~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/slub.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * SLUB: A slab allocator that limits cache line use instead of queuing
  4  * objects in per cpu and per node lists.
  5  *
  6  * The allocator synchronizes using per slab locks or atomic operations
  7  * and only uses a centralized lock to manage a pool of partial slabs.
  8  *
  9  * (C) 2007 SGI, Christoph Lameter
 10  * (C) 2011 Linux Foundation, Christoph Lameter
 11  */
 12 
 13 #include <linux/mm.h>
 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
 15 #include <linux/module.h>
 16 #include <linux/bit_spinlock.h>
 17 #include <linux/interrupt.h>
 18 #include <linux/swab.h>
 19 #include <linux/bitops.h>
 20 #include <linux/slab.h>
 21 #include "slab.h"
 22 #include <linux/proc_fs.h>
 23 #include <linux/seq_file.h>
 24 #include <linux/kasan.h>
 25 #include <linux/kmsan.h>
 26 #include <linux/cpu.h>
 27 #include <linux/cpuset.h>
 28 #include <linux/mempolicy.h>
 29 #include <linux/ctype.h>
 30 #include <linux/stackdepot.h>
 31 #include <linux/debugobjects.h>
 32 #include <linux/kallsyms.h>
 33 #include <linux/kfence.h>
 34 #include <linux/memory.h>
 35 #include <linux/math64.h>
 36 #include <linux/fault-inject.h>
 37 #include <linux/kmemleak.h>
 38 #include <linux/stacktrace.h>
 39 #include <linux/prefetch.h>
 40 #include <linux/memcontrol.h>
 41 #include <linux/random.h>
 42 #include <kunit/test.h>
 43 #include <kunit/test-bug.h>
 44 #include <linux/sort.h>
 45 
 46 #include <linux/debugfs.h>
 47 #include <trace/events/kmem.h>
 48 
 49 #include "internal.h"
 50 
 51 /*
 52  * Lock order:
 53  *   1. slab_mutex (Global Mutex)
 54  *   2. node->list_lock (Spinlock)
 55  *   3. kmem_cache->cpu_slab->lock (Local lock)
 56  *   4. slab_lock(slab) (Only on some arches)
 57  *   5. object_map_lock (Only for debugging)
 58  *
 59  *   slab_mutex
 60  *
 61  *   The role of the slab_mutex is to protect the list of all the slabs
 62  *   and to synchronize major metadata changes to slab cache structures.
 63  *   Also synchronizes memory hotplug callbacks.
 64  *
 65  *   slab_lock
 66  *
 67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
 68  *   spinlock.
 69  *
 70  *   The slab_lock is only used on arches that do not have the ability
 71  *   to do a cmpxchg_double. It only protects:
 72  *
 73  *      A. slab->freelist       -> List of free objects in a slab
 74  *      B. slab->inuse          -> Number of objects in use
 75  *      C. slab->objects        -> Number of objects in slab
 76  *      D. slab->frozen         -> frozen state
 77  *
 78  *   Frozen slabs
 79  *
 80  *   If a slab is frozen then it is exempt from list management. It is
 81  *   the cpu slab which is actively allocated from by the processor that
 82  *   froze it and it is not on any list. The processor that froze the
 83  *   slab is the one who can perform list operations on the slab. Other
 84  *   processors may put objects onto the freelist but the processor that
 85  *   froze the slab is the only one that can retrieve the objects from the
 86  *   slab's freelist.
 87  *
 88  *   CPU partial slabs
 89  *
 90  *   The partially empty slabs cached on the CPU partial list are used
 91  *   for performance reasons, which speeds up the allocation process.
 92  *   These slabs are not frozen, but are also exempt from list management,
 93  *   by clearing the PG_workingset flag when moving out of the node
 94  *   partial list. Please see __slab_free() for more details.
 95  *
 96  *   To sum up, the current scheme is:
 97  *   - node partial slab: PG_Workingset && !frozen
 98  *   - cpu partial slab: !PG_Workingset && !frozen
 99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen         The slab is frozen and exempt from list processing.
165  *                      This means that the slab is dedicated to a purpose
166  *                      such as satisfying allocations for a specific
167  *                      processor. Objects may be freed in the slab while
168  *                      it is frozen but slab_free will then skip the usual
169  *                      list operations. It is up to the processor holding
170  *                      the slab to integrate the slab into the slab lists
171  *                      when the slab is no longer needed.
172  *
173  *                      One use of this flag is to mark slabs that are
174  *                      used for allocations. Then such a slab becomes a cpu
175  *                      slab. The cpu slab may be equipped with an additional
176  *                      freelist that allows lockless access to
177  *                      free objects in addition to the regular freelist
178  *                      that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS     Slab requires special handling due to debug
181  *                      options set. This moves slab handling out of
182  *                      the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)           get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)           put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()        (true)
193 #else
194 #define slub_get_cpu_ptr(var)           \
195 ({                                      \
196         migrate_disable();              \
197         this_cpu_ptr(var);              \
198 })
199 #define slub_put_cpu_ptr(var)           \
200 do {                                    \
201         (void)(var);                    \
202         migrate_enable();               \
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()        (false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif          /* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223         gfp_t flags;
224         unsigned int orig_size;
225         void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230         return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235         return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236                         (s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241         if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242                 p += s->red_left_pad;
243 
244         return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250         return !kmem_cache_debug(s);
251 #else
252         return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286                                 SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293                                 SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT        16
304 #define OO_MASK         ((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE       32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON         __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE        __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE        __SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323         unsigned long addr;     /* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325         depot_stack_handle_t handle;
326 #endif
327         int cpu;                /* Was running on cpu */
328         int pid;                /* Pid context */
329         unsigned long when;     /* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340                                                         { return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350         ALLOC_FASTPATH,         /* Allocation from cpu slab */
351         ALLOC_SLOWPATH,         /* Allocation by getting a new cpu slab */
352         FREE_FASTPATH,          /* Free to cpu slab */
353         FREE_SLOWPATH,          /* Freeing not to cpu slab */
354         FREE_FROZEN,            /* Freeing to frozen slab */
355         FREE_ADD_PARTIAL,       /* Freeing moves slab to partial list */
356         FREE_REMOVE_PARTIAL,    /* Freeing removes last object */
357         ALLOC_FROM_PARTIAL,     /* Cpu slab acquired from node partial list */
358         ALLOC_SLAB,             /* Cpu slab acquired from page allocator */
359         ALLOC_REFILL,           /* Refill cpu slab from slab freelist */
360         ALLOC_NODE_MISMATCH,    /* Switching cpu slab */
361         FREE_SLAB,              /* Slab freed to the page allocator */
362         CPUSLAB_FLUSH,          /* Abandoning of the cpu slab */
363         DEACTIVATE_FULL,        /* Cpu slab was full when deactivated */
364         DEACTIVATE_EMPTY,       /* Cpu slab was empty when deactivated */
365         DEACTIVATE_TO_HEAD,     /* Cpu slab was moved to the head of partials */
366         DEACTIVATE_TO_TAIL,     /* Cpu slab was moved to the tail of partials */
367         DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368         DEACTIVATE_BYPASS,      /* Implicit deactivation */
369         ORDER_FALLBACK,         /* Number of times fallback was necessary */
370         CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371         CMPXCHG_DOUBLE_FAIL,    /* Failures of slab freelist update */
372         CPU_PARTIAL_ALLOC,      /* Used cpu partial on alloc */
373         CPU_PARTIAL_FREE,       /* Refill cpu partial on free */
374         CPU_PARTIAL_NODE,       /* Refill cpu partial from node partial */
375         CPU_PARTIAL_DRAIN,      /* Drain cpu partial to node partial */
376         NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385         union {
386                 struct {
387                         void **freelist;        /* Pointer to next available object */
388                         unsigned long tid;      /* Globally unique transaction id */
389                 };
390                 freelist_aba_t freelist_tid;
391         };
392         struct slab *slab;      /* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394         struct slab *partial;   /* Partially allocated slabs */
395 #endif
396         local_lock_t lock;      /* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398         unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406         /*
407          * The rmw is racy on a preemptible kernel but this is acceptable, so
408          * avoid this_cpu_add()'s irq-disable overhead.
409          */
410         raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418         raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426         spinlock_t list_lock;
427         unsigned long nr_partial;
428         struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430         atomic_long_t nr_slabs;
431         atomic_long_t total_objects;
432         struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438         return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446         for (__node = 0; __node < nr_node_ids; __node++) \
447                  if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  *                      Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480                                             void *ptr, unsigned long ptr_addr)
481 {
482         unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485         encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487         encoded = (unsigned long)ptr;
488 #endif
489         return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493                                         freeptr_t ptr, unsigned long ptr_addr)
494 {
495         void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498         decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500         decoded = (void *)ptr.v;
501 #endif
502         return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507         unsigned long ptr_addr;
508         freeptr_t p;
509 
510         object = kasan_reset_tag(object);
511         ptr_addr = (unsigned long)object + s->offset;
512         p = *(freeptr_t *)(ptr_addr);
513         return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519         prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536         unsigned long freepointer_addr;
537         freeptr_t p;
538 
539         if (!debug_pagealloc_enabled_static())
540                 return get_freepointer(s, object);
541 
542         object = kasan_reset_tag(object);
543         freepointer_addr = (unsigned long)object + s->offset;
544         copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545         return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550         unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553         BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556         freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557         *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /*
561  * See comment in calculate_sizes().
562  */
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
564 {
565         return s->offset >= s->inuse;
566 }
567 
568 /*
569  * Return offset of the end of info block which is inuse + free pointer if
570  * not overlapping with object.
571  */
572 static inline unsigned int get_info_end(struct kmem_cache *s)
573 {
574         if (freeptr_outside_object(s))
575                 return s->inuse + sizeof(void *);
576         else
577                 return s->inuse;
578 }
579 
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582         for (__p = fixup_red_left(__s, __addr); \
583                 __p < (__addr) + (__objects) * (__s)->size; \
584                 __p += (__s)->size)
585 
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
587 {
588         return ((unsigned int)PAGE_SIZE << order) / size;
589 }
590 
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
592                 unsigned int size)
593 {
594         struct kmem_cache_order_objects x = {
595                 (order << OO_SHIFT) + order_objects(order, size)
596         };
597 
598         return x;
599 }
600 
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
602 {
603         return x.x >> OO_SHIFT;
604 }
605 
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
607 {
608         return x.x & OO_MASK;
609 }
610 
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613 {
614         unsigned int nr_slabs;
615 
616         s->cpu_partial = nr_objects;
617 
618         /*
619          * We take the number of objects but actually limit the number of
620          * slabs on the per cpu partial list, in order to limit excessive
621          * growth of the list. For simplicity we assume that the slabs will
622          * be half-full.
623          */
624         nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625         s->cpu_partial_slabs = nr_slabs;
626 }
627 
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629 {
630         return s->cpu_partial_slabs;
631 }
632 #else
633 static inline void
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635 {
636 }
637 
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640         return 0;
641 }
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
643 
644 /*
645  * Per slab locking using the pagelock
646  */
647 static __always_inline void slab_lock(struct slab *slab)
648 {
649         bit_spin_lock(PG_locked, &slab->__page_flags);
650 }
651 
652 static __always_inline void slab_unlock(struct slab *slab)
653 {
654         bit_spin_unlock(PG_locked, &slab->__page_flags);
655 }
656 
657 static inline bool
658 __update_freelist_fast(struct slab *slab,
659                       void *freelist_old, unsigned long counters_old,
660                       void *freelist_new, unsigned long counters_new)
661 {
662 #ifdef system_has_freelist_aba
663         freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664         freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665 
666         return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667 #else
668         return false;
669 #endif
670 }
671 
672 static inline bool
673 __update_freelist_slow(struct slab *slab,
674                       void *freelist_old, unsigned long counters_old,
675                       void *freelist_new, unsigned long counters_new)
676 {
677         bool ret = false;
678 
679         slab_lock(slab);
680         if (slab->freelist == freelist_old &&
681             slab->counters == counters_old) {
682                 slab->freelist = freelist_new;
683                 slab->counters = counters_new;
684                 ret = true;
685         }
686         slab_unlock(slab);
687 
688         return ret;
689 }
690 
691 /*
692  * Interrupts must be disabled (for the fallback code to work right), typically
693  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695  * allocation/ free operation in hardirq context. Therefore nothing can
696  * interrupt the operation.
697  */
698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
699                 void *freelist_old, unsigned long counters_old,
700                 void *freelist_new, unsigned long counters_new,
701                 const char *n)
702 {
703         bool ret;
704 
705         if (USE_LOCKLESS_FAST_PATH())
706                 lockdep_assert_irqs_disabled();
707 
708         if (s->flags & __CMPXCHG_DOUBLE) {
709                 ret = __update_freelist_fast(slab, freelist_old, counters_old,
710                                             freelist_new, counters_new);
711         } else {
712                 ret = __update_freelist_slow(slab, freelist_old, counters_old,
713                                             freelist_new, counters_new);
714         }
715         if (likely(ret))
716                 return true;
717 
718         cpu_relax();
719         stat(s, CMPXCHG_DOUBLE_FAIL);
720 
721 #ifdef SLUB_DEBUG_CMPXCHG
722         pr_info("%s %s: cmpxchg double redo ", n, s->name);
723 #endif
724 
725         return false;
726 }
727 
728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
729                 void *freelist_old, unsigned long counters_old,
730                 void *freelist_new, unsigned long counters_new,
731                 const char *n)
732 {
733         bool ret;
734 
735         if (s->flags & __CMPXCHG_DOUBLE) {
736                 ret = __update_freelist_fast(slab, freelist_old, counters_old,
737                                             freelist_new, counters_new);
738         } else {
739                 unsigned long flags;
740 
741                 local_irq_save(flags);
742                 ret = __update_freelist_slow(slab, freelist_old, counters_old,
743                                             freelist_new, counters_new);
744                 local_irq_restore(flags);
745         }
746         if (likely(ret))
747                 return true;
748 
749         cpu_relax();
750         stat(s, CMPXCHG_DOUBLE_FAIL);
751 
752 #ifdef SLUB_DEBUG_CMPXCHG
753         pr_info("%s %s: cmpxchg double redo ", n, s->name);
754 #endif
755 
756         return false;
757 }
758 
759 /*
760  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
761  * family will round up the real request size to these fixed ones, so
762  * there could be an extra area than what is requested. Save the original
763  * request size in the meta data area, for better debug and sanity check.
764  */
765 static inline void set_orig_size(struct kmem_cache *s,
766                                 void *object, unsigned int orig_size)
767 {
768         void *p = kasan_reset_tag(object);
769         unsigned int kasan_meta_size;
770 
771         if (!slub_debug_orig_size(s))
772                 return;
773 
774         /*
775          * KASAN can save its free meta data inside of the object at offset 0.
776          * If this meta data size is larger than 'orig_size', it will overlap
777          * the data redzone in [orig_size+1, object_size]. Thus, we adjust
778          * 'orig_size' to be as at least as big as KASAN's meta data.
779          */
780         kasan_meta_size = kasan_metadata_size(s, true);
781         if (kasan_meta_size > orig_size)
782                 orig_size = kasan_meta_size;
783 
784         p += get_info_end(s);
785         p += sizeof(struct track) * 2;
786 
787         *(unsigned int *)p = orig_size;
788 }
789 
790 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
791 {
792         void *p = kasan_reset_tag(object);
793 
794         if (!slub_debug_orig_size(s))
795                 return s->object_size;
796 
797         p += get_info_end(s);
798         p += sizeof(struct track) * 2;
799 
800         return *(unsigned int *)p;
801 }
802 
803 #ifdef CONFIG_SLUB_DEBUG
804 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
805 static DEFINE_SPINLOCK(object_map_lock);
806 
807 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
808                        struct slab *slab)
809 {
810         void *addr = slab_address(slab);
811         void *p;
812 
813         bitmap_zero(obj_map, slab->objects);
814 
815         for (p = slab->freelist; p; p = get_freepointer(s, p))
816                 set_bit(__obj_to_index(s, addr, p), obj_map);
817 }
818 
819 #if IS_ENABLED(CONFIG_KUNIT)
820 static bool slab_add_kunit_errors(void)
821 {
822         struct kunit_resource *resource;
823 
824         if (!kunit_get_current_test())
825                 return false;
826 
827         resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828         if (!resource)
829                 return false;
830 
831         (*(int *)resource->data)++;
832         kunit_put_resource(resource);
833         return true;
834 }
835 
836 static bool slab_in_kunit_test(void)
837 {
838         struct kunit_resource *resource;
839 
840         if (!kunit_get_current_test())
841                 return false;
842 
843         resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
844         if (!resource)
845                 return false;
846 
847         kunit_put_resource(resource);
848         return true;
849 }
850 #else
851 static inline bool slab_add_kunit_errors(void) { return false; }
852 static inline bool slab_in_kunit_test(void) { return false; }
853 #endif
854 
855 static inline unsigned int size_from_object(struct kmem_cache *s)
856 {
857         if (s->flags & SLAB_RED_ZONE)
858                 return s->size - s->red_left_pad;
859 
860         return s->size;
861 }
862 
863 static inline void *restore_red_left(struct kmem_cache *s, void *p)
864 {
865         if (s->flags & SLAB_RED_ZONE)
866                 p -= s->red_left_pad;
867 
868         return p;
869 }
870 
871 /*
872  * Debug settings:
873  */
874 #if defined(CONFIG_SLUB_DEBUG_ON)
875 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
876 #else
877 static slab_flags_t slub_debug;
878 #endif
879 
880 static char *slub_debug_string;
881 static int disable_higher_order_debug;
882 
883 /*
884  * slub is about to manipulate internal object metadata.  This memory lies
885  * outside the range of the allocated object, so accessing it would normally
886  * be reported by kasan as a bounds error.  metadata_access_enable() is used
887  * to tell kasan that these accesses are OK.
888  */
889 static inline void metadata_access_enable(void)
890 {
891         kasan_disable_current();
892         kmsan_disable_current();
893 }
894 
895 static inline void metadata_access_disable(void)
896 {
897         kmsan_enable_current();
898         kasan_enable_current();
899 }
900 
901 /*
902  * Object debugging
903  */
904 
905 /* Verify that a pointer has an address that is valid within a slab page */
906 static inline int check_valid_pointer(struct kmem_cache *s,
907                                 struct slab *slab, void *object)
908 {
909         void *base;
910 
911         if (!object)
912                 return 1;
913 
914         base = slab_address(slab);
915         object = kasan_reset_tag(object);
916         object = restore_red_left(s, object);
917         if (object < base || object >= base + slab->objects * s->size ||
918                 (object - base) % s->size) {
919                 return 0;
920         }
921 
922         return 1;
923 }
924 
925 static void print_section(char *level, char *text, u8 *addr,
926                           unsigned int length)
927 {
928         metadata_access_enable();
929         print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
930                         16, 1, kasan_reset_tag((void *)addr), length, 1);
931         metadata_access_disable();
932 }
933 
934 static struct track *get_track(struct kmem_cache *s, void *object,
935         enum track_item alloc)
936 {
937         struct track *p;
938 
939         p = object + get_info_end(s);
940 
941         return kasan_reset_tag(p + alloc);
942 }
943 
944 #ifdef CONFIG_STACKDEPOT
945 static noinline depot_stack_handle_t set_track_prepare(void)
946 {
947         depot_stack_handle_t handle;
948         unsigned long entries[TRACK_ADDRS_COUNT];
949         unsigned int nr_entries;
950 
951         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
952         handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
953 
954         return handle;
955 }
956 #else
957 static inline depot_stack_handle_t set_track_prepare(void)
958 {
959         return 0;
960 }
961 #endif
962 
963 static void set_track_update(struct kmem_cache *s, void *object,
964                              enum track_item alloc, unsigned long addr,
965                              depot_stack_handle_t handle)
966 {
967         struct track *p = get_track(s, object, alloc);
968 
969 #ifdef CONFIG_STACKDEPOT
970         p->handle = handle;
971 #endif
972         p->addr = addr;
973         p->cpu = smp_processor_id();
974         p->pid = current->pid;
975         p->when = jiffies;
976 }
977 
978 static __always_inline void set_track(struct kmem_cache *s, void *object,
979                                       enum track_item alloc, unsigned long addr)
980 {
981         depot_stack_handle_t handle = set_track_prepare();
982 
983         set_track_update(s, object, alloc, addr, handle);
984 }
985 
986 static void init_tracking(struct kmem_cache *s, void *object)
987 {
988         struct track *p;
989 
990         if (!(s->flags & SLAB_STORE_USER))
991                 return;
992 
993         p = get_track(s, object, TRACK_ALLOC);
994         memset(p, 0, 2*sizeof(struct track));
995 }
996 
997 static void print_track(const char *s, struct track *t, unsigned long pr_time)
998 {
999         depot_stack_handle_t handle __maybe_unused;
1000 
1001         if (!t->addr)
1002                 return;
1003 
1004         pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1005                s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1006 #ifdef CONFIG_STACKDEPOT
1007         handle = READ_ONCE(t->handle);
1008         if (handle)
1009                 stack_depot_print(handle);
1010         else
1011                 pr_err("object allocation/free stack trace missing\n");
1012 #endif
1013 }
1014 
1015 void print_tracking(struct kmem_cache *s, void *object)
1016 {
1017         unsigned long pr_time = jiffies;
1018         if (!(s->flags & SLAB_STORE_USER))
1019                 return;
1020 
1021         print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1022         print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1023 }
1024 
1025 static void print_slab_info(const struct slab *slab)
1026 {
1027         pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1028                slab, slab->objects, slab->inuse, slab->freelist,
1029                &slab->__page_flags);
1030 }
1031 
1032 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1033 {
1034         set_orig_size(s, (void *)object, s->object_size);
1035 }
1036 
1037 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1038 {
1039         struct va_format vaf;
1040         va_list args;
1041 
1042         va_start(args, fmt);
1043         vaf.fmt = fmt;
1044         vaf.va = &args;
1045         pr_err("=============================================================================\n");
1046         pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1047         pr_err("-----------------------------------------------------------------------------\n\n");
1048         va_end(args);
1049 }
1050 
1051 __printf(2, 3)
1052 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1053 {
1054         struct va_format vaf;
1055         va_list args;
1056 
1057         if (slab_add_kunit_errors())
1058                 return;
1059 
1060         va_start(args, fmt);
1061         vaf.fmt = fmt;
1062         vaf.va = &args;
1063         pr_err("FIX %s: %pV\n", s->name, &vaf);
1064         va_end(args);
1065 }
1066 
1067 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1068 {
1069         unsigned int off;       /* Offset of last byte */
1070         u8 *addr = slab_address(slab);
1071 
1072         print_tracking(s, p);
1073 
1074         print_slab_info(slab);
1075 
1076         pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1077                p, p - addr, get_freepointer(s, p));
1078 
1079         if (s->flags & SLAB_RED_ZONE)
1080                 print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1081                               s->red_left_pad);
1082         else if (p > addr + 16)
1083                 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1084 
1085         print_section(KERN_ERR,         "Object   ", p,
1086                       min_t(unsigned int, s->object_size, PAGE_SIZE));
1087         if (s->flags & SLAB_RED_ZONE)
1088                 print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1089                         s->inuse - s->object_size);
1090 
1091         off = get_info_end(s);
1092 
1093         if (s->flags & SLAB_STORE_USER)
1094                 off += 2 * sizeof(struct track);
1095 
1096         if (slub_debug_orig_size(s))
1097                 off += sizeof(unsigned int);
1098 
1099         off += kasan_metadata_size(s, false);
1100 
1101         if (off != size_from_object(s))
1102                 /* Beginning of the filler is the free pointer */
1103                 print_section(KERN_ERR, "Padding  ", p + off,
1104                               size_from_object(s) - off);
1105 
1106         dump_stack();
1107 }
1108 
1109 static void object_err(struct kmem_cache *s, struct slab *slab,
1110                         u8 *object, char *reason)
1111 {
1112         if (slab_add_kunit_errors())
1113                 return;
1114 
1115         slab_bug(s, "%s", reason);
1116         print_trailer(s, slab, object);
1117         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1118 }
1119 
1120 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1121                                void **freelist, void *nextfree)
1122 {
1123         if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1124             !check_valid_pointer(s, slab, nextfree) && freelist) {
1125                 object_err(s, slab, *freelist, "Freechain corrupt");
1126                 *freelist = NULL;
1127                 slab_fix(s, "Isolate corrupted freechain");
1128                 return true;
1129         }
1130 
1131         return false;
1132 }
1133 
1134 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1135                         const char *fmt, ...)
1136 {
1137         va_list args;
1138         char buf[100];
1139 
1140         if (slab_add_kunit_errors())
1141                 return;
1142 
1143         va_start(args, fmt);
1144         vsnprintf(buf, sizeof(buf), fmt, args);
1145         va_end(args);
1146         slab_bug(s, "%s", buf);
1147         print_slab_info(slab);
1148         dump_stack();
1149         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1150 }
1151 
1152 static void init_object(struct kmem_cache *s, void *object, u8 val)
1153 {
1154         u8 *p = kasan_reset_tag(object);
1155         unsigned int poison_size = s->object_size;
1156 
1157         if (s->flags & SLAB_RED_ZONE) {
1158                 /*
1159                  * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160                  * the shadow makes it possible to distinguish uninit-value
1161                  * from use-after-free.
1162                  */
1163                 memset_no_sanitize_memory(p - s->red_left_pad, val,
1164                                           s->red_left_pad);
1165 
1166                 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1167                         /*
1168                          * Redzone the extra allocated space by kmalloc than
1169                          * requested, and the poison size will be limited to
1170                          * the original request size accordingly.
