~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/page_isolation.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * linux/mm/page_isolation.c
  4  */
  5 
  6 #include <linux/mm.h>
  7 #include <linux/page-isolation.h>
  8 #include <linux/pageblock-flags.h>
  9 #include <linux/memory.h>
 10 #include <linux/hugetlb.h>
 11 #include <linux/page_owner.h>
 12 #include <linux/migrate.h>
 13 #include "internal.h"
 14 
 15 #define CREATE_TRACE_POINTS
 16 #include <trace/events/page_isolation.h>
 17 
 18 /*
 19  * This function checks whether the range [start_pfn, end_pfn) includes
 20  * unmovable pages or not. The range must fall into a single pageblock and
 21  * consequently belong to a single zone.
 22  *
 23  * PageLRU check without isolation or lru_lock could race so that
 24  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 25  * check without lock_page also may miss some movable non-lru pages at
 26  * race condition. So you can't expect this function should be exact.
 27  *
 28  * Returns a page without holding a reference. If the caller wants to
 29  * dereference that page (e.g., dumping), it has to make sure that it
 30  * cannot get removed (e.g., via memory unplug) concurrently.
 31  *
 32  */
 33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
 34                                 int migratetype, int flags)
 35 {
 36         struct page *page = pfn_to_page(start_pfn);
 37         struct zone *zone = page_zone(page);
 38         unsigned long pfn;
 39 
 40         VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
 41                   pageblock_start_pfn(end_pfn - 1));
 42 
 43         if (is_migrate_cma_page(page)) {
 44                 /*
 45                  * CMA allocations (alloc_contig_range) really need to mark
 46                  * isolate CMA pageblocks even when they are not movable in fact
 47                  * so consider them movable here.
 48                  */
 49                 if (is_migrate_cma(migratetype))
 50                         return NULL;
 51 
 52                 return page;
 53         }
 54 
 55         for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 56                 page = pfn_to_page(pfn);
 57 
 58                 /*
 59                  * Both, bootmem allocations and memory holes are marked
 60                  * PG_reserved and are unmovable. We can even have unmovable
 61                  * allocations inside ZONE_MOVABLE, for example when
 62                  * specifying "movablecore".
 63                  */
 64                 if (PageReserved(page))
 65                         return page;
 66 
 67                 /*
 68                  * If the zone is movable and we have ruled out all reserved
 69                  * pages then it should be reasonably safe to assume the rest
 70                  * is movable.
 71                  */
 72                 if (zone_idx(zone) == ZONE_MOVABLE)
 73                         continue;
 74 
 75                 /*
 76                  * Hugepages are not in LRU lists, but they're movable.
 77                  * THPs are on the LRU, but need to be counted as #small pages.
 78                  * We need not scan over tail pages because we don't
 79                  * handle each tail page individually in migration.
 80                  */
 81                 if (PageHuge(page) || PageTransCompound(page)) {
 82                         struct folio *folio = page_folio(page);
 83                         unsigned int skip_pages;
 84 
 85                         if (PageHuge(page)) {
 86                                 if (!hugepage_migration_supported(folio_hstate(folio)))
 87                                         return page;
 88                         } else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
 89                                 return page;
 90                         }
 91 
 92                         skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
 93                         pfn += skip_pages - 1;
 94                         continue;
 95                 }
 96 
 97                 /*
 98                  * We can't use page_count without pin a page
 99                  * because another CPU can free compound page.
100                  * This check already skips compound tails of THP
101                  * because their page->_refcount is zero at all time.
102                  */
103                 if (!page_ref_count(page)) {
104                         if (PageBuddy(page))
105                                 pfn += (1 << buddy_order(page)) - 1;
106                         continue;
107                 }
108 
109                 /*
110                  * The HWPoisoned page may be not in buddy system, and
111                  * page_count() is not 0.
112                  */
113                 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
114                         continue;
115 
116                 /*
117                  * We treat all PageOffline() pages as movable when offlining
118                  * to give drivers a chance to decrement their reference count
119                  * in MEM_GOING_OFFLINE in order to indicate that these pages
120                  * can be offlined as there are no direct references anymore.
121                  * For actually unmovable PageOffline() where the driver does
122                  * not support this, we will fail later when trying to actually
123                  * move these pages that still have a reference count > 0.
