1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/mempolicy.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/pagevec.h> 19 #include <linux/backing-dev.h> 20 #include <linux/blkdev.h> 21 #include <linux/migrate.h> 22 #include <linux/vmalloc.h> 23 #include <linux/swap_slots.h> 24 #include <linux/huge_mm.h> 25 #include <linux/shmem_fs.h> 26 #include "internal.h" 27 #include "swap.h" 28 29 /* 30 * swapper_space is a fiction, retained to simplify the path through 31 * vmscan's shrink_folio_list. 32 */ 33 static const struct address_space_operations swap_aops = { 34 .writepage = swap_writepage, 35 .dirty_folio = noop_dirty_folio, 36 #ifdef CONFIG_MIGRATION 37 .migrate_folio = migrate_folio, 38 #endif 39 }; 40 41 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 43 static bool enable_vma_readahead __read_mostly = true; 44 45 #define SWAP_RA_ORDER_CEILING 5 46 47 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 48 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 49 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 50 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 51 52 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 53 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 54 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 55 56 #define SWAP_RA_VAL(addr, win, hits) \ 57 (((addr) & PAGE_MASK) | \ 58 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 59 ((hits) & SWAP_RA_HITS_MASK)) 60 61 /* Initial readahead hits is 4 to start up with a small window */ 62 #define GET_SWAP_RA_VAL(vma) \ 63 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 64 65 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 66 67 void show_swap_cache_info(void) 68 { 69 printk("%lu pages in swap cache\n", total_swapcache_pages()); 70 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 71 printk("Total swap = %lukB\n", K(total_swap_pages)); 72 } 73 74 void *get_shadow_from_swap_cache(swp_entry_t entry) 75 { 76 struct address_space *address_space = swap_address_space(entry); 77 pgoff_t idx = swap_cache_index(entry); 78 void *shadow; 79 80 shadow = xa_load(&address_space->i_pages, idx); 81 if (xa_is_value(shadow)) 82 return shadow; 83 return NULL; 84 } 85 86 /* 87 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 88 * but sets SwapCache flag and private instead of mapping and index. 89 */ 90 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 91 gfp_t gfp, void **shadowp) 92 { 93 struct address_space *address_space = swap_address_space(entry); 94 pgoff_t idx = swap_cache_index(entry); 95 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 96 unsigned long i, nr = folio_nr_pages(folio); 97 void *old; 98 99 xas_set_update(&xas, workingset_update_node); 100 101 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 102 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 103 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 104 105 folio_ref_add(folio, nr); 106 folio_set_swapcache(folio); 107 folio->swap = entry; 108 109 do { 110 xas_lock_irq(&xas); 111 xas_create_range(&xas); 112 if (xas_error(&xas)) 113 goto unlock; 114 for (i = 0; i < nr; i++) { 115 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 116 if (shadowp) { 117 old = xas_load(&xas); 118 if (xa_is_value(old)) 119 *shadowp = old; 120 } 121 xas_store(&xas, folio); 122 xas_next(&xas); 123 } 124 address_space->nrpages += nr; 125 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 126 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 127 unlock: 128 xas_unlock_irq(&xas); 129 } while (xas_nomem(&xas, gfp)); 130 131 if (!xas_error(&xas)) 132 return 0; 133 134 folio_clear_swapcache(folio); 135 folio_ref_sub(folio, nr); 136 return xas_error(&xas); 137 } 138 139 /* 140 * This must be called only on folios that have 141 * been verified to be in the swap cache. 