1171                          */
1172                         poison_size = get_orig_size(s, object);
1173                 }
1174         }
1175 
1176         if (s->flags & __OBJECT_POISON) {
1177                 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178                 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1179         }
1180 
1181         if (s->flags & SLAB_RED_ZONE)
1182                 memset_no_sanitize_memory(p + poison_size, val,
1183                                           s->inuse - poison_size);
1184 }
1185 
1186 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187                                                 void *from, void *to)
1188 {
1189         slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1190         memset(from, data, to - from);
1191 }
1192 
1193 #ifdef CONFIG_KMSAN
1194 #define pad_check_attributes noinline __no_kmsan_checks
1195 #else
1196 #define pad_check_attributes
1197 #endif
1198 
1199 static pad_check_attributes int
1200 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201                        u8 *object, char *what,
1202                        u8 *start, unsigned int value, unsigned int bytes)
1203 {
1204         u8 *fault;
1205         u8 *end;
1206         u8 *addr = slab_address(slab);
1207 
1208         metadata_access_enable();
1209         fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1210         metadata_access_disable();
1211         if (!fault)
1212                 return 1;
1213 
1214         end = start + bytes;
1215         while (end > fault && end[-1] == value)
1216                 end--;
1217 
1218         if (slab_add_kunit_errors())
1219                 goto skip_bug_print;
1220 
1221         slab_bug(s, "%s overwritten", what);
1222         pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223                                         fault, end - 1, fault - addr,
1224                                         fault[0], value);
1225 
1226 skip_bug_print:
1227         restore_bytes(s, what, value, fault, end);
1228         return 0;
1229 }
1230 
1231 /*
1232  * Object layout:
1233  *
1234  * object address
1235  *      Bytes of the object to be managed.
1236  *      If the freepointer may overlay the object then the free
1237  *      pointer is at the middle of the object.
1238  *
1239  *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
1240  *      0xa5 (POISON_END)
1241  *
1242  * object + s->object_size
1243  *      Padding to reach word boundary. This is also used for Redzoning.
1244  *      Padding is extended by another word if Redzoning is enabled and
1245  *      object_size == inuse.
1246  *
1247  *      We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248  *      0xcc (SLUB_RED_ACTIVE) for objects in use.
1249  *
1250  * object + s->inuse
1251  *      Meta data starts here.
1252  *
1253  *      A. Free pointer (if we cannot overwrite object on free)
1254  *      B. Tracking data for SLAB_STORE_USER
1255  *      C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256  *      D. Padding to reach required alignment boundary or at minimum
1257  *              one word if debugging is on to be able to detect writes
1258  *              before the word boundary.
1259  *
1260  *      Padding is done using 0x5a (POISON_INUSE)
1261  *
1262  * object + s->size
1263  *      Nothing is used beyond s->size.
1264  *
1265  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1266  * ignored. And therefore no slab options that rely on these boundaries
1267  * may be used with merged slabcaches.
1268  */
1269 
1270 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1271 {
1272         unsigned long off = get_info_end(s);    /* The end of info */
1273 
1274         if (s->flags & SLAB_STORE_USER) {
1275                 /* We also have user information there */
1276                 off += 2 * sizeof(struct track);
1277 
1278                 if (s->flags & SLAB_KMALLOC)
1279                         off += sizeof(unsigned int);
1280         }
1281 
1282         off += kasan_metadata_size(s, false);
1283 
1284         if (size_from_object(s) == off)
1285                 return 1;
1286 
1287         return check_bytes_and_report(s, slab, p, "Object padding",
1288                         p + off, POISON_INUSE, size_from_object(s) - off);
1289 }
1290 
1291 /* Check the pad bytes at the end of a slab page */
1292 static pad_check_attributes void
1293 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1294 {
1295         u8 *start;
1296         u8 *fault;
1297         u8 *end;
1298         u8 *pad;
1299         int length;
1300         int remainder;
1301 
1302         if (!(s->flags & SLAB_POISON))
1303                 return;
1304 
1305         start = slab_address(slab);
1306         length = slab_size(slab);
1307         end = start + length;
1308         remainder = length % s->size;
1309         if (!remainder)
1310                 return;
1311 
1312         pad = end - remainder;
1313         metadata_access_enable();
1314         fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1315         metadata_access_disable();
1316         if (!fault)
1317                 return;
1318         while (end > fault && end[-1] == POISON_INUSE)
1319                 end--;
1320 
1321         slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1322                         fault, end - 1, fault - start);
1323         print_section(KERN_ERR, "Padding ", pad, remainder);
1324 
1325         restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1326 }
1327 
1328 static int check_object(struct kmem_cache *s, struct slab *slab,
1329                                         void *object, u8 val)
1330 {
1331         u8 *p = object;
1332         u8 *endobject = object + s->object_size;
1333         unsigned int orig_size, kasan_meta_size;
1334         int ret = 1;
1335 
1336         if (s->flags & SLAB_RED_ZONE) {
1337                 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1338                         object - s->red_left_pad, val, s->red_left_pad))
1339                         ret = 0;
1340 
1341                 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1342                         endobject, val, s->inuse - s->object_size))
1343                         ret = 0;
1344 
1345                 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346                         orig_size = get_orig_size(s, object);
1347 
1348                         if (s->object_size > orig_size  &&
1349                                 !check_bytes_and_report(s, slab, object,
1350                                         "kmalloc Redzone", p + orig_size,
1351                                         val, s->object_size - orig_size)) {
1352                                 ret = 0;
1353                         }
1354                 }
1355         } else {
1356                 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1357                         if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1358                                 endobject, POISON_INUSE,
1359                                 s->inuse - s->object_size))
1360                                 ret = 0;
1361                 }
1362         }
1363 
1364         if (s->flags & SLAB_POISON) {
1365                 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1366                         /*
1367                          * KASAN can save its free meta data inside of the
1368                          * object at offset 0. Thus, skip checking the part of
1369                          * the redzone that overlaps with the meta data.
1370                          */
1371                         kasan_meta_size = kasan_metadata_size(s, true);
1372                         if (kasan_meta_size < s->object_size - 1 &&
1373                             !check_bytes_and_report(s, slab, p, "Poison",
1374                                         p + kasan_meta_size, POISON_FREE,
1375                                         s->object_size - kasan_meta_size - 1))
1376                                 ret = 0;
1377                         if (kasan_meta_size < s->object_size &&
1378                             !check_bytes_and_report(s, slab, p, "End Poison",
1379                                         p + s->object_size - 1, POISON_END, 1))
1380                                 ret = 0;
1381                 }
1382                 /*
1383                  * check_pad_bytes cleans up on its own.
1384                  */
1385                 if (!check_pad_bytes(s, slab, p))
1386                         ret = 0;
1387         }
1388 
1389         /*
1390          * Cannot check freepointer while object is allocated if
1391          * object and freepointer overlap.
1392          */
1393         if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394             !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1395                 object_err(s, slab, p, "Freepointer corrupt");
1396                 /*
1397                  * No choice but to zap it and thus lose the remainder
1398                  * of the free objects in this slab. May cause
1399                  * another error because the object count is now wrong.
1400                  */
1401                 set_freepointer(s, p, NULL);
1402                 ret = 0;
1403         }
1404 
1405         if (!ret && !slab_in_kunit_test()) {
1406                 print_trailer(s, slab, object);
1407                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1408         }
1409 
1410         return ret;
1411 }
1412 
1413 static int check_slab(struct kmem_cache *s, struct slab *slab)
1414 {
1415         int maxobj;
1416 
1417         if (!folio_test_slab(slab_folio(slab))) {
1418                 slab_err(s, slab, "Not a valid slab page");
1419                 return 0;
1420         }
1421 
1422         maxobj = order_objects(slab_order(slab), s->size);
1423         if (slab->objects > maxobj) {
1424                 slab_err(s, slab, "objects %u > max %u",
1425                         slab->objects, maxobj);
1426                 return 0;
1427         }
1428         if (slab->inuse > slab->objects) {
1429                 slab_err(s, slab, "inuse %u > max %u",
1430                         slab->inuse, slab->objects);
1431                 return 0;
1432         }
1433         /* Slab_pad_check fixes things up after itself */
1434         slab_pad_check(s, slab);
1435         return 1;
1436 }
1437 
1438 /*
1439  * Determine if a certain object in a slab is on the freelist. Must hold the
1440  * slab lock to guarantee that the chains are in a consistent state.
1441  */
1442 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1443 {
1444         int nr = 0;
1445         void *fp;
1446         void *object = NULL;
1447         int max_objects;
1448 
1449         fp = slab->freelist;
1450         while (fp && nr <= slab->objects) {
1451                 if (fp == search)
1452                         return 1;
1453                 if (!check_valid_pointer(s, slab, fp)) {
1454                         if (object) {
1455                                 object_err(s, slab, object,
1456                                         "Freechain corrupt");
1457                                 set_freepointer(s, object, NULL);
1458                         } else {
1459                                 slab_err(s, slab, "Freepointer corrupt");
1460                                 slab->freelist = NULL;
1461                                 slab->inuse = slab->objects;
1462                                 slab_fix(s, "Freelist cleared");
1463                                 return 0;
1464                         }
1465                         break;
1466                 }
1467                 object = fp;
1468                 fp = get_freepointer(s, object);
1469                 nr++;
1470         }
1471 
1472         max_objects = order_objects(slab_order(slab), s->size);
1473         if (max_objects > MAX_OBJS_PER_PAGE)
1474                 max_objects = MAX_OBJS_PER_PAGE;
1475 
1476         if (slab->objects != max_objects) {
1477                 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478                          slab->objects, max_objects);
1479                 slab->objects = max_objects;
1480                 slab_fix(s, "Number of objects adjusted");
1481         }
1482         if (slab->inuse != slab->objects - nr) {
1483                 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484                          slab->inuse, slab->objects - nr);
1485                 slab->inuse = slab->objects - nr;
1486                 slab_fix(s, "Object count adjusted");
1487         }
1488         return search == NULL;
1489 }
1490 
1491 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1492                                                                 int alloc)
1493 {
1494         if (s->flags & SLAB_TRACE) {
1495                 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1496                         s->name,
1497                         alloc ? "alloc" : "free",
1498                         object, slab->inuse,
1499                         slab->freelist);
1500 
1501                 if (!alloc)
1502                         print_section(KERN_INFO, "Object ", (void *)object,
1503                                         s->object_size);
1504 
1505                 dump_stack();
1506         }
1507 }
1508 
1509 /*
1510  * Tracking of fully allocated slabs for debugging purposes.
1511  */
1512 static void add_full(struct kmem_cache *s,
1513         struct kmem_cache_node *n, struct slab *slab)
1514 {
1515         if (!(s->flags & SLAB_STORE_USER))
1516                 return;
1517 
1518         lockdep_assert_held(&n->list_lock);
1519         list_add(&slab->slab_list, &n->full);
1520 }
1521 
1522 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1523 {
1524         if (!(s->flags & SLAB_STORE_USER))
1525                 return;
1526 
1527         lockdep_assert_held(&n->list_lock);
1528         list_del(&slab->slab_list);
1529 }
1530 
1531 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1532 {
1533         return atomic_long_read(&n->nr_slabs);
1534 }
1535 
1536 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1537 {
1538         struct kmem_cache_node *n = get_node(s, node);
1539 
1540         atomic_long_inc(&n->nr_slabs);
1541         atomic_long_add(objects, &n->total_objects);
1542 }
1543 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1544 {
1545         struct kmem_cache_node *n = get_node(s, node);
1546 
1547         atomic_long_dec(&n->nr_slabs);
1548         atomic_long_sub(objects, &n->total_objects);
1549 }
1550 
1551 /* Object debug checks for alloc/free paths */
1552 static void setup_object_debug(struct kmem_cache *s, void *object)
1553 {
1554         if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1555                 return;
1556 
1557         init_object(s, object, SLUB_RED_INACTIVE);
1558         init_tracking(s, object);
1559 }
1560 
1561 static
1562 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1563 {
1564         if (!kmem_cache_debug_flags(s, SLAB_POISON))
1565                 return;
1566 
1567         metadata_access_enable();
1568         memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1569         metadata_access_disable();
1570 }
1571 
1572 static inline int alloc_consistency_checks(struct kmem_cache *s,
1573                                         struct slab *slab, void *object)
1574 {
1575         if (!check_slab(s, slab))
1576                 return 0;
1577 
1578         if (!check_valid_pointer(s, slab, object)) {
1579                 object_err(s, slab, object, "Freelist Pointer check fails");
1580                 return 0;
1581         }
1582 
1583         if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1584                 return 0;
1585 
1586         return 1;
1587 }
1588 
1589 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1590                         struct slab *slab, void *object, int orig_size)
1591 {
1592         if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1593                 if (!alloc_consistency_checks(s, slab, object))
1594                         goto bad;
1595         }
1596 
1597         /* Success. Perform special debug activities for allocs */
1598         trace(s, slab, object, 1);
1599         set_orig_size(s, object, orig_size);
1600         init_object(s, object, SLUB_RED_ACTIVE);
1601         return true;
1602 
1603 bad:
1604         if (folio_test_slab(slab_folio(slab))) {
1605                 /*
1606                  * If this is a slab page then lets do the best we can
1607                  * to avoid issues in the future. Marking all objects
1608                  * as used avoids touching the remaining objects.
1609                  */
1610                 slab_fix(s, "Marking all objects used");
1611                 slab->inuse = slab->objects;
1612                 slab->freelist = NULL;
1613         }
1614         return false;
1615 }
1616 
1617 static inline int free_consistency_checks(struct kmem_cache *s,
1618                 struct slab *slab, void *object, unsigned long addr)
1619 {
1620         if (!check_valid_pointer(s, slab, object)) {
1621                 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1622                 return 0;
1623         }
1624 
1625         if (on_freelist(s, slab, object)) {
1626                 object_err(s, slab, object, "Object already free");
1627                 return 0;
1628         }
1629 
1630         if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1631                 return 0;
1632 
1633         if (unlikely(s != slab->slab_cache)) {
1634                 if (!folio_test_slab(slab_folio(slab))) {
1635                         slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1636                                  object);
1637                 } else if (!slab->slab_cache) {
1638                         pr_err("SLUB <none>: no slab for object 0x%p.\n",
1639                                object);
1640                         dump_stack();
1641                 } else
1642                         object_err(s, slab, object,
1643                                         "page slab pointer corrupt.");
1644                 return 0;
1645         }
1646         return 1;
1647 }
1648 
1649 /*
1650  * Parse a block of slab_debug options. Blocks are delimited by ';'
1651  *
1652  * @str:    start of block
1653  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654  * @slabs:  return start of list of slabs, or NULL when there's no list
1655  * @init:   assume this is initial parsing and not per-kmem-create parsing
1656  *
1657  * returns the start of next block if there's any, or NULL
1658  */
1659 static char *
1660 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1661 {
1662         bool higher_order_disable = false;
1663 
1664         /* Skip any completely empty blocks */
1665         while (*str && *str == ';')
1666                 str++;
1667 
1668         if (*str == ',') {
1669                 /*
1670                  * No options but restriction on slabs. This means full
1671                  * debugging for slabs matching a pattern.
1672                  */
1673                 *flags = DEBUG_DEFAULT_FLAGS;
1674                 goto check_slabs;
1675         }
1676         *flags = 0;
1677 
1678         /* Determine which debug features should be switched on */
1679         for (; *str && *str != ',' && *str != ';'; str++) {
1680                 switch (tolower(*str)) {
1681                 case '-':
1682                         *flags = 0;
1683                         break;
1684                 case 'f':
1685                         *flags |= SLAB_CONSISTENCY_CHECKS;
1686                         break;
1687                 case 'z':
1688                         *flags |= SLAB_RED_ZONE;
1689                         break;
1690                 case 'p':
1691                         *flags |= SLAB_POISON;
1692                         break;
1693                 case 'u':
1694                         *flags |= SLAB_STORE_USER;
1695                         break;
1696                 case 't':
1697                         *flags |= SLAB_TRACE;
1698                         break;
1699                 case 'a':
1700                         *flags |= SLAB_FAILSLAB;
1701                         break;
1702                 case 'o':
1703                         /*
1704                          * Avoid enabling debugging on caches if its minimum
1705                          * order would increase as a result.
1706                          */
1707                         higher_order_disable = true;
1708                         break;
1709                 default:
1710                         if (init)
1711                                 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1712                 }
1713         }
1714 check_slabs:
1715         if (*str == ',')
1716                 *slabs = ++str;
1717         else
1718                 *slabs = NULL;
1719 
1720         /* Skip over the slab list */
1721         while (*str && *str != ';')
1722                 str++;
1723 
1724         /* Skip any completely empty blocks */
1725         while (*str && *str == ';')
1726                 str++;
1727 
1728         if (init && higher_order_disable)
1729                 disable_higher_order_debug = 1;
1730 
1731         if (*str)
1732                 return str;
1733         else
1734                 return NULL;
1735 }
1736 
1737 static int __init setup_slub_debug(char *str)
1738 {
1739         slab_flags_t flags;
1740         slab_flags_t global_flags;
1741         char *saved_str;
1742         char *slab_list;
1743         bool global_slub_debug_changed = false;
1744         bool slab_list_specified = false;
1745 
1746         global_flags = DEBUG_DEFAULT_FLAGS;
1747         if (*str++ != '=' || !*str)
1748                 /*
1749                  * No options specified. Switch on full debugging.
1750                  */
1751                 goto out;
1752 
1753         saved_str = str;
1754         while (str) {
1755                 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1756 
1757                 if (!slab_list) {
1758                         global_flags = flags;
1759                         global_slub_debug_changed = true;
1760                 } else {
1761                         slab_list_specified = true;
1762                         if (flags & SLAB_STORE_USER)
1763                                 stack_depot_request_early_init();
1764                 }
1765         }
1766 
1767         /*
1768          * For backwards compatibility, a single list of flags with list of
1769          * slabs means debugging is only changed for those slabs, so the global
1770          * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1771          * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1772          * long as there is no option specifying flags without a slab list.
1773          */
1774         if (slab_list_specified) {
1775                 if (!global_slub_debug_changed)
1776                         global_flags = slub_debug;
1777                 slub_debug_string = saved_str;
1778         }
1779 out:
1780         slub_debug = global_flags;
1781         if (slub_debug & SLAB_STORE_USER)
1782                 stack_depot_request_early_init();
1783         if (slub_debug != 0 || slub_debug_string)
1784                 static_branch_enable(&slub_debug_enabled);
1785         else
1786                 static_branch_disable(&slub_debug_enabled);
1787         if ((static_branch_unlikely(&init_on_alloc) ||
1788              static_branch_unlikely(&init_on_free)) &&
1789             (slub_debug & SLAB_POISON))
1790                 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1791         return 1;
1792 }
1793 
1794 __setup("slab_debug", setup_slub_debug);
1795 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1796 
1797 /*
1798  * kmem_cache_flags - apply debugging options to the cache
1799  * @flags:              flags to set
1800  * @name:               name of the cache
1801  *
1802  * Debug option(s) are applied to @flags. In addition to the debug
1803  * option(s), if a slab name (or multiple) is specified i.e.
1804  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1805  * then only the select slabs will receive the debug option(s).
1806  */
1807 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1808 {
1809         char *iter;
1810         size_t len;
1811         char *next_block;
1812         slab_flags_t block_flags;
1813         slab_flags_t slub_debug_local = slub_debug;
1814 
1815         if (flags & SLAB_NO_USER_FLAGS)
1816                 return flags;
1817 
1818         /*
1819          * If the slab cache is for debugging (e.g. kmemleak) then
1820          * don't store user (stack trace) information by default,
1821          * but let the user enable it via the command line below.
1822          */
1823         if (flags & SLAB_NOLEAKTRACE)
1824                 slub_debug_local &= ~SLAB_STORE_USER;
1825 
1826         len = strlen(name);
1827         next_block = slub_debug_string;
1828         /* Go through all blocks of debug options, see if any matches our slab's name */
1829         while (next_block) {
1830                 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1831                 if (!iter)
1832                         continue;
1833                 /* Found a block that has a slab list, search it */
1834                 while (*iter) {
1835                         char *end, *glob;
1836                         size_t cmplen;
1837 
1838                         end = strchrnul(iter, ',');
1839                         if (next_block && next_block < end)
1840                                 end = next_block - 1;
1841 
1842                         glob = strnchr(iter, end - iter, '*');
1843                         if (glob)
1844                                 cmplen = glob - iter;
1845                         else
1846                                 cmplen = max_t(size_t, len, (end - iter));
1847 
1848                         if (!strncmp(name, iter, cmplen)) {
1849                                 flags |= block_flags;
1850                                 return flags;
1851                         }
1852 
1853                         if (!*end || *end == ';')
1854                                 break;
1855                         iter = end + 1;
1856                 }
1857         }
1858 
1859         return flags | slub_debug_local;
1860 }
1861 #else /* !CONFIG_SLUB_DEBUG */
1862 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1863 static inline
1864 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1865 
1866 static inline bool alloc_debug_processing(struct kmem_cache *s,
1867         struct slab *slab, void *object, int orig_size) { return true; }
1868 
1869 static inline bool free_debug_processing(struct kmem_cache *s,
1870         struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871         unsigned long addr, depot_stack_handle_t handle) { return true; }
1872 
1873 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1874 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1875                         void *object, u8 val) { return 1; }
1876 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1877 static inline void set_track(struct kmem_cache *s, void *object,
1878                              enum track_item alloc, unsigned long addr) {}
1879 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1880                                         struct slab *slab) {}
1881 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1882                                         struct slab *slab) {}
1883 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1884 {
1885         return flags;
1886 }
1887 #define slub_debug 0
1888 
1889 #define disable_higher_order_debug 0
1890 
1891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1892                                                         { return 0; }
1893 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1894                                                         int objects) {}
1895 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1896                                                         int objects) {}
1897 #ifndef CONFIG_SLUB_TINY
1898 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1899                                void **freelist, void *nextfree)
1900 {
1901         return false;
1902 }
1903 #endif
1904 #endif /* CONFIG_SLUB_DEBUG */
1905 
1906 #ifdef CONFIG_SLAB_OBJ_EXT
1907 
1908 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1909 
1910 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1911 {
1912         struct slabobj_ext *slab_exts;
1913         struct slab *obj_exts_slab;
1914 
1915         obj_exts_slab = virt_to_slab(obj_exts);
1916         slab_exts = slab_obj_exts(obj_exts_slab);
1917         if (slab_exts) {
1918                 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1919                                                  obj_exts_slab, obj_exts);
1920                 /* codetag should be NULL */
1921                 WARN_ON(slab_exts[offs].ref.ct);
1922                 set_codetag_empty(&slab_exts[offs].ref);
1923         }
1924 }
1925 
1926 static inline void mark_failed_objexts_alloc(struct slab *slab)
1927 {
1928         slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1929 }
1930 
1931 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1932                         struct slabobj_ext *vec, unsigned int objects)
1933 {
1934         /*
1935          * If vector previously failed to allocate then we have live
1936          * objects with no tag reference. Mark all references in this
1937          * vector as empty to avoid warnings later on.
1938          */
1939         if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1940                 unsigned int i;
1941 
1942                 for (i = 0; i < objects; i++)
1943                         set_codetag_empty(&vec[i].ref);
1944         }
1945 }
1946 
1947 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1948 
1949 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1950 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1951 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1952                         struct slabobj_ext *vec, unsigned int objects) {}
1953 
1954 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1955 
1956 /*
1957  * The allocated objcg pointers array is not accounted directly.
1958  * Moreover, it should not come from DMA buffer and is not readily
1959  * reclaimable. So those GFP bits should be masked off.
1960  */
1961 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | \
1962                                 __GFP_ACCOUNT | __GFP_NOFAIL)
1963 
1964 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1965                         gfp_t gfp, bool new_slab)
1966 {
1967         unsigned int objects = objs_per_slab(s, slab);
1968         unsigned long new_exts;
1969         unsigned long old_exts;
1970         struct slabobj_ext *vec;
1971 
1972         gfp &= ~OBJCGS_CLEAR_MASK;
1973         /* Prevent recursive extension vector allocation */
1974         gfp |= __GFP_NO_OBJ_EXT;
1975         vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1976                            slab_nid(slab));
1977         if (!vec) {
1978                 /* Mark vectors which failed to allocate */
1979                 if (new_slab)
1980                         mark_failed_objexts_alloc(slab);
1981 
1982                 return -ENOMEM;
1983         }
1984 
1985         new_exts = (unsigned long)vec;
1986 #ifdef CONFIG_MEMCG
1987         new_exts |= MEMCG_DATA_OBJEXTS;
1988 #endif
1989         old_exts = READ_ONCE(slab->obj_exts);
1990         handle_failed_objexts_alloc(old_exts, vec, objects);
1991         if (new_slab) {
1992                 /*
1993                  * If the slab is brand new and nobody can yet access its
1994                  * obj_exts, no synchronization is required and obj_exts can
1995                  * be simply assigned.
1996                  */
1997                 slab->obj_exts = new_exts;
1998         } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1999                    cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2000                 /*
2001                  * If the slab is already in use, somebody can allocate and
2002                  * assign slabobj_exts in parallel. In this case the existing
2003                  * objcg vector should be reused.
2004                  */
2005                 mark_objexts_empty(vec);
2006                 kfree(vec);
2007                 return 0;
2008         }
2009 
2010         kmemleak_not_leak(vec);
2011         return 0;
2012 }
2013 
2014 static inline void free_slab_obj_exts(struct slab *slab)
2015 {
2016         struct slabobj_ext *obj_exts;
2017 
2018         obj_exts = slab_obj_exts(slab);
2019         if (!obj_exts)
2020                 return;
2021 
2022         /*
2023          * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2024          * corresponding extension will be NULL. alloc_tag_sub() will throw a
2025          * warning if slab has extensions but the extension of an object is
2026          * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2027          * the extension for obj_exts is expected to be NULL.
2028          */
2029         mark_objexts_empty(obj_exts);
2030         kfree(obj_exts);
2031         slab->obj_exts = 0;
2032 }
2033 
2034 static inline bool need_slab_obj_ext(void)
2035 {
2036         if (mem_alloc_profiling_enabled())
2037                 return true;
2038 
2039         /*
2040          * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2041          * inside memcg_slab_post_alloc_hook. No other users for now.
2042          */
2043         return false;
2044 }
2045 
2046 #else /* CONFIG_SLAB_OBJ_EXT */
2047 
2048 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2049                                gfp_t gfp, bool new_slab)
2050 {
2051         return 0;
2052 }
2053 
2054 static inline void free_slab_obj_exts(struct slab *slab)
2055 {
2056 }
2057 
2058 static inline bool need_slab_obj_ext(void)
2059 {
2060         return false;
2061 }
2062 
2063 #endif /* CONFIG_SLAB_OBJ_EXT */
2064 
2065 #ifdef CONFIG_MEM_ALLOC_PROFILING
2066 
2067 static inline struct slabobj_ext *
2068 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2069 {
2070         struct slab *slab;
2071 
2072         if (!p)
2073                 return NULL;
2074 
2075         if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2076                 return NULL;
2077 
2078         if (flags & __GFP_NO_OBJ_EXT)
2079                 return NULL;
2080 
2081         slab = virt_to_slab(p);
2082         if (!slab_obj_exts(slab) &&
2083             WARN(alloc_slab_obj_exts(slab, s, flags, false),
2084                  "%s, %s: Failed to create slab extension vector!\n",
2085                  __func__, s->name))
2086                 return NULL;
2087 
2088         return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2089 }
2090 
2091 static inline void
2092 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2093 {
2094         if (need_slab_obj_ext()) {
2095                 struct slabobj_ext *obj_exts;
2096 
2097                 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2098                 /*
2099                  * Currently obj_exts is used only for allocation profiling.