124                  * (false negatives in this function only)
125                  */
126                 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
127                         continue;
128 
129                 if (__PageMovable(page) || PageLRU(page))
130                         continue;
131 
132                 /*
133                  * If there are RECLAIMABLE pages, we need to check
134                  * it.  But now, memory offline itself doesn't call
135                  * shrink_node_slabs() and it still to be fixed.
136                  */
137                 return page;
138         }
139         return NULL;
140 }
141 
142 /*
143  * This function set pageblock migratetype to isolate if no unmovable page is
144  * present in [start_pfn, end_pfn). The pageblock must intersect with
145  * [start_pfn, end_pfn).
146  */
147 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
148                         unsigned long start_pfn, unsigned long end_pfn)
149 {
150         struct zone *zone = page_zone(page);
151         struct page *unmovable;
152         unsigned long flags;
153         unsigned long check_unmovable_start, check_unmovable_end;
154 
155         spin_lock_irqsave(&zone->lock, flags);
156 
157         /*
158          * We assume the caller intended to SET migrate type to isolate.
159          * If it is already set, then someone else must have raced and
160          * set it before us.
161          */
162         if (is_migrate_isolate_page(page)) {
163                 spin_unlock_irqrestore(&zone->lock, flags);
164                 return -EBUSY;
165         }
166 
167         /*
168          * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
169          * We just check MOVABLE pages.
170          *
171          * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
172          * to avoid redundant checks.
173          */
174         check_unmovable_start = max(page_to_pfn(page), start_pfn);
175         check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
176                                   end_pfn);
177 
178         unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
179                         migratetype, isol_flags);
180         if (!unmovable) {
181                 if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) {
182                         spin_unlock_irqrestore(&zone->lock, flags);
183                         return -EBUSY;
184                 }
185                 zone->nr_isolate_pageblock++;
186                 spin_unlock_irqrestore(&zone->lock, flags);
187                 return 0;
188         }
189 
190         spin_unlock_irqrestore(&zone->lock, flags);
191         if (isol_flags & REPORT_FAILURE) {
192                 /*
193                  * printk() with zone->lock held will likely trigger a
194                  * lockdep splat, so defer it here.
195                  */
196                 dump_page(unmovable, "unmovable page");
197         }
198 
199         return -EBUSY;
200 }
201 
202 static void unset_migratetype_isolate(struct page *page, int migratetype)
203 {
204         struct zone *zone;
205         unsigned long flags;
206         bool isolated_page = false;
207         unsigned int order;
208         struct page *buddy;
209 
210         zone = page_zone(page);
211         spin_lock_irqsave(&zone->lock, flags);
212         if (!is_migrate_isolate_page(page))
213                 goto out;
214 
215         /*
216          * Because freepage with more than pageblock_order on isolated
217          * pageblock is restricted to merge due to freepage counting problem,
218          * it is possible that there is free buddy page.
219          * move_freepages_block() doesn't care of merge so we need other
220          * approach in order to merge them. Isolation and free will make
221          * these pages to be merged.
222          */
223         if (PageBuddy(page)) {
224                 order = buddy_order(page);
225                 if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
226                         buddy = find_buddy_page_pfn(page, page_to_pfn(page),
227                                                     order, NULL);
228                         if (buddy && !is_migrate_isolate_page(buddy)) {
229                                 isolated_page = !!__isolate_free_page(page, order);
230                                 /*
231                                  * Isolating a free page in an isolated pageblock
232                                  * is expected to always work as watermarks don't
233                                  * apply here.
234                                  */
235                                 VM_WARN_ON(!isolated_page);
236                         }
237                 }
238         }
239 
240         /*
241          * If we isolate freepage with more than pageblock_order, there
242          * should be no freepage in the range, so we could avoid costly
243          * pageblock scanning for freepage moving.
244          *
245          * We didn't actually touch any of the isolated pages, so place them
246          * to the tail of the freelist. This is an optimization for memory
247          * onlining - just onlined memory won't immediately be considered for
248          * allocation.
249          */
250         if (!isolated_page) {
251                 /*
252                  * Isolating this block already succeeded, so this
253                  * should not fail on zone boundaries.
254                  */
255                 WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype));
256         } else {
257                 set_pageblock_migratetype(page, migratetype);
258                 __putback_isolated_page(page, order, migratetype);
259         }
260         zone->nr_isolate_pageblock--;
261 out:
262         spin_unlock_irqrestore(&zone->lock, flags);
263 }
264 
265 static inline struct page *
266 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
267 {
268         int i;
269 
270         for (i = 0; i < nr_pages; i++) {
271                 struct page *page;
272 
273                 page = pfn_to_online_page(pfn + i);
274                 if (!page)
275                         continue;
276                 return page;
277         }
278         return NULL;
279 }
280 
281 /**
282  * isolate_single_pageblock() -- tries to isolate a pageblock that might be
283  * within a free or in-use page.