142 */ 143 void __delete_from_swap_cache(struct folio *folio, 144 swp_entry_t entry, void *shadow) 145 { 146 struct address_space *address_space = swap_address_space(entry); 147 int i; 148 long nr = folio_nr_pages(folio); 149 pgoff_t idx = swap_cache_index(entry); 150 XA_STATE(xas, &address_space->i_pages, idx); 151 152 xas_set_update(&xas, workingset_update_node); 153 154 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 155 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 156 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 157 158 for (i = 0; i < nr; i++) { 159 void *entry = xas_store(&xas, shadow); 160 VM_BUG_ON_PAGE(entry != folio, entry); 161 xas_next(&xas); 162 } 163 folio->swap.val = 0; 164 folio_clear_swapcache(folio); 165 address_space->nrpages -= nr; 166 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 167 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 168 } 169 170 /** 171 * add_to_swap - allocate swap space for a folio 172 * @folio: folio we want to move to swap 173 * 174 * Allocate swap space for the folio and add the folio to the 175 * swap cache. 176 * 177 * Context: Caller needs to hold the folio lock. 178 * Return: Whether the folio was added to the swap cache. 179 */ 180 bool add_to_swap(struct folio *folio) 181 { 182 swp_entry_t entry; 183 int err; 184 185 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 186 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 187 188 entry = folio_alloc_swap(folio); 189 if (!entry.val) 190 return false; 191 192 /* 193 * XArray node allocations from PF_MEMALLOC contexts could 194 * completely exhaust the page allocator. __GFP_NOMEMALLOC 195 * stops emergency reserves from being allocated. 196 * 197 * TODO: this could cause a theoretical memory reclaim 198 * deadlock in the swap out path. 199 */ 200 /* 201 * Add it to the swap cache. 202 */ 203 err = add_to_swap_cache(folio, entry, 204 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 205 if (err) 206 /* 207 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 208 * clear SWAP_HAS_CACHE flag. 209 */ 210 goto fail; 211 /* 212 * Normally the folio will be dirtied in unmap because its 213 * pte should be dirty. A special case is MADV_FREE page. The 214 * page's pte could have dirty bit cleared but the folio's 215 * SwapBacked flag is still set because clearing the dirty bit 216 * and SwapBacked flag has no lock protected. For such folio, 217 * unmap will not set dirty bit for it, so folio reclaim will 218 * not write the folio out. This can cause data corruption when 219 * the folio is swapped in later. Always setting the dirty flag 220 * for the folio solves the problem. 221 */ 222 folio_mark_dirty(folio); 223 224 return true; 225 226 fail: 227 put_swap_folio(folio, entry); 228 return false; 229 } 230 231 /* 232 * This must be called only on folios that have 233 * been verified to be in the swap cache and locked. 234 * It will never put the folio into the free list, 235 * the caller has a reference on the folio. 236 */ 237 void delete_from_swap_cache(struct folio *folio) 238 { 239 swp_entry_t entry = folio->swap; 240 struct address_space *address_space = swap_address_space(entry); 241 242 xa_lock_irq(&address_space->i_pages); 243 __delete_from_swap_cache(folio, entry, NULL); 244 xa_unlock_irq(&address_space->i_pages); 245 246 put_swap_folio(folio, entry); 247 folio_ref_sub(folio, folio_nr_pages(folio)); 248 } 249 250 void clear_shadow_from_swap_cache(int type, unsigned long begin, 251 unsigned long end) 252 { 253 unsigned long curr = begin; 254 void *old; 255 256 for (;;) { 257 swp_entry_t entry = swp_entry(type, curr); 258 unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK; 259 struct address_space *address_space = swap_address_space(entry); 260 XA_STATE(xas, &address_space->i_pages, index); 261 262 xas_set_update(&xas, workingset_update_node); 263 264 xa_lock_irq(&address_space->i_pages); 265 xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) { 266 if (!xa_is_value(old)) 267 continue; 268 xas_store(&xas, NULL); 269 } 270 xa_unlock_irq(&address_space->i_pages); 271 272 /* search the next swapcache until we meet end */ 273 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 274 curr++; 275 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 276 if (curr > end) 277 break; 278 } 279 } 280 281 /* 282 * If we are the only user, then try to free up the swap cache. 