1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtual Memory Map support 4 * 5 * (C) 2007 sgi. Christoph Lameter. 6 * 7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, 8 * virt_to_page, page_address() to be implemented as a base offset 9 * calculation without memory access. 10 * 11 * However, virtual mappings need a page table and TLBs. Many Linux 12 * architectures already map their physical space using 1-1 mappings 13 * via TLBs. For those arches the virtual memory map is essentially 14 * for free if we use the same page size as the 1-1 mappings. In that 15 * case the overhead consists of a few additional pages that are 16 * allocated to create a view of memory for vmemmap. 17 * 18 * The architecture is expected to provide a vmemmap_populate() function 19 * to instantiate the mapping. 20 */ 21 #include <linux/mm.h> 22 #include <linux/mmzone.h> 23 #include <linux/memblock.h> 24 #include <linux/memremap.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched.h> 30 31 #include <asm/dma.h> 32 #include <asm/pgalloc.h> 33 34 /* 35 * Allocate a block of memory to be used to back the virtual memory map 36 * or to back the page tables that are used to create the mapping. 37 * Uses the main allocators if they are available, else bootmem. 38 */ 39 40 static void * __ref __earlyonly_bootmem_alloc(int node, 41 unsigned long size, 42 unsigned long align, 43 unsigned long goal) 44 { 45 return memblock_alloc_try_nid_raw(size, align, goal, 46 MEMBLOCK_ALLOC_ACCESSIBLE, node); 47 } 48 49 void * __meminit vmemmap_alloc_block(unsigned long size, int node) 50 { 51 /* If the main allocator is up use that, fallback to bootmem. */ 52 if (slab_is_available()) { 53 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 54 int order = get_order(size); 55 static bool warned; 56 struct page *page; 57 58 page = alloc_pages_node(node, gfp_mask, order); 59 if (page) 60 return page_address(page); 61 62 if (!warned) { 63 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, 64 "vmemmap alloc failure: order:%u", order); 65 warned = true; 66 } 67 return NULL; 68 } else 69 return __earlyonly_bootmem_alloc(node, size, size, 70 __pa(MAX_DMA_ADDRESS)); 71 } 72 73 static void * __meminit altmap_alloc_block_buf(unsigned long size, 74 struct vmem_altmap *altmap); 75 76 /* need to make sure size is all the same during early stage */ 77 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, 78 struct vmem_altmap *altmap) 79 { 80 void *ptr; 81 82 if (altmap) 83 return altmap_alloc_block_buf(size, altmap); 84 85 ptr = sparse_buffer_alloc(size); 86 if (!ptr) 87 ptr = vmemmap_alloc_block(size, node); 88 return ptr; 89 } 90 91 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) 92 { 93 return altmap->base_pfn + altmap->reserve + altmap->alloc 94 + altmap->align; 95 } 96 97 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) 98 { 99 unsigned long allocated = altmap->alloc + altmap->align; 100 101 if (altmap->free > allocated) 102 return altmap->free - allocated; 103 return 0; 104 } 105 106 static void * __meminit altmap_alloc_block_buf(unsigned long size, 107 struct vmem_altmap *altmap) 108 { 109 unsigned long pfn, nr_pfns, nr_align; 110 111 if (size & ~PAGE_MASK) { 112 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", 113 __func__, size); 114 return NULL; 115 } 116 117 pfn = vmem_altmap_next_pfn(altmap); 118 nr_pfns = size >> PAGE_SHIFT; 119 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); 120 nr_align = ALIGN(pfn, nr_align) - pfn; 121 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) 122 return NULL; 123 124 altmap->alloc += nr_pfns; 125 altmap->align += nr_align; 126 pfn += nr_align; 127 128 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", 129 __func__, pfn, altmap->alloc, altmap->align, nr_pfns); 130 return __va(__pfn_to_phys(pfn)); 131 } 132 133 void __meminit vmemmap_verify(pte_t *pte, int node, 134 unsigned long start, unsigned long end) 135 { 136 unsigned long pfn = pte_pfn(ptep_get(pte)); 137 int actual_node = early_pfn_to_nid(pfn); 138 139 if (node_distance(actual_node, node) > LOCAL_DISTANCE) 140 pr_warn_once("[%lx-%lx] potential offnode page_structs\n", 141 start, end - 1); 142 } 143 144 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 145 struct vmem_altmap *altmap, 146 struct page *reuse) 147 { 148 pte_t *pte = pte_offset_kernel(pmd, addr); 149 if (pte_none(ptep_get(pte))) { 150 pte_t entry; 151 void *p; 152 153 if (!reuse) { 154 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); 155 if (!p) 156 return NULL; 157 } else { 158 /* 159 * When a PTE/PMD entry is freed from the init_mm 160 * there's a free_pages() call to this page allocated 161 * above. Thus this get_page() is paired with the 162 * put_page_testzero() on the freeing path. 163 * This can only called by certain ZONE_DEVICE path, 164 * and through vmemmap_populate_compound_pages() when 165 * slab is available. 