1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef MM_SLAB_H 3 #define MM_SLAB_H 4 5 #include <linux/reciprocal_div.h> 6 #include <linux/list_lru.h> 7 #include <linux/local_lock.h> 8 #include <linux/random.h> 9 #include <linux/kobject.h> 10 #include <linux/sched/mm.h> 11 #include <linux/memcontrol.h> 12 #include <linux/kfence.h> 13 #include <linux/kasan.h> 14 15 /* 16 * Internal slab definitions 17 */ 18 19 #ifdef CONFIG_64BIT 20 # ifdef system_has_cmpxchg128 21 # define system_has_freelist_aba() system_has_cmpxchg128() 22 # define try_cmpxchg_freelist try_cmpxchg128 23 # endif 24 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128 25 typedef u128 freelist_full_t; 26 #else /* CONFIG_64BIT */ 27 # ifdef system_has_cmpxchg64 28 # define system_has_freelist_aba() system_has_cmpxchg64() 29 # define try_cmpxchg_freelist try_cmpxchg64 30 # endif 31 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64 32 typedef u64 freelist_full_t; 33 #endif /* CONFIG_64BIT */ 34 35 #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 36 #undef system_has_freelist_aba 37 #endif 38 39 /* 40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA 41 * problems with cmpxchg of just a pointer. 42 */ 43 typedef union { 44 struct { 45 void *freelist; 46 unsigned long counter; 47 }; 48 freelist_full_t full; 49 } freelist_aba_t; 50 51 /* Reuses the bits in struct page */ 52 struct slab { 53 unsigned long __page_flags; 54 55 struct kmem_cache *slab_cache; 56 union { 57 struct { 58 union { 59 struct list_head slab_list; 60 #ifdef CONFIG_SLUB_CPU_PARTIAL 61 struct { 62 struct slab *next; 63 int slabs; /* Nr of slabs left */ 64 }; 65 #endif 66 }; 67 /* Double-word boundary */ 68 union { 69 struct { 70 void *freelist; /* first free object */ 71 union { 72 unsigned long counters; 73 struct { 74 unsigned inuse:16; 75 unsigned objects:15; 76 unsigned frozen:1; 77 }; 78 }; 79 }; 80 #ifdef system_has_freelist_aba 81 freelist_aba_t freelist_counter; 82 #endif 83 }; 84 }; 85 struct rcu_head rcu_head; 86 }; 87 88 unsigned int __page_type; 89 atomic_t __page_refcount; 90 #ifdef CONFIG_SLAB_OBJ_EXT 91 unsigned long obj_exts; 92 #endif 93 }; 94 95 #define SLAB_MATCH(pg, sl) \ 96 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) 97 SLAB_MATCH(flags, __page_flags); 98 SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */ 99 SLAB_MATCH(_refcount, __page_refcount); 100 #ifdef CONFIG_MEMCG 101 SLAB_MATCH(memcg_data, obj_exts); 102 #elif defined(CONFIG_SLAB_OBJ_EXT) 103 SLAB_MATCH(_unused_slab_obj_exts, obj_exts); 104 #endif 105 #undef SLAB_MATCH 106 static_assert(sizeof(struct slab) <= sizeof(struct page)); 107 #if defined(system_has_freelist_aba) 108 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t))); 109 #endif 110 111 /** 112 * folio_slab - Converts from folio to slab. 113 * @folio: The folio. 114 * 115 * Currently struct slab is a different representation of a folio where 116 * folio_test_slab() is true. 117 * 118 * Return: The slab which contains this folio. 119 */ 120 #define folio_slab(folio) (_Generic((folio), \ 121 const struct folio *: (const struct slab *)(folio), \ 122 struct folio *: (struct slab *)(folio))) 123 124 /** 125 * slab_folio - The folio allocated for a slab 126 * @slab: The slab. 127 * 128 * Slabs are allocated as folios that contain the individual objects and are 129 * using some fields in the first struct page of the folio - those fields are 130 * now accessed by struct slab. It is occasionally necessary to convert back to 131 * a folio in order to communicate with the rest of the mm. Please use this 132 * helper function instead of casting yourself, as the implementation may change 133 * in the future. 