283 * 284 * Its ok to check the swapcache flag without the folio lock 285 * here because we are going to recheck again inside 286 * folio_free_swap() _with_ the lock. 287 * - Marcelo 288 */ 289 void free_swap_cache(struct folio *folio) 290 { 291 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 292 folio_trylock(folio)) { 293 folio_free_swap(folio); 294 folio_unlock(folio); 295 } 296 } 297 298 /* 299 * Perform a free_page(), also freeing any swap cache associated with 300 * this page if it is the last user of the page. 301 */ 302 void free_page_and_swap_cache(struct page *page) 303 { 304 struct folio *folio = page_folio(page); 305 306 free_swap_cache(folio); 307 if (!is_huge_zero_folio(folio)) 308 folio_put(folio); 309 } 310 311 /* 312 * Passed an array of pages, drop them all from swapcache and then release 313 * them. They are removed from the LRU and freed if this is their last use. 314 */ 315 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 316 { 317 struct folio_batch folios; 318 unsigned int refs[PAGEVEC_SIZE]; 319 320 lru_add_drain(); 321 folio_batch_init(&folios); 322 for (int i = 0; i < nr; i++) { 323 struct folio *folio = page_folio(encoded_page_ptr(pages[i])); 324 325 free_swap_cache(folio); 326 refs[folios.nr] = 1; 327 if (unlikely(encoded_page_flags(pages[i]) & 328 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 329 refs[folios.nr] = encoded_nr_pages(pages[++i]); 330 331 if (folio_batch_add(&folios, folio) == 0) 332 folios_put_refs(&folios, refs); 333 } 334 if (folios.nr) 335 folios_put_refs(&folios, refs); 336 } 337 338 static inline bool swap_use_vma_readahead(void) 339 { 340 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 341 } 342 343 /* 344 * Lookup a swap entry in the swap cache. A found folio will be returned 345 * unlocked and with its refcount incremented - we rely on the kernel 346 * lock getting page table operations atomic even if we drop the folio 347 * lock before returning. 348 * 349 * Caller must lock the swap device or hold a reference to keep it valid. 350 */ 351 struct folio *swap_cache_get_folio(swp_entry_t entry, 352 struct vm_area_struct *vma, unsigned long addr) 353 { 354 struct folio *folio; 355 356 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 357 if (!IS_ERR(folio)) { 358 bool vma_ra = swap_use_vma_readahead(); 359 bool readahead; 360 361 /* 362 * At the moment, we don't support PG_readahead for anon THP 363 * so let's bail out rather than confusing the readahead stat. 364 */ 365 if (unlikely(folio_test_large(folio))) 366 return folio; 367 368 readahead = folio_test_clear_readahead(folio); 369 if (vma && vma_ra) { 370 unsigned long ra_val; 371 int win, hits; 372 373 ra_val = GET_SWAP_RA_VAL(vma); 374 win = SWAP_RA_WIN(ra_val); 375 hits = SWAP_RA_HITS(ra_val); 376 if (readahead) 377 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 378 atomic_long_set(&vma->swap_readahead_info, 379 SWAP_RA_VAL(addr, win, hits)); 380 } 381 382 if (readahead) { 383 count_vm_event(SWAP_RA_HIT); 384 if (!vma || !vma_ra) 385 atomic_inc(&swapin_readahead_hits); 386 } 387 } else { 388 folio = NULL; 389 } 390 391 return folio; 392 } 393 394 /** 395 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 396 * @mapping: The address_space to search. 397 * @index: The page cache index. 398 * 399 * This differs from filemap_get_folio() in that it will also look for the 400 * folio in the swap cache. 