2100                  * If other users appear then mem_alloc_profiling_enabled()
2101                  * check should be added before alloc_tag_add().
2102                  */
2103                 if (likely(obj_exts))
2104                         alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2105         }
2106 }
2107 
2108 static inline void
2109 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2110                              int objects)
2111 {
2112         struct slabobj_ext *obj_exts;
2113         int i;
2114 
2115         if (!mem_alloc_profiling_enabled())
2116                 return;
2117 
2118         /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2119         if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2120                 return;
2121 
2122         obj_exts = slab_obj_exts(slab);
2123         if (!obj_exts)
2124                 return;
2125 
2126         for (i = 0; i < objects; i++) {
2127                 unsigned int off = obj_to_index(s, slab, p[i]);
2128 
2129                 alloc_tag_sub(&obj_exts[off].ref, s->size);
2130         }
2131 }
2132 
2133 #else /* CONFIG_MEM_ALLOC_PROFILING */
2134 
2135 static inline void
2136 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2137 {
2138 }
2139 
2140 static inline void
2141 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2142                              int objects)
2143 {
2144 }
2145 
2146 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2147 
2148 
2149 #ifdef CONFIG_MEMCG
2150 
2151 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2152 
2153 static __fastpath_inline
2154 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2155                                 gfp_t flags, size_t size, void **p)
2156 {
2157         if (likely(!memcg_kmem_online()))
2158                 return true;
2159 
2160         if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2161                 return true;
2162 
2163         if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2164                 return true;
2165 
2166         if (likely(size == 1)) {
2167                 memcg_alloc_abort_single(s, *p);
2168                 *p = NULL;
2169         } else {
2170                 kmem_cache_free_bulk(s, size, p);
2171         }
2172 
2173         return false;
2174 }
2175 
2176 static __fastpath_inline
2177 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2178                           int objects)
2179 {
2180         struct slabobj_ext *obj_exts;
2181 
2182         if (!memcg_kmem_online())
2183                 return;
2184 
2185         obj_exts = slab_obj_exts(slab);
2186         if (likely(!obj_exts))
2187                 return;
2188 
2189         __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2190 }
2191 #else /* CONFIG_MEMCG */
2192 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2193                                               struct list_lru *lru,
2194                                               gfp_t flags, size_t size,
2195                                               void **p)
2196 {
2197         return true;
2198 }
2199 
2200 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2201                                         void **p, int objects)
2202 {
2203 }
2204 #endif /* CONFIG_MEMCG */
2205 
2206 /*
2207  * Hooks for other subsystems that check memory allocations. In a typical
2208  * production configuration these hooks all should produce no code at all.
2209  *
2210  * Returns true if freeing of the object can proceed, false if its reuse
2211  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2212  */
2213 static __always_inline
2214 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2215 {
2216         kmemleak_free_recursive(x, s->flags);
2217         kmsan_slab_free(s, x);
2218 
2219         debug_check_no_locks_freed(x, s->object_size);
2220 
2221         if (!(s->flags & SLAB_DEBUG_OBJECTS))
2222                 debug_check_no_obj_freed(x, s->object_size);
2223 
2224         /* Use KCSAN to help debug racy use-after-free. */
2225         if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2226                 __kcsan_check_access(x, s->object_size,
2227                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2228 
2229         if (kfence_free(x))
2230                 return false;
2231 
2232         /*
2233          * As memory initialization might be integrated into KASAN,
2234          * kasan_slab_free and initialization memset's must be
2235          * kept together to avoid discrepancies in behavior.
2236          *
2237          * The initialization memset's clear the object and the metadata,
2238          * but don't touch the SLAB redzone.
2239          *
2240          * The object's freepointer is also avoided if stored outside the
2241          * object.
2242          */
2243         if (unlikely(init)) {
2244                 int rsize;
2245                 unsigned int inuse, orig_size;
2246 
2247                 inuse = get_info_end(s);
2248                 orig_size = get_orig_size(s, x);
2249                 if (!kasan_has_integrated_init())
2250                         memset(kasan_reset_tag(x), 0, orig_size);
2251                 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2252                 memset((char *)kasan_reset_tag(x) + inuse, 0,
2253                        s->size - inuse - rsize);
2254                 /*
2255                  * Restore orig_size, otherwize kmalloc redzone overwritten
2256                  * would be reported
2257                  */
2258                 set_orig_size(s, x, orig_size);
2259 
2260         }
2261         /* KASAN might put x into memory quarantine, delaying its reuse. */
2262         return !kasan_slab_free(s, x, init);
2263 }
2264 
2265 static __fastpath_inline
2266 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2267                              int *cnt)
2268 {
2269 
2270         void *object;
2271         void *next = *head;
2272         void *old_tail = *tail;
2273         bool init;
2274 
2275         if (is_kfence_address(next)) {
2276                 slab_free_hook(s, next, false);
2277                 return false;
2278         }
2279 
2280         /* Head and tail of the reconstructed freelist */
2281         *head = NULL;
2282         *tail = NULL;
2283 
2284         init = slab_want_init_on_free(s);
2285 
2286         do {
2287                 object = next;
2288                 next = get_freepointer(s, object);
2289 
2290                 /* If object's reuse doesn't have to be delayed */
2291                 if (likely(slab_free_hook(s, object, init))) {
2292                         /* Move object to the new freelist */
2293                         set_freepointer(s, object, *head);
2294                         *head = object;
2295                         if (!*tail)
2296                                 *tail = object;
2297                 } else {
2298                         /*
2299                          * Adjust the reconstructed freelist depth
2300                          * accordingly if object's reuse is delayed.
2301                          */
2302                         --(*cnt);
2303                 }
2304         } while (object != old_tail);
2305 
2306         return *head != NULL;
2307 }
2308 
2309 static void *setup_object(struct kmem_cache *s, void *object)
2310 {
2311         setup_object_debug(s, object);
2312         object = kasan_init_slab_obj(s, object);
2313         if (unlikely(s->ctor)) {
2314                 kasan_unpoison_new_object(s, object);
2315                 s->ctor(object);
2316                 kasan_poison_new_object(s, object);
2317         }
2318         return object;
2319 }
2320 
2321 /*
2322  * Slab allocation and freeing
2323  */
2324 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2325                 struct kmem_cache_order_objects oo)
2326 {
2327         struct folio *folio;
2328         struct slab *slab;
2329         unsigned int order = oo_order(oo);
2330 
2331         folio = (struct folio *)alloc_pages_node(node, flags, order);
2332         if (!folio)
2333                 return NULL;
2334 
2335         slab = folio_slab(folio);
2336         __folio_set_slab(folio);
2337         /* Make the flag visible before any changes to folio->mapping */
2338         smp_wmb();
2339         if (folio_is_pfmemalloc(folio))
2340                 slab_set_pfmemalloc(slab);
2341 
2342         return slab;
2343 }
2344 
2345 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2346 /* Pre-initialize the random sequence cache */
2347 static int init_cache_random_seq(struct kmem_cache *s)
2348 {
2349         unsigned int count = oo_objects(s->oo);
2350         int err;
2351 
2352         /* Bailout if already initialised */
2353         if (s->random_seq)
2354                 return 0;
2355 
2356         err = cache_random_seq_create(s, count, GFP_KERNEL);
2357         if (err) {
2358                 pr_err("SLUB: Unable to initialize free list for %s\n",
2359                         s->name);
2360                 return err;
2361         }
2362 
2363         /* Transform to an offset on the set of pages */
2364         if (s->random_seq) {
2365                 unsigned int i;
2366 
2367                 for (i = 0; i < count; i++)
2368                         s->random_seq[i] *= s->size;
2369         }
2370         return 0;
2371 }
2372 
2373 /* Initialize each random sequence freelist per cache */
2374 static void __init init_freelist_randomization(void)
2375 {
2376         struct kmem_cache *s;
2377 
2378         mutex_lock(&slab_mutex);
2379 
2380         list_for_each_entry(s, &slab_caches, list)
2381                 init_cache_random_seq(s);
2382 
2383         mutex_unlock(&slab_mutex);
2384 }
2385 
2386 /* Get the next entry on the pre-computed freelist randomized */
2387 static void *next_freelist_entry(struct kmem_cache *s,
2388                                 unsigned long *pos, void *start,
2389                                 unsigned long page_limit,
2390                                 unsigned long freelist_count)
2391 {
2392         unsigned int idx;
2393 
2394         /*
2395          * If the target page allocation failed, the number of objects on the
2396          * page might be smaller than the usual size defined by the cache.
2397          */
2398         do {
2399                 idx = s->random_seq[*pos];
2400                 *pos += 1;
2401                 if (*pos >= freelist_count)
2402                         *pos = 0;
2403         } while (unlikely(idx >= page_limit));
2404 
2405         return (char *)start + idx;
2406 }
2407 
2408 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2409 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2410 {
2411         void *start;
2412         void *cur;
2413         void *next;
2414         unsigned long idx, pos, page_limit, freelist_count;
2415 
2416         if (slab->objects < 2 || !s->random_seq)
2417                 return false;
2418 
2419         freelist_count = oo_objects(s->oo);
2420         pos = get_random_u32_below(freelist_count);
2421 
2422         page_limit = slab->objects * s->size;
2423         start = fixup_red_left(s, slab_address(slab));
2424 
2425         /* First entry is used as the base of the freelist */
2426         cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2427         cur = setup_object(s, cur);
2428         slab->freelist = cur;
2429 
2430         for (idx = 1; idx < slab->objects; idx++) {
2431                 next = next_freelist_entry(s, &pos, start, page_limit,
2432                         freelist_count);
2433                 next = setup_object(s, next);
2434                 set_freepointer(s, cur, next);
2435                 cur = next;
2436         }
2437         set_freepointer(s, cur, NULL);
2438 
2439         return true;
2440 }
2441 #else
2442 static inline int init_cache_random_seq(struct kmem_cache *s)
2443 {
2444         return 0;
2445 }
2446 static inline void init_freelist_randomization(void) { }
2447 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2448 {
2449         return false;
2450 }
2451 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2452 
2453 static __always_inline void account_slab(struct slab *slab, int order,
2454                                          struct kmem_cache *s, gfp_t gfp)
2455 {
2456         if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2457                 alloc_slab_obj_exts(slab, s, gfp, true);
2458 
2459         mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2460                             PAGE_SIZE << order);
2461 }
2462 
2463 static __always_inline void unaccount_slab(struct slab *slab, int order,
2464                                            struct kmem_cache *s)
2465 {
2466         if (memcg_kmem_online() || need_slab_obj_ext())
2467                 free_slab_obj_exts(slab);
2468 
2469         mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2470                             -(PAGE_SIZE << order));
2471 }
2472 
2473 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2474 {
2475         struct slab *slab;
2476         struct kmem_cache_order_objects oo = s->oo;
2477         gfp_t alloc_gfp;
2478         void *start, *p, *next;
2479         int idx;
2480         bool shuffle;
2481 
2482         flags &= gfp_allowed_mask;
2483 
2484         flags |= s->allocflags;
2485 
2486         /*
2487          * Let the initial higher-order allocation fail under memory pressure
2488          * so we fall-back to the minimum order allocation.
2489          */
2490         alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2491         if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2492                 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2493 
2494         slab = alloc_slab_page(alloc_gfp, node, oo);
2495         if (unlikely(!slab)) {
2496                 oo = s->min;
2497                 alloc_gfp = flags;
2498                 /*
2499                  * Allocation may have failed due to fragmentation.
2500                  * Try a lower order alloc if possible
2501                  */
2502                 slab = alloc_slab_page(alloc_gfp, node, oo);
2503                 if (unlikely(!slab))
2504                         return NULL;
2505                 stat(s, ORDER_FALLBACK);
2506         }
2507 
2508         slab->objects = oo_objects(oo);
2509         slab->inuse = 0;
2510         slab->frozen = 0;
2511 
2512         account_slab(slab, oo_order(oo), s, flags);
2513 
2514         slab->slab_cache = s;
2515 
2516         kasan_poison_slab(slab);
2517 
2518         start = slab_address(slab);
2519 
2520         setup_slab_debug(s, slab, start);
2521 
2522         shuffle = shuffle_freelist(s, slab);
2523 
2524         if (!shuffle) {
2525                 start = fixup_red_left(s, start);
2526                 start = setup_object(s, start);
2527                 slab->freelist = start;
2528                 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2529                         next = p + s->size;
2530                         next = setup_object(s, next);
2531                         set_freepointer(s, p, next);
2532                         p = next;
2533                 }
2534                 set_freepointer(s, p, NULL);
2535         }
2536 
2537         return slab;
2538 }
2539 
2540 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2541 {
2542         if (unlikely(flags & GFP_SLAB_BUG_MASK))
2543                 flags = kmalloc_fix_flags(flags);
2544 
2545         WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2546 
2547         return allocate_slab(s,
2548                 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2549 }
2550 
2551 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2552 {
2553         struct folio *folio = slab_folio(slab);
2554         int order = folio_order(folio);
2555         int pages = 1 << order;
2556 
2557         __slab_clear_pfmemalloc(slab);
2558         folio->mapping = NULL;
2559         /* Make the mapping reset visible before clearing the flag */
2560         smp_wmb();
2561         __folio_clear_slab(folio);
2562         mm_account_reclaimed_pages(pages);
2563         unaccount_slab(slab, order, s);
2564         __free_pages(&folio->page, order);
2565 }
2566 
2567 static void rcu_free_slab(struct rcu_head *h)
2568 {
2569         struct slab *slab = container_of(h, struct slab, rcu_head);
2570 
2571         __free_slab(slab->slab_cache, slab);
2572 }
2573 
2574 static void free_slab(struct kmem_cache *s, struct slab *slab)
2575 {
2576         if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2577                 void *p;
2578 
2579                 slab_pad_check(s, slab);
2580                 for_each_object(p, s, slab_address(slab), slab->objects)
2581                         check_object(s, slab, p, SLUB_RED_INACTIVE);
2582         }
2583 
2584         if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2585                 call_rcu(&slab->rcu_head, rcu_free_slab);
2586         else
2587                 __free_slab(s, slab);
2588 }
2589 
2590 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2591 {
2592         dec_slabs_node(s, slab_nid(slab), slab->objects);
2593         free_slab(s, slab);
2594 }
2595 
2596 /*
2597  * SLUB reuses PG_workingset bit to keep track of whether it's on
2598  * the per-node partial list.
2599  */
2600 static inline bool slab_test_node_partial(const struct slab *slab)
2601 {
2602         return folio_test_workingset(slab_folio(slab));
2603 }
2604 
2605 static inline void slab_set_node_partial(struct slab *slab)
2606 {
2607         set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2608 }
2609 
2610 static inline void slab_clear_node_partial(struct slab *slab)
2611 {
2612         clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2613 }
2614 
2615 /*
2616  * Management of partially allocated slabs.
2617  */
2618 static inline void
2619 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2620 {
2621         n->nr_partial++;
2622         if (tail == DEACTIVATE_TO_TAIL)
2623                 list_add_tail(&slab->slab_list, &n->partial);
2624         else
2625                 list_add(&slab->slab_list, &n->partial);
2626         slab_set_node_partial(slab);
2627 }
2628 
2629 static inline void add_partial(struct kmem_cache_node *n,
2630                                 struct slab *slab, int tail)
2631 {
2632         lockdep_assert_held(&n->list_lock);
2633         __add_partial(n, slab, tail);
2634 }
2635 
2636 static inline void remove_partial(struct kmem_cache_node *n,
2637                                         struct slab *slab)
2638 {
2639         lockdep_assert_held(&n->list_lock);
2640         list_del(&slab->slab_list);
2641         slab_clear_node_partial(slab);
2642         n->nr_partial--;
2643 }
2644 
2645 /*
2646  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2647  * slab from the n->partial list. Remove only a single object from the slab, do
2648  * the alloc_debug_processing() checks and leave the slab on the list, or move
2649  * it to full list if it was the last free object.
2650  */
2651 static void *alloc_single_from_partial(struct kmem_cache *s,
2652                 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2653 {
2654         void *object;
2655 
2656         lockdep_assert_held(&n->list_lock);
2657 
2658         object = slab->freelist;
2659         slab->freelist = get_freepointer(s, object);
2660         slab->inuse++;
2661 
2662         if (!alloc_debug_processing(s, slab, object, orig_size)) {
2663                 remove_partial(n, slab);
2664                 return NULL;
2665         }
2666 
2667         if (slab->inuse == slab->objects) {
2668                 remove_partial(n, slab);
2669                 add_full(s, n, slab);
2670         }
2671 
2672         return object;
2673 }
2674 
2675 /*
2676  * Called only for kmem_cache_debug() caches to allocate from a freshly
2677  * allocated slab. Allocate a single object instead of whole freelist
2678  * and put the slab to the partial (or full) list.
2679  */
2680 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2681                                         struct slab *slab, int orig_size)
2682 {
2683         int nid = slab_nid(slab);
2684         struct kmem_cache_node *n = get_node(s, nid);
2685         unsigned long flags;
2686         void *object;
2687 
2688 
2689         object = slab->freelist;
2690         slab->freelist = get_freepointer(s, object);
2691         slab->inuse = 1;
2692 
2693         if (!alloc_debug_processing(s, slab, object, orig_size))
2694                 /*
2695                  * It's not really expected that this would fail on a
2696                  * freshly allocated slab, but a concurrent memory
2697                  * corruption in theory could cause that.
2698                  */
2699                 return NULL;
2700 
2701         spin_lock_irqsave(&n->list_lock, flags);
2702 
2703         if (slab->inuse == slab->objects)
2704                 add_full(s, n, slab);
2705         else
2706                 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2707 
2708         inc_slabs_node(s, nid, slab->objects);
2709         spin_unlock_irqrestore(&n->list_lock, flags);
2710 
2711         return object;
2712 }
2713 
2714 #ifdef CONFIG_SLUB_CPU_PARTIAL
2715 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2716 #else
2717 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2718                                    int drain) { }
2719 #endif
2720 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2721 
2722 /*
2723  * Try to allocate a partial slab from a specific node.
2724  */
2725 static struct slab *get_partial_node(struct kmem_cache *s,
2726                                      struct kmem_cache_node *n,
2727                                      struct partial_context *pc)
2728 {
2729         struct slab *slab, *slab2, *partial = NULL;
2730         unsigned long flags;
2731         unsigned int partial_slabs = 0;
2732 
2733         /*
2734          * Racy check. If we mistakenly see no partial slabs then we
2735          * just allocate an empty slab. If we mistakenly try to get a
2736          * partial slab and there is none available then get_partial()
2737          * will return NULL.
2738          */
2739         if (!n || !n->nr_partial)
2740                 return NULL;
2741 
2742         spin_lock_irqsave(&n->list_lock, flags);
2743         list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2744                 if (!pfmemalloc_match(slab, pc->flags))
2745                         continue;
2746 
2747                 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2748                         void *object = alloc_single_from_partial(s, n, slab,
2749                                                         pc->orig_size);
2750                         if (object) {
2751                                 partial = slab;
2752                                 pc->object = object;
2753                                 break;
2754                         }
2755                         continue;
2756                 }
2757 
2758                 remove_partial(n, slab);
2759 
2760                 if (!partial) {
2761                         partial = slab;
2762                         stat(s, ALLOC_FROM_PARTIAL);
2763 
2764                         if ((slub_get_cpu_partial(s) == 0)) {
2765                                 break;
2766                         }
2767                 } else {
2768                         put_cpu_partial(s, slab, 0);
2769                         stat(s, CPU_PARTIAL_NODE);
2770 
2771                         if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2772                                 break;
2773                         }
2774                 }
2775         }
2776         spin_unlock_irqrestore(&n->list_lock, flags);
2777         return partial;
2778 }
2779 
2780 /*
2781  * Get a slab from somewhere. Search in increasing NUMA distances.
2782  */
2783 static struct slab *get_any_partial(struct kmem_cache *s,
2784                                     struct partial_context *pc)
2785 {
2786 #ifdef CONFIG_NUMA
2787         struct zonelist *zonelist;
2788         struct zoneref *z;
2789         struct zone *zone;
2790         enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2791         struct slab *slab;
2792         unsigned int cpuset_mems_cookie;
2793 
2794         /*
2795          * The defrag ratio allows a configuration of the tradeoffs between
2796          * inter node defragmentation and node local allocations. A lower
2797          * defrag_ratio increases the tendency to do local allocations
2798          * instead of attempting to obtain partial slabs from other nodes.
2799          *
2800          * If the defrag_ratio is set to 0 then kmalloc() always
2801          * returns node local objects. If the ratio is higher then kmalloc()
2802          * may return off node objects because partial slabs are obtained
2803          * from other nodes and filled up.
2804          *
2805          * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2806          * (which makes defrag_ratio = 1000) then every (well almost)
2807          * allocation will first attempt to defrag slab caches on other nodes.
2808          * This means scanning over all nodes to look for partial slabs which
2809          * may be expensive if we do it every time we are trying to find a slab
2810          * with available objects.
2811          */
2812         if (!s->remote_node_defrag_ratio ||
2813                         get_cycles() % 1024 > s->remote_node_defrag_ratio)
2814                 return NULL;
2815 
2816         do {
2817                 cpuset_mems_cookie = read_mems_allowed_begin();
2818                 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2819                 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2820                         struct kmem_cache_node *n;
2821 
2822                         n = get_node(s, zone_to_nid(zone));
2823 
2824                         if (n && cpuset_zone_allowed(zone, pc->flags) &&
2825                                         n->nr_partial > s->min_partial) {
2826                                 slab = get_partial_node(s, n, pc);
2827                                 if (slab) {
2828                                         /*
2829                                          * Don't check read_mems_allowed_retry()
2830                                          * here - if mems_allowed was updated in
2831                                          * parallel, that was a harmless race
2832                                          * between allocation and the cpuset
2833                                          * update
2834                                          */
2835                                         return slab;
2836                                 }
2837                         }
2838                 }
2839         } while (read_mems_allowed_retry(cpuset_mems_cookie));
2840 #endif  /* CONFIG_NUMA */
2841         return NULL;
2842 }
2843 
2844 /*
2845  * Get a partial slab, lock it and return it.
2846  */
2847 static struct slab *get_partial(struct kmem_cache *s, int node,
2848                                 struct partial_context *pc)
2849 {
2850         struct slab *slab;
2851         int searchnode = node;
2852 
2853         if (node == NUMA_NO_NODE)
2854                 searchnode = numa_mem_id();
2855 
2856         slab = get_partial_node(s, get_node(s, searchnode), pc);
2857         if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2858                 return slab;
2859 
2860         return get_any_partial(s, pc);
2861 }
2862 
2863 #ifndef CONFIG_SLUB_TINY
2864 
2865 #ifdef CONFIG_PREEMPTION
2866 /*
2867  * Calculate the next globally unique transaction for disambiguation
2868  * during cmpxchg. The transactions start with the cpu number and are then
2869  * incremented by CONFIG_NR_CPUS.
2870  */
2871 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2872 #else
2873 /*
2874  * No preemption supported therefore also no need to check for
2875  * different cpus.
2876  */
2877 #define TID_STEP 1
2878 #endif /* CONFIG_PREEMPTION */
2879 
2880 static inline unsigned long next_tid(unsigned long tid)
2881 {
2882         return tid + TID_STEP;
2883 }
2884 
2885 #ifdef SLUB_DEBUG_CMPXCHG
2886 static inline unsigned int tid_to_cpu(unsigned long tid)
2887 {
2888         return tid % TID_STEP;
2889 }
2890 
2891 static inline unsigned long tid_to_event(unsigned long tid)
2892 {
2893         return tid / TID_STEP;
2894 }
2895 #endif
2896 
2897 static inline unsigned int init_tid(int cpu)
2898 {
2899         return cpu;
2900 }
2901 
2902 static inline void note_cmpxchg_failure(const char *n,
2903                 const struct kmem_cache *s, unsigned long tid)
2904 {
2905 #ifdef SLUB_DEBUG_CMPXCHG
2906         unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2907 
2908         pr_info("%s %s: cmpxchg redo ", n, s->name);
2909 
2910 #ifdef CONFIG_PREEMPTION
2911         if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2912                 pr_warn("due to cpu change %d -> %d\n",
2913                         tid_to_cpu(tid), tid_to_cpu(actual_tid));
2914         else
2915 #endif
2916         if (tid_to_event(tid) != tid_to_event(actual_tid))
2917                 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2918                         tid_to_event(tid), tid_to_event(actual_tid));
2919         else
2920                 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2921                         actual_tid, tid, next_tid(tid));
2922 #endif
2923         stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2924 }
2925 
2926 static void init_kmem_cache_cpus(struct kmem_cache *s)
2927 {
2928         int cpu;
2929         struct kmem_cache_cpu *c;
2930 
2931         for_each_possible_cpu(cpu) {
2932                 c = per_cpu_ptr(s->cpu_slab, cpu);
2933                 local_lock_init(&c->lock);
2934                 c->tid = init_tid(cpu);
2935         }
2936 }
2937 
2938 /*
2939  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2940  * unfreezes the slabs and puts it on the proper list.
2941  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2942  * by the caller.
2943  */
2944 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2945                             void *freelist)
2946 {
2947         struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2948         int free_delta = 0;
2949         void *nextfree, *freelist_iter, *freelist_tail;
2950         int tail = DEACTIVATE_TO_HEAD;
2951         unsigned long flags = 0;
2952         struct slab new;
2953         struct slab old;
2954 
2955         if (READ_ONCE(slab->freelist)) {
2956                 stat(s, DEACTIVATE_REMOTE_FREES);
2957                 tail = DEACTIVATE_TO_TAIL;
2958         }
2959 
2960         /*
2961          * Stage one: Count the objects on cpu's freelist as free_delta and
2962          * remember the last object in freelist_tail for later splicing.