166 */ 167 get_page(reuse); 168 p = page_to_virt(reuse); 169 } 170 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 171 set_pte_at(&init_mm, addr, pte, entry); 172 } 173 return pte; 174 } 175 176 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) 177 { 178 void *p = vmemmap_alloc_block(size, node); 179 180 if (!p) 181 return NULL; 182 memset(p, 0, size); 183 184 return p; 185 } 186 187 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) 188 { 189 pmd_t *pmd = pmd_offset(pud, addr); 190 if (pmd_none(*pmd)) { 191 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 192 if (!p) 193 return NULL; 194 pmd_populate_kernel(&init_mm, pmd, p); 195 } 196 return pmd; 197 } 198 199 void __weak __meminit pmd_init(void *addr) 200 { 201 } 202 203 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) 204 { 205 pud_t *pud = pud_offset(p4d, addr); 206 if (pud_none(*pud)) { 207 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 208 if (!p) 209 return NULL; 210 pmd_init(p); 211 pud_populate(&init_mm, pud, p); 212 } 213 return pud; 214 } 215 216 void __weak __meminit pud_init(void *addr) 217 { 218 } 219 220 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) 221 { 222 p4d_t *p4d = p4d_offset(pgd, addr); 223 if (p4d_none(*p4d)) { 224 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 225 if (!p) 226 return NULL; 227 pud_init(p); 228 p4d_populate(&init_mm, p4d, p); 229 } 230 return p4d; 231 } 232 233 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) 234 { 235 pgd_t *pgd = pgd_offset_k(addr); 236 if (pgd_none(*pgd)) { 237 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 238 if (!p) 239 return NULL; 240 pgd_populate(&init_mm, pgd, p); 241 } 242 return pgd; 243 } 244 245 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, 246 struct vmem_altmap *altmap, 247 struct page *reuse) 248 { 249 pgd_t *pgd; 250 p4d_t *p4d; 251 pud_t *pud; 252 pmd_t *pmd; 253 pte_t *pte; 254 255 pgd = vmemmap_pgd_populate(addr, node); 256 if (!pgd) 257 return NULL; 258 p4d = vmemmap_p4d_populate(pgd, addr, node); 259 if (!p4d) 260 return NULL; 261 pud = vmemmap_pud_populate(p4d, addr, node); 262 if (!pud) 263 return NULL; 264 pmd = vmemmap_pmd_populate(pud, addr, node); 265 if (!pmd) 266 return NULL; 267 pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); 268 if (!pte) 269 return NULL; 270 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 271 272 return pte; 273 } 274 275 static int __meminit vmemmap_populate_range(unsigned long start, 276 unsigned long end, int node, 277 struct vmem_altmap *altmap, 278 struct page *reuse) 279 { 280 unsigned long addr = start; 281 pte_t *pte; 282 283 for (; addr < end; addr += PAGE_SIZE) { 284 pte = vmemmap_populate_address(addr, node, altmap, reuse); 285 if (!pte) 286 return -ENOMEM; 287 } 288 289 return 0; 290 } 291 292 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, 293 int node, struct vmem_altmap *altmap) 294 { 295 return vmemmap_populate_range(start, end, node, altmap, NULL); 296 } 297 298 void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 299 unsigned long addr, unsigned long next) 300 { 301 } 302 303 int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node, 304 unsigned long addr, unsigned long next) 305 { 306 return 0; 307 } 308 309 int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end, 310 int node, struct vmem_altmap *altmap) 311 { 312 unsigned long addr; 313 unsigned long next; 314 pgd_t *pgd; 315 p4d_t *p4d; 316 pud_t *pud; 317 pmd_t *pmd; 318 319 for (addr = start; addr < end; addr = next) { 320 next = pmd_addr_end(addr, end); 321 322 pgd = vmemmap_pgd_populate(addr, node); 323 if (!pgd) 324 return -ENOMEM; 325 326 p4d = vmemmap_p4d_populate(pgd, addr, node); 327 if (!p4d) 328 return -ENOMEM; 329 330 pud = vmemmap_pud_populate(p4d, addr, node); 331 if (!pud) 332 return -ENOMEM; 333 334 pmd = pmd_offset(pud, addr); 335 if (pmd_none(READ_ONCE(*pmd))) { 336 void *p; 337 338 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); 339 if (p) { 340 vmemmap_set_pmd(pmd, p, node, addr, next); 341 continue; 342 } else if (altmap) { 343 /* 344 * No fallback: In any case we care about, the 345 * altmap should be reasonably sized and aligned 346 * such that vmemmap_alloc_block_buf() will always 347 * succeed. For consistency with the PTE case, 348 * return an error here as failure could indicate 349 * a configuration issue with the size of the altmap. 