~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/rmap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * mm/rmap.c - physical to virtual reverse mappings
  3  *
  4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5  * Released under the General Public License (GPL).
  6  *
  7  * Simple, low overhead reverse mapping scheme.
  8  * Please try to keep this thing as modular as possible.
  9  *
 10  * Provides methods for unmapping each kind of mapped page:
 11  * the anon methods track anonymous pages, and
 12  * the file methods track pages belonging to an inode.
 13  *
 14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
 15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
 16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
 17  * Contributions by Hugh Dickins 2003, 2004
 18  */
 19 
 20 /*
 21  * Lock ordering in mm:
 22  *
 23  * inode->i_rwsem       (while writing or truncating, not reading or faulting)
 24  *   mm->mmap_lock
 25  *     mapping->invalidate_lock (in filemap_fault)
 26  *       folio_lock
 27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
 28  *           vma_start_write
 29  *             mapping->i_mmap_rwsem
 30  *               anon_vma->rwsem
 31  *                 mm->page_table_lock or pte_lock
 32  *                   swap_lock (in swap_duplicate, swap_info_get)
 33  *                     mmlist_lock (in mmput, drain_mmlist and others)
 34  *                     mapping->private_lock (in block_dirty_folio)
 35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
 36  *                         i_pages lock (widely used)
 37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
 38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
 39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
 40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
 41  *                       i_pages lock (widely used, in set_page_dirty,
 42  *                                 in arch-dependent flush_dcache_mmap_lock,
 43  *                                 within bdi.wb->list_lock in __sync_single_inode)
 44  *
 45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
 46  *   ->tasklist_lock
 47  *     pte map lock
 48  *
 49  * hugetlbfs PageHuge() take locks in this order:
 50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
 51  *     vma_lock (hugetlb specific lock for pmd_sharing)
 52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
 53  *         folio_lock
 54  */
 55 
 56 #include <linux/mm.h>
 57 #include <linux/sched/mm.h>
 58 #include <linux/sched/task.h>
 59 #include <linux/pagemap.h>
 60 #include <linux/swap.h>
 61 #include <linux/swapops.h>
 62 #include <linux/slab.h>
 63 #include <linux/init.h>
 64 #include <linux/ksm.h>
 65 #include <linux/rmap.h>
 66 #include <linux/rcupdate.h>
 67 #include <linux/export.h>
 68 #include <linux/memcontrol.h>
 69 #include <linux/mmu_notifier.h>
 70 #include <linux/migrate.h>
 71 #include <linux/hugetlb.h>
 72 #include <linux/huge_mm.h>
 73 #include <linux/backing-dev.h>
 74 #include <linux/page_idle.h>
 75 #include <linux/memremap.h>
 76 #include <linux/userfaultfd_k.h>
 77 #include <linux/mm_inline.h>
 78 
 79 #include <asm/tlbflush.h>
 80 
 81 #define CREATE_TRACE_POINTS
 82 #include <trace/events/tlb.h>
 83 #include <trace/events/migrate.h>
 84 
 85 #include "internal.h"
 86 
 87 static struct kmem_cache *anon_vma_cachep;
 88 static struct kmem_cache *anon_vma_chain_cachep;
 89 
 90 static inline struct anon_vma *anon_vma_alloc(void)
 91 {
 92         struct anon_vma *anon_vma;
 93 
 94         anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
 95         if (anon_vma) {
 96                 atomic_set(&anon_vma->refcount, 1);
 97                 anon_vma->num_children = 0;
 98                 anon_vma->num_active_vmas = 0;
 99                 anon_vma->parent = anon_vma;
100                 /*
101                  * Initialise the anon_vma root to point to itself. If called
102                  * from fork, the root will be reset to the parents anon_vma.
103                  */
104                 anon_vma->root = anon_vma;
105         }
106 
107         return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112         VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114         /*
115          * Synchronize against folio_lock_anon_vma_read() such that
116          * we can safely hold the lock without the anon_vma getting
117          * freed.
118          *
119          * Relies on the full mb implied by the atomic_dec_and_test() from
120          * put_anon_vma() against the acquire barrier implied by
121          * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122          *
123          * folio_lock_anon_vma_read()   VS      put_anon_vma()
124          *   down_read_trylock()                  atomic_dec_and_test()
125          *   LOCK                                 MB
126          *   atomic_read()                        rwsem_is_locked()
127          *
128          * LOCK should suffice since the actual taking of the lock must
129          * happen _before_ what follows.
130          */
131         might_sleep();
132         if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133                 anon_vma_lock_write(anon_vma);
134                 anon_vma_unlock_write(anon_vma);
135         }
136 
137         kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142         return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147         kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151                                 struct anon_vma_chain *avc,
152                                 struct anon_vma *anon_vma)
153 {
154         avc->vma = vma;
155         avc->anon_vma = anon_vma;
156         list_add(&avc->same_vma, &vma->anon_vma_chain);
157         anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188         struct mm_struct *mm = vma->vm_mm;
189         struct anon_vma *anon_vma, *allocated;
190         struct anon_vma_chain *avc;
191 
192         mmap_assert_locked(mm);
193         might_sleep();
194 
195         avc = anon_vma_chain_alloc(GFP_KERNEL);
196         if (!avc)
197                 goto out_enomem;
198 
199         anon_vma = find_mergeable_anon_vma(vma);
200         allocated = NULL;
201         if (!anon_vma) {
202                 anon_vma = anon_vma_alloc();
203                 if (unlikely(!anon_vma))
204                         goto out_enomem_free_avc;
205                 anon_vma->num_children++; /* self-parent link for new root */
206                 allocated = anon_vma;
207         }
208 
209         anon_vma_lock_write(anon_vma);
210         /* page_table_lock to protect against threads */
211         spin_lock(&mm->page_table_lock);
212         if (likely(!vma->anon_vma)) {
213                 vma->anon_vma = anon_vma;
214                 anon_vma_chain_link(vma, avc, anon_vma);
215                 anon_vma->num_active_vmas++;
216                 allocated = NULL;
217                 avc = NULL;
218         }
219         spin_unlock(&mm->page_table_lock);
220         anon_vma_unlock_write(anon_vma);
221 
222         if (unlikely(allocated))
223                 put_anon_vma(allocated);
224         if (unlikely(avc))
225                 anon_vma_chain_free(avc);
226 
227         return 0;
228 
229  out_enomem_free_avc:
230         anon_vma_chain_free(avc);
231  out_enomem:
232         return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245         struct anon_vma *new_root = anon_vma->root;
246         if (new_root != root) {
247                 if (WARN_ON_ONCE(root))
248                         up_write(&root->rwsem);
249                 root = new_root;
250                 down_write(&root->rwsem);
251         }
252         return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257         if (root)
258                 up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282         struct anon_vma_chain *avc, *pavc;
283         struct anon_vma *root = NULL;
284 
285         list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286                 struct anon_vma *anon_vma;
287 
288                 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289                 if (unlikely(!avc)) {
290                         unlock_anon_vma_root(root);
291                         root = NULL;
292                         avc = anon_vma_chain_alloc(GFP_KERNEL);
293                         if (!avc)
294                                 goto enomem_failure;
295                 }
296                 anon_vma = pavc->anon_vma;
297                 root = lock_anon_vma_root(root, anon_vma);
298                 anon_vma_chain_link(dst, avc, anon_vma);
299 
300                 /*
301                  * Reuse existing anon_vma if it has no vma and only one
302                  * anon_vma child.
303                  *
304                  * Root anon_vma is never reused:
305                  * it has self-parent reference and at least one child.
306                  */
307                 if (!dst->anon_vma && src->anon_vma &&
308                     anon_vma->num_children < 2 &&
309                     anon_vma->num_active_vmas == 0)
310                         dst->anon_vma = anon_vma;
311         }
312         if (dst->anon_vma)
313                 dst->anon_vma->num_active_vmas++;
314         unlock_anon_vma_root(root);
315         return 0;
316 
317  enomem_failure:
318         /*
319          * dst->anon_vma is dropped here otherwise its num_active_vmas can
320          * be incorrectly decremented in unlink_anon_vmas().
321          * We can safely do this because callers of anon_vma_clone() don't care
322          * about dst->anon_vma if anon_vma_clone() failed.
323          */
324         dst->anon_vma = NULL;
325         unlink_anon_vmas(dst);
326         return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336         struct anon_vma_chain *avc;
337         struct anon_vma *anon_vma;
338         int error;
339 
340         /* Don't bother if the parent process has no anon_vma here. */
341         if (!pvma->anon_vma)
342                 return 0;
343 
344         /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345         vma->anon_vma = NULL;
346 
347         /*
348          * First, attach the new VMA to the parent VMA's anon_vmas,
349          * so rmap can find non-COWed pages in child processes.
350          */
351         error = anon_vma_clone(vma, pvma);
352         if (error)
353                 return error;
354 
355         /* An existing anon_vma has been reused, all done then. */
356         if (vma->anon_vma)
357                 return 0;
358 
359         /* Then add our own anon_vma. */
360         anon_vma = anon_vma_alloc();
361         if (!anon_vma)
362                 goto out_error;
363         anon_vma->num_active_vmas++;
364         avc = anon_vma_chain_alloc(GFP_KERNEL);
365         if (!avc)
366                 goto out_error_free_anon_vma;
367 
368         /*
369          * The root anon_vma's rwsem is the lock actually used when we
370          * lock any of the anon_vmas in this anon_vma tree.
371          */
372         anon_vma->root = pvma->anon_vma->root;
373         anon_vma->parent = pvma->anon_vma;
374         /*
375          * With refcounts, an anon_vma can stay around longer than the
376          * process it belongs to. The root anon_vma needs to be pinned until
377          * this anon_vma is freed, because the lock lives in the root.
378          */
379         get_anon_vma(anon_vma->root);
380         /* Mark this anon_vma as the one where our new (COWed) pages go. */
381         vma->anon_vma = anon_vma;
382         anon_vma_lock_write(anon_vma);
383         anon_vma_chain_link(vma, avc, anon_vma);
384         anon_vma->parent->num_children++;
385         anon_vma_unlock_write(anon_vma);
386 
387         return 0;
388 
389  out_error_free_anon_vma:
390         put_anon_vma(anon_vma);
391  out_error:
392         unlink_anon_vmas(vma);
393         return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398         struct anon_vma_chain *avc, *next;
399         struct anon_vma *root = NULL;
400 
401         /*
402          * Unlink each anon_vma chained to the VMA.  This list is ordered
403          * from newest to oldest, ensuring the root anon_vma gets freed last.