2963          */
2964         freelist_tail = NULL;
2965         freelist_iter = freelist;
2966         while (freelist_iter) {
2967                 nextfree = get_freepointer(s, freelist_iter);
2968 
2969                 /*
2970                  * If 'nextfree' is invalid, it is possible that the object at
2971                  * 'freelist_iter' is already corrupted.  So isolate all objects
2972                  * starting at 'freelist_iter' by skipping them.
2973                  */
2974                 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2975                         break;
2976 
2977                 freelist_tail = freelist_iter;
2978                 free_delta++;
2979 
2980                 freelist_iter = nextfree;
2981         }
2982 
2983         /*
2984          * Stage two: Unfreeze the slab while splicing the per-cpu
2985          * freelist to the head of slab's freelist.
2986          */
2987         do {
2988                 old.freelist = READ_ONCE(slab->freelist);
2989                 old.counters = READ_ONCE(slab->counters);
2990                 VM_BUG_ON(!old.frozen);
2991 
2992                 /* Determine target state of the slab */
2993                 new.counters = old.counters;
2994                 new.frozen = 0;
2995                 if (freelist_tail) {
2996                         new.inuse -= free_delta;
2997                         set_freepointer(s, freelist_tail, old.freelist);
2998                         new.freelist = freelist;
2999                 } else {
3000                         new.freelist = old.freelist;
3001                 }
3002         } while (!slab_update_freelist(s, slab,
3003                 old.freelist, old.counters,
3004                 new.freelist, new.counters,
3005                 "unfreezing slab"));
3006 
3007         /*
3008          * Stage three: Manipulate the slab list based on the updated state.
3009          */
3010         if (!new.inuse && n->nr_partial >= s->min_partial) {
3011                 stat(s, DEACTIVATE_EMPTY);
3012                 discard_slab(s, slab);
3013                 stat(s, FREE_SLAB);
3014         } else if (new.freelist) {
3015                 spin_lock_irqsave(&n->list_lock, flags);
3016                 add_partial(n, slab, tail);
3017                 spin_unlock_irqrestore(&n->list_lock, flags);
3018                 stat(s, tail);
3019         } else {
3020                 stat(s, DEACTIVATE_FULL);
3021         }
3022 }
3023 
3024 #ifdef CONFIG_SLUB_CPU_PARTIAL
3025 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3026 {
3027         struct kmem_cache_node *n = NULL, *n2 = NULL;
3028         struct slab *slab, *slab_to_discard = NULL;
3029         unsigned long flags = 0;
3030 
3031         while (partial_slab) {
3032                 slab = partial_slab;
3033                 partial_slab = slab->next;
3034 
3035                 n2 = get_node(s, slab_nid(slab));
3036                 if (n != n2) {
3037                         if (n)
3038                                 spin_unlock_irqrestore(&n->list_lock, flags);
3039 
3040                         n = n2;
3041                         spin_lock_irqsave(&n->list_lock, flags);
3042                 }
3043 
3044                 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3045                         slab->next = slab_to_discard;
3046                         slab_to_discard = slab;
3047                 } else {
3048                         add_partial(n, slab, DEACTIVATE_TO_TAIL);
3049                         stat(s, FREE_ADD_PARTIAL);
3050                 }
3051         }
3052 
3053         if (n)
3054                 spin_unlock_irqrestore(&n->list_lock, flags);
3055 
3056         while (slab_to_discard) {
3057                 slab = slab_to_discard;
3058                 slab_to_discard = slab_to_discard->next;
3059 
3060                 stat(s, DEACTIVATE_EMPTY);
3061                 discard_slab(s, slab);
3062                 stat(s, FREE_SLAB);
3063         }
3064 }
3065 
3066 /*
3067  * Put all the cpu partial slabs to the node partial list.
3068  */
3069 static void put_partials(struct kmem_cache *s)
3070 {
3071         struct slab *partial_slab;
3072         unsigned long flags;
3073 
3074         local_lock_irqsave(&s->cpu_slab->lock, flags);
3075         partial_slab = this_cpu_read(s->cpu_slab->partial);
3076         this_cpu_write(s->cpu_slab->partial, NULL);
3077         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3078 
3079         if (partial_slab)
3080                 __put_partials(s, partial_slab);
3081 }
3082 
3083 static void put_partials_cpu(struct kmem_cache *s,
3084                              struct kmem_cache_cpu *c)
3085 {
3086         struct slab *partial_slab;
3087 
3088         partial_slab = slub_percpu_partial(c);
3089         c->partial = NULL;
3090 
3091         if (partial_slab)
3092                 __put_partials(s, partial_slab);
3093 }
3094 
3095 /*
3096  * Put a slab into a partial slab slot if available.
3097  *
3098  * If we did not find a slot then simply move all the partials to the
3099  * per node partial list.
3100  */
3101 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3102 {
3103         struct slab *oldslab;
3104         struct slab *slab_to_put = NULL;
3105         unsigned long flags;
3106         int slabs = 0;
3107 
3108         local_lock_irqsave(&s->cpu_slab->lock, flags);
3109 
3110         oldslab = this_cpu_read(s->cpu_slab->partial);
3111 
3112         if (oldslab) {
3113                 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3114                         /*
3115                          * Partial array is full. Move the existing set to the
3116                          * per node partial list. Postpone the actual unfreezing
3117                          * outside of the critical section.
3118                          */
3119                         slab_to_put = oldslab;
3120                         oldslab = NULL;
3121                 } else {
3122                         slabs = oldslab->slabs;
3123                 }
3124         }
3125 
3126         slabs++;
3127 
3128         slab->slabs = slabs;
3129         slab->next = oldslab;
3130 
3131         this_cpu_write(s->cpu_slab->partial, slab);
3132 
3133         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3134 
3135         if (slab_to_put) {
3136                 __put_partials(s, slab_to_put);
3137                 stat(s, CPU_PARTIAL_DRAIN);
3138         }
3139 }
3140 
3141 #else   /* CONFIG_SLUB_CPU_PARTIAL */
3142 
3143 static inline void put_partials(struct kmem_cache *s) { }
3144 static inline void put_partials_cpu(struct kmem_cache *s,
3145                                     struct kmem_cache_cpu *c) { }
3146 
3147 #endif  /* CONFIG_SLUB_CPU_PARTIAL */
3148 
3149 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3150 {
3151         unsigned long flags;
3152         struct slab *slab;
3153         void *freelist;
3154 
3155         local_lock_irqsave(&s->cpu_slab->lock, flags);
3156 
3157         slab = c->slab;
3158         freelist = c->freelist;
3159 
3160         c->slab = NULL;
3161         c->freelist = NULL;
3162         c->tid = next_tid(c->tid);
3163 
3164         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3165 
3166         if (slab) {
3167                 deactivate_slab(s, slab, freelist);
3168                 stat(s, CPUSLAB_FLUSH);
3169         }
3170 }
3171 
3172 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3173 {
3174         struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3175         void *freelist = c->freelist;
3176         struct slab *slab = c->slab;
3177 
3178         c->slab = NULL;
3179         c->freelist = NULL;
3180         c->tid = next_tid(c->tid);
3181 
3182         if (slab) {
3183                 deactivate_slab(s, slab, freelist);
3184                 stat(s, CPUSLAB_FLUSH);
3185         }
3186 
3187         put_partials_cpu(s, c);
3188 }
3189 
3190 struct slub_flush_work {
3191         struct work_struct work;
3192         struct kmem_cache *s;
3193         bool skip;
3194 };
3195 
3196 /*
3197  * Flush cpu slab.
3198  *
3199  * Called from CPU work handler with migration disabled.
3200  */
3201 static void flush_cpu_slab(struct work_struct *w)
3202 {
3203         struct kmem_cache *s;
3204         struct kmem_cache_cpu *c;
3205         struct slub_flush_work *sfw;
3206 
3207         sfw = container_of(w, struct slub_flush_work, work);
3208 
3209         s = sfw->s;
3210         c = this_cpu_ptr(s->cpu_slab);
3211 
3212         if (c->slab)
3213                 flush_slab(s, c);
3214 
3215         put_partials(s);
3216 }
3217 
3218 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3219 {
3220         struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3221 
3222         return c->slab || slub_percpu_partial(c);
3223 }
3224 
3225 static DEFINE_MUTEX(flush_lock);
3226 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3227 
3228 static void flush_all_cpus_locked(struct kmem_cache *s)
3229 {
3230         struct slub_flush_work *sfw;
3231         unsigned int cpu;
3232 
3233         lockdep_assert_cpus_held();
3234         mutex_lock(&flush_lock);
3235 
3236         for_each_online_cpu(cpu) {
3237                 sfw = &per_cpu(slub_flush, cpu);
3238                 if (!has_cpu_slab(cpu, s)) {
3239                         sfw->skip = true;
3240                         continue;
3241                 }
3242                 INIT_WORK(&sfw->work, flush_cpu_slab);
3243                 sfw->skip = false;
3244                 sfw->s = s;
3245                 queue_work_on(cpu, flushwq, &sfw->work);
3246         }
3247 
3248         for_each_online_cpu(cpu) {
3249                 sfw = &per_cpu(slub_flush, cpu);
3250                 if (sfw->skip)
3251                         continue;
3252                 flush_work(&sfw->work);
3253         }
3254 
3255         mutex_unlock(&flush_lock);
3256 }
3257 
3258 static void flush_all(struct kmem_cache *s)
3259 {
3260         cpus_read_lock();
3261         flush_all_cpus_locked(s);
3262         cpus_read_unlock();
3263 }
3264 
3265 /*
3266  * Use the cpu notifier to insure that the cpu slabs are flushed when
3267  * necessary.
3268  */
3269 static int slub_cpu_dead(unsigned int cpu)
3270 {
3271         struct kmem_cache *s;
3272 
3273         mutex_lock(&slab_mutex);
3274         list_for_each_entry(s, &slab_caches, list)
3275                 __flush_cpu_slab(s, cpu);
3276         mutex_unlock(&slab_mutex);
3277         return 0;
3278 }
3279 
3280 #else /* CONFIG_SLUB_TINY */
3281 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3282 static inline void flush_all(struct kmem_cache *s) { }
3283 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3284 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3285 #endif /* CONFIG_SLUB_TINY */
3286 
3287 /*
3288  * Check if the objects in a per cpu structure fit numa
3289  * locality expectations.
3290  */
3291 static inline int node_match(struct slab *slab, int node)
3292 {
3293 #ifdef CONFIG_NUMA
3294         if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3295                 return 0;
3296 #endif
3297         return 1;
3298 }
3299 
3300 #ifdef CONFIG_SLUB_DEBUG
3301 static int count_free(struct slab *slab)
3302 {
3303         return slab->objects - slab->inuse;
3304 }
3305 
3306 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3307 {
3308         return atomic_long_read(&n->total_objects);
3309 }
3310 
3311 /* Supports checking bulk free of a constructed freelist */
3312 static inline bool free_debug_processing(struct kmem_cache *s,
3313         struct slab *slab, void *head, void *tail, int *bulk_cnt,
3314         unsigned long addr, depot_stack_handle_t handle)
3315 {
3316         bool checks_ok = false;
3317         void *object = head;
3318         int cnt = 0;
3319 
3320         if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3321                 if (!check_slab(s, slab))
3322                         goto out;
3323         }
3324 
3325         if (slab->inuse < *bulk_cnt) {
3326                 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3327                          slab->inuse, *bulk_cnt);
3328                 goto out;
3329         }
3330 
3331 next_object:
3332 
3333         if (++cnt > *bulk_cnt)
3334                 goto out_cnt;
3335 
3336         if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3337                 if (!free_consistency_checks(s, slab, object, addr))
3338                         goto out;
3339         }
3340 
3341         if (s->flags & SLAB_STORE_USER)
3342                 set_track_update(s, object, TRACK_FREE, addr, handle);
3343         trace(s, slab, object, 0);
3344         /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3345         init_object(s, object, SLUB_RED_INACTIVE);
3346 
3347         /* Reached end of constructed freelist yet? */
3348         if (object != tail) {
3349                 object = get_freepointer(s, object);
3350                 goto next_object;
3351         }
3352         checks_ok = true;
3353 
3354 out_cnt:
3355         if (cnt != *bulk_cnt) {
3356                 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3357                          *bulk_cnt, cnt);
3358                 *bulk_cnt = cnt;
3359         }
3360 
3361 out:
3362 
3363         if (!checks_ok)
3364                 slab_fix(s, "Object at 0x%p not freed", object);
3365 
3366         return checks_ok;
3367 }
3368 #endif /* CONFIG_SLUB_DEBUG */
3369 
3370 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3371 static unsigned long count_partial(struct kmem_cache_node *n,
3372                                         int (*get_count)(struct slab *))
3373 {
3374         unsigned long flags;
3375         unsigned long x = 0;
3376         struct slab *slab;
3377 
3378         spin_lock_irqsave(&n->list_lock, flags);
3379         list_for_each_entry(slab, &n->partial, slab_list)
3380                 x += get_count(slab);
3381         spin_unlock_irqrestore(&n->list_lock, flags);
3382         return x;
3383 }
3384 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3385 
3386 #ifdef CONFIG_SLUB_DEBUG
3387 #define MAX_PARTIAL_TO_SCAN 10000
3388 
3389 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3390 {
3391         unsigned long flags;
3392         unsigned long x = 0;
3393         struct slab *slab;
3394 
3395         spin_lock_irqsave(&n->list_lock, flags);
3396         if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3397                 list_for_each_entry(slab, &n->partial, slab_list)
3398                         x += slab->objects - slab->inuse;
3399         } else {
3400                 /*
3401                  * For a long list, approximate the total count of objects in
3402                  * it to meet the limit on the number of slabs to scan.
3403                  * Scan from both the list's head and tail for better accuracy.
3404                  */
3405                 unsigned long scanned = 0;
3406 
3407                 list_for_each_entry(slab, &n->partial, slab_list) {
3408                         x += slab->objects - slab->inuse;
3409                         if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3410                                 break;
3411                 }
3412                 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3413                         x += slab->objects - slab->inuse;
3414                         if (++scanned == MAX_PARTIAL_TO_SCAN)
3415                                 break;
3416                 }
3417                 x = mult_frac(x, n->nr_partial, scanned);
3418                 x = min(x, node_nr_objs(n));
3419         }
3420         spin_unlock_irqrestore(&n->list_lock, flags);
3421         return x;
3422 }
3423 
3424 static noinline void
3425 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3426 {
3427         static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3428                                       DEFAULT_RATELIMIT_BURST);
3429         int node;
3430         struct kmem_cache_node *n;
3431 
3432         if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3433                 return;
3434 
3435         pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3436                 nid, gfpflags, &gfpflags);
3437         pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3438                 s->name, s->object_size, s->size, oo_order(s->oo),
3439                 oo_order(s->min));
3440 
3441         if (oo_order(s->min) > get_order(s->object_size))
3442                 pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3443                         s->name);
3444 
3445         for_each_kmem_cache_node(s, node, n) {
3446                 unsigned long nr_slabs;
3447                 unsigned long nr_objs;
3448                 unsigned long nr_free;
3449 
3450                 nr_free  = count_partial_free_approx(n);
3451                 nr_slabs = node_nr_slabs(n);
3452                 nr_objs  = node_nr_objs(n);
3453 
3454                 pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3455                         node, nr_slabs, nr_objs, nr_free);
3456         }
3457 }
3458 #else /* CONFIG_SLUB_DEBUG */
3459 static inline void
3460 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3461 #endif
3462 
3463 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3464 {
3465         if (unlikely(slab_test_pfmemalloc(slab)))
3466                 return gfp_pfmemalloc_allowed(gfpflags);
3467 
3468         return true;
3469 }
3470 
3471 #ifndef CONFIG_SLUB_TINY
3472 static inline bool
3473 __update_cpu_freelist_fast(struct kmem_cache *s,
3474                            void *freelist_old, void *freelist_new,
3475                            unsigned long tid)
3476 {
3477         freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3478         freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3479 
3480         return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3481                                              &old.full, new.full);
3482 }
3483 
3484 /*
3485  * Check the slab->freelist and either transfer the freelist to the
3486  * per cpu freelist or deactivate the slab.
3487  *
3488  * The slab is still frozen if the return value is not NULL.
3489  *
3490  * If this function returns NULL then the slab has been unfrozen.
3491  */
3492 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3493 {
3494         struct slab new;
3495         unsigned long counters;
3496         void *freelist;
3497 
3498         lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3499 
3500         do {
3501                 freelist = slab->freelist;
3502                 counters = slab->counters;
3503 
3504                 new.counters = counters;
3505 
3506                 new.inuse = slab->objects;
3507                 new.frozen = freelist != NULL;
3508 
3509         } while (!__slab_update_freelist(s, slab,
3510                 freelist, counters,
3511                 NULL, new.counters,
3512                 "get_freelist"));
3513 
3514         return freelist;
3515 }
3516 
3517 /*
3518  * Freeze the partial slab and return the pointer to the freelist.
3519  */
3520 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3521 {
3522         struct slab new;
3523         unsigned long counters;
3524         void *freelist;
3525 
3526         do {
3527                 freelist = slab->freelist;
3528                 counters = slab->counters;
3529 
3530                 new.counters = counters;
3531                 VM_BUG_ON(new.frozen);
3532 
3533                 new.inuse = slab->objects;
3534                 new.frozen = 1;
3535 
3536         } while (!slab_update_freelist(s, slab,
3537                 freelist, counters,
3538                 NULL, new.counters,
3539                 "freeze_slab"));
3540 
3541         return freelist;
3542 }
3543 
3544 /*
3545  * Slow path. The lockless freelist is empty or we need to perform
3546  * debugging duties.
3547  *
3548  * Processing is still very fast if new objects have been freed to the
3549  * regular freelist. In that case we simply take over the regular freelist
3550  * as the lockless freelist and zap the regular freelist.
3551  *
3552  * If that is not working then we fall back to the partial lists. We take the
3553  * first element of the freelist as the object to allocate now and move the
3554  * rest of the freelist to the lockless freelist.
3555  *
3556  * And if we were unable to get a new slab from the partial slab lists then
3557  * we need to allocate a new slab. This is the slowest path since it involves
3558  * a call to the page allocator and the setup of a new slab.
3559  *
3560  * Version of __slab_alloc to use when we know that preemption is
3561  * already disabled (which is the case for bulk allocation).
3562  */
3563 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3564                           unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3565 {
3566         void *freelist;
3567         struct slab *slab;
3568         unsigned long flags;
3569         struct partial_context pc;
3570         bool try_thisnode = true;
3571 
3572         stat(s, ALLOC_SLOWPATH);
3573 
3574 reread_slab:
3575 
3576         slab = READ_ONCE(c->slab);
3577         if (!slab) {
3578                 /*
3579                  * if the node is not online or has no normal memory, just
3580                  * ignore the node constraint
3581                  */
3582                 if (unlikely(node != NUMA_NO_NODE &&
3583                              !node_isset(node, slab_nodes)))
3584                         node = NUMA_NO_NODE;
3585                 goto new_slab;
3586         }
3587 
3588         if (unlikely(!node_match(slab, node))) {
3589                 /*
3590                  * same as above but node_match() being false already
3591                  * implies node != NUMA_NO_NODE
3592                  */
3593                 if (!node_isset(node, slab_nodes)) {
3594                         node = NUMA_NO_NODE;
3595                 } else {
3596                         stat(s, ALLOC_NODE_MISMATCH);
3597                         goto deactivate_slab;
3598                 }
3599         }
3600 
3601         /*
3602          * By rights, we should be searching for a slab page that was
3603          * PFMEMALLOC but right now, we are losing the pfmemalloc
3604          * information when the page leaves the per-cpu allocator
3605          */
3606         if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3607                 goto deactivate_slab;
3608 
3609         /* must check again c->slab in case we got preempted and it changed */
3610         local_lock_irqsave(&s->cpu_slab->lock, flags);
3611         if (unlikely(slab != c->slab)) {
3612                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3613                 goto reread_slab;
3614         }
3615         freelist = c->freelist;
3616         if (freelist)
3617                 goto load_freelist;
3618 
3619         freelist = get_freelist(s, slab);
3620 
3621         if (!freelist) {
3622                 c->slab = NULL;
3623                 c->tid = next_tid(c->tid);
3624                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3625                 stat(s, DEACTIVATE_BYPASS);
3626                 goto new_slab;
3627         }
3628 
3629         stat(s, ALLOC_REFILL);
3630 
3631 load_freelist:
3632 
3633         lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3634 
3635         /*
3636          * freelist is pointing to the list of objects to be used.
3637          * slab is pointing to the slab from which the objects are obtained.
3638          * That slab must be frozen for per cpu allocations to work.
3639          */
3640         VM_BUG_ON(!c->slab->frozen);
3641         c->freelist = get_freepointer(s, freelist);
3642         c->tid = next_tid(c->tid);
3643         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3644         return freelist;
3645 
3646 deactivate_slab:
3647 
3648         local_lock_irqsave(&s->cpu_slab->lock, flags);
3649         if (slab != c->slab) {
3650                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3651                 goto reread_slab;
3652         }
3653         freelist = c->freelist;
3654         c->slab = NULL;
3655         c->freelist = NULL;
3656         c->tid = next_tid(c->tid);
3657         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3658         deactivate_slab(s, slab, freelist);
3659 
3660 new_slab:
3661 
3662 #ifdef CONFIG_SLUB_CPU_PARTIAL
3663         while (slub_percpu_partial(c)) {
3664                 local_lock_irqsave(&s->cpu_slab->lock, flags);
3665                 if (unlikely(c->slab)) {
3666                         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3667                         goto reread_slab;
3668                 }
3669                 if (unlikely(!slub_percpu_partial(c))) {
3670                         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3671                         /* we were preempted and partial list got empty */
3672                         goto new_objects;
3673                 }
3674 
3675                 slab = slub_percpu_partial(c);
3676                 slub_set_percpu_partial(c, slab);
3677 
3678                 if (likely(node_match(slab, node) &&
3679                            pfmemalloc_match(slab, gfpflags))) {
3680                         c->slab = slab;
3681                         freelist = get_freelist(s, slab);
3682                         VM_BUG_ON(!freelist);
3683                         stat(s, CPU_PARTIAL_ALLOC);
3684                         goto load_freelist;
3685                 }
3686 
3687                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3688 
3689                 slab->next = NULL;
3690                 __put_partials(s, slab);
3691         }
3692 #endif
3693 
3694 new_objects:
3695 
3696         pc.flags = gfpflags;
3697         /*
3698          * When a preferred node is indicated but no __GFP_THISNODE
3699          *
3700          * 1) try to get a partial slab from target node only by having
3701          *    __GFP_THISNODE in pc.flags for get_partial()
3702          * 2) if 1) failed, try to allocate a new slab from target node with
3703          *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3704          * 3) if 2) failed, retry with original gfpflags which will allow
3705          *    get_partial() try partial lists of other nodes before potentially
3706          *    allocating new page from other nodes
3707          */
3708         if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3709                      && try_thisnode))
3710                 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3711 
3712         pc.orig_size = orig_size;
3713         slab = get_partial(s, node, &pc);
3714         if (slab) {
3715                 if (kmem_cache_debug(s)) {
3716                         freelist = pc.object;
3717                         /*
3718                          * For debug caches here we had to go through
3719                          * alloc_single_from_partial() so just store the
3720                          * tracking info and return the object.
3721                          */
3722                         if (s->flags & SLAB_STORE_USER)
3723                                 set_track(s, freelist, TRACK_ALLOC, addr);
3724 
3725                         return freelist;
3726                 }
3727 
3728                 freelist = freeze_slab(s, slab);
3729                 goto retry_load_slab;
3730         }
3731 
3732         slub_put_cpu_ptr(s->cpu_slab);
3733         slab = new_slab(s, pc.flags, node);
3734         c = slub_get_cpu_ptr(s->cpu_slab);
3735 
3736         if (unlikely(!slab)) {
3737                 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3738                     && try_thisnode) {
3739                         try_thisnode = false;
3740                         goto new_objects;
3741                 }
3742                 slab_out_of_memory(s, gfpflags, node);
3743                 return NULL;
3744         }
3745 
3746         stat(s, ALLOC_SLAB);
3747 
3748         if (kmem_cache_debug(s)) {
3749                 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3750 
3751                 if (unlikely(!freelist))
3752                         goto new_objects;
3753 
3754                 if (s->flags & SLAB_STORE_USER)
3755                         set_track(s, freelist, TRACK_ALLOC, addr);
3756 
3757                 return freelist;
3758         }
3759 
3760         /*
3761          * No other reference to the slab yet so we can
3762          * muck around with it freely without cmpxchg
3763          */
3764         freelist = slab->freelist;
3765         slab->freelist = NULL;
3766         slab->inuse = slab->objects;
3767         slab->frozen = 1;
3768 
3769         inc_slabs_node(s, slab_nid(slab), slab->objects);
3770 
3771         if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3772                 /*
3773                  * For !pfmemalloc_match() case we don't load freelist so that
3774                  * we don't make further mismatched allocations easier.
3775                  */
3776                 deactivate_slab(s, slab, get_freepointer(s, freelist));
3777                 return freelist;
3778         }
3779 
3780 retry_load_slab:
3781 
3782         local_lock_irqsave(&s->cpu_slab->lock, flags);
3783         if (unlikely(c->slab)) {
3784                 void *flush_freelist = c->freelist;
3785                 struct slab *flush_slab = c->slab;
3786 
3787                 c->slab = NULL;
3788                 c->freelist = NULL;
3789                 c->tid = next_tid(c->tid);
3790 
3791                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3792 
3793                 deactivate_slab(s, flush_slab, flush_freelist);
3794 
3795                 stat(s, CPUSLAB_FLUSH);
3796 
3797                 goto retry_load_slab;
3798         }
3799         c->slab = slab;
3800 
3801         goto load_freelist;
3802 }
3803 
3804 /*
3805  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3806  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3807  * pointer.
3808  */
3809 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3810                           unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3811 {
3812         void *p;
3813 
3814 #ifdef CONFIG_PREEMPT_COUNT
3815         /*
3816          * We may have been preempted and rescheduled on a different
3817          * cpu before disabling preemption. Need to reload cpu area
3818          * pointer.