284  * @boundary_pfn:               pageblock-aligned pfn that a page might cross
285  * @flags:                      isolation flags
286  * @gfp_flags:                  GFP flags used for migrating pages
287  * @isolate_before:     isolate the pageblock before the boundary_pfn
288  * @skip_isolation:     the flag to skip the pageblock isolation in second
289  *                      isolate_single_pageblock()
290  * @migratetype:        migrate type to set in error recovery.
291  *
292  * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
293  * pageblock. When not all pageblocks within a page are isolated at the same
294  * time, free page accounting can go wrong. For example, in the case of
295  * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
296  * pagelbocks.
297  * [      MAX_PAGE_ORDER         ]
298  * [  pageblock0  |  pageblock1  ]
299  * When either pageblock is isolated, if it is a free page, the page is not
300  * split into separate migratetype lists, which is supposed to; if it is an
301  * in-use page and freed later, __free_one_page() does not split the free page
302  * either. The function handles this by splitting the free page or migrating
303  * the in-use page then splitting the free page.
304  */
305 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
306                         gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
307                         int migratetype)
308 {
309         unsigned long start_pfn;
310         unsigned long isolate_pageblock;
311         unsigned long pfn;
312         struct zone *zone;
313         int ret;
314 
315         VM_BUG_ON(!pageblock_aligned(boundary_pfn));
316 
317         if (isolate_before)
318                 isolate_pageblock = boundary_pfn - pageblock_nr_pages;
319         else
320                 isolate_pageblock = boundary_pfn;
321 
322         /*
323          * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
324          * only isolating a subset of pageblocks from a bigger than pageblock
325          * free or in-use page. Also make sure all to-be-isolated pageblocks
326          * are within the same zone.
327          */
328         zone  = page_zone(pfn_to_page(isolate_pageblock));
329         start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
330                                       zone->zone_start_pfn);
331 
332         if (skip_isolation) {
333                 int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
334 
335                 VM_BUG_ON(!is_migrate_isolate(mt));
336         } else {
337                 ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
338                                 flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
339 
340                 if (ret)
341                         return ret;
342         }
343 
344         /*
345          * Bail out early when the to-be-isolated pageblock does not form
346          * a free or in-use page across boundary_pfn:
347          *
348          * 1. isolate before boundary_pfn: the page after is not online
349          * 2. isolate after boundary_pfn: the page before is not online
350          *
351          * This also ensures correctness. Without it, when isolate after
352          * boundary_pfn and [start_pfn, boundary_pfn) are not online,
353          * __first_valid_page() will return unexpected NULL in the for loop
354          * below.
355          */
356         if (isolate_before) {
357                 if (!pfn_to_online_page(boundary_pfn))
358                         return 0;
359         } else {
360                 if (!pfn_to_online_page(boundary_pfn - 1))
361                         return 0;
362         }
363 
364         for (pfn = start_pfn; pfn < boundary_pfn;) {
365                 struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
366 
367                 VM_BUG_ON(!page);
368                 pfn = page_to_pfn(page);
369 
370                 if (PageBuddy(page)) {
371                         int order = buddy_order(page);
372 
373                         /* move_freepages_block_isolate() handled this */
374                         VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
375 
376                         pfn += 1UL << order;
377                         continue;
378                 }
379 
380                 /*
381                  * If a compound page is straddling our block, attempt
382                  * to migrate it out of the way.
383                  *
384                  * We don't have to worry about this creating a large
385                  * free page that straddles into our block: gigantic
386                  * pages are freed as order-0 chunks, and LRU pages
387                  * (currently) do not exceed pageblock_order.
388                  *
389                  * The block of interest has already been marked
390                  * MIGRATE_ISOLATE above, so when migration is done it
391                  * will free its pages onto the correct freelists.