404          */
405         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406                 struct anon_vma *anon_vma = avc->anon_vma;
407 
408                 root = lock_anon_vma_root(root, anon_vma);
409                 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411                 /*
412                  * Leave empty anon_vmas on the list - we'll need
413                  * to free them outside the lock.
414                  */
415                 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416                         anon_vma->parent->num_children--;
417                         continue;
418                 }
419 
420                 list_del(&avc->same_vma);
421                 anon_vma_chain_free(avc);
422         }
423         if (vma->anon_vma) {
424                 vma->anon_vma->num_active_vmas--;
425 
426                 /*
427                  * vma would still be needed after unlink, and anon_vma will be prepared
428                  * when handle fault.
429                  */
430                 vma->anon_vma = NULL;
431         }
432         unlock_anon_vma_root(root);
433 
434         /*
435          * Iterate the list once more, it now only contains empty and unlinked
436          * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437          * needing to write-acquire the anon_vma->root->rwsem.
438          */
439         list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440                 struct anon_vma *anon_vma = avc->anon_vma;
441 
442                 VM_WARN_ON(anon_vma->num_children);
443                 VM_WARN_ON(anon_vma->num_active_vmas);
444                 put_anon_vma(anon_vma);
445 
446                 list_del(&avc->same_vma);
447                 anon_vma_chain_free(avc);
448         }
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453         struct anon_vma *anon_vma = data;
454 
455         init_rwsem(&anon_vma->rwsem);
456         atomic_set(&anon_vma->refcount, 0);
457         anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462         anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463                         0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464                         anon_vma_ctor);
465         anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466                         SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(struct folio *folio)
500 {
501         struct anon_vma *anon_vma = NULL;
502         unsigned long anon_mapping;
503 
504         rcu_read_lock();
505         anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507                 goto out;
508         if (!folio_mapped(folio))
509                 goto out;
510 
511         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513                 anon_vma = NULL;
514                 goto out;
515         }
516 
517         /*
518          * If this folio is still mapped, then its anon_vma cannot have been
519          * freed.  But if it has been unmapped, we have no security against the
520          * anon_vma structure being freed and reused (for another anon_vma:
521          * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522          * above cannot corrupt).
523          */
524         if (!folio_mapped(folio)) {
525                 rcu_read_unlock();
526                 put_anon_vma(anon_vma);
527                 return NULL;
528         }
529 out:
530         rcu_read_unlock();
531 
532         return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
544                                           struct rmap_walk_control *rwc)
545 {
546         struct anon_vma *anon_vma = NULL;
547         struct anon_vma *root_anon_vma;
548         unsigned long anon_mapping;
549 
550 retry:
551         rcu_read_lock();
552         anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553         if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554                 goto out;
555         if (!folio_mapped(folio))
556                 goto out;
557 
558         anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559         root_anon_vma = READ_ONCE(anon_vma->root);
560         if (down_read_trylock(&root_anon_vma->rwsem)) {
561                 /*
562                  * folio_move_anon_rmap() might have changed the anon_vma as we
563                  * might not hold the folio lock here.
564                  */
565                 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566                              anon_mapping)) {
567                         up_read(&root_anon_vma->rwsem);
568                         rcu_read_unlock();
569                         goto retry;
570                 }
571 
572                 /*
573                  * If the folio is still mapped, then this anon_vma is still
574                  * its anon_vma, and holding the mutex ensures that it will
575                  * not go away, see anon_vma_free().
576                  */
577                 if (!folio_mapped(folio)) {
578                         up_read(&root_anon_vma->rwsem);
579                         anon_vma = NULL;
580                 }
581                 goto out;
582         }
583 
584         if (rwc && rwc->try_lock) {
585                 anon_vma = NULL;
586                 rwc->contended = true;
587                 goto out;
588         }
589 
590         /* trylock failed, we got to sleep */
591         if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592                 anon_vma = NULL;
593                 goto out;
594         }
595 
596         if (!folio_mapped(folio)) {
597                 rcu_read_unlock();
598                 put_anon_vma(anon_vma);
599                 return NULL;
600         }
601 
602         /* we pinned the anon_vma, its safe to sleep */
603         rcu_read_unlock();
604         anon_vma_lock_read(anon_vma);
605 
606         /*
607          * folio_move_anon_rmap() might have changed the anon_vma as we might
608          * not hold the folio lock here.
609          */
610         if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611                      anon_mapping)) {
612                 anon_vma_unlock_read(anon_vma);
613                 put_anon_vma(anon_vma);
614                 anon_vma = NULL;
615                 goto retry;
616         }
617 
618         if (atomic_dec_and_test(&anon_vma->refcount)) {
619                 /*
620                  * Oops, we held the last refcount, release the lock
621                  * and bail -- can't simply use put_anon_vma() because
622                  * we'll deadlock on the anon_vma_lock_write() recursion.
623                  */
624                 anon_vma_unlock_read(anon_vma);
625                 __put_anon_vma(anon_vma);
626                 anon_vma = NULL;
627         }
628 
629         return anon_vma;
630 
631 out:
632         rcu_read_unlock();
633         return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647         if (!tlb_ubc->flush_required)
648                 return;
649 
650         arch_tlbbatch_flush(&tlb_ubc->arch);
651         tlb_ubc->flush_required = false;
652         tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660         if (tlb_ubc->writable)
661                 try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT   16
669 #define TLB_FLUSH_BATCH_PENDING_MASK                    \
670         ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE                   \
672         (TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675                                       unsigned long uaddr)
676 {
677         struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678         int batch;
679         bool writable = pte_dirty(pteval);
680 
681         if (!pte_accessible(mm, pteval))
682                 return;
683 
684         arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685         tlb_ubc->flush_required = true;
686 
687         /*
688          * Ensure compiler does not re-order the setting of tlb_flush_batched
689          * before the PTE is cleared.
690          */
691         barrier();
692         batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694         if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695                 /*
696                  * Prevent `pending' from catching up with `flushed' because of
697                  * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698                  * `pending' becomes large.
699                  */
700                 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701                         goto retry;
702         } else {
703                 atomic_inc(&mm->tlb_flush_batched);
704         }
705 
706         /*
707          * If the PTE was dirty then it's best to assume it's writable. The
708          * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709          * before the page is queued for IO.
710          */
711         if (writable)
712                 tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721         if (!(flags & TTU_BATCH_FLUSH))
722                 return false;
723 
724         return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744         int batch = atomic_read(&mm->tlb_flush_batched);
745         int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746         int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748         if (pending != flushed) {
749                 arch_flush_tlb_batched_pending(mm);
750                 /*
751                  * If the new TLB flushing is pending during flushing, leave
752                  * mm->tlb_flush_batched as is, to avoid losing flushing.
753                  */
754                 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755                                pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756         }
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760                                       unsigned long uaddr)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766         return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /*
771  * At what user virtual address is page expected in vma?
772  * Caller should check the page is actually part of the vma.
773  */
774 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
775 {
776         struct folio *folio = page_folio(page);
777         pgoff_t pgoff;
778 
779         if (folio_test_anon(folio)) {
780                 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
781                 /*
782                  * Note: swapoff's unuse_vma() is more efficient with this
783                  * check, and needs it to match anon_vma when KSM is active.
784                  */
785                 if (!vma->anon_vma || !page__anon_vma ||
786                     vma->anon_vma->root != page__anon_vma->root)
787                         return -EFAULT;
788         } else if (!vma->vm_file) {
789                 return -EFAULT;
790         } else if (vma->vm_file->f_mapping != folio->mapping) {
791                 return -EFAULT;
792         }
793 
794         /* The !page__anon_vma above handles KSM folios */
795         pgoff = folio->index + folio_page_idx(folio, page);
796         return vma_address(vma, pgoff, 1);
797 }
798 
799 /*
800  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
801  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
802  * represents.
803  */
804 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
805 {
806         pgd_t *pgd;
807         p4d_t *p4d;
808         pud_t *pud;
809         pmd_t *pmd = NULL;
810 
811         pgd = pgd_offset(mm, address);
812         if (!pgd_present(*pgd))
813                 goto out;
814 
815         p4d = p4d_offset(pgd, address);
816         if (!p4d_present(*p4d))
817                 goto out;
818 
819         pud = pud_offset(p4d, address);
820         if (!pud_present(*pud))
821                 goto out;
822 
823         pmd = pmd_offset(pud, address);
824 out:
825         return pmd;
826 }
827 
828 struct folio_referenced_arg {
829         int mapcount;
830         int referenced;
831         unsigned long vm_flags;
832         struct mem_cgroup *memcg;
833 };
834 
835 /*
836  * arg: folio_referenced_arg will be passed
837  */
838 static bool folio_referenced_one(struct folio *folio,
839                 struct vm_area_struct *vma, unsigned long address, void *arg)
840 {
841         struct folio_referenced_arg *pra = arg;
842         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
843         int referenced = 0;
844         unsigned long start = address, ptes = 0;
845 
846         while (page_vma_mapped_walk(&pvmw)) {
847                 address = pvmw.address;
848 
849                 if (vma->vm_flags & VM_LOCKED) {
850                         if (!folio_test_large(folio) || !pvmw.pte) {
851                                 /* Restore the mlock which got missed */
852                                 mlock_vma_folio(folio, vma);
853                                 page_vma_mapped_walk_done(&pvmw);
854                                 pra->vm_flags |= VM_LOCKED;
855                                 return false; /* To break the loop */
856                         }
857                         /*
858                          * For large folio fully mapped to VMA, will
859                          * be handled after the pvmw loop.
860                          *
861                          * For large folio cross VMA boundaries, it's
862                          * expected to be picked  by page reclaim. But
863                          * should skip reference of pages which are in
864                          * the range of VM_LOCKED vma. As page reclaim
865                          * should just count the reference of pages out
866                          * the range of VM_LOCKED vma.