3819          */
3820         c = slub_get_cpu_ptr(s->cpu_slab);
3821 #endif
3822 
3823         p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3824 #ifdef CONFIG_PREEMPT_COUNT
3825         slub_put_cpu_ptr(s->cpu_slab);
3826 #endif
3827         return p;
3828 }
3829 
3830 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3831                 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3832 {
3833         struct kmem_cache_cpu *c;
3834         struct slab *slab;
3835         unsigned long tid;
3836         void *object;
3837 
3838 redo:
3839         /*
3840          * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3841          * enabled. We may switch back and forth between cpus while
3842          * reading from one cpu area. That does not matter as long
3843          * as we end up on the original cpu again when doing the cmpxchg.
3844          *
3845          * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3846          * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3847          * the tid. If we are preempted and switched to another cpu between the
3848          * two reads, it's OK as the two are still associated with the same cpu
3849          * and cmpxchg later will validate the cpu.
3850          */
3851         c = raw_cpu_ptr(s->cpu_slab);
3852         tid = READ_ONCE(c->tid);
3853 
3854         /*
3855          * Irqless object alloc/free algorithm used here depends on sequence
3856          * of fetching cpu_slab's data. tid should be fetched before anything
3857          * on c to guarantee that object and slab associated with previous tid
3858          * won't be used with current tid. If we fetch tid first, object and
3859          * slab could be one associated with next tid and our alloc/free
3860          * request will be failed. In this case, we will retry. So, no problem.
3861          */
3862         barrier();
3863 
3864         /*
3865          * The transaction ids are globally unique per cpu and per operation on
3866          * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3867          * occurs on the right processor and that there was no operation on the
3868          * linked list in between.
3869          */
3870 
3871         object = c->freelist;
3872         slab = c->slab;
3873 
3874         if (!USE_LOCKLESS_FAST_PATH() ||
3875             unlikely(!object || !slab || !node_match(slab, node))) {
3876                 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3877         } else {
3878                 void *next_object = get_freepointer_safe(s, object);
3879 
3880                 /*
3881                  * The cmpxchg will only match if there was no additional
3882                  * operation and if we are on the right processor.
3883                  *
3884                  * The cmpxchg does the following atomically (without lock
3885                  * semantics!)
3886                  * 1. Relocate first pointer to the current per cpu area.
3887                  * 2. Verify that tid and freelist have not been changed
3888                  * 3. If they were not changed replace tid and freelist
3889                  *
3890                  * Since this is without lock semantics the protection is only
3891                  * against code executing on this cpu *not* from access by
3892                  * other cpus.
3893                  */
3894                 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3895                         note_cmpxchg_failure("slab_alloc", s, tid);
3896                         goto redo;
3897                 }
3898                 prefetch_freepointer(s, next_object);
3899                 stat(s, ALLOC_FASTPATH);
3900         }
3901 
3902         return object;
3903 }
3904 #else /* CONFIG_SLUB_TINY */
3905 static void *__slab_alloc_node(struct kmem_cache *s,
3906                 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3907 {
3908         struct partial_context pc;
3909         struct slab *slab;
3910         void *object;
3911 
3912         pc.flags = gfpflags;
3913         pc.orig_size = orig_size;
3914         slab = get_partial(s, node, &pc);
3915 
3916         if (slab)
3917                 return pc.object;
3918 
3919         slab = new_slab(s, gfpflags, node);
3920         if (unlikely(!slab)) {
3921                 slab_out_of_memory(s, gfpflags, node);
3922                 return NULL;
3923         }
3924 
3925         object = alloc_single_from_new_slab(s, slab, orig_size);
3926 
3927         return object;
3928 }
3929 #endif /* CONFIG_SLUB_TINY */
3930 
3931 /*
3932  * If the object has been wiped upon free, make sure it's fully initialized by
3933  * zeroing out freelist pointer.
3934  */
3935 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3936                                                    void *obj)
3937 {
3938         if (unlikely(slab_want_init_on_free(s)) && obj &&
3939             !freeptr_outside_object(s))
3940                 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3941                         0, sizeof(void *));
3942 }
3943 
3944 static __fastpath_inline
3945 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3946 {
3947         flags &= gfp_allowed_mask;
3948 
3949         might_alloc(flags);
3950 
3951         if (unlikely(should_failslab(s, flags)))
3952                 return NULL;
3953 
3954         return s;
3955 }
3956 
3957 static __fastpath_inline
3958 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3959                           gfp_t flags, size_t size, void **p, bool init,
3960                           unsigned int orig_size)
3961 {
3962         unsigned int zero_size = s->object_size;
3963         bool kasan_init = init;
3964         size_t i;
3965         gfp_t init_flags = flags & gfp_allowed_mask;
3966 
3967         /*
3968          * For kmalloc object, the allocated memory size(object_size) is likely
3969          * larger than the requested size(orig_size). If redzone check is
3970          * enabled for the extra space, don't zero it, as it will be redzoned
3971          * soon. The redzone operation for this extra space could be seen as a
3972          * replacement of current poisoning under certain debug option, and
3973          * won't break other sanity checks.
3974          */
3975         if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3976             (s->flags & SLAB_KMALLOC))
3977                 zero_size = orig_size;
3978 
3979         /*
3980          * When slab_debug is enabled, avoid memory initialization integrated
3981          * into KASAN and instead zero out the memory via the memset below with
3982          * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3983          * cause false-positive reports. This does not lead to a performance
3984          * penalty on production builds, as slab_debug is not intended to be
3985          * enabled there.
3986          */
3987         if (__slub_debug_enabled())
3988                 kasan_init = false;
3989 
3990         /*
3991          * As memory initialization might be integrated into KASAN,
3992          * kasan_slab_alloc and initialization memset must be
3993          * kept together to avoid discrepancies in behavior.
3994          *
3995          * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3996          */
3997         for (i = 0; i < size; i++) {
3998                 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3999                 if (p[i] && init && (!kasan_init ||
4000                                      !kasan_has_integrated_init()))
4001                         memset(p[i], 0, zero_size);
4002                 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4003                                          s->flags, init_flags);
4004                 kmsan_slab_alloc(s, p[i], init_flags);
4005                 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4006         }
4007 
4008         return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4009 }
4010 
4011 /*
4012  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4013  * have the fastpath folded into their functions. So no function call
4014  * overhead for requests that can be satisfied on the fastpath.
4015  *
4016  * The fastpath works by first checking if the lockless freelist can be used.
4017  * If not then __slab_alloc is called for slow processing.
4018  *
4019  * Otherwise we can simply pick the next object from the lockless free list.
4020  */
4021 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4022                 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4023 {
4024         void *object;
4025         bool init = false;
4026 
4027         s = slab_pre_alloc_hook(s, gfpflags);
4028         if (unlikely(!s))
4029                 return NULL;
4030 
4031         object = kfence_alloc(s, orig_size, gfpflags);
4032         if (unlikely(object))
4033                 goto out;
4034 
4035         object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4036 
4037         maybe_wipe_obj_freeptr(s, object);
4038         init = slab_want_init_on_alloc(gfpflags, s);
4039 
4040 out:
4041         /*
4042          * When init equals 'true', like for kzalloc() family, only
4043          * @orig_size bytes might be zeroed instead of s->object_size
4044          * In case this fails due to memcg_slab_post_alloc_hook(),
4045          * object is set to NULL
4046          */
4047         slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4048 
4049         return object;
4050 }
4051 
4052 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4053 {
4054         void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4055                                     s->object_size);
4056 
4057         trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4058 
4059         return ret;
4060 }
4061 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4062 
4063 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4064                            gfp_t gfpflags)
4065 {
4066         void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4067                                     s->object_size);
4068 
4069         trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4070 
4071         return ret;
4072 }
4073 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4074 
4075 /**
4076  * kmem_cache_alloc_node - Allocate an object on the specified node
4077  * @s: The cache to allocate from.
4078  * @gfpflags: See kmalloc().
4079  * @node: node number of the target node.
4080  *
4081  * Identical to kmem_cache_alloc but it will allocate memory on the given
4082  * node, which can improve the performance for cpu bound structures.
4083  *
4084  * Fallback to other node is possible if __GFP_THISNODE is not set.
4085  *
4086  * Return: pointer to the new object or %NULL in case of error
4087  */
4088 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4089 {
4090         void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4091 
4092         trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4093 
4094         return ret;
4095 }
4096 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4097 
4098 /*
4099  * To avoid unnecessary overhead, we pass through large allocation requests
4100  * directly to the page allocator. We use __GFP_COMP, because we will need to
4101  * know the allocation order to free the pages properly in kfree.
4102  */
4103 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4104 {
4105         struct folio *folio;
4106         void *ptr = NULL;
4107         unsigned int order = get_order(size);
4108 
4109         if (unlikely(flags & GFP_SLAB_BUG_MASK))
4110                 flags = kmalloc_fix_flags(flags);
4111 
4112         flags |= __GFP_COMP;
4113         folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4114         if (folio) {
4115                 ptr = folio_address(folio);
4116                 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4117                                       PAGE_SIZE << order);
4118         }
4119 
4120         ptr = kasan_kmalloc_large(ptr, size, flags);
4121         /* As ptr might get tagged, call kmemleak hook after KASAN. */
4122         kmemleak_alloc(ptr, size, 1, flags);
4123         kmsan_kmalloc_large(ptr, size, flags);
4124 
4125         return ptr;
4126 }
4127 
4128 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4129 {
4130         void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4131 
4132         trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4133                       flags, NUMA_NO_NODE);
4134         return ret;
4135 }
4136 EXPORT_SYMBOL(__kmalloc_large_noprof);
4137 
4138 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4139 {
4140         void *ret = ___kmalloc_large_node(size, flags, node);
4141 
4142         trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4143                       flags, node);
4144         return ret;
4145 }
4146 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4147 
4148 static __always_inline
4149 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4150                         unsigned long caller)
4151 {
4152         struct kmem_cache *s;
4153         void *ret;
4154 
4155         if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4156                 ret = __kmalloc_large_node_noprof(size, flags, node);
4157                 trace_kmalloc(caller, ret, size,
4158                               PAGE_SIZE << get_order(size), flags, node);
4159                 return ret;
4160         }
4161 
4162         if (unlikely(!size))
4163                 return ZERO_SIZE_PTR;
4164 
4165         s = kmalloc_slab(size, b, flags, caller);
4166 
4167         ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4168         ret = kasan_kmalloc(s, ret, size, flags);
4169         trace_kmalloc(caller, ret, size, s->size, flags, node);
4170         return ret;
4171 }
4172 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4173 {
4174         return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4175 }
4176 EXPORT_SYMBOL(__kmalloc_node_noprof);
4177 
4178 void *__kmalloc_noprof(size_t size, gfp_t flags)
4179 {
4180         return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4181 }
4182 EXPORT_SYMBOL(__kmalloc_noprof);
4183 
4184 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4185                                          int node, unsigned long caller)
4186 {
4187         return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4188 
4189 }
4190 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4191 
4192 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4193 {
4194         void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4195                                             _RET_IP_, size);
4196 
4197         trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4198 
4199         ret = kasan_kmalloc(s, ret, size, gfpflags);
4200         return ret;
4201 }
4202 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4203 
4204 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4205                                   int node, size_t size)
4206 {
4207         void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4208 
4209         trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4210 
4211         ret = kasan_kmalloc(s, ret, size, gfpflags);
4212         return ret;
4213 }
4214 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4215 
4216 static noinline void free_to_partial_list(
4217         struct kmem_cache *s, struct slab *slab,
4218         void *head, void *tail, int bulk_cnt,
4219         unsigned long addr)
4220 {
4221         struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4222         struct slab *slab_free = NULL;
4223         int cnt = bulk_cnt;
4224         unsigned long flags;
4225         depot_stack_handle_t handle = 0;
4226 
4227         if (s->flags & SLAB_STORE_USER)
4228                 handle = set_track_prepare();
4229 
4230         spin_lock_irqsave(&n->list_lock, flags);
4231 
4232         if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4233                 void *prior = slab->freelist;
4234 
4235                 /* Perform the actual freeing while we still hold the locks */
4236                 slab->inuse -= cnt;
4237                 set_freepointer(s, tail, prior);
4238                 slab->freelist = head;
4239 
4240                 /*
4241                  * If the slab is empty, and node's partial list is full,
4242                  * it should be discarded anyway no matter it's on full or
4243                  * partial list.
4244                  */
4245                 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4246                         slab_free = slab;
4247 
4248                 if (!prior) {
4249                         /* was on full list */
4250                         remove_full(s, n, slab);
4251                         if (!slab_free) {
4252                                 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4253                                 stat(s, FREE_ADD_PARTIAL);
4254                         }
4255                 } else if (slab_free) {
4256                         remove_partial(n, slab);
4257                         stat(s, FREE_REMOVE_PARTIAL);
4258                 }
4259         }
4260 
4261         if (slab_free) {
4262                 /*
4263                  * Update the counters while still holding n->list_lock to
4264                  * prevent spurious validation warnings
4265                  */
4266                 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4267         }
4268 
4269         spin_unlock_irqrestore(&n->list_lock, flags);
4270 
4271         if (slab_free) {
4272                 stat(s, FREE_SLAB);
4273                 free_slab(s, slab_free);
4274         }
4275 }
4276 
4277 /*
4278  * Slow path handling. This may still be called frequently since objects
4279  * have a longer lifetime than the cpu slabs in most processing loads.
4280  *
4281  * So we still attempt to reduce cache line usage. Just take the slab
4282  * lock and free the item. If there is no additional partial slab
4283  * handling required then we can return immediately.
4284  */
4285 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4286                         void *head, void *tail, int cnt,
4287                         unsigned long addr)
4288 
4289 {
4290         void *prior;
4291         int was_frozen;
4292         struct slab new;
4293         unsigned long counters;
4294         struct kmem_cache_node *n = NULL;
4295         unsigned long flags;
4296         bool on_node_partial;
4297 
4298         stat(s, FREE_SLOWPATH);
4299 
4300         if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4301                 free_to_partial_list(s, slab, head, tail, cnt, addr);
4302                 return;
4303         }
4304 
4305         do {
4306                 if (unlikely(n)) {
4307                         spin_unlock_irqrestore(&n->list_lock, flags);
4308                         n = NULL;
4309                 }
4310                 prior = slab->freelist;
4311                 counters = slab->counters;
4312                 set_freepointer(s, tail, prior);
4313                 new.counters = counters;
4314                 was_frozen = new.frozen;
4315                 new.inuse -= cnt;
4316                 if ((!new.inuse || !prior) && !was_frozen) {
4317                         /* Needs to be taken off a list */
4318                         if (!kmem_cache_has_cpu_partial(s) || prior) {
4319 
4320                                 n = get_node(s, slab_nid(slab));
4321                                 /*
4322                                  * Speculatively acquire the list_lock.
4323                                  * If the cmpxchg does not succeed then we may
4324                                  * drop the list_lock without any processing.
4325                                  *
4326                                  * Otherwise the list_lock will synchronize with
4327                                  * other processors updating the list of slabs.
4328                                  */
4329                                 spin_lock_irqsave(&n->list_lock, flags);
4330 
4331                                 on_node_partial = slab_test_node_partial(slab);
4332                         }
4333                 }
4334 
4335         } while (!slab_update_freelist(s, slab,
4336                 prior, counters,
4337                 head, new.counters,
4338                 "__slab_free"));
4339 
4340         if (likely(!n)) {
4341 
4342                 if (likely(was_frozen)) {
4343                         /*
4344                          * The list lock was not taken therefore no list
4345                          * activity can be necessary.
4346                          */
4347                         stat(s, FREE_FROZEN);
4348                 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4349                         /*
4350                          * If we started with a full slab then put it onto the
4351                          * per cpu partial list.
4352                          */
4353                         put_cpu_partial(s, slab, 1);
4354                         stat(s, CPU_PARTIAL_FREE);
4355                 }
4356 
4357                 return;
4358         }
4359 
4360         /*
4361          * This slab was partially empty but not on the per-node partial list,
4362          * in which case we shouldn't manipulate its list, just return.
4363          */
4364         if (prior && !on_node_partial) {
4365                 spin_unlock_irqrestore(&n->list_lock, flags);
4366                 return;
4367         }
4368 
4369         if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4370                 goto slab_empty;
4371 
4372         /*
4373          * Objects left in the slab. If it was not on the partial list before
4374          * then add it.
4375          */
4376         if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4377                 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4378                 stat(s, FREE_ADD_PARTIAL);
4379         }
4380         spin_unlock_irqrestore(&n->list_lock, flags);
4381         return;
4382 
4383 slab_empty:
4384         if (prior) {
4385                 /*
4386                  * Slab on the partial list.
4387                  */
4388                 remove_partial(n, slab);
4389                 stat(s, FREE_REMOVE_PARTIAL);
4390         }
4391 
4392         spin_unlock_irqrestore(&n->list_lock, flags);
4393         stat(s, FREE_SLAB);
4394         discard_slab(s, slab);
4395 }
4396 
4397 #ifndef CONFIG_SLUB_TINY
4398 /*
4399  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4400  * can perform fastpath freeing without additional function calls.
4401  *
4402  * The fastpath is only possible if we are freeing to the current cpu slab
4403  * of this processor. This typically the case if we have just allocated
4404  * the item before.
4405  *
4406  * If fastpath is not possible then fall back to __slab_free where we deal
4407  * with all sorts of special processing.
4408  *
4409  * Bulk free of a freelist with several objects (all pointing to the
4410  * same slab) possible by specifying head and tail ptr, plus objects
4411  * count (cnt). Bulk free indicated by tail pointer being set.
4412  */
4413 static __always_inline void do_slab_free(struct kmem_cache *s,
4414                                 struct slab *slab, void *head, void *tail,
4415                                 int cnt, unsigned long addr)
4416 {
4417         struct kmem_cache_cpu *c;
4418         unsigned long tid;
4419         void **freelist;
4420 
4421 redo:
4422         /*
4423          * Determine the currently cpus per cpu slab.
4424          * The cpu may change afterward. However that does not matter since
4425          * data is retrieved via this pointer. If we are on the same cpu
4426          * during the cmpxchg then the free will succeed.
4427          */
4428         c = raw_cpu_ptr(s->cpu_slab);
4429         tid = READ_ONCE(c->tid);
4430 
4431         /* Same with comment on barrier() in __slab_alloc_node() */
4432         barrier();
4433 
4434         if (unlikely(slab != c->slab)) {
4435                 __slab_free(s, slab, head, tail, cnt, addr);
4436                 return;
4437         }
4438 
4439         if (USE_LOCKLESS_FAST_PATH()) {
4440                 freelist = READ_ONCE(c->freelist);
4441 
4442                 set_freepointer(s, tail, freelist);
4443 
4444                 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4445                         note_cmpxchg_failure("slab_free", s, tid);
4446                         goto redo;
4447                 }
4448         } else {
4449                 /* Update the free list under the local lock */
4450                 local_lock(&s->cpu_slab->lock);
4451                 c = this_cpu_ptr(s->cpu_slab);
4452                 if (unlikely(slab != c->slab)) {
4453                         local_unlock(&s->cpu_slab->lock);
4454                         goto redo;
4455                 }
4456                 tid = c->tid;
4457                 freelist = c->freelist;
4458 
4459                 set_freepointer(s, tail, freelist);
4460                 c->freelist = head;
4461                 c->tid = next_tid(tid);
4462 
4463                 local_unlock(&s->cpu_slab->lock);
4464         }
4465         stat_add(s, FREE_FASTPATH, cnt);
4466 }
4467 #else /* CONFIG_SLUB_TINY */
4468 static void do_slab_free(struct kmem_cache *s,
4469                                 struct slab *slab, void *head, void *tail,
4470                                 int cnt, unsigned long addr)
4471 {
4472         __slab_free(s, slab, head, tail, cnt, addr);
4473 }
4474 #endif /* CONFIG_SLUB_TINY */
4475 
4476 static __fastpath_inline
4477 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4478                unsigned long addr)
4479 {
4480         memcg_slab_free_hook(s, slab, &object, 1);
4481         alloc_tagging_slab_free_hook(s, slab, &object, 1);
4482 
4483         if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4484                 do_slab_free(s, slab, object, object, 1, addr);
4485 }
4486 
4487 #ifdef CONFIG_MEMCG
4488 /* Do not inline the rare memcg charging failed path into the allocation path */
4489 static noinline
4490 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4491 {
4492         if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4493                 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4494 }
4495 #endif
4496 
4497 static __fastpath_inline
4498 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4499                     void *tail, void **p, int cnt, unsigned long addr)
4500 {
4501         memcg_slab_free_hook(s, slab, p, cnt);
4502         alloc_tagging_slab_free_hook(s, slab, p, cnt);
4503         /*
4504          * With KASAN enabled slab_free_freelist_hook modifies the freelist
4505          * to remove objects, whose reuse must be delayed.
4506          */
4507         if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4508                 do_slab_free(s, slab, head, tail, cnt, addr);
4509 }
4510 
4511 #ifdef CONFIG_KASAN_GENERIC
4512 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4513 {
4514         do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4515 }
4516 #endif
4517 
4518 static inline struct kmem_cache *virt_to_cache(const void *obj)
4519 {
4520         struct slab *slab;
4521 
4522         slab = virt_to_slab(obj);
4523         if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4524                 return NULL;
4525         return slab->slab_cache;
4526 }
4527 
4528 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4529 {
4530         struct kmem_cache *cachep;
4531 
4532         if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4533             !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4534                 return s;
4535 
4536         cachep = virt_to_cache(x);
4537         if (WARN(cachep && cachep != s,
4538                  "%s: Wrong slab cache. %s but object is from %s\n",
4539                  __func__, s->name, cachep->name))
4540                 print_tracking(cachep, x);
4541         return cachep;
4542 }
4543 
4544 /**
4545  * kmem_cache_free - Deallocate an object
4546  * @s: The cache the allocation was from.
4547  * @x: The previously allocated object.
4548  *
4549  * Free an object which was previously allocated from this
4550  * cache.
4551  */
4552 void kmem_cache_free(struct kmem_cache *s, void *x)
4553 {
4554         s = cache_from_obj(s, x);
4555         if (!s)
4556                 return;
4557         trace_kmem_cache_free(_RET_IP_, x, s);
4558         slab_free(s, virt_to_slab(x), x, _RET_IP_);
4559 }
4560 EXPORT_SYMBOL(kmem_cache_free);
4561 
4562 static void free_large_kmalloc(struct folio *folio, void *object)
4563 {
4564         unsigned int order = folio_order(folio);
4565 
4566         if (WARN_ON_ONCE(order == 0))
4567                 pr_warn_once("object pointer: 0x%p\n", object);
4568 
4569         kmemleak_free(object);
4570         kasan_kfree_large(object);
4571         kmsan_kfree_large(object);
4572 
4573         lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4574                               -(PAGE_SIZE << order));
4575         folio_put(folio);
4576 }
4577 
4578 /**
4579  * kfree - free previously allocated memory
4580  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4581  *
4582  * If @object is NULL, no operation is performed.
4583  */
4584 void kfree(const void *object)
4585 {
4586         struct folio *folio;
4587         struct slab *slab;
4588         struct kmem_cache *s;
4589         void *x = (void *)object;
4590 
4591         trace_kfree(_RET_IP_, object);
4592 
4593         if (unlikely(ZERO_OR_NULL_PTR(object)))
4594                 return;
4595 
4596         folio = virt_to_folio(object);
4597         if (unlikely(!folio_test_slab(folio))) {
4598                 free_large_kmalloc(folio, (void *)object);
4599                 return;
4600         }
4601 
4602         slab = folio_slab(folio);
4603         s = slab->slab_cache;
4604         slab_free(s, slab, x, _RET_IP_);
4605 }
4606 EXPORT_SYMBOL(kfree);
4607 
4608 struct detached_freelist {
4609         struct slab *slab;
4610         void *tail;
4611         void *freelist;
4612         int cnt;
4613         struct kmem_cache *s;
4614 };
4615 
4616 /*
4617  * This function progressively scans the array with free objects (with
4618  * a limited look ahead) and extract objects belonging to the same
4619  * slab.  It builds a detached freelist directly within the given
4620  * slab/objects.  This can happen without any need for
4621  * synchronization, because the objects are owned by running process.
4622  * The freelist is build up as a single linked list in the objects.
4623  * The idea is, that this detached freelist can then be bulk
4624  * transferred to the real freelist(s), but only requiring a single
4625  * synchronization primitive.  Look ahead in the array is limited due
4626  * to performance reasons.
4627  */
4628 static inline
4629 int build_detached_freelist(struct kmem_cache *s, size_t size,
4630                             void **p, struct detached_freelist *df)
4631 {
4632         int lookahead = 3;
4633         void *object;
4634         struct folio *folio;
4635         size_t same;
4636 
4637         object = p[--size];
4638         folio = virt_to_folio(object);
4639         if (!s) {
4640                 /* Handle kalloc'ed objects */
4641                 if (unlikely(!folio_test_slab(folio))) {
4642                         free_large_kmalloc(folio, object);
4643                         df->slab = NULL;
4644                         return size;
4645                 }
4646                 /* Derive kmem_cache from object */
4647                 df->slab = folio_slab(folio);
4648                 df->s = df->slab->slab_cache;
4649         } else {
4650                 df->slab = folio_slab(folio);
4651                 df->s = cache_from_obj(s, object); /* Support for memcg */
4652         }
4653 
4654         /* Start new detached freelist */
4655         df->tail = object;
4656         df->freelist = object;
4657         df->cnt = 1;
4658 
4659         if (is_kfence_address(object))
4660                 return size;
4661 
4662         set_freepointer(df->s, object, NULL);
4663 
4664         same = size;
4665         while (size) {
4666                 object = p[--size];
4667                 /* df->slab is always set at this point */
4668                 if (df->slab == virt_to_slab(object)) {
4669                         /* Opportunity build freelist */
4670                         set_freepointer(df->s, object, df->freelist);
4671                         df->freelist = object;
4672                         df->cnt++;
4673                         same--;
4674                         if (size != same)
4675                                 swap(p[size], p[same]);
4676                         continue;
4677                 }
4678 
4679                 /* Limit look ahead search */
4680                 if (!--lookahead)
4681                         break;
4682         }
4683 
4684         return same;
4685 }
4686 
4687 /*
4688  * Internal bulk free of objects that were not initialised by the post alloc
4689  * hooks and thus should not be processed by the free hooks
4690  */
4691 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4692 {
4693         if (!size)
4694                 return;
4695 
4696         do {
4697                 struct detached_freelist df;
4698 
4699                 size = build_detached_freelist(s, size, p, &df);
4700                 if (!df.slab)
4701                         continue;
4702 
4703                 if (kfence_free(df.freelist))
4704                         continue;
4705 
4706                 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4707                              _RET_IP_);
4708         } while (likely(size));
4709 }
4710 
4711 /* Note that interrupts must be enabled when calling this function. */
4712 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4713 {
4714         if (!size)
4715                 return;
4716 
4717         do {
4718                 struct detached_freelist df;
4719 
4720                 size = build_detached_freelist(s, size, p, &df);
4721                 if (!df.slab)
4722                         continue;
4723 
4724                 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4725                                df.cnt, _RET_IP_);
4726         } while (likely(size));
4727 }
4728 EXPORT_SYMBOL(kmem_cache_free_bulk);
4729 
4730 #ifndef CONFIG_SLUB_TINY
4731 static inline
4732 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4733                             void **p)
4734 {
4735         struct kmem_cache_cpu *c;
4736         unsigned long irqflags;
4737         int i;
4738 
4739         /*
4740          * Drain objects in the per cpu slab, while disabling local
4741          * IRQs, which protects against PREEMPT and interrupts
4742          * handlers invoking normal fastpath.