392                  */
393                 if (PageCompound(page)) {
394                         struct page *head = compound_head(page);
395                         unsigned long head_pfn = page_to_pfn(head);
396                         unsigned long nr_pages = compound_nr(head);
397 
398                         if (head_pfn + nr_pages <= boundary_pfn) {
399                                 pfn = head_pfn + nr_pages;
400                                 continue;
401                         }
402 
403 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
404                         if (PageHuge(page)) {
405                                 int page_mt = get_pageblock_migratetype(page);
406                                 struct compact_control cc = {
407                                         .nr_migratepages = 0,
408                                         .order = -1,
409                                         .zone = page_zone(pfn_to_page(head_pfn)),
410                                         .mode = MIGRATE_SYNC,
411                                         .ignore_skip_hint = true,
412                                         .no_set_skip_hint = true,
413                                         .gfp_mask = gfp_flags,
414                                         .alloc_contig = true,
415                                 };
416                                 INIT_LIST_HEAD(&cc.migratepages);
417 
418                                 ret = __alloc_contig_migrate_range(&cc, head_pfn,
419                                                         head_pfn + nr_pages, page_mt);
420                                 if (ret)
421                                         goto failed;
422                                 pfn = head_pfn + nr_pages;
423                                 continue;
424                         }
425 
426                         /*
427                          * These pages are movable too, but they're
428                          * not expected to exceed pageblock_order.
429                          *
430                          * Let us know when they do, so we can add
431                          * proper free and split handling for them.
432                          */
433                         VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
434                         VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page);
435 #endif
436                         goto failed;
437                 }
438 
439                 pfn++;
440         }
441         return 0;
442 failed:
443         /* restore the original migratetype */
444         if (!skip_isolation)
445                 unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
446         return -EBUSY;
447 }
448 
449 /**
450  * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
451  * @start_pfn:          The first PFN of the range to be isolated.
452  * @end_pfn:            The last PFN of the range to be isolated.
453  * @migratetype:        Migrate type to set in error recovery.
454  * @flags:              The following flags are allowed (they can be combined in
455  *                      a bit mask)
456  *                      MEMORY_OFFLINE - isolate to offline (!allocate) memory
457  *                                       e.g., skip over PageHWPoison() pages
458  *                                       and PageOffline() pages.
459  *                      REPORT_FAILURE - report details about the failure to
460  *                      isolate the range
461  * @gfp_flags:          GFP flags used for migrating pages that sit across the
462  *                      range boundaries.
463  *
464  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
465  * the range will never be allocated. Any free pages and pages freed in the
466  * future will not be allocated again. If specified range includes migrate types
467  * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
468  * pages in the range finally, the caller have to free all pages in the range.
469  * test_page_isolated() can be used for test it.
470  *
471  * The function first tries to isolate the pageblocks at the beginning and end
472  * of the range, since there might be pages across the range boundaries.
473  * Afterwards, it isolates the rest of the range.
474  *
475  * There is no high level synchronization mechanism that prevents two threads
476  * from trying to isolate overlapping ranges. If this happens, one thread
477  * will notice pageblocks in the overlapping range already set to isolate.
478  * This happens in set_migratetype_isolate, and set_migratetype_isolate
479  * returns an error. We then clean up by restoring the migration type on
480  * pageblocks we may have modified and return -EBUSY to caller. This
481  * prevents two threads from simultaneously working on overlapping ranges.
482  *
483  * Please note that there is no strong synchronization with the page allocator
484  * either. Pages might be freed while their page blocks are marked ISOLATED.
485  * A call to drain_all_pages() after isolation can flush most of them. However
486  * in some cases pages might still end up on pcp lists and that would allow
487  * for their allocation even when they are in fact isolated already. Depending
488  * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
489  * might be used to flush and disable pcplist before isolation and enable after
490  * unisolation.