867                          */
868                         ptes++;
869                         pra->mapcount--;
870                         continue;
871                 }
872 
873                 if (pvmw.pte) {
874                         if (lru_gen_enabled() &&
875                             pte_young(ptep_get(pvmw.pte))) {
876                                 lru_gen_look_around(&pvmw);
877                                 referenced++;
878                         }
879 
880                         if (ptep_clear_flush_young_notify(vma, address,
881                                                 pvmw.pte))
882                                 referenced++;
883                 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
884                         if (pmdp_clear_flush_young_notify(vma, address,
885                                                 pvmw.pmd))
886                                 referenced++;
887                 } else {
888                         /* unexpected pmd-mapped folio? */
889                         WARN_ON_ONCE(1);
890                 }
891 
892                 pra->mapcount--;
893         }
894 
895         if ((vma->vm_flags & VM_LOCKED) &&
896                         folio_test_large(folio) &&
897                         folio_within_vma(folio, vma)) {
898                 unsigned long s_align, e_align;
899 
900                 s_align = ALIGN_DOWN(start, PMD_SIZE);
901                 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
902 
903                 /* folio doesn't cross page table boundary and fully mapped */
904                 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
905                         /* Restore the mlock which got missed */
906                         mlock_vma_folio(folio, vma);
907                         pra->vm_flags |= VM_LOCKED;
908                         return false; /* To break the loop */
909                 }
910         }
911 
912         if (referenced)
913                 folio_clear_idle(folio);
914         if (folio_test_clear_young(folio))
915                 referenced++;
916 
917         if (referenced) {
918                 pra->referenced++;
919                 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
920         }
921 
922         if (!pra->mapcount)
923                 return false; /* To break the loop */
924 
925         return true;
926 }
927 
928 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
929 {
930         struct folio_referenced_arg *pra = arg;
931         struct mem_cgroup *memcg = pra->memcg;
932 
933         /*
934          * Ignore references from this mapping if it has no recency. If the
935          * folio has been used in another mapping, we will catch it; if this
936          * other mapping is already gone, the unmap path will have set the
937          * referenced flag or activated the folio in zap_pte_range().
938          */
939         if (!vma_has_recency(vma))
940                 return true;
941 
942         /*
943          * If we are reclaiming on behalf of a cgroup, skip counting on behalf
944          * of references from different cgroups.
945          */
946         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
947                 return true;
948 
949         return false;
950 }
951 
952 /**
953  * folio_referenced() - Test if the folio was referenced.
954  * @folio: The folio to test.
955  * @is_locked: Caller holds lock on the folio.
956  * @memcg: target memory cgroup
957  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
958  *
959  * Quick test_and_clear_referenced for all mappings of a folio,
960  *
961  * Return: The number of mappings which referenced the folio. Return -1 if
962  * the function bailed out due to rmap lock contention.
963  */
964 int folio_referenced(struct folio *folio, int is_locked,
965                      struct mem_cgroup *memcg, unsigned long *vm_flags)
966 {
967         bool we_locked = false;
968         struct folio_referenced_arg pra = {
969                 .mapcount = folio_mapcount(folio),
970                 .memcg = memcg,
971         };
972         struct rmap_walk_control rwc = {
973                 .rmap_one = folio_referenced_one,
974                 .arg = (void *)&pra,
975                 .anon_lock = folio_lock_anon_vma_read,
976                 .try_lock = true,
977                 .invalid_vma = invalid_folio_referenced_vma,
978         };
979 
980         *vm_flags = 0;
981         if (!pra.mapcount)
982                 return 0;
983 
984         if (!folio_raw_mapping(folio))
985                 return 0;
986 
987         if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
988                 we_locked = folio_trylock(folio);
989                 if (!we_locked)
990                         return 1;
991         }
992 
993         rmap_walk(folio, &rwc);
994         *vm_flags = pra.vm_flags;
995 
996         if (we_locked)
997                 folio_unlock(folio);
998 
999         return rwc.contended ? -1 : pra.referenced;
1000 }
1001 
1002 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1003 {
1004         int cleaned = 0;
1005         struct vm_area_struct *vma = pvmw->vma;
1006         struct mmu_notifier_range range;
1007         unsigned long address = pvmw->address;
1008 
1009         /*
1010          * We have to assume the worse case ie pmd for invalidation. Note that
1011          * the folio can not be freed from this function.
1012          */
1013         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1014                                 vma->vm_mm, address, vma_address_end(pvmw));
1015         mmu_notifier_invalidate_range_start(&range);
1016 
1017         while (page_vma_mapped_walk(pvmw)) {
1018                 int ret = 0;
1019 
1020                 address = pvmw->address;
1021                 if (pvmw->pte) {
1022                         pte_t *pte = pvmw->pte;
1023                         pte_t entry = ptep_get(pte);
1024 
1025                         if (!pte_dirty(entry) && !pte_write(entry))
1026                                 continue;
1027 
1028                         flush_cache_page(vma, address, pte_pfn(entry));
1029                         entry = ptep_clear_flush(vma, address, pte);
1030                         entry = pte_wrprotect(entry);
1031                         entry = pte_mkclean(entry);
1032                         set_pte_at(vma->vm_mm, address, pte, entry);
1033                         ret = 1;
1034                 } else {
1035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1036                         pmd_t *pmd = pvmw->pmd;
1037                         pmd_t entry;
1038 
1039                         if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1040                                 continue;
1041 
1042                         flush_cache_range(vma, address,
1043                                           address + HPAGE_PMD_SIZE);
1044                         entry = pmdp_invalidate(vma, address, pmd);
1045                         entry = pmd_wrprotect(entry);
1046                         entry = pmd_mkclean(entry);
1047                         set_pmd_at(vma->vm_mm, address, pmd, entry);
1048                         ret = 1;
1049 #else
1050                         /* unexpected pmd-mapped folio? */
1051                         WARN_ON_ONCE(1);
1052 #endif
1053                 }
1054 
1055                 if (ret)
1056                         cleaned++;
1057         }
1058 
1059         mmu_notifier_invalidate_range_end(&range);
1060 
1061         return cleaned;
1062 }
1063 
1064 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1065                              unsigned long address, void *arg)
1066 {
1067         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1068         int *cleaned = arg;
1069 
1070         *cleaned += page_vma_mkclean_one(&pvmw);
1071 
1072         return true;
1073 }
1074 
1075 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1076 {
1077         if (vma->vm_flags & VM_SHARED)
1078                 return false;
1079 
1080         return true;
1081 }
1082 
1083 int folio_mkclean(struct folio *folio)
1084 {
1085         int cleaned = 0;
1086         struct address_space *mapping;
1087         struct rmap_walk_control rwc = {
1088                 .arg = (void *)&cleaned,
1089                 .rmap_one = page_mkclean_one,
1090                 .invalid_vma = invalid_mkclean_vma,
1091         };
1092 
1093         BUG_ON(!folio_test_locked(folio));
1094 
1095         if (!folio_mapped(folio))
1096                 return 0;
1097 
1098         mapping = folio_mapping(folio);
1099         if (!mapping)
1100                 return 0;
1101 
1102         rmap_walk(folio, &rwc);
1103 
1104         return cleaned;
1105 }
1106 EXPORT_SYMBOL_GPL(folio_mkclean);
1107 
1108 /**
1109  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1110  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1111  *                     within the @vma of shared mappings. And since clean PTEs
1112  *                     should also be readonly, write protects them too.
1113  * @pfn: start pfn.
1114  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1115  * @pgoff: page offset that the @pfn mapped with.
1116  * @vma: vma that @pfn mapped within.
1117  *
1118  * Returns the number of cleaned PTEs (including PMDs).
1119  */
1120 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1121                       struct vm_area_struct *vma)
1122 {
1123         struct page_vma_mapped_walk pvmw = {
1124                 .pfn            = pfn,
1125                 .nr_pages       = nr_pages,
1126                 .pgoff          = pgoff,
1127                 .vma            = vma,
1128                 .flags          = PVMW_SYNC,
1129         };
1130 
1131         if (invalid_mkclean_vma(vma, NULL))
1132                 return 0;
1133 
1134         pvmw.address = vma_address(vma, pgoff, nr_pages);
1135         VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1136 
1137         return page_vma_mkclean_one(&pvmw);
1138 }
1139 
1140 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1141                 struct page *page, int nr_pages, enum rmap_level level,
1142                 int *nr_pmdmapped)
1143 {
1144         atomic_t *mapped = &folio->_nr_pages_mapped;
1145         const int orig_nr_pages = nr_pages;
1146         int first, nr = 0;
1147 
1148         __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1149 
1150         switch (level) {
1151         case RMAP_LEVEL_PTE:
1152                 if (!folio_test_large(folio)) {
1153                         nr = atomic_inc_and_test(&page->_mapcount);
1154                         break;
1155                 }
1156 
1157                 do {
1158                         first = atomic_inc_and_test(&page->_mapcount);
1159                         if (first) {
1160                                 first = atomic_inc_return_relaxed(mapped);
1161                                 if (first < ENTIRELY_MAPPED)
1162                                         nr++;
1163                         }
1164                 } while (page++, --nr_pages > 0);
1165                 atomic_add(orig_nr_pages, &folio->_large_mapcount);
1166                 break;
1167         case RMAP_LEVEL_PMD:
1168                 first = atomic_inc_and_test(&folio->_entire_mapcount);
1169                 if (first) {
1170                         nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1171                         if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1172                                 *nr_pmdmapped = folio_nr_pages(folio);
1173                                 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1174                                 /* Raced ahead of a remove and another add? */
1175                                 if (unlikely(nr < 0))
1176                                         nr = 0;
1177                         } else {
1178                                 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1179                                 nr = 0;
1180                         }
1181                 }
1182                 atomic_inc(&folio->_large_mapcount);
1183                 break;
1184         }
1185         return nr;
1186 }
1187 
1188 /**
1189  * folio_move_anon_rmap - move a folio to our anon_vma
1190  * @folio:      The folio to move to our anon_vma
1191  * @vma:        The vma the folio belongs to
1192  *
1193  * When a folio belongs exclusively to one process after a COW event,
1194  * that folio can be moved into the anon_vma that belongs to just that
1195  * process, so the rmap code will not search the parent or sibling processes.
1196  */
1197 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1198 {
1199         void *anon_vma = vma->anon_vma;
1200 
1201         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1202         VM_BUG_ON_VMA(!anon_vma, vma);
1203 
1204         anon_vma += PAGE_MAPPING_ANON;
1205         /*
1206          * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1207          * simultaneously, so a concurrent reader (eg folio_referenced()'s
1208          * folio_test_anon()) will not see one without the other.
1209          */
1210         WRITE_ONCE(folio->mapping, anon_vma);
1211 }
1212 
1213 /**
1214  * __folio_set_anon - set up a new anonymous rmap for a folio
1215  * @folio:      The folio to set up the new anonymous rmap for.
1216  * @vma:        VM area to add the folio to.
1217  * @address:    User virtual address of the mapping
1218  * @exclusive:  Whether the folio is exclusive to the process.
1219  */
1220 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1221                              unsigned long address, bool exclusive)
1222 {
1223         struct anon_vma *anon_vma = vma->anon_vma;
1224 
1225         BUG_ON(!anon_vma);
1226 
1227         /*
1228          * If the folio isn't exclusive to this vma, we must use the _oldest_
1229          * possible anon_vma for the folio mapping!
