelists modes but they turned
5120          * out to be just not useful. Let's keep the warning in place
5121          * if somebody still use the cmd line parameter so that we do
5122          * not fail it silently
5123          */
5124         if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5125                 pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5126                 return -EINVAL;
5127         }
5128         return 0;
5129 }
5130 
5131 static char numa_zonelist_order[] = "Node";
5132 #define NUMA_ZONELIST_ORDER_LEN 16
5133 /*
5134  * sysctl handler for numa_zonelist_order
5135  */
5136 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5137                 void *buffer, size_t *length, loff_t *ppos)
5138 {
5139         if (write)
5140                 return __parse_numa_zonelist_order(buffer);
5141         return proc_dostring(table, write, buffer, length, ppos);
5142 }
5143 
5144 static int node_load[MAX_NUMNODES];
5145 
5146 /**
5147  * find_next_best_node - find the next node that should appear in a given node's fallback list
5148  * @node: node whose fallback list we're appending
5149  * @used_node_mask: nodemask_t of already used nodes
5150  *
5151  * We use a number of factors to determine which is the next node that should
5152  * appear on a given node's fallback list.  The node should not have appeared
5153  * already in @node's fallback list, and it should be the next closest node
5154  * according to the distance array (which contains arbitrary distance values
5155  * from each node to each node in the system), and should also prefer nodes
5156  * with no CPUs, since presumably they'll have very little allocation pressure
5157  * on them otherwise.
5158  *
5159  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5160  */
5161 int find_next_best_node(int node, nodemask_t *used_node_mask)
5162 {
5163         int n, val;
5164         int min_val = INT_MAX;
5165         int best_node = NUMA_NO_NODE;
5166 
5167         /*
5168          * Use the local node if we haven't already, but for memoryless local
5169          * node, we should skip it and fall back to other nodes.
5170          */
5171         if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5172                 node_set(node, *used_node_mask);
5173                 return node;
5174         }
5175 
5176         for_each_node_state(n, N_MEMORY) {
5177 
5178                 /* Don't want a node to appear more than once */
5179                 if (node_isset(n, *used_node_mask))
5180                         continue;
5181 
5182                 /* Use the distance array to find the distance */
5183                 val = node_distance(node, n);
5184 
5185                 /* Penalize nodes under us ("prefer the next node") */
5186                 val += (n < node);
5187 
5188                 /* Give preference to headless and unused nodes */
5189                 if (!cpumask_empty(cpumask_of_node(n)))
5190                         val += PENALTY_FOR_NODE_WITH_CPUS;
5191 
5192                 /* Slight preference for less loaded node */
5193                 val *= MAX_NUMNODES;
5194                 val += node_load[n];
5195 
5196                 if (val < min_val) {
5197                         min_val = val;
5198                         best_node = n;
5199                 }
5200         }
5201 
5202         if (best_node >= 0)
5203                 node_set(best_node, *used_node_mask);
5204 
5205         return best_node;
5206 }
5207 
5208 
5209 /*
5210  * Build zonelists ordered by node and zones within node.
5211  * This results in maximum locality--normal zone overflows into local
5212  * DMA zone, if any--but risks exhausting DMA zone.
5213  */
5214 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5215                 unsigned nr_nodes)
5216 {
5217         struct zoneref *zonerefs;
5218         int i;
5219 
5220         zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5221 
5222         for (i = 0; i < nr_nodes; i++) {
5223                 int nr_zones;
5224 
5225                 pg_data_t *node = NODE_DATA(node_order[i]);
5226 
5227                 nr_zones = build_zonerefs_node(node, zonerefs);
5228                 zonerefs += nr_zones;
5229         }
5230         zonerefs->zone = NULL;
5231         zonerefs->zone_idx = 0;
5232 }
5233 
5234 /*
5235  * Build __GFP_THISNODE zonelists
5236  */
5237 static void build_thisnode_zonelists(pg_data_t *pgdat)
5238 {
5239         struct zoneref *zonerefs;
5240         int nr_zones;
5241 
5242         zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5243         nr_zones = build_zonerefs_node(pgdat, zonerefs);
5244         zonerefs += nr_zones;
5245         zonerefs->zone = NULL;
5246         zonerefs->zone_idx = 0;
5247 }
5248 
5249 /*
5250  * Build zonelists ordered by zone and nodes within zones.
5251  * This results in conserving DMA zone[s] until all Normal memory is
5252  * exhausted, but results in overflowing to remote node while memory
5253  * may still exist in local DMA zone.
5254  */
5255 
5256 static void build_zonelists(pg_data_t *pgdat)
5257 {
5258         static int node_order[MAX_NUMNODES];
5259         int node, nr_nodes = 0;
5260         nodemask_t used_mask = NODE_MASK_NONE;
5261         int local_node, prev_node;
5262 
5263         /* NUMA-aware ordering of nodes */
5264         local_node = pgdat->node_id;
5265         prev_node = local_node;
5266 
5267         memset(node_order, 0, sizeof(node_order));
5268         while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5269                 /*
5270                  * We don't want to pressure a particular node.
5271                  * So adding penalty to the first node in same
5272                  * distance group to make it round-robin.
5273                  */
5274                 if (node_distance(local_node, node) !=
5275                     node_distance(local_node, prev_node))
5276                         node_load[node] += 1;
5277 
5278                 node_order[nr_nodes++] = node;
5279                 prev_node = node;
5280         }
5281 
5282         build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5283         build_thisnode_zonelists(pgdat);
5284         pr_info("Fallback order for Node %d: ", local_node);
5285         for (node = 0; node < nr_nodes; node++)
5286                 pr_cont("%d ", node_order[node]);
5287         pr_cont("\n");
5288 }
5289 
5290 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5291 /*
5292  * Return node id of node used for "local" allocations.
5293  * I.e., first node id of first zone in arg node's generic zonelist.
5294  * Used for initializing percpu 'numa_mem', which is used primarily
5295  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5296  */
5297 int local_memory_node(int node)
5298 {
5299         struct zoneref *z;
5300 
5301         z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5302                                    gfp_zone(GFP_KERNEL),
5303                                    NULL);
5304         return zone_to_nid(z->zone);
5305 }
5306 #endif
5307 
5308 static void setup_min_unmapped_ratio(void);
5309 static void setup_min_slab_ratio(void);
5310 #else   /* CONFIG_NUMA */
5311 
5312 static void build_zonelists(pg_data_t *pgdat)
5313 {
5314         struct zoneref *zonerefs;
5315         int nr_zones;
5316 
5317         zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5318         nr_zones = build_zonerefs_node(pgdat, zonerefs);
5319         zonerefs += nr_zones;
5320 
5321         zonerefs->zone = NULL;
5322         zonerefs->zone_idx = 0;
5323 }
5324 
5325 #endif  /* CONFIG_NUMA */
5326 
5327 /*
5328  * Boot pageset table. One per cpu which is going to be used for all
5329  * zones and all nodes. The parameters will be set in such a way
5330  * that an item put on a list will immediately be handed over to
5331  * the buddy list. This is safe since pageset manipulation is done
5332  * with interrupts disabled.
5333  *
5334  * The boot_pagesets must be kept even after bootup is complete for
5335  * unused processors and/or zones. They do play a role for bootstrapping
5336  * hotplugged processors.
5337  *
5338  * zoneinfo_show() and maybe other functions do
5339  * not check if the processor is online before following the pageset pointer.
5340  * Other parts of the kernel may not check if the zone is available.
5341  */
5342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5343 /* These effectively disable the pcplists in the boot pageset completely */
5344 #define BOOT_PAGESET_HIGH       0
5345 #define BOOT_PAGESET_BATCH      1
5346 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5347 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5348 
5349 static void __build_all_zonelists(void *data)
5350 {
5351         int nid;
5352         int __maybe_unused cpu;
5353         pg_data_t *self = data;
5354         unsigned long flags;
5355 
5356         /*
5357          * The zonelist_update_seq must be acquired with irqsave because the
5358          * reader can be invoked from IRQ with GFP_ATOMIC.