401 * 402 * Return: The found folio or %NULL. 403 */ 404 struct folio *filemap_get_incore_folio(struct address_space *mapping, 405 pgoff_t index) 406 { 407 swp_entry_t swp; 408 struct swap_info_struct *si; 409 struct folio *folio = filemap_get_entry(mapping, index); 410 411 if (!folio) 412 return ERR_PTR(-ENOENT); 413 if (!xa_is_value(folio)) 414 return folio; 415 if (!shmem_mapping(mapping)) 416 return ERR_PTR(-ENOENT); 417 418 swp = radix_to_swp_entry(folio); 419 /* There might be swapin error entries in shmem mapping. */ 420 if (non_swap_entry(swp)) 421 return ERR_PTR(-ENOENT); 422 /* Prevent swapoff from happening to us */ 423 si = get_swap_device(swp); 424 if (!si) 425 return ERR_PTR(-ENOENT); 426 index = swap_cache_index(swp); 427 folio = filemap_get_folio(swap_address_space(swp), index); 428 put_swap_device(si); 429 return folio; 430 } 431 432 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 433 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, 434 bool skip_if_exists) 435 { 436 struct swap_info_struct *si; 437 struct folio *folio; 438 void *shadow = NULL; 439 440 *new_page_allocated = false; 441 si = get_swap_device(entry); 442 if (!si) 443 return NULL; 444 445 for (;;) { 446 int err; 447 /* 448 * First check the swap cache. Since this is normally 449 * called after swap_cache_get_folio() failed, re-calling 450 * that would confuse statistics. 451 */ 452 folio = filemap_get_folio(swap_address_space(entry), 453 swap_cache_index(entry)); 454 if (!IS_ERR(folio)) 455 goto got_folio; 456 457 /* 458 * Just skip read ahead for unused swap slot. 459 * During swap_off when swap_slot_cache is disabled, 460 * we have to handle the race between putting 461 * swap entry in swap cache and marking swap slot 462 * as SWAP_HAS_CACHE. That's done in later part of code or 463 * else swap_off will be aborted if we return NULL. 464 */ 465 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled) 466 goto fail_put_swap; 467 468 /* 469 * Get a new folio to read into from swap. Allocate it now, 470 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 471 * cause any racers to loop around until we add it to cache. 472 */ 473 folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); 474 if (!folio) 475 goto fail_put_swap; 476 477 /* 478 * Swap entry may have been freed since our caller observed it. 479 */ 480 err = swapcache_prepare(entry); 481 if (!err) 482 break; 483 484 folio_put(folio); 485 if (err != -EEXIST) 486 goto fail_put_swap; 487 488 /* 489 * Protect against a recursive call to __read_swap_cache_async() 490 * on the same entry waiting forever here because SWAP_HAS_CACHE 491 * is set but the folio is not the swap cache yet. This can 492 * happen today if mem_cgroup_swapin_charge_folio() below 493 * triggers reclaim through zswap, which may call 494 * __read_swap_cache_async() in the writeback path. 495 */ 496 if (skip_if_exists) 497 goto fail_put_swap; 498 499 /* 500 * We might race against __delete_from_swap_cache(), and 501 * stumble across a swap_map entry whose SWAP_HAS_CACHE 502 * has not yet been cleared. Or race against another 503 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 504 * in swap_map, but not yet added its folio to swap cache. 505 */ 506 schedule_timeout_uninterruptible(1); 507 } 508 509 /* 510 * The swap entry is ours to swap in. Prepare the new folio. 511 */ 512 513 __folio_set_locked(folio); 514 __folio_set_swapbacked(folio); 515 516 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 517 goto fail_unlock; 518 519 /* May fail (-ENOMEM) if XArray node allocation failed. */ 520 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 521 goto fail_unlock; 522 523 mem_cgroup_swapin_uncharge_swap(entry); 524 525 if (shadow) 526 workingset_refault(folio, shadow); 527 528 /* Caller will initiate read into locked folio */ 529 folio_add_lru(folio); 530 *new_page_allocated = true; 531 got_folio: 532 put_swap_device(si); 533 return folio; 534 535 fail_unlock: 536 put_swap_folio(folio, entry); 537 folio_unlock(folio); 538 folio_put(folio); 539 fail_put_swap: 540 put_swap_device(si); 541 return NULL; 542 } 543 544 /* 545 * Locate a page of swap in physical memory, reserving swap cache space 546 * and reading the disk if it is not already cached. 