1230          */
1231         if (!exclusive)
1232                 anon_vma = anon_vma->root;
1233 
1234         /*
1235          * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1236          * Make sure the compiler doesn't split the stores of anon_vma and
1237          * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1238          * could mistake the mapping for a struct address_space and crash.
1239          */
1240         anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1241         WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1242         folio->index = linear_page_index(vma, address);
1243 }
1244 
1245 /**
1246  * __page_check_anon_rmap - sanity check anonymous rmap addition
1247  * @folio:      The folio containing @page.
1248  * @page:       the page to check the mapping of
1249  * @vma:        the vm area in which the mapping is added
1250  * @address:    the user virtual address mapped
1251  */
1252 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1253         struct vm_area_struct *vma, unsigned long address)
1254 {
1255         /*
1256          * The page's anon-rmap details (mapping and index) are guaranteed to
1257          * be set up correctly at this point.
1258          *
1259          * We have exclusion against folio_add_anon_rmap_*() because the caller
1260          * always holds the page locked.
1261          *
1262          * We have exclusion against folio_add_new_anon_rmap because those pages
1263          * are initially only visible via the pagetables, and the pte is locked
1264          * over the call to folio_add_new_anon_rmap.
1265          */
1266         VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1267                         folio);
1268         VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1269                        page);
1270 }
1271 
1272 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1273 {
1274         int idx;
1275 
1276         if (nr) {
1277                 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1278                 __lruvec_stat_mod_folio(folio, idx, nr);
1279         }
1280         if (nr_pmdmapped) {
1281                 if (folio_test_anon(folio)) {
1282                         idx = NR_ANON_THPS;
1283                         __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1284                 } else {
1285                         /* NR_*_PMDMAPPED are not maintained per-memcg */
1286                         idx = folio_test_swapbacked(folio) ?
1287                                 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1288                         __mod_node_page_state(folio_pgdat(folio), idx,
1289                                               nr_pmdmapped);
1290                 }
1291         }
1292 }
1293 
1294 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1295                 struct page *page, int nr_pages, struct vm_area_struct *vma,
1296                 unsigned long address, rmap_t flags, enum rmap_level level)
1297 {
1298         int i, nr, nr_pmdmapped = 0;
1299 
1300         VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1301 
1302         nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1303 
1304         if (likely(!folio_test_ksm(folio)))
1305                 __page_check_anon_rmap(folio, page, vma, address);
1306 
1307         __folio_mod_stat(folio, nr, nr_pmdmapped);
1308 
1309         if (flags & RMAP_EXCLUSIVE) {
1310                 switch (level) {
1311                 case RMAP_LEVEL_PTE:
1312                         for (i = 0; i < nr_pages; i++)
1313                                 SetPageAnonExclusive(page + i);
1314                         break;
1315                 case RMAP_LEVEL_PMD:
1316                         SetPageAnonExclusive(page);
1317                         break;
1318                 }
1319         }
1320         for (i = 0; i < nr_pages; i++) {
1321                 struct page *cur_page = page + i;
1322 
1323                 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1324                 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1325                                   (folio_test_large(folio) &&
1326                                    folio_entire_mapcount(folio) > 1)) &&
1327                                  PageAnonExclusive(cur_page), folio);
1328         }
1329 
1330         /*
1331          * For large folio, only mlock it if it's fully mapped to VMA. It's
1332          * not easy to check whether the large folio is fully mapped to VMA
1333          * here. Only mlock normal 4K folio and leave page reclaim to handle
1334          * large folio.
1335          */
1336         if (!folio_test_large(folio))
1337                 mlock_vma_folio(folio, vma);
1338 }
1339 
1340 /**
1341  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1342  * @folio:      The folio to add the mappings to
1343  * @page:       The first page to add
1344  * @nr_pages:   The number of pages which will be mapped
1345  * @vma:        The vm area in which the mappings are added
1346  * @address:    The user virtual address of the first page to map
1347  * @flags:      The rmap flags
1348  *
1349  * The page range of folio is defined by [first_page, first_page + nr_pages)
1350  *
1351  * The caller needs to hold the page table lock, and the page must be locked in
1352  * the anon_vma case: to serialize mapping,index checking after setting,
1353  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1354  * (but KSM folios are never downgraded).
1355  */
1356 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1357                 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1358                 rmap_t flags)
1359 {
1360         __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1361                               RMAP_LEVEL_PTE);
1362 }
1363 
1364 /**
1365  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1366  * @folio:      The folio to add the mapping to
1367  * @page:       The first page to add
1368  * @vma:        The vm area in which the mapping is added
1369  * @address:    The user virtual address of the first page to map
1370  * @flags:      The rmap flags
1371  *
1372  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1373  *
1374  * The caller needs to hold the page table lock, and the page must be locked in
1375  * the anon_vma case: to serialize mapping,index checking after setting.
1376  */
1377 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1378                 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1379 {
1380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1381         __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1382                               RMAP_LEVEL_PMD);
1383 #else
1384         WARN_ON_ONCE(true);
1385 #endif
1386 }
1387 
1388 /**
1389  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1390  * @folio:      The folio to add the mapping to.
1391  * @vma:        the vm area in which the mapping is added
1392  * @address:    the user virtual address mapped
1393  * @flags:      The rmap flags
1394  *
1395  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1396  * This means the inc-and-test can be bypassed.
1397  * The folio doesn't necessarily need to be locked while it's exclusive
1398  * unless two threads map it concurrently. However, the folio must be
1399  * locked if it's shared.
1400  *
1401  * If the folio is pmd-mappable, it is accounted as a THP.
1402  */
1403 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1404                 unsigned long address, rmap_t flags)
1405 {
1406         const int nr = folio_nr_pages(folio);
1407         const bool exclusive = flags & RMAP_EXCLUSIVE;
1408         int nr_pmdmapped = 0;
1409 
1410         VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1411         VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1412         VM_BUG_ON_VMA(address < vma->vm_start ||
1413                         address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1414 
1415         /*
1416          * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1417          * under memory pressure.
1418          */
1419         if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1420                 __folio_set_swapbacked(folio);
1421         __folio_set_anon(folio, vma, address, exclusive);
1422 
1423         if (likely(!folio_test_large(folio))) {
1424                 /* increment count (starts at -1) */
1425                 atomic_set(&folio->_mapcount, 0);
1426                 if (exclusive)
1427                         SetPageAnonExclusive(&folio->page);
1428         } else if (!folio_test_pmd_mappable(folio)) {
1429                 int i;
1430 
1431                 for (i = 0; i < nr; i++) {
1432                         struct page *page = folio_page(folio, i);
1433 
1434                         /* increment count (starts at -1) */
1435                         atomic_set(&page->_mapcount, 0);
1436                         if (exclusive)
1437                                 SetPageAnonExclusive(page);
1438                 }
1439 
1440                 /* increment count (starts at -1) */
1441                 atomic_set(&folio->_large_mapcount, nr - 1);
1442                 atomic_set(&folio->_nr_pages_mapped, nr);
1443         } else {
1444                 /* increment count (starts at -1) */
1445                 atomic_set(&folio->_entire_mapcount, 0);
1446                 /* increment count (starts at -1) */
1447                 atomic_set(&folio->_large_mapcount, 0);
1448                 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1449                 if (exclusive)
1450                         SetPageAnonExclusive(&folio->page);
1451                 nr_pmdmapped = nr;
1452         }
1453 
1454         __folio_mod_stat(folio, nr, nr_pmdmapped);
1455 }
1456 
1457 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1458                 struct page *page, int nr_pages, struct vm_area_struct *vma,
1459                 enum rmap_level level)
1460 {
1461         int nr, nr_pmdmapped = 0;
1462 
1463         VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1464 
1465         nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1466         __folio_mod_stat(folio, nr, nr_pmdmapped);
1467 
1468         /* See comments in folio_add_anon_rmap_*() */
1469         if (!folio_test_large(folio))
1470                 mlock_vma_folio(folio, vma);
1471 }
1472 
1473 /**
1474  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1475  * @folio:      The folio to add the mappings to
1476  * @page:       The first page to add
1477  * @nr_pages:   The number of pages that will be mapped using PTEs
1478  * @vma:        The vm area in which the mappings are added
1479  *
1480  * The page range of the folio is defined by [page, page + nr_pages)
1481  *
1482  * The caller needs to hold the page table lock.
1483  */
1484 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1485                 int nr_pages, struct vm_area_struct *vma)
1486 {
1487         __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1488 }
1489 
1490 /**
1491  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1492  * @folio:      The folio to add the mapping to
1493  * @page:       The first page to add
1494  * @vma:        The vm area in which the mapping is added
1495  *
1496  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1497  *
1498  * The caller needs to hold the page table lock.
1499  */
1500 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1501                 struct vm_area_struct *vma)
1502 {
1503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1504         __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1505 #else
1506         WARN_ON_ONCE(true);
1507 #endif
1508 }
1509 
1510 static __always_inline void __folio_remove_rmap(struct folio *folio,
1511                 struct page *page, int nr_pages, struct vm_area_struct *vma,
1512                 enum rmap_level level)
1513 {
1514         atomic_t *mapped = &folio->_nr_pages_mapped;
1515         int last, nr = 0, nr_pmdmapped = 0;
1516         bool partially_mapped = false;
1517 
1518         __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1519 
1520         switch (level) {
1521         case RMAP_LEVEL_PTE:
1522                 if (!folio_test_large(folio)) {
1523                         nr = atomic_add_negative(-1, &page->_mapcount);
1524                         break;
1525                 }
1526 
1527                 atomic_sub(nr_pages, &folio->_large_mapcount);
1528                 do {
1529                         last = atomic_add_negative(-1, &page->_mapcount);
1530                         if (last) {
1531                                 last = atomic_dec_return_relaxed(mapped);
1532                                 if (last < ENTIRELY_MAPPED)
1533                                         nr++;
1534                         }
1535                 } while (page++, --nr_pages > 0);
1536 
1537                 partially_mapped = nr && atomic_read(mapped);
1538                 break;
1539         case RMAP_LEVEL_PMD:
1540                 atomic_dec(&folio->_large_mapcount);
1541                 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1542                 if (last) {
1543                         nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1544                         if (likely(nr < ENTIRELY_MAPPED)) {
1545                                 nr_pmdmapped = folio_nr_pages(folio);
1546                                 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1547                                 /* Raced ahead of another remove and an add? */
1548                                 if (unlikely(nr < 0))
1549                                         nr = 0;
1550                         } else {
1551                                 /* An add of ENTIRELY_MAPPED raced ahead */
1552                                 nr = 0;
1553                         }
1554                 }
1555 
1556                 partially_mapped = nr < nr_pmdmapped;
1557                 break;
1558         }
1559 
1560         if (nr) {
1561                 /*
1562                  * Queue anon large folio for deferred split if at least one
1563                  * page of the folio is unmapped and at least one page
1564                  * is still mapped.