5359          */
5360         write_seqlock_irqsave(&zonelist_update_seq, flags);
5361         /*
5362          * Also disable synchronous printk() to prevent any printk() from
5363          * trying to hold port->lock, for
5364          * tty_insert_flip_string_and_push_buffer() on other CPU might be
5365          * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5366          */
5367         printk_deferred_enter();
5368 
5369 #ifdef CONFIG_NUMA
5370         memset(node_load, 0, sizeof(node_load));
5371 #endif
5372 
5373         /*
5374          * This node is hotadded and no memory is yet present.   So just
5375          * building zonelists is fine - no need to touch other nodes.
5376          */
5377         if (self && !node_online(self->node_id)) {
5378                 build_zonelists(self);
5379         } else {
5380                 /*
5381                  * All possible nodes have pgdat preallocated
5382                  * in free_area_init
5383                  */
5384                 for_each_node(nid) {
5385                         pg_data_t *pgdat = NODE_DATA(nid);
5386 
5387                         build_zonelists(pgdat);
5388                 }
5389 
5390 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5391                 /*
5392                  * We now know the "local memory node" for each node--
5393                  * i.e., the node of the first zone in the generic zonelist.
5394                  * Set up numa_mem percpu variable for on-line cpus.  During
5395                  * boot, only the boot cpu should be on-line;  we'll init the
5396                  * secondary cpus' numa_mem as they come on-line.  During
5397                  * node/memory hotplug, we'll fixup all on-line cpus.
5398                  */
5399                 for_each_online_cpu(cpu)
5400                         set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5401 #endif
5402         }
5403 
5404         printk_deferred_exit();
5405         write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5406 }
5407 
5408 static noinline void __init
5409 build_all_zonelists_init(void)
5410 {
5411         int cpu;
5412 
5413         __build_all_zonelists(NULL);
5414 
5415         /*
5416          * Initialize the boot_pagesets that are going to be used
5417          * for bootstrapping processors. The real pagesets for
5418          * each zone will be allocated later when the per cpu
5419          * allocator is available.
5420          *
5421          * boot_pagesets are used also for bootstrapping offline
5422          * cpus if the system is already booted because the pagesets
5423          * are needed to initialize allocators on a specific cpu too.
5424          * F.e. the percpu allocator needs the page allocator which
5425          * needs the percpu allocator in order to allocate its pagesets
5426          * (a chicken-egg dilemma).
5427          */
5428         for_each_possible_cpu(cpu)
5429                 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5430 
5431         mminit_verify_zonelist();
5432         cpuset_init_current_mems_allowed();
5433 }
5434 
5435 /*
5436  * unless system_state == SYSTEM_BOOTING.
5437  *
5438  * __ref due to call of __init annotated helper build_all_zonelists_init
5439  * [protected by SYSTEM_BOOTING].
5440  */
5441 void __ref build_all_zonelists(pg_data_t *pgdat)
5442 {
5443         unsigned long vm_total_pages;
5444 
5445         if (system_state == SYSTEM_BOOTING) {
5446                 build_all_zonelists_init();
5447         } else {
5448                 __build_all_zonelists(pgdat);
5449                 /* cpuset refresh routine should be here */
5450         }
5451         /* Get the number of free pages beyond high watermark in all zones. */
5452         vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5453         /*
5454          * Disable grouping by mobility if the number of pages in the
5455          * system is too low to allow the mechanism to work. It would be
5456          * more accurate, but expensive to check per-zone. This check is
5457          * made on memory-hotadd so a system can start with mobility
5458          * disabled and enable it later
5459          */
5460         if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5461                 page_group_by_mobility_disabled = 1;
5462         else
5463                 page_group_by_mobility_disabled = 0;
5464 
5465         pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5466                 nr_online_nodes,
5467                 page_group_by_mobility_disabled ? "off" : "on",
5468                 vm_total_pages);
5469 #ifdef CONFIG_NUMA
5470         pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5471 #endif
5472 }
5473 
5474 static int zone_batchsize(struct zone *zone)
5475 {
5476 #ifdef CONFIG_MMU
5477         int batch;
5478 
5479         /*
5480          * The number of pages to batch allocate is either ~0.1%
5481          * of the zone or 1MB, whichever is smaller. The batch
5482          * size is striking a balance between allocation latency
5483          * and zone lock contention.
5484          */
5485         batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5486         batch /= 4;             /* We effectively *= 4 below */
5487         if (batch < 1)
5488                 batch = 1;
5489 
5490         /*
5491          * Clamp the batch to a 2^n - 1 value. Having a power
5492          * of 2 value was found to be more likely to have
5493          * suboptimal cache aliasing properties in some cases.
5494          *
5495          * For example if 2 tasks are alternately allocating
5496          * batches of pages, one task can end up with a lot
5497          * of pages of one half of the possible page colors
5498          * and the other with pages of the other colors.
5499          */
5500         batch = rounddown_pow_of_two(batch + batch/2) - 1;
5501 
5502         return batch;
5503 
5504 #else
5505         /* The deferral and batching of frees should be suppressed under NOMMU
5506          * conditions.
5507          *
5508          * The problem is that NOMMU needs to be able to allocate large chunks
5509          * of contiguous memory as there's no hardware page translation to
5510          * assemble apparent contiguous memory from discontiguous pages.
5511          *
5512          * Queueing large contiguous runs of pages for batching, however,
5513          * causes the pages to actually be freed in smaller chunks.  As there
5514          * can be a significant delay between the individual batches being
5515          * recycled, this leads to the once large chunks of space being
5516          * fragmented and becoming unavailable for high-order allocations.
5517          */
5518         return 0;
5519 #endif
5520 }
5521 
5522 static int percpu_pagelist_high_fraction;
5523 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5524                          int high_fraction)
5525 {
5526 #ifdef CONFIG_MMU
5527         int high;
5528         int nr_split_cpus;
5529         unsigned long total_pages;
5530 
5531         if (!high_fraction) {
5532                 /*
5533                  * By default, the high value of the pcp is based on the zone
5534                  * low watermark so that if they are full then background
5535                  * reclaim will not be started prematurely.
5536                  */
5537                 total_pages = low_wmark_pages(zone);
5538         } else {
5539                 /*
5540                  * If percpu_pagelist_high_fraction is configured, the high
5541                  * value is based on a fraction of the managed pages in the
5542                  * zone.
5543                  */
5544                 total_pages = zone_managed_pages(zone) / high_fraction;
5545         }
5546 
5547         /*
5548          * Split the high value across all online CPUs local to the zone. Note
5549          * that early in boot that CPUs may not be online yet and that during
5550          * CPU hotplug that the cpumask is not yet updated when a CPU is being
5551          * onlined. For memory nodes that have no CPUs, split the high value
5552          * across all online CPUs to mitigate the risk that reclaim is triggered
5553          * prematurely due to pages stored on pcp lists.
5554          */
5555         nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5556         if (!nr_split_cpus)
5557                 nr_split_cpus = num_online_cpus();
5558         high = total_pages / nr_split_cpus;
5559 
5560         /*
5561          * Ensure high is at least batch*4. The multiple is based on the
5562          * historical relationship between high and batch.
5563          */
5564         high = max(high, batch << 2);
5565 
5566         return high;
5567 #else
5568         return 0;
5569 #endif
5570 }
5571 
5572 /*
5573  * pcp->high and pcp->batch values are related and generally batch is lower
5574  * than high. They are also related to pcp->count such that count is lower
5575  * than high, and as soon as it reaches high, the pcplist is flushed.
5576  *
5577  * However, guaranteeing these relations at all times would require e.g. write
5578  * barriers here but also careful usage of read barriers at the read side, and
5579  * thus be prone to error and bad for performance. Thus the update only prevents
5580  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5581  * should ensure they can cope with those fields changing asynchronously, and
5582  * fully trust only the pcp->count field on the local CPU with interrupts
5583  * disabled.
5584  *
5585  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5586  * outside of boot time (or some other assurance that no concurrent updaters
5587  * exist).