134 */ 135 #define slab_folio(s) (_Generic((s), \ 136 const struct slab *: (const struct folio *)s, \ 137 struct slab *: (struct folio *)s)) 138 139 /** 140 * page_slab - Converts from first struct page to slab. 141 * @p: The first (either head of compound or single) page of slab. 142 * 143 * A temporary wrapper to convert struct page to struct slab in situations where 144 * we know the page is the compound head, or single order-0 page. 145 * 146 * Long-term ideally everything would work with struct slab directly or go 147 * through folio to struct slab. 148 * 149 * Return: The slab which contains this page 150 */ 151 #define page_slab(p) (_Generic((p), \ 152 const struct page *: (const struct slab *)(p), \ 153 struct page *: (struct slab *)(p))) 154 155 /** 156 * slab_page - The first struct page allocated for a slab 157 * @slab: The slab. 158 * 159 * A convenience wrapper for converting slab to the first struct page of the 160 * underlying folio, to communicate with code not yet converted to folio or 161 * struct slab. 162 */ 163 #define slab_page(s) folio_page(slab_folio(s), 0) 164 165 /* 166 * If network-based swap is enabled, sl*b must keep track of whether pages 167 * were allocated from pfmemalloc reserves. 168 */ 169 static inline bool slab_test_pfmemalloc(const struct slab *slab) 170 { 171 return folio_test_active(slab_folio(slab)); 172 } 173 174 static inline void slab_set_pfmemalloc(struct slab *slab) 175 { 176 folio_set_active(slab_folio(slab)); 177 } 178 179 static inline void slab_clear_pfmemalloc(struct slab *slab) 180 { 181 folio_clear_active(slab_folio(slab)); 182 } 183 184 static inline void __slab_clear_pfmemalloc(struct slab *slab) 185 { 186 __folio_clear_active(slab_folio(slab)); 187 } 188 189 static inline void *slab_address(const struct slab *slab) 190 { 191 return folio_address(slab_folio(slab)); 192 } 193 194 static inline int slab_nid(const struct slab *slab) 195 { 196 return folio_nid(slab_folio(slab)); 197 } 198 199 static inline pg_data_t *slab_pgdat(const struct slab *slab) 200 { 201 return folio_pgdat(slab_folio(slab)); 202 } 203 204 static inline struct slab *virt_to_slab(const void *addr) 205 { 206 struct folio *folio = virt_to_folio(addr); 207 208 if (!folio_test_slab(folio)) 209 return NULL; 210 211 return folio_slab(folio); 212 } 213 214 static inline int slab_order(const struct slab *slab) 215 { 216 return folio_order(slab_folio(slab)); 217 } 218 219 static inline size_t slab_size(const struct slab *slab) 220 { 221 return PAGE_SIZE << slab_order(slab); 222 } 223 224 #ifdef CONFIG_SLUB_CPU_PARTIAL 225 #define slub_percpu_partial(c) ((c)->partial) 226 227 #define slub_set_percpu_partial(c, p) \ 228 ({ \ 229 slub_percpu_partial(c) = (p)->next; \ 230 }) 231 232 #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c)) 233 #else 234 #define slub_percpu_partial(c) NULL 235 236 #define slub_set_percpu_partial(c, p) 237 238 #define slub_percpu_partial_read_once(c) NULL 239 #endif // CONFIG_SLUB_CPU_PARTIAL 240 241 /* 242 * Word size structure that can be atomically updated or read and that 243 * contains both the order and the number of objects that a slab of the 244 * given order would contain. 245 */ 246 struct kmem_cache_order_objects { 247 unsigned int x; 248 }; 249 250 /* 251 * Slab cache management. 252 */ 253 struct kmem_cache { 254 #ifndef CONFIG_SLUB_TINY 255 struct kmem_cache_cpu __percpu *cpu_slab; 256 #endif 257 /* Used for retrieving partial slabs, etc. */ 258 slab_flags_t flags; 259 unsigned long min_partial; 260 unsigned int size; /* Object size including metadata */ 261 unsigned int object_size; /* Object size without metadata */ 262 struct reciprocal_value reciprocal_size; 263 unsigned int offset; /* Free pointer offset */ 264 #ifdef CONFIG_SLUB_CPU_PARTIAL 265 /* Number of per cpu partial objects to keep around */ 266 unsigned int cpu_partial; 267 /* Number of per cpu partial slabs to keep around */ 268 unsigned int cpu_partial_slabs; 269 #endif 270 struct kmem_cache_order_objects oo; 271 272 /* Allocation and freeing of slabs */ 273 struct kmem_cache_order_objects min; 274 gfp_t allocflags; /* gfp flags to use on each alloc */ 275 int refcount; /* Refcount for slab cache destroy */ 276 void (*ctor)(void *object); /* Object constructor */ 277 unsigned int inuse; /* Offset to metadata */ 278 unsigned int align; /* Alignment */ 279 unsigned int red_left_pad; /* Left redzone padding size */ 280 const char *name; /* Name (only for display!) */ 281 struct