350 */ 351 return -ENOMEM; 352 } 353 } else if (vmemmap_check_pmd(pmd, node, addr, next)) 354 continue; 355 if (vmemmap_populate_basepages(addr, next, node, altmap)) 356 return -ENOMEM; 357 } 358 return 0; 359 } 360 361 #ifndef vmemmap_populate_compound_pages 362 /* 363 * For compound pages bigger than section size (e.g. x86 1G compound 364 * pages with 2M subsection size) fill the rest of sections as tail 365 * pages. 366 * 367 * Note that memremap_pages() resets @nr_range value and will increment 368 * it after each range successful onlining. Thus the value or @nr_range 369 * at section memmap populate corresponds to the in-progress range 370 * being onlined here. 371 */ 372 static bool __meminit reuse_compound_section(unsigned long start_pfn, 373 struct dev_pagemap *pgmap) 374 { 375 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); 376 unsigned long offset = start_pfn - 377 PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); 378 379 return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; 380 } 381 382 static pte_t * __meminit compound_section_tail_page(unsigned long addr) 383 { 384 pte_t *pte; 385 386 addr -= PAGE_SIZE; 387 388 /* 389 * Assuming sections are populated sequentially, the previous section's 390 * page data can be reused. 391 */ 392 pte = pte_offset_kernel(pmd_off_k(addr), addr); 393 if (!pte) 394 return NULL; 395 396 return pte; 397 } 398 399 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, 400 unsigned long start, 401 unsigned long end, int node, 402 struct dev_pagemap *pgmap) 403 { 404 unsigned long size, addr; 405 pte_t *pte; 406 int rc; 407 408 if (reuse_compound_section(start_pfn, pgmap)) { 409 pte = compound_section_tail_page(start); 410 if (!pte) 411 return -ENOMEM; 412 413 /* 414 * Reuse the page that was populated in the prior iteration 415 * with just tail struct pages. 416 */ 417 return vmemmap_populate_range(start, end, node, NULL, 418 pte_page(ptep_get(pte))); 419 } 420 421 size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); 422 for (addr = start; addr < end; addr += size) { 423 unsigned long next, last = addr + size; 424 425 /* Populate the head page vmemmap page */ 426 pte = vmemmap_populate_address(addr, node, NULL, NULL); 427 if (!pte) 428 return -ENOMEM; 429 430 /* Populate the tail pages vmemmap page */ 431 next = addr + PAGE_SIZE; 432 pte = vmemmap_populate_address(next, node, NULL, NULL); 433 if (!pte) 434 return -ENOMEM; 435 436 /* 437 * Reuse the previous page for the rest of tail pages 438 * See layout diagram in Documentation/mm/vmemmap_dedup.rst 439 */ 440 next += PAGE_SIZE; 441 rc = vmemmap_populate_range(next, last, node, NULL, 442 pte_page(ptep_get(pte))); 443 if (rc) 444 return -ENOMEM; 445 } 446 447 return 0; 448 } 449 450 #endif 451 452 struct page * __meminit __populate_section_memmap(unsigned long pfn, 453 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 454 struct dev_pagemap *pgmap) 455 { 456 unsigned long start = (unsigned long) pfn_to_page(pfn); 457 unsigned long end = start + nr_pages * sizeof(struct page); 458 int r; 459 460 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || 461 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) 462 return NULL; 463 464 if (vmemmap_can_optimize(altmap, pgmap)) 465 r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); 466 else 467 r = vmemmap_populate(start, end, nid, altmap); 468 469 if (r < 0) 470 return NULL; 471 472 if (system_state == SYSTEM_BOOTING) 473 memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); 474 else 475 memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); 476 477 return pfn_to_page(pfn); 478 } 479
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.