5588  */
5589 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5590                            unsigned long high_max, unsigned long batch)
5591 {
5592         WRITE_ONCE(pcp->batch, batch);
5593         WRITE_ONCE(pcp->high_min, high_min);
5594         WRITE_ONCE(pcp->high_max, high_max);
5595 }
5596 
5597 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5598 {
5599         int pindex;
5600 
5601         memset(pcp, 0, sizeof(*pcp));
5602         memset(pzstats, 0, sizeof(*pzstats));
5603 
5604         spin_lock_init(&pcp->lock);
5605         for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5606                 INIT_LIST_HEAD(&pcp->lists[pindex]);
5607 
5608         /*
5609          * Set batch and high values safe for a boot pageset. A true percpu
5610          * pageset's initialization will update them subsequently. Here we don't
5611          * need to be as careful as pageset_update() as nobody can access the
5612          * pageset yet.
5613          */
5614         pcp->high_min = BOOT_PAGESET_HIGH;
5615         pcp->high_max = BOOT_PAGESET_HIGH;
5616         pcp->batch = BOOT_PAGESET_BATCH;
5617         pcp->free_count = 0;
5618 }
5619 
5620 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5621                                               unsigned long high_max, unsigned long batch)
5622 {
5623         struct per_cpu_pages *pcp;
5624         int cpu;
5625 
5626         for_each_possible_cpu(cpu) {
5627                 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5628                 pageset_update(pcp, high_min, high_max, batch);
5629         }
5630 }
5631 
5632 /*
5633  * Calculate and set new high and batch values for all per-cpu pagesets of a
5634  * zone based on the zone's size.
5635  */
5636 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5637 {
5638         int new_high_min, new_high_max, new_batch;
5639 
5640         new_batch = max(1, zone_batchsize(zone));
5641         if (percpu_pagelist_high_fraction) {
5642                 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5643                                              percpu_pagelist_high_fraction);
5644                 /*
5645                  * PCP high is tuned manually, disable auto-tuning via
5646                  * setting high_min and high_max to the manual value.
5647                  */
5648                 new_high_max = new_high_min;
5649         } else {
5650                 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5651                 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5652                                              MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5653         }
5654 
5655         if (zone->pageset_high_min == new_high_min &&
5656             zone->pageset_high_max == new_high_max &&
5657             zone->pageset_batch == new_batch)
5658                 return;
5659 
5660         zone->pageset_high_min = new_high_min;
5661         zone->pageset_high_max = new_high_max;
5662         zone->pageset_batch = new_batch;
5663 
5664         __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5665                                           new_batch);
5666 }
5667 
5668 void __meminit setup_zone_pageset(struct zone *zone)
5669 {
5670         int cpu;
5671 
5672         /* Size may be 0 on !SMP && !NUMA */
5673         if (sizeof(struct per_cpu_zonestat) > 0)
5674                 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5675 
5676         zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5677         for_each_possible_cpu(cpu) {
5678                 struct per_cpu_pages *pcp;
5679                 struct per_cpu_zonestat *pzstats;
5680 
5681                 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5682                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5683                 per_cpu_pages_init(pcp, pzstats);
5684         }
5685 
5686         zone_set_pageset_high_and_batch(zone, 0);
5687 }
5688 
5689 /*
5690  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5691  * page high values need to be recalculated.
5692  */
5693 static void zone_pcp_update(struct zone *zone, int cpu_online)
5694 {
5695         mutex_lock(&pcp_batch_high_lock);
5696         zone_set_pageset_high_and_batch(zone, cpu_online);
5697         mutex_unlock(&pcp_batch_high_lock);
5698 }
5699 
5700 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5701 {
5702         struct per_cpu_pages *pcp;
5703         struct cpu_cacheinfo *cci;
5704 
5705         pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5706         cci = get_cpu_cacheinfo(cpu);
5707         /*
5708          * If data cache slice of CPU is large enough, "pcp->batch"
5709          * pages can be preserved in PCP before draining PCP for
5710          * consecutive high-order pages freeing without allocation.
5711          * This can reduce zone lock contention without hurting
5712          * cache-hot pages sharing.
5713          */
5714         spin_lock(&pcp->lock);
5715         if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5716                 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5717         else
5718                 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5719         spin_unlock(&pcp->lock);
5720 }
5721 
5722 void setup_pcp_cacheinfo(unsigned int cpu)
5723 {
5724         struct zone *zone;
5725 
5726         for_each_populated_zone(zone)
5727                 zone_pcp_update_cacheinfo(zone, cpu);
5728 }
5729 
5730 /*
5731  * Allocate per cpu pagesets and initialize them.
5732  * Before this call only boot pagesets were available.
5733  */
5734 void __init setup_per_cpu_pageset(void)
5735 {
5736         struct pglist_data *pgdat;
5737         struct zone *zone;
5738         int __maybe_unused cpu;
5739 
5740         for_each_populated_zone(zone)
5741                 setup_zone_pageset(zone);
5742 
5743 #ifdef CONFIG_NUMA
5744         /*
5745          * Unpopulated zones continue using the boot pagesets.
5746          * The numa stats for these pagesets need to be reset.
5747          * Otherwise, they will end up skewing the stats of
5748          * the nodes these zones are associated with.
5749          */
5750         for_each_possible_cpu(cpu) {
5751                 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5752                 memset(pzstats->vm_numa_event, 0,
5753                        sizeof(pzstats->vm_numa_event));
5754         }
5755 #endif
5756 
5757         for_each_online_pgdat(pgdat)
5758                 pgdat->per_cpu_nodestats =
5759                         alloc_percpu(struct per_cpu_nodestat);
5760 }
5761 
5762 __meminit void zone_pcp_init(struct zone *zone)
5763 {
5764         /*
5765          * per cpu subsystem is not up at this point. The following code
5766          * relies on the ability of the linker to provide the
5767          * offset of a (static) per cpu variable into the per cpu area.
5768          */
5769         zone->per_cpu_pageset = &boot_pageset;
5770         zone->per_cpu_zonestats = &boot_zonestats;
5771         zone->pageset_high_min = BOOT_PAGESET_HIGH;
5772         zone->pageset_high_max = BOOT_PAGESET_HIGH;
5773         zone->pageset_batch = BOOT_PAGESET_BATCH;
5774 
5775         if (populated_zone(zone))
5776                 pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5777                          zone->present_pages, zone_batchsize(zone));
5778 }
5779 
5780 void adjust_managed_page_count(struct page *page, long count)
5781 {
5782         atomic_long_add(count, &page_zone(page)->managed_pages);
5783         totalram_pages_add(count);
5784 }
5785 EXPORT_SYMBOL(adjust_managed_page_count);
5786 
5787 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5788 {
5789         void *pos;
5790         unsigned long pages = 0;
5791 
5792         start = (void *)PAGE_ALIGN((unsigned long)start);
5793         end = (void *)((unsigned long)end & PAGE_MASK);
5794         for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5795                 struct page *page = virt_to_page(pos);
5796                 void *direct_map_addr;
5797 
5798                 /*
5799                  * 'direct_map_addr' might be different from 'pos'
5800                  * because some architectures' virt_to_page()
5801                  * work with aliases.  Getting the direct map
5802                  * address ensures that we get a _writeable_
5803                  * alias for the memset().
5804                  */
5805                 direct_map_addr = page_address(page);
5806                 /*
5807                  * Perform a kasan-unchecked memset() since this memory
5808                  * has not been initialized.
5809                  */
5810                 direct_map_addr = kasan_reset_tag(direct_map_addr);
5811                 if ((unsigned int)poison <= 0xFF)
5812                         memset(direct_map_addr, poison, PAGE_SIZE);
5813 
5814                 free_reserved_page(page);
5815         }
5816 
5817         if (pages && s)
5818                 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5819 
5820         return pages;
5821 }
5822 
5823 void free_reserved_page(struct page *page)
5824 {
5825         clear_page_tag_ref(page);
5826         ClearPageReserved(page);
5827         init_page_count(page);
5828         __free_page(page);
5829         adjust_managed_page_count(page, 1);
5830 }
5831 EXPORT_SYMBOL(free_reserved_page);
5832 
5833 static int page_alloc_cpu_dead(unsigned int cpu)
5834 {
5835         struct zone *zone;
5836 
5837         lru_add_drain_cpu(cpu);
5838         mlock_drain_remote(cpu);
5839         drain_pages(cpu);
5840 
5841         /*
5842          * Spill the event counters of the dead processor
5843          * into the current processors event counters.