4743          */
4744         c = slub_get_cpu_ptr(s->cpu_slab);
4745         local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4746 
4747         for (i = 0; i < size; i++) {
4748                 void *object = kfence_alloc(s, s->object_size, flags);
4749 
4750                 if (unlikely(object)) {
4751                         p[i] = object;
4752                         continue;
4753                 }
4754 
4755                 object = c->freelist;
4756                 if (unlikely(!object)) {
4757                         /*
4758                          * We may have removed an object from c->freelist using
4759                          * the fastpath in the previous iteration; in that case,
4760                          * c->tid has not been bumped yet.
4761                          * Since ___slab_alloc() may reenable interrupts while
4762                          * allocating memory, we should bump c->tid now.
4763                          */
4764                         c->tid = next_tid(c->tid);
4765 
4766                         local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4767 
4768                         /*
4769                          * Invoking slow path likely have side-effect
4770                          * of re-populating per CPU c->freelist
4771                          */
4772                         p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4773                                             _RET_IP_, c, s->object_size);
4774                         if (unlikely(!p[i]))
4775                                 goto error;
4776 
4777                         c = this_cpu_ptr(s->cpu_slab);
4778                         maybe_wipe_obj_freeptr(s, p[i]);
4779 
4780                         local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4781 
4782                         continue; /* goto for-loop */
4783                 }
4784                 c->freelist = get_freepointer(s, object);
4785                 p[i] = object;
4786                 maybe_wipe_obj_freeptr(s, p[i]);
4787                 stat(s, ALLOC_FASTPATH);
4788         }
4789         c->tid = next_tid(c->tid);
4790         local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4791         slub_put_cpu_ptr(s->cpu_slab);
4792 
4793         return i;
4794 
4795 error:
4796         slub_put_cpu_ptr(s->cpu_slab);
4797         __kmem_cache_free_bulk(s, i, p);
4798         return 0;
4799 
4800 }
4801 #else /* CONFIG_SLUB_TINY */
4802 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4803                                    size_t size, void **p)
4804 {
4805         int i;
4806 
4807         for (i = 0; i < size; i++) {
4808                 void *object = kfence_alloc(s, s->object_size, flags);
4809 
4810                 if (unlikely(object)) {
4811                         p[i] = object;
4812                         continue;
4813                 }
4814 
4815                 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4816                                          _RET_IP_, s->object_size);
4817                 if (unlikely(!p[i]))
4818                         goto error;
4819 
4820                 maybe_wipe_obj_freeptr(s, p[i]);
4821         }
4822 
4823         return i;
4824 
4825 error:
4826         __kmem_cache_free_bulk(s, i, p);
4827         return 0;
4828 }
4829 #endif /* CONFIG_SLUB_TINY */
4830 
4831 /* Note that interrupts must be enabled when calling this function. */
4832 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4833                                  void **p)
4834 {
4835         int i;
4836 
4837         if (!size)
4838                 return 0;
4839 
4840         s = slab_pre_alloc_hook(s, flags);
4841         if (unlikely(!s))
4842                 return 0;
4843 
4844         i = __kmem_cache_alloc_bulk(s, flags, size, p);
4845         if (unlikely(i == 0))
4846                 return 0;
4847 
4848         /*
4849          * memcg and kmem_cache debug support and memory initialization.
4850          * Done outside of the IRQ disabled fastpath loop.
4851          */
4852         if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4853                     slab_want_init_on_alloc(flags, s), s->object_size))) {
4854                 return 0;
4855         }
4856         return i;
4857 }
4858 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4859 
4860 
4861 /*
4862  * Object placement in a slab is made very easy because we always start at
4863  * offset 0. If we tune the size of the object to the alignment then we can
4864  * get the required alignment by putting one properly sized object after
4865  * another.
4866  *
4867  * Notice that the allocation order determines the sizes of the per cpu
4868  * caches. Each processor has always one slab available for allocations.
4869  * Increasing the allocation order reduces the number of times that slabs
4870  * must be moved on and off the partial lists and is therefore a factor in
4871  * locking overhead.
4872  */
4873 
4874 /*
4875  * Minimum / Maximum order of slab pages. This influences locking overhead
4876  * and slab fragmentation. A higher order reduces the number of partial slabs
4877  * and increases the number of allocations possible without having to
4878  * take the list_lock.
4879  */
4880 static unsigned int slub_min_order;
4881 static unsigned int slub_max_order =
4882         IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4883 static unsigned int slub_min_objects;
4884 
4885 /*
4886  * Calculate the order of allocation given an slab object size.
4887  *
4888  * The order of allocation has significant impact on performance and other
4889  * system components. Generally order 0 allocations should be preferred since
4890  * order 0 does not cause fragmentation in the page allocator. Larger objects
4891  * be problematic to put into order 0 slabs because there may be too much
4892  * unused space left. We go to a higher order if more than 1/16th of the slab
4893  * would be wasted.
4894  *
4895  * In order to reach satisfactory performance we must ensure that a minimum
4896  * number of objects is in one slab. Otherwise we may generate too much
4897  * activity on the partial lists which requires taking the list_lock. This is
4898  * less a concern for large slabs though which are rarely used.
4899  *
4900  * slab_max_order specifies the order where we begin to stop considering the
4901  * number of objects in a slab as critical. If we reach slab_max_order then
4902  * we try to keep the page order as low as possible. So we accept more waste
4903  * of space in favor of a small page order.
4904  *
4905  * Higher order allocations also allow the placement of more objects in a
4906  * slab and thereby reduce object handling overhead. If the user has
4907  * requested a higher minimum order then we start with that one instead of
4908  * the smallest order which will fit the object.
4909  */
4910 static inline unsigned int calc_slab_order(unsigned int size,
4911                 unsigned int min_order, unsigned int max_order,
4912                 unsigned int fract_leftover)
4913 {
4914         unsigned int order;
4915 
4916         for (order = min_order; order <= max_order; order++) {
4917 
4918                 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4919                 unsigned int rem;
4920 
4921                 rem = slab_size % size;
4922 
4923                 if (rem <= slab_size / fract_leftover)
4924                         break;
4925         }
4926 
4927         return order;
4928 }
4929 
4930 static inline int calculate_order(unsigned int size)
4931 {
4932         unsigned int order;
4933         unsigned int min_objects;
4934         unsigned int max_objects;
4935         unsigned int min_order;
4936 
4937         min_objects = slub_min_objects;
4938         if (!min_objects) {
4939                 /*
4940                  * Some architectures will only update present cpus when
4941                  * onlining them, so don't trust the number if it's just 1. But
4942                  * we also don't want to use nr_cpu_ids always, as on some other
4943                  * architectures, there can be many possible cpus, but never
4944                  * onlined. Here we compromise between trying to avoid too high
4945                  * order on systems that appear larger than they are, and too
4946                  * low order on systems that appear smaller than they are.
4947                  */
4948                 unsigned int nr_cpus = num_present_cpus();
4949                 if (nr_cpus <= 1)
4950                         nr_cpus = nr_cpu_ids;
4951                 min_objects = 4 * (fls(nr_cpus) + 1);
4952         }
4953         /* min_objects can't be 0 because get_order(0) is undefined */
4954         max_objects = max(order_objects(slub_max_order, size), 1U);
4955         min_objects = min(min_objects, max_objects);
4956 
4957         min_order = max_t(unsigned int, slub_min_order,
4958                           get_order(min_objects * size));
4959         if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4960                 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4961 
4962         /*
4963          * Attempt to find best configuration for a slab. This works by first
4964          * attempting to generate a layout with the best possible configuration
4965          * and backing off gradually.
4966          *
4967          * We start with accepting at most 1/16 waste and try to find the
4968          * smallest order from min_objects-derived/slab_min_order up to
4969          * slab_max_order that will satisfy the constraint. Note that increasing
4970          * the order can only result in same or less fractional waste, not more.
4971          *
4972          * If that fails, we increase the acceptable fraction of waste and try
4973          * again. The last iteration with fraction of 1/2 would effectively
4974          * accept any waste and give us the order determined by min_objects, as
4975          * long as at least single object fits within slab_max_order.
4976          */
4977         for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4978                 order = calc_slab_order(size, min_order, slub_max_order,
4979                                         fraction);
4980                 if (order <= slub_max_order)
4981                         return order;
4982         }
4983 
4984         /*
4985          * Doh this slab cannot be placed using slab_max_order.
4986          */
4987         order = get_order(size);
4988         if (order <= MAX_PAGE_ORDER)
4989                 return order;
4990         return -ENOSYS;
4991 }
4992 
4993 static void
4994 init_kmem_cache_node(struct kmem_cache_node *n)
4995 {
4996         n->nr_partial = 0;
4997         spin_lock_init(&n->list_lock);
4998         INIT_LIST_HEAD(&n->partial);
4999 #ifdef CONFIG_SLUB_DEBUG
5000         atomic_long_set(&n->nr_slabs, 0);
5001         atomic_long_set(&n->total_objects, 0);
5002         INIT_LIST_HEAD(&n->full);
5003 #endif
5004 }
5005 
5006 #ifndef CONFIG_SLUB_TINY
5007 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5008 {
5009         BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5010                         NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5011                         sizeof(struct kmem_cache_cpu));
5012 
5013         /*
5014          * Must align to double word boundary for the double cmpxchg
5015          * instructions to work; see __pcpu_double_call_return_bool().
5016          */
5017         s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5018                                      2 * sizeof(void *));
5019 
5020         if (!s->cpu_slab)
5021                 return 0;
5022 
5023         init_kmem_cache_cpus(s);
5024 
5025         return 1;
5026 }
5027 #else
5028 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5029 {
5030         return 1;
5031 }
5032 #endif /* CONFIG_SLUB_TINY */
5033 
5034 static struct kmem_cache *kmem_cache_node;
5035 
5036 /*
5037  * No kmalloc_node yet so do it by hand. We know that this is the first
5038  * slab on the node for this slabcache. There are no concurrent accesses
5039  * possible.
5040  *
5041  * Note that this function only works on the kmem_cache_node
5042  * when allocating for the kmem_cache_node. This is used for bootstrapping
5043  * memory on a fresh node that has no slab structures yet.
5044  */
5045 static void early_kmem_cache_node_alloc(int node)
5046 {
5047         struct slab *slab;
5048         struct kmem_cache_node *n;
5049 
5050         BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5051 
5052         slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5053 
5054         BUG_ON(!slab);
5055         if (slab_nid(slab) != node) {
5056                 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5057                 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5058         }
5059 
5060         n = slab->freelist;
5061         BUG_ON(!n);
5062 #ifdef CONFIG_SLUB_DEBUG
5063         init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5064 #endif
5065         n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5066         slab->freelist = get_freepointer(kmem_cache_node, n);
5067         slab->inuse = 1;
5068         kmem_cache_node->node[node] = n;
5069         init_kmem_cache_node(n);
5070         inc_slabs_node(kmem_cache_node, node, slab->objects);
5071 
5072         /*
5073          * No locks need to be taken here as it has just been
5074          * initialized and there is no concurrent access.
5075          */
5076         __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5077 }
5078 
5079 static void free_kmem_cache_nodes(struct kmem_cache *s)
5080 {
5081         int node;
5082         struct kmem_cache_node *n;
5083 
5084         for_each_kmem_cache_node(s, node, n) {
5085                 s->node[node] = NULL;
5086                 kmem_cache_free(kmem_cache_node, n);
5087         }
5088 }
5089 
5090 void __kmem_cache_release(struct kmem_cache *s)
5091 {
5092         cache_random_seq_destroy(s);
5093 #ifndef CONFIG_SLUB_TINY
5094         free_percpu(s->cpu_slab);
5095 #endif
5096         free_kmem_cache_nodes(s);
5097 }
5098 
5099 static int init_kmem_cache_nodes(struct kmem_cache *s)
5100 {
5101         int node;
5102 
5103         for_each_node_mask(node, slab_nodes) {
5104                 struct kmem_cache_node *n;
5105 
5106                 if (slab_state == DOWN) {
5107                         early_kmem_cache_node_alloc(node);
5108                         continue;
5109                 }
5110                 n = kmem_cache_alloc_node(kmem_cache_node,
5111                                                 GFP_KERNEL, node);
5112 
5113                 if (!n) {
5114                         free_kmem_cache_nodes(s);
5115                         return 0;
5116                 }
5117 
5118                 init_kmem_cache_node(n);
5119                 s->node[node] = n;
5120         }
5121         return 1;
5122 }
5123 
5124 static void set_cpu_partial(struct kmem_cache *s)
5125 {
5126 #ifdef CONFIG_SLUB_CPU_PARTIAL
5127         unsigned int nr_objects;
5128 
5129         /*
5130          * cpu_partial determined the maximum number of objects kept in the
5131          * per cpu partial lists of a processor.
5132          *
5133          * Per cpu partial lists mainly contain slabs that just have one
5134          * object freed. If they are used for allocation then they can be
5135          * filled up again with minimal effort. The slab will never hit the
5136          * per node partial lists and therefore no locking will be required.
5137          *
5138          * For backwards compatibility reasons, this is determined as number
5139          * of objects, even though we now limit maximum number of pages, see
5140          * slub_set_cpu_partial()
5141          */
5142         if (!kmem_cache_has_cpu_partial(s))
5143                 nr_objects = 0;
5144         else if (s->size >= PAGE_SIZE)
5145                 nr_objects = 6;
5146         else if (s->size >= 1024)
5147                 nr_objects = 24;
5148         else if (s->size >= 256)
5149                 nr_objects = 52;
5150         else
5151                 nr_objects = 120;
5152 
5153         slub_set_cpu_partial(s, nr_objects);
5154 #endif
5155 }
5156 
5157 /*
5158  * calculate_sizes() determines the order and the distribution of data within
5159  * a slab object.
5160  */
5161 static int calculate_sizes(struct kmem_cache *s)
5162 {
5163         slab_flags_t flags = s->flags;
5164         unsigned int size = s->object_size;
5165         unsigned int order;
5166 
5167         /*
5168          * Round up object size to the next word boundary. We can only
5169          * place the free pointer at word boundaries and this determines
5170          * the possible location of the free pointer.
5171          */
5172         size = ALIGN(size, sizeof(void *));
5173 
5174 #ifdef CONFIG_SLUB_DEBUG
5175         /*
5176          * Determine if we can poison the object itself. If the user of
5177          * the slab may touch the object after free or before allocation
5178          * then we should never poison the object itself.
5179          */
5180         if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5181                         !s->ctor)
5182                 s->flags |= __OBJECT_POISON;
5183         else
5184                 s->flags &= ~__OBJECT_POISON;
5185 
5186 
5187         /*
5188          * If we are Redzoning then check if there is some space between the
5189          * end of the object and the free pointer. If not then add an
5190          * additional word to have some bytes to store Redzone information.
5191          */
5192         if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5193                 size += sizeof(void *);
5194 #endif
5195 
5196         /*
5197          * With that we have determined the number of bytes in actual use
5198          * by the object and redzoning.
5199          */
5200         s->inuse = size;
5201 
5202         if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5203             ((flags & SLAB_RED_ZONE) &&
5204              (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5205                 /*
5206                  * Relocate free pointer after the object if it is not
5207                  * permitted to overwrite the first word of the object on
5208                  * kmem_cache_free.
5209                  *
5210                  * This is the case if we do RCU, have a constructor or
5211                  * destructor, are poisoning the objects, or are
5212                  * redzoning an object smaller than sizeof(void *) or are
5213                  * redzoning an object with slub_debug_orig_size() enabled,
5214                  * in which case the right redzone may be extended.
5215                  *
5216                  * The assumption that s->offset >= s->inuse means free
5217                  * pointer is outside of the object is used in the
5218                  * freeptr_outside_object() function. If that is no
5219                  * longer true, the function needs to be modified.
5220                  */
5221                 s->offset = size;
5222                 size += sizeof(void *);
5223         } else {
5224                 /*
5225                  * Store freelist pointer near middle of object to keep
5226                  * it away from the edges of the object to avoid small
5227                  * sized over/underflows from neighboring allocations.
5228                  */
5229                 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5230         }
5231 
5232 #ifdef CONFIG_SLUB_DEBUG
5233         if (flags & SLAB_STORE_USER) {
5234                 /*
5235                  * Need to store information about allocs and frees after
5236                  * the object.
5237                  */
5238                 size += 2 * sizeof(struct track);
5239 
5240                 /* Save the original kmalloc request size */
5241                 if (flags & SLAB_KMALLOC)
5242                         size += sizeof(unsigned int);
5243         }
5244 #endif
5245 
5246         kasan_cache_create(s, &size, &s->flags);
5247 #ifdef CONFIG_SLUB_DEBUG
5248         if (flags & SLAB_RED_ZONE) {
5249                 /*
5250                  * Add some empty padding so that we can catch
5251                  * overwrites from earlier objects rather than let
5252                  * tracking information or the free pointer be
5253                  * corrupted if a user writes before the start
5254                  * of the object.
5255                  */
5256                 size += sizeof(void *);
5257 
5258                 s->red_left_pad = sizeof(void *);
5259                 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5260                 size += s->red_left_pad;
5261         }
5262 #endif
5263 
5264         /*
5265          * SLUB stores one object immediately after another beginning from
5266          * offset 0. In order to align the objects we have to simply size
5267          * each object to conform to the alignment.
5268          */
5269         size = ALIGN(size, s->align);
5270         s->size = size;
5271         s->reciprocal_size = reciprocal_value(size);
5272         order = calculate_order(size);
5273 
5274         if ((int)order < 0)
5275                 return 0;
5276 
5277         s->allocflags = __GFP_COMP;
5278 
5279         if (s->flags & SLAB_CACHE_DMA)
5280                 s->allocflags |= GFP_DMA;
5281 
5282         if (s->flags & SLAB_CACHE_DMA32)
5283                 s->allocflags |= GFP_DMA32;
5284 
5285         if (s->flags & SLAB_RECLAIM_ACCOUNT)
5286                 s->allocflags |= __GFP_RECLAIMABLE;
5287 
5288         /*
5289          * Determine the number of objects per slab
5290          */
5291         s->oo = oo_make(order, size);
5292         s->min = oo_make(get_order(size), size);
5293 
5294         return !!oo_objects(s->oo);
5295 }
5296 
5297 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5298 {
5299         s->flags = kmem_cache_flags(flags, s->name);
5300 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5301         s->random = get_random_long();
5302 #endif
5303 
5304         if (!calculate_sizes(s))
5305                 goto error;
5306         if (disable_higher_order_debug) {
5307                 /*
5308                  * Disable debugging flags that store metadata if the min slab
5309                  * order increased.
5310                  */
5311                 if (get_order(s->size) > get_order(s->object_size)) {
5312                         s->flags &= ~DEBUG_METADATA_FLAGS;
5313                         s->offset = 0;
5314                         if (!calculate_sizes(s))
5315                                 goto error;
5316                 }
5317         }
5318 
5319 #ifdef system_has_freelist_aba
5320         if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5321                 /* Enable fast mode */
5322                 s->flags |= __CMPXCHG_DOUBLE;
5323         }
5324 #endif
5325 
5326         /*
5327          * The larger the object size is, the more slabs we want on the partial
5328          * list to avoid pounding the page allocator excessively.
5329          */
5330         s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5331         s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5332 
5333         set_cpu_partial(s);
5334 
5335 #ifdef CONFIG_NUMA
5336         s->remote_node_defrag_ratio = 1000;
5337 #endif
5338 
5339         /* Initialize the pre-computed randomized freelist if slab is up */
5340         if (slab_state >= UP) {
5341                 if (init_cache_random_seq(s))
5342                         goto error;
5343         }
5344 
5345         if (!init_kmem_cache_nodes(s))
5346                 goto error;
5347 
5348         if (alloc_kmem_cache_cpus(s))
5349                 return 0;
5350 
5351 error:
5352         __kmem_cache_release(s);
5353         return -EINVAL;
5354 }
5355 
5356 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5357                               const char *text)
5358 {
5359 #ifdef CONFIG_SLUB_DEBUG
5360         void *addr = slab_address(slab);
5361         void *p;
5362 
5363         slab_err(s, slab, text, s->name);
5364 
5365         spin_lock(&object_map_lock);
5366         __fill_map(object_map, s, slab);
5367 
5368         for_each_object(p, s, addr, slab->objects) {
5369 
5370                 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5371                         pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5372                         print_tracking(s, p);
5373                 }
5374         }
5375         spin_unlock(&object_map_lock);
5376 #endif
5377 }
5378 
5379 /*
5380  * Attempt to free all partial slabs on a node.
5381  * This is called from __kmem_cache_shutdown(). We must take list_lock
5382  * because sysfs file might still access partial list after the shutdowning.
5383  */
5384 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5385 {
5386         LIST_HEAD(discard);
5387         struct slab *slab, *h;
5388 
5389         BUG_ON(irqs_disabled());
5390         spin_lock_irq(&n->list_lock);
5391         list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5392                 if (!slab->inuse) {
5393                         remove_partial(n, slab);
5394                         list_add(&slab->slab_list, &discard);
5395                 } else {
5396                         list_slab_objects(s, slab,
5397                           "Objects remaining in %s on __kmem_cache_shutdown()");
5398                 }
5399         }
5400         spin_unlock_irq(&n->list_lock);
5401 
5402         list_for_each_entry_safe(slab, h, &discard, slab_list)
5403                 discard_slab(s, slab);
5404 }
5405 
5406 bool __kmem_cache_empty(struct kmem_cache *s)
5407 {
5408         int node;
5409         struct kmem_cache_node *n;
5410 
5411         for_each_kmem_cache_node(s, node, n)
5412                 if (n->nr_partial || node_nr_slabs(n))
5413                         return false;
5414         return true;
5415 }
5416 
5417 /*
5418  * Release all resources used by a slab cache.
5419  */
5420 int __kmem_cache_shutdown(struct kmem_cache *s)
5421 {
5422         int node;
5423         struct kmem_cache_node *n;
5424 
5425         flush_all_cpus_locked(s);
5426         /* Attempt to free all objects */
5427         for_each_kmem_cache_node(s, node, n) {
5428                 free_partial(s, n);
5429                 if (n->nr_partial || node_nr_slabs(n))
5430                         return 1;
5431         }
5432         return 0;
5433 }
5434 
5435 #ifdef CONFIG_PRINTK
5436 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5437 {
5438         void *base;
5439         int __maybe_unused i;
5440         unsigned int objnr;
5441         void *objp;
5442         void *objp0;
5443         struct kmem_cache *s = slab->slab_cache;
5444         struct track __maybe_unused *trackp;
5445 
5446         kpp->kp_ptr = object;
5447         kpp->kp_slab = slab;
5448         kpp->kp_slab_cache = s;
5449         base = slab_address(slab);
5450         objp0 = kasan_reset_tag(object);
5451 #ifdef CONFIG_SLUB_DEBUG
5452         objp = restore_red_left(s, objp0);
5453 #else
5454         objp = objp0;
5455 #endif
5456         objnr = obj_to_index(s, slab, objp);
5457         kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5458         objp = base + s->size * objnr;
5459         kpp->kp_objp = objp;
5460         if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5461                          || (objp - base) % s->size) ||
5462             !(s->flags & SLAB_STORE_USER))
5463                 return;
5464 #ifdef CONFIG_SLUB_DEBUG
5465         objp = fixup_red_left(s, objp);
5466         trackp = get_track(s, objp, TRACK_ALLOC);
5467         kpp->kp_ret = (void *)trackp->addr;
5468 #ifdef CONFIG_STACKDEPOT
5469         {
5470                 depot_stack_handle_t handle;
5471                 unsigned long *entries;
5472                 unsigned int nr_entries;
5473 
5474                 handle = READ_ONCE(trackp->handle);
5475                 if (handle) {
5476                         nr_entries = stack_depot_fetch(handle, &entries);
5477                         for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5478                                 kpp->kp_stack[i] = (void *)entries[i];
5479                 }
5480 
5481                 trackp = get_track(s, objp, TRACK_FREE);
5482                 handle = READ_ONCE(trackp->handle);
5483                 if (handle) {
5484                         nr_entries = stack_depot_fetch(handle, &entries);
5485                         for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5486                                 kpp->kp_free_stack[i] = (void *)entries[i];
5487                 }
5488         }
5489 #endif
5490 #endif
5491 }
5492 #endif
5493 
5494 /********************************************************************
5495  *              Kmalloc subsystem
5496  *******************************************************************/
5497 
5498 static int __init setup_slub_min_order(char *str)
5499 {
5500         get_option(&str, (int *)&slub_min_order);
5501 
5502         if (slub_min_order > slub_max_order)
5503                 slub_max_order = slub_min_order;
5504 
5505         return 1;
5506 }
5507 
5508 __setup("slab_min_order=", setup_slub_min_order);
5509 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5510 
5511 
5512 static int __init setup_slub_max_order(char *str)
5513 {
5514         get_option(&str, (int *)&slub_max_order);
5515         slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5516 
5517         if (slub_min_order > slub_max_order)
5518                 slub_min_order = slub_max_order;
5519 
5520         return 1;
5521 }
5522 
5523 __setup("slab_max_order=", setup_slub_max_order);
5524 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5525 
5526 static int __init setup_slub_min_objects(char *str)
5527 {
5528         get_option(&str, (int *)&slub_min_objects);
5529 
5530         return 1;
5531 }
5532 
5533 __setup("slab_min_objects=", setup_slub_min_objects);
5534 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5535 
5536 #ifdef CONFIG_HARDENED_USERCOPY
5537 /*
5538  * Rejects incorrectly sized objects and objects that are to be copied
5539  * to/from userspace but do not fall entirely within the containing slab
5540  * cache's usercopy region.