1565                  *
1566                  * Check partially_mapped first to ensure it is a large folio.
1567                  */
1568                 if (folio_test_anon(folio) && partially_mapped &&
1569                     list_empty(&folio->_deferred_list))
1570                         deferred_split_folio(folio);
1571         }
1572         __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1573 
1574         /*
1575          * It would be tidy to reset folio_test_anon mapping when fully
1576          * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1577          * which increments mapcount after us but sets mapping before us:
1578          * so leave the reset to free_pages_prepare, and remember that
1579          * it's only reliable while mapped.
1580          */
1581 
1582         munlock_vma_folio(folio, vma);
1583 }
1584 
1585 /**
1586  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1587  * @folio:      The folio to remove the mappings from
1588  * @page:       The first page to remove
1589  * @nr_pages:   The number of pages that will be removed from the mapping
1590  * @vma:        The vm area from which the mappings are removed
1591  *
1592  * The page range of the folio is defined by [page, page + nr_pages)
1593  *
1594  * The caller needs to hold the page table lock.
1595  */
1596 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1597                 int nr_pages, struct vm_area_struct *vma)
1598 {
1599         __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1600 }
1601 
1602 /**
1603  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1604  * @folio:      The folio to remove the mapping from
1605  * @page:       The first page to remove
1606  * @vma:        The vm area from which the mapping is removed
1607  *
1608  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1609  *
1610  * The caller needs to hold the page table lock.
1611  */
1612 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1613                 struct vm_area_struct *vma)
1614 {
1615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1616         __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1617 #else
1618         WARN_ON_ONCE(true);
1619 #endif
1620 }
1621 
1622 /*
1623  * @arg: enum ttu_flags will be passed to this argument
1624  */
1625 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1626                      unsigned long address, void *arg)
1627 {
1628         struct mm_struct *mm = vma->vm_mm;
1629         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1630         pte_t pteval;
1631         struct page *subpage;
1632         bool anon_exclusive, ret = true;
1633         struct mmu_notifier_range range;
1634         enum ttu_flags flags = (enum ttu_flags)(long)arg;
1635         unsigned long pfn;
1636         unsigned long hsz = 0;
1637 
1638         /*
1639          * When racing against e.g. zap_pte_range() on another cpu,
1640          * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1641          * try_to_unmap() may return before page_mapped() has become false,
1642          * if page table locking is skipped: use TTU_SYNC to wait for that.
1643          */
1644         if (flags & TTU_SYNC)
1645                 pvmw.flags = PVMW_SYNC;
1646 
1647         /*
1648          * For THP, we have to assume the worse case ie pmd for invalidation.
1649          * For hugetlb, it could be much worse if we need to do pud
1650          * invalidation in the case of pmd sharing.
1651          *
1652          * Note that the folio can not be freed in this function as call of
1653          * try_to_unmap() must hold a reference on the folio.
1654          */
1655         range.end = vma_address_end(&pvmw);
1656         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1657                                 address, range.end);
1658         if (folio_test_hugetlb(folio)) {
1659                 /*
1660                  * If sharing is possible, start and end will be adjusted
1661                  * accordingly.
1662                  */
1663                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1664                                                      &range.end);
1665 
1666                 /* We need the huge page size for set_huge_pte_at() */
1667                 hsz = huge_page_size(hstate_vma(vma));
1668         }
1669         mmu_notifier_invalidate_range_start(&range);
1670 
1671         while (page_vma_mapped_walk(&pvmw)) {
1672                 /*
1673                  * If the folio is in an mlock()d vma, we must not swap it out.
1674                  */
1675                 if (!(flags & TTU_IGNORE_MLOCK) &&
1676                     (vma->vm_flags & VM_LOCKED)) {
1677                         /* Restore the mlock which got missed */
1678                         if (!folio_test_large(folio))
1679                                 mlock_vma_folio(folio, vma);
1680                         goto walk_abort;
1681                 }
1682 
1683                 if (!pvmw.pte) {
1684                         if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1685                                                   folio))
1686                                 goto walk_done;
1687 
1688                         if (flags & TTU_SPLIT_HUGE_PMD) {
1689                                 /*
1690                                  * We temporarily have to drop the PTL and
1691                                  * restart so we can process the PTE-mapped THP.
1692                                  */
1693                                 split_huge_pmd_locked(vma, pvmw.address,
1694                                                       pvmw.pmd, false, folio);
1695                                 flags &= ~TTU_SPLIT_HUGE_PMD;
1696                                 page_vma_mapped_walk_restart(&pvmw);
1697                                 continue;
1698                         }
1699                 }
1700 
1701                 /* Unexpected PMD-mapped THP? */
1702                 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1703 
1704                 pfn = pte_pfn(ptep_get(pvmw.pte));
1705                 subpage = folio_page(folio, pfn - folio_pfn(folio));
1706                 address = pvmw.address;
1707                 anon_exclusive = folio_test_anon(folio) &&
1708                                  PageAnonExclusive(subpage);
1709 
1710                 if (folio_test_hugetlb(folio)) {
1711                         bool anon = folio_test_anon(folio);
1712 
1713                         /*
1714                          * The try_to_unmap() is only passed a hugetlb page
1715                          * in the case where the hugetlb page is poisoned.
1716                          */
1717                         VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1718                         /*
1719                          * huge_pmd_unshare may unmap an entire PMD page.
1720                          * There is no way of knowing exactly which PMDs may
1721                          * be cached for this mm, so we must flush them all.
1722                          * start/end were already adjusted above to cover this
1723                          * range.
1724                          */
1725                         flush_cache_range(vma, range.start, range.end);
1726 
1727                         /*
1728                          * To call huge_pmd_unshare, i_mmap_rwsem must be
1729                          * held in write mode.  Caller needs to explicitly
1730                          * do this outside rmap routines.
1731                          *
1732                          * We also must hold hugetlb vma_lock in write mode.
1733                          * Lock order dictates acquiring vma_lock BEFORE
1734                          * i_mmap_rwsem.  We can only try lock here and fail
1735                          * if unsuccessful.
1736                          */
1737                         if (!anon) {
1738                                 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1739                                 if (!hugetlb_vma_trylock_write(vma))
1740                                         goto walk_abort;
1741                                 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1742                                         hugetlb_vma_unlock_write(vma);
1743                                         flush_tlb_range(vma,
1744                                                 range.start, range.end);
1745                                         /*
1746                                          * The ref count of the PMD page was
1747                                          * dropped which is part of the way map
1748                                          * counting is done for shared PMDs.
1749                                          * Return 'true' here.  When there is
1750                                          * no other sharing, huge_pmd_unshare
1751                                          * returns false and we will unmap the
1752                                          * actual page and drop map count
1753                                          * to zero.
1754                                          */
1755                                         goto walk_done;
1756                                 }
1757                                 hugetlb_vma_unlock_write(vma);
1758                         }
1759                         pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1760                 } else {
1761                         flush_cache_page(vma, address, pfn);
1762                         /* Nuke the page table entry. */
1763                         if (should_defer_flush(mm, flags)) {
1764                                 /*
1765                                  * We clear the PTE but do not flush so potentially
1766                                  * a remote CPU could still be writing to the folio.
1767                                  * If the entry was previously clean then the
1768                                  * architecture must guarantee that a clear->dirty
1769                                  * transition on a cached TLB entry is written through
1770                                  * and traps if the PTE is unmapped.
1771                                  */
1772                                 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1773 
1774                                 set_tlb_ubc_flush_pending(mm, pteval, address);
1775                         } else {
1776                                 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1777                         }
1778                 }
1779 
1780                 /*
1781                  * Now the pte is cleared. If this pte was uffd-wp armed,
1782                  * we may want to replace a none pte with a marker pte if
1783                  * it's file-backed, so we don't lose the tracking info.
1784                  */
1785                 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1786 
1787                 /* Set the dirty flag on the folio now the pte is gone. */
1788                 if (pte_dirty(pteval))
1789                         folio_mark_dirty(folio);
1790 
1791                 /* Update high watermark before we lower rss */
1792                 update_hiwater_rss(mm);
1793 
1794                 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1795                         pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1796                         if (folio_test_hugetlb(folio)) {
1797                                 hugetlb_count_sub(folio_nr_pages(folio), mm);
1798                                 set_huge_pte_at(mm, address, pvmw.pte, pteval,
1799                                                 hsz);
1800                         } else {
1801                                 dec_mm_counter(mm, mm_counter(folio));
1802                                 set_pte_at(mm, address, pvmw.pte, pteval);
1803                         }
1804 
1805                 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1806                         /*
1807                          * The guest indicated that the page content is of no
1808                          * interest anymore. Simply discard the pte, vmscan
1809                          * will take care of the rest.
1810                          * A future reference will then fault in a new zero
1811                          * page. When userfaultfd is active, we must not drop
1812                          * this page though, as its main user (postcopy
1813                          * migration) will not expect userfaults on already
1814                          * copied pages.
1815                          */
1816                         dec_mm_counter(mm, mm_counter(folio));
1817                 } else if (folio_test_anon(folio)) {
1818                         swp_entry_t entry = page_swap_entry(subpage);
1819                         pte_t swp_pte;
1820                         /*
1821                          * Store the swap location in the pte.
1822                          * See handle_pte_fault() ...
1823                          */
1824                         if (unlikely(folio_test_swapbacked(folio) !=
1825                                         folio_test_swapcache(folio))) {
1826                                 WARN_ON_ONCE(1);
1827                                 goto walk_abort;
1828                         }
1829 
1830                         /* MADV_FREE page check */
1831                         if (!folio_test_swapbacked(folio)) {
1832                                 int ref_count, map_count;
1833 
1834                                 /*
1835                                  * Synchronize with gup_pte_range():
1836                                  * - clear PTE; barrier; read refcount
1837                                  * - inc refcount; barrier; read PTE
1838                                  */
1839                                 smp_mb();
1840 
1841                                 ref_count = folio_ref_count(folio);
1842                                 map_count = folio_mapcount(folio);
1843 
1844                                 /*
1845                                  * Order reads for page refcount and dirty flag
1846                                  * (see comments in __remove_mapping()).