5844          * This artificially elevates the count of the current
5845          * processor.
5846          */
5847         vm_events_fold_cpu(cpu);
5848 
5849         /*
5850          * Zero the differential counters of the dead processor
5851          * so that the vm statistics are consistent.
5852          *
5853          * This is only okay since the processor is dead and cannot
5854          * race with what we are doing.
5855          */
5856         cpu_vm_stats_fold(cpu);
5857 
5858         for_each_populated_zone(zone)
5859                 zone_pcp_update(zone, 0);
5860 
5861         return 0;
5862 }
5863 
5864 static int page_alloc_cpu_online(unsigned int cpu)
5865 {
5866         struct zone *zone;
5867 
5868         for_each_populated_zone(zone)
5869                 zone_pcp_update(zone, 1);
5870         return 0;
5871 }
5872 
5873 void __init page_alloc_init_cpuhp(void)
5874 {
5875         int ret;
5876 
5877         ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5878                                         "mm/page_alloc:pcp",
5879                                         page_alloc_cpu_online,
5880                                         page_alloc_cpu_dead);
5881         WARN_ON(ret < 0);
5882 }
5883 
5884 /*
5885  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5886  *      or min_free_kbytes changes.
5887  */
5888 static void calculate_totalreserve_pages(void)
5889 {
5890         struct pglist_data *pgdat;
5891         unsigned long reserve_pages = 0;
5892         enum zone_type i, j;
5893 
5894         for_each_online_pgdat(pgdat) {
5895 
5896                 pgdat->totalreserve_pages = 0;
5897 
5898                 for (i = 0; i < MAX_NR_ZONES; i++) {
5899                         struct zone *zone = pgdat->node_zones + i;
5900                         long max = 0;
5901                         unsigned long managed_pages = zone_managed_pages(zone);
5902 
5903                         /* Find valid and maximum lowmem_reserve in the zone */
5904                         for (j = i; j < MAX_NR_ZONES; j++) {
5905                                 if (zone->lowmem_reserve[j] > max)
5906                                         max = zone->lowmem_reserve[j];
5907                         }
5908 
5909                         /* we treat the high watermark as reserved pages. */
5910                         max += high_wmark_pages(zone);
5911 
5912                         if (max > managed_pages)
5913                                 max = managed_pages;
5914 
5915                         pgdat->totalreserve_pages += max;
5916 
5917                         reserve_pages += max;
5918                 }
5919         }
5920         totalreserve_pages = reserve_pages;
5921 }
5922 
5923 /*
5924  * setup_per_zone_lowmem_reserve - called whenever
5925  *      sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5926  *      has a correct pages reserved value, so an adequate number of
5927  *      pages are left in the zone after a successful __alloc_pages().
5928  */
5929 static void setup_per_zone_lowmem_reserve(void)
5930 {
5931         struct pglist_data *pgdat;
5932         enum zone_type i, j;
5933 
5934         for_each_online_pgdat(pgdat) {
5935                 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5936                         struct zone *zone = &pgdat->node_zones[i];
5937                         int ratio = sysctl_lowmem_reserve_ratio[i];
5938                         bool clear = !ratio || !zone_managed_pages(zone);
5939                         unsigned long managed_pages = 0;
5940 
5941                         for (j = i + 1; j < MAX_NR_ZONES; j++) {
5942                                 struct zone *upper_zone = &pgdat->node_zones[j];
5943                                 bool empty = !zone_managed_pages(upper_zone);
5944 
5945                                 managed_pages += zone_managed_pages(upper_zone);
5946 
5947                                 if (clear || empty)
5948                                         zone->lowmem_reserve[j] = 0;
5949                                 else
5950                                         zone->lowmem_reserve[j] = managed_pages / ratio;
5951                         }
5952                 }
5953         }
5954 
5955         /* update totalreserve_pages */
5956         calculate_totalreserve_pages();
5957 }
5958 
5959 static void __setup_per_zone_wmarks(void)
5960 {
5961         unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5962         unsigned long lowmem_pages = 0;
5963         struct zone *zone;
5964         unsigned long flags;
5965 
5966         /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5967         for_each_zone(zone) {
5968                 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5969                         lowmem_pages += zone_managed_pages(zone);
5970         }
5971 
5972         for_each_zone(zone) {
5973                 u64 tmp;
5974 
5975                 spin_lock_irqsave(&zone->lock, flags);
5976                 tmp = (u64)pages_min * zone_managed_pages(zone);
5977                 tmp = div64_ul(tmp, lowmem_pages);
5978                 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5979                         /*
5980                          * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5981                          * need highmem and movable zones pages, so cap pages_min
5982                          * to a small  value here.
5983                          *
5984                          * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5985                          * deltas control async page reclaim, and so should
5986                          * not be capped for highmem and movable zones.
5987                          */
5988                         unsigned long min_pages;
5989 
5990                         min_pages = zone_managed_pages(zone) / 1024;
5991                         min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5992                         zone->_watermark[WMARK_MIN] = min_pages;
5993                 } else {
5994                         /*
5995                          * If it's a lowmem zone, reserve a number of pages
5996                          * proportionate to the zone's size.
5997                          */
5998                         zone->_watermark[WMARK_MIN] = tmp;
5999                 }
6000 
6001                 /*
6002                  * Set the kswapd watermarks distance according to the
6003                  * scale factor in proportion to available memory, but
6004                  * ensure a minimum size on small systems.
6005                  */
6006                 tmp = max_t(u64, tmp >> 2,
6007                             mult_frac(zone_managed_pages(zone),
6008                                       watermark_scale_factor, 10000));
6009 
6010                 zone->watermark_boost = 0;
6011                 zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6012                 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6013                 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6014 
6015                 spin_unlock_irqrestore(&zone->lock, flags);
6016         }
6017 
6018         /* update totalreserve_pages */
6019         calculate_totalreserve_pages();
6020 }
6021 
6022 /**
6023  * setup_per_zone_wmarks - called when min_free_kbytes changes
6024  * or when memory is hot-{added|removed}
6025  *
6026  * Ensures that the watermark[min,low,high] values for each zone are set
6027  * correctly with respect to min_free_kbytes.
6028  */
6029 void setup_per_zone_wmarks(void)
6030 {
6031         struct zone *zone;
6032         static DEFINE_SPINLOCK(lock);
6033 
6034         spin_lock(&lock);
6035         __setup_per_zone_wmarks();
6036         spin_unlock(&lock);
6037 
6038         /*
6039          * The watermark size have changed so update the pcpu batch
6040          * and high limits or the limits may be inappropriate.
6041          */
6042         for_each_zone(zone)
6043                 zone_pcp_update(zone, 0);
6044 }
6045 
6046 /*
6047  * Initialise min_free_kbytes.
6048  *
6049  * For small machines we want it small (128k min).  For large machines
6050  * we want it large (256MB max).  But it is not linear, because network
6051  * bandwidth does not increase linearly with machine size.  We use
6052  *
6053  *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6054  *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
6055  *
6056  * which yields
6057  *
6058  * 16MB:        512k
6059  * 32MB:        724k
6060  * 64MB:        1024k
6061  * 128MB:       1448k
6062  * 256MB:       2048k
6063  * 512MB:       2896k
6064  * 1024MB:      4096k
6065  * 2048MB:      5792k
6066  * 4096MB:      8192k
6067  * 8192MB:      11584k
6068  * 16384MB:     16384k
6069  */
6070 void calculate_min_free_kbytes(void)
6071 {
6072         unsigned long lowmem_kbytes;
6073         int new_min_free_kbytes;
6074 
6075         lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6076         new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6077 
6078         if (new_min_free_kbytes > user_min_free_kbytes)
6079                 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6080         else
6081                 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6082                                 new_min_free_kbytes, user_min_free_kbytes);
6083 
6084 }
6085 
6086 int __meminit init_per_zone_wmark_min(void)
6087 {
6088         calculate_min_free_kbytes();
6089         setup_per_zone_wmarks();
6090         refresh_zone_stat_thresholds();
6091         setup_per_zone_lowmem_reserve();
6092 
6093 #ifdef CONFIG_NUMA
6094         setup_min_unmapped_ratio();
6095         setup_min_slab_ratio();
6096 #endif
6097 
6098         khugepaged_min_free_kbytes_update();
6099 
6100         return 0;
6101 }
6102 postcore_initcall(init_per_zone_wmark_min)
6103 
6104 /*
6105  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6106  *      that we can call two helper functions whenever min_free_kbytes
6107  *      changes.
