~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/swap_slots.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Manage cache of swap slots to be used for and returned from
  4  * swap.
  5  *
  6  * Copyright(c) 2016 Intel Corporation.
  7  *
  8  * Author: Tim Chen <tim.c.chen@linux.intel.com>
  9  *
 10  * We allocate the swap slots from the global pool and put
 11  * it into local per cpu caches.  This has the advantage
 12  * of no needing to acquire the swap_info lock every time
 13  * we need a new slot.
 14  *
 15  * There is also opportunity to simply return the slot
 16  * to local caches without needing to acquire swap_info
 17  * lock.  We do not reuse the returned slots directly but
 18  * move them back to the global pool in a batch.  This
 19  * allows the slots to coalesce and reduce fragmentation.
 20  *
 21  * The swap entry allocated is marked with SWAP_HAS_CACHE
 22  * flag in map_count that prevents it from being allocated
 23  * again from the global pool.
 24  *
 25  * The swap slots cache is protected by a mutex instead of
 26  * a spin lock as when we search for slots with scan_swap_map,
 27  * we can possibly sleep.
 28  */
 29 
 30 #include <linux/swap_slots.h>
 31 #include <linux/cpu.h>
 32 #include <linux/cpumask.h>
 33 #include <linux/slab.h>
 34 #include <linux/vmalloc.h>
 35 #include <linux/mutex.h>
 36 #include <linux/mm.h>
 37 
 38 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
 39 static bool     swap_slot_cache_active;
 40 bool    swap_slot_cache_enabled;
 41 static bool     swap_slot_cache_initialized;
 42 static DEFINE_MUTEX(swap_slots_cache_mutex);
 43 /* Serialize swap slots cache enable/disable operations */
 44 static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
 45 
 46 static void __drain_swap_slots_cache(unsigned int type);
 47 
 48 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
 49 #define SLOTS_CACHE 0x1
 50 #define SLOTS_CACHE_RET 0x2
 51 
 52 static void deactivate_swap_slots_cache(void)
 53 {
 54         mutex_lock(&swap_slots_cache_mutex);
 55         swap_slot_cache_active = false;
 56         __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 57         mutex_unlock(&swap_slots_cache_mutex);
 58 }
 59 
 60 static void reactivate_swap_slots_cache(void)
 61 {
 62         mutex_lock(&swap_slots_cache_mutex);
 63         swap_slot_cache_active = true;
 64         mutex_unlock(&swap_slots_cache_mutex);
 65 }
 66 
 67 /* Must not be called with cpu hot plug lock */
 68 void disable_swap_slots_cache_lock(void)
 69 {
 70         mutex_lock(&swap_slots_cache_enable_mutex);
 71         swap_slot_cache_enabled = false;
 72         if (swap_slot_cache_initialized) {
 73                 /* serialize with cpu hotplug operations */
 74                 cpus_read_lock();
 75                 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 76                 cpus_read_unlock();
 77         }
 78 }
 79 
 80 static void __reenable_swap_slots_cache(void)
 81 {
 82         swap_slot_cache_enabled = has_usable_swap();
 83 }
 84 
 85 void reenable_swap_slots_cache_unlock(void)
 86 {
 87         __reenable_swap_slots_cache();
 88         mutex_unlock(&swap_slots_cache_enable_mutex);
 89 }
 90 
 91 static bool check_cache_active(void)
 92 {
 93         long pages;
 94 
 95         if (!swap_slot_cache_enabled)
 96                 return false;
 97 
 98         pages = get_nr_swap_pages();
 99         if (!swap_slot_cache_active) {
100                 if (pages > num_online_cpus() *
101                     THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
102                         reactivate_swap_slots_cache();
103                 goto out;
104         }
105 
106         /* if global pool of slot caches too low, deactivate cache */
107         if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
108                 deactivate_swap_slots_cache();
109 out:
110         return swap_slot_cache_active;
111 }
112 
113 static int alloc_swap_slot_cache(unsigned int cpu)
114 {
115         struct swap_slots_cache *cache;
116         swp_entry_t *slots, *slots_ret;
117 
118         /*
119          * Do allocation outside swap_slots_cache_mutex
120          * as kvzalloc could trigger reclaim and folio_alloc_swap,
121          * which can lock swap_slots_cache_mutex.