1847                                  */
1848                                 smp_rmb();
1849 
1850                                 /*
1851                                  * The only page refs must be one from isolation
1852                                  * plus the rmap(s) (dropped by discard:).
1853                                  */
1854                                 if (ref_count == 1 + map_count &&
1855                                     (!folio_test_dirty(folio) ||
1856                                      /*
1857                                       * Unlike MADV_FREE mappings, VM_DROPPABLE
1858                                       * ones can be dropped even if they've
1859                                       * been dirtied.
1860                                       */
1861                                      (vma->vm_flags & VM_DROPPABLE))) {
1862                                         dec_mm_counter(mm, MM_ANONPAGES);
1863                                         goto discard;
1864                                 }
1865 
1866                                 /*
1867                                  * If the folio was redirtied, it cannot be
1868                                  * discarded. Remap the page to page table.
1869                                  */
1870                                 set_pte_at(mm, address, pvmw.pte, pteval);
1871                                 /*
1872                                  * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1873                                  * never get swap backed on failure to drop.
1874                                  */
1875                                 if (!(vma->vm_flags & VM_DROPPABLE))
1876                                         folio_set_swapbacked(folio);
1877                                 goto walk_abort;
1878                         }
1879 
1880                         if (swap_duplicate(entry) < 0) {
1881                                 set_pte_at(mm, address, pvmw.pte, pteval);
1882                                 goto walk_abort;
1883                         }
1884                         if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1885                                 swap_free(entry);
1886                                 set_pte_at(mm, address, pvmw.pte, pteval);
1887                                 goto walk_abort;
1888                         }
1889 
1890                         /* See folio_try_share_anon_rmap(): clear PTE first. */
1891                         if (anon_exclusive &&
1892                             folio_try_share_anon_rmap_pte(folio, subpage)) {
1893                                 swap_free(entry);
1894                                 set_pte_at(mm, address, pvmw.pte, pteval);
1895                                 goto walk_abort;
1896                         }
1897                         if (list_empty(&mm->mmlist)) {
1898                                 spin_lock(&mmlist_lock);
1899                                 if (list_empty(&mm->mmlist))
1900                                         list_add(&mm->mmlist, &init_mm.mmlist);
1901                                 spin_unlock(&mmlist_lock);
1902                         }
1903                         dec_mm_counter(mm, MM_ANONPAGES);
1904                         inc_mm_counter(mm, MM_SWAPENTS);
1905                         swp_pte = swp_entry_to_pte(entry);
1906                         if (anon_exclusive)
1907                                 swp_pte = pte_swp_mkexclusive(swp_pte);
1908                         if (pte_soft_dirty(pteval))
1909                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1910                         if (pte_uffd_wp(pteval))
1911                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1912                         set_pte_at(mm, address, pvmw.pte, swp_pte);
1913                 } else {
1914                         /*
1915                          * This is a locked file-backed folio,
1916                          * so it cannot be removed from the page
1917                          * cache and replaced by a new folio before
1918                          * mmu_notifier_invalidate_range_end, so no
1919                          * concurrent thread might update its page table
1920                          * to point at a new folio while a device is
1921                          * still using this folio.
1922                          *
1923                          * See Documentation/mm/mmu_notifier.rst
1924                          */
1925                         dec_mm_counter(mm, mm_counter_file(folio));
1926                 }
1927 discard:
1928                 if (unlikely(folio_test_hugetlb(folio)))
1929                         hugetlb_remove_rmap(folio);
1930                 else
1931                         folio_remove_rmap_pte(folio, subpage, vma);
1932                 if (vma->vm_flags & VM_LOCKED)
1933                         mlock_drain_local();
1934                 folio_put(folio);
1935                 continue;
1936 walk_abort:
1937                 ret = false;
1938 walk_done:
1939                 page_vma_mapped_walk_done(&pvmw);
1940                 break;
1941         }
1942 
1943         mmu_notifier_invalidate_range_end(&range);
1944 
1945         return ret;
1946 }
1947 
1948 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1949 {
1950         return vma_is_temporary_stack(vma);
1951 }
1952 
1953 static int folio_not_mapped(struct folio *folio)
1954 {
1955         return !folio_mapped(folio);
1956 }
1957 
1958 /**
1959  * try_to_unmap - Try to remove all page table mappings to a folio.
1960  * @folio: The folio to unmap.
1961  * @flags: action and flags
1962  *
1963  * Tries to remove all the page table entries which are mapping this
1964  * folio.  It is the caller's responsibility to check if the folio is
1965  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1966  *
1967  * Context: Caller must hold the folio lock.
1968  */
1969 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1970 {
1971         struct rmap_walk_control rwc = {
1972                 .rmap_one = try_to_unmap_one,
1973                 .arg = (void *)flags,
1974                 .done = folio_not_mapped,
1975                 .anon_lock = folio_lock_anon_vma_read,
1976         };
1977 
1978         if (flags & TTU_RMAP_LOCKED)
1979                 rmap_walk_locked(folio, &rwc);
1980         else
1981                 rmap_walk(folio, &rwc);
1982 }
1983 
1984 /*
1985  * @arg: enum ttu_flags will be passed to this argument.
1986  *
1987  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1988  * containing migration entries.
1989  */
1990 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1991                      unsigned long address, void *arg)
1992 {
1993         struct mm_struct *mm = vma->vm_mm;
1994         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1995         pte_t pteval;
1996         struct page *subpage;
1997         bool anon_exclusive, ret = true;
1998         struct mmu_notifier_range range;
1999         enum ttu_flags flags = (enum ttu_flags)(long)arg;
2000         unsigned long pfn;
2001         unsigned long hsz = 0;
2002 
2003         /*
2004          * When racing against e.g. zap_pte_range() on another cpu,
2005          * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2006          * try_to_migrate() may return before page_mapped() has become false,
2007          * if page table locking is skipped: use TTU_SYNC to wait for that.
2008          */
2009         if (flags & TTU_SYNC)
2010                 pvmw.flags = PVMW_SYNC;
2011 
2012         /*
2013          * unmap_page() in mm/huge_memory.c is the only user of migration with
2014          * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2015          */
2016         if (flags & TTU_SPLIT_HUGE_PMD)
2017                 split_huge_pmd_address(vma, address, true, folio);
2018 
2019         /*
2020          * For THP, we have to assume the worse case ie pmd for invalidation.
2021          * For hugetlb, it could be much worse if we need to do pud
2022          * invalidation in the case of pmd sharing.
2023          *
2024          * Note that the page can not be free in this function as call of
2025          * try_to_unmap() must hold a reference on the page.
2026          */
2027         range.end = vma_address_end(&pvmw);
2028         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2029                                 address, range.end);
2030         if (folio_test_hugetlb(folio)) {
2031                 /*
2032                  * If sharing is possible, start and end will be adjusted
2033                  * accordingly.
2034                  */
2035                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2036                                                      &range.end);
2037 
2038                 /* We need the huge page size for set_huge_pte_at() */
2039                 hsz = huge_page_size(hstate_vma(vma));
2040         }
2041         mmu_notifier_invalidate_range_start(&range);
2042 
2043         while (page_vma_mapped_walk(&pvmw)) {
2044 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2045                 /* PMD-mapped THP migration entry */
2046                 if (!pvmw.pte) {
2047                         subpage = folio_page(folio,
2048                                 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2049                         VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2050                                         !folio_test_pmd_mappable(folio), folio);
2051 
2052                         if (set_pmd_migration_entry(&pvmw, subpage)) {
2053                                 ret = false;
2054                                 page_vma_mapped_walk_done(&pvmw);
2055                                 break;
2056                         }
2057                         continue;
2058                 }
2059 #endif
2060 
2061                 /* Unexpected PMD-mapped THP? */
2062                 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2063 
2064                 pfn = pte_pfn(ptep_get(pvmw.pte));
2065 
2066                 if (folio_is_zone_device(folio)) {
2067                         /*
2068                          * Our PTE is a non-present device exclusive entry and
2069                          * calculating the subpage as for the common case would
2070                          * result in an invalid pointer.
2071                          *
2072                          * Since only PAGE_SIZE pages can currently be
2073                          * migrated, just set it to page. This will need to be
2074                          * changed when hugepage migrations to device private
2075                          * memory are supported.
2076                          */
2077                         VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2078                         subpage = &folio->page;
2079                 } else {
2080                         subpage = folio_page(folio, pfn - folio_pfn(folio));
2081                 }
2082                 address = pvmw.address;
2083                 anon_exclusive = folio_test_anon(folio) &&
2084                                  PageAnonExclusive(subpage);
2085 
2086                 if (folio_test_hugetlb(folio)) {
2087                         bool anon = folio_test_anon(folio);
2088 
2089                         /*
2090                          * huge_pmd_unshare may unmap an entire PMD page.
2091                          * There is no way of knowing exactly which PMDs may
2092                          * be cached for this mm, so we must flush them all.
2093                          * start/end were already adjusted above to cover this
2094                          * range.
2095                          */
2096                         flush_cache_range(vma, range.start, range.end);
2097 
2098                         /*
2099                          * To call huge_pmd_unshare, i_mmap_rwsem must be
2100                          * held in write mode.  Caller needs to explicitly
2101                          * do this outside rmap routines.
2102                          *
2103                          * We also must hold hugetlb vma_lock in write mode.
2104                          * Lock order dictates acquiring vma_lock BEFORE
2105                          * i_mmap_rwsem.  We can only try lock here and
2106                          * fail if unsuccessful.
2107                          */
2108                         if (!anon) {
2109                                 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2110                                 if (!hugetlb_vma_trylock_write(vma)) {
2111                                         page_vma_mapped_walk_done(&pvmw);
2112                                         ret = false;
2113                                         break;
2114                                 }
2115                                 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2116                                         hugetlb_vma_unlock_write(vma);
2117                                         flush_tlb_range(vma,
2118                                                 range.start, range.end);
2119 
2120                                         /*
2121                                          * The ref count of the PMD page was
2122                                          * dropped which is part of the way map
2123                                          * counting is done for shared PMDs.
2124                                          * Return 'true' here.  When there is
2125                                          * no other sharing, huge_pmd_unshare
2126                                          * returns false and we will unmap the
2127                                          * actual page and drop map count
2128                                          * to zero.
2129                                          */
2130                                         page_vma_mapped_walk_done(&pvmw);
2131                                         break;
2132                                 }
2133                                 hugetlb_vma_unlock_write(vma);
2134                         }
2135                         /* Nuke the hugetlb page table entry */
2136                         pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2137                 } else {
2138                         flush_cache_page(vma, address, pfn);
2139                         /* Nuke the page table entry. */
2140                         if (should_defer_flush(mm, flags)) {
2141                                 /*
2142                                  * We clear the PTE but do not flush so potentially
2143                                  * a remote CPU could still be writing to the folio.