6108  */
6109 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6110                 void *buffer, size_t *length, loff_t *ppos)
6111 {
6112         int rc;
6113 
6114         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6115         if (rc)
6116                 return rc;
6117 
6118         if (write) {
6119                 user_min_free_kbytes = min_free_kbytes;
6120                 setup_per_zone_wmarks();
6121         }
6122         return 0;
6123 }
6124 
6125 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6126                 void *buffer, size_t *length, loff_t *ppos)
6127 {
6128         int rc;
6129 
6130         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6131         if (rc)
6132                 return rc;
6133 
6134         if (write)
6135                 setup_per_zone_wmarks();
6136 
6137         return 0;
6138 }
6139 
6140 #ifdef CONFIG_NUMA
6141 static void setup_min_unmapped_ratio(void)
6142 {
6143         pg_data_t *pgdat;
6144         struct zone *zone;
6145 
6146         for_each_online_pgdat(pgdat)
6147                 pgdat->min_unmapped_pages = 0;
6148 
6149         for_each_zone(zone)
6150                 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6151                                                          sysctl_min_unmapped_ratio) / 100;
6152 }
6153 
6154 
6155 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6156                 void *buffer, size_t *length, loff_t *ppos)
6157 {
6158         int rc;
6159 
6160         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6161         if (rc)
6162                 return rc;
6163 
6164         setup_min_unmapped_ratio();
6165 
6166         return 0;
6167 }
6168 
6169 static void setup_min_slab_ratio(void)
6170 {
6171         pg_data_t *pgdat;
6172         struct zone *zone;
6173 
6174         for_each_online_pgdat(pgdat)
6175                 pgdat->min_slab_pages = 0;
6176 
6177         for_each_zone(zone)
6178                 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6179                                                      sysctl_min_slab_ratio) / 100;
6180 }
6181 
6182 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6183                 void *buffer, size_t *length, loff_t *ppos)
6184 {
6185         int rc;
6186 
6187         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6188         if (rc)
6189                 return rc;
6190 
6191         setup_min_slab_ratio();
6192 
6193         return 0;
6194 }
6195 #endif
6196 
6197 /*
6198  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6199  *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6200  *      whenever sysctl_lowmem_reserve_ratio changes.
6201  *
6202  * The reserve ratio obviously has absolutely no relation with the
6203  * minimum watermarks. The lowmem reserve ratio can only make sense
6204  * if in function of the boot time zone sizes.
6205  */
6206 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6207                 int write, void *buffer, size_t *length, loff_t *ppos)
6208 {
6209         int i;
6210 
6211         proc_dointvec_minmax(table, write, buffer, length, ppos);
6212 
6213         for (i = 0; i < MAX_NR_ZONES; i++) {
6214                 if (sysctl_lowmem_reserve_ratio[i] < 1)
6215                         sysctl_lowmem_reserve_ratio[i] = 0;
6216         }
6217 
6218         setup_per_zone_lowmem_reserve();
6219         return 0;
6220 }
6221 
6222 /*
6223  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6224  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6225  * pagelist can have before it gets flushed back to buddy allocator.
6226  */
6227 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6228                 int write, void *buffer, size_t *length, loff_t *ppos)
6229 {
6230         struct zone *zone;
6231         int old_percpu_pagelist_high_fraction;
6232         int ret;
6233 
6234         mutex_lock(&pcp_batch_high_lock);
6235         old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6236 
6237         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6238         if (!write || ret < 0)
6239                 goto out;
6240 
6241         /* Sanity checking to avoid pcp imbalance */
6242         if (percpu_pagelist_high_fraction &&
6243             percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6244                 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6245                 ret = -EINVAL;
6246                 goto out;
6247         }
6248 
6249         /* No change? */
6250         if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6251                 goto out;
6252 
6253         for_each_populated_zone(zone)
6254                 zone_set_pageset_high_and_batch(zone, 0);
6255 out:
6256         mutex_unlock(&pcp_batch_high_lock);
6257         return ret;
6258 }
6259 
6260 static struct ctl_table page_alloc_sysctl_table[] = {
6261         {
6262                 .procname       = "min_free_kbytes",
6263                 .data           = &min_free_kbytes,
6264                 .maxlen         = sizeof(min_free_kbytes),
6265                 .mode           = 0644,
6266                 .proc_handler   = min_free_kbytes_sysctl_handler,
6267                 .extra1         = SYSCTL_ZERO,
6268         },
6269         {
6270                 .procname       = "watermark_boost_factor",
6271                 .data           = &watermark_boost_factor,
6272                 .maxlen         = sizeof(watermark_boost_factor),
6273                 .mode           = 0644,
6274                 .proc_handler   = proc_dointvec_minmax,
6275                 .extra1         = SYSCTL_ZERO,
6276         },
6277         {
6278                 .procname       = "watermark_scale_factor",
6279                 .data           = &watermark_scale_factor,
6280                 .maxlen         = sizeof(watermark_scale_factor),
6281                 .mode           = 0644,
6282                 .proc_handler   = watermark_scale_factor_sysctl_handler,
6283                 .extra1         = SYSCTL_ONE,
6284                 .extra2         = SYSCTL_THREE_THOUSAND,
6285         },
6286         {
6287                 .procname       = "percpu_pagelist_high_fraction",
6288                 .data           = &percpu_pagelist_high_fraction,
6289                 .maxlen         = sizeof(percpu_pagelist_high_fraction),
6290                 .mode           = 0644,
6291                 .proc_handler   = percpu_pagelist_high_fraction_sysctl_handler,
6292                 .extra1         = SYSCTL_ZERO,
6293         },
6294         {
6295                 .procname       = "lowmem_reserve_ratio",
6296                 .data           = &sysctl_lowmem_reserve_ratio,
6297                 .maxlen         = sizeof(sysctl_lowmem_reserve_ratio),
6298                 .mode           = 0644,
6299                 .proc_handler   = lowmem_reserve_ratio_sysctl_handler,
6300         },
6301 #ifdef CONFIG_NUMA
6302         {
6303                 .procname       = "numa_zonelist_order",
6304                 .data           = &numa_zonelist_order,
6305                 .maxlen         = NUMA_ZONELIST_ORDER_LEN,
6306                 .mode           = 0644,
6307                 .proc_handler   = numa_zonelist_order_handler,
6308         },
6309         {
6310                 .procname       = "min_unmapped_ratio",
6311                 .data           = &sysctl_min_unmapped_ratio,
6312                 .maxlen         = sizeof(sysctl_min_unmapped_ratio),
6313                 .mode           = 0644,
6314                 .proc_handler   = sysctl_min_unmapped_ratio_sysctl_handler,
6315                 .extra1         = SYSCTL_ZERO,
6316                 .extra2         = SYSCTL_ONE_HUNDRED,
6317         },
6318         {
6319                 .procname       = "min_slab_ratio",
6320                 .data           = &sysctl_min_slab_ratio,
6321                 .maxlen         = sizeof(sysctl_min_slab_ratio),
6322                 .mode           = 0644,
6323                 .proc_handler   = sysctl_min_slab_ratio_sysctl_handler,
6324                 .extra1         = SYSCTL_ZERO,
6325                 .extra2         = SYSCTL_ONE_HUNDRED,
6326         },
6327 #endif
6328 };
6329 
6330 void __init page_alloc_sysctl_init(void)
6331 {
6332         register_sysctl_init("vm", page_alloc_sysctl_table);
6333 }
6334 
6335 #ifdef CONFIG_CONTIG_ALLOC
6336 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6337 static void alloc_contig_dump_pages(struct list_head *page_list)
6338 {
6339         DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6340 
6341         if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6342                 struct page *page;
6343 
6344                 dump_stack();
6345                 list_for_each_entry(page, page_list, lru)
6346                         dump_page(page, "migration failure");
6347         }
6348 }
6349 
6350 /*
6351  * [start, end) must belong to a single zone.