547 * A failure return means that either the page allocation failed or that 548 * the swap entry is no longer in use. 549 * 550 * get/put_swap_device() aren't needed to call this function, because 551 * __read_swap_cache_async() call them and swap_read_folio() holds the 552 * swap cache folio lock. 553 */ 554 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 555 struct vm_area_struct *vma, unsigned long addr, 556 struct swap_iocb **plug) 557 { 558 bool page_allocated; 559 struct mempolicy *mpol; 560 pgoff_t ilx; 561 struct folio *folio; 562 563 mpol = get_vma_policy(vma, addr, 0, &ilx); 564 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 565 &page_allocated, false); 566 mpol_cond_put(mpol); 567 568 if (page_allocated) 569 swap_read_folio(folio, plug); 570 return folio; 571 } 572 573 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 574 unsigned long offset, 575 int hits, 576 int max_pages, 577 int prev_win) 578 { 579 unsigned int pages, last_ra; 580 581 /* 582 * This heuristic has been found to work well on both sequential and 583 * random loads, swapping to hard disk or to SSD: please don't ask 584 * what the "+ 2" means, it just happens to work well, that's all. 585 */ 586 pages = hits + 2; 587 if (pages == 2) { 588 /* 589 * We can have no readahead hits to judge by: but must not get 590 * stuck here forever, so check for an adjacent offset instead 591 * (and don't even bother to check whether swap type is same). 592 */ 593 if (offset != prev_offset + 1 && offset != prev_offset - 1) 594 pages = 1; 595 } else { 596 unsigned int roundup = 4; 597 while (roundup < pages) 598 roundup <<= 1; 599 pages = roundup; 600 } 601 602 if (pages > max_pages) 603 pages = max_pages; 604 605 /* Don't shrink readahead too fast */ 606 last_ra = prev_win / 2; 607 if (pages < last_ra) 608 pages = last_ra; 609 610 return pages; 611 } 612 613 static unsigned long swapin_nr_pages(unsigned long offset) 614 { 615 static unsigned long prev_offset; 616 unsigned int hits, pages, max_pages; 617 static atomic_t last_readahead_pages; 618 619 max_pages = 1 << READ_ONCE(page_cluster); 620 if (max_pages <= 1) 621 return 1; 622 623 hits = atomic_xchg(&swapin_readahead_hits, 0); 624 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 625 max_pages, 626 atomic_read(&last_readahead_pages)); 627 if (!hits) 628 WRITE_ONCE(prev_offset, offset); 629 atomic_set(&last_readahead_pages, pages); 630 631 return pages; 632 } 633 634 /** 635 * swap_cluster_readahead - swap in pages in hope we need them soon 636 * @entry: swap entry of this memory 637 * @gfp_mask: memory allocation flags 638 * @mpol: NUMA memory allocation policy to be applied 639 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 640 * 641 * Returns the struct folio for entry and addr, after queueing swapin. 642 * 643 * Primitive swap readahead code. We simply read an aligned block of 644 * (1 << page_cluster) entries in the swap area. This method is chosen 645 * because it doesn't cost us any seek time. We also make sure to queue 646 * the 'original' request together with the readahead ones... 647 * 648 * Note: it is intentional that the same NUMA policy and interleave index 649 * are used for every page of the readahead: neighbouring pages on swap 650 * are fairly likely to have been swapped out from the same node. 651 */ 652 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 653 struct mempolicy *mpol, pgoff_t ilx) 654 { 655 struct folio *folio; 656 unsigned long entry_offset = swp_offset(entry); 657 unsigned long offset = entry_offset; 658 unsigned long start_offset, end_offset; 659 unsigned long mask; 660 struct swap_info_struct *si = swp_swap_info(entry); 661 struct blk_plug plug; 662 struct swap_iocb *splug = NULL; 663 bool page_allocated; 664 665 mask = swapin_nr_pages(offset) - 1; 666 if (!mask) 667 goto skip; 668 669 /* Read a page_cluster sized and