2144                                  * If the entry was previously clean then the
2145                                  * architecture must guarantee that a clear->dirty
2146                                  * transition on a cached TLB entry is written through
2147                                  * and traps if the PTE is unmapped.
2148                                  */
2149                                 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2150 
2151                                 set_tlb_ubc_flush_pending(mm, pteval, address);
2152                         } else {
2153                                 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2154                         }
2155                 }
2156 
2157                 /* Set the dirty flag on the folio now the pte is gone. */
2158                 if (pte_dirty(pteval))
2159                         folio_mark_dirty(folio);
2160 
2161                 /* Update high watermark before we lower rss */
2162                 update_hiwater_rss(mm);
2163 
2164                 if (folio_is_device_private(folio)) {
2165                         unsigned long pfn = folio_pfn(folio);
2166                         swp_entry_t entry;
2167                         pte_t swp_pte;
2168 
2169                         if (anon_exclusive)
2170                                 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2171                                                                            subpage));
2172 
2173                         /*
2174                          * Store the pfn of the page in a special migration
2175                          * pte. do_swap_page() will wait until the migration
2176                          * pte is removed and then restart fault handling.
2177                          */
2178                         entry = pte_to_swp_entry(pteval);
2179                         if (is_writable_device_private_entry(entry))
2180                                 entry = make_writable_migration_entry(pfn);
2181                         else if (anon_exclusive)
2182                                 entry = make_readable_exclusive_migration_entry(pfn);
2183                         else
2184                                 entry = make_readable_migration_entry(pfn);
2185                         swp_pte = swp_entry_to_pte(entry);
2186 
2187                         /*
2188                          * pteval maps a zone device page and is therefore
2189                          * a swap pte.
2190                          */
2191                         if (pte_swp_soft_dirty(pteval))
2192                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2193                         if (pte_swp_uffd_wp(pteval))
2194                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2195                         set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2196                         trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2197                                                 folio_order(folio));
2198                         /*
2199                          * No need to invalidate here it will synchronize on
2200                          * against the special swap migration pte.
2201                          */
2202                 } else if (PageHWPoison(subpage)) {
2203                         pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2204                         if (folio_test_hugetlb(folio)) {
2205                                 hugetlb_count_sub(folio_nr_pages(folio), mm);
2206                                 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2207                                                 hsz);
2208                         } else {
2209                                 dec_mm_counter(mm, mm_counter(folio));
2210                                 set_pte_at(mm, address, pvmw.pte, pteval);
2211                         }
2212 
2213                 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2214                         /*
2215                          * The guest indicated that the page content is of no
2216                          * interest anymore. Simply discard the pte, vmscan
2217                          * will take care of the rest.
2218                          * A future reference will then fault in a new zero
2219                          * page. When userfaultfd is active, we must not drop
2220                          * this page though, as its main user (postcopy
2221                          * migration) will not expect userfaults on already
2222                          * copied pages.
2223                          */
2224                         dec_mm_counter(mm, mm_counter(folio));
2225                 } else {
2226                         swp_entry_t entry;
2227                         pte_t swp_pte;
2228 
2229                         if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2230                                 if (folio_test_hugetlb(folio))
2231                                         set_huge_pte_at(mm, address, pvmw.pte,
2232                                                         pteval, hsz);
2233                                 else
2234                                         set_pte_at(mm, address, pvmw.pte, pteval);
2235                                 ret = false;
2236                                 page_vma_mapped_walk_done(&pvmw);
2237                                 break;
2238                         }
2239                         VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2240                                        !anon_exclusive, subpage);
2241 
2242                         /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2243                         if (folio_test_hugetlb(folio)) {
2244                                 if (anon_exclusive &&
2245                                     hugetlb_try_share_anon_rmap(folio)) {
2246                                         set_huge_pte_at(mm, address, pvmw.pte,
2247                                                         pteval, hsz);
2248                                         ret = false;
2249                                         page_vma_mapped_walk_done(&pvmw);
2250                                         break;
2251                                 }
2252                         } else if (anon_exclusive &&
2253                                    folio_try_share_anon_rmap_pte(folio, subpage)) {
2254                                 set_pte_at(mm, address, pvmw.pte, pteval);
2255                                 ret = false;
2256                                 page_vma_mapped_walk_done(&pvmw);
2257                                 break;
2258                         }
2259 
2260                         /*
2261                          * Store the pfn of the page in a special migration
2262                          * pte. do_swap_page() will wait until the migration
2263                          * pte is removed and then restart fault handling.
2264                          */
2265                         if (pte_write(pteval))
2266                                 entry = make_writable_migration_entry(
2267                                                         page_to_pfn(subpage));
2268                         else if (anon_exclusive)
2269                                 entry = make_readable_exclusive_migration_entry(
2270                                                         page_to_pfn(subpage));
2271                         else
2272                                 entry = make_readable_migration_entry(
2273                                                         page_to_pfn(subpage));
2274                         if (pte_young(pteval))
2275                                 entry = make_migration_entry_young(entry);
2276                         if (pte_dirty(pteval))
2277                                 entry = make_migration_entry_dirty(entry);
2278                         swp_pte = swp_entry_to_pte(entry);
2279                         if (pte_soft_dirty(pteval))
2280                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2281                         if (pte_uffd_wp(pteval))
2282                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2283                         if (folio_test_hugetlb(folio))
2284                                 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2285                                                 hsz);
2286                         else
2287                                 set_pte_at(mm, address, pvmw.pte, swp_pte);
2288                         trace_set_migration_pte(address, pte_val(swp_pte),
2289                                                 folio_order(folio));
2290                         /*
2291                          * No need to invalidate here it will synchronize on
2292                          * against the special swap migration pte.
2293                          */
2294                 }
2295 
2296                 if (unlikely(folio_test_hugetlb(folio)))
2297                         hugetlb_remove_rmap(folio);
2298                 else
2299                         folio_remove_rmap_pte(folio, subpage, vma);
2300                 if (vma->vm_flags & VM_LOCKED)
2301                         mlock_drain_local();
2302                 folio_put(folio);
2303         }
2304 
2305         mmu_notifier_invalidate_range_end(&range);
2306 
2307         return ret;
2308 }
2309 
2310 /**
2311  * try_to_migrate - try to replace all page table mappings with swap entries
2312  * @folio: the folio to replace page table entries for
2313  * @flags: action and flags
2314  *
2315  * Tries to remove all the page table entries which are mapping this folio and
2316  * replace them with special swap entries. Caller must hold the folio lock.
2317  */
2318 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2319 {
2320         struct rmap_walk_control rwc = {
2321                 .rmap_one = try_to_migrate_one,
2322                 .arg = (void *)flags,
2323                 .done = folio_not_mapped,
2324                 .anon_lock = folio_lock_anon_vma_read,
2325         };
2326 
2327         /*
2328          * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2329          * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2330          */
2331         if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2332                                         TTU_SYNC | TTU_BATCH_FLUSH)))
2333                 return;
2334 
2335         if (folio_is_zone_device(folio) &&
2336             (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2337                 return;
2338 
2339         /*
2340          * During exec, a temporary VMA is setup and later moved.
2341          * The VMA is moved under the anon_vma lock but not the
2342          * page tables leading to a race where migration cannot
2343          * find the migration ptes. Rather than increasing the
2344          * locking requirements of exec(), migration skips
2345          * temporary VMAs until after exec() completes.
2346          */
2347         if (!folio_test_ksm(folio) && folio_test_anon(folio))
2348                 rwc.invalid_vma = invalid_migration_vma;
2349 
2350         if (flags & TTU_RMAP_LOCKED)
2351                 rmap_walk_locked(folio, &rwc);
2352         else
2353                 rmap_walk(folio, &rwc);
2354 }
2355 
2356 #ifdef CONFIG_DEVICE_PRIVATE
2357 struct make_exclusive_args {
2358         struct mm_struct *mm;
2359         unsigned long address;
2360         void *owner;
2361         bool valid;
2362 };
2363 
2364 static bool page_make_device_exclusive_one(struct folio *folio,
2365                 struct vm_area_struct *vma, unsigned long address, void *priv)
2366 {
2367         struct mm_struct *mm = vma->vm_mm;
2368         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2369         struct make_exclusive_args *args = priv;
2370         pte_t pteval;
2371         struct page *subpage;
2372         bool ret = true;
2373         struct mmu_notifier_range range;
2374         swp_entry_t entry;
2375         pte_t swp_pte;
2376         pte_t ptent;
2377 
2378         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2379                                       vma->vm_mm, address, min(vma->vm_end,
2380                                       address + folio_size(folio)),
2381                                       args->owner);
2382         mmu_notifier_invalidate_range_start(&range);
2383 
2384         while (page_vma_mapped_walk(&pvmw)) {
2385                 /* Unexpected PMD-mapped THP? */
2386                 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2387 
2388                 ptent = ptep_get(pvmw.pte);
2389                 if (!pte_present(ptent)) {
2390                         ret = false;
2391                         page_vma_mapped_walk_done(&pvmw);
2392                         break;
2393                 }
2394 
2395                 subpage = folio_page(folio,
2396                                 pte_pfn(ptent) - folio_pfn(folio));
2397                 address = pvmw.address;
2398 
2399                 /* Nuke the page table entry. */
2400                 flush_cache_page(vma, address, pte_pfn(ptent));
2401                 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2402 
2403                 /* Set the dirty flag on the folio now the pte is gone. */
2404                 if (pte_dirty(pteval))
2405                         folio_mark_dirty(folio);
2406 
2407                 /*
2408                  * Check that our target page is still mapped at the expected
2409                  * address.
2410                  */
2411                 if (args->mm == mm && args->address == address &&
2412                     pte_write(pteval))
2413                         args->valid = true;
2414 
2415                 /*
2416                  * Store the pfn of the page in a special migration
2417                  * pte. do_swap_page() will wait until the migration
2418                  * pte is removed and then restart fault handling.
2419                  */
2420                 if (pte_write(pteval))
2421                         entry = make_writable_device_exclusive_entry(
2422                                                         page_to_pfn(subpage));
2423                 else
2424                         entry = make_readable_device_exclusive_entry(
2425                                                         page_to_pfn(subpage));
2426                 swp_pte = swp_entry_to_pte(entry);
2427                 if (pte_soft_dirty(pteval))
2428                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2429                 if (pte_uffd_wp(pteval))
2430                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2431 
2432                 set_pte_at(mm, address, pvmw.pte, swp_pte);
2433 
2434                 /*
2435                  * There is a reference on the page for the swap entry which has
2436                  * been removed, so shouldn't take another.
