~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/page_counter.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Lockless hierarchical page accounting & limiting
  4  *
  5  * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
  6  */
  7 
  8 #include <linux/page_counter.h>
  9 #include <linux/atomic.h>
 10 #include <linux/kernel.h>
 11 #include <linux/string.h>
 12 #include <linux/sched.h>
 13 #include <linux/bug.h>
 14 #include <asm/page.h>
 15 
 16 static void propagate_protected_usage(struct page_counter *c,
 17                                       unsigned long usage)
 18 {
 19         unsigned long protected, old_protected;
 20         long delta;
 21 
 22         if (!c->parent)
 23                 return;
 24 
 25         protected = min(usage, READ_ONCE(c->min));
 26         old_protected = atomic_long_read(&c->min_usage);
 27         if (protected != old_protected) {
 28                 old_protected = atomic_long_xchg(&c->min_usage, protected);
 29                 delta = protected - old_protected;
 30                 if (delta)
 31                         atomic_long_add(delta, &c->parent->children_min_usage);
 32         }
 33 
 34         protected = min(usage, READ_ONCE(c->low));
 35         old_protected = atomic_long_read(&c->low_usage);
 36         if (protected != old_protected) {
 37                 old_protected = atomic_long_xchg(&c->low_usage, protected);
 38                 delta = protected - old_protected;
 39                 if (delta)
 40                         atomic_long_add(delta, &c->parent->children_low_usage);
 41         }
 42 }
 43 
 44 /**
 45  * page_counter_cancel - take pages out of the local counter
 46  * @counter: counter
 47  * @nr_pages: number of pages to cancel
 48  */
 49 void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
 50 {
 51         long new;
 52 
 53         new = atomic_long_sub_return(nr_pages, &counter->usage);
 54         /* More uncharges than charges? */
 55         if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
 56                       new, nr_pages)) {
 57                 new = 0;
 58                 atomic_long_set(&counter->usage, new);
 59         }
 60         propagate_protected_usage(counter, new);
 61 }
 62 
 63 /**
 64  * page_counter_charge - hierarchically charge pages
 65  * @counter: counter
 66  * @nr_pages: number of pages to charge
 67  *
 68  * NOTE: This does not consider any configured counter limits.
 69  */
 70 void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
 71 {
 72         struct page_counter *c;
 73 
 74         for (c = counter; c; c = c->parent) {
 75                 long new;
 76 
 77                 new = atomic_long_add_return(nr_pages, &c->usage);
 78                 propagate_protected_usage(c, new);
 79                 /*
 80                  * This is indeed racy, but we can live with some
 81                  * inaccuracy in the watermark.
 82                  */
 83                 if (new > READ_ONCE(c->watermark))
 84                         WRITE_ONCE(c->watermark, new);
 85         }
 86 }
 87 
 88 /**
 89  * page_counter_try_charge - try to hierarchically charge pages
 90  * @counter: counter
 91  * @nr_pages: number of pages to charge
 92  * @fail: points first counter to hit its limit, if any
 93  *
 94  * Returns %true on success, or %false and @fail if the counter or one
 95  * of its ancestors has hit its configured limit.
 96  */
 97 bool page_counter_try_charge(struct page_counter *counter,
 98                              unsigned long nr_pages,
 99                              struct page_counter **fail)
100 {
101         struct page_counter *c;
102 
103         for (c = counter; c; c = c->parent) {
104                 long new;
105                 /*
106                  * Charge speculatively to avoid an expensive CAS.  If
107                  * a bigger charge fails, it might falsely lock out a
108                  * racing smaller charge and send it into reclaim
109                  * early, but the error is limited to the difference
110                  * between the two sizes, which is less than 2M/4M in
111                  * case of a THP locking out a regular page charge.
112                  *
113                  * The atomic_long_add_return() implies a full memory
114                  * barrier between incrementing the count and reading
115                  * the limit.  When racing with page_counter_set_max(),
116                  * we either see the new limit or the setter sees the
117                  * counter has changed and retries.
118                  */
119                 new = atomic_long_add_return(nr_pages, &c->usage);
120                 if (new > c->max) {
121                         atomic_long_sub(nr_pages, &c->usage);
122                         /*
123                          * This is racy, but we can live with some
124                          * inaccuracy in the failcnt which is only used
125                          * to report stats.
126                          */
127                         data_race(c->failcnt++);
128                         *fail = c;
129                         goto failed;
130                 }
131                 propagate_protected_usage(c, new);
132                 /*
133                  * Just like with failcnt, we can live with some
134                  * inaccuracy in the watermark.