list_head list; /* List of slab caches */ 282 #ifdef CONFIG_SYSFS 283 struct kobject kobj; /* For sysfs */ 284 #endif 285 #ifdef CONFIG_SLAB_FREELIST_HARDENED 286 unsigned long random; 287 #endif 288 289 #ifdef CONFIG_NUMA 290 /* 291 * Defragmentation by allocating from a remote node. 292 */ 293 unsigned int remote_node_defrag_ratio; 294 #endif 295 296 #ifdef CONFIG_SLAB_FREELIST_RANDOM 297 unsigned int *random_seq; 298 #endif 299 300 #ifdef CONFIG_KASAN_GENERIC 301 struct kasan_cache kasan_info; 302 #endif 303 304 #ifdef CONFIG_HARDENED_USERCOPY 305 unsigned int useroffset; /* Usercopy region offset */ 306 unsigned int usersize; /* Usercopy region size */ 307 #endif 308 309 struct kmem_cache_node *node[MAX_NUMNODES]; 310 }; 311 312 #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY) 313 #define SLAB_SUPPORTS_SYSFS 314 void sysfs_slab_unlink(struct kmem_cache *s); 315 void sysfs_slab_release(struct kmem_cache *s); 316 #else 317 static inline void sysfs_slab_unlink(struct kmem_cache *s) { } 318 static inline void sysfs_slab_release(struct kmem_cache *s) { } 319 #endif 320 321 void *fixup_red_left(struct kmem_cache *s, void *p); 322 323 static inline void *nearest_obj(struct kmem_cache *cache, 324 const struct slab *slab, void *x) 325 { 326 void *object = x - (x - slab_address(slab)) % cache->size; 327 void *last_object = slab_address(slab) + 328 (slab->objects - 1) * cache->size; 329 void *result = (unlikely(object > last_object)) ? last_object : object; 330 331 result = fixup_red_left(cache, result); 332 return result; 333 } 334 335 /* Determine object index from a given position */ 336 static inline unsigned int __obj_to_index(const struct kmem_cache *cache, 337 void *addr, void *obj) 338 { 339 return reciprocal_divide(kasan_reset_tag(obj) - addr, 340 cache->reciprocal_size); 341 } 342 343 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 344 const struct slab *slab, void *obj) 345 { 346 if (is_kfence_address(obj)) 347 return 0; 348 return __obj_to_index(cache, slab_address(slab), obj); 349 } 350 351 static inline int objs_per_slab(const struct kmem_cache *cache, 352 const struct slab *slab) 353 { 354 return slab->objects; 355 } 356 357 /* 358 * State of the slab allocator. 359 * 360 * This is used to describe the states of the allocator during bootup. 361 * Allocators use this to gradually bootstrap themselves. Most allocators 362 * have the problem that the structures used for managing slab caches are 363 * allocated from slab caches themselves. 364 */ 365 enum slab_state { 366 DOWN, /* No slab functionality yet */ 367 PARTIAL, /* SLUB: kmem_cache_node available */ 368 UP, /* Slab caches usable but not all extras yet */ 369 FULL /* Everything is working */ 370 }; 371 372 extern enum slab_state slab_state; 373 374 /* The slab cache mutex protects the management structures during changes */ 375 extern struct mutex slab_mutex; 376 377 /* The list of all slab caches on the system */ 378 extern struct list_head slab_caches; 379 380 /* The slab cache that manages slab cache information */ 381 extern struct kmem_cache *kmem_cache; 382 383 /* A table of kmalloc cache names and sizes */ 384 extern const struct kmalloc_info_struct { 385 const char *name[NR_KMALLOC_TYPES]; 386 unsigned int size; 387 } kmalloc_info[]; 388 389 /* Kmalloc array related functions */ 390 void setup_kmalloc_cache_index_table(void); 391 void create_kmalloc_caches(void); 392 393 extern u8 kmalloc_size_index[24]; 394 395 static inline unsigned int size_index_elem(unsigned int bytes) 396 { 397 return (bytes - 1) / 8; 398 } 399 400 /* 401 * Find the kmem_cache structure that serves a given size of 402 * allocation 403 * 404 * This assumes size is larger than zero and not larger than 405 * KMALLOC_MAX_CACHE_SIZE and the caller must check that. 406 */ 407 static inline struct kmem_cache * 408 kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller) 409 { 410 unsigned int index; 411 412 if (!b) 413 b = &kmalloc_caches[kmalloc_type(flags, caller)]; 414 if (size <= 192) 415 index = kmalloc_size_index[size_index_elem(size)]; 