5541  *
5542  * Returns NULL if check passes, otherwise const char * to name of cache
5543  * to indicate an error.
5544  */
5545 void __check_heap_object(const void *ptr, unsigned long n,
5546                          const struct slab *slab, bool to_user)
5547 {
5548         struct kmem_cache *s;
5549         unsigned int offset;
5550         bool is_kfence = is_kfence_address(ptr);
5551 
5552         ptr = kasan_reset_tag(ptr);
5553 
5554         /* Find object and usable object size. */
5555         s = slab->slab_cache;
5556 
5557         /* Reject impossible pointers. */
5558         if (ptr < slab_address(slab))
5559                 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5560                                to_user, 0, n);
5561 
5562         /* Find offset within object. */
5563         if (is_kfence)
5564                 offset = ptr - kfence_object_start(ptr);
5565         else
5566                 offset = (ptr - slab_address(slab)) % s->size;
5567 
5568         /* Adjust for redzone and reject if within the redzone. */
5569         if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5570                 if (offset < s->red_left_pad)
5571                         usercopy_abort("SLUB object in left red zone",
5572                                        s->name, to_user, offset, n);
5573                 offset -= s->red_left_pad;
5574         }
5575 
5576         /* Allow address range falling entirely within usercopy region. */
5577         if (offset >= s->useroffset &&
5578             offset - s->useroffset <= s->usersize &&
5579             n <= s->useroffset - offset + s->usersize)
5580                 return;
5581 
5582         usercopy_abort("SLUB object", s->name, to_user, offset, n);
5583 }
5584 #endif /* CONFIG_HARDENED_USERCOPY */
5585 
5586 #define SHRINK_PROMOTE_MAX 32
5587 
5588 /*
5589  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5590  * up most to the head of the partial lists. New allocations will then
5591  * fill those up and thus they can be removed from the partial lists.
5592  *
5593  * The slabs with the least items are placed last. This results in them
5594  * being allocated from last increasing the chance that the last objects
5595  * are freed in them.
5596  */
5597 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5598 {
5599         int node;
5600         int i;
5601         struct kmem_cache_node *n;
5602         struct slab *slab;
5603         struct slab *t;
5604         struct list_head discard;
5605         struct list_head promote[SHRINK_PROMOTE_MAX];
5606         unsigned long flags;
5607         int ret = 0;
5608 
5609         for_each_kmem_cache_node(s, node, n) {
5610                 INIT_LIST_HEAD(&discard);
5611                 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5612                         INIT_LIST_HEAD(promote + i);
5613 
5614                 spin_lock_irqsave(&n->list_lock, flags);
5615 
5616                 /*
5617                  * Build lists of slabs to discard or promote.
5618                  *
5619                  * Note that concurrent frees may occur while we hold the
5620                  * list_lock. slab->inuse here is the upper limit.
5621                  */
5622                 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5623                         int free = slab->objects - slab->inuse;
5624 
5625                         /* Do not reread slab->inuse */
5626                         barrier();
5627 
5628                         /* We do not keep full slabs on the list */
5629                         BUG_ON(free <= 0);
5630 
5631                         if (free == slab->objects) {
5632                                 list_move(&slab->slab_list, &discard);
5633                                 slab_clear_node_partial(slab);
5634                                 n->nr_partial--;
5635                                 dec_slabs_node(s, node, slab->objects);
5636                         } else if (free <= SHRINK_PROMOTE_MAX)
5637                                 list_move(&slab->slab_list, promote + free - 1);
5638                 }
5639 
5640                 /*
5641                  * Promote the slabs filled up most to the head of the
5642                  * partial list.
5643                  */
5644                 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5645                         list_splice(promote + i, &n->partial);
5646 
5647                 spin_unlock_irqrestore(&n->list_lock, flags);
5648 
5649                 /* Release empty slabs */
5650                 list_for_each_entry_safe(slab, t, &discard, slab_list)
5651                         free_slab(s, slab);
5652 
5653                 if (node_nr_slabs(n))
5654                         ret = 1;
5655         }
5656 
5657         return ret;
5658 }
5659 
5660 int __kmem_cache_shrink(struct kmem_cache *s)
5661 {
5662         flush_all(s);
5663         return __kmem_cache_do_shrink(s);
5664 }
5665 
5666 static int slab_mem_going_offline_callback(void *arg)
5667 {
5668         struct kmem_cache *s;
5669 
5670         mutex_lock(&slab_mutex);
5671         list_for_each_entry(s, &slab_caches, list) {
5672                 flush_all_cpus_locked(s);
5673                 __kmem_cache_do_shrink(s);
5674         }
5675         mutex_unlock(&slab_mutex);
5676 
5677         return 0;
5678 }
5679 
5680 static void slab_mem_offline_callback(void *arg)
5681 {
5682         struct memory_notify *marg = arg;
5683         int offline_node;
5684 
5685         offline_node = marg->status_change_nid_normal;
5686 
5687         /*
5688          * If the node still has available memory. we need kmem_cache_node
5689          * for it yet.
5690          */
5691         if (offline_node < 0)
5692                 return;
5693 
5694         mutex_lock(&slab_mutex);
5695         node_clear(offline_node, slab_nodes);
5696         /*
5697          * We no longer free kmem_cache_node structures here, as it would be
5698          * racy with all get_node() users, and infeasible to protect them with
5699          * slab_mutex.
5700          */
5701         mutex_unlock(&slab_mutex);
5702 }
5703 
5704 static int slab_mem_going_online_callback(void *arg)
5705 {
5706         struct kmem_cache_node *n;
5707         struct kmem_cache *s;
5708         struct memory_notify *marg = arg;
5709         int nid = marg->status_change_nid_normal;
5710         int ret = 0;
5711 
5712         /*
5713          * If the node's memory is already available, then kmem_cache_node is
5714          * already created. Nothing to do.
5715          */
5716         if (nid < 0)
5717                 return 0;
5718 
5719         /*
5720          * We are bringing a node online. No memory is available yet. We must
5721          * allocate a kmem_cache_node structure in order to bring the node
5722          * online.
5723          */
5724         mutex_lock(&slab_mutex);
5725         list_for_each_entry(s, &slab_caches, list) {
5726                 /*
5727                  * The structure may already exist if the node was previously
5728                  * onlined and offlined.
5729                  */
5730                 if (get_node(s, nid))
5731                         continue;
5732                 /*
5733                  * XXX: kmem_cache_alloc_node will fallback to other nodes
5734                  *      since memory is not yet available from the node that
5735                  *      is brought up.
5736                  */
5737                 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5738                 if (!n) {
5739                         ret = -ENOMEM;
5740                         goto out;
5741                 }
5742                 init_kmem_cache_node(n);
5743                 s->node[nid] = n;
5744         }
5745         /*
5746          * Any cache created after this point will also have kmem_cache_node
5747          * initialized for the new node.
5748          */
5749         node_set(nid, slab_nodes);
5750 out:
5751         mutex_unlock(&slab_mutex);
5752         return ret;
5753 }
5754 
5755 static int slab_memory_callback(struct notifier_block *self,
5756                                 unsigned long action, void *arg)
5757 {
5758         int ret = 0;
5759 
5760         switch (action) {
5761         case MEM_GOING_ONLINE:
5762                 ret = slab_mem_going_online_callback(arg);
5763                 break;
5764         case MEM_GOING_OFFLINE:
5765                 ret = slab_mem_going_offline_callback(arg);
5766                 break;
5767         case MEM_OFFLINE:
5768         case MEM_CANCEL_ONLINE:
5769                 slab_mem_offline_callback(arg);
5770                 break;
5771         case MEM_ONLINE:
5772         case MEM_CANCEL_OFFLINE:
5773                 break;
5774         }
5775         if (ret)
5776                 ret = notifier_from_errno(ret);
5777         else
5778                 ret = NOTIFY_OK;
5779         return ret;
5780 }
5781 
5782 /********************************************************************
5783  *                      Basic setup of slabs
5784  *******************************************************************/
5785 
5786 /*
5787  * Used for early kmem_cache structures that were allocated using
5788  * the page allocator. Allocate them properly then fix up the pointers
5789  * that may be pointing to the wrong kmem_cache structure.
5790  */
5791 
5792 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5793 {
5794         int node;
5795         struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5796         struct kmem_cache_node *n;
5797 
5798         memcpy(s, static_cache, kmem_cache->object_size);
5799 
5800         /*
5801          * This runs very early, and only the boot processor is supposed to be
5802          * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5803          * IPIs around.
5804          */
5805         __flush_cpu_slab(s, smp_processor_id());
5806         for_each_kmem_cache_node(s, node, n) {
5807                 struct slab *p;
5808 
5809                 list_for_each_entry(p, &n->partial, slab_list)
5810                         p->slab_cache = s;
5811 
5812 #ifdef CONFIG_SLUB_DEBUG
5813                 list_for_each_entry(p, &n->full, slab_list)
5814                         p->slab_cache = s;
5815 #endif
5816         }
5817         list_add(&s->list, &slab_caches);
5818         return s;
5819 }
5820 
5821 void __init kmem_cache_init(void)
5822 {
5823         static __initdata struct kmem_cache boot_kmem_cache,
5824                 boot_kmem_cache_node;
5825         int node;
5826 
5827         if (debug_guardpage_minorder())
5828                 slub_max_order = 0;
5829 
5830         /* Print slub debugging pointers without hashing */
5831         if (__slub_debug_enabled())
5832                 no_hash_pointers_enable(NULL);
5833 
5834         kmem_cache_node = &boot_kmem_cache_node;
5835         kmem_cache = &boot_kmem_cache;
5836 
5837         /*
5838          * Initialize the nodemask for which we will allocate per node
5839          * structures. Here we don't need taking slab_mutex yet.
5840          */
5841         for_each_node_state(node, N_NORMAL_MEMORY)
5842                 node_set(node, slab_nodes);
5843 
5844         create_boot_cache(kmem_cache_node, "kmem_cache_node",
5845                         sizeof(struct kmem_cache_node),
5846                         SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5847 
5848         hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5849 
5850         /* Able to allocate the per node structures */
5851         slab_state = PARTIAL;
5852 
5853         create_boot_cache(kmem_cache, "kmem_cache",
5854                         offsetof(struct kmem_cache, node) +
5855                                 nr_node_ids * sizeof(struct kmem_cache_node *),
5856                         SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5857 
5858         kmem_cache = bootstrap(&boot_kmem_cache);
5859         kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5860 
5861         /* Now we can use the kmem_cache to allocate kmalloc slabs */
5862         setup_kmalloc_cache_index_table();
5863         create_kmalloc_caches();
5864 
5865         /* Setup random freelists for each cache */
5866         init_freelist_randomization();
5867 
5868         cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5869                                   slub_cpu_dead);
5870 
5871         pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5872                 cache_line_size(),
5873                 slub_min_order, slub_max_order, slub_min_objects,
5874                 nr_cpu_ids, nr_node_ids);
5875 }
5876 
5877 void __init kmem_cache_init_late(void)
5878 {
5879 #ifndef CONFIG_SLUB_TINY
5880         flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5881         WARN_ON(!flushwq);
5882 #endif
5883 }
5884 
5885 struct kmem_cache *
5886 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5887                    slab_flags_t flags, void (*ctor)(void *))
5888 {
5889         struct kmem_cache *s;
5890 
5891         s = find_mergeable(size, align, flags, name, ctor);
5892         if (s) {
5893                 if (sysfs_slab_alias(s, name))
5894                         return NULL;
5895 
5896                 s->refcount++;
5897 
5898                 /*
5899                  * Adjust the object sizes so that we clear
5900                  * the complete object on kzalloc.
5901                  */
5902                 s->object_size = max(s->object_size, size);
5903                 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5904         }
5905 
5906         return s;
5907 }
5908 
5909 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5910 {
5911         int err;
5912 
5913         err = kmem_cache_open(s, flags);
5914         if (err)
5915                 return err;
5916 
5917         /* Mutex is not taken during early boot */
5918         if (slab_state <= UP)
5919                 return 0;
5920 
5921         err = sysfs_slab_add(s);
5922         if (err) {
5923                 __kmem_cache_release(s);
5924                 return err;
5925         }
5926 
5927         if (s->flags & SLAB_STORE_USER)
5928                 debugfs_slab_add(s);
5929 
5930         return 0;
5931 }
5932 
5933 #ifdef SLAB_SUPPORTS_SYSFS
5934 static int count_inuse(struct slab *slab)
5935 {
5936         return slab->inuse;
5937 }
5938 
5939 static int count_total(struct slab *slab)
5940 {
5941         return slab->objects;
5942 }
5943 #endif
5944 
5945 #ifdef CONFIG_SLUB_DEBUG
5946 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5947                           unsigned long *obj_map)
5948 {
5949         void *p;
5950         void *addr = slab_address(slab);
5951 
5952         if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5953                 return;
5954 
5955         /* Now we know that a valid freelist exists */
5956         __fill_map(obj_map, s, slab);
5957         for_each_object(p, s, addr, slab->objects) {
5958                 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5959                          SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5960 
5961                 if (!check_object(s, slab, p, val))
5962                         break;
5963         }
5964 }
5965 
5966 static int validate_slab_node(struct kmem_cache *s,
5967                 struct kmem_cache_node *n, unsigned long *obj_map)
5968 {
5969         unsigned long count = 0;
5970         struct slab *slab;
5971         unsigned long flags;
5972 
5973         spin_lock_irqsave(&n->list_lock, flags);
5974 
5975         list_for_each_entry(slab, &n->partial, slab_list) {
5976                 validate_slab(s, slab, obj_map);
5977                 count++;
5978         }
5979         if (count != n->nr_partial) {
5980                 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5981                        s->name, count, n->nr_partial);
5982                 slab_add_kunit_errors();
5983         }
5984 
5985         if (!(s->flags & SLAB_STORE_USER))
5986                 goto out;
5987 
5988         list_for_each_entry(slab, &n->full, slab_list) {
5989                 validate_slab(s, slab, obj_map);
5990                 count++;
5991         }
5992         if (count != node_nr_slabs(n)) {
5993                 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5994                        s->name, count, node_nr_slabs(n));
5995                 slab_add_kunit_errors();
5996         }
5997 
5998 out:
5999         spin_unlock_irqrestore(&n->list_lock, flags);
6000         return count;
6001 }
6002 
6003 long validate_slab_cache(struct kmem_cache *s)
6004 {
6005         int node;
6006         unsigned long count = 0;
6007         struct kmem_cache_node *n;
6008         unsigned long *obj_map;
6009 
6010         obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6011         if (!obj_map)
6012                 return -ENOMEM;
6013 
6014         flush_all(s);
6015         for_each_kmem_cache_node(s, node, n)
6016                 count += validate_slab_node(s, n, obj_map);
6017 
6018         bitmap_free(obj_map);
6019 
6020         return count;
6021 }
6022 EXPORT_SYMBOL(validate_slab_cache);
6023 
6024 #ifdef CONFIG_DEBUG_FS
6025 /*
6026  * Generate lists of code addresses where slabcache objects are allocated
6027  * and freed.
6028  */
6029 
6030 struct location {
6031         depot_stack_handle_t handle;
6032         unsigned long count;
6033         unsigned long addr;
6034         unsigned long waste;
6035         long long sum_time;
6036         long min_time;
6037         long max_time;
6038         long min_pid;
6039         long max_pid;
6040         DECLARE_BITMAP(cpus, NR_CPUS);
6041         nodemask_t nodes;
6042 };
6043 
6044 struct loc_track {
6045         unsigned long max;
6046         unsigned long count;
6047         struct location *loc;
6048         loff_t idx;
6049 };
6050 
6051 static struct dentry *slab_debugfs_root;
6052 
6053 static void free_loc_track(struct loc_track *t)
6054 {
6055         if (t->max)
6056                 free_pages((unsigned long)t->loc,
6057                         get_order(sizeof(struct location) * t->max));
6058 }
6059 
6060 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6061 {
6062         struct location *l;
6063         int order;
6064 
6065         order = get_order(sizeof(struct location) * max);
6066 
6067         l = (void *)__get_free_pages(flags, order);
6068         if (!l)
6069                 return 0;
6070 
6071         if (t->count) {
6072                 memcpy(l, t->loc, sizeof(struct location) * t->count);
6073                 free_loc_track(t);
6074         }
6075         t->max = max;
6076         t->loc = l;
6077         return 1;
6078 }
6079 
6080 static int add_location(struct loc_track *t, struct kmem_cache *s,
6081                                 const struct track *track,
6082                                 unsigned int orig_size)
6083 {
6084         long start, end, pos;
6085         struct location *l;
6086         unsigned long caddr, chandle, cwaste;
6087         unsigned long age = jiffies - track->when;
6088         depot_stack_handle_t handle = 0;
6089         unsigned int waste = s->object_size - orig_size;
6090 
6091 #ifdef CONFIG_STACKDEPOT
6092         handle = READ_ONCE(track->handle);
6093 #endif
6094         start = -1;
6095         end = t->count;
6096 
6097         for ( ; ; ) {
6098                 pos = start + (end - start + 1) / 2;
6099 
6100                 /*
6101                  * There is nothing at "end". If we end up there
6102                  * we need to add something to before end.
6103                  */
6104                 if (pos == end)
6105                         break;
6106 
6107                 l = &t->loc[pos];
6108                 caddr = l->addr;
6109                 chandle = l->handle;
6110                 cwaste = l->waste;
6111                 if ((track->addr == caddr) && (handle == chandle) &&
6112                         (waste == cwaste)) {
6113 
6114                         l->count++;
6115                         if (track->when) {
6116                                 l->sum_time += age;
6117                                 if (age < l->min_time)
6118                                         l->min_time = age;
6119                                 if (age > l->max_time)
6120                                         l->max_time = age;
6121 
6122                                 if (track->pid < l->min_pid)
6123                                         l->min_pid = track->pid;
6124                                 if (track->pid > l->max_pid)
6125                                         l->max_pid = track->pid;
6126 
6127                                 cpumask_set_cpu(track->cpu,
6128                                                 to_cpumask(l->cpus));
6129                         }
6130                         node_set(page_to_nid(virt_to_page(track)), l->nodes);
6131                         return 1;
6132                 }
6133 
6134                 if (track->addr < caddr)
6135                         end = pos;
6136                 else if (track->addr == caddr && handle < chandle)
6137                         end = pos;
6138                 else if (track->addr == caddr && handle == chandle &&
6139                                 waste < cwaste)
6140                         end = pos;
6141                 else
6142                         start = pos;
6143         }
6144 
6145         /*
6146          * Not found. Insert new tracking element.
6147          */
6148         if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6149                 return 0;
6150 
6151         l = t->loc + pos;
6152         if (pos < t->count)
6153                 memmove(l + 1, l,
6154                         (t->count - pos) * sizeof(struct location));
6155         t->count++;
6156         l->count = 1;
6157         l->addr = track->addr;
6158         l->sum_time = age;
6159         l->min_time = age;
6160         l->max_time = age;
6161         l->min_pid = track->pid;
6162         l->max_pid = track->pid;
6163         l->handle = handle;
6164         l->waste = waste;
6165         cpumask_clear(to_cpumask(l->cpus));
6166         cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6167         nodes_clear(l->nodes);
6168         node_set(page_to_nid(virt_to_page(track)), l->nodes);
6169         return 1;
6170 }
6171 
6172 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6173                 struct slab *slab, enum track_item alloc,
6174                 unsigned long *obj_map)
6175 {
6176         void *addr = slab_address(slab);
6177         bool is_alloc = (alloc == TRACK_ALLOC);
6178         void *p;
6179 
6180         __fill_map(obj_map, s, slab);
6181 
6182         for_each_object(p, s, addr, slab->objects)
6183                 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6184                         add_location(t, s, get_track(s, p, alloc),
6185                                      is_alloc ? get_orig_size(s, p) :
6186                                                 s->object_size);
6187 }
6188 #endif  /* CONFIG_DEBUG_FS   */
6189 #endif  /* CONFIG_SLUB_DEBUG */
6190 
6191 #ifdef SLAB_SUPPORTS_SYSFS
6192 enum slab_stat_type {
6193         SL_ALL,                 /* All slabs */
6194         SL_PARTIAL,             /* Only partially allocated slabs */
6195         SL_CPU,                 /* Only slabs used for cpu caches */
6196         SL_OBJECTS,             /* Determine allocated objects not slabs */
6197         SL_TOTAL                /* Determine object capacity not slabs */
6198 };
6199 
6200 #define SO_ALL          (1 << SL_ALL)
6201 #define SO_PARTIAL      (1 << SL_PARTIAL)
6202 #define SO_CPU          (1 << SL_CPU)
6203 #define SO_OBJECTS      (1 << SL_OBJECTS)
6204 #define SO_TOTAL        (1 << SL_TOTAL)
6205 
6206 static ssize_t show_slab_objects(struct kmem_cache *s,
6207                                  char *buf, unsigned long flags)
6208 {
6209         unsigned long total = 0;
6210         int node;
6211         int x;
6212         unsigned long *nodes;
6213         int len = 0;
6214 
6215         nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6216         if (!nodes)
6217                 return -ENOMEM;
6218 
6219         if (flags & SO_CPU) {
6220                 int cpu;
6221 
6222                 for_each_possible_cpu(cpu) {
6223                         struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6224                                                                cpu);
6225                         int node;
6226                         struct slab *slab;
6227 
6228                         slab = READ_ONCE(c->slab);
6229                         if (!slab)
6230                                 continue;
6231 
6232                         node = slab_nid(slab);
6233                         if (flags & SO_TOTAL)
6234                                 x = slab->objects;
6235                         else if (flags & SO_OBJECTS)
6236                                 x = slab->inuse;
6237                         else
6238                                 x = 1;
6239 
6240                         total += x;
6241                         nodes[node] += x;
6242 
6243 #ifdef CONFIG_SLUB_CPU_PARTIAL
6244                         slab = slub_percpu_partial_read_once(c);
6245                         if (slab) {
6246                                 node = slab_nid(slab);
6247                                 if (flags & SO_TOTAL)
6248                                         WARN_ON_ONCE(1);
6249                                 else if (flags & SO_OBJECTS)
6250                                         WARN_ON_ONCE(1);
6251                                 else
6252                                         x = data_race(slab->slabs);
6253                                 total += x;
6254                                 nodes[node] += x;
6255                         }
6256 #endif
6257                 }
6258         }
6259 
6260         /*
6261          * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6262          * already held which will conflict with an existing lock order:
6263          *
6264          * mem_hotplug_lock->slab_mutex->kernfs_mutex
6265          *
6266          * We don't really need mem_hotplug_lock (to hold off
6267          * slab_mem_going_offline_callback) here because slab's memory hot
6268          * unplug code doesn't destroy the kmem_cache->node[] data.