491  *
492  * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
493  */
494 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
495                              int migratetype, int flags, gfp_t gfp_flags)
496 {
497         unsigned long pfn;
498         struct page *page;
499         /* isolation is done at page block granularity */
500         unsigned long isolate_start = pageblock_start_pfn(start_pfn);
501         unsigned long isolate_end = pageblock_align(end_pfn);
502         int ret;
503         bool skip_isolation = false;
504 
505         /* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
506         ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
507                         skip_isolation, migratetype);
508         if (ret)
509                 return ret;
510 
511         if (isolate_start == isolate_end - pageblock_nr_pages)
512                 skip_isolation = true;
513 
514         /* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
515         ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
516                         skip_isolation, migratetype);
517         if (ret) {
518                 unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
519                 return ret;
520         }
521 
522         /* skip isolated pageblocks at the beginning and end */
523         for (pfn = isolate_start + pageblock_nr_pages;
524              pfn < isolate_end - pageblock_nr_pages;
525              pfn += pageblock_nr_pages) {
526                 page = __first_valid_page(pfn, pageblock_nr_pages);
527                 if (page && set_migratetype_isolate(page, migratetype, flags,
528                                         start_pfn, end_pfn)) {
529                         undo_isolate_page_range(isolate_start, pfn, migratetype);
530                         unset_migratetype_isolate(
531                                 pfn_to_page(isolate_end - pageblock_nr_pages),
532                                 migratetype);
533                         return -EBUSY;
534                 }
535         }
536         return 0;
537 }
538 
539 /**
540  * undo_isolate_page_range - undo effects of start_isolate_page_range()
541  * @start_pfn:          The first PFN of the isolated range
542  * @end_pfn:            The last PFN of the isolated range
543  * @migratetype:        New migrate type to set on the range
544  *
545  * This finds every MIGRATE_ISOLATE page block in the given range
546  * and switches it to @migratetype.
547  */
548 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
549                             int migratetype)
550 {
551         unsigned long pfn;
552         struct page *page;
553         unsigned long isolate_start = pageblock_start_pfn(start_pfn);
554         unsigned long isolate_end = pageblock_align(end_pfn);
555 
556         for (pfn = isolate_start;
557              pfn < isolate_end;
558              pfn += pageblock_nr_pages) {
559                 page = __first_valid_page(pfn, pageblock_nr_pages);
560                 if (!page || !is_migrate_isolate_page(page))
561                         continue;
562                 unset_migratetype_isolate(page, migratetype);
563         }
564 }
565 /*
566  * Test all pages in the range is free(means isolated) or not.
567  * all pages in [start_pfn...end_pfn) must be in the same zone.
568  * zone->lock must be held before call this.
569  *
570  * Returns the last tested pfn.
571  */
572 static unsigned long
573 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
574                                   int flags)
575 {
576         struct page *page;
577 
578         while (pfn < end_pfn) {
579                 page = pfn_to_page(pfn);
580                 if (PageBuddy(page))
581                         /*
582                          * If the page is on a free list, it has to be on
583                          * the correct MIGRATE_ISOLATE freelist. There is no
584                          * simple way to verify that as VM_BUG_ON(), though.
585                          */
586                         pfn += 1 << buddy_order(page);
587                 else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
588                         /* A HWPoisoned page cannot be also PageBuddy */
589                         pfn++;
590                 else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
591                          !page_count(page))
592                         /*
593                          * The responsible driver agreed to skip PageOffline()
594                          * pages when offlining memory by dropping its
595                          * reference in MEM_GOING_OFFLINE.
596                          */
597                         pfn++;
598                 else
599                         break;
600         }
601 
602         return pfn;
603 }
604 
605 /**
606  * test_pages_isolated - check if pageblocks in range are isolated
607  * @start_pfn:          The first PFN of the isolated range
608  * @end_pfn:            The first PFN *after* the isolated range
609  * @isol_flags:         Testing mode flags
610  *
611  * This tests if all in the specified range are free.
612  *
613  * If %MEMORY_OFFLINE is specified in @flags, it will consider
614  * poisoned and offlined pages free as well.
615  *
616  * Caller must ensure the requested range doesn't span zones.
617  *
618  * Returns 0 if true, -EBUSY if one or more pages are in use.
619  */
620 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
621                         int isol_flags)
622 {
623         unsigned long pfn, flags;
624         struct page *page;
625         struct zone *zone;
626         int ret;
627 
628         /*
629          * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
630          * pages are not aligned to pageblock_nr_pages.
631          * Then we just check migratetype first.
632          */
633         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
634                 page = __first_valid_page(pfn, pageblock_nr_pages);
635                 if (page && !is_migrate_isolate_page(page))
636                         break;
637         }
638         page = __first_valid_page(start_pfn, end_pfn - start_pfn);
639         if ((pfn < end_pfn) || !page) {
640                 ret = -EBUSY;
641                 goto out;
642         }
643 
644         /* Check all pages are free or marked as ISOLATED */
645         zone = page_zone(page);
646         spin_lock_irqsave(&zone->lock, flags);
647         pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
648         spin_unlock_irqrestore(&zone->lock, flags);
649 
650         ret = pfn < end_pfn ? -EBUSY : 0;
651 
652 out:
653         trace_test_pages_isolated(start_pfn, end_pfn, pfn);
654 
655         return ret;
656 }
657 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php