2437                  */
2438                 folio_remove_rmap_pte(folio, subpage, vma);
2439         }
2440 
2441         mmu_notifier_invalidate_range_end(&range);
2442 
2443         return ret;
2444 }
2445 
2446 /**
2447  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2448  * @folio: The folio to replace page table entries for.
2449  * @mm: The mm_struct where the folio is expected to be mapped.
2450  * @address: Address where the folio is expected to be mapped.
2451  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2452  *
2453  * Tries to remove all the page table entries which are mapping this
2454  * folio and replace them with special device exclusive swap entries to
2455  * grant a device exclusive access to the folio.
2456  *
2457  * Context: Caller must hold the folio lock.
2458  * Return: false if the page is still mapped, or if it could not be unmapped
2459  * from the expected address. Otherwise returns true (success).
2460  */
2461 static bool folio_make_device_exclusive(struct folio *folio,
2462                 struct mm_struct *mm, unsigned long address, void *owner)
2463 {
2464         struct make_exclusive_args args = {
2465                 .mm = mm,
2466                 .address = address,
2467                 .owner = owner,
2468                 .valid = false,
2469         };
2470         struct rmap_walk_control rwc = {
2471                 .rmap_one = page_make_device_exclusive_one,
2472                 .done = folio_not_mapped,
2473                 .anon_lock = folio_lock_anon_vma_read,
2474                 .arg = &args,
2475         };
2476 
2477         /*
2478          * Restrict to anonymous folios for now to avoid potential writeback
2479          * issues.
2480          */
2481         if (!folio_test_anon(folio))
2482                 return false;
2483 
2484         rmap_walk(folio, &rwc);
2485 
2486         return args.valid && !folio_mapcount(folio);
2487 }
2488 
2489 /**
2490  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2491  * @mm: mm_struct of associated target process
2492  * @start: start of the region to mark for exclusive device access
2493  * @end: end address of region
2494  * @pages: returns the pages which were successfully marked for exclusive access
2495  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2496  *
2497  * Returns: number of pages found in the range by GUP. A page is marked for
2498  * exclusive access only if the page pointer is non-NULL.
2499  *
2500  * This function finds ptes mapping page(s) to the given address range, locks
2501  * them and replaces mappings with special swap entries preventing userspace CPU
2502  * access. On fault these entries are replaced with the original mapping after
2503  * calling MMU notifiers.
2504  *
2505  * A driver using this to program access from a device must use a mmu notifier
2506  * critical section to hold a device specific lock during programming. Once
2507  * programming is complete it should drop the page lock and reference after
2508  * which point CPU access to the page will revoke the exclusive access.
2509  */
2510 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2511                                 unsigned long end, struct page **pages,
2512                                 void *owner)
2513 {
2514         long npages = (end - start) >> PAGE_SHIFT;
2515         long i;
2516 
2517         npages = get_user_pages_remote(mm, start, npages,
2518                                        FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2519                                        pages, NULL);
2520         if (npages < 0)
2521                 return npages;
2522 
2523         for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2524                 struct folio *folio = page_folio(pages[i]);
2525                 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2526                         folio_put(folio);
2527                         pages[i] = NULL;
2528                         continue;
2529                 }
2530 
2531                 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2532                         folio_unlock(folio);
2533                         folio_put(folio);
2534                         pages[i] = NULL;
2535                 }
2536         }
2537 
2538         return npages;
2539 }
2540 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2541 #endif
2542 
2543 void __put_anon_vma(struct anon_vma *anon_vma)
2544 {
2545         struct anon_vma *root = anon_vma->root;
2546 
2547         anon_vma_free(anon_vma);
2548         if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2549                 anon_vma_free(root);
2550 }
2551 
2552 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2553                                             struct rmap_walk_control *rwc)
2554 {
2555         struct anon_vma *anon_vma;
2556 
2557         if (rwc->anon_lock)
2558                 return rwc->anon_lock(folio, rwc);
2559 
2560         /*
2561          * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2562          * because that depends on page_mapped(); but not all its usages
2563          * are holding mmap_lock. Users without mmap_lock are required to
2564          * take a reference count to prevent the anon_vma disappearing
2565          */
2566         anon_vma = folio_anon_vma(folio);
2567         if (!anon_vma)
2568                 return NULL;
2569 
2570         if (anon_vma_trylock_read(anon_vma))
2571                 goto out;
2572 
2573         if (rwc->try_lock) {
2574                 anon_vma = NULL;
2575                 rwc->contended = true;
2576                 goto out;
2577         }
2578 
2579         anon_vma_lock_read(anon_vma);
2580 out:
2581         return anon_vma;
2582 }
2583 
2584 /*
2585  * rmap_walk_anon - do something to anonymous page using the object-based
2586  * rmap method
2587  * @folio: the folio to be handled
2588  * @rwc: control variable according to each walk type
2589  * @locked: caller holds relevant rmap lock
2590  *
2591  * Find all the mappings of a folio using the mapping pointer and the vma
2592  * chains contained in the anon_vma struct it points to.
2593  */
2594 static void rmap_walk_anon(struct folio *folio,
2595                 struct rmap_walk_control *rwc, bool locked)
2596 {
2597         struct anon_vma *anon_vma;
2598         pgoff_t pgoff_start, pgoff_end;
2599         struct anon_vma_chain *avc;
2600 
2601         if (locked) {
2602                 anon_vma = folio_anon_vma(folio);
2603                 /* anon_vma disappear under us? */
2604                 VM_BUG_ON_FOLIO(!anon_vma, folio);
2605         } else {
2606                 anon_vma = rmap_walk_anon_lock(folio, rwc);
2607         }
2608         if (!anon_vma)
2609                 return;
2610 
2611         pgoff_start = folio_pgoff(folio);
2612         pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2613         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2614                         pgoff_start, pgoff_end) {
2615                 struct vm_area_struct *vma = avc->vma;
2616                 unsigned long address = vma_address(vma, pgoff_start,
2617                                 folio_nr_pages(folio));
2618 
2619                 VM_BUG_ON_VMA(address == -EFAULT, vma);
2620                 cond_resched();
2621 
2622                 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2623                         continue;
2624 
2625                 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2626                         break;
2627                 if (rwc->done && rwc->done(folio))
2628                         break;
2629         }
2630 
2631         if (!locked)
2632                 anon_vma_unlock_read(anon_vma);
2633 }
2634 
2635 /*
2636  * rmap_walk_file - do something to file page using the object-based rmap method
2637  * @folio: the folio to be handled
2638  * @rwc: control variable according to each walk type
2639  * @locked: caller holds relevant rmap lock
2640  *
2641  * Find all the mappings of a folio using the mapping pointer and the vma chains
2642  * contained in the address_space struct it points to.
2643  */
2644 static void rmap_walk_file(struct folio *folio,
2645                 struct rmap_walk_control *rwc, bool locked)
2646 {
2647         struct address_space *mapping = folio_mapping(folio);
2648         pgoff_t pgoff_start, pgoff_end;
2649         struct vm_area_struct *vma;
2650 
2651         /*
2652          * The page lock not only makes sure that page->mapping cannot
2653          * suddenly be NULLified by truncation, it makes sure that the
2654          * structure at mapping cannot be freed and reused yet,
2655          * so we can safely take mapping->i_mmap_rwsem.
2656          */
2657         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2658 
2659         if (!mapping)
2660                 return;
2661 
2662         pgoff_start = folio_pgoff(folio);
2663         pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2664         if (!locked) {
2665                 if (i_mmap_trylock_read(mapping))
2666                         goto lookup;
2667 
2668                 if (rwc->try_lock) {
2669                         rwc->contended = true;
2670                         return;
2671                 }
2672 
2673                 i_mmap_lock_read(mapping);
2674         }
2675 lookup:
2676         vma_interval_tree_foreach(vma, &mapping->i_mmap,
2677                         pgoff_start, pgoff_end) {
2678                 unsigned long address = vma_address(vma, pgoff_start,
2679                                folio_nr_pages(folio));
2680 
2681                 VM_BUG_ON_VMA(address == -EFAULT, vma);
2682                 cond_resched();
2683 
2684                 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2685                         continue;
2686 
2687                 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2688                         goto done;
2689                 if (rwc->done && rwc->done(folio))
2690                         goto done;
2691         }
2692 
2693 done:
2694         if (!locked)
2695                 i_mmap_unlock_read(mapping);
2696 }
2697 
2698 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2699 {
2700         if (unlikely(folio_test_ksm(folio)))
2701                 rmap_walk_ksm(folio, rwc);
2702         else if (folio_test_anon(folio))
2703                 rmap_walk_anon(folio, rwc, false);
2704         else
2705                 rmap_walk_file(folio, rwc, false);
2706 }
2707 
2708 /* Like rmap_walk, but caller holds relevant rmap lock */
2709 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2710 {
2711         /* no ksm support for now */
2712         VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2713         if (folio_test_anon(folio))
2714                 rmap_walk_anon(folio, rwc, true);
2715         else
2716                 rmap_walk_file(folio, rwc, true);
2717 }
2718 
2719 #ifdef CONFIG_HUGETLB_PAGE
2720 /*
2721  * The following two functions are for anonymous (private mapped) hugepages.
2722  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2723  * and no lru code, because we handle hugepages differently from common pages.
2724  */
2725 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2726                 unsigned long address, rmap_t flags)
2727 {
2728         VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2729         VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2730 
2731         atomic_inc(&folio->_entire_mapcount);
2732         atomic_inc(&folio->_large_mapcount);
2733         if (flags & RMAP_EXCLUSIVE)
2734                 SetPageAnonExclusive(&folio->page);
2735         VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2736                          PageAnonExclusive(&folio->page), folio);
2737 }
2738 
2739 void hugetlb_add_new_anon_rmap(struct folio *folio,
2740                 struct vm_area_struct *vma, unsigned long address)
2741 {
2742         VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2743 
2744         BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2745         /* increment count (starts at -1) */
2746         atomic_set(&folio->_entire_mapcount, 0);
2747         atomic_set(&folio->_large_mapcount, 0);
2748         folio_clear_hugetlb_restore_reserve(folio);
2749         __folio_set_anon(folio, vma, address, true);
2750         SetPageAnonExclusive(&folio->page);
2751 }
2752 #endif /* CONFIG_HUGETLB_PAGE */
2753 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php