135                  */
136                 if (new > READ_ONCE(c->watermark))
137                         WRITE_ONCE(c->watermark, new);
138         }
139         return true;
140 
141 failed:
142         for (c = counter; c != *fail; c = c->parent)
143                 page_counter_cancel(c, nr_pages);
144 
145         return false;
146 }
147 
148 /**
149  * page_counter_uncharge - hierarchically uncharge pages
150  * @counter: counter
151  * @nr_pages: number of pages to uncharge
152  */
153 void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
154 {
155         struct page_counter *c;
156 
157         for (c = counter; c; c = c->parent)
158                 page_counter_cancel(c, nr_pages);
159 }
160 
161 /**
162  * page_counter_set_max - set the maximum number of pages allowed
163  * @counter: counter
164  * @nr_pages: limit to set
165  *
166  * Returns 0 on success, -EBUSY if the current number of pages on the
167  * counter already exceeds the specified limit.
168  *
169  * The caller must serialize invocations on the same counter.
170  */
171 int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
172 {
173         for (;;) {
174                 unsigned long old;
175                 long usage;
176 
177                 /*
178                  * Update the limit while making sure that it's not
179                  * below the concurrently-changing counter value.
180                  *
181                  * The xchg implies two full memory barriers before
182                  * and after, so the read-swap-read is ordered and
183                  * ensures coherency with page_counter_try_charge():
184                  * that function modifies the count before checking
185                  * the limit, so if it sees the old limit, we see the
186                  * modified counter and retry.
187                  */
188                 usage = page_counter_read(counter);
189 
190                 if (usage > nr_pages)
191                         return -EBUSY;
192 
193                 old = xchg(&counter->max, nr_pages);
194 
195                 if (page_counter_read(counter) <= usage || nr_pages >= old)
196                         return 0;
197 
198                 counter->max = old;
199                 cond_resched();
200         }
201 }
202 
203 /**
204  * page_counter_set_min - set the amount of protected memory
205  * @counter: counter
206  * @nr_pages: value to set
207  *
208  * The caller must serialize invocations on the same counter.
209  */
210 void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages)
211 {
212         struct page_counter *c;
213 
214         WRITE_ONCE(counter->min, nr_pages);
215 
216         for (c = counter; c; c = c->parent)
217                 propagate_protected_usage(c, atomic_long_read(&c->usage));
218 }
219 
220 /**
221  * page_counter_set_low - set the amount of protected memory
222  * @counter: counter
223  * @nr_pages: value to set
224  *
225  * The caller must serialize invocations on the same counter.
226  */
227 void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
228 {
229         struct page_counter *c;
230 
231         WRITE_ONCE(counter->low, nr_pages);
232 
233         for (c = counter; c; c = c->parent)
234                 propagate_protected_usage(c, atomic_long_read(&c->usage));
235 }
236 
237 /**
238  * page_counter_memparse - memparse() for page counter limits
239  * @buf: string to parse
240  * @max: string meaning maximum possible value
241  * @nr_pages: returns the result in number of pages
242  *
243  * Returns -EINVAL, or 0 and @nr_pages on success.  @nr_pages will be
244  * limited to %PAGE_COUNTER_MAX.
245  */
246 int page_counter_memparse(const char *buf, const char *max,
247                           unsigned long *nr_pages)
248 {
249         char *end;
250         u64 bytes;
251 
252         if (!strcmp(buf, max)) {
253                 *nr_pages = PAGE_COUNTER_MAX;
254                 return 0;
255         }
256 
257         bytes = memparse(buf, &end);
258         if (*end != '\0')
259                 return -EINVAL;
260 
261         *nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
262 
263         return 0;
264 }
265 
266 
267 /*
268  * This function calculates an individual page counter's effective
269  * protection which is derived from its own memory.min/low, its
270  * parent's and siblings' settings, as well as the actual memory
271  * distribution in the tree.
272  *
273  * The following rules apply to the effective protection values:
274  *
275  * 1. At the first level of reclaim, effective protection is equal to
276  *    the declared protection in memory.min and memory.low.
277  *
278  * 2. To enable safe delegation of the protection configuration, at
279  *    subsequent levels the effective protection is capped to the
280  *    parent's effective protection.
281  *
282  * 3. To make complex and dynamic subtrees easier to configure, the
283  *    user is allowed to overcommit the declared protection at a given
284  *    level. If that is the case, the parent's effective protection is
285  *    distributed to the children in proportion to how much protection
286  *    they have declared and how much of it they are utilizing.
287  *
288  *    This makes distribution proportional, but also work-conserving:
289  *    if one counter claims much more protection than it uses memory,
290  *    the unused remainder is available to its siblings.
291  *
292  * 4. Conversely, when the declared protection is undercommitted at a
293  *    given level, the distribution of the larger parental protection
294  *    budget is NOT proportional. A counter's protection from a sibling
295  *    is capped to its own memory.min/low setting.
296  *
297  * 5. However, to allow protecting recursive subtrees from each other
298  *    without having to declare each individual counter's fixed share
299  *    of the ancestor's claim to protection, any unutilized -
300  *    "floating" - protection from up the tree is distributed in
301  *    proportion to each counter's *usage*. This makes the protection
302  *    neutral wrt sibling cgroups and lets them compete freely over
303  *    the shared parental protection budget, but it protects the
304  *    subtree as a whole from neighboring subtrees.