122          */
123         slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
124                          GFP_KERNEL);
125         if (!slots)
126                 return -ENOMEM;
127 
128         slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
129                              GFP_KERNEL);
130         if (!slots_ret) {
131                 kvfree(slots);
132                 return -ENOMEM;
133         }
134 
135         mutex_lock(&swap_slots_cache_mutex);
136         cache = &per_cpu(swp_slots, cpu);
137         if (cache->slots || cache->slots_ret) {
138                 /* cache already allocated */
139                 mutex_unlock(&swap_slots_cache_mutex);
140 
141                 kvfree(slots);
142                 kvfree(slots_ret);
143 
144                 return 0;
145         }
146 
147         if (!cache->lock_initialized) {
148                 mutex_init(&cache->alloc_lock);
149                 spin_lock_init(&cache->free_lock);
150                 cache->lock_initialized = true;
151         }
152         cache->nr = 0;
153         cache->cur = 0;
154         cache->n_ret = 0;
155         /*
156          * We initialized alloc_lock and free_lock earlier.  We use
157          * !cache->slots or !cache->slots_ret to know if it is safe to acquire
158          * the corresponding lock and use the cache.  Memory barrier below
159          * ensures the assumption.
160          */
161         mb();
162         cache->slots = slots;
163         cache->slots_ret = slots_ret;
164         mutex_unlock(&swap_slots_cache_mutex);
165         return 0;
166 }
167 
168 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
169                                   bool free_slots)
170 {
171         struct swap_slots_cache *cache;
172         swp_entry_t *slots = NULL;
173 
174         cache = &per_cpu(swp_slots, cpu);
175         if ((type & SLOTS_CACHE) && cache->slots) {
176                 mutex_lock(&cache->alloc_lock);
177                 swapcache_free_entries(cache->slots + cache->cur, cache->nr);
178                 cache->cur = 0;
179                 cache->nr = 0;
180                 if (free_slots && cache->slots) {
181                         kvfree(cache->slots);
182                         cache->slots = NULL;
183                 }
184                 mutex_unlock(&cache->alloc_lock);
185         }
186         if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
187                 spin_lock_irq(&cache->free_lock);
188                 swapcache_free_entries(cache->slots_ret, cache->n_ret);
189                 cache->n_ret = 0;
190                 if (free_slots && cache->slots_ret) {
191                         slots = cache->slots_ret;
192                         cache->slots_ret = NULL;
193                 }
194                 spin_unlock_irq(&cache->free_lock);
195                 kvfree(slots);
196         }
197 }
198 
199 static void __drain_swap_slots_cache(unsigned int type)
200 {
201         unsigned int cpu;
202 
203         /*
204          * This function is called during
205          *      1) swapoff, when we have to make sure no
206          *         left over slots are in cache when we remove
207          *         a swap device;
208          *      2) disabling of swap slot cache, when we run low
209          *         on swap slots when allocating memory and need
210          *         to return swap slots to global pool.
211          *
212          * We cannot acquire cpu hot plug lock here as
213          * this function can be invoked in the cpu
214          * hot plug path:
215          * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
216          *   -> memory allocation -> direct reclaim -> folio_alloc_swap
217          *   -> drain_swap_slots_cache
218          *
219          * Hence the loop over current online cpu below could miss cpu that
220          * is being brought online but not yet marked as online.
221          * That is okay as we do not schedule and run anything on a
222          * cpu before it has been marked online. Hence, we will not
223          * fill any swap slots in slots cache of such cpu.
224          * There are no slots on such cpu that need to be drained.