416 else 417 index = fls(size - 1); 418 419 return (*b)[index]; 420 } 421 422 gfp_t kmalloc_fix_flags(gfp_t flags); 423 424 /* Functions provided by the slab allocators */ 425 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); 426 427 void __init kmem_cache_init(void); 428 extern void create_boot_cache(struct kmem_cache *, const char *name, 429 unsigned int size, slab_flags_t flags, 430 unsigned int useroffset, unsigned int usersize); 431 432 int slab_unmergeable(struct kmem_cache *s); 433 struct kmem_cache *find_mergeable(unsigned size, unsigned align, 434 slab_flags_t flags, const char *name, void (*ctor)(void *)); 435 struct kmem_cache * 436 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 437 slab_flags_t flags, void (*ctor)(void *)); 438 439 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name); 440 441 static inline bool is_kmalloc_cache(struct kmem_cache *s) 442 { 443 return (s->flags & SLAB_KMALLOC); 444 } 445 446 /* Legal flag mask for kmem_cache_create(), for various configurations */ 447 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ 448 SLAB_CACHE_DMA32 | SLAB_PANIC | \ 449 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 450 451 #ifdef CONFIG_SLUB_DEBUG 452 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 453 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 454 #else 455 #define SLAB_DEBUG_FLAGS (0) 456 #endif 457 458 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 459 SLAB_TEMPORARY | SLAB_ACCOUNT | \ 460 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE) 461 462 /* Common flags available with current configuration */ 463 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 464 465 /* Common flags permitted for kmem_cache_create */ 466 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 467 SLAB_RED_ZONE | \ 468 SLAB_POISON | \ 469 SLAB_STORE_USER | \ 470 SLAB_TRACE | \ 471 SLAB_CONSISTENCY_CHECKS | \ 472 SLAB_NOLEAKTRACE | \ 473 SLAB_RECLAIM_ACCOUNT | \ 474 SLAB_TEMPORARY | \ 475 SLAB_ACCOUNT | \ 476 SLAB_KMALLOC | \ 477 SLAB_NO_MERGE | \ 478 SLAB_NO_USER_FLAGS) 479 480 bool __kmem_cache_empty(struct kmem_cache *); 481 int __kmem_cache_shutdown(struct kmem_cache *); 482 void __kmem_cache_release(struct kmem_cache *); 483 int __kmem_cache_shrink(struct kmem_cache *); 484 void slab_kmem_cache_release(struct kmem_cache *); 485 486 struct seq_file; 487 struct file; 488 489 struct slabinfo { 490 unsigned long active_objs; 491 unsigned long num_objs; 492 unsigned long active_slabs; 493 unsigned long num_slabs; 494 unsigned long shared_avail; 495 unsigned int limit; 496 unsigned int batchcount; 497 unsigned int shared; 498 unsigned int objects_per_slab; 499 unsigned int cache_order; 500 }; 501 502 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 503 504 #ifdef CONFIG_SLUB_DEBUG 505 #ifdef CONFIG_SLUB_DEBUG_ON 506 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); 507 #else 508 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); 509 #endif 510 extern void print_tracking(struct kmem_cache *s, void *object); 511 long validate_slab_cache(struct kmem_cache *s); 512 static inline bool __slub_debug_enabled(void) 513 { 514 return static_branch_unlikely(&slub_debug_enabled); 515 } 516 #else 517 static inline void print_tracking(struct kmem_cache *s, void *object) 518 { 519 } 520 static inline bool __slub_debug_enabled(void) 521 { 522 return false; 523 } 524 #endif 525 526 /* 527 * Returns true if any of the specified slab_debug flags is enabled for the 528 * cache. Use only for flags parsed by setup_slub_debug() as it also enables 529 * the static key. 530 */ 531 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) 532 { 533 if (IS_ENABLED(CONFIG_SLUB_DEBUG)) 534 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); 535 if (__slub_debug_enabled()) 536 return s->flags & flags; 537 return false; 538 } 539 540 #ifdef CONFIG_SLAB_OBJ_EXT 541 542 /* 543 * slab_obj_exts - get the pointer to the slab object extension vector 544 * associated with a slab. 545 * @slab: a pointer to the slab struct 546 * 547 * Returns a pointer to the object