aligned cluster around offset. */ 670 start_offset = offset & ~mask; 671 end_offset = offset | mask; 672 if (!start_offset) /* First page is swap header. */ 673 start_offset++; 674 if (end_offset >= si->max) 675 end_offset = si->max - 1; 676 677 blk_start_plug(&plug); 678 for (offset = start_offset; offset <= end_offset ; offset++) { 679 /* Ok, do the async read-ahead now */ 680 folio = __read_swap_cache_async( 681 swp_entry(swp_type(entry), offset), 682 gfp_mask, mpol, ilx, &page_allocated, false); 683 if (!folio) 684 continue; 685 if (page_allocated) { 686 swap_read_folio(folio, &splug); 687 if (offset != entry_offset) { 688 folio_set_readahead(folio); 689 count_vm_event(SWAP_RA); 690 } 691 } 692 folio_put(folio); 693 } 694 blk_finish_plug(&plug); 695 swap_read_unplug(splug); 696 lru_add_drain(); /* Push any new pages onto the LRU now */ 697 skip: 698 /* The page was likely read above, so no need for plugging here */ 699 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 700 &page_allocated, false); 701 if (unlikely(page_allocated)) { 702 zswap_folio_swapin(folio); 703 swap_read_folio(folio, NULL); 704 } 705 return folio; 706 } 707 708 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 709 { 710 struct address_space *spaces, *space; 711 unsigned int i, nr; 712 713 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 714 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 715 if (!spaces) 716 return -ENOMEM; 717 for (i = 0; i < nr; i++) { 718 space = spaces + i; 719 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 720 atomic_set(&space->i_mmap_writable, 0); 721 space->a_ops = &swap_aops; 722 /* swap cache doesn't use writeback related tags */ 723 mapping_set_no_writeback_tags(space); 724 } 725 nr_swapper_spaces[type] = nr; 726 swapper_spaces[type] = spaces; 727 728 return 0; 729 } 730 731 void exit_swap_address_space(unsigned int type) 732 { 733 int i; 734 struct address_space *spaces = swapper_spaces[type]; 735 736 for (i = 0; i < nr_swapper_spaces[type]; i++) 737 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 738 kvfree(spaces); 739 nr_swapper_spaces[type] = 0; 740 swapper_spaces[type] = NULL; 741 } 742 743 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, 744 unsigned long *end) 745 { 746 struct vm_area_struct *vma = vmf->vma; 747 unsigned long ra_val; 748 unsigned long faddr, prev_faddr, left, right; 749 unsigned int max_win, hits, prev_win, win; 750 751 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); 752 if (max_win == 1) 753 return 1; 754 755 faddr = vmf->address; 756 ra_val = GET_SWAP_RA_VAL(vma); 757 prev_faddr = SWAP_RA_ADDR(ra_val); 758 prev_win = SWAP_RA_WIN(ra_val); 759 hits = SWAP_RA_HITS(ra_val); 760 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, 761 max_win, prev_win); 762 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); 763 if (win == 1) 764 return 1; 765 766 if (faddr == prev_faddr + PAGE_SIZE) 767 left = faddr; 768 else if (prev_faddr == faddr + PAGE_SIZE) 769 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; 770 else 771 left = faddr - (((win - 1) / 2) << PAGE_SHIFT); 772 right = left + (win << PAGE_SHIFT); 773 if ((long)left < 0) 774 left = 0; 775 *start = max3(left, vma->vm_start, faddr & PMD_MASK); 776 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); 777 778 return win; 779 } 780 781 /** 782 * swap_vma_readahead - swap in pages in hope we need them soon 783 * @targ_entry: swap entry of the targeted memory 784 * @gfp_mask: memory allocation flags 785 * @mpol: NUMA memory allocation policy to be applied 786 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 787 * @vmf: fault information 788 * 789 * Returns the struct folio for entry and addr, after queueing swapin. 