225          */
226         for_each_online_cpu(cpu)
227                 drain_slots_cache_cpu(cpu, type, false);
228 }
229 
230 static int free_slot_cache(unsigned int cpu)
231 {
232         mutex_lock(&swap_slots_cache_mutex);
233         drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
234         mutex_unlock(&swap_slots_cache_mutex);
235         return 0;
236 }
237 
238 void enable_swap_slots_cache(void)
239 {
240         mutex_lock(&swap_slots_cache_enable_mutex);
241         if (!swap_slot_cache_initialized) {
242                 int ret;
243 
244                 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
245                                         alloc_swap_slot_cache, free_slot_cache);
246                 if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
247                                        "without swap slots cache.\n", __func__))
248                         goto out_unlock;
249 
250                 swap_slot_cache_initialized = true;
251         }
252 
253         __reenable_swap_slots_cache();
254 out_unlock:
255         mutex_unlock(&swap_slots_cache_enable_mutex);
256 }
257 
258 /* called with swap slot cache's alloc lock held */
259 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
260 {
261         if (!use_swap_slot_cache)
262                 return 0;
263 
264         cache->cur = 0;
265         if (swap_slot_cache_active)
266                 cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
267                                            cache->slots, 0);
268 
269         return cache->nr;
270 }
271 
272 void free_swap_slot(swp_entry_t entry)
273 {
274         struct swap_slots_cache *cache;
275 
276         /* Large folio swap slot is not covered. */
277         zswap_invalidate(entry);
278 
279         cache = raw_cpu_ptr(&swp_slots);
280         if (likely(use_swap_slot_cache && cache->slots_ret)) {
281                 spin_lock_irq(&cache->free_lock);
282                 /* Swap slots cache may be deactivated before acquiring lock */
283                 if (!use_swap_slot_cache || !cache->slots_ret) {
284                         spin_unlock_irq(&cache->free_lock);
285                         goto direct_free;
286                 }
287                 if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
288                         /*
289                          * Return slots to global pool.
290                          * The current swap_map value is SWAP_HAS_CACHE.
291                          * Set it to 0 to indicate it is available for
292                          * allocation in global pool
293                          */
294                         swapcache_free_entries(cache->slots_ret, cache->n_ret);
295                         cache->n_ret = 0;
296                 }
297                 cache->slots_ret[cache->n_ret++] = entry;
298                 spin_unlock_irq(&cache->free_lock);
299         } else {
300 direct_free:
301                 swapcache_free_entries(&entry, 1);
302         }
303 }
304 
305 swp_entry_t folio_alloc_swap(struct folio *folio)
306 {
307         swp_entry_t entry;
308         struct swap_slots_cache *cache;
309 
310         entry.val = 0;
311 
312         if (folio_test_large(folio)) {
313                 if (IS_ENABLED(CONFIG_THP_SWAP))
314                         get_swap_pages(1, &entry, folio_order(folio));
315                 goto out;
316         }
317 
318         /*
319          * Preemption is allowed here, because we may sleep
320          * in refill_swap_slots_cache().  But it is safe, because
321          * accesses to the per-CPU data structure are protected by the
322          * mutex cache->alloc_lock.
323          *
324          * The alloc path here does not touch cache->slots_ret
325          * so cache->free_lock is not taken.
326          */
327         cache = raw_cpu_ptr(&swp_slots);
328 
329         if (likely(check_cache_active() && cache->slots)) {
330                 mutex_lock(&cache->alloc_lock);
331                 if (cache->slots) {
332 repeat:
333                         if (cache->nr) {
334                                 entry = cache->slots[cache->cur];
335                                 cache->slots[cache->cur++].val = 0;
336                                 cache->nr--;
337                         } else if (refill_swap_slots_cache(cache)) {
338                                 goto repeat;
339                         }
340                 }
341                 mutex_unlock(&cache->alloc_lock);
342                 if (entry.val)
343                         goto out;
344         }
345 
346         get_swap_pages(1, &entry, 0);
347 out:
348         if (mem_cgroup_try_charge_swap(folio, entry)) {
349                 put_swap_folio(folio, entry);
350                 entry.val = 0;
351         }
352         return entry;
353 }
354 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php