extension vector associated with the slab, 548 * or NULL if no such vector has been associated yet. 549 */ 550 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) 551 { 552 unsigned long obj_exts = READ_ONCE(slab->obj_exts); 553 554 #ifdef CONFIG_MEMCG 555 VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS), 556 slab_page(slab)); 557 VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab)); 558 #endif 559 return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK); 560 } 561 562 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 563 gfp_t gfp, bool new_slab); 564 565 #else /* CONFIG_SLAB_OBJ_EXT */ 566 567 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) 568 { 569 return NULL; 570 } 571 572 #endif /* CONFIG_SLAB_OBJ_EXT */ 573 574 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) 575 { 576 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 577 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 578 } 579 580 #ifdef CONFIG_MEMCG 581 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 582 gfp_t flags, size_t size, void **p); 583 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 584 void **p, int objects, struct slabobj_ext *obj_exts); 585 #endif 586 587 size_t __ksize(const void *objp); 588 589 static inline size_t slab_ksize(const struct kmem_cache *s) 590 { 591 #ifdef CONFIG_SLUB_DEBUG 592 /* 593 * Debugging requires use of the padding between object 594 * and whatever may come after it. 595 */ 596 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 597 return s->object_size; 598 #endif 599 if (s->flags & SLAB_KASAN) 600 return s->object_size; 601 /* 602 * If we have the need to store the freelist pointer 603 * back there or track user information then we can 604 * only use the space before that information. 605 */ 606 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 607 return s->inuse; 608 /* 609 * Else we can use all the padding etc for the allocation 610 */ 611 return s->size; 612 } 613 614 #ifdef CONFIG_SLUB_DEBUG 615 void dump_unreclaimable_slab(void); 616 #else 617 static inline void dump_unreclaimable_slab(void) 618 { 619 } 620 #endif 621 622 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 623 624 #ifdef CONFIG_SLAB_FREELIST_RANDOM 625 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 626 gfp_t gfp); 627 void cache_random_seq_destroy(struct kmem_cache *cachep); 628 #else 629 static inline int cache_random_seq_create(struct kmem_cache *cachep, 630 unsigned int count, gfp_t gfp) 631 { 632 return 0; 633 } 634 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 636 637 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) 638 { 639 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 640 &init_on_alloc)) { 641 if (c->ctor) 642 return false; 643 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) 644 return flags & __GFP_ZERO; 645 return true; 646 } 647 return flags & __GFP_ZERO; 648 } 649 650 static inline bool slab_want_init_on_free(struct kmem_cache *c) 651 { 652 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 653 &init_on_free)) 654 return !(c->ctor || 655 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); 656 return false; 657 } 658 659 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 660 void debugfs_slab_release(struct kmem_cache *); 661 #else 662 static inline void debugfs_slab_release(struct kmem_cache *s) { } 663 #endif 664 665 #ifdef CONFIG_PRINTK 666 #define KS_ADDRS_COUNT 16 667 struct kmem_obj_info { 668 void *kp_ptr; 669 struct slab *kp_slab; 670 void *kp_objp; 671 unsigned long kp_data_offset; 672 struct kmem_cache *kp_slab_cache; 673 void *kp_ret; 674 void *kp_stack[KS_ADDRS_COUNT]; 675 void *kp_free_stack[KS_ADDRS_COUNT]; 676 }; 677 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); 678 #endif 679 680 void __check_heap_object(const void *ptr, unsigned long n, 681 const struct slab *slab, bool to_user); 682 683 #ifdef CONFIG_SLUB_DEBUG 684 void skip_orig_size_check(struct kmem_cache *s, const void *object); 685 #endif 686 687 #endif /* MM_SLAB_H */ 688
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.