790 * 791 * Primitive swap readahead code. We simply read in a few pages whose 792 * virtual addresses are around the fault address in the same vma. 793 * 794 * Caller must hold read mmap_lock if vmf->vma is not NULL. 795 * 796 */ 797 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 798 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) 799 { 800 struct blk_plug plug; 801 struct swap_iocb *splug = NULL; 802 struct folio *folio; 803 pte_t *pte = NULL, pentry; 804 int win; 805 unsigned long start, end, addr; 806 swp_entry_t entry; 807 pgoff_t ilx; 808 bool page_allocated; 809 810 win = swap_vma_ra_win(vmf, &start, &end); 811 if (win == 1) 812 goto skip; 813 814 ilx = targ_ilx - PFN_DOWN(vmf->address - start); 815 816 blk_start_plug(&plug); 817 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { 818 if (!pte++) { 819 pte = pte_offset_map(vmf->pmd, addr); 820 if (!pte) 821 break; 822 } 823 pentry = ptep_get_lockless(pte); 824 if (!is_swap_pte(pentry)) 825 continue; 826 entry = pte_to_swp_entry(pentry); 827 if (unlikely(non_swap_entry(entry))) 828 continue; 829 pte_unmap(pte); 830 pte = NULL; 831 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 832 &page_allocated, false); 833 if (!folio) 834 continue; 835 if (page_allocated) { 836 swap_read_folio(folio, &splug); 837 if (addr != vmf->address) { 838 folio_set_readahead(folio); 839 count_vm_event(SWAP_RA); 840 } 841 } 842 folio_put(folio); 843 } 844 if (pte) 845 pte_unmap(pte); 846 blk_finish_plug(&plug); 847 swap_read_unplug(splug); 848 lru_add_drain(); 849 skip: 850 /* The folio was likely read above, so no need for plugging here */ 851 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 852 &page_allocated, false); 853 if (unlikely(page_allocated)) { 854 zswap_folio_swapin(folio); 855 swap_read_folio(folio, NULL); 856 } 857 return folio; 858 } 859 860 /** 861 * swapin_readahead - swap in pages in hope we need them soon 862 * @entry: swap entry of this memory 863 * @gfp_mask: memory allocation flags 864 * @vmf: fault information 865 * 866 * Returns the struct page for entry and addr, after queueing swapin. 867 * 868 * It's a main entry function for swap readahead. By the configuration, 869 * it will read ahead blocks by cluster-based(ie, physical disk based) 870 * or vma-based(ie, virtual address based on faulty address) readahead. 871 */ 872 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 873 struct vm_fault *vmf) 874 { 875 struct mempolicy *mpol; 876 pgoff_t ilx; 877 struct folio *folio; 878 879 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 880 folio = swap_use_vma_readahead() ? 881 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 882 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 883 mpol_cond_put(mpol); 884 885 if (!folio) 886 return NULL; 887 return folio_file_page(folio, swp_offset(entry)); 888 } 889 890 #ifdef CONFIG_SYSFS 891 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 892 struct kobj_attribute *attr, char *buf) 893 { 894 return sysfs_emit(buf, "%s\n", 895 enable_vma_readahead ? "true" : "false"); 896 } 897 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 898 struct kobj_attribute *attr, 899 const char *buf, size_t count) 900 { 901 ssize_t ret; 902 903 ret = kstrtobool(buf, &enable_vma_readahead); 904 if (ret) 905 return ret; 906 907 return count; 908 } 909 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 910 911 static struct attribute *swap_attrs[] = { 912 &vma_ra_enabled_attr.attr, 913 NULL, 914 }; 915 916 static const struct attribute_group swap_attr_group = { 917 .attrs = swap_attrs, 918 }; 919 920 static int __init swap_init_sysfs(void) 921 { 922 int err; 923 struct kobject *swap_kobj; 924 925 swap_kobj = kobject_create_and_add("swap", mm_kobj); 926 if (!swap_kobj) { 927 pr_err("failed to create swap kobject\n"); 928 return -ENOMEM; 929 } 930 err = sysfs_create_group(swap_kobj, &swap_attr_group); 931 if (err) { 932 pr_err("failed to register swap group\n"); 933 goto delete_obj; 934 } 935 return 0; 936 937 delete_obj: 938 kobject_put(swap_kobj); 939 return err; 940 } 941 subsys_initcall(swap_init_sysfs); 942 #endif 943
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.