6352  * @migratetype: using migratetype to filter the type of migration in
6353  *              trace_mm_alloc_contig_migrate_range_info.
6354  */
6355 int __alloc_contig_migrate_range(struct compact_control *cc,
6356                                         unsigned long start, unsigned long end,
6357                                         int migratetype)
6358 {
6359         /* This function is based on compact_zone() from compaction.c. */
6360         unsigned int nr_reclaimed;
6361         unsigned long pfn = start;
6362         unsigned int tries = 0;
6363         int ret = 0;
6364         struct migration_target_control mtc = {
6365                 .nid = zone_to_nid(cc->zone),
6366                 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6367                 .reason = MR_CONTIG_RANGE,
6368         };
6369         struct page *page;
6370         unsigned long total_mapped = 0;
6371         unsigned long total_migrated = 0;
6372         unsigned long total_reclaimed = 0;
6373 
6374         lru_cache_disable();
6375 
6376         while (pfn < end || !list_empty(&cc->migratepages)) {
6377                 if (fatal_signal_pending(current)) {
6378                         ret = -EINTR;
6379                         break;
6380                 }
6381 
6382                 if (list_empty(&cc->migratepages)) {
6383                         cc->nr_migratepages = 0;
6384                         ret = isolate_migratepages_range(cc, pfn, end);
6385                         if (ret && ret != -EAGAIN)
6386                                 break;
6387                         pfn = cc->migrate_pfn;
6388                         tries = 0;
6389                 } else if (++tries == 5) {
6390                         ret = -EBUSY;
6391                         break;
6392                 }
6393 
6394                 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6395                                                         &cc->migratepages);
6396                 cc->nr_migratepages -= nr_reclaimed;
6397 
6398                 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6399                         total_reclaimed += nr_reclaimed;
6400                         list_for_each_entry(page, &cc->migratepages, lru) {
6401                                 struct folio *folio = page_folio(page);
6402 
6403                                 total_mapped += folio_mapped(folio) *
6404                                                 folio_nr_pages(folio);
6405                         }
6406                 }
6407 
6408                 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6409                         NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6410 
6411                 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6412                         total_migrated += cc->nr_migratepages;
6413 
6414                 /*
6415                  * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6416                  * to retry again over this error, so do the same here.
6417                  */
6418                 if (ret == -ENOMEM)
6419                         break;
6420         }
6421 
6422         lru_cache_enable();
6423         if (ret < 0) {
6424                 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6425                         alloc_contig_dump_pages(&cc->migratepages);
6426                 putback_movable_pages(&cc->migratepages);
6427         }
6428 
6429         trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6430                                                  total_migrated,
6431                                                  total_reclaimed,
6432                                                  total_mapped);
6433         return (ret < 0) ? ret : 0;
6434 }
6435 
6436 /**
6437  * alloc_contig_range() -- tries to allocate given range of pages
6438  * @start:      start PFN to allocate
6439  * @end:        one-past-the-last PFN to allocate
6440  * @migratetype:        migratetype of the underlying pageblocks (either
6441  *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6442  *                      in range must have the same migratetype and it must
6443  *                      be either of the two.
6444  * @gfp_mask:   GFP mask to use during compaction
6445  *
6446  * The PFN range does not have to be pageblock aligned. The PFN range must
6447  * belong to a single zone.
6448  *
6449  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6450  * pageblocks in the range.  Once isolated, the pageblocks should not
6451  * be modified by others.
6452  *
6453  * Return: zero on success or negative error code.  On success all
6454  * pages which PFN is in [start, end) are allocated for the caller and
6455  * need to be freed with free_contig_range().
6456  */
6457 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6458                        unsigned migratetype, gfp_t gfp_mask)
6459 {
6460         unsigned long outer_start, outer_end;
6461         int ret = 0;
6462 
6463         struct compact_control cc = {
6464                 .nr_migratepages = 0,
6465                 .order = -1,
6466                 .zone = page_zone(pfn_to_page(start)),
6467                 .mode = MIGRATE_SYNC,
6468                 .ignore_skip_hint = true,
6469                 .no_set_skip_hint = true,
6470                 .gfp_mask = current_gfp_context(gfp_mask),
6471                 .alloc_contig = true,
6472         };
6473         INIT_LIST_HEAD(&cc.migratepages);
6474 
6475         /*
6476          * What we do here is we mark all pageblocks in range as
6477          * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6478          * have different sizes, and due to the way page allocator
6479          * work, start_isolate_page_range() has special handlings for this.
6480          *
6481          * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6482          * migrate the pages from an unaligned range (ie. pages that
6483          * we are interested in). This will put all the pages in
6484          * range back to page allocator as MIGRATE_ISOLATE.
6485          *
6486          * When this is done, we take the pages in range from page
6487          * allocator removing them from the buddy system.  This way
6488          * page allocator will never consider using them.
6489          *
6490          * This lets us mark the pageblocks back as
6491          * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6492          * aligned range but not in the unaligned, original range are
6493          * put back to page allocator so that buddy can use them.
6494          */
6495 
6496         ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6497         if (ret)
6498                 goto done;
6499 
6500         drain_all_pages(cc.zone);
6501 
6502         /*
6503          * In case of -EBUSY, we'd like to know which page causes problem.
6504          * So, just fall through. test_pages_isolated() has a tracepoint
6505          * which will report the busy page.
6506          *
6507          * It is possible that busy pages could become available before
6508          * the call to test_pages_isolated, and the range will actually be
6509          * allocated.  So, if we fall through be sure to clear ret so that
6510          * -EBUSY is not accidentally used or returned to caller.
6511          */
6512         ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6513         if (ret && ret != -EBUSY)
6514                 goto done;
6515         ret = 0;
6516 
6517         /*
6518          * Pages from [start, end) are within a pageblock_nr_pages
6519          * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6520          * more, all pages in [start, end) are free in page allocator.
6521          * What we are going to do is to allocate all pages from
6522          * [start, end) (that is remove them from page allocator).
6523          *
6524          * The only problem is that pages at the beginning and at the
6525          * end of interesting range may be not aligned with pages that
6526          * page allocator holds, ie. they can be part of higher order
6527          * pages.  Because of this, we reserve the bigger range and
6528          * once this is done free the pages we are not interested in.
6529          *
6530          * We don't have to hold zone->lock here because the pages are
6531          * isolated thus they won't get removed from buddy.