305  *
306  * Note that 4. and 5. are not in conflict: 4. is about protecting
307  * against immediate siblings whereas 5. is about protecting against
308  * neighboring subtrees.
309  */
310 static unsigned long effective_protection(unsigned long usage,
311                                           unsigned long parent_usage,
312                                           unsigned long setting,
313                                           unsigned long parent_effective,
314                                           unsigned long siblings_protected,
315                                           bool recursive_protection)
316 {
317         unsigned long protected;
318         unsigned long ep;
319 
320         protected = min(usage, setting);
321         /*
322          * If all cgroups at this level combined claim and use more
323          * protection than what the parent affords them, distribute
324          * shares in proportion to utilization.
325          *
326          * We are using actual utilization rather than the statically
327          * claimed protection in order to be work-conserving: claimed
328          * but unused protection is available to siblings that would
329          * otherwise get a smaller chunk than what they claimed.
330          */
331         if (siblings_protected > parent_effective)
332                 return protected * parent_effective / siblings_protected;
333 
334         /*
335          * Ok, utilized protection of all children is within what the
336          * parent affords them, so we know whatever this child claims
337          * and utilizes is effectively protected.
338          *
339          * If there is unprotected usage beyond this value, reclaim
340          * will apply pressure in proportion to that amount.
341          *
342          * If there is unutilized protection, the cgroup will be fully
343          * shielded from reclaim, but we do return a smaller value for
344          * protection than what the group could enjoy in theory. This
345          * is okay. With the overcommit distribution above, effective
346          * protection is always dependent on how memory is actually
347          * consumed among the siblings anyway.
348          */
349         ep = protected;
350 
351         /*
352          * If the children aren't claiming (all of) the protection
353          * afforded to them by the parent, distribute the remainder in
354          * proportion to the (unprotected) memory of each cgroup. That
355          * way, cgroups that aren't explicitly prioritized wrt each
356          * other compete freely over the allowance, but they are
357          * collectively protected from neighboring trees.
358          *
359          * We're using unprotected memory for the weight so that if
360          * some cgroups DO claim explicit protection, we don't protect
361          * the same bytes twice.
362          *
363          * Check both usage and parent_usage against the respective
364          * protected values. One should imply the other, but they
365          * aren't read atomically - make sure the division is sane.
366          */
367         if (!recursive_protection)
368                 return ep;
369 
370         if (parent_effective > siblings_protected &&
371             parent_usage > siblings_protected &&
372             usage > protected) {
373                 unsigned long unclaimed;
374 
375                 unclaimed = parent_effective - siblings_protected;
376                 unclaimed *= usage - protected;
377                 unclaimed /= parent_usage - siblings_protected;
378 
379                 ep += unclaimed;
380         }
381 
382         return ep;
383 }
384 
385 
386 /**
387  * page_counter_calculate_protection - check if memory consumption is in the normal range
388  * @root: the top ancestor of the sub-tree being checked
389  * @counter: the page_counter the counter to update
390  * @recursive_protection: Whether to use memory_recursiveprot behavior.
391  *
392  * Calculates elow/emin thresholds for given page_counter.
393  *
394  * WARNING: This function is not stateless! It can only be used as part
395  *          of a top-down tree iteration, not for isolated queries.
396  */
397 void page_counter_calculate_protection(struct page_counter *root,
398                                        struct page_counter *counter,
399                                        bool recursive_protection)
400 {
401         unsigned long usage, parent_usage;
402         struct page_counter *parent = counter->parent;
403 
404         /*
405          * Effective values of the reclaim targets are ignored so they
406          * can be stale. Have a look at mem_cgroup_protection for more
407          * details.
408          * TODO: calculation should be more robust so that we do not need
409          * that special casing.
410          */
411         if (root == counter)
412                 return;
413 
414         usage = page_counter_read(counter);
415         if (!usage)
416                 return;
417 
418         if (parent == root) {
419                 counter->emin = READ_ONCE(counter->min);
420                 counter->elow = READ_ONCE(counter->low);
421                 return;
422         }
423 
424         parent_usage = page_counter_read(parent);
425 
426         WRITE_ONCE(counter->emin, effective_protection(usage, parent_usage,
427                         READ_ONCE(counter->min),
428                         READ_ONCE(parent->emin),
429                         atomic_long_read(&parent->children_min_usage),
430                         recursive_protection));
431 
432         WRITE_ONCE(counter->elow, effective_protection(usage, parent_usage,
433                         READ_ONCE(counter->low),
434                         READ_ONCE(parent->elow),
435                         atomic_long_read(&parent->children_low_usage),
436                         recursive_protection));
437 }
438 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php