6269          */
6270 
6271 #ifdef CONFIG_SLUB_DEBUG
6272         if (flags & SO_ALL) {
6273                 struct kmem_cache_node *n;
6274 
6275                 for_each_kmem_cache_node(s, node, n) {
6276 
6277                         if (flags & SO_TOTAL)
6278                                 x = node_nr_objs(n);
6279                         else if (flags & SO_OBJECTS)
6280                                 x = node_nr_objs(n) - count_partial(n, count_free);
6281                         else
6282                                 x = node_nr_slabs(n);
6283                         total += x;
6284                         nodes[node] += x;
6285                 }
6286 
6287         } else
6288 #endif
6289         if (flags & SO_PARTIAL) {
6290                 struct kmem_cache_node *n;
6291 
6292                 for_each_kmem_cache_node(s, node, n) {
6293                         if (flags & SO_TOTAL)
6294                                 x = count_partial(n, count_total);
6295                         else if (flags & SO_OBJECTS)
6296                                 x = count_partial(n, count_inuse);
6297                         else
6298                                 x = n->nr_partial;
6299                         total += x;
6300                         nodes[node] += x;
6301                 }
6302         }
6303 
6304         len += sysfs_emit_at(buf, len, "%lu", total);
6305 #ifdef CONFIG_NUMA
6306         for (node = 0; node < nr_node_ids; node++) {
6307                 if (nodes[node])
6308                         len += sysfs_emit_at(buf, len, " N%d=%lu",
6309                                              node, nodes[node]);
6310         }
6311 #endif
6312         len += sysfs_emit_at(buf, len, "\n");
6313         kfree(nodes);
6314 
6315         return len;
6316 }
6317 
6318 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6319 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6320 
6321 struct slab_attribute {
6322         struct attribute attr;
6323         ssize_t (*show)(struct kmem_cache *s, char *buf);
6324         ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6325 };
6326 
6327 #define SLAB_ATTR_RO(_name) \
6328         static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6329 
6330 #define SLAB_ATTR(_name) \
6331         static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6332 
6333 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6334 {
6335         return sysfs_emit(buf, "%u\n", s->size);
6336 }
6337 SLAB_ATTR_RO(slab_size);
6338 
6339 static ssize_t align_show(struct kmem_cache *s, char *buf)
6340 {
6341         return sysfs_emit(buf, "%u\n", s->align);
6342 }
6343 SLAB_ATTR_RO(align);
6344 
6345 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6346 {
6347         return sysfs_emit(buf, "%u\n", s->object_size);
6348 }
6349 SLAB_ATTR_RO(object_size);
6350 
6351 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6352 {
6353         return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6354 }
6355 SLAB_ATTR_RO(objs_per_slab);
6356 
6357 static ssize_t order_show(struct kmem_cache *s, char *buf)
6358 {
6359         return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6360 }
6361 SLAB_ATTR_RO(order);
6362 
6363 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6364 {
6365         return sysfs_emit(buf, "%lu\n", s->min_partial);
6366 }
6367 
6368 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6369                                  size_t length)
6370 {
6371         unsigned long min;
6372         int err;
6373 
6374         err = kstrtoul(buf, 10, &min);
6375         if (err)
6376                 return err;
6377 
6378         s->min_partial = min;
6379         return length;
6380 }
6381 SLAB_ATTR(min_partial);
6382 
6383 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6384 {
6385         unsigned int nr_partial = 0;
6386 #ifdef CONFIG_SLUB_CPU_PARTIAL
6387         nr_partial = s->cpu_partial;
6388 #endif
6389 
6390         return sysfs_emit(buf, "%u\n", nr_partial);
6391 }
6392 
6393 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6394                                  size_t length)
6395 {
6396         unsigned int objects;
6397         int err;
6398 
6399         err = kstrtouint(buf, 10, &objects);
6400         if (err)
6401                 return err;
6402         if (objects && !kmem_cache_has_cpu_partial(s))
6403                 return -EINVAL;
6404 
6405         slub_set_cpu_partial(s, objects);
6406         flush_all(s);
6407         return length;
6408 }
6409 SLAB_ATTR(cpu_partial);
6410 
6411 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6412 {
6413         if (!s->ctor)
6414                 return 0;
6415         return sysfs_emit(buf, "%pS\n", s->ctor);
6416 }
6417 SLAB_ATTR_RO(ctor);
6418 
6419 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6420 {
6421         return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6422 }
6423 SLAB_ATTR_RO(aliases);
6424 
6425 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6426 {
6427         return show_slab_objects(s, buf, SO_PARTIAL);
6428 }
6429 SLAB_ATTR_RO(partial);
6430 
6431 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6432 {
6433         return show_slab_objects(s, buf, SO_CPU);
6434 }
6435 SLAB_ATTR_RO(cpu_slabs);
6436 
6437 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6438 {
6439         return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6440 }
6441 SLAB_ATTR_RO(objects_partial);
6442 
6443 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6444 {
6445         int objects = 0;
6446         int slabs = 0;
6447         int cpu __maybe_unused;
6448         int len = 0;
6449 
6450 #ifdef CONFIG_SLUB_CPU_PARTIAL
6451         for_each_online_cpu(cpu) {
6452                 struct slab *slab;
6453 
6454                 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6455 
6456                 if (slab)
6457                         slabs += data_race(slab->slabs);
6458         }
6459 #endif
6460 
6461         /* Approximate half-full slabs, see slub_set_cpu_partial() */
6462         objects = (slabs * oo_objects(s->oo)) / 2;
6463         len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6464 
6465 #ifdef CONFIG_SLUB_CPU_PARTIAL
6466         for_each_online_cpu(cpu) {
6467                 struct slab *slab;
6468 
6469                 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6470                 if (slab) {
6471                         slabs = data_race(slab->slabs);
6472                         objects = (slabs * oo_objects(s->oo)) / 2;
6473                         len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6474                                              cpu, objects, slabs);
6475                 }
6476         }
6477 #endif
6478         len += sysfs_emit_at(buf, len, "\n");
6479 
6480         return len;
6481 }
6482 SLAB_ATTR_RO(slabs_cpu_partial);
6483 
6484 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6485 {
6486         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6487 }
6488 SLAB_ATTR_RO(reclaim_account);
6489 
6490 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6491 {
6492         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6493 }
6494 SLAB_ATTR_RO(hwcache_align);
6495 
6496 #ifdef CONFIG_ZONE_DMA
6497 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6498 {
6499         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6500 }
6501 SLAB_ATTR_RO(cache_dma);
6502 #endif
6503 
6504 #ifdef CONFIG_HARDENED_USERCOPY
6505 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6506 {
6507         return sysfs_emit(buf, "%u\n", s->usersize);
6508 }
6509 SLAB_ATTR_RO(usersize);
6510 #endif
6511 
6512 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6513 {
6514         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6515 }
6516 SLAB_ATTR_RO(destroy_by_rcu);
6517 
6518 #ifdef CONFIG_SLUB_DEBUG
6519 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6520 {
6521         return show_slab_objects(s, buf, SO_ALL);
6522 }
6523 SLAB_ATTR_RO(slabs);
6524 
6525 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6526 {
6527         return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6528 }
6529 SLAB_ATTR_RO(total_objects);
6530 
6531 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6532 {
6533         return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6534 }
6535 SLAB_ATTR_RO(objects);
6536 
6537 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6538 {
6539         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6540 }
6541 SLAB_ATTR_RO(sanity_checks);
6542 
6543 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6544 {
6545         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6546 }
6547 SLAB_ATTR_RO(trace);
6548 
6549 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6550 {
6551         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6552 }
6553 
6554 SLAB_ATTR_RO(red_zone);
6555 
6556 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6557 {
6558         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6559 }
6560 
6561 SLAB_ATTR_RO(poison);
6562 
6563 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6564 {
6565         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6566 }
6567 
6568 SLAB_ATTR_RO(store_user);
6569 
6570 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6571 {
6572         return 0;
6573 }
6574 
6575 static ssize_t validate_store(struct kmem_cache *s,
6576                         const char *buf, size_t length)
6577 {
6578         int ret = -EINVAL;
6579 
6580         if (buf[0] == '1' && kmem_cache_debug(s)) {
6581                 ret = validate_slab_cache(s);
6582                 if (ret >= 0)
6583                         ret = length;
6584         }
6585         return ret;
6586 }
6587 SLAB_ATTR(validate);
6588 
6589 #endif /* CONFIG_SLUB_DEBUG */
6590 
6591 #ifdef CONFIG_FAILSLAB
6592 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6593 {
6594         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6595 }
6596 
6597 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6598                                 size_t length)
6599 {
6600         if (s->refcount > 1)
6601                 return -EINVAL;
6602 
6603         if (buf[0] == '1')
6604                 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6605         else
6606                 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6607 
6608         return length;
6609 }
6610 SLAB_ATTR(failslab);
6611 #endif
6612 
6613 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6614 {
6615         return 0;
6616 }
6617 
6618 static ssize_t shrink_store(struct kmem_cache *s,
6619                         const char *buf, size_t length)
6620 {
6621         if (buf[0] == '1')
6622                 kmem_cache_shrink(s);
6623         else
6624                 return -EINVAL;
6625         return length;
6626 }
6627 SLAB_ATTR(shrink);
6628 
6629 #ifdef CONFIG_NUMA
6630 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6631 {
6632         return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6633 }
6634 
6635 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6636                                 const char *buf, size_t length)
6637 {
6638         unsigned int ratio;
6639         int err;
6640 
6641         err = kstrtouint(buf, 10, &ratio);
6642         if (err)
6643                 return err;
6644         if (ratio > 100)
6645                 return -ERANGE;
6646 
6647         s->remote_node_defrag_ratio = ratio * 10;
6648 
6649         return length;
6650 }
6651 SLAB_ATTR(remote_node_defrag_ratio);
6652 #endif
6653 
6654 #ifdef CONFIG_SLUB_STATS
6655 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6656 {
6657         unsigned long sum  = 0;
6658         int cpu;
6659         int len = 0;
6660         int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6661 
6662         if (!data)
6663                 return -ENOMEM;
6664 
6665         for_each_online_cpu(cpu) {
6666                 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6667 
6668                 data[cpu] = x;
6669                 sum += x;
6670         }
6671 
6672         len += sysfs_emit_at(buf, len, "%lu", sum);
6673 
6674 #ifdef CONFIG_SMP
6675         for_each_online_cpu(cpu) {
6676                 if (data[cpu])
6677                         len += sysfs_emit_at(buf, len, " C%d=%u",
6678                                              cpu, data[cpu]);
6679         }
6680 #endif
6681         kfree(data);
6682         len += sysfs_emit_at(buf, len, "\n");
6683 
6684         return len;
6685 }
6686 
6687 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6688 {
6689         int cpu;
6690 
6691         for_each_online_cpu(cpu)
6692                 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6693 }
6694 
6695 #define STAT_ATTR(si, text)                                     \
6696 static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
6697 {                                                               \
6698         return show_stat(s, buf, si);                           \
6699 }                                                               \
6700 static ssize_t text##_store(struct kmem_cache *s,               \
6701                                 const char *buf, size_t length) \
6702 {                                                               \
6703         if (buf[0] != '')                                      \
6704                 return -EINVAL;                                 \
6705         clear_stat(s, si);                                      \
6706         return length;                                          \
6707 }                                                               \
6708 SLAB_ATTR(text);                                                \
6709 
6710 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6711 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6712 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6713 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6714 STAT_ATTR(FREE_FROZEN, free_frozen);
6715 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6716 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6717 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6718 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6719 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6720 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6721 STAT_ATTR(FREE_SLAB, free_slab);
6722 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6723 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6724 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6725 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6726 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6727 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6728 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6729 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6730 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6731 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6732 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6733 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6734 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6735 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6736 #endif  /* CONFIG_SLUB_STATS */
6737 
6738 #ifdef CONFIG_KFENCE
6739 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6740 {
6741         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6742 }
6743 
6744 static ssize_t skip_kfence_store(struct kmem_cache *s,
6745                         const char *buf, size_t length)
6746 {
6747         int ret = length;
6748 
6749         if (buf[0] == '')
6750                 s->flags &= ~SLAB_SKIP_KFENCE;
6751         else if (buf[0] == '1')
6752                 s->flags |= SLAB_SKIP_KFENCE;
6753         else
6754                 ret = -EINVAL;
6755 
6756         return ret;
6757 }
6758 SLAB_ATTR(skip_kfence);
6759 #endif
6760 
6761 static struct attribute *slab_attrs[] = {
6762         &slab_size_attr.attr,
6763         &object_size_attr.attr,
6764         &objs_per_slab_attr.attr,
6765         &order_attr.attr,
6766         &min_partial_attr.attr,
6767         &cpu_partial_attr.attr,
6768         &objects_partial_attr.attr,
6769         &partial_attr.attr,
6770         &cpu_slabs_attr.attr,
6771         &ctor_attr.attr,
6772         &aliases_attr.attr,
6773         &align_attr.attr,
6774         &hwcache_align_attr.attr,
6775         &reclaim_account_attr.attr,
6776         &destroy_by_rcu_attr.attr,
6777         &shrink_attr.attr,
6778         &slabs_cpu_partial_attr.attr,
6779 #ifdef CONFIG_SLUB_DEBUG
6780         &total_objects_attr.attr,
6781         &objects_attr.attr,
6782         &slabs_attr.attr,
6783         &sanity_checks_attr.attr,
6784         &trace_attr.attr,
6785         &red_zone_attr.attr,
6786         &poison_attr.attr,
6787         &store_user_attr.attr,
6788         &validate_attr.attr,
6789 #endif
6790 #ifdef CONFIG_ZONE_DMA
6791         &cache_dma_attr.attr,
6792 #endif
6793 #ifdef CONFIG_NUMA
6794         &remote_node_defrag_ratio_attr.attr,
6795 #endif
6796 #ifdef CONFIG_SLUB_STATS
6797         &alloc_fastpath_attr.attr,
6798         &alloc_slowpath_attr.attr,
6799         &free_fastpath_attr.attr,
6800         &free_slowpath_attr.attr,
6801         &free_frozen_attr.attr,
6802         &free_add_partial_attr.attr,
6803         &free_remove_partial_attr.attr,
6804         &alloc_from_partial_attr.attr,
6805         &alloc_slab_attr.attr,
6806         &alloc_refill_attr.attr,
6807         &alloc_node_mismatch_attr.attr,
6808         &free_slab_attr.attr,
6809         &cpuslab_flush_attr.attr,
6810         &deactivate_full_attr.attr,
6811         &deactivate_empty_attr.attr,
6812         &deactivate_to_head_attr.attr,
6813         &deactivate_to_tail_attr.attr,
6814         &deactivate_remote_frees_attr.attr,
6815         &deactivate_bypass_attr.attr,
6816         &order_fallback_attr.attr,
6817         &cmpxchg_double_fail_attr.attr,
6818         &cmpxchg_double_cpu_fail_attr.attr,
6819         &cpu_partial_alloc_attr.attr,
6820         &cpu_partial_free_attr.attr,
6821         &cpu_partial_node_attr.attr,
6822         &cpu_partial_drain_attr.attr,
6823 #endif
6824 #ifdef CONFIG_FAILSLAB
6825         &failslab_attr.attr,
6826 #endif
6827 #ifdef CONFIG_HARDENED_USERCOPY
6828         &usersize_attr.attr,
6829 #endif
6830 #ifdef CONFIG_KFENCE
6831         &skip_kfence_attr.attr,
6832 #endif
6833 
6834         NULL
6835 };
6836 
6837 static const struct attribute_group slab_attr_group = {
6838         .attrs = slab_attrs,
6839 };
6840 
6841 static ssize_t slab_attr_show(struct kobject *kobj,
6842                                 struct attribute *attr,
6843                                 char *buf)
6844 {
6845         struct slab_attribute *attribute;
6846         struct kmem_cache *s;
6847 
6848         attribute = to_slab_attr(attr);
6849         s = to_slab(kobj);
6850 
6851         if (!attribute->show)
6852                 return -EIO;
6853 
6854         return attribute->show(s, buf);
6855 }
6856 
6857 static ssize_t slab_attr_store(struct kobject *kobj,
6858                                 struct attribute *attr,
6859                                 const char *buf, size_t len)
6860 {
6861         struct slab_attribute *attribute;
6862         struct kmem_cache *s;
6863 
6864         attribute = to_slab_attr(attr);
6865         s = to_slab(kobj);
6866 
6867         if (!attribute->store)
6868                 return -EIO;
6869 
6870         return attribute->store(s, buf, len);
6871 }
6872 
6873 static void kmem_cache_release(struct kobject *k)
6874 {
6875         slab_kmem_cache_release(to_slab(k));
6876 }
6877 
6878 static const struct sysfs_ops slab_sysfs_ops = {
6879         .show = slab_attr_show,
6880         .store = slab_attr_store,
6881 };
6882 
6883 static const struct kobj_type slab_ktype = {
6884         .sysfs_ops = &slab_sysfs_ops,
6885         .release = kmem_cache_release,
6886 };
6887 
6888 static struct kset *slab_kset;
6889 
6890 static inline struct kset *cache_kset(struct kmem_cache *s)
6891 {
6892         return slab_kset;
6893 }
6894 
6895 #define ID_STR_LENGTH 32
6896 
6897 /* Create a unique string id for a slab cache:
6898  *
6899  * Format       :[flags-]size
6900  */
6901 static char *create_unique_id(struct kmem_cache *s)
6902 {
6903         char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6904         char *p = name;
6905 
6906         if (!name)
6907                 return ERR_PTR(-ENOMEM);
6908 
6909         *p++ = ':';
6910         /*
6911          * First flags affecting slabcache operations. We will only
6912          * get here for aliasable slabs so we do not need to support
6913          * too many flags. The flags here must cover all flags that
6914          * are matched during merging to guarantee that the id is
6915          * unique.
6916          */
6917         if (s->flags & SLAB_CACHE_DMA)
6918                 *p++ = 'd';
6919         if (s->flags & SLAB_CACHE_DMA32)
6920                 *p++ = 'D';
6921         if (s->flags & SLAB_RECLAIM_ACCOUNT)
6922                 *p++ = 'a';
6923         if (s->flags & SLAB_CONSISTENCY_CHECKS)
6924                 *p++ = 'F';
6925         if (s->flags & SLAB_ACCOUNT)
6926                 *p++ = 'A';
6927         if (p != name + 1)
6928                 *p++ = '-';
6929         p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6930 
6931         if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6932                 kfree(name);
6933                 return ERR_PTR(-EINVAL);
6934         }
6935         kmsan_unpoison_memory(name, p - name);
6936         return name;
6937 }
6938 
6939 static int sysfs_slab_add(struct kmem_cache *s)
6940 {
6941         int err;
6942         const char *name;
6943         struct kset *kset = cache_kset(s);
6944         int unmergeable = slab_unmergeable(s);
6945 
6946         if (!unmergeable && disable_higher_order_debug &&
6947                         (slub_debug & DEBUG_METADATA_FLAGS))
6948                 unmergeable = 1;
6949 
6950         if (unmergeable) {
6951                 /*
6952                  * Slabcache can never be merged so we can use the name proper.
6953                  * This is typically the case for debug situations. In that
6954                  * case we can catch duplicate names easily.
6955                  */
6956                 sysfs_remove_link(&slab_kset->kobj, s->name);
6957                 name = s->name;
6958         } else {
6959                 /*
6960                  * Create a unique name for the slab as a target
6961                  * for the symlinks.
6962                  */
6963                 name = create_unique_id(s);
6964                 if (IS_ERR(name))
6965                         return PTR_ERR(name);
6966         }
6967 
6968         s->kobj.kset = kset;
6969         err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6970         if (err)
6971                 goto out;
6972 
6973         err = sysfs_create_group(&s->kobj, &slab_attr_group);
6974         if (err)
6975                 goto out_del_kobj;
6976 
6977         if (!unmergeable) {
6978                 /* Setup first alias */
6979                 sysfs_slab_alias(s, s->name);
6980         }
6981 out:
6982         if (!unmergeable)
6983                 kfree(name);
6984         return err;
6985 out_del_kobj:
6986         kobject_del(&s->kobj);
6987         goto out;
6988 }
6989 
6990 void sysfs_slab_unlink(struct kmem_cache *s)
6991 {
6992         kobject_del(&s->kobj);
6993 }
6994 
6995 void sysfs_slab_release(struct kmem_cache *s)
6996 {
6997         kobject_put(&s->kobj);
6998 }
6999 
7000 /*
7001  * Need to buffer aliases during bootup until sysfs becomes
7002  * available lest we lose that information.
7003  */
7004 struct saved_alias {
7005         struct kmem_cache *s;
7006         const char *name;
7007         struct saved_alias *next;
7008 };
7009 
7010 static struct saved_alias *alias_list;
7011 
7012 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7013 {
7014         struct saved_alias *al;
7015 
7016         if (slab_state == FULL) {
7017                 /*
7018                  * If we have a leftover link then remove it.
7019                  */
7020                 sysfs_remove_link(&slab_kset->kobj, name);
7021                 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7022         }
7023 
7024         al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7025         if (!al)
7026                 return -ENOMEM;
7027 
7028         al->s = s;
7029         al->name = name;
7030         al->next = alias_list;
7031         alias_list = al;
7032         kmsan_unpoison_memory(al, sizeof(*al));
7033         return 0;
7034 }
7035 
7036 static int __init slab_sysfs_init(void)
7037 {
7038         struct kmem_cache *s;
7039         int err;
7040 
7041         mutex_lock(&slab_mutex);
7042 
7043         slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7044         if (!slab_kset) {
7045                 mutex_unlock(&slab_mutex);
7046                 pr_err("Cannot register slab subsystem.\n");
7047                 return -ENOMEM;
7048         }
7049 
7050         slab_state = FULL;
7051 
7052         list_for_each_entry(s, &slab_caches, list) {
7053                 err = sysfs_slab_add(s);
7054                 if (err)
7055                         pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7056                                s->name);
7057         }
7058 
7059         while (alias_list) {
7060                 struct saved_alias *al = alias_list;
7061 
7062                 alias_list = alias_list->next;
7063                 err = sysfs_slab_alias(al->s, al->name);
7064                 if (err)
7065                         pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7066                                al->name);
7067                 kfree(al);
7068         }
7069 
7070         mutex_unlock(&slab_mutex);
7071         return 0;
7072 }
7073 late_initcall(slab_sysfs_init);
7074 #endif /* SLAB_SUPPORTS_SYSFS */
7075 
7076 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7077 static int slab_debugfs_show(struct seq_file *seq, void *v)
7078 {
7079         struct loc_track *t = seq->private;
7080         struct location *l;
7081         unsigned long idx;
7082 
7083         idx = (unsigned long) t->idx;
7084         if (idx < t->count) {
7085                 l = &t->loc[idx];
7086 
7087                 seq_printf(seq, "%7ld ", l->count);
7088 
7089                 if (l->addr)
7090                         seq_printf(seq, "%pS", (void *)l->addr);
7091                 else
7092                         seq_puts(seq, "<not-available>");
7093 
7094                 if (l->waste)
7095                         seq_printf(seq, " waste=%lu/%lu",
7096                                 l->count * l->waste, l->waste);
7097 
7098                 if (l->sum_time != l->min_time) {
7099                         seq_printf(seq, " age=%ld/%llu/%ld",
7100                                 l->min_time, div_u64(l->sum_time, l->count),
7101                                 l->max_time);
7102                 } else
7103                         seq_printf(seq, " age=%ld", l->min_time);
7104 
7105                 if (l->min_pid != l->max_pid)
7106                         seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7107                 else
7108                         seq_printf(seq, " pid=%ld",
7109                                 l->min_pid);
7110 
7111                 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7112                         seq_printf(seq, " cpus=%*pbl",
7113                                  cpumask_pr_args(to_cpumask(l->cpus)));
7114 
7115                 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7116                         seq_printf(seq, " nodes=%*pbl",
7117                                  nodemask_pr_args(&l->nodes));
7118 
7119 #ifdef CONFIG_STACKDEPOT
7120                 {
7121                         depot_stack_handle_t handle;
7122                         unsigned long *entries;
7123                         unsigned int nr_entries, j;
7124 
7125                         handle = READ_ONCE(l->handle);
7126                         if (handle) {
7127                                 nr_entries = stack_depot_fetch(handle, &entries);
7128                                 seq_puts(seq, "\n");
7129                                 for (j = 0; j < nr_entries; j++)
7130                                         seq_printf(seq, "        %pS\n", (void *)entries[j]);
7131                         }
7132                 }
7133 #endif
7134                 seq_puts(seq, "\n");
7135         }
7136 
7137         if (!idx && !t->count)
7138                 seq_puts(seq, "No data\n");
7139 
7140         return 0;
7141 }
7142 
7143 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7144 {
7145 }
7146 
7147 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7148 {
7149         struct loc_track *t = seq->private;
7150 
7151         t->idx = ++(*ppos);
7152         if (*ppos <= t->count)
7153                 return ppos;
7154 
7155         return NULL;
7156 }
7157 
7158 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7159 {
7160         struct location *loc1 = (struct location *)a;
7161         struct location *loc2 = (struct location *)b;
7162 
7163         if (loc1->count > loc2->count)
7164                 return -1;
7165         else
7166                 return 1;
7167 }
7168 
7169 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7170 {
7171         struct loc_track *t = seq->private;
7172 
7173         t->idx = *ppos;
7174         return ppos;
7175 }
7176 
7177 static const struct seq_operations slab_debugfs_sops = {
7178         .start  = slab_debugfs_start,
7179         .next   = slab_debugfs_next,
7180         .stop   = slab_debugfs_stop,
7181         .show   = slab_debugfs_show,
7182 };
7183 
7184 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7185 {
7186 
7187         struct kmem_cache_node *n;
7188         enum track_item alloc;
7189         int node;
7190         struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7191                                                 sizeof(struct loc_track));
7192         struct kmem_cache *s = file_inode(filep)->i_private;
7193         unsigned long *obj_map;
7194 
7195         if (!t)
7196                 return -ENOMEM;
7197 
7198         obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7199         if (!obj_map) {
7200                 seq_release_private(inode, filep);
7201                 return -ENOMEM;
7202         }
7203 
7204         if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7205                 alloc = TRACK_ALLOC;
7206         else
7207                 alloc = TRACK_FREE;
7208 
7209         if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7210                 bitmap_free(obj_map);
7211                 seq_release_private(inode, filep);
7212                 return -ENOMEM;
7213         }
7214 
7215         for_each_kmem_cache_node(s, node, n) {
7216                 unsigned long flags;
7217                 struct slab *slab;
7218 
7219                 if (!node_nr_slabs(n))
7220                         continue;
7221 
7222                 spin_lock_irqsave(&n->list_lock, flags);
7223                 list_for_each_entry(slab, &n->partial, slab_list)
7224                         process_slab(t, s, slab, alloc, obj_map);
7225                 list_for_each_entry(slab, &n->full, slab_list)
7226                         process_slab(t, s, slab, alloc, obj_map);
7227                 spin_unlock_irqrestore(&n->list_lock, flags);
7228         }
7229 
7230         /* Sort locations by count */
7231         sort_r(t->loc, t->count, sizeof(struct location),
7232                 cmp_loc_by_count, NULL, NULL);
7233 
7234         bitmap_free(obj_map);
7235         return 0;
7236 }
7237 
7238 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7239 {
7240         struct seq_file *seq = file->private_data;
7241         struct loc_track *t = seq->private;
7242 
7243         free_loc_track(t);
7244         return seq_release_private(inode, file);
7245 }
7246 
7247 static const struct file_operations slab_debugfs_fops = {
7248         .open    = slab_debug_trace_open,
7249         .read    = seq_read,
7250         .llseek  = seq_lseek,
7251         .release = slab_debug_trace_release,
7252 };
7253 
7254 static void debugfs_slab_add(struct kmem_cache *s)
7255 {
7256         struct dentry *slab_cache_dir;
7257 
7258         if (unlikely(!slab_debugfs_root))
7259                 return;
7260 
7261         slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7262 
7263         debugfs_create_file("alloc_traces", 0400,
7264                 slab_cache_dir, s, &slab_debugfs_fops);
7265 
7266         debugfs_create_file("free_traces", 0400,
7267                 slab_cache_dir, s, &slab_debugfs_fops);
7268 }
7269 
7270 void debugfs_slab_release(struct kmem_cache *s)
7271 {
7272         debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7273 }
7274 
7275 static int __init slab_debugfs_init(void)
7276 {
7277         struct kmem_cache *s;
7278 
7279         slab_debugfs_root = debugfs_create_dir("slab", NULL);
7280 
7281         list_for_each_entry(s, &slab_caches, list)
7282                 if (s->flags & SLAB_STORE_USER)
7283                         debugfs_slab_add(s);
7284 
7285         return 0;
7286 
7287 }
7288 __initcall(slab_debugfs_init);
7289 #endif
7290 /*
7291  * The /proc/slabinfo ABI
7292  */
7293 #ifdef CONFIG_SLUB_DEBUG
7294 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7295 {
7296         unsigned long nr_slabs = 0;
7297         unsigned long nr_objs = 0;
7298         unsigned long nr_free = 0;
7299         int node;
7300         struct kmem_cache_node *n;
7301 
7302         for_each_kmem_cache_node(s, node, n) {
7303                 nr_slabs += node_nr_slabs(n);
7304                 nr_objs += node_nr_objs(n);
7305                 nr_free += count_partial_free_approx(n);
7306         }
7307 
7308         sinfo->active_objs = nr_objs - nr_free;
7309         sinfo->num_objs = nr_objs;
7310         sinfo->active_slabs = nr_slabs;
7311         sinfo->num_slabs = nr_slabs;
7312         sinfo->objects_per_slab = oo_objects(s->oo);
7313         sinfo->cache_order = oo_order(s->oo);
7314 }
7315 #endif /* CONFIG_SLUB_DEBUG */
7316 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php