6532          */
6533         outer_start = find_large_buddy(start);
6534 
6535         /* Make sure the range is really isolated. */
6536         if (test_pages_isolated(outer_start, end, 0)) {
6537                 ret = -EBUSY;
6538                 goto done;
6539         }
6540 
6541         /* Grab isolated pages from freelists. */
6542         outer_end = isolate_freepages_range(&cc, outer_start, end);
6543         if (!outer_end) {
6544                 ret = -EBUSY;
6545                 goto done;
6546         }
6547 
6548         /* Free head and tail (if any) */
6549         if (start != outer_start)
6550                 free_contig_range(outer_start, start - outer_start);
6551         if (end != outer_end)
6552                 free_contig_range(end, outer_end - end);
6553 
6554 done:
6555         undo_isolate_page_range(start, end, migratetype);
6556         return ret;
6557 }
6558 EXPORT_SYMBOL(alloc_contig_range_noprof);
6559 
6560 static int __alloc_contig_pages(unsigned long start_pfn,
6561                                 unsigned long nr_pages, gfp_t gfp_mask)
6562 {
6563         unsigned long end_pfn = start_pfn + nr_pages;
6564 
6565         return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6566                                    gfp_mask);
6567 }
6568 
6569 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6570                                    unsigned long nr_pages)
6571 {
6572         unsigned long i, end_pfn = start_pfn + nr_pages;
6573         struct page *page;
6574 
6575         for (i = start_pfn; i < end_pfn; i++) {
6576                 page = pfn_to_online_page(i);
6577                 if (!page)
6578                         return false;
6579 
6580                 if (page_zone(page) != z)
6581                         return false;
6582 
6583                 if (PageReserved(page))
6584                         return false;
6585 
6586                 if (PageHuge(page))
6587                         return false;
6588         }
6589         return true;
6590 }
6591 
6592 static bool zone_spans_last_pfn(const struct zone *zone,
6593                                 unsigned long start_pfn, unsigned long nr_pages)
6594 {
6595         unsigned long last_pfn = start_pfn + nr_pages - 1;
6596 
6597         return zone_spans_pfn(zone, last_pfn);
6598 }
6599 
6600 /**
6601  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6602  * @nr_pages:   Number of contiguous pages to allocate
6603  * @gfp_mask:   GFP mask to limit search and used during compaction
6604  * @nid:        Target node
6605  * @nodemask:   Mask for other possible nodes
6606  *
6607  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6608  * on an applicable zonelist to find a contiguous pfn range which can then be
6609  * tried for allocation with alloc_contig_range(). This routine is intended
6610  * for allocation requests which can not be fulfilled with the buddy allocator.
6611  *
6612  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6613  * power of two, then allocated range is also guaranteed to be aligned to same
6614  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6615  *
6616  * Allocated pages can be freed with free_contig_range() or by manually calling
6617  * __free_page() on each allocated page.
6618  *
6619  * Return: pointer to contiguous pages on success, or NULL if not successful.
6620  */
6621 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6622                                  int nid, nodemask_t *nodemask)
6623 {
6624         unsigned long ret, pfn, flags;
6625         struct zonelist *zonelist;
6626         struct zone *zone;
6627         struct zoneref *z;
6628 
6629         zonelist = node_zonelist(nid, gfp_mask);
6630         for_each_zone_zonelist_nodemask(zone, z, zonelist,
6631                                         gfp_zone(gfp_mask), nodemask) {
6632                 spin_lock_irqsave(&zone->lock, flags);
6633 
6634                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6635                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6636                         if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6637                                 /*
6638                                  * We release the zone lock here because
6639                                  * alloc_contig_range() will also lock the zone
6640                                  * at some point. If there's an allocation
6641                                  * spinning on this lock, it may win the race
6642                                  * and cause alloc_contig_range() to fail...
6643                                  */
6644                                 spin_unlock_irqrestore(&zone->lock, flags);
6645                                 ret = __alloc_contig_pages(pfn, nr_pages,
6646                                                         gfp_mask);
6647                                 if (!ret)
6648                                         return pfn_to_page(pfn);
6649                                 spin_lock_irqsave(&zone->lock, flags);
6650                         }
6651                         pfn += nr_pages;
6652                 }
6653                 spin_unlock_irqrestore(&zone->lock, flags);
6654         }
6655         return NULL;
6656 }
6657 #endif /* CONFIG_CONTIG_ALLOC */
6658 
6659 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6660 {
6661         unsigned long count = 0;
6662 
6663         for (; nr_pages--; pfn++) {
6664                 struct page *page = pfn_to_page(pfn);
6665 
6666                 count += page_count(page) != 1;
6667                 __free_page(page);
6668         }
6669         WARN(count != 0, "%lu pages are still in use!\n", count);
6670 }
6671 EXPORT_SYMBOL(free_contig_range);
6672 
6673 /*
6674  * Effectively disable pcplists for the zone by setting the high limit to 0
6675  * and draining all cpus. A concurrent page freeing on another CPU that's about
6676  * to put the page on pcplist will either finish before the drain and the page
6677  * will be drained, or observe the new high limit and skip the pcplist.
6678  *
6679  * Must be paired with a call to zone_pcp_enable().
6680  */
6681 void zone_pcp_disable(struct zone *zone)
6682 {
6683         mutex_lock(&pcp_batch_high_lock);
6684         __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6685         __drain_all_pages(zone, true);
6686 }
6687 
6688 void zone_pcp_enable(struct zone *zone)
6689 {
6690         __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6691                 zone->pageset_high_max, zone->pageset_batch);
6692         mutex_unlock(&pcp_batch_high_lock);
6693 }
6694 
6695 void zone_pcp_reset(struct zone *zone)
6696 {
6697         int cpu;
6698         struct per_cpu_zonestat *pzstats;
6699 
6700         if (zone->per_cpu_pageset != &boot_pageset) {
6701                 for_each_online_cpu(cpu) {
6702                         pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6703                         drain_zonestat(zone, pzstats);
6704                 }
6705                 free_percpu(zone->per_cpu_pageset);
6706                 zone->per_cpu_pageset = &boot_pageset;
6707                 if (zone->per_cpu_zonestats != &boot_zonestats) {
6708                         free_percpu(zone->per_cpu_zonestats);
6709                         zone->per_cpu_zonestats = &boot_zonestats;
6710                 }
6711         }
6712 }
6713 
6714 #ifdef CONFIG_MEMORY_HOTREMOVE
6715 /*
6716  * All pages in the range must be in a single zone, must not contain holes,
6717  * must span full sections, and must be isolated before calling this function.
6718  *
6719  * Returns the number of managed (non-PageOffline()) pages in the range: the
6720  * number of pages for which memory offlining code must adjust managed page
6721  * counters using adjust_managed_page_count().
6722  */
6723 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6724                 unsigned long end_pfn)
6725 {
6726         unsigned long already_offline = 0, flags;
6727         unsigned long pfn = start_pfn;
6728         struct page *page;
6729         struct zone *zone;
6730         unsigned int order;
6731 
6732         offline_mem_sections(pfn, end_pfn);
6733         zone = page_zone(pfn_to_page(pfn));
6734         spin_lock_irqsave(&zone->lock, flags);
6735         while (pfn < end_pfn) {
6736                 page = pfn_to_page(pfn);
6737                 /*
6738                  * The HWPoisoned page may be not in buddy system, and
6739                  * page_count() is not 0.
6740                  */
6741                 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6742                         pfn++;
6743                         continue;
6744                 }
6745                 /*
6746                  * At this point all remaining PageOffline() pages have a
6747                  * reference count of 0 and can simply be skipped.
6748                  */
6749                 if (PageOffline(page)) {
6750                         BUG_ON(page_count(page));
6751                         BUG_ON(PageBuddy(page));
6752                         already_offline++;
6753                         pfn++;
6754                         continue;
6755                 }
6756 
6757                 BUG_ON(page_count(page));
6758                 BUG_ON(!PageBuddy(page));
6759                 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6760                 order = buddy_order(page);
6761                 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6762                 pfn += (1 << order);
6763         }
6764         spin_unlock_irqrestore(&zone->lock, flags);
6765 
6766         return end_pfn - start_pfn - already_offline;
6767 }
6768 #endif
6769 
6770 /*
6771  * This function returns a stable result only if called under zone lock.
6772  */
6773 bool is_free_buddy_page(const struct page *page)
6774 {
6775         unsigned long pfn = page_to_pfn(page);
6776         unsigned int order;
6777 
6778         for (order = 0; order < NR_PAGE_ORDERS; order++) {
6779                 const struct page *head = page - (pfn & ((1 << order) - 1));
6780 
6781                 if (PageBuddy(head) &&
6782                     buddy_order_unsafe(head) >= order)
6783                         break;
6784         }
6785 
6786         return order <= MAX_PAGE_ORDER;
6787 }
6788 EXPORT_SYMBOL(is_free_buddy_page);
6789 
6790 #ifdef CONFIG_MEMORY_FAILURE
6791 static inline void add_to_free_list(struct page *page, struct zone *zone,
6792                                     unsigned int order, int migratetype,
6793                                     bool tail)
6794 {
6795         __add_to_free_list(page, zone, order, migratetype, tail);
6796         account_freepages(zone, 1 << order, migratetype);
6797 }
6798 
6799 /*
6800  * Break down a higher-order page in sub-pages, and keep our target out of
6801  * buddy allocator.
6802  */
6803 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6804                                    struct page *target, int low, int high,
6805                                    int migratetype)
6806 {
6807         unsigned long size = 1 << high;
6808         struct page *current_buddy;
6809 
6810         while (high > low) {
6811                 high--;
6812                 size >>= 1;
6813 
6814                 if (target >= &page[size]) {
6815                         current_buddy = page;
6816                         page = page + size;
6817                 } else {
6818                         current_buddy = page + size;
6819                 }
6820 
6821                 if (set_page_guard(zone, current_buddy, high))
6822                         continue;
6823 
6824                 add_to_free_list(current_buddy, zone, high, migratetype, false);
6825                 set_buddy_order(current_buddy, high);
6826         }
6827 }
6828 
6829 /*
6830  * Take a page that will be marked as poisoned off the buddy allocator.
6831  */
6832 bool take_page_off_buddy(struct page *page)
6833 {
6834         struct zone *zone = page_zone(page);
6835         unsigned long pfn = page_to_pfn(page);
6836         unsigned long flags;
6837         unsigned int order;
6838         bool ret = false;
6839 
6840         spin_lock_irqsave(&zone->lock, flags);
6841         for (order = 0; order < NR_PAGE_ORDERS; order++) {
6842                 struct page *page_head = page - (pfn & ((1 << order) - 1));
6843                 int page_order = buddy_order(page_head);
6844 
6845                 if (PageBuddy(page_head) && page_order >= order) {
6846                         unsigned long pfn_head = page_to_pfn(page_head);
6847                         int migratetype = get_pfnblock_migratetype(page_head,
6848                                                                    pfn_head);
6849 
6850                         del_page_from_free_list(page_head, zone, page_order,
6851                                                 migratetype);
6852                         break_down_buddy_pages(zone, page_head, page, 0,
6853                                                 page_order, migratetype);
6854                         SetPageHWPoisonTakenOff(page);
6855                         ret = true;
6856                         break;
6857                 }
6858                 if (page_count(page_head) > 0)
6859                         break;
6860         }
6861         spin_unlock_irqrestore(&zone->lock, flags);
6862         return ret;
6863 }
6864 
6865 /*
6866  * Cancel takeoff done by take_page_off_buddy().
6867  */
6868 bool put_page_back_buddy(struct page *page)
6869 {
6870         struct zone *zone = page_zone(page);
6871         unsigned long flags;
6872         bool ret = false;
6873 
6874         spin_lock_irqsave(&zone->lock, flags);
6875         if (put_page_testzero(page)) {
6876                 unsigned long pfn = page_to_pfn(page);
6877                 int migratetype = get_pfnblock_migratetype(page, pfn);
6878 
6879                 ClearPageHWPoisonTakenOff(page);
6880                 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6881                 if (TestClearPageHWPoison(page)) {
6882                         ret = true;
6883                 }
6884         }
6885         spin_unlock_irqrestore(&zone->lock, flags);
6886 
6887         return ret;
6888 }
6889 #endif
6890 
6891 #ifdef CONFIG_ZONE_DMA
6892 bool has_managed_dma(void)
6893 {
6894         struct pglist_data *pgdat;
6895 
6896         for_each_online_pgdat(pgdat) {
6897                 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6898 
6899                 if (managed_zone(zone))
6900                         return true;
6901         }
6902         return false;
6903 }
6904 #endif /* CONFIG_ZONE_DMA */
6905 
6906 #ifdef CONFIG_UNACCEPTED_MEMORY
6907 
6908 /* Counts number of zones with unaccepted pages. */
6909 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6910 
6911 static bool lazy_accept = true;
6912 
6913 static int __init accept_memory_parse(char *p)
6914 {
6915         if (!strcmp(p, "lazy")) {
6916                 lazy_accept = true;
6917                 return 0;
6918         } else if (!strcmp(p, "eager")) {
6919                 lazy_accept = false;
6920                 return 0;
6921         } else {
6922                 return -EINVAL;
6923         }
6924 }
6925 early_param("accept_memory", accept_memory_parse);
6926 
6927 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6928 {
6929         phys_addr_t start = page_to_phys(page);
6930         phys_addr_t end = start + (PAGE_SIZE << order);
6931 
6932         return range_contains_unaccepted_memory(start, end);
6933 }
6934 
6935 static void accept_page(struct page *page, unsigned int order)
6936 {
6937         phys_addr_t start = page_to_phys(page);
6938 
6939         accept_memory(start, start + (PAGE_SIZE << order));
6940 }
6941 
6942 static bool try_to_accept_memory_one(struct zone *zone)
6943 {
6944         unsigned long flags;
6945         struct page *page;
6946         bool last;
6947 
6948         spin_lock_irqsave(&zone->lock, flags);
6949         page = list_first_entry_or_null(&zone->unaccepted_pages,
6950                                         struct page, lru);
6951         if (!page) {
6952                 spin_unlock_irqrestore(&zone->lock, flags);
6953                 return false;
6954         }
6955 
6956         list_del(&page->lru);
6957         last = list_empty(&zone->unaccepted_pages);
6958 
6959         account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6960         __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6961         spin_unlock_irqrestore(&zone->lock, flags);
6962 
6963         accept_page(page, MAX_PAGE_ORDER);
6964 
6965         __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6966 
6967         if (last)
6968                 static_branch_dec(&zones_with_unaccepted_pages);
6969 
6970         return true;
6971 }
6972 
6973 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6974 {
6975         long to_accept;
6976         bool ret = false;
6977 
6978         if (!has_unaccepted_memory())
6979                 return false;
6980 
6981         if (list_empty(&zone->unaccepted_pages))
6982                 return false;
6983 
6984         /* How much to accept to get to high watermark? */
6985         to_accept = high_wmark_pages(zone) -
6986                     (zone_page_state(zone, NR_FREE_PAGES) -
6987                     __zone_watermark_unusable_free(zone, order, 0) -
6988                     zone_page_state(zone, NR_UNACCEPTED));
6989 
6990         while (to_accept > 0) {
6991                 if (!try_to_accept_memory_one(zone))
6992                         break;
6993                 ret = true;
6994                 to_accept -= MAX_ORDER_NR_PAGES;
6995         }
6996 
6997         return ret;
6998 }
6999 
7000 static inline bool has_unaccepted_memory(void)
7001 {
7002         return static_branch_unlikely(&zones_with_unaccepted_pages);
7003 }
7004 
7005 static bool __free_unaccepted(struct page *page)
7006 {
7007         struct zone *zone = page_zone(page);
7008         unsigned long flags;
7009         bool first = false;
7010 
7011         if (!lazy_accept)
7012                 return false;
7013 
7014         spin_lock_irqsave(&zone->lock, flags);
7015         first = list_empty(&zone->unaccepted_pages);
7016         list_add_tail(&page->lru, &zone->unaccepted_pages);
7017         account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7018         __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7019         spin_unlock_irqrestore(&zone->lock, flags);
7020 
7021         if (first)
7022                 static_branch_inc(&zones_with_unaccepted_pages);
7023 
7024         return true;
7025 }
7026 
7027 #else
7028 
7029 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7030 {
7031         return false;
7032 }
7033 
7034 static void accept_page(struct page *page, unsigned int order)
7035 {
7036 }
7037 
7038 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7039 {
7040         return false;
7041 }
7042 
7043 static inline bool has_unaccepted_memory(void)
7044 {
7045         return false;
7046 }
7047 
7048 static bool __free_unaccepted(struct page *page)
7049 {
7050         BUILD_BUG();
7051         return false;
7052 }
7053 
7054 #endif /* CONFIG_UNACCEPTED_MEMORY */
7055 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php